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thank Dipl. Ing. Christoph Fürböck, for his technical advice and fruitful scientific exchange

and Martin Ortner, BSc. for guiding me through the bureaucratic madness of the AKH.

Last but not least, I want to express my gratitude towards my family and my girlfriend for their

support and patience during my second master’s thesis.

3



Declarations

Parts of this master’s thesis were published at the European Congress of Radiology 2023 [115].

The use of the AKH high risk patient cohort in this master’s thesis is covered by the Ethics Com-

mittee of the Medical University of Vienna (EK-NR: 461/2003).

4



Abstract

Breast cancer is the most common type of cancer in women, whereby it is estimated that 7.5%

of women in Austria will develop breast cancer until the age of 74. Early detection is crucial for

effective treatment and patient survival. In women at an elevated risk of developing breast cancer

due to family history or predisposing mutations Dynamic Contrast Enhanced Magnetic Resonance

Imaging (DCE MRI) is the method of choice for screening. Although DCE-MRI is the most sensitive

imaging modality, it is associated with a relatively high false positive rate. Moreover, reporting of

DCE-MRI demands years of radiological experience and is time consuming. Deep Learning (DL)

plays an increasingly important role in the diagnosis of cancer as it allows to uncover disease related

patterns that would be impossible to detect with the naked eye. However, the potential of DL is

limited by the size of available training data.

Therefore, the aim of this master’s thesis was the development of DL based methods to aid the

detection and classification of lesions (areas of abnormal tissue) in DCE-MRI by exploiting domain

specific transfer learning. To this end, two datasets were used: First, the AKH patient cohort

consisting of 606 high risk women who visited the Vienna General Hospital (AKH) for regular

screenings over the past 20 years. Second, the publicly available Duke patient cohort which includes

922 patients with invasive breast cancer.

For lesion detection, a Residual Network (ResNet) based sliding window approach and a You only

look once (Yolo) based bounding box prediction were compared. In both cases the models were

first pre-trained on the Duke cohort and subsequently finetuned and evaluated on the AKH patient

cohort. For lesion classification, the ResNet models that were previously trained for lesion detection

on the Duke patient cohort were used in a 5 fold cross-validation as the basis for training new ResNet

models to differentiate benign and malignant lesions in patients of the AKH cohort.

In lesion detection the best ResNet/Yolo model yielded a Receiver Operating Characteristic (ROC)

Area Under the Curve (AUC) of 0.961/0.855 and a Precision Recall (PreRec) AUC of 0.224/0.426. In

the cross-validation of lesion classification a median ROC AUC of 0.713/0.653 and a median PreRec

AUC of 0.615/0.374 could be achieved with/without domain specific transfer learning. Additionally,

a threshold was determined at which 4.5% of benign lesions could be identified without missing a

malignant lesion.

To conclude, the potential of domain specific transfer learning was demonstrated in aiding radiol-

ogists in the detection and classification of suspicious lesions while at the same time reducing the

need for unnecessary and burdensome biopsies. Even though the results are promising, they will

have to be validated on an external high-risk patient cohort.
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Zusammenfassung

Brustkrebs ist die häufigste Krebsart bei Frauen, wobei geschätzt wird, dass in Österreich 7.5% aller

Frauen bis zu ihrem 74. Lebensjahr an Brustkrebs erkranken werden. Die frühzeitige Erkennung

ist entscheidend für den Behandlungserfolg und die Überlebenswahrscheinlichkeit. Bei Frauen mit

einem erhöhtem Brustkrebsrisiko aufgrund positiver Familienanamnese oder prädisponierenden Mu-

tationen ist Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCE-MRI) die Methode der

Wahl beim Brustkrebsscreening. Obwohl DCE-MRI die sensitivste bildgebende Methode darstellt,

ist sie mit einer relativ hohen Falsch-Positiv-Rate behaftet. Darüber hinaus, erfordert die Befundung

von DCE-MRI jahrelange radiologische Erfahrung and nimmt viel Zeit in Anspruch. Deep Learning

(DL) spielt eine zunehmend wichtigere Rolle bei der Diagnose von Krebs, weil damit krankheitsrele-

vante Muster aufgedeckt werden können, die mit bloßem Auge nicht zu erkennen wären. Allerdings

wird das Potential von DL durch die Größe der zur Verfügung stehenden Trainingsdaten limitiert.

Das Ziel dieser Masterarbeit war daher die Entwicklung von auf DL basierenden Methoden, die

auf Domain spezifisches Transfer Learning zurückgreifen, um die Detektion und Klassifizierung von

Läsionen (Regionen abnormalen Gewebes) in DCE-MRI zu unterstützen. Zu diesem Zweck wurden

2 Datensätze verwendet: Als erstes, die AKH Patientenkohorte, bestehend aus 606 Hochrisikopati-

entinnen, die an regelmäßigen Brustkrebsscreening am Allgemeinen Krankenhaus (AKH) Wien über

die letzten 20 Jahre teilgenommen haben. Als zweites, die öffentlich zugängliche Duke Patientenko-

horte, die 922 Patientinnen mit invasivem Brustkrebs umfasst.

Zur Detektion von Läsionen wurde ein Residual Network (ResNet) basierender sliding window Ansatz

mit einer Yolo (You only look once) basierenden bounding box Vorhersage verglichen. In beiden

Fällen wurden die Modelle zuerst auf der Duke Patientenkohorte vortrainiert und anschließend auf

der AKH Patientenkohorte fein abgestimmt und evaluiert. Für die Klassifizierung von Läsionen

wurden die ResNet Modelle, die zuvor zur Detektion von Läsionen auf der Duke Kohorte trainiert

wurden, in einer 5-fach Kreuzvalidierung als Basis für das Training von neuen ResNet Modellen zur

Differenzierung von benignen and malignen Läsionen in der AKH Patientenkohorte herangezogen.

Das beste ResNet/Yolo Modell wies eine Receiver Operating Characteristic (ROC) Area Under the

Curve (AUC) von 0.961/0.855 und eine Precision Recall (PreRec) AUC von 0.224/0.426 auf. In der

Kreuzvalidierung zur Klassifizierung von Läsionen konnte eine mediane ROC AUC von 0.713/0.653

und eine mediane PreRec AUC von 0.615/0.374 mit/ohne Zuhilfenahme von Domain spezifischen

Transfer Learning erreicht werden. Zusätzlich, konnte ein Schwellwerte berechnet werden unter dem

4.5% aller benignen Läsionen erkannt werden, ohne eine maligne Läsion zu übersehen.

Zusammenfassend lässt sich sagen, dass das Potential von Domain spezifischen Transfer Learning bei

der Unterstützung der Detektion und Klassifizierung von Läsionen bei gleichzeitiger Reduktion von

belastenden und entbehrlichen Biopsien gezeigt wurde. Wenngleich die Ergebnisse vielversprechend

sind, müssen diese erst an einer externen Hochrisikokohorte validiert werden.
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Introduction

Motivation

Breast cancer contributed to 685 000 deaths worldwide in 2020 [161]. Early detection is crucial for

effective treatment and could save many lives [144, 162]. Therefore, annual screening mammography

is recommended for women over the age of 50 [138]. For patients at an elevated risk of developing

breast cancer due to family history of breast cancer or known mutations (e.g.: BRCA1, BRCA2,

p53,. . . ), Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCE-MRI) is used in screening

due to its high sensitivity[103].

However, manual reporting of DCE-MRI takes years of radiological experience, is time consuming

and associated with a relatively high number of false positives. The latter leads to unnecessary and

costly biopsies that are burdensome to the patients. Whitaker et al. [160] reported that only 17%

of suspicious DCE-MRI findings are confirmed malignant. Therefore, several automated Machine

Learning (ML) methods have emerged to aid the diagnosis of breast cancer in breast Magnetic

Resonance Imaging (MRI) [107, 125]. While most of these approaches focus on the detection and

classification of lesions (areas of abnormal tissue) on average risk patients using cross-domain transfer

learning, the novelty of this master’s thesis is the exploration of domain specific transfer learning in

the detection and classification of lesions in a high risk patient cohort using Deep Learning (DL).

DL, a subdomain of ML, provides the advantage of automatically learning disease specific patterns

in the 4 dimensional DCE-MRI data which would be impossible to detect with the naked eye [125].

High Risk Patient Cohort

A patient cohort consisting of 606 high risk patients as defined by family anamnesis and/or preex-

isting mutations was accessible to this master’s thesis. For each patient DCE-MRI scans as well as

Breast Imaging Reporting and Data System (BI-RADS) scores were available from regular medical

screening visits at the Vienna General Hospital (AKH Wien). For domain specific transfer learning

the Duke patient cohort [129] consisting of 922 patients with invasive breast cancer was used.

Contributions of Thesis

In order to address the aforementioned challenges of breast cancer diagnosis in high risk patients

this thesis features the following core contributions:

1. Reduction of the workload of radiologists by aiding the detection of lesions using two DL

approaches (Residual Network (ResNet) [69] and You only look once (Yolo) [124])

2. Reduction of the number of unnecessary biopsies by differentiating benign and malignant

lesions using ResNets

3. Demonstration of the benefit of domain specific transfer learning in a high risk patient cohort

4. Breast segmentation method for masking fat suppressed and non fat suppressed MRI

Structure of Thesis

This thesis is structured into 6 chapters. In Chapter 1, the medical background on breast cancer

and the technical background on DL is elucidated. In Chapter 2 , the state of the art in ML

based approaches in breast cancer research with a special focus on lesion detection and classification
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is explored. In Chapter 3, the patient cohorts are introduced and the methodological approach

ranging from data preprocessing, to the experimental design of lesion detection and classification

are explained. A presentation and discussion of the results for the experiments in lesion detection

and lesion classification is given in Chapter 4 and 5, respectively. In the final Chapter 6 of this

thesis, concluding remarks along with an outlook on the future of the field are provided.
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1 Background

1.1 Breast Cancer

Breast cancer is the most common type of cancer in women (24.5% of all cancer cases) with over 2

million cases worldwide in 2020, followed by colorectal cancer (9.4%) and lung cancer (8.4%) [141].

The age standardized incidence is higher in the western world (USA, Europe, Australia) (> 70 per

100.000) than in the Asia and Africa (< 40 per 100.000) as visualized in the map of Figure 1. It is

estimated that 1 in 8 women will develop breast cancer in the course of their life [2]. In contrast to

women, men are rarely affected with only 1 in every 100 breast cancer cases.[84]

Figure 1: Estimated age-standardized incidence rates (World) in 2020 among women.
Data source: GLOBOCAN 2020 [141], Map: © International Agency for Research on Cancer 2020

1.1.1 Risk Factors

Non Modifiable Risk Factors

Female sex is the most important risk factor and can be attributed to the higher estrogen and

progesterone levels which stimulate breast growth [6]. Therefore, early menarche (first menstruation)

and late menopause (last menstruation) are associated with a higher risk of breast cancer due to the

cyclic fluctuations of estrogen which stimulate the growth of breast tissue [35]. This master’s thesis

is exclusively concerned with breast cancer in women.

Another important risk factor is age, as 80% of all breast cancer cases occur in women above the age

50 [178]. Therefore, yearly screening mammography is recommended by the U.S. Preventive Services

Task Force for average risk women over the age of 50 [138]. However, the benefit of early detection

and reduction in mortality (20% [32]) over potential false positive findings is critically discussed [43].

Family history of breast cancer increases the risk by a factor of 1.8 (99% CI 1.69-1.91) if one first

degree relative is affected and by a factor of 3.9 (2.03-7.49) if three or more first degree relatives are

affected [34]. The increased risk can be attributed to germ line mutations and epigenetic factors.

Most prominently the genes BRCA1 and BRCA2 which play an important role in Deoxyribonucleic

Acid (DNA) repair and cell cycle control are associated with an 82% cumulative lifetime risk of

11
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developing breast cancer [135]. Since BRCA1 and BRCA2 mutations follow an autosomal dominant

inheritance pattern with high penetrance close relatives are advised to attend regular screenings at

a younger age. In such cases patients may opt for prophylactic mastectomy (removal of breast),

hysterectomy (removal of uterus) and salpingo-oohorectomy (removal of fallopian tubes and ovaries)

which can reduce the risk by 90% [121]. But also mutations in the following genes are known to

increase the risk for breast cancer and show high penetrance [135]:

1. TP53 (involved in DNA repair and cell cycle control, 25% lifetime risk)

2. CDH1 (cellular adhesion, 39% lifetime risk)

3. PTEN (cell cycle control, 85% lifetime risk)

4. STK11 (cell cycle control, 32% by age 60)

Additional non-modifiable risk factors include, high breast tissue density [85], a history of benign

breast disease [169] and race whereby white women have a higher incidence while black women show

a higher mortality [49].

Modifiable Risk Factors

The risk factors mentioned so far can be categorized as non-modifiable risk factors. However, also

modifiable risk factors exist although their contribution to the overall risk is disputed in some cases:

Physical activity was associated with a 19-27% lower risk for breast cancer [48] which may be

explained by the positive effects on hormonal concentrations [147]. Obesity is also a known risk

factor and can be attributed to the higher aromatase activity in fat tissue raising estrogen levels,

higher Insulin and Insulin-Like Growth Factor 1 (ILGF1) levels and obesity associated inflammation

[89]. Hormonal Replacement Therapy (HRT) is used in post-menopausal women to avoid symptoms

due to hormonal changes during menopause and to prevent osteoporosis. Depending on the duration

and type of HRT a slight increase in risk for breast cancer was detected (estrogen only therapy odds

ratio: 1.15, estrogen and progesterone therapy 1.79) [154]. Life style choices such as smoking, alcohol

and consumption of processed meat were also linked to a higher risk for breast cancer [64].

Figure 2: The 6 hallmarks of cancer proposed by Hanahan and Weinberg [61] describe features of
(malignant) cells contributing to carcinogenesis. Figure by [62] - © Cell 2011, used with permission
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1.1.2 Carcinogenesis

Breast cancer is caused by the malign degeneration of cells in the mammary tissue which can

be described by the six hallmarks of cancer (visualized in Figure 2): Self-sufficiency in growth

signal, insensitivity to anti-growth signals, tissue invasion and metastasis, sustained angiogenesis

and evasion of apoptosis [61]. Degenerated cells therefore “acquire” certain mutations that allow

them to bypass cell cycle checkpoints and to evade the response of the immune system. Substances

that cause mutations in DNA repair are thus referred to as tumor initiators [20]. Tumors above the

size of 2mm require additional blood supply to grow which leads to selection pressure towards cells

that can induce the formation of new blood vessels [50]. This characteristic is exploited in DCE-MRI

which will be explained in Section 1.2. In the last stage, malignant cancer cells spread into healthy

tissue and other body parts (metastasis) due to loss of cell adhesion.

1.1.3 Breast Cancer Classification

Breast cancer can be classified on a histological and molecular basis as visualized in Figure 3.

Figure 3: Classification of breast cancer on a histological and molecular level. While the
histological classification is based on the origin of cancer cells and the invasiveness, the molecular
classification is grounded on Immunohistochemistry (IHC) which detects the presence of estrogen,
progesterone and human epidermal growth factor receptors.

Histological Classification:

According to the classification of the World Health Organization (WHO), one can histologically

differentiate between sarcomas where degenerative cells arise from mesenchymal cell lines (connec-

tive tissue, myofibroblasts, blood vessels) and carcinomas which are of endodermal or ectodermal

origin (milk lobules/glands and milk ducts) [137]. Most breast cancers are carcinomas (99%), while

Sarcomas contribute to less than 1% of all cases [155]. On the next level, carcinomas can be further

characterized as invasive and non-invasive breast cancer. While non-invasive cancer cells remain

contained and the border of the lesions is usually smooth, invasive breast cancer penetrates into

healthy surrounding tissue and thus shows rough borders [22]. Non-invasive breast cancer can be

13



further divided into Ductal Carcinoma In Situ (DCIS) and Lobular Carcinoma In Situ (LCIS). Their

invasive pendants are found in the No Special Type (NST) and Special Type category, respectively:

Invasive Ductal Carcinoma (IDC) and Invasive Lobular Carcinoma (ILC), whereby IDC contributes

to about 80% and ILC up to 15% of all breast cancer cases [11, 104]. Formerly the no special type

category of the invasive carcinomas was referred to as ”invasive ductal carcinoma, not otherwise

specified” [137]. The tree like structure of the histological classification scheme is visualized below:

Sarcomas (< 1%) [155]

Carcinomas (99%)

Invasive

No Special Type (NST, formerly invasive ductal carcinoma, not otherwise specified)

Invasive Ductal Carcinoma (IDC, 80% of all breast cancer [11])

Special Type

Invasive Lobular Carcinoma (ILC, up to 15% of all breast cancer [104])

Tubular carcinoma

Mucinous (colloid) carcinoma

Medullary carcinoma

Non Invasive

Ductal Carcinoma In Situ (DCIS)

Lobular Carcinoma In Situ (LCIS)

Molecular Classification:

The molecular classification is based on the expression of Estrogen Receptor (ER), Progesterone

Receptor (PR) and Human Epidermal Growth Factor 2 (HER2) and is relevant for the treatment

and prognosis of breast cancer [176]. The subtype is determined from the biopsy of the lesion using

Immunohistochemistry (IHC): Thereby specific antibodies (which are linked to a fluorophore or

enzyme) are used to determine the presence (+) and absence (-) of the aforementioned receptors

at the cell membranes and the proliferation marker Ki-67 [59]. From the IHC analysis of biopsied

lesions, 4 molecular breast cancer subtypes are differentiated:

Luminal A: ER (+), PR (higher), HER2 (low), Ki-67 (lower)

Luminal B: ER (+), PR (lower), HER2 (variable), Ki-67 (higher)

HER2: ER (±), PR (±), HER2 (+)

Triple Negative (TN): ER (-), PR (-), HER2 (-)
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Subtypes Luminal A and Luminal B are both ER positive and thus can be treated with endocrine

therapy (e.g.: Selective Estrogen Receptor Modulators - SERMs) which aims to block binding of

estrogen to the estrogen receptor, thereby decreasing the growth stimulus [76, 47]. Luminal subtype

A shows the best prognosis of all molecular subtypes [112]. ER dependent gene expression (e.g. PR)

is higher in Luminal A than in Luminal B subtype [143]. For better differentiation of the Luminal

subtypes Cheang et al. [26] proposed a cut-off value of 13.25% for the proliferation marker Ki-67:

If Ki-67 can be detected in less than 13.25% of the cells in a lesion, it is assigned Luminal A and

otherwise Luminal B. Luminal B is found more frequently in younger women than Luminal A and

is associated with higher invasiveness and poorer prognosis [65].

The HER2 subtype is characterized by the overexpression of HER2 and variable expressions of

estrogen and progesterone receptors [176]. Treatment of patients with the HER2 subtype aims

to block the binding side of HER2 using antibodies (e.g.: Trastuzumab) [117]. As a result, the

epidermal growth factor can no longer activate the signaling cascade of HER2 and thus the tumor

promoting effects are diminished.

The Triple Negative Breast Cancer (TNBC) subtype constitutes the most aggressive of the 4 subtypes

[42]. Due to its lack of ER, PR and HER2 expression, treatment is harder (no targeted therapy)

and prognosis poor. TNBC breast cancer is also more likely in young women (< 40 years, OR: 1.53)

[13] and in women with germline mutations in BRCA1 (OR: 9.0) [46].

The molecular subtype not only has an impact on the treatment but also the 5 year overall survival

rates: Luminal A: 92.6%, Luminal B: 88.4%, HER2: 83.6% and TNBC 82.9% [177].

1.2 Dynamic Contrast Enhanced Magnetic Resonance Imaging

Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCE-MRI) constitutes the most sen-

sitive modality for the detection of breast cancer with a sensitivity ranging from 75.2% to 100%

(twice as sensitive as mammography) and specificity from 83% to 98.4% [103]. Another advantage

of DCE-MRI is that patients are not exposed to ionizing radiation which is especially relevant to

young high-risk women [72]. However, DCE-MRI is associated with a higher cost and time expendi-

ture compared to mammography and additionally has a lower availability. Therefore, the American

Cancer Society recommends DCE-MRI screening only for women with a cumulative life time risk

greater than 20-25% or with a family history of breast/ovarian cancer [132].

The use of a Gadolinium based contrast agent (e.g.: Gd-DTPA) is crucial to the diagnostic value of

MRI as the contrast agent is taken up more quickly by malignant than benign lesions and becomes

visible as an increase in signal intensity due to shortening of T1 relaxation time by Gd [93]. A

sample of a DCE-MRI can be found in Figure 4. The increased uptake can be explained by the

neo-angiogenesis required for tumor growth beyond 2mm [50]. Due to the permeability of the newly

formed blood vessel the contrast agent is extravasated and becomes visible as an enhancement signal

[88]. In clinical practice radiologists first collect a native T1 weighted MRI image (pre-contrast

image) and then inject the contrast agent intravenously. Subsequently, a series of T1 weighted post-

contrast MRI images is collected in predetermined intervals depending on the protocol. Usually, 3

or more post-contrast images are collected for up to 8 minutes after the injections of the contrast

agent [72].
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Figure 4: Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCE-MRI):
(A) shows a native T1 weighted Magnetic Resonance Imaging (MRI) slice before contrast agent
injection. (B) shows the same slice approx. 2 minutes after contrast agent injection. The lesion
marked with a red bounding box becomes clearly visible after contrast agent injection.

Enhancement Curves

Enhancement curves are used to depict the relative change in signal intensity in the Region of

Interest (ROI) between pre and post contrast time points (Figure 5) [72]. Important diagnostic

characteristics of the curve are the strength of enhancement in the first 2 minutes and decrease of

enhancement in the later post contrast time points (washout) [102, 14]. About 91% of malignant

lesions show curves of type II (strong initial enhancement, no washout /plateau) or type III (strong

initial enhancement + wash out [93]. DCIS may follow the patterns of curve type II or III in 60%

of the cases [72]. Benign lesions are mostly associated with a slow/low enhancement corresponding

to curve types I and in some cases a curve of type II (83% and 12%, respectively) [93]. Since the

analysis of the enhancement signal alone does not suffice to differentiate between malignant and

benign lesions, also the morphology of the lesion is also taken into account [14].

Figure 5: This graph shows the typical enhancement curves for malignant and benign lesions. A
strong enhancement in the first 2 minutes, as well as a decrease in enhancement (washout) in the
later time points is associated with malignant lesions (Type III). Benign lesions usually show a
slower increase in enhancement (Type I). Curves with a plateau (Type II) are associated with an
intermediate risk for malignancy. Adapted from [72].
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1.3 The Breast Imaging Reporting and Data System

Definition

The Breast Imaging Reporting and Data System (BI-RADS) score ranges from 0 to 6 and was

developed by the American College for Radiology to standardize the reporting of breast MRI images

by radiologists [12]. A tabular overview of the BI-RADS is given in Table 1. BI-RADS 1 and 2

are reported if healthy tissue or only benign changes with essentially 0% probability for malignancy

are found. Likely benign lesions with a probability < 2% for malignancy are reported as BI-RADS

3, whereby a follow up is recommend in a shorter time interval. At a BI-RADS score of 4 and 5

lesions are considered suspicious (2-95% malignancy) and highly suspicious for malignancy (> 95%),

respectively. In these cases a biopsy is indicated after which a lesion is either assigned BI-RADS

6 if the biopsy confirmed malignancy or BI-RADS 2 if the lesion was benign. The special case of

BI-RADS 0 is used when the imaging information is insufficient so that additional imaging modalities

(mammography or ultrasound) are needed to determine the final BI-RADS score [12].

Score Category Recommendation Likelihood of cancer
0 Incomplete Additional examinations N/A
1 Negative Routine Screening Essentially 0%
2 Benign Routing Screening Essentially 0%
3 Probably benign Follow up after 6 months <2%
4 Suspicious Biopsy 2%-95%
5 Highly suggestive of malignancy Biopsy >95%
6 Known biopsy proven malignancy Treatment 100%

Table 1: The Breast Imaging Reporting and Data System (BI-RADS) was developed by
the American College for Radiology to standardize the reporting for Breast imaging data. It ranges
from 0 to 6 and describes the likelihood of malignancy in a given radiological image. Adapted from
the ACR https://www.acr.org/-/media/ACR/Files/RADS/BI-RADS/BIRADS_CEM_2022.pdf

Classification Criteria

In an attempt to aid the systematic rating of DCE-MRI images, Baum et al. [14] devised a points

system which takes into account 5 characteristics that describe a lesion:

1. The KM (Kontrast Mittel = contrast agent, Note: German publication) pattern: Describes

the distribution of the contrast agent in the lesion (homogeneous, inhomogeneous, rim)

2. The initial enhancement: Describes the maximum relative enhancement within the first 3

minutes (< 50%, 50-100%, > 100%)

3. The post-initial enhancement: Describes the shape of the curve (continuous increase, plateau,

wash out)

4. The shape of the lesion (round, oval, dendritic, irregular)

5. The border of the lesion (well-defined, ill-defined)

For each of the characteristics, points are assigned which in sum give a recommendation for the

BI-RADS score (Table 2). One disadvantage of the presented algorithm is that it yields many

BI-RADS 3 cases which are associated with low compliance in short-interval follow ups [15]
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Characteristics

Points Shape Border KM pattern
Initial

enhancement
Postinitial

enhancement

0
round,

oval
well-defined homogeneous <50%

continuous
increase

1
dendritic,
irregular

ill-defined inhomogeneous 50-100% plateau

2 - - rim >100% wash out

BI-RADS 1 2 3 4 5
Sum of
points

0-1 2 3 4-5 6-8

Table 2: Breast Imaging Reporting and Data System (BI-RADS) classification scheme in
Breast Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCE-MRI) according to Baum
et al. [14]

Relevance of Early Detection for Treatment Prognosis

A recent Swedish study reported that early detection of breast cancer increased the survival rate

in patients who participated in screening programs compared to patients who did not (83-88% vs.

72-77% 95% CI) [144]. Zuo et al. [177] observed a decrease in the 5 year overall survival rate with

increasing breast cancer stage: Stage I: 96.5%, II: 91.6%, III: 74.8%, IV: 40.7%. The staging system

is used describe the size and spread of a malignant lesion: Stage I carcinomas correspond to lesions

with a size below 2 cm, stage II to lesions up to 5cm in size with a low degree of lymph node

involvement, stage III to lesions above 5cm in size or a high degree of lymph node involvement and

stage IV to metastatic lesions of any size [4]. As early detection in screening cohorts is associated

with a detection at a lower stage [31], its importance for patient prognosis is evident. In addition to

the prognostic benefits, detection at earlier stages allows for less aggressive treatment options. For

instance, stages I and II carcinomas may be treated using breast conserving treatment (excision of

malignant lesion and surrounding tissue) instead of mastectomy (removal of entire breast) [108].
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1.4 Deep Learning

In this thesis Deep Learning (DL) is used to solve the problem of lesion detection and lesion classi-

fication. Therefore, a brief introduction to DL and a description of the used architectures is given

in the following.

Artificial
Intelligence

Machine
Learning

Deep
Learning

Figure 6: Deep learning as a subdomain of machine learning and artificial intelligence.

DL is considered a subdomain of Machine Learning (ML) and Artificial Intelligence (AI) as visualized

in Figure 6, whereby ML is concerned with learning from data and experience and AI is the field

developing machines/programs that mimic/exceed human capabilities [131, 3]. DL is based on

Artificial Neural Networks (ANN) which are inspired by the organization of neurons in the brain

[16] and found application in a plethora of tasks such as speech recognition [109], computer vision

[58], image recognition [69] and drug discovery [172]. In contrast to other ML methods, DL is

characterized by the use of multiple hidden layers (at least 2) which represent the input data at

increasingly higher levels of abstraction [41].

...

Input layer Hidden layers Output layer

Figure 7: Structure of a deep artificial neural network.
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A deep ANN (Figure 7) consists of an input layer which holds the input data (e.g.: pixel values

of an image), a variable number of hidden layers and an output layer [131]. Every layer of the

network consists of multiple neurons which are connected to the output of the neurons Xj of the

previous layer. The ”strength” of the connections from neuron i of the current layer to neuron j of

the previous layer is determined by the weights wi,j which are adjusted during training by a process

called backpropagation [83]. The output yi of neuron i is calculated by passing the sum of the inputs

to the neuron (product of wi,j and Xj) through an activation function f (e.g.: tanh, sigmoid, ReLU

(rectified linear unit) as shown in Equation 1 and Figure 8 [100]:

yi = f(
∑
j

Xjwi,j) (1)

If every neuron of a layer is connected to every neuron of the previous layer, this type of layer is

referred to as a fully connected layer [74]. In Convolutional Neural Network (CNN), which were fist

used to recognize handwritten zip code digits and have become the foundation of deep learning based

image classification tasks, another layer type, namely the convolutional layer is crucial [94, 100]. The

output of the jth convolutional layer is represented as a 3D dimensional feature map Fj,c of shape

Hj ×Wj × Cj (H...Height, W...Width, C... Channels), with c ∈ {1 · · ·Cj}. Fj,c is calculated by

convolving the previous layer’s feature map Fj−1,i with a set of kernels Kj−1,i and summing up the

convolved feature map over all the channels i ∈ {1 · · ·Cj−1} of the previous layer:

Fj,c =

Cj−1∑
i=1

Kc,i ⋆ Fj−1,i (2)

whereby ⋆ denotes the cross corelation operator (Equation adapted from PyTorch documentation1).

For further information on CNN please refer to Yamashita et al. [165].

.


.


.


.


.


.


Figure 8: Visualization of an artificial neuron: An artificial neuron represents the basic building
block of an artificial neural network. The neuron receives the output of the neurons of the previous
layer X0 . . . Xn multiplied with the weights wi,0 . . . wi,n as input terms. To yield the output yi of
the neuron, the sum of these input terms is passed through the activation function f .

1https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html (Accessed on 23.05.2023)
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In the following, the origin and building blocks of the ResNet and Yolo architecture, which are used

for lesion detection and classification in this thesis, will be elucidated.

1.4.1 Residual Networks

Residual Network (ResNet) are the state of the art architecture for image classification tasks. They

were developed as an improvement to previous CNN such as AlexNet [91], GoogLeNet/Inception

[142] and VGG [136]. The ResNet architecture introduced skip connections between layers to allow

training of even deeper neural networks by avoiding the vanishing/exploding gradient problem [69].

Additionally, the architecture popularized the use of batch-normalization [77] which made drop-out

layers obsolete by reducing overfitting and improving generalization.

Input Image

64 x 112 x 112

64 x 56 x 56

128 x 28 x 28
256 x14 x 14

512 x 7 x 7
512 x 1 x 1 1 x 1 x 1000

conv2D + BatchNorm2D +  ReLu Bottleneck Block

AdaptiveAvgPool2D

Fully connected + softmaxBasic Block

3 x 224 x 224

MaxPool2D

Figure 9: ResNet-18 architecture: The input image is a 3 channel RGB image with a height and
width of 224 pixels (C,H,W). The size of spatial dimensions (H,W) of the feature map is decreased
at the first convolutional layer, the max pooling layer and at the every Bottleneck Block. The
adaptive pooling layer [97] before the final fully connected layer reduces the spatial dimensions to
1x1 and thereby allows the network to be trained on images of different size. Skip connections which
were introduced to solve the vanishing gradient problem can be found at each Basic and Bottleneck
Block. The number of output classes is set to 1000 in the diagram above because the original ResNet
architecture [69] was trained on the ImageNet dataset [40] which contains images of 1000 objects
(classes). The ResNet-18 differs from the ResNet-34 architecture only in the number of Basic Blocks
of which more are used in the latter.

Initial Layers

In this thesis the ResNet-18 and ResNet-34 architectures are used, whereby the suffix specifies the
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depth of the network which is determined by the number of convolutional layers. However, even

deeper ResNet architectures exist: e.g.: ResNet50, ResNet-101, ResNet-152. Both ResNet-18 and

ResNet-34 can be structured into 10 layers as can be seen in Table 3 (Note: The layer structure

corresponds to the official PyTorch implementation). A graphical representation of the ResNet-18

architecture is given in Figure 9.

In the original publication [69], the ImageNet dataset [40] which contains more than a million images

of 1000 everyday objects (classes) was used for training. The RGB images were resized to 3x224x224

(C...Channels, H...Height, W...Width). This size is used in Table 3 as the basis for describing the

output size after each layer. However, the network architecture is not restricted to a particular

image size in terms of height and width due to the adaptive pooling layer [97] before the final fully

connected layer. The adaptive pooling layer [97] reduces the spatial dimensions (H,W) of the feature

map to 1x1 by averaging them over each channel. Therefore, the network can be trained on and

used for classification of images of different sizes. Nevertheless, this is discouraged as Richter et al.

[126] showed in their publication ”Size Matters” that every network performs best at a specific size.

Layer ID
Output Size
(C,H,W)

ResNet18 ResNet34

(Input Image) 3x224x224 - -
0 64x112x112 Conv2d(K=7, O=64, S=2,P=3)
1 64x112x112 BatchNorm2d
2 64x112x112 ReLu
3 64x56x56 MaxPool2d(K=3,S=2,P=1)
4 64x56x56 Basic Block x2 Basic Block x3

5 128x28x28
Bottleneck Block x1

Basic Block x1
Bottleneck Block x1

Basic Block x3

6 256x14x14
Bottleneck Block x1

Basic Block x1
Bottleneck Block x1

Basic Block x5

7 512x7x7
Bottleneck Block x1

Basic Block x1
Bottleneck Block x1

Basic Block x2
8 512x1x1 AdaptiveAvgPool2d

9 1000
Fully Connected Layer

(softmax)

Table 3: ResNet-18 and ResNet-34 architecture as implemented in PyTorch.

The first 4 layers are the same for both ResNet-18 and 34: The input image is passed through a

2D convolutional (Conv2d) layer with kernel size 7, stride 2, padding 3 and a output channel size of

64, thus yielding a feature map size of 64x112x112. A graphical demonstration of the convolutional

operation is shown in Figure 10. In the next layer batch normalization (BatchNorm2d in PyTorch)

is applied followed by a pass through a Relu (Rectifier linear unit) activation function (Equation 3).

Relu(z) = max(0, z) (3)

Batch normalization was introduced by Ioffe and Szegedy [77] to solve the problem of internal

covariate shift by normalizing the input of each layer. It was further found to reduce overfitting. In

the fourth layer, a maximum pooling (MaxPool2d) layer with kernel size 3, stride 2 and padding 1

halves the width and height of the feature map to 64x56x56.
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Figure 10: Graphical description of convolutional operation: The input tensor of size 5x5
(I=5) is depicted in blue, the kernel of size 3x3 (K=3) is depicted in grey and the padding of size
P=1 is shown as dotted lines. The size of the output tensor can be calculated from Equation 4 and
is depicted in green. The difference between subfigures A and B comes from the stride parameter S
which describes the step size by which the kernel moves over the input tensor. While a stride of S=1
is used in subfigure (A) corresponding to the convolutional operation of the ResNet Basic Block,
a stride of S=2 is used in subfigure (B) corresponding to the convolutional operation of the ResNet
Bottleneck Block. Each entry of the output matrix is given by the sum of the elementwise matrix
multiplication between the kernel and the corresponding (padded) input tensor. Figure by [151]

The Output size O of a convolutional/maximum pooling operation can be determined from the input

size I (height or width), the padding P , the stride S and the kernel size K using Equation 4 [74].

O =
I + 2P −K

S
+ 1 (4)

Basic and Bottleneck Blocks

In the next layers a varying number of Basic Blocks is alternated with Bottleneck Blocks, whereby

the number of Basic Blocks is specific to ResNet-18 and 34. The blocks (visualized in Figure 11) are

structured as follows:

• Basic Block:

1. Conv2d: K=3, S=1, P=1, #output channels = #input channels

2. BatchNorm2d

3. ReLU

4. Conv2d: K=3, S=1, P=1

5. BatchNorm2d

• Bottleneck Block:

1. Conv2d: K=3, S=2, P=1, #output channels = #input channels * 2

2. BatchNorm2d

3. ReLU

4. Conv2d: K=3, S=1, P=1,

5. BatchNorm2d
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The only difference between the blocks is that the first convolutional operation uses a stride of

1 in the Basic Block, but a stride of 2 in the Bottleneck Block (see visualization in Figure 10).

Additionally, the number of output channels doubles after each Bottleneck Block. Effectively the

feature map size is halved since the first convolutional operation of the Bottleneck Block decreases

both the height and width of the feature map by 2. The Basic Blocks, on the other hand, do not

change size of the feature map. Batch normalization [77] is applied after each convolutional step to

normalize the input for the following layers.

Skip Connections

Skip connections were introduced to tackle the vanishing gradient problem which impairs the training

of especially deep (convolutional) neural networks as the gradient (required for updating the net-

work’s weights) becomes diminishingly small during backpropagation. Moreover, skip connections

solve the problem of accuracy degradation which occurs with increasing number of layers and thus

made training of deep neural networks possible (e.g.: 152 layers [69]). In the ResNet architecture,

each Basic and Bottleneck Block contains skips connections which allow the input to bypass the

Blocks as shown in Figure 11. Since the feature map decreases in size after passing through a Bot-

tleneck Block, the input X needs to be downsampled by the skip connection. This is accomplished

by using a convolutional operation with stride 2 and kernel size of 1 to match the output feature

map size of the Bottleneck Block. In the skip connection of the Basic Block the input can be used

directly (identity mapping).

Figure 11: ResNet Basic and Bottleneck Block: Both, the Basic (left) and Bottleneck Block
(right) consist of 5 consecutive operations: Convolution, batch normalization, ReLU, convolution
and batch normalization. The blocks differ in the first convolutional operation which uses a stride of
S=1 in the Basic Block but stride of 2 in the Bottleneck Block. Therefore, an additional difference
can be found in the skip connection which allow the input X to bypass the Basic Block and Bottleneck
Block, respectively: While the input can pass by unchanged through the skip connection of the Basic
Block, the input needs to be downsampled in the skip connection of the Bottleneck Block to match
the decreased feature map size. The latter is accomplished with a convolutional operation with
kernel size K=1 and stride S=2.

Class Probabilities

After the last Basic Block the feature map size is reduced from 512x7x7 to 512x1x1 by the Adaptive

Average Pooling layer (AdaptiveAvgPool2d) and then passed to the final fully collected layer. The
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output size of the fully connected layer depends on the number of classes the model is supposed to

predict. Since the original ResNet architecture was trained on the ImageNet the output of the last

layer is a vector of size 1000 corresponding to the 1000 ImageNet classes and contains the so called

”logits”.

To obtain the class probabilities p[c] for each of the c ∈ C classes from the logits z the softmax

activation function is applied:

p[c] = P (y = c) =
ez[c]∑C
i=1 e

z[i]
(5)

Loss Function

During training of the ResNet the cross entropy loss is minimized, whereby y is a one hot coded

vector with the true class labels:

CrossEntropyLoss(p, y) = −
C∑
i=1

y[i]log(p[i]) (6)

1.4.2 You Only Look Once

You only look once (Yolo) was developed by Redmon et al. [124] to tackle the challenge of real

time object detection where the goal is to identify and locate objects not only in images but also

in live video streams. Yolo is faster and more accurate compared to the sliding window based

Deformable Parts Models (DPM) [128] and much faster but slightly less accurate than Region-based

Convolutional Neural Networks (R-CNN) [51]. Yolo treats object detection as a regression problem

and gains its speed from predicting both class probability and bounding box in one neural network

(single stage detector).

Figure 12: Network architecture of the first You only look once (Yolo) version: The
backbone consists of 24 convolutional layers without skip connections and 2 fully connected layers
as the head of the network. The input image is divided into a 7x7 grid: At the end of the backbone
1024 features are extracted per grid cell. The fully connected layers then use the 1024x7x7 feature
map to make 2 bounding box predictions per grid cell and 20 class probabilities for the 20 objects
to detect (Note: The original dataset contains 20 classes). Each bounding box prediction consists
of 5 entries: The relative center coordinates x and y, the height h, the width w and the confidence
c of the bounding box. Figure by Redmon et al. [124] (© 2016 IEEE, reuse permitted).
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Architecture

The original architecture (Figure 12) consists of a backbone with 24 convolutional layers and a head

with 2 fully connected layers which predicts the bounding box and class probabilities. The backbone

of the network convolves the input image into a grid of size S × S. At the end of the backbone, a

feature map of size 1024× S × S (C...Channels, H...Height, W...Width) is generated corresponding

to 1024 features per grid cell. The output of the backbone is used by the fully connected layers of

the head to generated B bounding box predictions per grid cell. Each bounding box is described

by 5 entries: the relative x and y coordinates of the bounding box center, the relative width w and

height h of the bounding box and the confidence c of the prediction. The confidence c is defined as

c = P (object) ∗ IoUpred
truth (7)

whereby the IoUpred
truth is the Intersection over Union between the ground truth and the predicted

bounding box area:

IoUpred
truth =

|truth ∩ pred|
|truth ∪ pred|

(8)

P (object) = 0 if no object is present in the image. Additionally, a set of conditional class probabilities

P (classi|object) is predicted for each grid cell. Therefore, the output of the fully connected layer is

of shape S × S × (5B + C). To obtain class specific confidence scores for each predicted bounding

box the conditional probabilities are multiplied with the confidences of the bounding box during test

time:
P (classi|object) ∗ P (object) ∗ IoUpred

truth = P (classi) ∗ IoUpred
truth (9)

Thus, in one class object detection (e.g.: Lesion Detection) the class specific confidence score simple

corresponds to the IoUpred
truth as P (class) ∈ {0, 1} .

Loss Function

During training of Yolo the mean squared error over all predicted bounding boxes and grid cells is

minimized whereby the loss function is defined as follows:

λcoord

S2∑
i=0

B∑
j=0

1
obj
ij

((
(xi − x̂ij)

2 + (yi − ŷij)
2

)
+

λcoord

S2∑
i=0

B∑
j=0

1
obj
ij

(
√
wi −

√
ŵij)

2 + (
√
hi −

√
ĥij)

2

)
+

S2∑
i=0

B∑
j=0

1
obj
ij (ci − ĉij)

2 + λnoobj

S2∑
i=0

B∑
j=0

1
noobj
ij (ci − ĉij)

2 +

S2∑
i=0

C∑
j=0

)1obj
i (pi[j]− p̂i[j])

2

(10)

The first two terms give the localization error between the predicted bounding box parameters

(x̂ij ,ŷij , ŵij ,ĥij) and the ground truth bounding box parameters (xij ,yij , wij ,hij). The parameter

λcoord is used to adjust the weight of the localization loss, whereby Redmon et al. [124] proposed

λcoord = 5 to increase the contribution of the localization loss. 1
obj
ij is 1 if the confidence of the

predicted box is the highest in the grid cell and otherwise 0. Therefore, only the most confident

bounding box contributes to the loss. The third term penalizes deviations of the bounding box

confidence ĉij from the IoU between the predicted bounding box and the true bounding box of the
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grid cell ci. The fourth term penalizes confidences for bounding box predictions that do not contain

an object and is weighted with the parameter λnoobj , whereby the authors proposed λnoobj = 0.5

to decrease the contribution of empty bounding box predictions to the loss function. 1
noobj
ij is 1

if the predicted bounding box does not contain any object and 0 otherwise. As a result, the term

contributes only to the loss functions if the image is empty. The final term represents the error of

the predicted conditional class probabilities p̂i. It only contributes to the loss function if the grid

cell contains an object: 1obj
i is 1 if the grid cell contains an object and 0 otherwise.

Non Maximum Suppression

In the original Yolo implementation the following parameters were chosen: S=7, B=2 and C=20.

Therefore, 98 bounding box predictions are made for each image. If the image contains larger

objects it is possible that multiple overlapping bounding boxes are predicted for one object. In this

case Non Maximum Suppression (NMS) can be used to reduce the number of overlapping bounding

boxes. NMS is an iterative algorithm. In each iteration:

1. The bounding box with the highest confidence bm from the set of bounding box predictions B

is selected.

2. All bounding boxes b ∈ B are removed if their IoU with bm is greater than the threshold tNMS .

3. bm is removed from B and added to the set of accepted bounding boxes D.

The process is repeated with the remaining bounding boxes until B is empty and therefore the IoU

between all accepted bounding boxes in D is smaller than tNMS (Algorithm 1).

Algorithm 1 Non Maximum Suppression (NMS) - adapted from Bodla et al. [19]

Input:
B = {b1, . . . bN}: List of N bounding box predictions
bi = {x, y, h, w, c}: ith bounding box prediction
tNMS : NMS threshold

Output: D: List with non maximum suppressed bounding box predictions
begin

D← {}
while B ̸= {} do

m = argmax(bi[c])
B← bm
D← D ∪ {bm}, B← B \ {bm}
for b in B do

if IoU b
bm

> tNMS then
B← B \ {b}

end if
end for

end while
return D

end

Improvements of Yolo

The original Yolo architecture has been improved since its first publication multiple times with at

least 8 versions and variations released:
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• With yolo9000 [122], the second version of Yolo the number of detected classes was extended

from 20 to over 9000 (hence the name). One of the major changes was the introduction of

anchor boxes. Instead of predicting the bounding boxes directly, the network predicts the

displacement in x, y, height and width relative to the anchor boxes. The anchor boxes are

obtained using k-means clustering on the bounding boxes of training data and represent a

prior for the location of objects. Additionally, the backbone was replaced by the Darknet-

19 architecture, batch normalization added, the grid size increased to 13x13 for a more fine

grained feature extraction and pass through layers (similar to the skip connections in ResNet)

were introduced.

• The third Yolo version [123] improved the detection of small objects by changing the back-

bone of the network to the Darknet-53 architecture with more than 2 times more convolutional

layers than the previous Yolo version. Additionally, a Feature Pyramid Network (FPN) [98]

was added as a ”neck” to extract features from different convolutional layers.

• The fourth version of Yolo [18] brought further improvements in accuracy and speed by

exchanging the backbone with the CSPDarknet53 architecture and by adding the Path Aggre-

gation Network (PANet) [99] and Spatial Pyramid Pooling (SPP) [67] for feature aggregation

and improvements of the receptive field [110].

• The fifth version of Yolo was not published in a paper but on a well documented GitHub

repository2. The authors of the fifth Yolo version claim that their Pytorch implementation is

faster and more lightweight than the previous version (4). One major advantage constitutes

the support for compound scaling (similar to Tan and Le [145]) whereby the depth and width

of the backbone architecture can be adjusted by parameters yielding more lightweight but less

accurate models and vice versa. An overview of the architecture is given in Figure 13.

The third version of Yolo was the last version to be published by the original authors Redmon and

Farhadi. Since then many variants of the canonical Yolo were created and the version numbering

became more ambiguous.

2https://github.com/ultralytics/yolov5
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Figure 13: You only look once (Yolo) version 5: The fifth Yolo version introduced the Focus
layer as the first layer of the backbone to reduce the number of parameters and Graphics Processing
Unit (GPU) memory [52]. The C3 blocks consist of 3 convolutional layers followed by bottleneck
layers. At the end of the backbone, a Spatial Pyramid Pooling (SPP) [67] layer facilitates the use
of input images of different size (similar to the max pooling layer of Residual Network (ResNet)).
The neck uses a Path Aggregation Network (PANet) [99] to extract features from various layers of
the backbone. The bounding box prediction is made from the 3 convolutional layers of the head.
Figure by Nepal and Eslamiat [110] (CC BY 4.0).
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2 ML for Breast Cancer Diagnosis in MRI - State of the Art

In this chapter the state of the art in ML based approaches for the diagnosis of breast cancer in MRI is

explored. Since data generated by DCE-MRI is not only rich in spatial but also temporal information,

ML methods for the automatic analysis of breast MRI were developed with the aim to uncover

disease related patterns that are hard or impossible to uncover by human vision [125]. Moreover,

ML is frequently used for the integration of other MRI imaging techniques such as T2 weighted MRI

and Diffusion-Weighted Imaging (DWI) to so called multiparametric Magnetic Resonance Imaging

(mpMRI) [146, 152]. In breast cancer research the tasks addressed by ML include breast/lesion

segmentation, lesion detection, lesion classification, prediction of response to chemotherapy and

many more [125]. In this thesis we employed ML to tackle the problem of lesion detection and

classification in breast MRI. Therefore, a description of the relevant ML paradigms will be given

and subsequently the state of the art in these two tasks is provided in the following.

2.1 Supervised and Unsupervised Learning

ML can be divided into two approaches: Supervised and unsupervised learning [10]. Supervised

learning is characterized by labeled training data and is commonly applied in classification and

regression tasks [10]. For instance, in the task of lesion classification the training images may be

labeled as benign or malignant by a human expert [75] or in lesion detection the location of the

lesion may be provided as a binary mask [37]. The models of the supervised approaches are trained

to predict the true labels for a given input. Therefore, the advantage of supervised learning is the

possibility of training a model to predict a task specific output from the input data [24]. However,

the requirement for labeled training data can be considered a disadvantage since it is often time

consuming and expensive to obtain [164]. By contrast, unsupervised ML offers the advantage that

it does not require labeled data. It uses unlabeled training data with the goal of finding a structure

in the training data whereby common tasks include clustering and dimensionality reduction. For

example Cai et al. [25] used a K-nearest neighbor (KNN) to cluster benign and malignant lesions or

Fan et al. [44] used an unsupervised Convex Analysis of Mixtures (CAM) to identified subregions

in intra- and peritumoral tissue. Another advantage of unsupervised learning is that it can uncover

patterns/associations which are yet unknown and thus the training data could not even be labeled

for supervised training. In medical applications unsupervised learning can therefore be used to

discover disease specific changes [44].

2.2 Transfer Learning

One way to overcome the lack of labeled data in supervised learning approaches is transfer learning.

Therein, the idea is that the ”knowledge” gained by a model trained on one task can be used to

solve another task [167, 113]. For instance, models that were originally trained to classify natural

images (e.g.: ImageNet dataset) can be finetuned to classify lesions as benign/malignant in breast

MRI [158, 60, 163]. If the model was initially trained on a task from another domain as in the

previous example, this transfer learning type is also referred to as cross domain transfer learning. In

contrast, domain specific (or intra-domain) transfer learning takes advantage of ”knowledge” gained

by models on tasks of the same domain (e.g.: medical MRI) [113].
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2.3 Conventional Machine Learning and Deep Learning

Meyer-Bäse et al. [107] distinguishes DL (see definition in Section 1.4) based ML approaches from

non deep learning based approaches which they termed Conventional Machine Learning (CML).

CML approaches include Support Vector Machine (SVM) [36], random forests [21], k-means clus-

tering [101] (non-comprehensive list). DL based approaches encompass ResNet [69], Variational

Autoencoder (VAE) [87], Generative Adversarial Network (GAN) [54] (non-comprehensive list).

While conventional machine learning approaches are trained on precalculated features of the given

training data the goal of DL based methods is to find a representation of the features during the

training process [107]. In breast cancer research, radiomics is most commonly used in conjunction

with CML approaches. Therein, mostly hand-crafted features are extracted from segmented lesions

on which a classifier is trained. For example, Tao et al. [146] used Pyradiomics [150] to extract 1132

features of manually segmented ROI in mpMRI and subsequently trained a random forest classifier

on the top 10 feature principle components to discern between malignant and benign lesions. In

DL feature extraction is achieved by passing the input data through multiple interconnected layers

whereby the early layers represent low level features (edges, contours, angles) and the later layers

high level features (patterns, shapes). Therefore, the advantage of DL based methods is that an

optimal representation of the training data is automatically learned in the training process while

it has to be manually generated in CML approaches [95]. This allows DL methods to generalize

better and thus to perform better on previously unseen data. On the downside DL based methods

require in general more training data compared to CML. Truhn et al. [148] found that CNN based

classification of malignant and benign lesions performed better than a classifier based on radiomic

features. More interestingly, they showed that increasing the training data set size improved the

performance of the CNN but not the radiomic based approach (plateau effect).

2.4 Approaches to Lesion Detection and Classification

Tools that aid radiologists in the diagnosis of diseases can be divided into two groups: Computer

Aided Detection (CADe) and Computer Aided Diagnosis (CADx) systems [45]. By this classification,

lesion detection belongs to the group of CADe systems with the goal of detecting (and localizing)

suspicious lesions in breast MRI. In contrast, lesion classification is a CADx system which provides

information on the malignancy or molecular subtype of a lesion. The systematic review on AI in MRI

by Meyer-Bäse et al. [107] indicates that the published literature on CADe systems is less abundant

compared to CADx: 10% vs 42%. Often CADe systems go hand in hand with CADx systems so that

detection and classification are part of one pipeline [56] [140]. In the following various approaches

to lesion classification and detection in breast MRI are presented and analyzed.

2.4.1 Lesion Classification with Conventional Machine Learning

In this subchapter several CML approaches for lesion classification are presented. Cai et al. [25]

evaluated several classification models for the differentiation of benign and malignant lesions: To

this end, they combined features (morphological, kinetic and textural) extracted from segmented

lesions in DCE and DWI MRI of a cohort consisting of 234 patients. The diagnostic value of the

feature combination for the classification of benign and malignant lesions was assessed using SVM,

KNN, Naive Bayes and Logistic Regression in a 10-fold cross validation, whereby their Naive
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Bayes and KNN approach performed best in terms of Receiver Operating Characteristic (ROC)

Area Under the Curve (AUC). While Cai et al. [25] used a combination of Dynamic Contrast

Enhanced (DCE)- and DWI-MRI, Bhooshan et al. [17] compared the classification of benign and

malignant lesions in DCE-MRI and non-contrast enhanced High Spectral and Spatial (HiSS) MRI

in a dataset of 41 lesions. To this end, they extracted kinetic and morphological features (texture,

spiculation and geometry) from segmented lesions in DCE-MRI and morphological features from

HiSS MRI. The extracted features were then used to train a Bayesian neural network in a

one-leave out cross validation, whereby no significant difference in ROC AUC was found between

DCE-MRI and HiSS based classification (0.90 vs 0.92). Therefore, no additional benefit from HiSS

MRI could be shown. One drawback of the previously mentioned lesion classification approaches by

Cai et al. [25] and Bhooshan et al. [17] is the requirement for segmented lesions. To overcome this

requirement, Yang et al. [166] used only global kinetic features extracted from the pre-contrast

and first two post contrast images without the need for lesion segmentation. They found that the

maximum enhancement values computed for each voxel of left and right breast was suitable for the

classification of benign and malignant breasts (ROC AUC: 0.839)

As the use of the gadolinium based contrast agent (required in DCE-MRI) is know to accumulate in

the brain [81] its effects on health are critically discussed [8]. Therefore, the approach by Chen et al.

[27] could be viewed as advantageous since it does not rely on DCE-MRI: The authors employed

support vector machine discriminant analysis on quantitative features extracted from DWI

MRI only and reported a specificity of 87% at 100% sensitivity in the classification of benign and

malignant lesions. A similar approach was also explored by Vidić et al. [153].

More recent publications tend to focus on a plethora of features extracted from lesion areas in order

to improve classification performance: For instance, Hao et al. [63] extracted 1046 radiomic features

from lesions in T1 weighted DCE-MRI and T2 weighted MRI in patients with contralateral breast

cancer (previous cancer in other breast) to train a SVM to discriminate benign and malignant

lesions. The authors showed that the combination of DCE-MRI and T2 weighted MRI significantly

improved classification performance compared to using DCE-MRI features only (ROC AUC: 0.77

vs. 0.71). As another example, Wang et al. [159] identified several features related to homogeneity,

heterogeneity and randomness that were significantly different in benign and malignant lesions and

used them to classify BI-RADS 4 cases: A score calculated from the linear combination of the

features was used as the predictor for malignancy. Similarly Jiang and Yin [80] also used texture

features extracted from segmented lesions in DCE-MRI for SVM based malign/benign classification.

However, the extracted features can not only be used to discriminate benign and malignant lesions:

In order to predict the molecular subtype of lesions, Saha et al. [129] developed an approach in which

529 radiomic features extracted from segmented lesions in DCE-MRI images are used by a random

forest classifier. A dataset of 922 patients with confirmed invasive breast cancer collected at the

Duke university was used. Eventually, the authors could show that the Luminal A subtype, TNBC

and ER and PR status could be predicted with an accuracy ranging from 60 to 70%. The authors

also made their dataset publicly available via The Cancer Imaging Archive (TCIA) [33], so that it

could be used in this thesis.

While the previously mentioned approaches use just one classifier, Vamvakas et al. [149] investi-

gated the benefit of ensemble learning methods (which combine several weak performing models) in

the classification of lesions using features extracted from mpMRI (DCE and DWI). They showed

33



that Extreme Gradient Boosting (XGBoost) [29] and Light Gradient Boosting Machine

(LightGBM) [82] classifiers had a significantly higher ROC AUC than a SVM classifier that was

used as a non ensemble reference (0.95 and 0.94 vs 0.88). Since the use of ensemble learning im-

proved classification performance it will also be used in this thesis for the classification of benign

and malignant lesions, whereby domain specific transfer learning will be employed additionally.

2.4.2 Lesion Classification with Deep Learning

As the last subchapter gave an overview on CML for lesion classification, this subchapter introduces

several DL based methods. Wang et al. [157] finetuned an ImageNet pretrained ResNet50 model

to classify non mass enhancement lesions as benign or malignant and reported an ROC AUC of

0.816. The input of model their model consists of a 3 channel image containing two copies of the

axial/sagittal Maximum Intensity Projection (MIP) of the first post contrast volume and the mask

delimiting the lesion. In order to avoid avoid the time consuming segmentation of lesions, Zhang

et al. [170] developed a fully automated lesion classification pipeline using mpMRI (DCE-MRI, DWI

and T2 weighted MRI). To this end, a nnUNet [78] model was used for lesion segmentation, from

which radiomic and kinetic features are extracted. The classification into malignant and benign is

finally achieved by a combination of SVM and Logistic Regression. The authors reported a ROC

AUC of 0.946 and 0.842 on their internal and external validation cohort, respectively.

A completely lesion segmentation independent approach was explored by Wang et al. [158] who eval-

uated ImageNet pretrained MobileNet models [73] (a comparably light weight CNN architecture)

in a five fold cross validation for the classification of malignant and benign lesions in DCE-MRI.

They found that fine-tuning all layers as opposed to just the last layer slightly improved ROC AUC

form 0.73 to 0.74. While Wang et al. [158] used cross domain transfer learning, Hadad et al. [60]

tested their hypothesis that cross modal transfer learning improves the classification of mass vs. non

mass lesions compared to cross domain transfer learning. As a reference for cross modal transfer

learning a VGG-Net [136] model that was pretrained on mammography images was used. Con-

versely, for cross domain transfer learning the VGG-Net model was pretrained on the ImageNet

dataset. The last layers of the models were fine tuned on a DCE-MRI dataset consisting of 123

patients. The study showed that cross modal transfer learning yielded a higher model accuracy than

cross domain transfer learning (0.93 vs 0.9). Surprisingly, the best performance was achieved when

the model was trained from scratch, i.e. without the use of transfer learning at all (0.94). The

same VGG architecture was used by Hu et al. [75] who tried to determine the benefit of mpMRI for

the classification of the benign and malignant lesions: In the first step the ROI is extracted from

the MIP of the second post contrast subtraction volume and the center slice of the T2 weighted

volume. In the second step the DCE MIP and T2 patch containing the ROI are individually passed

through an ImageNet pre-trained VGG-19 network. Interestingly, VGG-19 is not directly used as

a classifier but as a feature extractor. The features of the DCE and T2 ROI are extracted from

the last max-pooling layer of the VGG-19 network, merged and passed to a SVM classifier which is

responsible for the classification of the ROI. Their dataset consisted of 927 biopsy confirmed lesions

(21% benign, 79% malignant) that were initially reported as BI-RADS > 4. The authors reported an

AUC of 0.87. Fusion of ROI improved classification performance only modestly compared to using

the features of the DCE-MRI ROI alone (AUC 0.85), indicating that the addition of T2 weighted

MRI does not carry much additional information on lesion malignancy.
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While the previously mentioned DL approaches use DCE-MRI, they do not take full advantage

of its temporal information information. In contrast, Gravina et al. [55] developed an approach

that exploits the 3 Time Point (3TP) method [39] for the classification of benign and malignant

lesions. To this end, the slices containing the lesion are extracted from pre contrast, 2 minute and

6 minute post contrast volumes so that a 3 channel image can be created for each slice. The 3

channel slices are then passed through an AlexNet model which classifies each slice as malignant

or benign. Subsequently, the slice wise predictions are merged using (weighted) majority voting to

obtain a malignancy probability for the lesion. A dataset consisting of 39 women with 36 malignant

and 22 benign lesions was used. Due to the small size of the dataset the authors used an ImageNet

pre-trained AlexNet in a 10 fold cross validation to assess the performance of their approach. With

their 3TP approach an ROC AUC of 81.48% could be achieved compared to 75.93% when just 1 time

point was used. However, Zheng et al. [174] claimed that using just 1 or even 3 DCE time points is

not sufficient for the classification of small lesions (<15mm diameter). As a solution, they propose

to encode all DCE-MRI time points as sequential data using a Dense Convolution Long Short

Term Memory (DC-LSTM) architecture, whereby the DC-LSTM cell states are prior initialized

with the Apparent Diffusion Coefficient (ADC) map derived from DWI-MRI. Subsequently, the

DC-LSTM encoded DCE information is fed into a ResNet50 model which is eventually responsible

for the classification of the lesion. In order to accelerate training convergence, 4 auxiliary tasks

were devised (prediction of 4 markers extracted from diagnostic report). Since training of the

DC-LSTM network turned out hard, a segmentation loss was introduced to ”focus the attention”

of the network on the lesion. The later is in contradiction to other authors who showed that the

inclusion of peritumoral tissue improved lesion classification [86, 44]. A dataset consisting of 72

lesions (45 benign, 27 malignant) was used in a 3-fold cross validation to estimate classification

accuracy where it was shown that the combination of DC-LSTM + ResNet50 outperformed their

3TP ResNet50 only approach: Accuracy: 0.847 vs. 0.667. This indicates that the use of more

DCE time points is beneficial for the classification of lesions. However, depending on the acquisition

protocol more than 3 DCE time points may not available. Thus, the requirement for more than 3

time points can also be viewed as a limitation.

2.4.3 Lesion Detection

In the following approaches to lesion detection are presented, whereby in many cases lesion detection

is intertwined with lesion classification: Zhang et al. [173] proposed a two stage approach to lesion

detection: In the first stage, lesions are localized in DCE-MRI using Mask R-CNN [70] based

bounding box predictions. For each breast one bounding box is predicted from a 3 channel image

consisting of the first subtraction image, the pre-contrast image, and the subtraction image of the

contralateral breast (taking advantage of (a)symmetry, reminiscent of Yang et al. [166]). In the

second stage, the patches described by the predicted bounding boxes are classified by a ResNet50

model as benign and malignant. The ResNet50 model uses a 3 channel image consisting of three DCE

parametric maps whereby each map holds pixel wise description of a parameter of the enhancement

curve (wash-in, mid enhancement and washout). In contrast, the second stage of the approach by

Dalmış et al. [37] is not used for classification but for the reduction of false positives: In the first stage

a 2D U-net [127] is used to obtain pixel wise lesion likelihoods for each slice in the MRI volume

which are subsequently stacked to a lesion likelihood volume. In the second stage candidate lesion
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patches are extracted from the lesion likelihood volume and passed along with a patch corresponding

to the contralateral breast into a dual 3D CNN which outputs the final lesion likelihood. The use

of the dual 3D CNN was justified by previous research in MRI and mammography that showed that

the exploitation of breast symmetry is beneficial in the detection of lesions [139, 90]. Interestingly,

only the pre-contrast image and the relative enhancement of the first post contrast time point are

used as an input to the first stage. An average sensitivity of 0.64 was achieved between 1/8 and

8 false positives per scan. A dataset consisting of 201 women who underwent MRI screening or

preoperative staging was used as a training dataset. As a test set a dataset of 160 high risk patients

who participated in a screening program for up to 11 years was used. Unfortunately, the authors

did not make their source code or patient cohort publicly available.

To simultaneously detect and classify lesions (in T1 weighted DCE-MRI slices) in just one stage-

Herent et al. [71] used an ImageNet [40] pre-trained ResNet50 [171]. The last layers of the ResNet50

are modified to produce a feature map of size 2048x8x11. The feature map is used twofold: For

CADe it is convolved to a 8x11 “attention map” which represents the coarse localization and lesion

probability for each 8x11 cell in the input slice. For CADx a weighted average of the feature map

using the attention map as weights is generated thereby reducing the feature map to a vector of

2048 features that are then fed through a fully connected layer which is responsible for classifying

the slice as either “malignancy, normal tissue, other benign lesion, IDC or other malignant lesion”.

From a medical perspective the differentiation between the classes malignancy, IDC or other ma-

lignant lesion is not clear as all of the categories could be summarized as malignant. Interestingly,

the authors used separate model weights for the classification and detection task. In the study a

balanced dataset ( 30% healthy, 33% benign, 33% malignant) consisting of 335 patients was used

for training and an independent dataset of 168 patients for evaluation for which an ROC AUC of

0.816 is reported in the benign vs. malignant classification task. Unfortunately, the authors did not

provide a metric for lesion localization performance.

One disadvantage of the one stage approach by Herent et al. [71] is that it does not exploit the

three dimensional information encoded in DCE-MRI. To take advantage of the latter, an approach

solely based on a 3D CNN architecture was developed by Witowski et al. [163] who had access to a

comparably large training dataset of 13.463 mixed-risk patients. The dataset was used to finetune a

3D ResNet18 which was pretrained on the Kinetics-400-dataset (cross domain transfer learning).

The network uses a 4 dimensional input consisting of the pre contrast and post contrast MRI

volumes. As a drawback the output of the model for lesion detection/localization is very coarse only

(left or right). The model was evaluated on 3 external datasets: First, the Jagiellonian University

(JU) dataset consisting of 394 patients. Second, a dataset consisting of 922 patients collected at

the Duke University [129] and third, the Cancer Genome Atlas Breast Invasive Carcinoma dataset

which encompasses 139 patients. For evaluation the authors used an ensemble of the 20 best models

along with test time augmentation which yielded an ROC AUC of 0.797, 0.977 and 0.966 and a

Precision Recall AUC of 0.596, 0.969 and 0.973 for the three evaluation datasets, respectively. Even

tough the study did not explicitly investigate the performance on high risk patients, an analysis on

BI-RADS 4 cases was conducted, whereby decision curve analysis determined an operating point at

which 5.4% of unnecessary biopsies could be avoided without missing any malignant lesions.

For a more precise localization, Meng et al. [106] used the Yolo architecture [124]. The authors

compared different backbones of Yolo (version 5) for the detection and classification of benign and
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malignant lesions. The authors used a dataset consisting of 154 malignant and 173 benign lesions

and found that the small backbone (with the lowest number of parameters) achieved the best mean

average precision (0.916).

In contrast to the previously mentioned supervised approaches, Sun et al. [140] proposed a weakly

supervised approach for simultaneous lesion localization and classification in DCE-MRI. To this

end, a shared backbone (ResNet50 or VGG19), which was trained only on image-level labels (nor-

mal/abnormal), was utilized. While the features extracted by the backbone are used by a series of

fully connected layers for lesion classification, they are merged with the output of a region proposal

network (Edge-Box [175]) and feed through separate detection layers for lesion localization. Com-

pared to the ResNet50 backbone a higher classification (ROC AUC: 0.939 vs 0.882) and detection

(average precision 0.857 vs 0.8219) performance was reported for the VGG19 backbone.

Most lesion detection approaches have the goal to identify suspicious lesions. However, the approach

by Verburg et al. [152] aimed to identify healthy breasts in order to reduce the workload of radiol-

ogists. To this end, the authors developed a DL based approach especially designed for detecting

lesions (BI-RADS 2-5) in women with dense breast tissue. As an input their models, which are based

on the VGG-16 and VGG-19 architecture, use MIP in sagittal, transversal and coronal direction

from the left/right breast subtraction volume of the first post contrast time point. The predictions

for the three directions are then averaged to yield one lesion probability per breast. In total 4581

examinations from 8 hospitals were used, whereby the dataset of 1 hospital was left out as a test set.

The authors report that 39.7% of normal examination findings can be identified without missing any

malignant examination (100% sensitivity) thereby potentially reducing the workload of radiologists.

A CML based approach to lesion detection and classification was developed by Gubern-Mérida

et al. [56]. After a probabilistic atlas based breast segmentation, voxel wise relative enhancement

and blob features [96] (which characterize the shape) are calculated. The features are then used

by a random forest classifier to compute an abnormality map from which lesion candidates are

determined. For classification the candidates are automatically segmented using smart opening

[118] so that morphological and kinetic features can be extracted for the input of a second classifier

which is responsible for benign/malignant classification. They authors report a sensitivity of 89%

at a false positive rate of 4 per case.

While all of the lesion detection approaches mentioned so far require samples of suspicious lesions

for training, the approach by Burger [23] is trained on healthy breast tissue only. To this end, an

anomaly detection approach based on AnoGAN [133] is used. The GAN architecture consists of

two components which are trained alternatingly, namely the Generator and the Discriminator. The

aim of the Generator was to learn a latent space representation of healthy breast tissue from which

image patches of healthy breast tissue can be generated. The Discriminator was trained to discern

between real and generated image patches of breast tissue. The difference images of the subtraction

images from two consecutive screening events with no suspicious outcome were used to train the

GAN. As a result, the Generator and Discriminator were trained to generate and recognize healthy

changes in the breast tissue, respectively. For lesion detection the input patches are mapped to the

latent space from which the Generator reconstructs patches that resemble the input patches the

closest (i.e. a healthy version of the input patch). An anomaly score computed as the dissimilarity

between the input and generated patches then serves as a predictor for suspicious changes. The

approach yielded a sensitivity of 99.5% (92.7%) at a specificity of 84.1% (78.6%) and precision of
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86.2% (81.4%) for detection at the same time point (prediction for future time point). While the

results are promising, the significance of the evaluation is limited by the small sample size of the

test set (5 healthy and 8 diseased patients).

2.5 Reflection on Current Literature

Both conventional and deep learning based machine learning approaches show great potential in

aiding radiologists in the detection, diagnosis and treatment of breast cancer. For patients a reduc-

tion of unnecessary and burdensome biopsies can be highlighted as a major benefit. While there

is clearly a trend towards the incorporation of mpMRI, the most important imaging modality re-

mains DCE-MRI. This may be due to the fact that DWI MRI is in many cases not part of the

standard (screening) protocols and thus data availability is limited. Therefore, the application of

mpMRI based methods is currently limited as well. Furthermore, there is a trend of more recent

publications to more frequently use DL compared to CML based approaches. In general, many

publications had access to relatively small patient cohorts only, which on the one hand impedes

training models (e.g.: overfitting) and on the other hand makes it hard to tell how the model would

generalize, i.e. perform on patient cohorts from other hospitals. Comparison of model performance

between approaches of different publications is also not trivial due to differences in the patient co-

horts (e.g.: high-risk, preoperative imaging, ...) and since there is no convention on the evaluation

metric (ROC AUC, Precision Recall AUC, average sensitivity , . . . ). Additionally, most authors

do not provide their source code or (private) datasets so that external evaluation/reproduction is

impossible. The lack of access to broad patient imaging data also explains the ”popularity” of cross

domain transfer learning in many of the afore mentioned approaches, whereby the ImageNet dataset

is most commonly used for pre-training. However, features that are relevant for the detection of

every day objects (ImageNet) may not be ideal for the detection and classification of lesions. There-

fore, this master’s thesis explored the benefit of domain specific transfer learning for the detection

and classification of lesions.
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3 Materials and Methods

This chapter will first introduce the two patient cohorts used in this master’s thesis. Second, the

preprocessing steps used for preparing the DCE-MRI data of the two cohorts for the subsequent DL

experiments is described. In the third subchapter, the experimental design for lesion detection using

ResNet and Yolo is presented. The fourth subchapter elucidates the cross validation experiment

for lesion classification. Finally, the evaluation metrics used for assessing the performance of lesion

detection and classification are delineated.

3.1 Datasets

3.1.1 AKH Patient Cohort

The AKH patient cohort consists of 606 patients with a high risk for developing breast cancer and

were recruited at the genetic counseling center of the university clinic for gynecology at the Vienna

General Hospital (AKH Wien). The patients were included in the study cohort if one of the following

conditions applied and patient consent was given:

1. Previous case of breast cancer before the age 36

2. Previous ovarian cancer before the age of 41

3. Confirmed mutation in the genes BRCA-1 or BRCA-2

4. Family anamnesis: Cumulative risk of developing breast cancer before the age of 79 > 20%

The patients participated in regular DCE-MRI (Section 1.2) screenings, hereafter referred to as

visits, at the AKH. Imaging data and meta-information, such as BI-RADS scores (Section 1.3) and

histological data, from the years 2002 to 2019 were available. Every patient visit was examined by a

trained radiologist who assigned a BI-RADS score and requested a biopsy if a suspicious change in

breast tissue was detected (BI-RADS 4 and 5). In the majority of visits (≈ 91%) no suspicious tissue

changes were detected (BI-RADS 1, 2 and 3) as visible in the histogram of Figure 14. Suspicious

lesions (BI-RADS 4) were detected in ≈ 7.6% and highly suspicious lesions (BI-RADS 5) in less

than ≈ 0.2% of the visits. In ≈ 1% of the visits the imaging data was insufficient (BI-RADS 0).
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Figure 14: Breast Imaging Reporting and Data System (BI-RADS) score distribution
by modality in the AKH patient cohort: The number of suspicious cases (BI-RADS ≥ 4) is low
compared to the number of (likely) benign findings (BI-RADS < 4).
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3 Modalities

Burger [23] who also worked with the AKH patient cohort categorized the imaging data into 3

modalities based on the acquisition protocol and scanner type which changed over the years. MRI

images acquired before 2007 were assigned modality 1 and are characterized by a transversal resolu-

tion of 256x256 pixels. In the year 2007, with the advent of modality 2, the resolution increased to

384x384 pixels and in 2014 with modality 3 the resolution further improved to 512x512 pixels due

to advances in MRI scanner technology. With the advent of modality 3, fat suppression was added

to the imaging protocol. Even though fat suppression results in strong differences between native

modality 2 and 3 images, these differences can be greatly reduced during the preprocessing steps

(Section 3.2 and Figure 18).
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Figure 15: Number of patient visits per year and modality: In 2014 the Magnetic Resonance
Imaging (MRI) scanner type and acquisition protocol changed which introduced a better resolution
(384x384 vs 512x512) and fat suppression.

Data Selection

For this thesis, only MRI images collected after 2007, corresponding to modalities 2 and 3, were

included (Figure 15). This cutoff was selected since the image quality and study protocols of the

older modality 1 differed vastly from the newer imaging modalities 2 and 3. As a result, 620 visits /

15 patients that had only visits with modality 1 were excluded in the first step of the data selection

workflow (depicted in Figure 16). The goal of this master’s thesis was the detection and classification

(benign/malignant) of suspicious lesions which are defined as lesions with a BI-RADS score of 4 or

5. Therefore and since histological information on malignancy is only available for visits with a

BI-RADS ≥ 4, all other visits were excluded. In the end, only visits with modality 2 or 3, a

BI-RADS score of 4 or 5 and available histological data were selected. This data selection process

reduced the initial 3489 visits (606 patients) to a final dataset consisting of 144 visits (125 patients)

which was used in this thesis.

Manual Lesion Segmentation

In order to train and evaluate our DL models, it was necessary to first manually determine the

position of the lesions in the MRI volume. To this end, manual lesion segmentation was obtained for

the final dataset (144 visits) with the help of two radiologists at the Vienna General Hospital. The

segmentation process involved a pixel/voxel vise delineation of the lesion in the first post contrast

MRI volume using ITK-SNAP [168].
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Total number of visits
(patients): n=3489 (606)

BI-RADS score
available?

Visits (patients)
excluded: n=401 (4)

Total number of visits
(patients): n=3088 (602)

Modality 2 or 3?
Visits (patients)

excluded: n=620 (15)

Total number of visits
(patients): n=2468 (587)

BI-RADS score ≥ 4?
Visits (patients) ex-

cluded: n=2277 (429)

Total number of visits
(patients): n=191 (158)

Histology and
lesion segmenta-
tion available?

Visits (patients)
excluded: n=47 (23)

Total number of visits
(patients): n=144 (125)
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Figure 16: Data selection flow chart for the AKH patient cohort: For all experiments of this
thesis only Magnetic Resonance Imaging (MRI) images with histology resolved lesions and available
segmentation data were used resulting in a dataset of 125 patients

41



Description of Final Dataset

For each of the 144 visits the following (meta)data was available:

• T1 weighted pre contrast images and at least 3 T1 weighted post contrast images

• Pixel/Voxel wise lesion annotation

• BI-RADS score

• Histological information: benign/malignant

The dataset is unbalanced as the number of malignant cases is lower than the number of benign

cases (33 vs. 111). However, they are equally distributed over the two modalities: 55 and 56 benign

cases were counted with modality 2 and 3, respectively; for the malignant cases there were 13 and

20 cases, respectively. While 140 of the annotated cases are reported as BI-RADS 4, only 4 cases

are BI-RADS 5 (Figure 17). This observation is expected since high risk screening intends to find

lesions at an early stage when malignancy may not be determined unambiguously by the radiologist

from the imaging data.

Annotated cases
(144)

BI-RADS 5
(4)

Modality 3
(3)

malignant
(3)

benign
(0)

Modality 2
(1)

malignant
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BI-RADS 4
(140)

Modality 3
(73)

malignant
(17)

benign
(56)

Modality 2
(67)

malignant
(12)

benign
(55)

Figure 17: Tree diagram of final AKH dataset: Number of malignant and benign cases (visits)
with available lesion segmentation per modality and Breast Imaging Reporting and Data System
(BI-RADS) score after data selection process (Figure 16).

3.1.2 Duke Patient Cohort

As there was no lesion segmentation available for the AKH patient cohort at the start of the thesis and

due to the small size of the filtered patient AKH cohort, a dataset published by the Duke University

school of medicine was selected for domain specific transfer learning. The dataset, hereafter referred

to as Duke dataset, was made available via the TCIA [33] which allows researchers to share and

access anonymized collections of imaging data for various cancer types. In the original publication

[129] the Duke dataset was used in a radiomics based approach to discern molecular sub-types of
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breast cancer (described in Chapter 2). It appeared ideal to facilitate the envisaged domain specific

transfer learning approach as it contains not only similar DCE-MRI imaging data but also rich

meta-information:

• T1 DCE-MRI data (with and without fat suppression) as well as T2 weighted MRI

• Bounding box coordinates for lesions

• Histological data: receptor status, tumor grading, ...

• Demographic data: menopause status, ethnicity, ...

The most prominent difference to the AKH dataset is that the Duke dataset is comprised only of

patients with invasive breast cancer. Therefore, the lesions are detected at a later stage and as a

result differ in size and morphology compared to the cases of the AKH cohort: The median lesion

bounding box size in the Duke patient cohort (≈20ml) is between 20 and 30 times larger than the

lesions of the AKH patient cohort (≈0.8ml) as shown in Table 4). Moreover, a transversal image

resolution of 320x320 and 448x448 (which is not found in the AKH patient cohort) is used in 32 and

239 of the cases, respectively. However, the majority of Duke cases feature a resolution of 512x512

which is equal to the resolution of modality 3 images of the AKH patient cohort.

AKH DUKE
Resolution xy [Pixel] 384x384 512x512 320x320 448x448 512x512
Resolution z [Pixel] 48-52 80-80 128-176 112-256 92-208

Median Lesion Size [mm3] 881 800 25779 19945 13626
Q5 Lesion Size [mm3] 175 195 1535 1413 1172
Q95 Lesion Size [mm3] 8785 5067 713276 404037 271327

N 68 76 32 239 611

Table 4: Comparison of DCE-MRI resolution and lesion bounding box size (in mm3) between the
AKH and Duke patient cohort. Note: 1000 mm3 = 1 ml

From the initial 922 patients of the Duke cohort, only patients with unilateral breast cancer and at

least 3 post contrast MRI scans were used, resulting in a final dataset of 882 patients which was

used throughout this thesis.

3.1.3 Partitioning of Datasets

Both, the AKH patient cohort and the Duke patient cohort were split into a training, validation

and test split in a 7:1:2 ratio, respectively, whereby it was assured that each patient is contained

in only one split (e.g.: if a visit of a patient is assigned to the training split, another visit of the

same patient must also be assigned to the training split and NOT to any of the other two splits).

Additionally, a stratification based on imaging modality and malignancy was applied on the AKH

patient cohort. The statistics of the dataset splits are shown in Table 5. The training split was used

to optimize the model parameters during training, the validation split to select the optimal epoch

for early stopping and the test split for evaluation of the models.
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Duke cohort AKH cohort
Train Val Test Train Val Test

Median Lesion
Size [mm3]

14947 13416 17992 907 549 942

Benign 0 0 0 75 13 23
Malignant 618 88 176 22 4 7
Modality 2 - - - 46 8 14
Modality 3 - - - 51 9 16

Total 618 88 176 97 17 30

Table 5: Partitioning of Duke and AKH cohort in training (train), validation (val) and test splits.

3.2 Data Pre-Processing

3.2.1 DCE Image Pre-Processing

All DCE-MRI scans were preprocessed using the steps of the following pipeline which was developed

for this thesis and is loosely based on preprocessing approach of Burger [23]:

1. Conversion of DICOM files to NIFTI: Python package: dicom2nifti (v.2.4.2)

2. Registration of the first 3 post contrast images to the pre contrast image using AffineFast

transformation with default parameters: Python package antspyx (0.3.4) a wrapper for

ANTs (Advanced Normalization Tools) [9]. The registration algorithm uses the affine trans-

formations rotation, translation, shearing and rotation to fit the post contrast images on the

pre contrast image with mutual information as the optimization metric. For more information

please refer to Avants et al. [9].

3. Calculation of subtraction images and export of images as NIFTI files: nibabel (4.0.1).

The subtraction images Si were calculated by subtracting the registered pre contrast image I0

from the post contrast images Ii whereby i denotes the ith post contrast time point (Equation

11). Negative pixel values were truncated (similar to Chen et al. [28]), so that only the relevant

enhancement signal remains.

Si = max(Ii − I0, 0) (11)

As fat suppression was used with modality 3 but not with modality 2, one concern was whether they

were comparable enough to train a model on both modalities. Even though the difference between

the two modalities is pronounced in the pre and post contrast images, this difference is reduced to

a large extend by the calculation of the subtraction images (Figure 18). Therefore, it was decided

to use data from both modalities in the experiments of this thesis.

3.2.2 Representation of Temporal DCE MRI Information

Since the temporal information obtained by DCE-MRI is of great diagnostic value, this information

should also be represented in the data for lesion detection and classification (see Section 1.2). In

literature a widely used approach is based on the 3TP method [39] in which the (first) 3 post contrast

time points are combined to a 3 channel image, whereby each time point is represented by a separate

channel [28, 116, 7]. In this thesis, either the subtraction images corresponding to the first three

post contrast time points are used (hereafter refereed to as 3TP) or just the subtraction image of

the first post contrast time point (hereafter referred to as 1TP). The construction of a three channel

image from the first 3 subtraction images is visualized in Figure 19.
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Figure 18: Dynamic Contrast Enhanced Magnetic Resonance Imaging sample: Pre con-
trast images are depicted in column I0, the first post contrast images in column I1 and the corre-
sponding difference images in column S1. In the first row no fat suppression was used (modality 2)
compared to the second row (modality 3) and the third row (sample from the Duke dataset) where
fat suppression was used. The red bounding box highlights malignant lesions.

Figure 19: Incorporation of temporal DCE-MRI information in a 3 channel image. The pre-contrast
image I0 is subtracted from each of the first three registered post contrast images I1 to I3, yielding
subtraction images S1 to S3. The subtraction images can then be combined to a 3 channel RGB
image whereby each channel is occupied by one subtraction image: S1 → R,S2 → G,S3 → B

3.2.3 Breast Masks

Masking/Segmentation can be used to obtain the ROI in images by removing unnecessary back-

ground information. In breast DCE-MRI the ROI is the breast tissue and the background infor-
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mation corresponds to the remaining regions of the MRI (e.g.: thorax and air). In this thesis,

three-dimensional breast masks were used to more efficiently train and evaluate models in lesion

detection by restricting training and evaluation to regions containing breast tissue. Thus, it was

necessary to create three-dimensional breast masks for every DCE-MRI volume. In contrast to lesion

segmentation, manual segmentation of breast tissue would have been impractical due to the high

time exposure.

Various approaches for masking breast tissue exist: For example, Burger [23] used a template based

approach in which multiple breast MRI templates are registered to the target breast MRI. Then the

registered MRI template with the highest DICE score with the target breast MRI is selected and the

corresponding registration transformation applied on the template mask to yield the binary mask

for the target breast. While this approach worked well on non-fat suppressed MRI images it failed to

achieve satisfactory results on fat suppressed MRI images according to Burger [23]. Another method

was proposed by Wang et al. [156] based on Hessian-based sheetness filters; however, this approach

also requires non-fat suppressed MRI images which were not available for many cases of the AKH

and Duke cohort. Chen et al. [28] used otsu thresholding [114] and morphological filtering in their

pre-processing pipeline as a mean for breast region extraction. The advantage of their approach is

that it is not limited to non-fat suppressed MRI images. Unfortunately, the source code of their

publication has not been made available.

A Simple Otsu Based Breast Segmentation Algorithm

Since no suitable breast masking algorithm was available, a new algorithm loosely based on Chen

et al. [28] was developed for this thesis. The algorithm consists of the following steps and is visualized

in Figure 20:

1. Determine the breast/air border for each slice in the pre contrast MRI volume:

(a) Create binary mask for slice using otsu threshold: Python package scikit-image (v.0.19.2)

(b) Apply binary dilation (refer to Gonzalez and Woods [53] for more information on mor-

phological operations) on the binary mask using a 7x7 matrix of ones as the structuring

element: scipy (v.1.9.3)

(c) The breast/air border is described by the most ventral part of the binary mask

2. Determine the coarse thorax/breast border for each of the slices’ binary mask:

(a) The center point between the breasts is determined by the intersection of the sagittal axis

with the breast air/border.

(b) The origin of the thorax/breast border is obtained by moving 1/20 of slice width dorsally

from center point: From this origin the thorax/breast border is drawn laterally in each

direction as a straight line for 1/6 of the slice width. Then the thorax/breast border

continues at slope of 1.5 laterodorsally until it intersects with the air breast boundary.

3. The breast mask is given by the area circumscribed by breast/air and thorax breast border.

Additionally, a mask for the thorax is given as the area dorsal of the thorax/breast border.

46



Figure 20: Simple breast masking algorithm: In the first step otsu thresholding and binary
dilation is used to obtain the breast/air border at the ventral side. Next, the center point between
the breasts is determined by the intersection of the sagittal axis with the breast air/border. The
origin of the thorax/breast border is obtained by moving 1/20 of slice width dorsally from center
point: From this origin the thorax/breast border is drawn laterally in each direction as a straight line
for 1/6 of the slice width. Then the thorax/breast border continues at slope of 1.5 laterodorsally until
it intersects with the air breast boundary. The final breast mask is given by the area circumscribed
by breast/air and thorax breast border. Additionally, a mask for the thorax can generated from the
area dorsal of the thorax/breast border.

Otsu Thresholding

The algorithm uses otsu thresholding [114] at its core to separate breast tissue from background

(air). Otsu’s algorithm aims to minimize the intra-class variance σ2
ω of two non overlapping ranges

of pixel intensities (=classes) in an intensity histogram of an image. Let p(i) be the probability of

pixel intensity i ∈ {0, 1, . . . , L}, whereby p(i) is given as the relative frequency of pixel intensity i

in an image. Then the threshold tOTSU separating the two classes while optimally minimizing the

intra-class variance is defined as follows:

tOTSU = arg min
t

(σ2
ω(t)) = arg min

t
(ω0(t) ∗ σ2

0 + ω1(t) ∗ σ2
1) (12)

Whereby σ2
0 and σ2

1 are the class variances for class 0 and 1, respectively:

σ2
0(t) =

t−1∑
i=0

(i− µ0)2

ω0
, σ2

1(t) =

L∑
i=t

(i− µ1)2

ω1
(13)

And µ0 and µ1 are the class mean for class 0 and 1, respectively:

µ0(t) =

t−1∑
i=0

i ∗ p(i), µ1(t) =

L∑
i=t

i ∗ p(i) (14)
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The class probabilities/weights ω0(t) and ω1(t) represent the relative size of the classes and are are

defined as:

ω0(t) =

t−1∑
i=0

p(i), ω1(t) =

L∑
i=t

p(i) (15)

In practice tOTSU is determined exhaustively by calculating the intra-class variance σ2
ω(t) for all

t ∈ {0, 1, . . . , L} (Figure 21). To create a binary mask, pixel values below tOTSU are set to 0

(=background), while all other pixel values are set to 1.
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Figure 21: Visualization of otsu algorithm: The threshold tOTSU marks the point of minimal
intra-class variance σ2

ω of two non overlapping intensity ranges (classes).

Breast Masking Results

The described otsu based breast segmentation approach worked equally well on fat saturated and

non-fat saturated MRI images as demonstrated in Figure 22. While, the breast/air border is well

recognized, the thorax/breast border is only coarsely drawn. The latter constitutes the biggest

drawback of the method as it does not produce an anatomically correct separation of breast and

thorax tissue (e.g.: Musculus pectoralis). However, this segmentation approach was more than

sufficient for the task of lesion detection where a perfect separation of breast tissue is not required.

Figure 22: Breast masking: Sample results for masking algorithm used in this thesis on non-fat
suppressed (AKH-modality 2) and fat-suppressed (AKH-modality 3 and Duke) pre contrast MRI.
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3.3 Lesion Detection

In this thesis, we propose two different approaches to detect lesions in DCE-MRI slices: While the

first approach uses ResNets in a sliding window fashion to detect suspicious patches of breast tissue,

the second approach uses the Yolo architecture to predict the bounding boxes of lesions (see Chapter

1 for description of network architectures).

3.3.1 Lesion Localization with ResNets

The sliding window based lesion detection approach using ResNets is depicted in Figure 23 and

consists of two phases:

1. Patch based training

(a) Pre-training of ResNet models on training and validation split of Duke cohort

(b) Finetune ResNet models on training and validation split of AKH cohort

2. Sliding window evaluation:

(a) Evaluation of finetuned ResNet models on test split of AKH cohort

(b) (Evaluation of trained ResNet models on test split of Duke cohort)

Figure 23: The conceptual design of the lesion detection approach using ResNets consists
of two phases: In the first phase, Residual Networks (ResNet-18/ResNet-34) were pre-trained on the
Duke patient cohort to classify randomly drawn patches from MRI images as either Thorax, Breast
or Lesion. Then the same patch based approach was used to fine-tune the Duke pre-trained models
on the AKH patient cohort. In the second phase, the fine tuned models were evaluated in a sliding
window approach on the test split whereby the class probability for lesion was used as the predictor
in lesion detection.
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Patch Based Training

In the training phase the ResNet models were trained/finetuned on a random subset of patches

extracted from the slices of MRI volumes. The task of the models was to classify these crops as

either Thorax, Breast or Lesion.

For each of the 3 classes 200 random patches were sampled for each patient resulting in a total

of 600 patches per patient. As a result, the training, validation and test split contains 370800,

52800 and 105600 patches, respectively, for the Duke cohort and 58200, 10200 and 18000 patches,

respectively, for the AKH cohort. In order to account for the different transversal resolution of the

MRI slices the patch size was set to 1/8 of the slice width, thereby ensuring similar proportions

across the different imaging modalities. The center coordinates of the patches were sampled class-

wise from the joined breast/thorax and segmentation mask whereby it was assured that the breast

and thorax patches do not contain any lesion. If a patch contained both breast and thorax tissue

then the label with the biggest area in the mask was assigned to the patch as the ground truth.

Sliding Window Evaluation

In the evaluation phase the models trained in the previous phase were employed to detect lesions

in a sliding window fashion. Each slice of the MRI volume was divided into overlapping windows

which were then classified by the models.

Pytorch unfold was used with the following parameters to create overlapping windows/patches:

• Patch size: 1/8 of slice width

• Stride: 1/2 of patch size

Each slice was divided into 15× 15 overlapping patches whereby each region of the slice is covered

by approximately 4 patches. An MRI volume containing 128 slices would thus result in 28800

windows/predictions. The sliding window approach is visualized in Figure 23.

For each of the windows a lesion class probability is obtained as the output of the models and used

as the predictor for lesion detection. Only windows within the breast mask were considered in the

assessment of the model performance in lesion detection. In order to verify if a prediction is correct

each window needs to be assigned a ground truth label for comparison. A window was assigned the

ground truth label ”Lesion” if the condition in Equation 16 was fulfilled:

I/S > 0.5 ∨ I/L > 0.5 (16)

Whereby L is the area of the lesion annotation, S the area of the sliding window and I the area of

the intersection between S and L.

Therefore, a sliding window was assigned the ground truth lesion if it either contains at least 50%

of the entire lesion on a given slice or if the window is covered by at least 50% with the lesion

annotation (Figure 24). The threshold was chosen similar to the 50% IoU threshold which is used as

an evaluation measure in bounding box based lesion detection with Yolo (see Section 3.3.2). ROC

and precision recall curves were calculated in dependence of the lesion class probability associated

with each sliding window (see Section 3.5).
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Figure 24: Ground truth label of a sliding window: A window was assigned the ground truth
label ”Lesion” if it contains at least 50% of the entire lesion (I/L > 0.5) or if more than 50% of the
window is covered by the lesion (I/S > 0.5), whereby L is the area of the lesion annotation, S the
area of the sliding window and I the area of the intersection between S and L.

Visualization of Sliding Window Predictions

For each slice in a given MRI volume an array with 15x15 lesion class probabilities is obtained

after running the sliding window detection. By using second order spline interpolation (skimage

transform.resize) this array can be interpolated to the original size of the slice, resulting in a

heatmap representing the lesion probabilities for every pixel/voxel in the MRI volume.

For further information on the ResNet architecture and the experimental setup, please refer to

Sections 1.4.1 and 4.1, respectively.

3.3.2 Lesion Localization with Yolo

Similar to the lesion detection with ResNets, the bounding box based lesion detection with Yolo

(Figure 25) also consists of two phases:

1. Slice based training

(a) Pre-training of Yolo models on training and validation split of Duke cohort

(b) Finetune of Yolo models on training and validation split of AKH cohort

2. Whole MRI volume evaluation (on all slices in MRI volume):

(a) Evaluation finetuned Yolo models on test split of AKH cohort

(b) (Evaluation trained Yolo models on test split Duke cohort)

Slice Based Training

Yolo3 (version 5) models with large medium and small backbone were trained/finetuned to predict

the bounding box of lesions in a dataset of sampled slices from the training and validation split

of the Duke/AKH cohort (a detailed description of experimental setup can be found in Section

4.2): The sampled slices consist of all slices that contain an annotated lesion and randomly drawn

background slices (corresponding to 2% of the slices in the volume) which contain no lesion. The

addition of background slices that do not contain any objects is recommended by the authors of fifth

Yolo version.

Each training sample consists of a 3 channel image containing the first three post contrast subtraction

images and a file containing the relative bounding box coordinates (empty in background images) of

the slice. The class associated with each bounding box was set to ”0” for all bounding boxes since

the target was to detect only one class, namely ”suspicious lesion”. Therefore, the last term of the

3https://github.com/ultralytics/yolov5
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Yolo loss function (Equation 10, Section 1.4.2) which contains the predicted class probabilities does

not apply. The remaining four terms, including the difference between the predicted and ground

truth (manual annotation) bounding box coordinates and confidences contribute to the training loss.

Figure 25: Conceptual design of the lesion detection approach using Yolo in two phases:
In the first phase, You only look once (Yolo) models were pre-trained on the Duke patient cohort
to predict the bounding box of lesions from randomly sampled MRI slices. Then the same training
approach was used to fine-tune the Duke pre-trained Yolo models on the AKH patient cohort. In
the second phase, the fine-tuned models were evaluated on the test split of the AKH patient cohort
by predicting bounding boxes for each slice of the MRI volume. A predicted bounding box P was
considered a correct prediction if the Intersection over Union (IoU) of P and the (manual) lesion
annotation L was greater than 0.5

Whole MRI Volume Evaluation

In the evaluation phase the trained models were employed to detect lesions in the MRI volumes of

the test split by predicting bounding boxes for each of the slices. A Yolo bounding box prediction

consists of 6 entries:

1. The class of the predicted bounding box (in lesion detection only one class)

2. x-coordinate of bounding box center

3. y-coordinate of bounding box center

4. width of bounding box

5. height of bounding box

6. confidence of prediction

A predicted bounding box P was considered a correct lesion prediction if the IoU of P and the

(manual) lesion annotation L was greater than 0.5 (Figure 25). ROC and precision recall curves

were calculated in dependence of the confidences associated with each bounding box. For further

information on the Yolo architecture, evaluation metrics and the experimental setup, please refer to

Sections 1.4.2, 3.5 and 4.2, respectively.

52



Visualization of bounding box predictions

The bounding box predictions for each slice were visualized as heatmaps: To this end, the area

described by the bounding boxes was filled with a color corresponding to the confidence of the

bounding box prediction. By creating such a heatmap for every slice of the MRI volume, a three

dimensional heatmap representing the predicted pixel/voxel wise lesion probabilities is obtained.

Since similar heatmaps can be generated from the ResNet sliding window predictions, they were

also used to compare the lesion detection performance of the Yolo and ResNet models.

3.4 Lesion Classification

The second objective of this thesis was the automatic classification of suspicious lesions as benign

or malignant, in order to avoid unnecessary and burdensome biopsies. To this end, ResNet models

were trained to classify MRI patches containing suspicious lesions as either benign or malignant.

Since the dataset of annotated and biopsy confirmed lesions in the AKH dataset is small and suffers

from class imbalance, a transfer learning cross validation approach was chosen. Figure 26 shows

the conceptual design of the approach: To start with, only BI-RADS 4 patients were included, as

BI-RADS 5 patients are by definition highly suggestive of malignancy (p > 0.95) and may distort the

performance validity in the light of the low number of malignant samples. The BI-RADS 4 patients

were divided into a combined train/val split and a test split. In a transfer learning approach weights

from the previously trained ResNet models for lesion detection on the Duke dataset were used to

initialize the models in the K fold cross validation where they were finetuned on the train/val split.

Figure 26: Conceptual design of the cross validation lesion classification approach: A
dataset consisting of Breast Imaging Reporting and Data System (BI-RADS) 4 patients was divided
into two splits: The train/val split is used in the K-fold cross validation to train K Residual Network
(ResNet) models to classify suspicious lesions as either malignant or benign. The ResNet models
were initialized with the weights obtained from lesion detection on the Duke dataset and finetuned.
Each model is calibrated on its fold validation (val) split using temperature scaling. Subsequently,
the calibrated models are evaluated on the test split: On every instance of the test dataset the
predictions of all the K models are merged and used to create an ensemble prediction.
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For each of the K folds, the model weights of the epoch with the best balanced validation accuracy

were saved and calibrated on the validation split using temperature scaling. Subsequently, the

calibrated models were evaluated on the test split, whereby the predictions of the K models were

merged to one ensemble prediction. In the following the process of model calibration and generation

of ensemble predictions are elucidated in more detail.

3.4.1 Model Calibration

When deep neural networks are trained on small datasets the predicted class probabilities may

not correspond to the true class probabilities resulting in overconfident predictions [5, 57]. This is

especially problematic if the predictions of multiple models are merged to ensemble predictions, as

the predictions of some overconfident models can lead to bad performance of the model ensemble.

Model calibration can be use to adust the predicted class probabilities of each model in the ensemble

according to their confidence [105].

To calibrate our K models, we employed temperature scaling (a variant of Platt scaling [119]), which

uses the temperature parameter τ for the adjustment of the class probabilities [57]. Inaccurate/over-

confident models are adjusted with a higher temperature to lower the confidence of their predictions

(by ”moving” the predicted class probabilities towards 0.5) and vice versa. For each of the K fold

models, the optimal temperature τopt[k] with k ∈ K (Equation 17, adapted from [57]) was determined

after training in a separate step using the fold’s validation split (with Nk samples) and by minimizing

the Negative Log Likelihood Loss (NLLL, Equation 18) [66] given the true one-hot encoded labels

y0, y1 . . . yNk
and the temperature softmax σTSM (Equation 19 ) of the logits z0, z1 . . . zNk

:

τopt[k] = arg min
τ

Nk∑
i=1

NLLL (σTSM (zi, τ), yi) (17)

NLLL(p, y) = −
∑
j∈C

y[j] ln(p[j]) (18)

p = σTSM (z, τ) =
ez/τ∑

j∈C

ez[j]/τ
(19)

whereby the vector zi is the model output for the ith input image Xi of the validation split and holds

the logits for the classes malignant and benign (zi[j] with j ∈ C with C = {m, b}). The temperature

softmax transforms the logits zi to a vector containing the predicted class probabilities pi for input

image Xi so that:
∑

j∈C pi[j] = 1. In the NLLL, ln corresponds to the natural logarithm.

At evaluation time the temperature softmax with optimal τopt[k] is applied on the logits z of model

k to obtain the malignant class probability Pk(y = m|X) for a given image X of the test set:

Pk(y = m|X) =
ez[m]/τopt[k]∑

j∈C

ez[j]/τopt[k]
(20)
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3.4.2 Ensemble Prediction

Two methods were used to obtain an ensemble prediction for the malignant class probability given

an input image X and the K calibrated models :

1. Ensemble max method (Emax) uses the highest malignant class probability of the K models

as the predictor:

PEmax(y = m|X) = max
k∈{1,...,K}

Pk(y = m|X) (21)

2. Ensemble mean method (Emean) uses the mean malignant class probability of the K models

as the predictor:

PEmean
(y = m|X) =

1

K

K∑
k=1

Pk(y = m|X) (22)

3.5 Evaluation Metrics

In this subchapter, the metrics used in the evaluation of the models for lesion detection and classifica-

tion are elucidated. The concept of the confusion matrix as well as the terms sensitivity, specificity

and precision are described. Finally, the Receiver Operating Characteristic and Precision Recall

curve, which are used in this thesis to compare the performance of the models and to calculate the

number of biopsies that could be avoided, are explained.

Confusion Matrix

Both lesion detection and classification are treated as a binary classification task with the labels

”malignant” and ”benign”. The confusion matrix (Table 6) is central in the evaluation of binary

classification and describes the relationship between the predicted labels ŷ of a model and the ground

truth labels y (e.g.: ”Positive” and ”Negative”).

Predicted
Positive Negative

Ground
Truth

Positive True Positive (TP)
False Negative (FN)

Type II error

Negative
False Positive (FP)

Type I error
True Negative (TN)

Table 6: The confusion matrix establishes a relationship between predicted labels and ground
truth labels ”Positive” and ”Negative”

In lesion classification we assign malignant lesions the ”Positive” label and benign lesions the ”Neg-

ative” label. A match between predicted and ground truth label is either a True Positive (TP:

ŷ=y=”Positive”) if the true and predicted label is ”Positive” (correct hit) or a True Negative (TN:

ŷ=y=”Negative”) if the true and predicted label is ”Negative” (correct rejection). A False Positive

(FP: ŷ ̸= y ∧ y=”Negative”) arises if the ground truth label is ”Negative” but the predicted label

is ”Positive”. This case is also referred to as a Type I error . Conversely, a Type II error or

False Negative (FN: ŷ ̸= y ∧ y=”Positive”) occurs if the ground truth label is ”Positive” but the

predicted label is ”Negative”.

TP, FN, FP and TN are actually not static numbers but can be described as a function of a

threshold parameter t ∈ R. For instance, if the model outputs a probability for the ”Positive” label
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P (y = Positive) the predicted binary label ŷ can be calculated in dependence of the threshold

parameter t as follows:

ŷ(t) =

{
Negative, if P (y = Positive) ≤ t

Postive, otherwise
(23)

Sensitivity, Specificity and Precision

Based on the entries in the confusion matrix the metrics sensitivity, specificity and precision can be

defined in dependence of t:

1. Sensitivity is also referred to as recall or True Positive Rate (TPR) and describes the fraction

of correctly predicted ”Positive” labels of all ground truth ”Positive” labels:

sensitivity(t) = recall(t) = TPR(t) =
TP (t)

TP (t) + FN(t)
(24)

2. Specificity, also called True Negative Rate (TNR), describes the fraction of correctly predicted

”Negative” labels from all of the ground truth ”Negative” labels. From the TNR the False

Positive Rate (FPR) can easily calculated:

specificity(t) = TNR(t) = 1− FPR(t) =
TN(t)

TN(t) + FP (t)
(25)

3. Precision describes the fraction of correctly predicted ”Positive” labels from all predicted

”Positive” labels:

precision(t) =
TP (t)

TP (t) + FP (t)
(26)

In the case of lesion classification, ideally a model should have 100% sensitivity (identify all of malig-

nant cases), 100% specificity (identify all of the benign cases) and 100% precision (every malignant

prediction really is a malignant case) at the same time.

Receiver Operating Characteristic Curve

Every point [x,y] of the Receiver Operating Characteristic (ROC) curve (Figure 27a) describes the

relationship of TPR and FPR in the dependence of the threshold parameter t :

ROC(t) = [1− specificity(t), sensitivity(t)] = [FPR(t), TPR(t)] (27)

Therefore, the ROC curve can be used to determine the model’s FPR at a given specificity and

vice versa. In lesion classification one constellation is of particular interest, since each malig-

nant prediction would require a biopsy: To avoid unnecessary biopsies while at the same time

detecting all malignant lesions, the threshold t100%SEN at 100% sensitivity and the corresponding

specificity(t100%SEN) need to be determined. specificity(t100%SEN) describes the fraction benign

lesions that can be identified without missing any malignant lesion.

Precision Recall Curve

Every point [x,y] of the Precision Recall (PreRec) curve describes the relationship of sensitivity
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(=recall) and precision in the dependence of the threshold parameter t (Figure 27b):

PreRec(t) = [sensitivity(t), precision(t)] (28)

Therefore, the PreRec curve can be used to determine the precision at a given sensitivity and vice

versa. Precision is especially important when the number of ”Positive” ground truth labels is small

compared to the number of ”Negative” ground truth labels, as the FPR may be misleadingly low in

such cases and therefore, the performance may be overestimated from the ROC curve alone.

To reduce the workload of radiologists in lesion classification the threshold t100%precision and the

corresponding recall recall(100%precision) at 100% precision can be calculated to help pre-filtering

true malignant lesion. recall(100%precision) describes the fraction of malignant lesions that could

be identified without any false positive prediction. A downside of this threshold is that only lesions

predicted as malignant can be removed from the workload of the radiologists as lesions predicted to

be benign may actually be malignant (false negative) and would need to be checked manually.

Area Under the Curve

To summarize the ROC and PreRec curves in one number, the Area Under the Curve (AUC) is

commonly used. Since sensitivity, specificity and precision range from 0 to 1, the AUC for the ROC

and PreRec curve also ranges from 0 to 1, whereby higher AUC values correspond to better model

performance.
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Figure 27: Visualization of (a) a sample Receiver Operating Characteristic (ROC) curve and (b)
a Precision Recall (PreRec) curve parametrized by the threshold parameter t. The Area Under the
Curve (AUC) is highlighted in light grey.
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4 Lesion Detection

In this chapter two approaches for lesion detection (using the ResNet and Yolo architecture) are

compared: First, the experimental setup is described. Subsequently, the results are presented and

discussed in context with recent literature. For a description of the methodological aspects refer to

Section 3.3.

4.1 Experimental Setup - ResNet

4.1.1 Patch Based Pre-Training on Duke Cohort

Dataset

The dataset splits of the Duke cohort described in Section 3.1.3 and Table 5 were used in the

following.

Training parameters

Both resnet18 and resnet34 architectures (python package: torchvision (v.0.9.1)) were trained

with the parameters specified in Table 7 yielding in total 24 distinct training setups: The models

were either trained from scratch by setting the parameter pretrained=false in the model con-

structor - which uses the initialization strategy of He et al. [68] (RD1-RD8 and RD13-RD20). In

the other cases the models were fine-tuned after initialization with ImageNet4 pre-trained weights

by setting the parameter pretrained=true in the model constructor which loads the weights of

ResNet18 Weights.ImageNet1K V1 and ResNet34 Weights.ImageNet1K V1 from the the PyTorch

model zoo [120], respectively (RD9-RD12 and RD21-RD24). In the fine tuning setup the layers 7, 8

and 9 (description of layers in Section 1.4.1) were finetuned while all other layers remained frozen.

Additionally, the training data was normalized by the mean and standard deviation of the ImageNet

dataset. When the model was trained from scratch either normalization by the training data mean

and standard deviation or using no normalization were evaluated. Each channel ci of the input

images was normalized separately by subtracting the channel mean µi and dividing by the channel

standard deviation σi of the reference dataset to yield the normalized output channels oi:

oi =
ci − µi

σi
(29)

with i ∈ {1, 2, 3} referring to the ith image channel. Furthermore, the models were either trained to

differentiate between two classes (lesion and healthy breast tissue) or three classes (lesion, healthy

breast tissue and thorax). The models were either trained on 3 channel crops containing information

from the first three post contrast time points (3TP) or just the first post contrast time point (1TP)

- for further information see see Section 3.2.2

The following parameters were the same for all setups:

• Batch Size: 128

• Learning rate: 1 · 10−3

4https://www.image-net.org/
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• Loss Function: Cross Entropy Loss

• Weight Decay: 0

• Optimizer: Adam

• torchvision augmentation:

– Resize: 224

– Random Vertical Flip: p = 0.5

– Random Horizontal Flip: p = 0.5

– Random Affine Transformation: rotation: -30 to 30 degrees, scaling: 0.9 to 1.1

The models with the best accuracy on the validation split were saved and used in the subsequent

sliding window evaluation on the test split of Duke dataset and to be finetuned on the AKH cohort.

In the sliding window evaluation the performance of the different models was compared using ROC

and PreRec AUC as metrics and significance analysis conducted using two-sided Mann-Whitney test

to assess the impact of the training parameters.

ID ResNet Pretrained
Finetuned

layers
Epochs Normalization #Classes

Timepoints
(TP)

RD1 18 no NA 20 Dataset 2 1
RD2 18 no NA 20 Dataset 2 3
RD3 18 no NA 20 Dataset 3 1
RD4 18 no NA 20 Dataset 3 3
RD5 18 no NA 20 none 2 1
RD6 18 no NA 20 none 2 3
RD7 18 no NA 20 none 3 1
RD8 18 no NA 20 none 3 3
RD9 18 ImageNet 7,8,9 15 ImageNet 2 1
RD10 18 ImageNet 7,8,9 15 ImageNet 2 3
RD11 18 ImageNet 7,8,9 15 ImageNet 3 1
RD12 18 ImageNet 7,8,9 15 ImageNet 3 3
RD13 34 no NA 20 Dataset 2 1
RD14 34 no NA 20 Dataset 2 3
RD15 34 no NA 20 Dataset 3 1
RD16 34 no NA 20 Dataset 3 3
RD17 34 no NA 20 none 2 1
RD18 34 no NA 20 none 2 3
RD19 34 no NA 20 none 3 1
RD20 34 no NA 20 none 3 3
RD21 34 ImageNet 7,8,9 15 ImageNet 2 1
RD22 34 ImageNet 7,8,9 15 ImageNet 2 3
RD23 34 ImageNet 7,8,9 15 ImageNet 3 1
RD24 34 ImageNet 7,8,9 15 ImageNet 3 3

Table 7: Training and model parameters for Residual Network (ResNet) based lesion detection
training on the Duke dataset. The IDs of the ”Finetuned layers” column refers to Table 3 and
describe which layers were adjusted during training while the other layers remained frozen. Not
applicable (NA) if no pre-training was used.
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4.1.2 Patch Based Fine Tuning on AKH Cohort

The best performing ResNet-18 and ResNet34 model based on sliding window PreRec AUC from

Table 7 (RD8 and RD20) were selected for domain specific transfer learning: Their weights were

used to initialize the models RA1-RA4 and RA7-RA10 which were subsequently fine tuned with

the parameters described in Table 8 on the training split of the AKH cohort (Section 3.1.3 and

Table 5). During training either the last three (RA1,RA2,RA7,RA8) or all layers were finetuned

(RA3,RA4,RA9,RA10). The training data was used either with or without normalization by the

mean and standard deviation of the Duke dataset. We also trained models from scratch (RA5, RA6,

RA11, RA12). All other training parameters were the same as in the patch based pre-training on

the Duke cohort in Section 4.1.1.

The model weights of the epoch with the best accuracy on the AKH validation split were saved and

used in the subsequent sliding window evaluation on the test split of the AKH dataset.

ID ResNet Pretrained
Finetuned

layers
Epochs Normalization #Classes

Timepoints
(TP)

RA1 18 Duke-RD8 7,8,9 40 Duke 3 3
RA2 18 Duke-RD8 7,8,9 40 none 3 3
RA3 18 Duke-RD8 all 40 Duke 3 3
RA4 18 Duke-RD8 all 40 none 3 3
RA5 18 no NA 40 Dataset 3 3
RA6 18 no NA 40 none 3 3
RA7 34 Duke-RD20 7,8,9 40 Duke 3 3
RA8 34 Duke-RD20 7,8,9 40 none 3 3
RA9 34 Duke-RD20 all 40 Duke 3 3
RA10 34 Duke-RD20 all 40 none 3 3
RA11 34 no NA 40 Dataset 3 3
RA12 34 no NA 40 none 3 3

Table 8: Training and model parameters for Residual Network (ResNet) based lesion detection
training on the AKH dataset. The IDs starting with ”Duke-” in the column ”Pretrained” refer to
Table 7. The IDs of the ”Finetuned layers” column refers to Table 3 and describe which layers
were adjusted during training while the other layers remained frozen. Not applicable (NA) if no
pretraining was used.

4.2 Experimental Setup - Yolo

4.2.1 Slice Based Training on Duke Cohort

Yolov55 was used with 3 different backbones (small, medium and large) and was either trained from

scratch (YD4,YD5,YD6) or initialized with COCO6 pre-trained weights and fine tuned, whereby

either no (YD1,YD2,YD3) or the first 10 layers remained frozen (YD7,YD8,YD9). The parameters

of these 9 training setups are described in Table 9.

The following model hyperparameters were the same for all setups (hyp file: hyp.scratch-low.yaml

from the yolov5 GitHub repository 5):

• Learning rate: 0.01

5https://github.com/ultralytics/yolov5
6https://cocodataset.org/
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• Weight decay: 0.0005

• IoU threshold: 0.2

• Anchor multiple threshold: 4.0

• Image augmentation:

– translation: 0.1

– scale: 0.5

– fliplr: 0.5

– mosaic: 1.0

In all setups the models were trained for 100 epochs, whereby early stopping was used to abort

training if the model performance does not improve for 30 consecutive epochs (parameter: patience).

The model weights of the epoch with the best accuracy on the validation split were saved and used

in the subsequent whole MRI evaluation on the test split of Duke dataset and to be finetuned on

the AKH cohort.

ID Backbone Pretrained
Finetuned

layers
Epochs Patience Batch size

YD1 yolov5s COCO all 100 30 16
YD2 yolov5m COCO all 100 30 16
YD3 yolov5l COCO all 100 30 16
YD4 yolov5s no NA 100 30 16
YD5 yolov5m no NA 100 30 16
YD6 yolov5l no NA 100 30 16
YD7 yolov5s COCO 10+ 100 30 16
YD8 yolov5m COCO 10+ 100 30 16
YD9 yolov5l COCO 10+ 100 30 16

Table 9: Training and model parameters for You only look once (Yolo) based lesion detection on the
Duke dataset. The ”Finetuned layers” column indicates which layers were finetuned if pre-training
was used: Either all layers (all) or the layers after the 10th layer (10+). Not applicable (NA) if no
pre-training was used. The early stopping parameter ”Patience” indicates after how many epochs
training aborts if the model performance does not improve.

4.2.2 Slice Based Training on AKH Cohort

The weights from the best performing Yolo model (YD6) based on PreRec AUC in evaluation on

the Duke cohort (see Section 4.2.1) was used to initialize and fine tune the models YA10 and YA11

with the parameters described in Table 10. We also trained models with different backbones (small,

medium, large) from scratch (YA4,YA5,YA6) and COCO7 pre-trained models (YA1,YA2,YA3 and

YA7,YA8,YA9), whereby either no layer or the first ten layers remained frozen during finetuning.

All other training parameters were the same as in the sample slice based training on the Duke cohort

(Section 4.2.1). The model weights of the epoch with the best accuracy on the validation split were

saved and used in the subsequent whole MRI evaluation on the test split.

7https://cocodataset.org/
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ID Backbone Pretrained
Finetuned

layers
Epochs Patience Batch size

YA1 yolov5s COCO all 100 30 16
YA2 yolov5m COCO all 100 30 16
YA3 yolov5l COCO all 100 30 16
YA4 yolov5s no NA 100 30 16
YA5 yolov5m no NA 100 30 16
YA6 yolov5l no NA 100 30 16
YA7 yolov5s COCO 10+ 100 30 16
YA8 yolov5m COCO 10+ 100 30 16
YA9 yolov5l COCO 10+ 100 30 16
YA10 yolov5l Duke-YD6 all 100 30 16
YA11 yolov5l Duke-YD6 10+ 100 30 16

Table 10: Training and model parameters for You only look once (Yolo) based lesion detection on
the AKH dataset. The IDs starting with ”Duke-” in the column ”Pretrained” refer to Table 9. The
”Finetuned layers” column indicates which layers were fintuned if pretraining was used: Either all
layers (all) or the layers after the 10th layer (10+). Not applicable (NA) if no pretraining was used.
The early stopping parameter ”Patience” indicates after how many epochs training aborts if the
models performance does not improve.

4.3 Evaluation

Both the ResNet and Yolo models were evaluated on the test split of the Duke and AKH cohort.

To this end, the results were evaluated on a prediction wise and pixel wise level, yielding in total 5

evaluation metrics:

1. Prediction Wise:

(a) ROC AUC

(b) PreRec AUC

(c) FROC-CPM: Mean Sensitivity (=TPR) [111]

2. Pixel Wise:

(a) ROC AUC

(b) PreRec AUC

The prediction wise evaluation compares the predicted labels with the ground truth labels as de-

scribed in Sections 3.3.1 and 3.3.2. For evaluation of the ResNet sliding window approach this means

that the prediction for each window is compared to the ground truth label of this window and for

the evaluation of the Yolo approach the bounding box predictions of each slice are compared to the

ground truth bounding box annotation of the slice. Since these evaluation metrics are not ideal for

the direct comparison between the ResNet and Yolo models due to differing number of predictions

per slice (15x15 vs. approx. 1), we additionally calculated three more metrics:

The Free Response Operating Characteristic-Competition Performance Metric (FROC-CPM) sen-

sitivity [111] was also used by Dalmış et al. [37] in the evaluation of their lesion detection approach.

The metric describes the mean sensitivity at 7 false positive rates: 1/8, 1/4, 1/2, 1, 2, 4 and 8 false

positive predictions per MRI scan (patient). The advantage of this metric is that it gives an intuitive
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understanding about the percentage of lesions that are detected and the number false positive pre-

dictions to expect if the model was used for lesion detection on a single patient. Since the number

false positive predictions is calculated per patient it can be also used to better compare models with

another.

Moreover, we determined the ROC AUC and PreRec AUC on a pixel wise level. Therefore, we

compared the heatmaps derived from the ResNet and Yolo predictions (Section 3.3.1 and 3.3.2) to

the ground truth pixel wise lesion annotation: In the pixel wise evaluation the sensitivity (=recall)

gives the fraction of suspicious pixel that are (correctly) detected from all suspicious pixels. The false

positive rate gives the fraction of non-suspicious pixels that are (incorrectly) detected from all non-

suspicious pixels, and the precision gives the fraction of suspicious pixels that are (correctly) detected

from all the pixels that were detected as suspicious. As a result, the pixel wise evaluation metric is

independent from the initial number of predictions and therefore more suitable for comparison the

ResNet and Yolo lesion detection approach compared to the prediction wise ROC and PreRec AUC.

4.4 Results

In this subchapter the evaluation performance of the ResNet and Yolo models in lesion detection on

the test splits of the Duke and AKH cohort are shown.

4.4.1 Duke Cohort

ResNet

In the sliding window evaluation the best ResNet-34 (RD8) model had a slightly higher ROC AUC

and PreRec AUC compared to the best ResNet-18 model in the prediction wise evaluation: 0.961

and 0.504 vs. 0.953 and 0.498 (Table 11). Models RD8 and RD20 had the same training parameters:

No pre-training, no normalization, training on 3 classes and 3 time point patches.

Cross domain transfer learning did not result in better performance compared to using no transfer

learning for the ResNet models. This is reflected in the higher prediction wise ROC and PreRec AUC

of the best non-pretrained ResNet model (RD20: 0.50 and 0.96) compared to the best ImageNet

pre-trained ResNet model (RD24, 0.47 and 0.95). Both RD20 and RD24 are ResNet34 models and

were trained on three classes (Thorax, Breast, Lesion) and three time-point patches.

The statistical analysis of the impact of the training parameters (Figure 28) revealed that the

prediction wise ROC and PreRec AUC of models trained with 3 time points was significantly higher

than of models trained with one time point only (p = 0.0122 and p = 0.00271, respectively). Models

that were pre-trained on the ImageNet dataset showed a significantly lower ROC AUC (p = 0.00331)

but a non significant difference in PreRec AUC compared to non pre-trained models. No significant

difference in performance was found between ResNet-18 and ResNet-34 models and between models

that were trained on 2 and 3 classes of patches.

Yolo

The use of the large backbone yielded the best detection performance, as Yolo model Y6 had the

highest prediction wise ROC and PreRec AUC (0.899 and 0.770) of all Yolo models in the whole

volume evaluation (Table 11). The best small and medium backbone models were models YD1 and

YD8, respectively (prediction wise ROC AUC: 0.891 vs 0.887 and PreRec AUC: 0.758 vs. 0.713).
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Figure 28: Evaluation on Duke cohort - Impact of ResNet training configuration: The
boxplots show the impact of (A) the number of DCE post contrast time points (1 vs. 3), (B)
pretraining (none vs. ImageNet), (C) the network architecture (ResNet 18 vs. ResNet 34) and (D)
the number of classes in the training set (2: breast and lesion vs. 3: breast, lesion and thorax) on
the prediction wise ROC and PreRec curve AUC during sliding window evaluation on the test split.
For significance analysis two-sided Mann-Whitney test was used: ns: p > 0.05, *: 0.01 < p ≤ 0.05,
**: 0.001 < p ≤ 0.01

In line with the lesion detection with ResNets, cross domain transfer learning did not improve the

performance of the Yolo models compared to non-pretrained models: The best non-pretrained Yolo

model (YD6) resulted in a higher prediction wise ROC and PreRec AUC compared to the best

COCO pre-trained Yolo model (YD1): 0.899 and 0.770 vs. 0.891 and 0.758).

ResNet vs. Yolo

Lesion detection with Yolo resulted in a higher sensitivity at the lower false positive range (between

1/8 and 8 false positive predictions per MRI volume) and a higher precision than the ResNet ap-

proach. This is reflected in the higher FROC-CPM average sensitivity and pixel wise PreRec AUC

of the best Yolo model (YD6) and of the best ResNet model (YD20): 0.469 vs. 0.081 and 0.733 vs.

0.454, respectively (Table 11). However, the best ResNet model had a higher pixel wise ROC AUC

than the best Yolo model (0.965 vs. 0.869) indicating a higher overall/pixel wise sensitivity of the

ResNet based sliding window approach. The qualitative analysis of the prediction results (Figure

29) revealed that ResNet model RD20 (reference for ResNet sliding window based detection) assigns

a high lesion probability not only to the ground truth lesion itself but also the tissue surrounding

the lesion. In contrast, the prediction of Yolo model YD6 (reference for Yolo bounding box based

lesion detection) is more constrained to the lesion as evident in Duke Sample 2. Additionally, in

Duke Sample 1 a region of healthy breast tissue was assigned a high lesion probability by the ResNet

model but not by the Yolo model which is in line with the qualitative results (i.e. higher precision

of the Yolo model).
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Prediction Wise Pixel Wise

ID
PreRec
[AUC]

ROC
[AUC]

FROC-CPM
[avg. TPR]

PreRec
[AUC]

ROC
[AUC]

YD1 0.758 0.891 0.459 0.733 0.872
YD2 0.724 0.898 0.430 0.652 0.873
YD3 0.658 0.754 0.352 0.712 0.783
YD4 0.725 0.892 0.421 0.688 0.865

Yolo YD5 0.673 0.894 0.362 0.608 0.886
YD6 0.770 0.899 0.469 0.733 0.869
YD7 0.706 0.877 0.408 0.663 0.859
YD8 0.713 0.887 0.419 0.672 0.859
YD9 0.733 0.889 0.454 0.678 0.854 1

RD1 0.454 0.947 0.081 0.389 0.948
RD2 0.484 0.952 0.064 0.407 0.954
RD3 0.481 0.950 0.098 0.414 0.955
RD4 0.492 0.954 0.084 0.431 0.961
RD5 0.467 0.951 0.081 0.401 0.953
RD6 0.473 0.954 0.055 0.410 0.956
RD7 0.452 0.948 0.080 0.410 0.956
RD8 0.498 0.953 0.071 0.446 0.961
RD9 0.435 0.940 0.079 0.379 0.945 0
RD10 0.457 0.945 0.075 0.400 0.953
RD11 0.428 0.935 0.071 0.381 0.944 Legend

ResNet RD12 0.471 0.943 0.072 0.413 0.954
RD13 0.473 0.950 0.078 0.411 0.954
RD14 0.441 0.955 0.036 0.381 0.958
RD15 0.442 0.947 0.073 0.398 0.952
RD16 0.485 0.954 0.079 0.426 0.959
RD17 0.445 0.946 0.073 0.378 0.948
RD18 0.476 0.947 0.077 0.418 0.954
RD19 0.434 0.944 0.071 0.384 0.951
RD20 0.504 0.961 0.081 0.454 0.965
RD21 0.433 0.943 0.082 0.394 0.948
RD22 0.474 0.951 0.082 0.401 0.956
RD23 0.416 0.938 0.062 0.378 0.944
RD24 0.473 0.950 0.069 0.420 0.958

Table 11: Lesion detection results on Duke cohort: 5 metrics were used to describe the
performance of the Residual Network (ResNet) and You only look once (Yolo) models (delineated
in Sections 4.1.1 and 4.2.1, respectively) on the test split of the Duke cohort: We used the Receiver
Operating Characteristic (ROC) and Precision Recall (PreRec) Area Under the Curve (AUC) for
both prediction wise and pixel wise evaluation. Additionally, we calculated the Free Response
Operating Characteristic-Competition Performance Metric (FROC-CPM) mean True Positive Rate
(TPR) [111]. In the prediction wise evaluation the performance is calculated from the sliding window
(patch-wise) predictions of the ResNet approach and from slice-wise predictions of the Yolo approach
(whole volume evaluation). The prediction wise AUC metrics are not ideal for direct comparison
between the ResNet and Yolo models due to differing number of predictions per slice (15x15 vs.
approx. 1). Therefore, the FROC-CPM mean TPR, which describes the average sensitivity at 1/8,
1/4, 1/2, 1, 2, 4 and 8 false positive predictions per MRI scan (patient) and the pixel wise ROC and
PreRec AUC are more suitable. In the pixel wise evaluation the heatmaps derived from the ResNet
and Yolo predictions are compared to the ground truth pixel wise lesion annotation. The metric is
thus independent from the (initial) number of predictions and the models more comparable. The
color map highlights low values in blue and high values in orange. The maximum of each column is
marked in bold.
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Figure 29: Visualization of lesion detection with best ResNet and Yolo models: Each
columns shows two sample DCE-MRI slices (subtraction image of first post contrast timepoint) for
the Duke and AKH cohort, respectively. The ”Ground Truth” column shows the manual lesion
annotation as a red overlay. The ”ResNet” column visualizes the sliding window predictions of
the ResNet models RD20 and RA10 for the samples of the Duke and AKH cohort, respectively: In
sliding window evaluation each MRI slice is divided into 15x15 overlapping windows and for each of
the windows a lesion class probability is obtained as the output of the ResNet. By interpolation of
the 15x15 predictions to the original slice size a lesion probability can be calculated for each position
in the slice/MRI volume and depicted as a heatmap overlay. The ”Yolo” column visualizes the
bounding box predictions of the Yolo models YD6 and YA1 for the samples of the Duke and AKH
cohort, respectively. Each bounding box prediction is associated with a confidence (ranging from 0
to 1) corresponding to the lesion probability which is depicted here as a heatmap overlay. Legend
”Predicted Lesion Probability”: In the heatmaps, regions marked in dark red are predicted to have
a high probability for lesion and blue regions conversely a low probability.
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4.4.2 AKH Cohort

ResNet

Similar to the lesion detection on the Duke cohort, the best ResNet-34 model (RA10) had a higher

prediction wise ROC and PreRec AUC than the the best ResNet-18 model (RA4) in sliding window

evaluation on the AKH cohort: 0.961 vs. 0.957 and 0.224 vs. 0.187 (Table 12). Both models (ID

RA4 and RA10) were initialized with Duke ResNet-18/ResNet-34 model weights, whereby no layer

was frozen during training and no data normalization was applied.

Domain specific transfer learning improved the detection performance compared to models that were

trained from scratch as reflected by the higher prediction wise ROC, prediction wise PreRec AUC

and FROC-CPM average sensitivity of the best Duke pre-trained ResNet model (RA10) and best

non-pretrained ResNet model (RA6): 0.961, 0.224 and 0.114 vs 0.929, 0.151 and 0.082 (Figure 30).

Model RA6 is a ResNet18 model that was trained from scratch on unnormalized training data.

Yolo

In contrast to the ResNet based approach, domain specific transfer learning did not yield the model

with the best lesion detection performance. The COCO pre-trained model YA1 (cross domain

transfer learning) achieved the highest prediction wise ROC and PreRec AUC of all Yolo models

and thus performed better then the best Duke pre-trained model YA11 (domain specific transfer

learning): 0.845, 0.426 and 0.369 vs. 0.828, 0.308 and 0.291 (Table 12 and Figure 30). While model

YA1 uses the small backbone and was finetuned over all layers, model YA11 uses the large backbone

and was finetuned with the first 10 layers frozen. When just the Yolo models with the large backbone

(YA,YA6,YA10,YA11) are compared domain specific transfer learning only improved the detection

performance in terms of prediction wise ROC AUC.

Yolo vs. ResNet

Similarly to the results on the Duke Cohort, about 3 times less lesions can be expected to be detected

with the ResNet based approach compared to the Yolo based approach if only between 1/8 and 8

false positive predictions per patient are desired: FROC CPM - average sensitivity of best ResNet

model RA10: 0.114 vs. best Yolo model YA1: 0.3649 (Table 12 and Figure 30). Moreover, an overall

higher precision but lower overall/pixel wise sensitivity can be expected from the best Yolo model

compared to the best ResNet model as reflected by the pixel wise ROC and PreRec AUC (0.987 and

0.132 vs. 0.863 and 0.273).

The higher sensitivity but lower precision of the best ResNet model compared to the best Yolo

model is also evident in the qualitative analysis of the results in Figure 29: In sample 2 of the

AKH cohort two non suspicious regions with increased enhancement are predicted in addition to the

true lesion by the ResNet sliding window approach with a high lesion probability. In contrast the

Yolo based bounding box prediction recognized one of the non suspicious regions with a low lesions

probability and the other region not at all. Moreover, it can be observed that also healthy breast

tissue surrounding the lesion is assigned a high lesion probability by the best ResNet model but not

by the best Yolo model. However, in sample 1 of the AKH cohort the ResNet prediction is more

confined to the actual lesion. The bounding box predictions of the best Yolo model almost perfectly

matches the lesion annotation in both samples.
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Prediction Wise Pixel Wise

ID
PreRec
[AUC]

ROC
[AUC]

FROC-CPM
[avg. TPR]

PreRec
[AUC]

ROC
[AUC]

YA1 0.426 0.845 0.369 0.273 0.863
YA2 0.331 0.775 0.310 0.245 0.791
YA3 0.327 0.815 0.310 0.225 0.795
YA4 0.336 0.855 0.352 0.231 0.900
YA5 0.302 0.762 0.274 0.192 0.851

Yolo YA6 0.352 0.716 0.287 0.243 0.725 1
YA7 0.173 0.691 0.188 0.155 0.717
YA8 0.288 0.718 0.254 0.223 0.736
YA9 0.242 0.729 0.259 0.180 0.758
YA10 0.309 0.799 0.294 0.166 0.846
YA11 0.308 0.828 0.291 0.183 0.873

RA1 0.111 0.925 0.055 0.047 0.978
RA2 0.152 0.936 0.080 0.090 0.981
RA3 0.187 0.950 0.085 0.110 0.981
RA4 0.187 0.957 0.095 0.085 0.986 0
RA5 0.140 0.927 0.075 0.042 0.982

ResNet RA6 0.151 0.929 0.082 0.064 0.983 Legend
RA7 0.161 0.935 0.085 0.091 0.981
RA8 0.183 0.942 0.098 0.110 0.977
RA9 0.198 0.955 0.105 0.086 0.978
RA10 0.224 0.961 0.114 0.132 0.987
RA11 0.130 0.929 0.071 0.039 0.984
RA12 0.118 0.921 0.059 0.034 0.979

Table 12: Lesion detection results on AKH cohort: 5 metrics were used to describe the
performance of the Residual Network (ResNet) and You only look once (Yolo) models (delineated
in Sections 4.1.2 and 4.2.2, respectively) on the test split of the AKH cohort: We used the Receiver
Operating Characteristic (ROC) and Precision Recall (PreRec) Area Under the Curve (AUC) for
both prediction wise and pixel wise evaluation. Additionally, we calculated the Free Response
Operating Characteristic-Competition Performance Metric (FROC-CPM) mean True Positive Rate
(TPR) [111]. In the prediction wise evaluation the performance is calculated from the sliding window
(patch-wise) predictions of the ResNet approach and from slice-wise predictions of the Yolo approach
(whole volume evaluation). The prediction wise AUC metrics are not ideal for direct comparison
between the ResNet and Yolo models due to differing number of predictions per slice (15x15 vs.
approx. 1). Therefore, the FROC-CPM mean TPR, which describes the average sensitivity at 1/8,
1/4, 1/2, 1, 2, 4 and 8 false positive predictions per MRI scan (patient) and the pixel wise ROC and
PreRec AUC are more suitable. In the pixel wise evaluation the heatmaps derived from the ResNet
and Yolo predictions are compared to the ground truth pixel wise lesion annotation. The metric is
thus independent from the (initial) number of predictions and the models more comparable. The
color map highlights low values in blue and high values in orange. The maximum of each column is
marked in bold.
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Figure 30: Lesion detection performance of best ResNet and Yolo models on AKH co-
hort: The Free Response Operating Characteristic (FROC) curves of the best performing Residual
Network (ResNet) and You only look once (Yolo) models trained with domain specif transfer learn-
ing (ID RA10 and YA11, respectively) and without domain specif transfer learning (ID: RA6 and
YA1, respectively) are shown for the evaluation on the AKH test split. The FROC-Competition
Performance Metric (CPM) mean True Positive Rate (TPR) [111] describes the average sensitivity
at 1/8, 1/4, 1/2, 1, 2, 4 and 8 false positive predictions per MRI scan (patient). The training
parameters of the models are described in Tables 8 and 10.
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4.5 Discussion

Lesion Detection on Duke Cohort

Lesion detection performance with ResNet and Yolo was better on the Duke patient cohort than

the AKH cohort. These results are expected since the median lesion size of the Duke cohort is more

than 10 times larger than the median lesion size of the AKH cohort and thus the lesions of the Duke

cohort are easier to detect. Moreover, the precision-recall metric is more sensitive for imbalanced

datasets [130]. The latter explains the lower PreRec AUC values, since the AKH dataset is more

imbalanced than the Duke dataset due to the lower number of lesion voxels. Additionally, more

training data was available for the Duke patient cohort.

The results on the Duke cohort demonstrated that the use of the first three post contrast time points

increases the prediction performance significantly compared to using just the first post contrast time

point. Apparently, the temporal information about the lesion vascularization (see Section 1.2) which

is encoded in the first three post contrast time points is picked up as a valuable cue by the models.

This observation is in line with literature where the 3TP method [39] is used in the diagnosis of

breast cancer [55]. The use of even more time points may further improve detection performance as

indicated by Zheng et al. [174].

Lesion Detection on AKH Cohort

The use of Duke model weights as pre-training on the AKH patient cohort improved lesion detection

with ResNets in terms of ROC and PreRec AUC thereby demonstrating the benefit of domain

specific transfer learning. For Yolo based lesion detection Duke pre-training improved only the ROC

AUC of the model with the large backbone but not the PreRec AUC. In the case of the ResNet

models, the best performing model was pre-trained on Duke model weights. However, in the case of

the Yolo models the best model was pre-trained on the COCO dataset and used the small backbone.

We suspect that the large backbone of the Yolo model is harder to fine tune than the Yolo model

with the small backbone due to increased number of model parameters. The findings are in line with

Meng et al. [106] who also found that the small backbone of Yolo performed best at lesion detection

and classification. The Yolo model with the small backone may have performed even better if it was

pretrained with Duke weights - However, we only tested Duke pre-training for the large backbone

since the Yolo model with the large backbone performed (in contradiction to Meng et al. [106]) best

on the Duke dataset - This is at least expected, since the Duke pre-trained large backbone Yolo model

and the Duke pre-trained ResNet18 and ResNet34 models performed better than their COCO and

ImageNet pre-trained counterpart. Therefore, the results show (when comparing models with the

same architecture/backbone) that domain specific transfer learning improved detection performance

more compared to cross domain transfer learning.

Comparison of ResNet and Yolo Based Lesion Detection on AKH Cohort

On the AKH patient cohort the pixel wise ROC AUC of every ResNet model was higher than the

pixel wise ROC AUC of each Yolo model. Conversely, the pixel wise PreRec AUC of every Yolo

model was higher than the pixel wise PreRec AUC of each ResNet model. Therefore, the heatmaps

calculated from the ResNet predictions appear to offer an overall higher sensitivity (over the whole

FPR range) for lesion detection but are at the same time associated with a lower precision compared

to the heatmaps derived form the Yolo predictions. This finding is also reflected in the visualization
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of the predictions (Figure 29) where enhancement signals in healthy breast tissue are more often

recognized as suspicious by the ResNet than the Yolo approach.

The lower precision of the ResNet sliding window approach may also be explained by its training

procedure since the training samples/patches of suspicious breast tissue contain up to 50% of healthy

breast tissue. One the one hand, this could help the model learn to detect lesions in the context of

normal breast tissue. On the other hand, it could be misleading during training so that also healthy

tissue is recognized as suspicious. In this regard training of the Yolo models may have worked better

since one training unit contains the whole slice and therefore the models are less likely to be trained

on healthy tissue labeled as malignant. Moreover, the Yolo training data shows the malignant tissue

in the context of healthy tissue of the whole breast as opposed to the ResNet training data which

only shows a small patch of breast tissue. In the subsequent training of the ResNet models on the

AKH cohort only a small number of distinct lesion patches were available for training due to the

small size of the lesions, which likely contributed to both model architectures poorer performance.

A lower average sensitivity (FROC-CPM) at the low false positive rate range of 1/8 to 8 false

positives per MRI volume was observed in the ResNet based sliding window approach compared

to the Yolo based bounding box prediction. At first sight this result is counterintuitive due to the

higher pixel wise ROC AUC of the ResNet based approach. However since the FROC-CPM is

calculated prediction wise and not pixel wise this finding can be explained by the different lesion

detection procedure: For ResNet based lesion detection a sliding window approach is used to detect

lesions in an MRI volume. As explained in Section 3.3 each slice is divided into 15x15 overlapping

windows resulting in approximately 225 predictions per slice and 14.625 predictions per MRI volume

(average: 65 slices/volume). If we further estimate that only 20% of the MRI volume is covered by

breast tissue (delimited by breast mask) the actual number of predictions per MRI volume that have

to be considered is 2.925. Due to the small lesion size in the AKH patient cohort only less than 10

out of 2.925 windows are expected to actually contain a lesion. Therefore, even a low FPR per patch

can still result in a high number of false positive predictions per MRI volume/patient. In contrast

Yolo was trained to detect a maximum of one lesion per slice which in addition to non maximum

suppression leads to a low number of bounding box predictions per MRI volume. Therefore, a lower

FPR per MRI volume and consequently a higher sensitivity compared to the ResNet approach in

the low FPR range is expected. One way to improve FROC-CPM metric for the ResNet approach

would thus be to merge neighboring predictions.

Visualization of Predictions

The visualization of the ResNet and Yolo predictions as heat map overlays (Figure 29) revealed a

good correspondence with the actual lesion annotation. However, especially for the ResNet predic-

tions also regions surrounding the lesion are highlighted with a higher lesion probability in the shown

cases which reflects the low precision of the sliding window lesion detection approach. However, Kim

et al. [86] and Fan et al. [44] demonstrated the importance of tissue characteristics surrounding le-

sions in the classification of lesions. Therefore, this observation in the heatmaps may be linked to

malignant changes (e.g.: vascularization). The bounding box predictions of Yolo better match the

actual annotated lesions with less area surrounding the lesion covered. Still, the Yolo models may

also take features surrounding the lesions into account for making the bounding box prediction as

each prediction is made in the context of the entire slice by design.
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Comparison to Other Methods in Literature

Compared to the recently published 3D ResNet approach by Witowski et al. [163] the best ResNet

and Yolo models achieved a higher (prediction wise) ROC AUC (3D ResNet: 0.797, our ResNet:

0.961, our Yolo: 0.845) but lower PreRec AUC (3D ResNet: 0.596, our ResNet 0.224, our Yolo:

0.426). However, the test set (Jagiellonian University), which was used by Witowski et al. [163],

is not an explicit high-risk patient cohort. Additionally, our proposed Yolo and ResNet based

lesion detection approaches allow (at least theoretically) a more fine grained localization of lesions

compared to the authors’ 3D-ResNet approach which only outputs the lesion probabilities for the

left and right breast. In contrast, the U-net CNN hybrid approach by Dalmış et al. [37] was tested

on a high risk patient cohort where an average sensitivity of 0.64 at false positive rates between 1/8

and 8 per scan was reported. Using the same FROC-CPM metric an average sensitivity of 0.114 and

0.369 was determined for the best ResNet and Yolo model, respectively. Provided that our high risk

patient is comparable to the cohort of Dalmış et al. [37], this indicates that our best ResNet and

Yolo approach would detect less lesions in the same false positive range compared to the authors’

U-net based approach (11% and 37% vs. 64%).

While the detection performance of ResNet and Yolo (low precision/sensitivity) alone would be un-

satisfactory in clinical application for high risk patient screening, a combination of both approaches,

for instance by merging the prediction heat maps, may improve detection performance. More-

over, adding a second benign/malignant classification network as a second step after detection with

Yolo/ResNet (similar to the two stage detector of Zhang et al. [173]) may help to further reduce the

number of false positive predictions.
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5 Lesion Classification

Following the task of lesion detection the second objective of this thesis was the reduction of unnec-

essary biopsies by aiding the classification of suspicious lesions. In the following chapter the cross

validation experiment for ResNet based lesion classification using domain specific transfer learning

is described: The chapter is structured similarly to the previous chapter, starting with a description

of the experimental setup, followed by a presentation of the results and a discussion including the

recent literature. For a description of the methodological aspects refer to Section 3.4.

5.1 Experimental Setup

Dataset

The dataset splits of the AKH cohort described in Figure 17 and Table 5 were used in the following

experiments, whereby BI-RADS 5 cases were excluded and the training and validation split merged

for the 5-fold cross validation. Apart from the removed BI-RADS 5 cases, the test split was left

unchanged for evaluation (see Section 3.4).

Cross Validation Setups

In total 14 cross validation setups (7 for ResNet-18 and 7 for ResNet-34, respectively) with the

training parameters specified in Table 13 were used. In 8 setups, domain specific transfer learning

was applied to initialize the models with the weights from the ResNet models trained in Section

4.1.1 for lesion detection on the Duke patient cohort: RD2 and RD6 (pre-trained on 2 classes),

RD4 and RD8 (pre-trained on 3 classes). In 2 setups, the models were initialized with ImageNet

weights as the baseline for cross domain transfer learning. In the transfer learning approaches the

last 3 layers were finetuned while the remaining layers remained frozen (see Section 1.4.1). In the

remaining 4 setups the models were trained from scratch (He et al. [68] initialization method) as

the baseline without transfer learning. In all setups the models were trained on 3 channel crops of

lesions containing the first 3 time points (3TP) as described in Section 3.2.2 (similar to the approach

of Gravina et al. [55]). When transfer learning was used the training data was either normalized by

mean and standard deviation of the training data of the source domain or not normalized. When

no transfer learning was used, the training data was either normalized by the mean and standard

deviation of the training data or not normalized (normalization approach described in Equation 29).

The following parameters were the same for all setups:

1. Number of cross validation fold: K=5

2. Number of epochs per fold: 100

3. Number of replicas (with different seeding) per setup: 100

Model Calibration

For each fold in the cross validation the model of the epoch with the best balanced accuracy on the

validation split was saved. Subsequently, the optimal parameter τopt for calibration of the model

with temperature scaling was determined on the fold’s validation split (described in Section 3.4.1).
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Evaluation

The performance was then assessed on the separate test split, whereby the predictions of the K

models were either merged to an ensemble prediction (Ensemble Mean or Ensemble Max, described

in Section 3.4.2 ) or evaluated individually (single model). Since the ensemble predictions were

evaluated for calibrated and uncalibrated models, 5 distinct prediction methods were used for which

the PreRec and ROC AUC were calculated:

1. Ensemble Max

2. Calibrated Ensemble Max

3. Ensemble Mean

4. Calibrated Ensemble Mean

5. Single Model

PreRec AUC and ROC AUC (see Section 3.5) were calculated for all replicas of the cross validation

setups using the 5 methods mentioned above. To assess whether a significant difference between the

baseline (no transfer learning) and other cross validation setups (cross domain and domain specific

transfer learning) exists, the two-sided Mann-Whitney test was used.

Cross Validation ID ResNet Pretrained
Finetuned

layers
Normalization

RN18 ImageNet ft789 normImageNet 18 ImageNet 7,8,9 ImageNet
RN18 duke ft789 normDuke CL2 TP3 18 Duke-RD2 7,8,9 Duke
RN18 duke ft789 normDuke CL3 TP3 18 Duke-RD4 7,8,9 Duke
RN18 duke ft789 normNone CL2 TP3 18 Duke-RD6 7,8,9 None
RN18 duke ft789 normNone CL3 TP3 18 Duke-RD8 7,8,9 None
RN18 scratch normDataset 18 no NA Dataset
RN18 scratch normNone 18 no NA None
RN34 ImageNet ft789 normImageNet 34 ImageNet 7,8,9 ImageNet
RN34 duke ft789 normDuke CL2 TP3 34 Duke-RD14 7,8,9 Duke
RN34 duke ft789 normDuke CL3 TP3 34 Duke-RD16 7,8,9 Duke
RN34 duke ft789 normNone CL2 TP3 34 Duke-RD18 7,8,9 None
RN34 duke ft789 normNone CL3 TP3 34 Duke-RD20 7,8,9 None
RN34 scratch normDataset 34 no NA Dataset
RN34 scratch normNone 34 no NA None

Table 13: Model training parameters of cross validation setups for lesion classification on
the AKH patient cohort: In total 14 (7 per ResNet architecture: RN18 and RN34) setups were used,
whereby 8 setups use domain specific transfer learning using Duke pretrained models ( duke ), 4
setups use cross domain transfer learning using ImageNet pretrained models ( ImageNet ) and the
remaining 2 setups represent the baseline without any transfer learning ( scratch ). When transfer
learning was applied, layers 7,8 and 9 were finetuned ( ft789 ) and the training data was either
normalized by the mean and standard deviation of the source domain ( normDuke and normIma-
geNet ) or not normalized ( normNone ). When no transfer learning was used the training data was
either normalized by the training dataset mean and standard deviation or not normalized ( norm-
None and normDataset , respectively). The IDs starting with ”Duke-” in the column ”Pretrained”
refer to the models in Table 7. The Duke pretrained models were either pretrained on 2 or 3 classes
and in all cases on 3 post contrast time points ( CL2 TP3 and CL3 TP3).
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5.2 Results

Impact of Model Ensembles and Calibration

Table 14 and 15 show the median ROC and PreRec AUC for the models of each setup calculated

for the 5 prediction methods (ensemble max, calibrated ensemble max, ensemble mean, calibrated

ensemble mean and single model) separately. The boxplots of Figure 31A and 31B compare the

impact of the 5 prediction methods on the ROC AUC and PreRec AUC , respectively, whereby the

ROC AUC and PreRec AUC of all models and setups were merged method-wise. Both the ROC

and PreRec AUC was significantly higher in all ensemble prediction methods compared to the single

model prediction method (p < 0.0001). No significant differences in ROC and PreRec AUC could

be detected between calibrated and uncalibrated ensemble predictions and mean and max ensemble

predictions (p > 0.05). For easier comparison the calibrated ensemble max method will be used in

the following to assess the performance of the models from the different setups.

Impact of Transfer Learning

Best median ROC AUC achieved by models trained using:

1. Domain specific transfer learning: 0.713 (Setup: RN34 duke ft789 normDuke CL2 TP3)

2. Cross domain transfer learning: 0.581 (Setup: RN18 ImageNet ft789)

3. No transfer learning learning: 0.653 (Setup: RN34 scratch normNone)

Best median PreRec AUC achieved by models trained using:

1. Domain specific transfer learning: 0.615 (Setup: RN18 duke ft789 normDuke CL2 TP3)

2. Cross domain transfer learning: 0.391 (Setup: RN18 ImageNet ft789)

3. No transfer learning learning: 0.374 (Setup: RN34 scratch normNone)

The Duke pretrained ResNet-18 models of setup RN18 duke ft789 normDuke CL2 TP3 achieved the

highest median PreRec AUC (0.615) which was significantly higher (p < 0.0001) than the median

PreRec AUC of the corresponding ImageNet and non pre-trained ResNet18 models (0.581 and 0.649,

Figure 32A). The highest median ROC AUC (0.713) was achieved by the Duke pre-trained ResNet-

34 models setup of setup RN34 duke ft789 normDuke CL2 TP3 which was also significantly higher

(p < 0.0001) than the median ROC AUC of the corresponding ImageNet and non pre-trained models

(0.546 and 0.653, Figure 32B).

Therefore, domain specific transfer learning achieved the highest ROC and PreRec AUC, whereby

in both setups the Duke model that was used as the basis for transfer learning was originally trained

on 2 classes (Breast and Lesion) for lesion detection and the input data was normalized by the mean

and standard deviation of the Duke dataset. Notably, the models of the setup with the highest ROC

AUC also have the second highest PreRec AUC and vice versa.

The ROC and PreRec curves along with their confidence intervals are shown in Figure 33 for the mod-

els of the setups RN18 duke ft789 normDuke CL2 TP3, RN18 ImageNet ft789 normImageNet and

RN18 duke ft789 normDuke CL2 TP3 as representative for domain specific transfer learning, cross

domain transfer learning and without transfer learning, respectively. The width of the confidence
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intervals does not appear to be affected by the use of transfer learning. However, a clear improve-

ment of the PrecRec curve and a slight improvement of the ROC AUC is visible for the models that

received domain specific transfer learning compared to the models that received no or cross domain

transfer learning.

Qualitative Visualization of Classified Lesions

Figures 34, 35 and 36 show lesions with the highest and lowest predicted malignancy probability

for ground truth malignant and benign lesions which are hence counted as True Positive, False

Positive, False Negative and True Negative predictions, respectively. The classifications of the

models using domain specific transfer learning (Figure 34) appear to be more consisted compared

to the classifications of the models using cross domain transfer learning (Figure 35) and no transfer

learning (Figure 36). For instance with domain specific transfer learning all patches with the highest

predicted malignancy probability come from the same (ground truth malignant) lesion, whereas two

(ground truth malignant) patches of the same lesion received once the highest and once the lowest

malignancy probability by the models that were not trained with transfer learning.

Figure 31: Differences in overall model performance depending on evaluation method:
The boxplots show the (A) Receiver Operating Characteristic (ROC) Area Under the Curve (AUC)
and (B) Precision Recall (PreRec) AUC of all cross validation models and setups combined (eval-
uated on the test split of the AKH patient cohort) for the 5 evaluation methods (ensemble max,
calibrated ensemble max, ensemble mean, calibrated ensemble mean and single model.) Mann-
Whitney-Test: ns: p > 0.05, *: 0.01 < p ≤ 0.05, **: 0.001 < p ≤ 0.01, ***: 0.0001 < p ≤ 0.001,
****: p ≤ 0.0001
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Median Precision Recall AUC

Cross Validation ID
Ensemble

Max
Ensemble
Max cal.

Ensemble
Mean

Ensemble
Mean cal.

Single
Model

AUC

RN18 ImageNet ft789
normImageNet

0.365 0.391 0.311 0.335 0.358 1

RN18 duke ft789
normDuke CL2 TP3

0.613 0.615 0.593 0.568 0.460

RN18 duke ft789
normDuke CL3 TP3

0.416 0.424 0.426 0.419 0.368

RN18 duke ft789
normNone CL2 TP3

0.510 0.484 0.472 0.466 0.406

RN18 duke ft789
normNone CL3 TP3

0.479 0.483 0.478 0.488 0.418

RN18 scratch
normDataset

0.354 0.370 0.393 0.412 0.373

RN18 scratch
normNone

0.354 0.370 0.405 0.405 0.371

RN34 ImageNet ft789
normImageNet

0.344 0.326 0.317 0.342 0.350

RN34 duke ft789
normDuke CL2 TP3

0.528 0.496 0.478 0.466 0.437

RN34 duke ft789
normDuke CL3 TP3

0.396 0.424 0.411 0.450 0.393

RN34 duke ft789
normNone CL2 TP3

0.451 0.436 0.421 0.410 0.370

RN34 duke ft789
normNone CL3 TP3

0.377 0.387 0.375 0.381 0.347

RN34 scratch
normDataset

0.342 0.369 0.395 0.396 0.382

RN34 scratch
normNone

0.352 0.374 0.413 0.408 0.390 0

Table 14: Median PreRec AUC of lesion classification in 5-fold cross validation:
The Precision Recall (PreRec) Area Under the Curve (AUC) was determined on the test split of the
AKH patient cohort using 5 distinct methods: Either for the predictions of each of the fold models
individually (Single Model) or by merging the predictions of all (calibrated) fold models to ensemble
predictions (Ensemble Max (cal.) and Ensemble Mean (cal.)). Each cross validation experiment
was replicated 100 times and the median PreRec AUC for each of the 5 methods calculated. The
maximum value in each column is marked in bold. The color bar highlights higher AUCs in green
and lower AUCs in red. The Cross Validation ID refers to the setups in Table 13.
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Median ROC AUC

Cross Validation ID
Ensemble

Max
Ensemble
Max cal.

Ensemble
Mean

Ensemble
Mean cal.

Single
Model

AUC

RN18 ImageNet ft789
normImageNet

0.580 0.581 0.564 0.576 0.554 1

RN18 duke ft789
normDuke CL2 TP3

0.713 0.696 0.666 0.649 0.597

RN18 duke ft789
normDuke CL3 TP3

0.525 0.528 0.504 0.498 0.489

RN18 duke ft789
normNone CL2 TP3

0.653 0.647 0.628 0.619 0.579

RN18 duke ft789
normNone CL3 TP3

0.546 0.563 0.540 0.547 0.535

RN18 scratch
normDataset

0.629 0.637 0.661 0.679 0.636

RN18 scratch
normNone

0.643 0.649 0.675 0.681 0.639

RN34 ImageNet ft789
normImageNet

0.563 0.546 0.541 0.550 0.525

RN34 duke ft789
normDuke CL2 TP3

0.721 0.713 0.695 0.692 0.641

RN34 duke ft789
normDuke CL3 TP3

0.604 0.618 0.630 0.632 0.611

RN34 duke ft789
normNone CL2 TP3

0.668 0.664 0.639 0.633 0.568

RN34 duke ft789
normNone CL3 TP3

0.507 0.499 0.491 0.491 0.496

RN34 scratch
normDataset

0.624 0.635 0.657 0.680 0.643

RN34 scratch
normNone

0.645 0.653 0.679 0.694 0.654 0

Table 15: Median ROC AUC of lesion classification in 5-fold cross validation:
The Receiver Operating Characteristic (ROC) Area Under the Curve (AUC) was determined on
the test split of the AKH patient cohort using 5 distinct methods: Either for the predictions of
each of the fold models individually (Single Model) or by merging the predictions of all (calibrated)
fold models to ensemble predictions (Ensemble Max (cal.) and Ensemble Mean (cal.)). Each cross
validation experiment was replicated 100 times and the median ROC AUC for each of the 5 methods
calculated. The maximum value in each column is marked in bold. The color bar highlights higher
AUCs in green and lower AUCs in red. The Cross Validation ID refers to the setups in Table 13.
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Figure 32: Lesion classification cross validation results : The boxplots show the Precision Re-
call (PreRec) and Receiver Operating Characteristic (ROC) Area Under the Curve (AUC) calculated
on test split of the AKH patient cohort from calibrated ensemble mean, calibrated ensemble max
and single model predictions of the models/replicas of the (A) ResNet-18 and (B) ResNet-34 cross
validation setups (described in Table 13). Mann-Whitney-Test: ns: p > 0.05, *: 0.01 < p ≤ 0.05,
**: 0.001 < p ≤ 0.01, ***: 0.0001 < p ≤ 0.001, ****: p ≤ 0.0001
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Figure 33: Performance of model ensembles with and without domain specific trans-
fer learning This figure shows the Receiver Operating Characteristic (ROC) and Precision Recall
curves (calculated from the calibrated ensemble max predictions on the test split of the AKH cohort)
for the models of the following cross validation setups in Table 13: Without transfer learning (ID:
RN18 scratch normNone), with cross domain transfer learning (ID: RN18 ImageNet ft789 normIm-

ageNet ) and with domain specific transfer learning (ID RN18 duke ft789 normDuke CL2 TP3). The
95% Confidence Interval (blue) and 50% confidence interval (green) were calculated from 100 cross
validation replicas.
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Figure 34: Visualization of classified lesions with domain specific transfer learning: In
each quadrant this figure shows the lesion samples of the test split that were classified with the 4
highest and 4 lowest malignancy probabilities (calibrated ensemble max) by the ensemble models
of setup RN18 duke ft789 normDuke CL2 TP3 (Table 13) for the ground truth positive (malignant)
and negative (benign) lesion samples, respectively: True Positive: ground truth malignant and
high predicted malignancy probability, False Negative: ground truth malignant and low predicted
malignancy probability, False Positive: ground truth benign and high predicted malignancy prob-
ability, True Negative: ground truth benign and low predicted malignancy probability. In this
cross validation setup domain specific transfer learning was used (fine tuning of Duke pre-trained
models). Note that a lesion may be represented more than once if it is visible in more than one slice.
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Figure 35: Visualization of classified lesions with cross domain transfer learning: In
each quadrant this figure shows the lesion samples of the test split that were classified with the 4
highest and 4 lowest malignancy probabilities (calibrated ensemble max) by the ensemble models
of setup RN18 ImageNet ft789 normImageNet (Table 13) for the ground truth positive (malignant)
and negative (benign), respectively: True Positive: ground truth malignant and high predicted
malignancy probability, False Negative: ground truth malignant and low predicted malignancy
probability, False Positive: ground truth benign and high predicted malignancy probability, True
Negative: ground truth benign and low predicted malignancy probability. In this cross validation
setup cross domain transfer learning was used (fine tuning of ImageNet pre-trained models). Note
that a lesion may be represented more than once if it is visible in more than one slice.
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Figure 36: Visualization of classified lesions with no transfer learning: In each quadrant
this figure shows the lesion samples of the test split that were classified with the 4 highest and 4
lowest malignancy probabilities (calibrated ensemble max) by the ensemble models of setup RN18 -

scratch normNone (Table 13) for the ground truth positive (malignant) and negative (benign),
respectively: True Positive: ground truth malignant and high predicted malignancy probability,
False Negative: ground truth malignant and low predicted malignancy probability, False Pos-
itive: ground truth benign and high predicted malignancy probability, True Negative: ground
truth benign and low predicted malignancy probability. In this cross validation setup no transfer
learning was used (the models were trained from scratch). Note that a lesion may be represented
more than once if it is visible in more than one slice.
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5.3 Discussion

Domain Specific Transfer Learning

The results show that domain specific transfer learning (Duke DCE-MRI → AKH DCE-MRI) im-

proved lesion classification by increasing both PreRec and ROC AUC significantly compared to the

use of no transfer learning and cross domain transfer learning. The best performing ResNet18 and

ResNet34 were pre-trained using Duke model weights whereby the corresponding Duke model was

trained on 2 classes (Lesion and Breast) as opposed to 3 classes (Lesion, Breast and Thorax). Since

lesion classification is a 2 class problem, fine-tuning a model that was also trained on 2 classes may

accelerate training, as the weights of the fully connected layer may need less adjustment. Addition-

ally, the test data of the AKH cohort was normalized by the mean and standard deviation of the

Duke cohort. We hypothesize, that the AKH input data was made more similar to the image data

the Duke model was originally trained on, thereby for instance reducing differences caused by other

scanner types and acquisition protocols. Notably, Duke pre-training improved the PreRec AUC to

a much greater extend than the ROC AUC compared to non pre-trained models (0.391 → 0.615 vs.

0.653 → 0.713).

Cross Domain Transfer Learning

Cross domain transfer learning (ImageNet → AKH DCE-MRI) on the other hand did not improve

lesion classification. Apparently, patterns helpful in the identification of images of the ImageNet

dataset were not helpful in the differentiation of malignant and benign lesions. We are convinced

that the information carried by the color channels in the ImageNet dataset is completely different to

the information conveyed by the color channels used in the DCE-MRI 3TP images (kinetic/temporal

information). As a result, it could be harder for the ImageNet pre-trained models to learn the rele-

vance of the temporal information encoded in the channels of the DCE-MRI 3TP images, especially

if only the last 3 layers are fine-tuned. Furthermore, the normalization of the AKH test split images

with the ImageNet dataset mean and standard deviation may destroy the temporal information of

the DCE-MRI 3TP images by shifting and scaling each of the 3 image channels. In order not to

dismiss the relevance of cross domain transfer learning, ImageNet pre-trained models are successfully

used in literature especially if just 1 DCE time-point is used [71, 60, 75].

Model Ensembles

Merging the predictions of the K cross validation models to ensemble predictions improved the

classification performance significantly compared to single model predictions (ROC AUC : ≈ 0.04 ↑
and PreRec AUC : ≈ 0.03 ↑). Therefore, either the weaknesses of the individual models is balanced

out in the ensemble of models or there is at least one top performing model in the ensemble lifting

the performance. The latter case is, however, unlikely since there was overall no significant difference

between the ensemble max and ensemble mean predictions. Model calibration using temperature

scaling also did not significantly improve classification performance of the model ensembles compared

to uncalibrated model ensembles. This indicates that the performance of the model ensembles is not

disturbed by a subgroup of badly performing models.

Reducing Unnecessary Biopsies and Workload

For the best Duke pre-trained ResNet18 models a threshold t100%SEN could be determined where
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all malignant lesions are detected (100% sensitivity) and at the same time 4.5% of benign lesions

correctly identified (4.5% TNR), thereby potentially avoiding unnecessary biopsies. This is compa-

rable to the reported 5.4% of reduction of unnecessary biopsies reported by Witowski et al. [163].

As roughly 80% of biopsied lesions of the AKH patient cohort are benign, this reduction in bur-

densome biopsies could be of great benefit to high risk patients. 80% of unnecessary biopsies is not

uncommon in clinical practice as Whitaker et al. [160] reported a similarly high percentage of 83%.

Analogously, a threshold t100%Precision could be determined where 21.7% of all malignant lesions

(21.7% TPR) can be identified without any false positive prediction thereby potentially reducing

the workload of radiologists (Section 3.5 for background) by pre-filtering malignant lesions. As a

caveat, both thresholds would need to be confirmed on an external high-risk evaluation cohort.

With these thresholds in mind it is interesting to see what lesions were misclassified by the Duke

pretrained models: As can be seen in Figure 34, two patches of a round, well defined and homo-

geneous lesion (which is typical for benign lesions [14]) were assigned a low malignancy probability

although the lesion was actually malignant. In another case a patch containing just a tiny slice of a

malignant lesion was also assigned a low malignancy probability. While the first case would probably

be hard to correctly identify given the atypical malignant morphology, the later lesion may have been

correctly identified if patches of the lesion from other slices were included for classification. This

is a caveat of the lesion classification approach used in this thesis since only one slice of the lesion

is used in the classification thereby not taking into account the 3 dimensional information of the

MRI. Conversely, three rather untypical benign lesions with an ill defined border and irregular shape

were incorrectly assigned a high malignancy probability. These misclassified lesions highlight the

challenges of correctly classifying benign and malignant lesions (even for radiologists) and indicate

that a classification based on DCE-MRI images alone may not be sufficient.

Comparison to Other Methods in Literature

Zheng et al. [174] combined DC-LSTM with ResNet50 to especially classify small lesion (<15mm)

as benign and malignant. Due to the small size, the lesions may be comparable to the lesions found

in the AKH high risk patient cohort. The authors report a precision of 0.78 at a sensitivity of 0.82.

At the same sensitivity level the model ensembles of setup RN18 duke ft789 normDuke CL2 TP3

achieved a median precision of 0.31. The authors also reported the performance of the ResNet50

model without the DC-LSTM, whereby a precision of 0.500 at a sensitivity of 0.556 was reported.

At the same sensitivity level the model ensembles of setup RN18 duke ft789 normDuke CL2 TP3

achieved a median precision of 0.59. Therefore, the performance of the model ensembles of this thesis

is slightly better than the authors ResNet50 only based lesion classification, but worse than their

DC-LSTM + ResNet50 combination approach. Apart from the more complex architecture and the

addition of DWI MRI, Zheng et al. [174] used not just 3 but all available post contrast time points

which may also explain the better performance (and a potential limitation of the 3TP approach).

Still, a direct comparison of performance is hardly possible without access to the authors dataset.

The 3TP Alex-Net based lesion classification of Gravina et al. [55] reported an ROC AUC of 0.81

in their 10 fold cross validation. The model ensembles of setup RN34 duke ft789 normDuke CL2 -

TP3 achieved a median ROC AUC of 0.713. However, it shall be noted that the patient cohort of

Gravina et al. [55] was not an explicit high-risk patient cohort and thus results may not be directly

comparable. Similarly, Hu et al. [75] did not use an explicit high-risk patient cohort either. Their

VGG-19 SVM hybrid approach used mpMRI and achieved an ROC AUC of 0.87.
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6 Conclusion and Future Outlook

In the final chapter of this master’s thesis, concluding remarks on the major findings and an outlook

on the future of the field is given.

6.1 Conclusion

To start with, the benefits of domain specific transfer learning could be demonstrated in both lesion

detection and lesion classification. Most approaches in literature, however, apply cross domain

transfer learning which was shown to deliver inferior results compared to domain specific transfer

learning in this thesis. The lack of publicly available breast MRI datasets along with the fact that

model source code and weights are rarely made accessible certainly contributes to the widespread

use of cross domain transfer learning.

One of the major goals of this thesis was to reduce the number of unnecessary biopsies, as about

80% of all biopsied suspicious lesions in the AKH high risk patient cohort are actually benign. The

lesion classification experiments demonstrated that about 4.5% of actually benign lesions could be

correctly identified without missing any malignant lesion, thereby potentially reducing the number

of unnecessary biopsies which are of a great burden to the patients. Additionally, such a reduction in

false positives may increase the trust and willingness of patients to participate in high risk screenings.

However, the findings need to be evaluated on an external high risk patient cohort.

In lesion detection, the use of the 3TP method which is commonly applied in the field, was confirmed

to improve detection performance over the use of just one post contrast time point. Quantitative and

qualitative analysis revealed that Yolo based lesion detection shows a higher precision but tenden-

tially lower sensitivity compared to the sliding window based ResNet approach. A comparison of the

developed lesion detection methods with literature was hard as literature on the lesion localization

in explicit high risk patient cohorts is rare.

Last but not least, the creation of breast masks constituted an important part for the detection of

lesions in this thesis. To this end, a simple and yet efficient otsu based method was developed. A

special highlight of this approach is that it works in both fat suppressed and non-fat suppressed

breast MRI.

6.2 Building on the Results of This Thesis

Due to the time constraints of a master’s thesis not all interesting ideas could be followed. However,

those ideas can serve as the basis for future work: For instance in lesion detection it would have been

interesting to see how the detection performance could be improved if the ResNet sliding window

approach was combined with the bounding box based lesion detection of Yolo and/or the model

ensembles for lesion classification. The benefit of such two stage approaches in reducing the number

of false positives was demonstrated by Dalmış et al. [37]. For lesion classification, a natural extension

of this thesis would have been to base the classification of the lesions on not just one patch/slice

but all patches/slices of a lesion in order to take advantage of the 3 dimensional nature of the MRI

data. On the downside such an approach would require more data for evaluation to estimate the

reliability of the classifier [163]. More data (of high risk patients) would also be needed to validate

the proposed 4.5% reduction in unnecessary biopsies.
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6.3 Outlook and Future of Machine Learning in Breast Cancer Diagnosis

The future of breast cancer diagnosis is not only driven by advances in DL approaches but also imag-

ing techniques such as DWI which are frequently incorporated into predictive models [149]. Even

though such multiparametric Magnetic Resonance Imaging (mpMRI) approaches, which combine

multiple MRI techniques, have the potential to improve the detection and classification of lesions,

they are (currently) limited by the availability of mpMRI data. Therefore and due to technical

improvements, DCE-MRI will continue to play an important role: The European Congress of Ra-

diology (ECR) 2023 highlighted the future importance of Ultrafast Dynamic Contrast-Enhanced

(UF-DCE) MRI which increases the temporal resolution of DCE-MRI by collecting more images in

a shorter time-interval after contrast agent injection: The yet unpublished results of three presenters

showed how UF-DCE MRI could improve the prediction of response to neo-adjuvant chemotherapy

[79], the prediction of prognostic markers [30] and breast cancer detection [134], respectively. This is

in line with the findings of Zheng et al. [174] who demonstrated that the classification of lesions can

be improved by encoding not just three but all DCE time points using a Long Short Term Memory

(LSTM) based approach. Another interesting development can be expected with respect to the task

of domain adaption. For instance, Kuang [92] presented an unsupervised method which facilitates

breast segmentation in MRI acquired by different modalities (e.g.: T1 and T2 weighted MRI). The

conference also showed that mpMRI will play a more prominent role in the future as presenters often

combined DCE-MRI with DWI [38], whereby radiomic based approaches were frequently applied.

The popularity of radiomics may be attributed to the shortage/lack of access to imaging data, as

DL based approaches are harder to train on small datasets [148]. However, access to bigger datasets

is necessary to take full advantage of DL based methods as demonstrated recently by Witowski

et al. [163]: By using a dataset of more than 13.000 patients the authors were able to train a 3D

convolutional neural network and to show its potential in reducing the number of unnecessary biop-

sies. In future, improvements can be expected due to efforts such as the EUropean Federation for

CAncer IMages (EUCAIM) project which aims to establish an infrastructure for easier access to

cancer imaging data for artificial intelligence driven research [1].
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