
MASTERARBEIT / MASTER’S THESIS

Titel der Masterarbeit / Title of the Master’s Thesis

„Investigating a Molybdenum Complex using a Density
Matrix Renormalization Group Method“

verfasst von / submitted by

Leopold Lindenbauer BSc

angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of

Master of Science (MSc)

Wien, 2023 / Vienna, 2023

Studienkennzahl lt. Studienblatt / A 066 862
degree programme code as it appears on
the student record sheet:

Studienrichtung lt. Studienblatt / Masterstudium Chemie
degree programme as it appears on
the student record sheet:

Betreut von / Supervisor: Univ.-Prof. Dr. Dr. h.c. Leticia González





A B S T R A C T

A novel quantum chemical method was used to calculate the properties
of a compound with possible application in photodynamic therapy.
The organometallic complex dicarbonyl(η5-2,4-cyclopentadien-1-yl)-
nitrosyl-molybdenum, CpMo(CO)

2
NO, features the two biologically

active groups NO and CO. Excited electronic states are calculated and
analyzed to investigate selective dissociation of these groups.

The transition metal core, a nitrosyl group, and conjugated π-
systems make this compound challenging for quantum-chemical meth-
ods. In a wavefunction-based approach, these challenges may be met
with multi-reference methods, but computational demands limit the
size and complexity of analyzable systems. The novel Density Ma-
trix Renormalisation Group (DMRG) method is explored as a tool
to reduce the computational effort by automatically identifying and
discarding confgurations with negligible influence.

Density Functional Theory (DFT) was used to calculate an equilib-
rium geometry for the compound. This molecular geometry was then
analyzed using DMRG and DFT. The results were compared to avail-
able experimental IR-spectroscopy and crystallography data, and the
predictions for the UV-Vis spectrum of the compound were discussed.
The electronic transitionis were analyzed for their Charge-Transfer
character, and possible candidate states for selective dissociation were
identified.

The DMRG orbital selection protocol was modified to improve the
representation of excited states that might become important during
the dissociation.

Using DMRG, the dissociation of the CO ligand was analyzed
by calculating the electronic properties of the system at increasing
elogations of one of the Me−CO bonds.

Using DFT, the dissociation of both the NO and CO ligands was
analyzed by separate calculations of the resulting fragments. These
calculations were then used to predict the dissociation energies for the
NO and CO ligands.
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Z U S A M M E N FA S S U N G

Eine neuartige quantenchemische Methode wurde verwendet, um
ein Molekül auf dessen Anwendbarkeit für photodynamische The-
rapie zu untersuchen. Der Organometallkomplex dicarbonyl-(η5-2,4-
cyclopentadien-1-yl)-nitrosyl-Molybdän (CpMo(CO)

2
(NO)) enthält ei-

ne Nitrosyl- und zwei Carbonyl-Gruppen als Liganden, die eine di-
rekte therapeutische Wirkung entfalten können. Angeregte Zustände
wurden analysiert, um die selektive Dissoziation dieser beiden Ligan-
den zu untersuchen.

Das Übergangsmetall-Zentrum, die konjugierten π-Systeme und
die Nitrosyl-Gruppe stellen für quantenchemische Berechnungsme-
thoden eine Herausforderung dar. Methoden, die auf der Elektronen-
Wellenfunktion beruhen, begegnen diesen Herausforderungen, indem
sie angeregte elektronische Zustände in die Berechnung mit einbezie-
hen, wobei der steigende Berechnungsaufwand hier Grenzen setzt.
Hier wurde die neuartige Density-Matrix-Renormalisation-Group-
Methode (DMRG) wurde verwendet, die Zustände mit gerigem Bei-
trag während der Berechnung identifizieren und ausklammern kann.

Die Grundzustands-Geometrie wurde mit Dichtefunktional-Theorie
(DFT) als Ausgangspunkt berechnet und mit früheren Arbeiten zu
diesem Komplex verglichen. Diese Geometrie wurde mit DMRG und
DFT weiter analysiert und die Ergebnisse mit experimentellen IR-
spektroskopischen und Röntgen-kristallographischen Daten vergli-
chen. Aus den berechneten Elektronendichten wurden die Übergangs-
dichten für elektronische Anregungen auf deren Charge-Transfer-
Charakter untersucht, um Kandidaten für dissoziative Übergänge zu
identifizieren.

Das DMRG-Auswahlverfahren für die Orbitale wurde angepasst
um angeregte Zustände besser zu berücksichtigen, die während der
Dissoziation relevant werden können.

Mit DMRG wurde die Dissoziation von CO mit der DMRG-Methode
analysiert, indem die Länge der Mo−CO-Bindung in mehreren Schrit-
ten erhöht und die elektronischen Eigenschaften berechnet wurde. Mit
DFT wurden die CO- und NO-Gruppen direkt von der Grundzustands-
Geometrie abgetrennt und die Fragmente einzeln analysiert. Auf diese
Weise wurden Vorhersagen für die Dissoziationsenergie der NO- und
CO-Liganden getroffen.
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D E D I C AT I O N

For some reason, the billiard ball has come to play the role of the
prototype of a classical particle in textbooks on quantum mechanics.
The author, of course, conforms to this tradition.

It may amuse the reader to know that the author has never played
billiards and has never held a billiard ball in his hand. His knowledge
of the alledged properties of billiard balls is, therefore, book knowl-
edge, derived from texts on quantum mechanics.

— Eyvind Wichmann, Berkeley Physics Course - Quantum Physics
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L I S T O F S Y M B O L S

Symbol Description

r Generic spatial coordinates, Electronic spatial coordinates

R Nuclear spatial coordinates

x Electronic spatial coordinates with spin coordinate

τ Integration variable

t Time

h̄ Planck’s constant

i Imaginary unit

E Energy

{ } Set

N Set cardinality

rij Distance between two bodies

A Matrix A

Aij Element ij of matrix A

N Specifier for nuclear context

e Specifier for electronic context

A, B Indices for nuclei

i, j Indices for electrons

µ, ν Generic indices

Ô Operator O

Ĥ Hamilton operator

T̂ Kinetic energy operator

V̂ Potential energy operator

∇ Nabla operator

P̂ Permutation operator

F[ f ] Functional F of function f

ψ Generic wave function

|ψ〉 Generic wave function in Dirac notation

φ∗ Complex conjugate of wave function φ

〈φ| Complex conjugate of wave function φ in Dirac notation

χ Spin orbital

Ψ Generic Slater determinant

Ψi Excited Slater determinant

δij Kronecker delta
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Symbol Description

ρ Electron density

f (p; x), f (p) Function f is parametrically dependent on p

Z Nuclear charge
6 (A− B− C) Aangle at atom B between atoms A and C

s(1)i Single-orbital entropy of orbital i

s(2)ij Two-orbital entropy of orbitals i and j

s(n)A,S n-orbital entropy of orbital(s) A in electronic state S

Iij Mutual Information between orbitals i and j

maxS xS The largest value of xS, considering all values of the index S
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1
I N T R O D U C T I O N

1.1 photodynamic therapy

Photodynamic Therapy (PDT) is a clinically approved, minimally
invasive therapeutic procedure. Its mechanism is the generation of
cytotoxic molecular species inside the targeted cells - typically cancer
cells - to disrupt their metabolism and kill them. The species are gen-
erated by the action of visible or near-visible light on a photosensitizer.
The mechanism of action is classified by the nature of the cytotoxic
species: If an excited state of the photosensitizer itself is cytotoxic,
the mechanism is classified as Type I. If the excited photosensitizer
transfers the energy to molecular oxygen, exciting it from the triplet
ground state (3O2) to the singlet ground state (1O2), the mechanism
is classified as Type II. Singlet oxygen is exceptionally reactive and
short-lived in a biological medium, and has been shown to be toxic to
essentially every component of a cell [1].

The technique has several advantages over other, established anti-
cancer therapies that make it an attractive goal for research. It is
non-invasive for dermal application and minimally invasive when
using endoscopes. In contrast to chemotherapy, the drug component
is inactive in the absence of light and may be entirely harmless to the
body [2]. In contrast to both radio- and chemotherapy, the radiation
used in PDT does not confer the risk of immunosuppression. The local
inflammatory response due to the tumor cell damage is believed to
increase the antitumor activity of the immune system. A challenge to
the method is the hypoxic, oxygen-depleted environment of tumor
cells, reducing the effectiveness of the Type II mechanism. Research
on PDT with chemical scope is focused on the development and
improvement of photosensitziers by tuning the activation wavelength
or enabling the sensitizers to target specific cells and organelles within
them, so that the generated singlet oxygen is used more efficiently [1].

The use of an alternative mechanism has been proposed, where
the photosensitive molecule undergoes dissociation and releases a
therapeutically active fragment. Of particular interest is the use of
organometallic complexes that release CO or NO after photoactivation
[3][4]. Both CO and NO have a wide variety of physiological functions
and effects, both being linked to inflammatory response and blood
pressure regulation [5][6]. The photo-regulated activity of these effects
could then extend the capabilities of PDT beyond the scope of cytotoxic
mechanisms.
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2 introduction

This thesis will examine a molybdenum complex containing both
CO and NO, with the goal of finding conditions where it is possible
to selectively dissociate either one of these fragments. This would
enable to tune the therapeutic effects of a single administered drug by
switching on and off specific light sources.

1.2 molybdenum complex

The target molecule for this study is dicarbonyl(η5-2,4-cyclopentadien-
1-yl)nitrosyl-molybdenum, CpMo(CO)

2
NO, where Cp is the cyclo-

pentadienyl-anion C
5
H –

5
. This molecule has already been considered

as a possible NO-releasing agent for use in humans, to act as a vasodi-
lation drug. Closely related transition metal nitrosyls have been used
in in vivo animal tests and a number of synthetic routes are available
[7].

The Mo metal center is a necessary trace element in human diet.
It is a component of the cofactor molybdopterin and is coordinated
to the FeS-cluster of nitrogenase in some bacteria [8]. As such, it
is ubiquitous in food and no dietary plans are known to cause a
deficiency [9]. Leichtmann and Sitrin [10](as cited in [9]) estimate a
daily intake via food of 150 µg - 500 µg to be adequate for humans.
The main factor in the toxicity of Mo is the well-established interaction
with the metabolism of copper. Molybdenum intake can be toxic
when copper uptake is insufficient, leading to weight loss and anemia
in animal trials, which were reversible by increase of dietary copper
uptake. Organs that accumulate Mo (e.g. liver, kidneys, bones, adrenals
and omentum) may be damaged by higher exposure. If the exposure
is removed, excess Mo is then quickly eliminated from the body by
urinary excretion [9], where the expected absolute Mo content is in
the range of 9 mg for a hypothetical average human male weighing
70 kg [11]. Therefore, the use of Mo in a drug, especially in treating
severe diseases, seems to offer opportunities within acceptable risks.

1.3 ab-initio investigation

This thesis attempts an ab initio analysis of the Mo-complex. Density
Functional Theory (DTF) is a widely used method for investigating
transition metal complexes [12]. The NO-ligand, however, requires a
cautious approach due to its non-innocence. The concept was proposed
by Jørgensen [13] (as cited in [14]) to denote ligands whose oxidation
state is not a priori obvious[14]. The charge on NO impacts its ligand
behaviour, as electron-rich NO may be attached at an angle, while
neutral and positively charged NO tends to be linearly attached [15].

It is thus expected that the non-innocence of the NO-ligand, the
dissociation of the molecule, and the π-bonds in the ligands introduce
a large amount of static correlation between the electrons of the system.



1.3 ab-initio investigation 3

The proper description of this static correlation requires methods
that include multiple electronic configurations [16].

The Density Matrix Renormalization Group (DMRG) method in
its quantum chemical formulation [17] [18] [19] [20] [21] [22] is able
to recover this static correlation and has been used successfully in
the analysis of similar complexes [16]. This thesis will investigate the
applicability of the DMRG method to the analysis of the photo-induced
dissociation of the Mo-complex.

The investigation will be presented in the remainder of this thesis.
The theoretical background is presented in section 2. The methods, im-
plementations, and procedures are described in section 3. The results
are presented and discussed in section 4, subdivided thematically into
the treatments of the equilibrium geometry in section 4.1, the excited
states in section 4.2, and ligand dissociation in section 4.3. Section 5

concludes the investigation by providing a summary of the findings.
The appendix contains tabular data and selected illustrations of the
molecular orbitals generated during the investigation.

Results and findings obtained during the creation of this thesis have
been published as Freitag et al. [23].





2
T H E O RY

This chapter gives an overview of the methods and approximations
used to analyze the molybdenum complex. Describing the chemical
behavior of a molecule is at the very core a question of the behavior of
the electrons in response to movement of the atomic cores and external
potentials. Electronic Structure Theory is the theoretical framework
which encompasses the methods used to describe electrons that are
bound to atoms.

2.1 the schrödinger equation

The quantum mechanical theory introduced by Schrödinger [24][25]
posits that all observable features of a physical system can be calcu-
lated from a function ψ(r, t) in terms of the position r of the particles
constituting the system, and time t. ψ is called the wave function of the
system. The wave function is generated by solving the central equation
of quantum mechanics, the time-dependent Schrödinger equation

Ĥψ(r, t) = ih̄
∂

∂t
ψ(r, t), (2.1.1)

where the Hamilton operator Ĥ contains all interactions within the
system under consideration and for a general N-particle-system is

Ĥ(r, t) = T̂(r) + V̂(r, t), (2.1.2)

where T̂(r) and V̂(r, t) are the operators for the kinetic and potential
energy of the particles.

For systems in a bound state where V̂ and thus by extension Ĥ are
time-independent, the energy E of the system is constant. E is then
an eigenvalue of Ĥ with respect to ψ(r, t), so that ψ(r, t) can also be
separated into a time-dependent and space-dependent part [26]

Ĥ(r)ψ(r, t) = Eψ(r, t) = i
∂

∂t
ψ(r, t)

ψ(r, t) = ψ(r)e−iEt.
(2.1.3)

The spatial wave function is multiplied by a simple phase factor.
For time-independent systems, this phase factor can typically be ne-
glected.This leads to a compact notation for the time-independent
Schrödinger equation

Ĥψ(r) = Eψ(r). (2.1.4)

This form of the Schrödinger equation will be used for the rest of this
thesis.

5



6 theory

2.1.1 Wave Functions

Acceptable wave functions that are solutions to the time-independent
Schrödinger equation are complex-valued and depend on the coordi-
nates of all particles, ψ(r). The interpretation of the physical meaning
of these functions is subject to debate, but the square of its absolute
value |ψ(r, t)|2 is generally accepted to be proportional to the proba-
bility density of finding the particles at positions r. To allow for this
interpretation, the wave function must be square-integrable and yield
a normalized probability density such that∫ ∞

−∞
|ψ(r)|2dr = 1. (2.1.5)

As the operators used with the Schrödinger equation typically
include differential operators, the wave function is required to be
continuous and differentiable on the domain of the function.

For the molecules investigated in this thesis, the coordinates of the
electrons are given as r and the coordinates of the nuclei are given as
R.

2.1.2 Dirac Notation

Throughout this thesis, the Dirac notation [27] will be used, where
the symbol |ψ〉 denotes a wave function with the label ψ that may
be inserted into a given quantum mechanical formalism. The wave
function may be given either as an n-dimensional vector or as a
function of spatio-temporal coordinates. This ambiguity is more than
compensated by the ease of use that comes with it, as the vector and
function representation are equivalent and may be converted from one
to the other as needed. The complementary symbol 〈ψ| is then the
complex conjugate of |ψ〉, and additionally its transposed form when
it is a vector. Combining both symbols in the form of 〈ψ | φ〉 gives the
inner product. When φ and ψ are given in the form of functions, the
inner product is defined as the integral∫ b

a
ψ∗(x)φ(x) dx, (2.1.6)

where the φ∗ denotes the complex conjugate of φ, x denotes all coor-
dinates of the system, and a and b are the boundaries of the system
under consideration. When treating molecular systems, the whole
space is considered, with the borders set at positive and negative
infinity. The function resulting from the action of an operator Ô on a
wave function is denoted as Ô |ψ〉. A common occurrence is to take
the inner product of such a function, such as

〈
ψ
∣∣ Ô ∣∣ψ

〉
, where it

will denote the operator acting on the function to the right. In the
vector formalism, it is simple to construct operators that act to the left,
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which are the adjoint of the matrix of the corresponding right-acting
operator.

The equivalence of the vector and function formalisms can be shown
by decomposing the function ψ as a sum of suitable basis functions ψi
as ψ = ∑ ciψi. The coefficients ci are then assigned as the elements of
the vector representation of the function ψ. If the basis functions are
orthonormal to each other, i. e. , 〈φi|φj〉 = δij, where δij is the Kronecker
delta with

δij =

1, if i = j,

0, if i 6= j.
(2.1.7)

It can be shown that the effect of an operator Ôψ = ψ′ can be
represented as the action of the operator on the individual basis
functions, so that ψ′ = ∑j c′jφj = ∑j ∑i Ôciφi = ∑ij Oijciφi, where Oij is
then the matrix representation of the operator Ô.

If the wave function is an eigenfunction of the operator, the eigen-
values are evaluated by taking the inner product of the eigenvalue
equation with the complex conjugate of the wave function

Ô |ψ〉 = O |ψ〉
〈ψ|Ô|ψ〉 = O 〈ψ|ψ〉
〈ψ|Ô|ψ〉
〈ψ|ψ〉 = O,

(2.1.8)

with O being the eigenvalue associated with the operator Ô.

2.1.3 The Hamilton Operator

The Hamilton operator receives its name from its similarity to the
Hamilton formulation of classical mechanics. It is the sum of the
kinetic and potential energy terms, which, in quantum mechanics,
reads as:

Ĥ = T̂ + V̂. (2.1.9)

The kinetic energy operator T̂ is given as

T̂ = − h̄2

2m
∇2, (2.1.10)

where ∇ is called the nabla operator and represents a differentiation
in all spatial coordinates. h̄ is the reduced Planck’s constant h̄ = h

2π .
In Cartesian coordinates, this resolves to

∇2
i =

[
∂2

∂x2
i
+

∂2

∂y2
i
+

∂2

∂z2
i

]
(2.1.11)

for each particle i under consideration.
The time-independent potential energy operator V̂ is constructed

as the sum of all coulomb interactions between the particles of the
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system, depending on their positions. When given in atomic units
with the electron mass me, the elementary charge e, the reduced Planck
constant h̄, and the prefactor of Coulomb’s law 1

4πε0
all equal to unity,

the Hamiltonian operator for a molecule can be written as

Ĥ = T̂e + T̂N + V̂ee + V̂Ne + V̂NN

T̂e = −∑
i

1
2
∇2

i

T̂N = −∑
A

1
2MA

∇A

V̂ee = ∑
i

∑
j>i

1
|ri − rj|

V̂Ne = −∑
A

∑
i

ZA

|RA − rj|

V̂NN = ∑
A

∑
B>A

ZAZB

|RA − RB|
.

(2.1.12)

As with most other operators, the Hamiltonian may have more
than one eigenfunction. The eigenfunction giving the lowest energy
represents the ground state1, the other wave functions then represent
excited states.

2.1.4 Born-Oppenheimer-Approximation

Born and Oppenheimer [28] showed that it is a valid approximation
to treat the movement of the nuclei of a molecule separately from the
electrons. The mass of an electron is smaller than that of a proton by
three orders of magnitude. Under this approximation, the electrons
are able to instantaneously follow movements of the atomic cores.
So, when treating the nuclei as stationary point charges, the total
electronic energy Eelec of a molecule is then recovered by the electronic
Schrödinger equation

Ĥelec |ψelec〉 = Eelec |ψelec〉 , (2.1.13)

with the electronic Hamiltonian Ĥelec = T̂e + V̂ee + V̂Ne + V̂NN . The
operators V̂Ne and V̂NN depend on the given geometry of the nuclei,
so the wave function |ψelec〉 also depends on the nuclear geometry.
For each nuclear geometry, the electronic Schrödinger equation needs
to be solved independently. This is expressed as ψelec and Eelec being
parametrically dependent on the nuclear coordinates R, and denoted
by the symbols ψelec(R; r) and Eelec(R), with r denoting the electronic
coordinates.

The movement of the atomic cores can then be treated in a quantum
mechanical way by creating a potential energy surface (PES). This

1 it is possible that multiple wave functions give identical energy values, making the
states degenerate.
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yields the electronic energies Eelec(R) as a function of the nuclear
coordinates R.

2.1.5 Variational Principle

The variational principle ensures that any wave function that solves
the Schrödinger equation gives a value for the energy of the system
that is an upper bound to the energy of the exact solution. A given
trial function Φi could be considered as an expansion Φi = ∑i aiψi of
all exact solutions ψi to Ĥ |ψ〉i = Ei |ψ〉i, ordered in i by increasing
energy with E0 being the ground state energy. [26] The energy W for
the trial function is then

W =
〈Φ|Ĥ|Φ〉
〈Φ|Φ〉

W =
∑ij aiaj 〈Φi|Ĥ|Φj〉

∑ij aiaj 〈Φi|Φj〉

W =
∑i a2

i Ei

∑i a2
i

W − E0 =
∑i a2

i Ei

∑i a2
i
− E0

W − E0 =
∑i a2

i (Ei − E0)

∑i a2
i

,

(2.1.14)

where the orthogonality of the ψi is used. Both a2
i and (Ei − E0) are

non-negative by their definition, so this is also true for W − E0. The
equality W = E0 only holds true if the trial wave function is the
ground state wave function, or is a linear combination of degenerate
ground state wave functions.

When trying to compute the energy of a molecule, it is not feasible
to search the complete set of all valid wave functions. The variational
principle makes it possible to select a certain subset of wave functions
and compute the minimal energy that can be achieved within this
subset. The subset can then be chosen such that the search for the
minimum energy is efficient and can be finished with reasonable
computational effort.

2.2 hartree-fock method

Finding exact analytical solutions for the electronic Schrödinger equa-
tion 2.1.13 with a molecular Hamiltonian is not possible for molecules
consisting of more than one electron. The Hartree-Fock method treats
each electron as moving within the average field generated by the other
electrons in the molecule [29][30]. This approximation is also termed
mean-field theory. The method then tries to solve the Schrödinger equa-
tion iteratively by compiling a set of orbitals occupied by the electrons,
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calculating the generated field, and using this field to generate a new
set of orbitals. If the fields generated in two consecutive steps are
similar enough, i. e. , the mean field produces orbitals that in turn
produce the same field, the calculation is considered as completed.
This solution is called a self-consistent field (SCF).

2.2.1 Slater Determinants

The wave function used in the Hartree-Fock method has to satisfy the
Pauli principle for fermions, which demands that a given electronic
wave function must be anti-symmetric under exchange of two electrons
and, in direct consequence, be zero if two or more electrons with
identical spin occupy the same orbital. To treat the fermionic character
of the electrons, the spin coordinate ω is included in the electronic
coordinates, which are then denoted as x. The spin orbitals χn(x) are
composed from spatial orbitals ψi(r) multiplied by one of the spin
functions α(ω) or β(ω) in the spin coordinate ω. Constructing a wave
function for N electrons as a Hartree product

ψHP = ∏
i

χi(xi) (2.2.1)

of spin orbitals χi does not satisfy the Pauli principle, but it is
possible to combine multiple Hartree products to give a wave function
with the desired property.

The construction scheme and resulting wave function is called Slater
determinant [31], and is defined as

|Ψ(x1, x2, ..., xN)〉 =
1√
N!

∣∣∣∣∣∣∣∣∣∣∣

χ1(x1) χ2(x1) · · · χN(x1)

χ1(x2) χ2(x2) · · · χN(x2)
...

...
...

χ1(xN) χ2(xN) · · · χN(xN)

∣∣∣∣∣∣∣∣∣∣∣
. (2.2.2)

A shorthand notation will be used, where only the indices of one of
the elements (spin orbitals or fermion coordinates) are given. The other
indices are understood to be in linear order, and the normalization
constant 1√

N!
is implied by giving N itself [32]. The determinant given

above is then written as

|Ψ(x1, x2, ..., xN)〉 ≡ |12...N〉 . (2.2.3)

2.2.2 Fock Operator

The mean-field approximation is formulated as the Hartree-Fock equa-
tion

f̂ |χa〉 = εa |χa〉 , (2.2.4)
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where the χi are the spin orbitals of the electrons, εi are the corre-
sponding orbital energies and f̂ is the Fock operator [32]. The Fock
operator f̂ (i) for electron i is given as

f̂ (i) = ĥ(i) + v̂HF(i) (2.2.5)

with the one-electron operator ĥ(i) for the kinetic energy of the electron
and the Coulomb interaction with the nuclei as

ĥ(i) = −1
2
∇2

i −∑
A

ZA

riA
, (2.2.6)

and the operator for the Hartree-Fock potential vHF(1), an effective
one-electron potential resulting from the other electrons in the system
with

v̂HF(i) = ∑
b

(
Ĵb(i)− K̂b(i)

)
Ĵb(i)χa(i) =

[∫
dxj χ∗b(j)

1
rij

χb(j)
]

χa(i)

K̂b(i)χa(i) =
[∫

dxj χ∗b(j)
1
rij

χa(j)
]

χb(i),

(2.2.7)

where Ĵb(i)χa(i) represents the action of the coulomb repulsion be-
tween two electrons when electron i occupies spin orbital χa and
electron j occupies orbital χb, and K̂b(i)χa(i) represents the potential
arising from the exchange of the two electrons and has no classical
interpretation. While the mean-field theory formally excludes the inter-
action of an electron with itself, the Coulomb and exchange potential
for such a self-interaction cancel each other out as[

Ĵa(i)− K̂a(i)
]

χa(i) = 0. (2.2.8)

which permits their inclusion in the sum over all electron-electron
interactions, simplifying the algebra. It is desirable to write the action
of K̂b(i) in such a way that the indices of the orbitals line up with the
indices of the integral. A permutation operator P̂12 can be introduced
that swaps the indices of electron i and electron j, so that the action of
K̂ can be written as

K̂b(i)χa(i) =
[∫

dxj χ∗b(j)
1
rij
P̂12χb(j)

]
χa(i) (2.2.9)

and all terms of f̂ reduce to the compact form of equation 2.2.4 given
above, presented as an eigenvalue equation. However, the integrals
contained in Ĵ and K̂ represent the effects of the mean-field, depen-
dent in turn on |χa〉. This nonlinear dependence is treated by solving
the eigenvalue equation iteratively, using integrals of a previous itera-
tion step to generate a new |χa〉.
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2.2.3 Basis Sets

When the spatial orbitals ψi used in the Slater determinant are ex-
panded in terms of a basis set {φµ} as

ψi = ∑
µ

Cµiφµ, (2.2.10)

the Hartree-Fock-Equations become

f̂ (1)∑
ν

Cνiφν(1) = εi ∑
ν

Cνiφν(1) (2.2.11)

and can be transformed into a matrix equation by multiplying with
φ∗ν from the left and integrating over the whole space [32]:

∑
ν

CνiFµν = εi ∑
ν

CνiSµν (2.2.12)

with the Fock matrix Fµν =
∫

dr1 φ∗µ(1) f̂ (1)φµ(1) and the overlap
matrix Sµν =

∫
dr1 φ∗µ(1)φµ(1). This gives the Roothaan [33] matrix

equation
FC = SCε (2.2.13)

which can be solved efficiently by modern computers.
The choice of the basis set {φµ} determines the accuracy of the

Hartree-Fock method. As the variational principle holds for solutions
obtained by this method, adding more basis functions increases the
function space available to approach the exact solution. This is a
strategy to improve the final energy. However, this also increases the
computational effort, and the main contribution is the calculation of
integrals for the interaction of two electrons. The number of these
integrals increases as 1

8 L4 [32], where L is the cardinality of the basis
set. This gives a computational complexity of O(L4) for the method,
which dominates the contribution from solving the matrix eigenvalue
equation, which scales as O(L3).

While basis sets composed of radial Slater functions more closely
model the exponential radial decay of the exact wave function of the
hydrogen atom and the cusp at the nucleus, these functions lead to
integrals that have to be approximated [34] or solved numerically
[35]. When using Gaussian basis functions, the relevant integrals
have known exact solutions [36][37], which allows fast and efficient
evaluation [38].

2.2.4 Electron Correlation

In the Hartree-Fock method, the electron-electron interaction is treated
in an average way, which is also reflected by using a wave function
for uncorrelated particles. This approximation is sufficient to allow for
a qualitative description of the system, but cannot describe systems
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where the correlated movement of the electrons is an important factor.
This electron correlation can be divided into dynamical and non-
dynamical contributions, with dynamical contributions coming from
the instantaneous movement of electrons, e. g. those occupying the
same spatial orbital, and non-dynamical contributions from electrons
occupying different spatial orbitals with near-degenerate energy levels
[26].

The correlation energy Ecorr is given as the difference between the
exact solution of the non-relativistic Schrödinger equation and the
Hartree-Fock energy EHF obtained in the limit that the basis set ap-
proaches completeness [32] by

Ecorr = E0 − EHF. (2.2.14)

The relative importance of this missing contribution to the energy
of the exact solution depends on the system under investigation. Post-
Hartree-Fock methods try to recover the correlation energy by refining
the Hartree-Fock result by introducing perturbation theory or using
more then one determinant to represent the electronic states.

2.3 density functional theory

In wave-function-based methods, all integral kernels contain the
square of the absolute value of the wave function. It follows that
this value also contains the information necessary to characterize the
system. This argument led to the development of new methods that
use the electron density as the underlying physical quantity. They are
referred to by the term Density Functional Theory (DFT) and are widely
used in applications where the exact wave function is not needed [39].

2.3.1 Electron Density

In contrast to the wave function of a system, the electron density
is a physical entity that can be measured in real systems. When
interpreting the square absolute value of the wave function as the
probability density for the position of the particles, the electron density
ρ(r) at the point r can be obtained by integrating the probability
density |ψ|2 over all spatial and spin coordinates, except the spatial
coordinates for one electron, which is then written as

ρ(r1) = N
∫
· · ·

∫
|ψ(x1, x2, · · · xN |2ds1 dx2 · · · xN . (2.3.1)

At the positions of the nuclei, the electron density is expected to
form a cusp due to the singularity introduced by the factor −ZA

riA
, the

coulomb term. The form of this cusp is then related to the charge ZA
of the nucleus. Integrating the electron density over the whole space
gives N, the total number of electrons [39][40].
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2.3.2 Hohenberg-Kohn Theorems

The Hohenberg-Kohn theorems [41] provide a proof to the argument
that a formalism using the electron density as the fundamental quan-
tity can be successful. The first theorem proves that the external poten-
tial energy term (determined by the charge ZA and position RA of the
nuclei) of the Hamiltonian gives rise to a unique wave function and
thus electron density for the ground state of the system. The ground
state electron density in turn contains, within an additive constant, the
external potential energy. These relationships can then be summarized
as

ρ0 ⇒ {N, ZA, RA} ⇒ Ĥ ⇒ ψ0 ⇒ E0 (2.3.2)

or by denoting a specific functional, e. g. by writing E0[ρ0] to denote
the state energy as a functional of the ground state electron density.

Since the ground state energy is a functional of the density,so must
be its components [39]. These can be decomposed into the kinetic and
potential energy of the electrons independent of the nuclei, Te and
Eee, and a term Eext that encompasses the contributions involving the
nuclei, i. e. contributions that are external to the electrons. This can be
written as

E0[ρ0] = T[ρ0] + Eee[ρ0] + Eext[ρ0]. (2.3.3)

The functionals T[ρ0] and Eee[ρ0] are independent of the nuclei and
may be summed up as the Hohenberg-Kohn functional FHK[ρ0] =

T[ρ0] + Eee[ρ0], which then results in this expression for the ground
state energy functional

E0[ρ0] = FHK[ρ0] +
∫

ρ0(r)VNedr (2.3.4)

where VNe is the potential of the Coulomb interaction between the
electrons and nuclei. Knowing FHK exactly would make it feasible to
solve the Schrödinger equation for arbitrarily large systems exactly.
The second of the Hohenberg-Kohn theorems proves that a form of the
variational principle also holds for FHK[ρ], where the lowest energy of
the system will be delivered if, and only if, the trial density ρ is the
ground state density ρ0.

2.3.3 Kohn-Sham Density Approach

Attempts to find an expression for E0[ρ0] were made even before
publication of the Hohenberg-Kohn theorems and led to the Thomas-
Fermi model [39]. However, this model gives only qualitatively correct
results for homogeneous metals and fails to predict chemical bonding
in molecules. Typically, the biggest contribution to E0[ρ0] is the term
for the kinetic energy. In wave-function-based methods, the kinetic
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energy T can be calculated exactly, which led Kohn and Sham [42] to
propose an ansatz where they rearranged the expression for FHK as

FHK[ρ0] = T[ρ0] + J[ρ0] + Enon−cl [ρ0], (2.3.5)

with the kinetic energy T[ρ0], the classical Coulomb potential J[ρ], and
a catch-all term containing non-classical contributions such as electron
exchange and correlation effects.

They were then able to use the expression for the kinetic energy of a
Slater Determinant for a reference system of non-interacting electrons

TS = −1
2 ∑

i
〈χi,KS|∇2|χi,KS〉 (2.3.6)

to approximate the kinetic energy term. The Kohn-Sham orbitals χi,KS
of this reference system are constructed such that the resulting Kohn-
Sham wave function gives the ground state electronic density of the
real system:

ρ0(r) =
N

∑
i

∑
s∈{α,β}

|χi,KS(r, s)|2. (2.3.7)

The kinetic energy of this non-interacting system T0 is not identical
to the kinetic energy T for the real system, but since it is possible
to express it as a functional of the real electronic density, is is also
possible to express the difference between them as a functional. With
this partition, Kohn and Sham expressed the functional F[ρ] as

F[ρ(r)] = TS[ρ(r)] + J[ρ(r)] + EXC[ρ(r)], (2.3.8)

where the term EXC is called the exchange-correlation energy and is
defined as

EXC[ρ] = (T[ρ]− TS[ρ]) + (Eee[ρ]− J[ρ])

= TC[ρ] + Enon−cl [ρ].
(2.3.9)

The exchange-correlation energy then contains all the contributions
to the electronic energy for which an exact form is still unknown.

The Kohn-Sham orbitals are constructed similar to the Hartree-Fock
scheme. A one-electron Kohn-Sham operator is defined as

f̂ KS = −1
2
∇2 + V̂Sr, (2.3.10)

using an effective, local potential V̂S(r). Then, the eigenvalue equations

f̂ KSχi,KS = εχi,KS (2.3.11)

are solved. The effective potential VS is then constructed as the sum
of the Coulomb interactions of the electrons with themselves and the
nuclei, and the potential leading to the exchange-correlation energy:

V̂S(r1) =
∫

ρ(r2)

r12
dr2 + ∑

A

ZA

r1A
+ V̂XC(r1), (2.3.12)
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where the exact form of the term V̂XC is not known, but can be defined
as the functional derivative of EXC with respect to the electron density

V̂XC ≡
δEXC

δρ
. (2.3.13)

All contributions to the energy except EXC have a known and exact
form. All approximations in DFT are introduced by the choice of a
suitable functional for the exchange-correlation-energy, and by limiting
the basis set for the construction of the Kohn-Sham orbitals [39].

2.3.4 Time-Dependent Density Functional Theory

The Hohenberg-Kohn theorems are only valid for the ground state
electronic density of the system. Runge and Gross [43] were able to
find an extension that is also valid for systems under the influence of
time-dependent potential, stating that there is a one-to-one correspon-
dence between time-dependent potentials and electron densities. The
theorem can be illustrated by stating that two electron densities n(r, t)
and n′(r, t) which both arise from a common ground state Ψ0 at t0 and
evolve under two different potentials v(r, t) and v′(r, t) 6= v(r, t)+ c(t),
respectively, will become different from each other around t0 within
an infinitesimal time difference [40].

The Kohn-Sham approach requires that a reference wave function of
non-interacting electrons can be used to generate the electron density.
It can be shown by the van Leuwen theorem that it is also possible
to find such a reference for systems where the electron density is
time-dependent [40].

These proofs provide the necessary foundation to formulate DFT in
a time-dependent manner. Through these formulations, calculation of
arbitrary electronic states becomes possible. By considering the linear
response of the electron density to an oscillating external potential, it
is possible to determine the energy of excited electronic states, which
give rise to poles in the response function.

2.4 post-hartree-fock methods

In wave function-based methods, a general way to recover electron
correlation is to use multi-determinantal trial wave functions, where
the trial wave function is constructed as a linear combination of Slater
determinants

ψ = ∑
i=0

ciΨi, (2.4.1)

where the Ψi are Slater determinants constructed from the Hartree-
Fock orbitals generated by equation 2.2.13, with Ψ0 = ΨHF being the
wave function for the ground state and the Ψi 6=0 are called excited
determinants and are constructed by moving an electron from an
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occupied orbital of the ground state wave function to an unoccupied
one. This ansatz captures the interaction of electronic configurations
and is called “Configuration Interaction” (CI) [26].

The inclusion of all possible excited determinants accessible from
the Hartree-Fock orbitals generated from a given basis set recovers
all the electron correlation accessible via this specific basis set and.
This is termed Full Configuration Interaction (FCI). This approach is,
however, impractical even for systems of modest size due to the rapid
growth of the number of determinants to include. It is thus desirable
to limit the number of determinants in 2.4.1 to the ones that have the
largest effect on the result. Many schemes for systematic truncation of
the number of determinants exist, some of them enabling the use of
experience and chemical intuition to pre-select subsets of the complete
space of possible determinants.

This truncation however, introduces a size-inconsistency to the
method: The energy for a system containing a molecule M twice,
at infinite distance, is generally not equal to two times the energy of a
system containing the molecule once, so that

E(M + M) 6= 2E(M). (2.4.2)

This inequality can be made plausible by considering the number
of excited states included in the calculation:

Consider a method that includes single and double excitations in the
CI-expansion (CISD), used to investigate a system of two molecules
2 M−−(Ma + Mb) at varying separation distances. CISD would then
consider the determinants corresponding to (M **a +Mb), (M *a +M *b ),
and (Ma +M **b ). At a large separation between Ma and Mb where they
no longer meaningfully interact, it could be considered to use CISD
on a single molecule M and double the resulting energy. That would
generate determinants that correspond to the quadruple excitation
(M **a +M **b in the combined 2 M-system that is not considered in the
CISD calculation for the combined system [26]. A CISD calculation
on a complete system will therefore generally not be identical to the
combination of CISD calcualtions of parts of the system, even if they
are not interacting.

2.5 multiconfigurational self-consistent-field

The approach in equation 2.4.1 generates the excited Slater determi-
nants Ψi using a set {χ} of molecular orbitals previously generated
by another method. It is possible to also make the molecular orbitals
{χ} subject to optimization, leading to a method called Multicon-
figurational Self-Consistent-Field (MCSCF). Optimizing the orbitals
themselves can be termed as “orbital relaxation” in response to the
electron correlation introduced by the multiconfigurational approach
[26].
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2.5.1 Active Space Methods

One strategy to limit the number of excited determinants included in
equation 2.4.1 is to limit the number of orbitals that may participate in
these excitations. The orbitals included in the excitation scheme form
a subset called the “Active Space”. The simplest method is the “Com-
plete Active Space” (CASSCF) method, which considers all possible
excitations within the active space, performing full configuration inter-
action on the subset [26]. Typically, the frontier orbitals are selected as
active space, leading to a basic nomenclature for the size of an active
space as (e, o), where e and o are the number of electrons and orbitals
in the active space, respectively [44]. Some publications also use square
brackets to denote the active space [26], i. e. “[6,7]-CASSCF”. In this
thesis, the round form will be used. Figure 2.1 shows a representation
of a (6,7) active space.
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Figure 2.1: Schematic representation of an active space.

Active Space Selection

Selection of a suitable active space depends on the chemical question
to be answered; thus, it is a subjective process that requires experience
and chemical intuition. However, some general “rules of thumb” can
be formulated to aid the selection [26].

1. For a given occupied orbital to include in the active space, if
there is a corresponding unoccupied orbital, both orbitals will
should be included.
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2. The frontier orbitals, i. e. the highest occupied and lowest unoc-
cupied orbitals generated by a Hartree-Fock method typically
provide the highest contributions.

3. When the geometry of the molecule changes, i. e. during a chem-
ical reaction, the contribution of a particular orbital to the cor-
relation energy will also change. The active space should thus
include orbitals that may become important during critical pro-
cess phases, such as transition states and changes in orbital
character.

4. Analyzing occupation numbers of orbitals gained from previ-
ous correlated methods may reveal if the inclusion is justified.
Orbitals that are almost completely filled or empty typically con-
tribute less to the correlation effects than partially filled orbitals.

Orbitals representing the inner shell of atoms with very low orbital
energies are expected to make only negligible contributions to the
configuration interaction, and to change very little under orbital opti-
mization. It is thus possible to exclude these orbitals from the orbital
re-optimization The excluded orbital are then called “frozen” orbitals
[44].

2.5.2 State Averaging

When calculating excited electronic states and aiming to accurately
recover the transition dipole moments for the excitations, it is neces-
sary to keep the wave functions strictly orthogonal. This is done by
optimizing several states at once with the same orbitals, which then
describe the corresponding electronic states equally well. This method
is called “state averaging” [45]. We define an energy function as a
linear combination of the energies of the individual states |I〉

E = ∑ wI EI , (2.5.1)

where the wI are constant weight parameters [46].

2.6 density matrix renormalisation group

The selection of active spaces is necessarily a subjective matter. There
is no simple and obvious way to methodically improve the accuracy of
the results of a multi-configurational method, aside from increasing the
space itself, which comes at an exponential increase of computational
cost. There is a desire to find methods that can be tuned according to
available computational resources and required accuracy by using a
limited number of parameters. If these parameters were to influence
the performance of the method in a predictable manner, it would be
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possible to create black-box methods and thereby simplify the usage
of electron correlation methods.

A promising candidate to fill this role is the Density Matrix Renor-
malization Group (DMRG) method. It was developed to solve corre-
lated quantum problems in condensed matter physics [47], has been
adapted for quantum chemical problems [48] and successfully used to
treat electron correlation in transition metal complexes [49][50].

2.6.1 DMRG Algorithm

The formalism given in this section is taken from Wouters and van
Neck [20]. The ansatz of 2.4.1 is transformed into a product of ten-
sors, called a “tensor train”. These tensors are then simplified by
data-reduction techniques, typically by truncated singular value de-
composition (SVD). The transformation proceeds by interpreting the
factors ci as a tensor C{ni} of rank L, where L is the number of spatial
orbitals included in the active space and ni denotes the number of
electrons occupying orbital i, as one of {—, ↑, ↓, ↑↓}. The tensor C{ni}

can be exactly decomposed by an SVD so that

Cn1;n2···nL = ∑
α1

U[1]n1;α1 s[1]α1V[1]α1;n2···nL . (2.6.1)

This decomposition can then be repeated for V[1], giving

V[1]α1n2;n3···nL = ∑
α2

U[2]α1n2;α2 s[2]α2V[2]α2;n3···nL . (2.6.2)

By continuing this process for all n and absorbing the s[n] into one
of the two adjacent tensors giving A[n], the single tensor C{ni} of rank
L is exactly decomposed into L tensors of rank 2 and 3, showing the
sequential nature of the tensor train:

Cn1n2···nL = ∑
α1,α2,···αk−1

A[1]n1
α1

A[2]n2
α1;α2
· · · A[L− 1]nL−1

αL−2;αL−1 A[L]nL
αL−1

.

(2.6.3)
Optimizing the elements of ci in equation 2.4.1 with respect to the

energy is equivalent to optimize the tensors A[n].
In the exact decomposition, the number of elements contained in

the indices αk and thus the tensors A[k] grows exponentially towards
the middle of the decomposition, such that dim(αk) = min(4k, 4L−k).
However, the SVD offers a straightforward path to an approximation
technique, where only the m most significant values are kept in the
αk indices. This transformed and truncated ansatz is then called a
Matrix Product State (MPS), the truncation constant m is called the
bond dimension. The MPS can be optimized by the DMRG algorithm,
yielding a variational upper bound for the ground state energy [20].
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In the quantum chemical formulation of DMRG, the MPS is con-
structed by assigning the molecular orbitals of the active space to the
indices nk, which are then called a site. Since the decomposition is trun-
cated, the order of the orbitals along the 1D-lattice of the MPS has an
effect on the resulting approximation. The optimization then proceeds
in macro-iterations called sweeps, consisting of micro-iterations. In a
micro-iteration, two adjacent sites are contracted along their shared
bond index into a single two-site tensor,

∑
αi

A[i]ni
αi−1;αi

A[i + 1]ni+1
αi ;αi+1 = B[i]ni ;ni+1

αi−1;αi+1 , (2.6.4)

which is optimized to give the lowest ground state energy with a local
effective Hamiltonian. The optimized tensor is then decomposed again
by a truncated SVD. In the next micro-iteration, the index i moves one
step and the process is repeated. A full sweep consists of moving the
index i along the train once in each direction, reversing at the end. The
algorithm ends after a set number of sweeps or convergence criteria.

2.6.2 Orbital Entanglement

The MPS ansatz offers methods to analyze the resulting wave function
in terms of the contribution of orbitals to the active space. Derived
from to the density matrix

ρ = |Ψ〉 〈Ψ| (2.6.5)

for the complete wave function, a reduced density matrix ρ̂S can
be constructed for a subsystem of the active space [20]. The active
space may be partitioned into the subsystems P and Q, consisting of
the orthonormal basis states {|Pi〉} and {|Qj〉}, respectively. Then, the
complete system is described by the product space {|Pi〉} ⊗ {|Qj〉}
and wave functions of the form |Ψ〉 = ∑ij Cij |Pi〉 |Qj〉. Performing an
SVD on the matrix C leads to

|Ψ〉 = ∑
ij

Cij |Pi〉 |Qj〉

= ∑
ijk

UikσkVkj |Pi〉 |Qj〉

= ∑
k

σk |P̃i〉 |Q̃j〉 .

(2.6.6)

A reduced density matrix ρP for subsystem P can then be formed
by taking the partial trace with respect to Q, as
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ρP = TrQ(ρ)

= ∑
j
〈Qj|Ψ〉 〈Ψ|Qj〉

= ∑
ijl
|Si〉CijC†

jl 〈Sl |

= ∑
k
|S̃k〉 σ2

k 〈S̃k| .

(2.6.7)

From these σ2
k , the von Neumann entropy S with respect to P and Q

can be calculated as

S = −∑
k

σ2
k ln σ2

k , (2.6.8)

where, for normalized |Ψ〉,

∑
k

σ2
k = 1. (2.6.9)

The von Neumann entropy is a measure of how entangled P and
Q are. If they are not entangled at all, i. e. when σ1 = 1 and σk 6=1 = 0,
S = 0. If all states are equally entangled, with σi = σk for all i and k,
then the entropy is at a maximum at S = ln(Lmin) where Lmin is the
minimum of the number of states in P and Q. Now, a single-orbital
entropy s(1)i and two-orbital entropy s(2)ik can be defined, where the
subsystem P consists of the orbital i or the orbitals i and j, respectively,
and Q contains all other orbitals.

For two orbitals i and j, the sum of their single-orbital entropies
is equal to or greater than the two-orbital entropy of both combined,
with

s(1)i + s(1)j ≥ s(2)ij. (2.6.10)

The difference s(1)i + s(1)j− s(2)ij can be interpreted as the amount
of entanglement between i and j: The single-orbital entropy gives, for
each of the orbitals, the entanglement with the environment, including
the other orbital. Subtracting the two-orbital entropy then leaves the
entanglement between the two orbitals, leading to the definition of
the mutual information between two orbitals

Ii,j =
1
2
(s(1)i + s(1)j − s(2)ij)(1− δij), (2.6.11)

which was proposed by Rissler, Noack and White [51] (as cited in [20])
as a measure for ordering the orbitals inside the active space.

2.6.3 Orbital Ordering

The DMRG method was conceived from the analysis of real systems
with close-range interactions, where the sites in the algorithm would
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be ordered to reflect their spatial arrangement, e. g. creating a one-
dimensional lattice. For molecular orbitals, no preferred ordering is
immediately obvious. Indeed, the ordering of the orbitals is crucial for
the performance of the method, where improper orderings may lead
to slow convergence or trapping the algorithm in local minima.

It has been shown that reordering strongly interacting orbitals to the
center of the lattice is beneficial [52]. This process can be canonized
in various ways, e.g. by analyzing the mutual information matrix. If
this matrix is taken as a connectivity matrix for a complete graph, this
graph produces an entanglement diagram. The Fiedler vector, i. e. the
eigenvector of the second smallest eigenvalue of the graph Lapla-
cian for this connectivity matrix, has been shown to be a promising
candidate for a canonical ordering of orbitals [49][53].





3
C O M P U TAT I O N A L M E T H O D S A N D D E TA I L S

This chapter gives an overview of the steps taken in the analysis, and
lists the computer programs and principal parameters used.

The equilibrium geometry of the molecule, i. e. the coordinates of the
atoms for which all normal modes for nuclear oscillations are at their
minimum potential, was calculated using the Gaussian 16 program
[54]. A geometry optimization algorithm was used, employing DFT
with the B3LYP functional [55] with a def2-TZVPP basis set [56]. The
starting geometry was a best guess based on common bond lengths
and is given in appendix A.1.1.

Excited electronic states at the equilibrium geometry were com-
puted using two methods. The first employs TD-DFT, with the def2-
TZVPP basis set and B3LYP functional, and the second employs the
DMRGSCF method where the orbitals are optimized as well, and
the ANO-RCC-MB basis set [57] with an implicit relativistic Douglas-
Kroll-Hess Hamiltonian operator [58]. The DMRGSCF calculation
was performed using the QCMaquis 2.1 suite [59][60], interfaced to
the OpenMolcas 18.09 program [61]. The m-parameter used for this
analysis was chosen to be 1000.

To analyze the character of the electronic transitions, the TheoDORE
program [62] was used to compute and localize the shift in electron
density between molecular fragments in response to the electronic
excitations.

The wave functions given as matrix product states produced by the
DMRG procedure were analyzed using the SCINE Autocas program
[63][64][65][66].

To investigate the ligand dissociation behavior, molecular geometries
were created where either the NO fragment, one of the CO fragments,
or both the NO and a CO fragment, were shifted along their respective
bonds with the Mo-center. The displacement of the ligands from the
equilibrium geometry ranged from a bond compression of -0.4 Å to an
elongation of 50 Å. The list of intermediate steps is given in appendix
A.2.

At these geometries, computations were performed using DMRG-CI
without optimizing the orbitals, i. e. optimizing the CI-coefficients only.
The m-parameter was chosen to be 250 for the bond elongation analy-
sis. The starting orbitals for the DMRG computations were generated
by computing the Hartree-Fock orbitals for that molecular geometry,
using the orbital expansion coefficients from the previous geometry
as an initial guess for the orbitals in the Hartree-Fock procedure. All

25
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DMRG calculations used an orbital ordering according to increasing
orbital energy.

3.1 dmrg orbital selection algorithm

To reduce the active space used in the DMRG calculations, the algo-
rithm proposed by Stein and Reiher [67] was used and extended for
excited states. The extension uses state-specific values for the single-
orbital entropy s(1)i,S and the mutual information Iij,S (see section
2.6.2) for each electronic state S. Then, across all states under con-
sideration, the maximum value for each orbital or pair of orbitals is
determined as

s(1)max,i = max
S

s(1)i,S (3.1.1)

and
Imax,ij = max

S
Iij,S. (3.1.2)

The s(1)max,i and Imax,ij are then used in the algorithm given in [67],
giving the procedure delineated1 in algorithm 1.

Algorithm 1: Orbital selection procedure for state-averaged
DMRG calculations
choose an initial, big active space O;
run an initial DMRG sweep (DMRG-CI only) calculation;
calculate s(s)max,i and Imax,ij;
if max(s(1)max,i > 0.14 then

if plateaus in distribution of s(1)max,i then
reduce O to contain the orbitals on the highest plateau(s)

else
remove orbitals from O where

s(1)max,i < 1− 2% max(s(1)max,i)
end
use O for the CASSCF or DMRG-SCF calculation

end

1 Algorithmic notation was prepared by Dr. Markus Oppel.
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R E S U LT S A N D D I S C U S S I O N

This section presents the calculation results and discusses them. A
reference geometry for the complex will be described, which was
used to analyze the electronic excited states and as a starting point to
investigate the dissociation behavior of the CO and NO ligands.

4.1 equilibrium geometry

Initial assessment of the geometry of the molecule concerned the
configuration of the four ligands. Cyclopentadienyl (Cp) is a triden-
tate fac-coordinating ligand. Adding two CO and one NO ligand
leads to a formally octahedral complex, with the three smaller lig-
ands coordinated opposite to the Cp-ring. Chemical intuition suggests
the molecule will form a symmetric complex, where the Cp-ring in
the equilibrium geometry is arranged in either a staggered or eclipsed
conformation relative to NO, as symbolized in Figures 4.1a and 4.1b re-
spectively. Both conformations lead to an overall CS-symmetry, which
will be used by the geometry optimization algorithms.

Mo

COCO

NO

CS

(a) Cp-ring with CH-groups staggered
with respect to NO.

Mo

COCO

NO

CS

(b) Cp-ring with one of the CH-groups
eclipsed by NO.

Figure 4.1: Projection of staggered 4.1a and eclipsed 4.1b conformations of
the Cp-ring with respect to the NO ligand. The dotted gray line
represents the CS-plane

The geometry optimization procedure used is sensitive to the ini-
tial guess geometry. Initial exploratory calculations1 with an eclipsed
conformation guess at the B3LYP/def2-SVP level of theory were per-
formed and analyzed to find the correct conformation for the Cp-ring.
Vibrational analysis for the eclipsed geometry revealed a negative fre-
quency of 17 cm−1 for the normal mode that corresponds to a rotation
of the Cp-ring. This indicates that such a rotation is required to find

1 Initial geometry optimizations were performed by Dr. Markus Oppel
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the true equilibrium geometry. This was confirmed by a geometry op-
timization at the B3LYP/def2-TZVPP level, using an initial geometry
guess (given in appendix A) featuring a staggered conformation. The
resulting optimized geometry is given in Figure 4.2.

N O1

O2

O3

C6

C7

Mo

C1

C2

C3C4

C5

H1

H2

H3H4

H5

Figure 4.2: Equilibrium geometry of the complex, with atoms labeled.

4.1.1 Vibrational Analysis

Vibrational analysis on the staggered geometry showed no negative
frequencies. In Table 4.1, frequencies for the stretching modes of the
CO and NO ligands are compared to experimental data from Schwalbe
et al. [68], and selected frequencies for vibrations of the Cp-ring are
compared to experimental data from Parker and Stiddard [69]. The
calculated oscillator strengths are also given. The computed frequen-
cies and intensities were convoluted using Lorentzian functions with
a full width at half maximum of 98 cm−1 to give a visual, intuitive
impression of the predicted spectrum under experimental conditions,
and the result is displayed in Figure 4.3.

The frequency analysis uses the second derivative of the energy
with respect to displacement of the atoms along each vibrational
normal mode. This approximates the potential energy experienced
by the nuclei as a harmonic well, typically leading to a systematic
overestimation of the frequencies, whereas in the real system, the
nuclei experience an anharmonic potential. The frequencies shown in
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Table 4.1: Experimental and calculated infrared frequencies, given in cm−1.
The values in parentheses are the oscillator strengths for the calcu-
lated frequencies, given in arbitrary units.

Mode Exp. [68] /cm−1 Calc. / cm−1 Int. (Arb. Units) Type

ν (NO) 1663 1772 (1252) str.

νA (CO) 1937 2018 (1164) str. asym.

νS (CO) 2020 2082 (738) str. sym.

Mode Exp. [69] /cm−1 Calc. / cm−1 Int. (Arb. Units) Type

ν1 (Cp) 3112 3256 (0.52) CH-str.

ν3 (Cp) 1106 1134 (0.44) Ring breath.

ν5 (Cp) 3112 3246 (0.11) CH-str.

ν9 (Cp) 3112 3233 (0.07) CH-str.

(not observed) 3232 (0.00) CH-str.

Wavenumber [cm-1]

In
te

n
si

ty
 (

a
rb

it
ra

ry
 u

n
it

s) 0
.0

1
.0

0
.5

4300 3500 2700 1900 1100 300

ν(NO)
νA(CO)

νS(CO)

Figure 4.3: Calculated infrared absorption spectrum obtained by convolution
of the vibrational frequencies with Gaussian functions of a full
width at half maximum of 98 cm−1.
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Table 4.1 show that the experimental frequencies are lower by factors
between 0.976 and 0.938. The Computational Chemistry Comparison
and Benchmark Database [70] provides a range of empirical factors for
scaling purposes and gives a range of 0.963± 0.044 for the B3LYP/def2-
TZVPP level of theory. The computed factors for the complex thus are
in the expected range.

Parker and Stiddard [69] report that the signals for the CH-stretching
modes could not be resolved for most of the Cp-containing complexes
they investigated. While the frequencies calculated for these modes
might allow separate detection, the estimated intensities suggest that
the ν5 and ν9 modes may be too weak to detect. Vibrations that are
infrared-inactive in the local C5V symmetry of the Cp-ring are ex-
pected to have equivalent vibrations of low intensity in the complex, if
the local symmetry is only weakly perturbed. In particular, the equiv-
alent of the normal mode ν9 belongs to the infrared-inactive vibration
e2. The low calculated intensity is in agreement with this.

4.1.2 Bond Geometry Analysis

Some features of the geometry can be compared to experimental
data published by Schwalbe et al. [68], which are given in Table 4.2.
The calculated values for these features come to within 2 % of the
experimental values, except for the direct distances between Mo and
the CO and NO ligands, which are within 5 % of the experimental
values. The angle 6 Mo−N−O is of particular interest, as it is an
indicator for the oxidation state of NO. Linearly bound NO can be
treated as NO+, while attachment at an obtuse angle is considered to
indicate an NO– species [71]. The excellent agreement between the
experimental and the calculated attachment angle gives confidence
that our computation has arrived at a geometry with the correct
structural features.

There arise, however, two issues from the comparison to the experi-
mental data of Schwalbe et al. [68] that need to be addressed. From the
crystallographic data, the CS symmetry seems to be slightly broken
by small, but significant differences in the CO bond geometry relative
to Mo and NO, and in the C−O distance. It seems possible that these
deviations are the result of the crystalline environment in the solid
phase, whereas the quantum chemical calculations were performed
without a chemical environment. Secondly, since it is not possible to
reliably differentiate C from N by x-ray crystallography, Schwalbe et
al. used their own quantum chemical calculations to support their
assignment of NO and CO. This precludes the use of their assignment
as the sole benchmark for other chemical calculations presented in this
work. The linear attachment of the NO ligand is, however, strongly
supported by their data.



4.2 excited states 31

Table 4.2: Experimental and calculated geometry features of the molecule.
Distances are given in [Å], angles in [◦].

Feature Exp.[68] Calc.

Mo−N 1.899 1.812

Mo−C6 1.941 1.996

Mo−C7 1.957 1.996

6 Mo−N−O 177.85 176.27

N−O 1.167 1.17

6 Mo−C−O 178.21 177.91

176.80 177.91

C−O 1.143 1.146

1.154 1.146

6 N−Mo−C6 91.35 91.81

6 N−Mo−C7 91.79 91.81

4.2 excited states

For the optimized geometry, the excited electronic states were investi-
gated using time-dependent density functional theory (TD-DFT). The
corresponding differences in electron density were then analyzed to
give an indication of the nature of the excitation. From this analysis, a
number of excited states of interest were determined. On these excited
states, further analysis was carried out using the DMRG method.

4.2.1 TD-DFT Excited States and Analysis

For the optimized geometry described above, excited states were
calculated using the TD-DFT method at the B3LYP/def2-TZVPP level
of theory. Thirty excited singlet and triplet states each were calculated.
Excitation energies and oscillator strengths for the singlet states are
given in the appendix in Table A.2. From these values, an UV-Vis
spectrum was generated by convolution with a Gaussian function,
given in Figure 4.4.

Of the lower-lying states, the excited singlet states four, six, and
seven show appreciable oscillator strengths. The oscillator strength
is proportional to the probability of absorbing a photon of suitable
energy. This marks them as states that merit further investigation,
to analyze if the molecule can undergo dissociative processes from
excitations to one of these states.
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Figure 4.4: Position and relative intensity of the 30 lowest electronic singlet
states as stick spectrum, with the resulting spectrum from convo-
lution with a Lorentzian function with a half-width of 20 nm.

Analysis of Excited States

To make efficient use of the computationally more demanding DMRG
method, it is desirable to pre-select a limited number of excited states
of interest. We analyzed the nature of the excited states to aid in the
selection process. Their electron density was compared to the density
of the ground state, using the TheoDORE program package [62]. By
partitioning the molecule into fragments, it is possible to determine
the effect of the electronic excitation with respect to the transfer of
charge from one fragment of the molecule to another. The molecule
was subdivided into one fragment for each of the ligands and an
additional fragment for the Mo-center. In the context of organometallic
and inorganic complex chemistry, this allows for characterization of
the excited states by their charge-transfer character.

Ligand dissociation is typically mediated by population of antibond-
ing or depopulation of bonding orbitals between the metal center and
its ligands. The resulting shift in electron density can be described as
a charge transfer, so it is desirable to include states showing charge
transfer to or from the ligands (metal-ligand or ligand-metal charge-
transfer - MLCT or LMCT). Figure 4.5 shows the overall charge transfer
character of the first 30 excited electronic singlet states and Figure 4.6
divides these categories according to the participating ligands, and, in
the case of ligand-to-ligand charge transfer (LLCT), by the ligand to
which the electron density is transferred to. Charge transfer within a
fragment is given as metal-centered (MC) or inter-ligand (IL) character.

The first five excited states show the smallest amount of ligand-
metal charge transfer, and the next five states show double the amount
of LMCT character. State seven is the first of the states with appreciable
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Figure 4.5: Charge-transfer character of the first 30 excited electronic singlet
states.

Figure 4.6: Detailed charge-transfer character of the first 30 excited elec-
tronic singlet states, further separated by participating ligand. For
ligand-to-ligand charge transfer, the ligand receiving additional
electron density is noted.
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oscillator strength that has only a small contribution of metal- and
ligand-centered excitation, which means that it might be of particular
interest for population and depopulation of orbitals.

In a detailed analysis that takes into account the particular frag-
ments, the first five excited states show intense participation of the
NO ligand, in particular a charge transfer from the metal center to
NO. This is contrasted by very little participation of NO in states six
to nine. In these states, the CO ligands show a larger participation.
This is an indicator for possible selective dissociation of either of these
ligands, mediated by these states. Charge transfer involving the Cp
ring becomes noticeable in states six and eight, but otherwise only
plays a minor role up until state eleven.

To investigate the selective photo-dissociation behavior of NO and
CO, the states four, six, and seven are promising candidates to include.
Including more excited states would of course provide opportunities
for a more detailed analysis. However, due to the computational
demand of the DMRG method, it is necessary to limit the scope to the
minimum number of states required to answer the question at hand.
Thus, in the following analysis, only the ground state and first seven
excited electronic singlet states will be included.

4.2.2 Determining the DMRG Active Space

When using multiconfigurational methods, the selection of the active
space takes an important role. A set of molecular orbitals calculated at
the HF/ANO-RCC-MB level, described in Table A.4, was used as the
starting point for the DMRG method. The selection process consisted
of a first guess for the active space based on chemical intuition, which
is then refined by analyzing the mutual information.

In the first step of selecting the active space, the lowest 20 molecular
orbitals which are localized around the non-hydrogen atoms and
correspond to their low-lying core orbitals, were excluded from the
optimization process by fixing their coefficients - similar to a “frozen-
core” approach [26]. This included the 1s-orbitals for all non-hydrogen
atoms and up to the 3p-orbitals for Mo.

Then, from the remaining occupied, non-frozen orbitals, the follow-
ing were excluded from the active space in a first trial:

• the 3d-, 4s and 4p-orbitals of Mo,

• the first σ- and corresponding σ∗-orbitals of CO and NO, and

• the first six σ-orbitals of the Cp-ring.

All 19 remaining occupied orbitals, containing 38 electrons, were
then included in the active space. From the virtual orbitals, those
with a complementary antibonding character to the bond-forming
molecular orbitals were added the active space, up to and including
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the molecular orbital 71. Orbital 71 also contains the first Rydberg
s-orbital. The preliminary (38, 30) active space then consisted of the
molecular orbitals 42 to 71.

With these orbitals and active space, the first eight electronic states
were calculated using the DMRG-CI method with an m-parameter
of 1000. The resulting orbital entanglement was analyzed to identify
orbitals that have only small, negligible interactions within the active
space. To make sure that the entanglement of all selected electronic
states is considered, for each state-specific s(1)i,S and Iij,S given state
S, the maximum value encountered over these states was taken as the
overall value.

The values for the mutual information between two orbitals Iij,S and
the single-orbital entropy s(1)i,S for a specific state S were reduced by
taking the maximum of the values with respect to all states, such that

Imax,ij = max
S

Iij,S,

s(1)max,i = max
S

s(1)i,S.
(4.2.1)

The resulting diagram showing Imax,ij and s(1)max,i is given in Figure
4.7.

The preliminary entanglement diagram shows that four of the in-
cluded σ∗-orbitals of the Cp ligand do not exhibit appreciable entan-
glement in any of the electronic states analyzed. This is in accord with
chemical intuition, as the seven excited states under consideration did
not show participation of the Cp-ring in the charge-transfer analysis
of section 4.2.1. Therefore, the σ∗(Cp)-orbitals were excluded from the
active space.

The calculation was then repeated using the smaller (30, 26) active
space, and including orbital optimization in the algorithm. The re-
sulting reduced entanglement diagram is given in Figure 4.8. In this
diagram, all orbitals contribute an appreciable amount of single-orbital
entropy and show entanglement with other orbitals. The π(Cp)-orbital
53 and Rydberg s-orbital would be candidates for further reduction of
the active space, should the need arise.

The values for s(1)max,i for both the initial (38, 30) and reduced (30,
26) active spaces are given in table 4.3 as percentage of the highest
value for the given state. The complete data for the si(1) is given in
the appendix. The procedure proposed by [67] recommends removing
orbitals that show a relative single-orbital entropy of less than 2 % of
the orbital with the highest single-orbital entropy. Thus, the removal
of the σ∗(Cp)-orbitals is in line with the recommended procedure.

4.2.3 DMRG Excited States Results

The calculations in section 4.2.2 yielded energies for the electronic
states. Table 4.4 compares the excitation energies to those calculated
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Figure 4.7: Entanglement diagram for the initial (38, 30)[1000] guess for the
active space, as a combination of the correlation diagrams of the
first eight electronic states. Each line represents the maximum of
the mutual information between two orbitals encountered over
all eight states.
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Figure 4.8: Entanglement diagram for the reduced (30, 26)[250] active space,
as a combination of the correlation diagrams of the first eight
electronic states.
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Table 4.3: Relative maximum single orbital entropy s(1)rel for the initial and
reduced active space, as percentage of smax,i(1) compared to the
largest value of smax,i(1) for each active space.

CAS-(38, 30) CAS-(30, 26)

Orbital Nr. s(1)rel /[%] Orbital Nr. s(1)rel /[%]

61 100.00 61 100.00

58 92.20 62 97.64

62 91.84 59 95.20

63 89.14 63 94.09

59 88.92 58 93.98

66 83.15 66 88.75

60 81.70 60 81.84

65 58.85 65 68.27

68 37.94 68 58.03

57 35.16 57 31.33

56 29.97 56 28.46

64 27.74 70 28.16

70 24.97 50 21.02

42 20.77 64 20.78

50 20.58 42 20.69

67 18.38 67 18.34

48 16.84 48 15.01

69 15.20 45 14.53

47 14.84 47 13.55

45 14.22 69 12.31

53 11.19 44 11.62

44 10.84 49 10.37

49 9.69 43 9.46

46 8.26 46 9.07

45 14.22 69 12.31

53 11.19 44 11.62

44 10.84 49 10.37

49 9.69 43 9.46

46 8.26 46 9.07

43 7.86 53 7.67

71 4.72 71 7.65

51 0.70

52 0.57

54 0.27

55 0.26
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Table 4.4: Excitation energies for the first seven electronic singlet states com-
pared between TD-DFT and DMRG calculations; using the larger
active space and only optimizing the CI-coefficients (DMRG-CI),
and using a reduced active space and optimizing the orbitals as
well (DMRGSCF).

Excitation Energies /eV

State TD-DFT DMRG-CI(38,30)[1000] DMRGSCF(30,26)[250]

S1 2.91 3.09 3.22

S2 2.96 3.36 3.27

S3 3.27 3.36 3.45

S4 3.44 3.97 4.03

S5 3.71 3.99 4.18

S6 4.20 5.07 5.22

S7 4.49 5.33 5.53

by the TD-DFT method above as described in section 4.2.1. No ex-
perimental data are available to give context to these values, but the
excitation energies given by TD-DFT are consistently smaller than for
the same state calculated using DMRG.

The absolute energy obtained for the reduced active space calcu-
lation is 0.70 eV lower than the preliminary guess, which, since the
method conforms to the variational principle, gives confidence that the
reduction of the active space is acceptable: If the order were reversed
so that the gains of optimizing the orbitals were offset by losses due
to the reduction of the active space, the reduction would need to be
re-examined.

4.2.4 Benchmarking DMRG for Excited States

For analysis of the dissociation behavior, the electronic energy has
to be calculated at different molecular geometries. This multiplies
the computational cost by the number of desired geometries. As the
calculation of eight electronic states described above in section 4.2.3
consumed over 4000 core-hours2 over the course of 11 days, bench-
marking of the DMRG method for the molecule was performed to find
a balance between calculation quality and available computational
resources.

We used the same reduced (30,26) active space and equilibrium
geometry of the molecule as above for benchmarking, but only two
electronic states were calculated. The m-parameter was varied in the

2 On 16 cores of an Intel(R) Xeon(R) Gold 6138 CPU
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range from 10 to 300. Each benchmark calculation was performed on
ten cores of an Intel(R) Xeon(R) E5-2650 v3 CPU. Figure 4.9 shows the
dependence of the electronic ground state energy on the m-parameter.
Figure 4.10 shows the dependence of the time taken for the first two
iteration steps and the time taken for the completion of the algorithm
on the chosen m-parameter.

Figure 4.9: Energy of the molecule’s electronic ground state calculated with
DMRGSCF, dependent on the m-parameter. The energy is given
relative to the energy for the highest m-parameter.

Figure 4.10: Runtimes, dependent on the m-parameter for the first and sec-
ond optimization step of the DMRGSCF method. The runtime
for the complete procedure is given on the secondary y-axis on
the right. The time given is the real time as measured by the
operating system.

As expected, the energy decreases with increasing m-parameter.
There is, however, one exception at m = 270 where the energy of the
electronic ground state did rise despite an increase of the m-parameter.
We did not investigate the reason for this increase, but one possible



4.3 ligand dissociation 41

cause are local minima in which the algorithm might become trapped,
and consequently fail to reach the global minimum for the given set
of parameters.

This hypothesis is made plausible by the behavior for the runtime.
While the time taken for the first and second iteration rises in a
continuous fashion with the m-parameter, the total runtime has a far
greater variability. This is indicative of highly variable convergence
paths taken by the algorithm under variation of the m-parameter.

An analysis of total runtimes for the DMRGSCF algorithm in this
manner was out of scope of the present work. Under the assumption
that the preliminary (38, 30) and reduced (30, 26) active spaces are
sufficiently similar, the data in Table 4.4 suggest that omitting the
orbital optimization results in a variation of the excitation energies in
the range of 0.2 eV for the present system. This variation is of the same
magnitude as the one for variation of the ground state energy shown
in Figure 4.9 during the increase of the the m-parameter from 256 to
300. It was thus determined to perform the dissociation analysis using
an m-parameter of 250 and omit the orbital optimization step.

4.3 ligand dissociation

For dissociation analysis, the bond dissociation energy is the central
quantity of interest. It is determined as the difference between the
electronic ground state energy in the equilibrium geometry, and in
a geometry where the ligands are at a distance large enough to be
no longer considered as interacting electronically with the rest of the
molecule.

4.3.1 DFT Dissociation

As a reference to improve on, electronic energies for the various
fragments were calculated using DFT with the same parameters as
for calculating the equilibrium geometry. Dissociation of a ligand was
approximated by removing the atoms of the ligand under examination.
This produced geometries for ligand and remainder fragments. The
electronic energies for these fragments were then calculated separately.
This yields the bond dissociation energy as the difference between the
electronic energy at equilibrium and the sum of the electronic energies
of the fragments:

EBD = EGS −∑ EFragment (4.3.1)

The CO ligand in organometallic chemistry is counted as a neutral
ligand and is a stable molecule by itself. Thus, the dissociated fragment
was calculated as a neutral molecule. The NO fragment could, due to
it’s non-innocence as a ligand, conceivably dissociate while carrying
a positive, neutral, or negative charge, leaving behind a residue with
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Table 4.5: Bond dissociation energies for different fragments, calculated at
the B3LYP/def2-TZVPP level of theory.

Dissociated Fragments NO-Species EBD / eV

CO - 2.203

NO NO+
12.70

NO 3.678

NO–
12.72

NO + CO NO+
15.93

NO 5.979

NO–
14.62

the corresponding neutralizing charge, thus all three possibilities were
considered.

The results are given in Table 4.5. They suggest that the NO fragment
would be unable to dissociate in a charged state by photodissociation
under atmospheric conditions, as photon energies in excess of 10 eV
require vacuum UV radiation [72]. The resulting dissociation energies
for dissociation of uncharged NO are summarized in Figure 4.11.

Mo

COCO

NO

Mo

COCO

NO

+

Mo

COCO

NO

+

2.302 eV 5.979 eV

3.678 eV

Mo

CO CO
+

NO

+

Figure 4.11: Bond dissociation energies.
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4.3.2 Bond Dissociation using DMRG

Due to the runtime considerations in section 4.2.4 concerning the com-
putational effort, the analysis of the ligand dissociation was performed
without orbital optimization. To allow for flexibility in the molecular
orbitals throughout the bond elongation, a step-wise procedure was
devised:

The equilibrium geometry was chosen as a starting point. Hartree-
Fock orbitals were generated and used as input for the DMRG-CI
procedure, using the reduced active space described in Section 4.2.2.
Then, the bonds under investigation were elongated to generate the
next geometry along the bond dissociation coordinate. For this ge-
ometry, new Hartree-Fock orbitals were generated, using the orbitals
of the previous DMRG-CI step as an initial guess. The resulting or-
bitals were compared to the guess orbitals. If necessary, orbitals were
swapped so that the same orbitals remain in the active space. Then,
the next DMRG-CI optimization step was performed. This procedure
was repeated for each step along the dissociation coordinate.

For the dissociation of the NO-ligand, this approach proved to be
difficult, as the Hartree-Fock method was prone to fail when the NO
ligand was translated by a distance of more than 3 Å. The dissociation
of NO was thus not further investigated in this work. For the dissocia-
tion of only the CO ligand, the electronic energies for the first eight
electronic states are given in Figure 4.12, with a detail of the region
close to the equilibrium geometry given in Figure 4.13.

The bond dissociation energy, given as the difference of the elec-
tronic energies of the ground state for a large separation of the ligand
is in the range between 2.563 eV to 2.697 eV, as given in Table 4.6.

Table 4.6: Bond dissociation energy for CO as the energy difference between
the electronic ground state at given distances.

Bond Elongation /Å EBD / eV

10 2.253

25 2.697

50 2.640

The variation of the ground state energy between the three inves-
tigated separation distances may be due to state averaging, which is
used as an optimization criterion in the DMRG algorithm. Along the
dissociation axis, the states may change their sensitivity to changes
in the orbital coefficients. A more sensitive state may dominate the
optimization procedure and drag the other states from their optimum.
In particular, this may occur when adiabatic states undergo a change
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Figure 4.12: Energies calculated by DMRG-CI(30, 26)[250] of the electronic
states, relative to the ground state energy at the equilibrium
geometry under elongation of the Mo-CO bond distance.

Figure 4.13: Energies calculated by DMRG-CI(30, 26)[250] of the electronic
states, relative to the ground state energy at the equilibrium
geometry under elongation of the Mo-CO bond distance. Detail
of 4.12 showing the energies close to the equilibrium geometry.
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of character. The increase in relative energy for the sixth and seventh
excited state at an elongation of 10 Å is an indicator of such a change
in character.

This effect of the state averaging, combined with the variational
nature of the method, may also serve to explain the larger bond disso-
ciation energy calculated by DMRG as compared to the DFT reference.
At large separations, the selected active space which was optimized
for the ground state may become less suitable if the characters of the
electronic states change. This, in turn, necessarily leads to the calcula-
tion of a higher ground state energy compared to a calculation where
the active space is also optimized for the dissociated geometries.

Thus, under the assumption that the choice of active space in equi-
librium is reasonable, the bond dissociation energy would be overesti-
mated by the DMRG method. By this argument, it is plausible that the
bond dissociation energy of 2.253 eV, calculated at a bond elongation
of 10 Å, is closer to both the value calculated using DFT and the true
value.
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C O N C L U S I O N

The goal of this thesis was to investigate the photodissociation be-
havior of CpMoNO(CO)

2
and analyze the applicability of the DMRG

method for this task. While a complete answer was outside the scope
of this work, it was possible to gain some key insights that are useful
for further analysis of the problem.

The structure of CpMoNO(CO)
2

is known through experimental
means. Some minor uncertainty remains as to the assignment of the
CO and NO ligands, which was decided with the aid of calculations
[68]. In this work, the primary features of the structure, including
the assignment of the ligands, could be reproduced using Density
Functional Theory. The calculated structure was then used in the
further analysis.

The excited electronic states were investigated for appreciable in-
teraction with light in the visible range. The change in electronic
density was used to identify states where the bond between the cen-
tral ligand and one of the NO and CO ligands would be expected to
weaken. These excited states are candidates for photodissociation of
the molecule.

The molecule exhibits many traits that point to the necessity of a
multiconfigurational approach, so the DMRG method was employed
for this analysis. A suitable active space was sought to represent
the excited electronic states identified in the previous step. Since no
established protocol was available for this task, a selection protocol
for single states [67] was extended to take into account excited states.
The resulting active space was still considerably large. Therefore,
benchmarks were created to tune the accuracy parameters of the
method for further analysis steps.

Bond dissociation energies were calculated for the NO and CO lig-
ands using both DFT and DMRG. For DFT, the system was separated
into subsystems and for DMRG, the wave function was partially ex-
tended along a bond dissociation coordinate. The DMRG approach
failed for the NO ligand, because wave functions at large ligand dis-
tances could not be obtained, and resolving this issue was outside
the scope of this thesis. The dissociation energies, however, give a
threshold for the energy required for photodissociation, and can be
reached by experimental methods using optical lasers.

The main advantage of the DMRG method is that it allows the use
of larger active spaces, compared to CI methods that do not truncate
orbital interactions. It achieves this by limiting the number of possible
interactions and selecting the most important contributions. In the
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present thesis, it was shown that the orbital selection protocol was in
alignment with chemical intuition in the identification of molecular
orbitals with little contribution to the excited electronic states in ques-
tion. Given an active space that encompasses the important orbitals,
accuracy can then be balanced against the computational effort by tun-
ing of a single parameter. The use of this parameter helps to decouple
the selection of the active space from availability of computational
resources.

The method still requires initial wave functions as a starting point
for the optimization procedure. As encountered in this work, such
wave functions may not be easily obtained for certain types of systems.
However, this limitation is shared by other post-Hartree-Fock methods
and not a singular feature of DMRG itself.

While the increased objectivity in the selection of active spaces is
attractive for automation of quantum chemical analysis, a canonical
ordering of molecular orbitals within the one-dimensional chain of
subsystems seems to still be desirable. Orderings based on orbital
entropies may require a way to be extended to multiple excited states,
such as touched upon in this work with the extension of the selection
protocol.

In conclusion, the method adds valuable tools to the repertoire of
quantum chemistry, since it re-frames the restraints of active-space
methods, and provides entanglement measures that contain informa-
tion about the system, which is not only interpretable by chemical
intuition but also enables comparisons between similar systems.
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A P P E N D I X

a.1 geometry optimization

a.1.1 Initial geometry optimization guess

The initial geometry guess for the geometry optimization procedure
is given in table A.1 as a Z-matrix [73].

a.1.2 Equilibrium Geometry

The optimized equilibrium geometry at the B3LYP/def-2-TZVPP level
of theory, when using the Z-matrix in listing A.1 as a starting guess,
is given in Table A.1 in cartesian coordinates, oriented so that the
yz-plane coincides with the CS mirror plane, and the z-axis is oriented
closely to the C5-axis of the Cp-ring.

Table A.1: Optimized equilibrium geometry, given in [Å].

Atom x /[Å] y /[Å] z /[Å]

Mo 0.000 0.000 0.000

N 0.000 1.468 1.061

O 0.000 2.459 1.683

C 1.400 -0.883 1.114

O 2.232 -1.385 1.724

C -1.400 -0.883 1.114

O -2.232 -1.385 1.724

C 0.000 -1.328 -2.002

H 0.000 -2.404 -1.968

C 0.712 0.854 -2.141

H 1.345 1.723 -2.208

C -0.712 0.854 -2.141

H -1.345 1.723 -2.208

C 1.149 -0.489 -2.054

H 2.174 -0.820 -2.052

C -1.149 -0.489 -2.054

H -2.174 -0.820 -2.052
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Listing A.1: Z-Matrix used as initial guess for geometry optimization of the
staggered configuration.

1 xx

mo 1 moxx2

n 2 nmo3 1 nmoxx3

c 2 cmo4 1 cmoxx4 3 dih4 0

c 2 cmo4 1 cmoxx4 3 -dih4 0

6 o 3 on6 2 onmo6 5 dih6 0

o 4 oc7 2 ocmo7 5 dih7 0

o 5 oc7 2 ocmo7 4 dih7 0

c 1 cxx9 2 90. 3 dih9 0

c 1 cxx9 2 90. 3 dih10 0

11 c 1 cxx9 2 90. 3 -dih10 0

c 1 cxx9 2 90. 3 dih12 0

c 1 cxx9 2 90. 3 -dih12 0

h 9 hc14 2 hcmo14 3 180. 0

h 10 hc14 9 hcc14 14 dih15 0

16 h 11 hc14 9 hcc14 14 dih15 0

h 12 hc14 10 hcc14 15 dih15 0

h 13 hc14 11 hcc14 16 dih15 0

moxx2 2.

21 nmo3 1.8173

nmoxx3 120.

cmo4 1.99777

cmoxx4 120.

dih4 120.

26 on6 1.17004

onmo6 180.

dih6 120.

oc7 1.15177

ocmo7 180.

31 dih7 180.

cxx9 1.4

dih9 180.

dih10 253.

dih12 326.

36 hc14 1.08894

hcmo14 120.

dih15 0.

hcc14 120.
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a.2 bond elongation intermediate geometries

The geometry inputs for bond elongation were calculated by taking
the vectors ~MoC or ~MoN of the ground state geometry, creating a new
vector ~d of the same direction and scaling it to the length of the bond
elongation distance. This vector ~d was then added the coordinates of
the atoms in the ligand under investigation to shift them along the
bond axis to Mo. The bond elongation distances, given in Å, were:
-0.4, -0.3, -0.2, -0.1, 0.1, 0.2, 0.3, 0.4, 1, 2, 3, 4, 10, 25, 50.

a.3 excited states

The list of singlet excited states for the equilibrium geometry, calcu-
lated at the B3LYP/def2TZVPP level, is given in Table A.2, with the
energy given in eV and the corresponding wavelength in nm.

a.4 molecular orbitals

This section gives the energies and iso-surfaces for the Hartree-Fock
molecular orbitals generated with the the ANO-RCC-MB basis set
at the optimized geometry. These orbitals were used for the DMRG
configuration interaction.

Table A.3: List of molecular orbitals used in the DMRG-CASSCF-Procedure,
calculated at the HF/ANO-RCC-MB level.

Orbital Number Energy / [Eh] Classification
1 -738.81 1s(Mo)
2 -107.25 2s(Mo)
3 -95.706 2p(Mo)
4 -95.705 2p(Mo)
5 -95.704 2p(Mo)
6 -20.777 1s(O)
7 -20.777 1s(O)
8 -20.690 1s(O)
9 -19.565 3s(Mo)

10 -15.808 1s(N)
11 -15.671 3p(Mo)
12 -15.668 3p(Mo)
13 -15.663 3p(Mo)
14 -11.553 1s(C)
15 -11.553 1s(C)
16 -11.367 1s(Cp− C)
17 -11.367 1s(Cp− C)
18 -11.366 1s(Cp− C)
19 -11.365 1s(Cp− C)
20 -11.355 1s(Cp− C)
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Table A.3: List of molecular orbitals used in the DMRG-CASSCF-Procedure,
calculated at the HF/ANO-RCC-MB level.

Orbital Number Energy / [Eh] Classification
21 -9.3123 3d(Mo)
22 -9.3118 3d(Mo)
23 -9.3071 3d(Mo)
24 -9.3014 3d(Mo)
25 -9.2982 3d(Mo)
26 -3.0599 4s(Mo)
27 -1.9326 4p(Mo)
28 -1.9148 4p(Mo)
29 -1.9110 4p(Mo)
30 -1.5863 σ(NO)
31 -1.5861 σ′(CO)
32 -1.5830 σ(CO)
33 -1.2678 σ(Cp)
34 -1.0439 σ(Cp)
35 -1.0399 σ(Cp)
36 -0.9724 σ∗(NO)
37 -0.8507 σ∗(CO)
38 -0.8392 σ∗′(CO)
39 -0.8053 σ(Cp)
40 -0.8043 σ(Cp)
41 -0.7782 σ(Cp)
42 -0.7207 π(NO)
43 -0.7133 σ∗(CO), σ∗(NO)
44 -0.7080 π(CO), σ∗(NO)
45 -0.7008 π(NO, π(CO)
46 -0.6987 π(CO)− σ∗(NO)
47 -0.6970 π′(CO)
48 -0.6904 π(CO)− π(NO)

49 -0.6736 σ∗′(CO)
50 -0.6710 π(CO) + π(NO)
51 -0.6292 σ∗(Cp)
52 -0.6264 σ∗(Cp)
53 -0.6057 π(Cp)
54 -0.5993 σ∗(Cp)
55 -0.5977 σ∗(Cp)
56 -0.4299 π1(d(Mo) + π(Cp))
57 -0.4255 π2(d(Mo) + π(Cp))
58 -0.3671 π3(d(Mo) + π∗(NO) + π∗(CO))
59 -0.3664 π4(d(Mo) + π∗(CO))
60 -0.3639 π5(d(Mo) + π∗(CO))
61 0.0356 π6(((d(Mo) + π∗′(CO)) + (d(Mo)− π∗(NO)))
62 0.0510 π∗(CO) + π∗(NO)
63 0.0807 π∗′(CO)
64 0.1226 π∗1(d(Mo)− π∗(CO))
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Table A.3: List of molecular orbitals used in the DMRG-CASSCF-Procedure,
calculated at the HF/ANO-RCC-MB level.

Orbital Number Energy / [Eh] Classification
65 0.1283 π∗2(d(Mo)− π∗(CO)− π∗(NO))
66 0.1344 δ1(d(Mo) + π∗(Cp), n(d(Mo), π∗′(CO))
67 0.1813 π∗3(d(Mo)− π(Cp))
68 0.1815 π∗4(d(Mo)− π(Cp)), n(d(Mo), π∗′(CO))
69 0.2193 δ∗1 (d(Mo)− π∗(Cp))
70 0.2303 δ∗2 (d(Mo)− π∗(Cp))
71 0.2574 5s(Mo)
72 0.4343

73 0.4456

74 0.4531

75 0.5113

76 0.5125

77 0.5213

78 0.5286

79 0.5384

80 0.6053

81 0.6096

82 0.7384

83 0.7788

84 0.7989

85 0.8167

86 0.8995

87 0.8999



54 appendix

Table A.2: Electronic excited singlet states for the equilibrium geometry, cal-
culated at the B3LYP/def2TZVPP level.

State ∆E/[eV] Wavelength/[nm] Oscillator Strength

S1 2.9057 426.70 0.011

S2 2.9632 418.41 0.010

S3 3.2700 379.16 0.000

S4 3.4370 360.73 0.042

S5 3.7095 334.24 0.008

S6 4.1952 295.54 0.125

S7 4.4923 275.99 0.148

S8 4.6568 266.25 0.025

S9 4.7186 262.75 0.002

S10 4.8640 254.90 0.136

S11 4.9230 251.85 0.095

S12 5.0149 247.24 0.052

S13 5.0311 246.43 0.092

S14 5.1028 242.97 0.132

S15 5.1494 240.77 0.022

S16 5.1698 239.82 0.115

S17 5.2300 237.07 0.008

S18 5.3079 233.58 0.002

S19 5.3869 230.16 0.036

S20 5.4413 227.86 0.079

S21 5.4801 226.25 0.254

S22 5.5599 223.00 0.006

S23 5.6079 221.09 0.066

S24 5.6350 220.03 0.336

S25 5.7824 214.42 0.306

S26 5.8210 212.99 0.048

S27 5.9313 209.04 0.070

S28 6.0475 205.02 0.000

S29 6.0695 204.27 0.664

S30 6.0944 203.44 0.036
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(a) MO 21 (b) MO 22 (c) MO 23 (d) MO 24

(e) MO 25 (f) MO 26 (g) MO 27 (h) MO 28

(i) MO 29 (j) MO 30 (k) MO 31 (l) MO 32

(m) MO 33 (n) MO 34 (o) MO 36 (p) MO 37

(q) MO 38 (r) MO 39 (s) MO 40 (t) MO 41

Figure A.1: Iso-surfaces of the molecular orbitals 21 to 41 for |ψ| = 0.05
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(a) MO 42 (b) MO 43 (c) MO 44 (d) MO 45

(e) MO 46 (f) MO 47 (g) MO 48 (h) MO 49

(i) MO 50 (j) MO 51 (k) MO 52 (l) MO 53

(m) MO 54 (n) MO 55 (o) MO 56 (p) MO 57

(q) MO 58 (r) MO 59 (s) MO 60 (t) MO 61

(u) MO 62 (v) MO 63 (w) MO 64 (x) MO 65

Figure A.2: Iso-surfaces of the molecular orbitals 42 to 65 for |ψ| = 0.05
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(a) MO 66 (b) MO 67 (c) MO 68 (d) MO 69

(e) MO 70 (f) MO 71 (g) MO 72 (h) MO 73

(i) MO 74 (j) MO 75 (k) MO 76 (l) MO 77

(m) MO 78 (n) MO 79 (o) MO 80 (p) MO 81

(q) MO 82 (r) MO 83 (s) MO 84 (t) MO 85

(u) MO 86 (v) MO 87

Figure A.3: Iso-surfaces of the molecular orbitals 66 to 87 for |ψ| = 0.05
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a.5 dmrg results

a.5.1 Single-Orbital Entanglement

The Tables A.4 and A.5 give the values of the single-orbital entropies
for the initial and the reduced active space, respectively.

Table A.4: Single-orbital entropies for the orbitals in the initial (30, 38) active
space at different electronic states

Orbital Electronic state
S0 S1 S2 S3 S4 S5 S6 S7

42 0.140 0.165 0.119 0.267 0.178 0.152 0.137 0.215

43 0.088 0.098 0.101 0.085 0.088 0.091 0.090 0.074

44 0.115 0.139 0.139 0.114 0.108 0.108 0.132 0.100

45 0.165 0.130 0.146 0.149 0.172 0.182 0.156 0.169

46 0.099 0.103 0.106 0.096 0.095 0.099 0.096 0.094

47 0.159 0.190 0.190 0.163 0.155 0.157 0.171 0.130

48 0.189 0.165 0.156 0.202 0.180 0.178 0.181 0.216

49 0.104 0.111 0.111 0.123 0.110 0.110 0.091 0.124

50 0.180 0.133 0.190 0.156 0.237 0.264 0.180 0.169

51 0.007 0.007 0.007 0.008 0.007 0.007 0.007 0.009

52 0.006 0.007 0.007 0.006 0.006 0.006 0.007 0.006

53 0.141 0.136 0.141 0.140 0.134 0.141 0.144 0.138

54 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003

55 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003

56 0.256 0.280 0.261 0.385 0.276 0.250 0.278 0.361

57 0.222 0.451 0.443 0.226 0.225 0.233 0.411 0.230

58 0.558 0.379 0.362 0.327 1.183 1.113 0.552 0.817

59 0.571 0.815 0.675 1.141 0.994 0.699 0.597 1.074

60 0.281 1.032 1.025 0.299 0.328 0.360 1.048 0.297

61 0.589 0.820 1.162 0.461 1.247 1.283 0.638 0.486

62 0.487 1.057 0.368 1.178 1.004 0.668 0.457 0.722

63 0.264 0.258 0.281 0.299 0.317 0.357 1.037 1.144

64 0.295 0.248 0.249 0.285 0.295 0.304 0.278 0.356

65 0.407 0.582 0.347 0.755 0.490 0.364 0.416 0.454

66 0.269 0.307 0.330 0.260 0.305 0.343 1.067 0.463

67 0.187 0.221 0.176 0.236 0.207 0.193 0.186 0.221

68 0.207 0.231 0.250 0.195 0.240 0.264 0.487 0.413

69 0.188 0.183 0.183 0.195 0.180 0.183 0.192 0.182

70 0.213 0.233 0.260 0.198 0.228 0.249 0.320 0.212

71 0.059 0.058 0.055 0.061 0.054 0.055 0.053 0.057
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Table A.5: Single-orbital entropies for the orbitals in the reduced (26, 30)
active space at different electronic states

Orbital Electronic state
S0 S1 S2 S3 S4 S5 S6 S7

42 0.125 0.148 0.249 0.103 0.117 0.166 0.116 0.179

43 0.105 0.109 0.103 0.114 0.109 0.100 0.110 0.095

44 0.124 0.137 0.123 0.140 0.119 0.115 0.132 0.111

45 0.155 0.121 0.141 0.138 0.175 0.153 0.142 0.149

46 0.103 0.106 0.102 0.109 0.106 0.096 0.096 0.091

47 0.141 0.160 0.145 0.163 0.140 0.131 0.145 0.116

48 0.164 0.145 0.181 0.136 0.152 0.154 0.149 0.174

49 0.107 0.112 0.125 0.111 0.110 0.108 0.096 0.114

50 0.169 0.110 0.136 0.175 0.253 0.198 0.160 0.144

53 0.092 0.086 0.087 0.086 0.091 0.084 0.085 0.087

56 0.187 0.217 0.342 0.191 0.162 0.233 0.174 0.318

57 0.139 0.377 0.140 0.370 0.144 0.131 0.357 0.138

58 0.498 0.255 0.202 0.256 0.872 1.131 0.427 0.775

59 0.533 0.841 1.146 0.679 0.479 1.093 0.479 1.019

60 0.186 0.985 0.198 0.982 0.238 0.188 0.974 0.194

61 0.548 0.843 0.453 1.164 1.204 1.106 0.548 0.383

62 0.436 1.112 1.175 0.289 0.284 1.076 0.374 0.648

63 0.222 0.221 0.232 0.251 0.317 0.240 0.859 1.132

64 0.232 0.201 0.237 0.206 0.249 0.217 0.208 0.250

65 0.364 0.650 0.822 0.273 0.231 0.586 0.339 0.445

66 0.224 0.260 0.218 0.291 0.349 0.241 1.068 0.674

67 0.135 0.209 0.221 0.120 0.126 0.178 0.118 0.157

68 0.170 0.185 0.162 0.205 0.251 0.182 0.698 0.689

69 0.139 0.134 0.148 0.131 0.134 0.129 0.127 0.135

70 0.166 0.191 0.149 0.228 0.235 0.174 0.339 0.206

71 0.091 0.091 0.092 0.089 0.088 0.090 0.086 0.087
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