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Preface

This thesis treats marginally outer trapped surfaces (or MOTS, for short)
and their visibility in asymptotically de Sitter spacetimes. It is divided
into five chapters: After a short introduction the second Chapter gives an
overview of some of the geometry needed to understand this thesis. In the
third chapter the main object of this thesis, the notion of marginally outer
trapped surfaces, is introduced and several of its characteristics are studied.
The fourth chapter presents visibility theorems for MOTS in asymptotically
de Sitter spacetimes including an exhaustive proof of the underlying max-
imum principle for smooth null hypersurfaces. The fifth and final chapter
is a fully detailed exposition of MOTS and their visibility concretely in de
Sitter spacetime.

The prerequisites for understanding this thesis are a solid grasp on Lorentzian
geometry and basic knowledge of General Relativity. Although the second
Chapter introduces most of the geometry needed, it serves more as a short
review of the needed concepts, rather than a detailed presentation of the
subject. Two references that more than cover the required knowledge in
both the mathematical and physical aspects would be [18] and [23]. While
the former focuses more on the mathematical side, the latter is a standard
physics textbook for General Relativity.

Acknowledgements: I want to thank my supervisor Walter Simon for the
opportunity to work on this thesis and Roland Steinbauer for advising me
alongside Walter Simon through this entire process. Their insights, knowl-
edge, and encouragement have been invaluable to me. I would also like to
thank my parents for their unwavering support and encouragement, not only
during my studies but throughout my life. Additionally, I want to express
my appreciation to my girlfriend for her support, patience, and understand-
ing throughout this process. Finally, I would like to thank my friends at the
University of Vienna who greatly enhanced my understanding of physics and
mathematics through regular study groups and discussions.
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Notation and Conventions

In this section we fix the notation that will be used in this thesis. The no-
tation will mostly be in line with [23], particularly abstract index notation
will be used extensively. In a basis a tensor of type (k, l) is characterized by
its component functions Tµ1...µkν1...νl . The problem with using this notation
throughout is the inherent choice of a basis, even if we want to state basis
independent equation between tensors. That is why we introduce abstract
index notation, which has all the advantages of the component notation but
does not assume a basis. A tensor will be written as Tµ1...µkν1...νl where the
indices only signal the type and lets us use the summation conventions for
true tensor equations. One key difference in notation between this thesis
and [23] is the use of the distinction between greek and latin indices. In [23]
greek indices signal a choice of coordinates, while latin indices are used for
abstract index notation. In this thesis, unless coordinates are specified both
indicate abstract index notation. We will often consider n − 2 dimensional
surfaces S in a hypersurface N of the n dimensional spacetime M . The dif-
ferentiation between greek, latin and capital latin indices is reserved for the
distinction between these three layers in the following manner. Geometric
objects associated with

• M use greek indices Tµ1...µkν1...νl

• N use latin indices T i1...ikj1...jl

• S use capital latin indices TA1...Ak
B1...Bl

On some occasions index free notation like in [18] will be used, especially in
chapter 2, where index notation becomes tedious rather than a simplifica-
tion, and obscures the geometric intuition.

We mostly consider Lorentzian manifolds (M , ḡ) of signature (−,+,+,+),
as in most relativity texts. To make the notation even clearer beyond the
use of different indices a bar as in the metric ḡ signals objects associated
with the full manifold M , while g denotes the metric of the hypersurface
N . The set of all vectorfields on (M , ḡ) will be denoted X(M ) and the set
of all one-forms Ω1(M ).

The Levi-Civita connection of ḡ will be denoted ∇̄ and below is a list of the
associated curvatures:

• Riemann tensor R̄γµνσωγ = [∇̄µ, ∇̄ν ]ωσ, for a one-form ωσ

• Ricci tensor R̄µν = R̄σµσν

• Ricci scalar R̄ = R̄σσ

9



• Einstein tensor Ḡµν = R̄µν − 1
2 ḡµν R̄

Note that the Einstein summation convention implies summation over equal
indices. When index-free notation is used, Ric(X,Y ) denotes the Ricci
tensor for vectorfield X,Y ∈ X(M ) and Ric the scalar curvature.
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Chapter 1

Introduction

In General Relativity spacetime is modelled by a Lorentzian manifold (M , g),
where the metric g satisfies the Einstein equations G+Λg = kT. A central
contribution to our understanding of such key features of General Relativity
as black holes and the history of our Universe are the singularity theorems
by Roger Penrose and Stephen Hawking. The Penrose theorem (see [19])
predicts a singularity if several conditions are met, namely the existence
of a trapped surface, a non-compact Cauchy surface and when the null
energy condition (Ric(X,X) > 0 ∀X ∈ TM null) holds. Loosely speak-
ing trapped surfaces are 2-dimensional closed surfaces within the spacetime
where the future directed null geodesic congruences (which model light rays)
converge locally. A measure for this convergence is given by the null expan-
sion scalars θ±, where θ+ refers to the outgoing null direction and θ− to the
ingoing null direction. A positive sign of the null expansion scalar implies
divergence and a negative sign convergence of future directed light rays.
Trapped surfaces are characterized by θ± < 0, i.e. both null expansion
scalars need to be negative. In this master thesis the case where θ+ = 0 is
studied extensively. These surfaces are called marginally outer trapped sur-
faces or MOTS, for short. In a sense MOTS are a generalisation of trapped
surfaces, since only one direction (outgoing) is required to be zero. In the
first part of this thesis the theory of MOTS will be compiled and compre-
hensively presented.

Next we focus on visibility theorems regarding MOTS and the related weakly
trapped surfaces (θ± ≤ 0). For the study of visibility one embeds the space-

time (M , g) into its conformal completion (M̃ , g̃). More precisely (M̃ , g̃)

is called a conformal completion of (M , g) if M is the interior of M̃ and

there exists a positive function Ω on M̃ that vanishes on the boundary, has
non-vanishing differential and g̃ := Ω2g extends smoothly to the boundary
of M̃ . This lets us define parts of the boundary as future null infinity
S +, which has several crucial uses for the task at hand. In particular, the
causal nature of S + can be used to define the asymptotic behaviour of the
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spacetime. In this thesis the focus lies on manifolds with a spacelike S +,
which corresponds to an asymptotically de Sitter behaviour. Visibility of a
set A ⊂ M is then defined as whether or not A lies within the timelike past
of S +. Recent results on the visibility of MOTS will be presented (see [9]).
The final part of this thesis contains a fully detailed exposition on MOTS
and their visibility specifically in de Sitter spacetime.

12



Chapter 2

Elements of Lorentzian
Geometry

In this chapter we will briefly review some notions from Lorentzian geometry
that will be used extensively in this thesis. Hereby we follow mostly [18]
and [7]. For brevity most proofs will be omitted but they can be found in
the aforementioned texts. In the first section we consider semi-Riemannian
manifolds (M , ḡ) and submanifolds N of M . After that we study the
specific case of (n−1) dimensional submanifolds called hypersurfaces, before
moving on to a brief review of causality theory.

2.1 Semi-Riemannian submanifolds

In this section we consider submanifolds (N , g), where g = j∗ḡ is the pull-
back of ḡ under the inclusion map j : N ↪→ M . If g is non-degenerate
(N , g) is a semi-Riemannian submanifold. The dimension of N will be
denoted by n. Our first goal is to study the tangent and normal geometry
of N .

For a submanifold (N , g) of (M , ḡ) a vectorfield X along the inclusion map
j is called an N vectorfield on M . The set of these vectorfields is denoted
by X̄(N ). Since each tangent space TpN is a non-degenerate subspace of
TpM , the following decomposition holds.

Tp(M ) = Tp(N )⊕ Tp(N )⊥ (2.1)

where Tp(N )⊥ denotes the also non-degenerate normal space of Tp(N )
of dimension k, called codimension. Similarly the index of ḡ restricted to
Tp(N )⊥ is called co-index of N in M . Every vector X ∈ Tp(M ) for p ∈ N
then has a unique decompositionX = tan(X)+nor(X) where tan(X) ∈ TN
denotes the tangential part and nor(X) ∈ TN ⊥ the normal part of X.

13



Our next goal is to find a map that lets us differentiate vectorfields X ∈
X̄(N ) in direction of a vectorfield V ∈ X(N ). For V ∈ X(N ) and
X ∈ X̄(N ) the naive approach ∇̄VX, where ∇̄ denotes the Levi-Civita
connection associated with ḡ, does not work directly since neither vector-
field is an element in X(M ). However, let Vext and Xext be smooth local
extensions of V and X to a neighbourhood U in M , then we can define the
induced connection as ∇̄VX := ∇̄Vext

Xext restricted to U ∩N . This map is
well defined and fulfills the properties of the Levi-Civita connection, hence
the use of the same symbol.

Note that the induced connection maps to X̄(N ) and can therefore be de-
composed into its tangential and normal parts. It turns out that the tan-
gential projection is the Levi-Civita connection of N associated with the
induced metric g, while the normal part is a new object which gives insight
into how N lies within M :

∇̄VX = tan
(
∇̄VX

)
+ nor(∇̄VX)︸ ︷︷ ︸

=:K(V,X)

= ∇VX +K(V,X) (2.2)

where ∇ is the Levi-Civita connection of the induced metric g and we in-
troduced the (0,2) tensorfield K called second fundamental form. Since the
second fundamental form is a (0,2) tensor field on N with values in TN ⊥,
we can turn it into a vectorfield H on N with values in TN ⊥ by

H|p =
n∑
i=1

εiK(ei, ej), (2.3)

where {e1, . . . , en} is a frame at p ∈ N and εi = g(ei, ei).

The above decomposition in tangential and normal geometry of N leads us
to the following fundamental result.

Theorem 2.1.1. (Gauß-Codazzi equation)
Let V,W,X, Y be vectorfields tangent to N , then

⟨R̄(V,W )X,Y ⟩ = ⟨R(V,W )X,Y ⟩+ ⟨K(V,X),K(W,Y )⟩ (2.4)

− ⟨K(V, Y ),K(W,X)⟩,

where R̄ and R denote the Riemann tensor of M and N respectively.

2.2 Geometry of Hypersurfaces

In this section we turn our attention to semi-Riemannian submanifolds N
of codimension 1, which will be called semi-Riemannian hypersurfaces. De-
pending on the signature of the induced metric we call a hypersurface

14



• spacelike, if the induced metric is Riemannian

• timelike, if the induced metric is Lorentzian

Note that for spacelike hypersurfaces the co-index is 1 for all points p ∈ N
while it is 0 for timelike hypersurfaces. In other words the unit normal to
N is timelike for Riemannian hypersurfaces and spacelike for Lorentzian
hypersurfaces.

Remark 2.2.1. (Null hypersurfaces)
If the pullback of the metric on N is degenerate, it is not a semi-Riemannian
hypersurface by the above definition, but by a slight abuse of language we
still call N a null hypersurface.

For hypersurfaces the Gauß-Codazzi equation simplifies significantly, since
the co-dimension is only 1.

Theorem 2.2.2. (Gauß-Codazzi equation for hypersurfaces)
For a hypersurface N with unit normal m equation (2.4) simplifies to

−2G(m,m) = Ric+KijK
ij − p2, (2.5)

where G is the Einstein-tensor, p denotes the first (and only) components
of the mean curvature vector and KijK

ij :=
∑n

j,i=1 K̃(Ej , Ei)K̃(Ei, Ej) for

a frame field {Ei} and K̃ is the only component function of the second
fundamental form such that K(X,Y ) = K̃(X,Y )m.

Proof. Let {Ei} be a local orthonormal frame field. Contracting the X and
W components of equation (2.4) yields

Ric(V, Y ) = Ric(V, Y ) + ⟨R(V,m)m,Y ⟩ (2.6)

+
n∑
i=1

K̃(V,Ei)K̃(Ei, Y )− pK̃(V, Y ).

By contracting the V and Y components we get

Ric = Ric+ 2Ric(m,m) +

n∑
j,i=1

K̃(Ej , Ei)K̃(Ei, Ej) + p2. (2.7)

And so

−2G(m,m) = Ric+ K̃ij K̃
ij − p2. (2.8)

15



2.3 Causality

In this section, which is based on [7], we investigate the causal structure of
a Lorentzian manifold (M , g). First, we need to equip the manifold with
a smooth choice of future for every point, made precise by the following
definition

Definition 2.3.1. (Time orientation)
A time-orientation of a Lorentzian manifold (M , g) is a map

T : M 7→ P(TM )

where P(TM ) is the powerset of the tangentbundle, such that, for all p ∈
M ,

• T (p) belongs to one of the connected components of the set of timelike
vectors in TpM

• there is a chart (U, x) around p such that ∂
∂x0

|q ∈ T (q) for all q ∈ U .

(M , g) is called time-orientable if it admits a time-orientation, and (M , g,T )
is called a time-oriented Lorentzian manifold.

A connected, time-oriented Lorentzian manifold is called spacetime, and
from now on every Lorentzian manifold will be a spacetime unless specified
otherwise.

A causal curve γ (i.e. γ̇(t) is causal for all t) is called future directed, if
γ̇(t) ∈ T (γ(t)) and past directed if γ̇(t) ∈ −T (γ(t)). Next we define the
essential relations which indicate the causal relation between two points.

Definition 2.3.2. (Causality relations)
For p, q ∈ M , we define the following relations:

• p << q :⇐⇒ ∃ future directed timelike curve from p to q

• p < q :⇐⇒ ∃ future directed causal curve from p to q

• p ≤ q :⇐⇒ p < q or p = q

and for A ⊂ M , we define

• I+ := {q ∈ M |∃p ∈ A : p << q}, the chronological future of A

• J+ := {q ∈ M |∃p ∈ A : p ≤ q}, the causal future of A.

The chronological and causal past are defined analogously.

Definition 2.3.3. (Achronal set)
Let (M , g) be a spacetime. A subset A ⊂ M is called achronal if there are
no points p, q ∈ A such that p << q.

16



Now we introduce a hypersurface called Cauchy surface that can be inter-
preted as an instance of time and serves as initial surface when formulating
the Einstein equations as an evolutionary system. Furthermore Cauchy sur-
faces are of crucial importance for the singularity theorems discussed later.

Definition 2.3.4. (Cauchy surface)
A hypersurface C of M is called Cauchy surface if every inextendible causal
curve hits C exactly once.

2.4 Decomposing Spacetime into a 3+1 Foliation

This section mainly follows chapter 3.4 in [12]. So far we have explained the
geometry of hypersurfaces in a spacetime. The aim now is to decompose a
4-dimensional spacetime into non-intersecting hypersurfaces such that the
hypersurfaces are level sets of a function. The complete set of the generating
hypersurfaces is called a spacetime foliation, each individual hypersurface Σt
at time t is called a leaf.
For example the Euclidean space R3\{0} can be foliated by 2-spheres of dif-
ferent radii centered on the same point. In this case each leaf Σr corresponds
to one 2-sphere with radius r. These hypersurfaces are non-intersecting and
for r ∈ R+ generate the entire manifold R3\{0}. The foliation is entirely
determined by the function on the manifold since the leaves are its level sets,
in this case the radius r.
In the context of General Relativity the foliation is given by t, which can
often be interpreted as a global time function with spacelike level sets. In
coordinates the foliation is given by xµ = Xµ(ζα, t). Given a hypersurface
at t = t0, a point p ∈ Σt0 is fixed by its three coordinates ζα. This point
p corresponds to another point p′ in a different leaf Σt+dt, with the same
intrinsic coordinates on the hypersurface. Of course the spacetime coordi-
nates differ, since they depend on t. The vector connecting these two points
is given by ∂t with the following components in the ∂µ basis

∂

∂t
=
∂Xµ

∂t

∂

∂xµ
= tµ

∂

∂xµ
(2.9)

We can then decompose the vector ∂t with components tµ into its normal
and tangential part. Let n a unit normal vector to Σt, {eb} a basis of TΣt
and let gab denote the induced metric on Σt.

17



Then

• nor(tµ) = − (tνnν)︸ ︷︷ ︸
:=N

nµ

• tan(tµ) = gab(tνe
ν
b )X

µ
a = gabḡλνX

λ
b t
νXµ

a = (Xa
ν t
ν)︸ ︷︷ ︸

:=Na

Xν
a

where we have introduced the lapse function N and the shift vector Na. The
role of these objects in a foliation becomes quite clear when considering the
example from before. The lapse function N represents how far the next leaf,
in this case a sphere, is separated. In general the lapse function does not
have to be the same everywhere on Σt, although in this example it is. The
shift vector Na corresponds to the deformation, or this case rotation of the
leaf that is separated by the distance N compared to Σt. In the example of
R3 the north pole would only have the same coordinates ζa for future leaves
if the shift vector were zero, otherwise the spheres would rotate.
In General Relativity where t can be interpreted as a global time function
and the leaves Σt are spacelike timeslices N measures the elapsed time be-
tween leaves while Na determines the deformation, this is demonstrated in
Figure 2.1 below.

Σt

Σt+∆t

Nnµ tµ

Na

Figure 2.1: Lapse N and shift vector Na in a spacetime foliation.
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Chapter 3

Marginally Outer Trapped
Surfaces

In this chapter we introduce the main object of study of this thesis, marginally
outer trapped surfaces (MOTS). Although trapped surfaces in general are
not a new concept, MOTS have recently become key in quasi-local descrip-
tions of black holes. Since black holes are canonically defined via the visi-
bility from future infinity, which requires knowledge of global properties of
the spacetime and the existence of a conformal completion (see 4.1), it is
of high interest to find local tools for the detection of black hole regions.
Local properties in this context are properties which could in principle be
measured by an observer with a finite life span[2]. The notions of trapped
and marginally outer trapped surfaces let us achieve this goal. Trapped sur-
faces were first introduced by Roger Penrose in a 1965 paper for which he
was awarded a Nobel Prize in 2020 [19]. For the interested reader a review
paper concerning specifically this groundbreaking paper and the central idea
of trapped surfaces can be found in [21]. A trapped surface is a closed (i.e.
compact without boundary) spacelike 2-surface S for which both congru-
ences of future directed null geodesics emanating from S orthogonally will
converge locally in the future. Loosely speaking this convergence property
can be given a numerical value by the null expansion scalars, which will be
negative for converging geodesics and positive for expanding geodesics. If
one of the null expansion scalars is zero, the surface S is called marginally
outer trapped surface (i.e. MOTS). In this chapter we study the theory of
MOTS and introduce the above concepts in a precise manner.
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3.1 The Null Expansion and Trapped Surfaces

This section mainly compiles information from [8] and [11]. As mentioned
before, the null expansion will give us a measure of the convergence be-
haviour of congruences of null geodesics emanating orthogonally from a sur-
face. To make this precise we start off with some definitions.

Let (M , ḡ) be a spacetime of dimension n ≥ 3 and S an orientable, closed
and spacelike submanifold of codimension two. Such submanifolds will be
referred to as surfaces. In the case n = 4 the normal bundle NS = (TS)⊥

of S has two future directed orthogonal null directions and thus admits
two unique (up to positive rescaling), smooth non-vanishing future directed
orthogonal null vectorfields. These will be called l± respectively where l+

denotes the outward and l− the inward null normal. It should be noted here
that the choice of ”outward” direction is often not obvious and arbitrary.
Since we have the freedom of rescaling the null normals, the normalization
is chosen such that lµ+l

−
µ = −2. In terms of the null normals the projector

onto the surface S is given by Pµν = ḡµν + l
(µ
+ l

ν)
− , where l

(µ
+ l

ν)
− denotes the

symmetrization. The induced metric on S will be denoted by h. With
this setup we can define the central object that lets us directly distinguish
between different classes of trapped surfaces.

Definition 3.1.1. (Null expansion scalar)
Let (M , ḡ) be a spacetime, S a surface with Projectors Pµν and future
directed null normals l± as described above. We then call

θ± = Pµν∇̄µl
±
ν (3.1)

the null expansion scalars.

The magnitude of θ± depends on the scaling of the null normals l±, which
was chosen arbitrarily. The sign however is independent of the scaling and
has physical meaning, namely expansion (contraction) of S for θ+ > (<)0.

The null expansion scalars now lead to a natural definition of different types
of trapped surfaces.

20



Definition 3.1.2. (Types of trapped surfaces)
Let (M , ḡ) be a spacetime and let S ⊂ M be a surface with null expansions
θ±, we then call S

• trapped, if θ+ < 0 and θ− < 0

• outer trapped, if θ+ < 0

• weakly trapped, if θ+ ≤ and θ− ≤ 0

• weakly outer trapped, if θ+ ≤ 0

• marginally outer trapped, if θ+ = 0

Remark 3.1.3. (Outward direction)
In the case where a marginally trapped surface exists for only one direction,
we choose that direction as outwards.

Since index notation is often convenient for explicit calculations we define
the second fundamental form previously introduced in 2.2 again.

Definition 3.1.4. (Second fundamental form vector)
For any vector w normal to S we call the (1, 2) tensorfield Kµ

αβ defined by

Kµ
αβwµ = P σ

α P τ
β ∇̄σwτ (3.2)

the second fundamental form vector of S.

It is not immediately obvious that the right hand side can be written as a
tensor acting on w. To ensure that this is indeed possible we show by a
short calculation that the right hand side is C∞-linear in w.

P σ
α P τ

β ∇̄σ(fwτ ) = P σ
α P τ

β

(
f∇̄σwτ + wτ ∇̄σf

)
(3.3)

= fP σ
α P τ

β ∇̄σ(wτ ). (3.4)

The second term in (3.3) is zero since the projectors P annihilate any vector
normal to S, in particular w.

Remark 3.1.5. Note that Kµ
αβw

αnβ = 0 for arbitrary vectors w,n normal
to S. Additionally the second fundamental form vector is only defined on
S, thus it is natural to only consider vectors tangent to S as possible input.
This suggests the notational change Kµ

AB with A,B ∈ {2, 3}. This is made
precise by requiring Kµ

αβx
αvβ = Kµ

ABx
AvB, where xA = PAµ x

µ ∈ TS
and similarly for v. For fixed normal direction w the second fundamental
form KAB is now a (0, 2) tensorfield on S.

A completely analogous construction relates the projector Pµν to the in-
duced metric hAB, by a slight abuse of notation they will be used inter-
changably from here on. Contracting the second fundamental form vector
with the induced metric yields another essential curvature object.
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Definition 3.1.6. (Mean curvature vector)
For a surface S in a spacetime (M , ḡ) with induced metric h and second
fundamental form vector Kµ

AB we call

Hµ = hABKµ
AB (3.5)

the mean curvature vector.

Lemma 3.1.7. (Mean curvature vector in terms of a null basis)
Let S be a surface with null normals l± as before and corresponding null
expansion scalars θ±. Then the mean curvature vector of S can be written
as

Hµ = −1

2

(
θ−lµ+ + θ+lµ−

)
. (3.6)

Proof. First we calculate Hµl±µ ,

Hµl±µ =PαβP σ
α P γ

β ∇̄σl
±
γ (3.7)

=P σγ∇̄σl
±
γ (3.8)

=θ±. (3.9)

Where the property Pαβ P
µ

α = P µ
β of projections was used. Recall the

normalization of the null normal lµ∓l
±
µ = −2. Expanding Hµ in terms of

{l+, l−} and correcting for the normalization yields

Hµ = −1

2

(
θ−lµ+ + θ+lµ−

)
. (3.10)

It is often convenient (for example in a leaf of a spacetime foliation, see
2.4) to consider trapped surfaces embedded in a spacelike hypersurface. Let
N be a spacelike hypersurface in a spacetime (M , ḡ) with unit normal n
and induced metric g. The second fundamental form of N is then defined
analogously to 3.1.4 by replacing w by n and using the appropriate projectors
Qµν from M to N as

Kµ
αβnµ = Q σ

α Q τ
β ∇̄σnτ , (3.11)

where the identification of remark 3.1.5 is applied to yield the (0, 2)-tensor
Kij on N .

Remark 3.1.8. Note that especially in equation (3.11) there is a slight
abuse of notation since Kµ

αβ denotes both the second fundamental form
vector of N and S. However after using the appropriate indices they are
distinguished by Kij and KAB for N and S respectively.
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Let S ⊂ N be a two-sided submanifold of codimension one, which makes it
a surface in a 4-dimensional spacetime. Because S is two-sided there exist
two unique globally defined unit vectorfields orthogonal to S and tangent to
N . We arbitrarily choose one outwards pointing and call it m, its negative
−m is then the inwards pointing unit normal.

n

m

l+l−
S

N

Figure 3.1: Normals to S and N with one dimension suppressed.

Definition 3.1.9. (Mean curvature of S in N )
Let S be a surface with mean curvature vector Hµ and unit outward normal
mµ. Then

p = Hµmµ (3.12)

is called the mean curvature of S in N .

In this setting the null expansion scalars can be expressed in terms of the
mean curvature vector and the normal vectors, which is highly useful for
practical calculations.

Lemma 3.1.10. (Curvature form of the null expansions)
Let p = Hµmµ be the mean curvature of S in N and H := Hµnµ. Then
the null expansion scalars of S can be written as

θ± = H ± p. (3.13)

Proof. First we calculate H,

H = Hµnν =hABKµ
ABnµ (3.14)

=PαβKµ
αβnµ (3.15)

=PαβP µ
α P ν

β ∇̄µnν (3.16)

=Pµν∇̄µnν . (3.17)

A similar calculation yields

p = Pµν∇̄µmν (3.18)
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Next we decompose the null normals of S as l±µ = nµ ±mµ. We first need
to check that these vectors are indeed null and normal to S.

l±µ l
µ
± = (nµ ±mµ)(n

µ ±mµ) = nµn
µ︸ ︷︷ ︸

−1

± 2mµn
µ︸ ︷︷ ︸

0

+mµm
µ︸ ︷︷ ︸

1

= 0

where the first term has an additional negative sign because N is a space-
like hypersurface with coindex 1. The second term is positive since m is
tangent to N , which has a Riemannian induced metric. Orthogonality is
also checked easily. Let k be an arbitrary vector tangent to S then

ḡµν l
µ
±k

ν = ḡµν (n
µ ±mµ)kν = 0

since both nµ and mν are normal to S by definition. The statement then
follows from linearity:

Pµν∇̄µ(nν ±mν) = Pµν∇̄µnν ± Pµν∇̄µmν = H ± p

The simplest case of a MOTS (i.e. θ+ = H+p = 0) is given if both H and p
vanish identically. This leads us to consider the notion of minimal surfaces,
since they are characterized by p = 0 as we will see in the next section.
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3.2 Minimal Surfaces

In this section we study minimal surfaces as some of the MOTS we will
encounter in future examples will be minimal surfaces. MOTS can be seen
as spacetime analogues of minimal surfaces in Riemannian geometry, and
as we will see, a lot of properties and equations are closely related. A
minimal surface is a surface that locally extremizes area. Thus our first goal
is to introduce a notion of varying a surface and its area to find extrema.
To this end we consider a three dimensional Riemannian manifold (N , g).
Let S ⊂ N be a closed two-sided 2-surface with unit outward normal m,
projectors Pij = gij−mimj and induced metric h. We proceed with defining
a variation of S.

Definition 3.2.1. (Variation of a surface)
Let S be a surface in the manifold (N , g) as above and 0 ∈ I ⊂ R an open
interval. We then define a variation of S along an arbitrary (nowhere zero)
vectorfield v defined along S as the map Φ : S×I → N such that Φ(S, 0) =
id, for t fixed Φ(·, t) is an immersion and for p ∈ S fixed cp(t) = Φ(p, t) is a
curve starting at p ∈ S with tangent vector v(p).

Next we choose coordinates such that the line element near S reads

ds2 = ϕ2(r, xi)dr2 + gij (r, x
i)dxidxj , (3.19)

where ϕ is a function and S is parametrized by r = const. The unit normal
then has the form

mi ∂

∂xi
= ϕ−1 ∂

∂r
. (3.20)

Now we can introduce the notion of variation of a scalar object in the normal
direction ϕm = ∂

∂r .

Definition 3.2.2. (First variation of scalars in the normal direction)
Let k be a scalar on S, ϕ : S 7→ R an arbitrary function and Φ a variation
of S along the normal vectorfield m. Then we define the ϕ-variation of k in
direction m as

δϕm = ϕmi∇ik. (3.21)

The extrinsic curvature of S is then given by pij := P k
i P

l
j ∇kml and the

mean curvature by p = gijpij = ∇im
i. Next we will calculate the first

variation of the mean curvature.
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Theorem 3.2.3. (First variation of the mean curvature)
Let S be a surface as above in N with unit normal m. Furthermore let
p = gijpij be the mean curvature and R, RS the Ricci scalars of N and S,
respectively. Then

δϕmp = −∆Sϕ− ϕ

(
R−RS +

3

2
p2 + tijt

ij

)
:= Lm(ϕ), (3.22)

where tij = pij −
p
2hij is the trace-free part of pij and ∆S denotes the

Laplacian of S. Furthermore we introduced the self-adjoined operator Lm,
which will play an important role in the stability of a minimal surface later
on.

In order to prove this theorem we first need a technical lemma.

Lemma 3.2.4.

mi∇imk = −ϕ−1P j
k ∇jϕ (3.23)

Proof. First we have

Pkjm
i∇im

k = Pkjm
i(∂im

k + Γkilm
l) (3.24)

= Pkjm
i∂im

k + Pkjm
iΓkilm

l. (3.25)

We now calculate each term separately and use that m1 = ϕ−1 is the only
non-zero component of mi. Also note that P11 = g11−m1m1 = ϕ2−ϕ2 = 0,
and since Pij is diagonal P1j = 0 for any j.

• First term

Pkjm
i∂im

k =P1jm
1∂1m

k = 0. (3.26)

• Second term

Pkjm
iΓkilm

l =Pkj ϕ
−2Γk11 (3.27)

=ϕ−2Pkj
1

2
gks(∂1g1s + ∂1g1s − ∂sg11) (3.28)

=ϕ−2Pkj (g
ks∂1g1s −

1

2
gks∂sg11) (3.29)

=ϕ−2P1j g
11∂1g11 −

1

2
ϕ−2Pkj ∂

kg11 (3.30)

=− 1

2
ϕ−2Pkj ∂

kg11. (3.31)

Together this yields

Pkjm
i∇im

k = −1

2
ϕ−2P k

j ∂kg11 = −ϕ−1P k
j ∂kϕ = −ϕ−1P k

j ∇kϕ. (3.32)
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We proceed with the proof of theorem 3.2.3

Proof. We first define ai = mk∇km
i−mi∇km

k and calculate its divergence
in two different ways.

• By using Lemma 3.2.4 we obtain

∇ia
i = ∇i

(
−ϕ−1P ik∇kϕ

)
−∇i(m

i∇km
k︸ ︷︷ ︸

p

) (3.33)

= ∇i

(
−ϕ−1P ik∇kϕ

)
−mi∇ip− p2 (3.34)

= −∆Sϕ

ϕ
−mi∇ip− p2. (3.35)

• By the product rule we get

∇ia
i = (∇im

k)∇km
i︸ ︷︷ ︸

pijp
ij

+mk∇i∇km
i − (∇im

i)∇km
k︸ ︷︷ ︸

p2

−mi∇i∇km
k

(3.36)

= pijp
ij − p2 +mk (∇k∇i + [∇i,∇k])m

i −mi∇i∇km
k (3.37)

= pijp
ij − p2 +mi[∇i,∇k]m

k (3.38)

= pijp
ij − p2 +Rikm

imk. (3.39)

Comparing both expressions for ∇ia
i yields

−∆Sϕ

ϕ
−mi∇ip− p2 = pijp

ij − p2 +Rijm
imj , (3.40)

and so

ϕmi∇ip = −∆Sϕ− ϕ
(
pijp

ij +Rijm
imj

)
. (3.41)

Now we use the Gauß-Codazzi equation for hypersurfaces (see 2.2.2)

Rijm
imj =

1

2

(
gijRm

imj + p2 −RS − pijp
ij
)

(3.42)

=
1

2

(
R−RS + p2 − pijp

ij
)

(3.43)

and substitute back into equation (3.41) to obtain

ϕmi∇ip =−∆Sϕ− ϕ

[
pijp

ij +
1

2

(
R−RS + p2 − pijp

ij
)]

(3.44)

=−∆Sϕ− 1

2
ϕ
(
R−RS + p2 + pijp

ij
)
. (3.45)
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The final step is to express p2 + pijp
ij in terms of tij , which is easily done

by an explicit calculation

tijt
ij =

(
pij −

p

2
hij

)(
pij − p

2
hij
)

(3.46)

=pijp
ij − ppijh

ij +
p2

4
hijh

ij︸ ︷︷ ︸
=2

(3.47)

=pijp
ij − ppij

(
hij −mimj

)
+

1

2
p2 (3.48)

=pijp
ij − p2 +

1

2
p2 (3.49)

=pijp
ij − 1

2
p2. (3.50)

And so

p2 + pijp
ij = tijt

ij +
3

2
p2. (3.51)

Substituting this result in equation (3.45) yields equation (3.22) and thus
concludes the proof.

Next we study how the area changes along a variation of the surface. Let
St be a one parameter family of surfaces where S0 = S with variational
vectorfield v = ∂

∂r , which can be written as v = ϕm by equation (3.20).

Then the first variation of area, defined as δvvol(S) := d
dtvol(St)|t=0 is

given by

δvvol(S) =

ˆ
S0

ϕp
√

det g. (3.52)

A detailed derivation can be found in [16]. This leads to a natural definition
of minimal surfaces, since we are looking for an extremal point in the first
variation of area.

Definition 3.2.5. (Minimal surface)
A surface S is called a minimal surface if its first variation of area vanishes
for any ϕ, i.e.

p ≡ 0

on S.

Remark 3.2.6. Note that the classical terminology of ”minimal” is a bit
misleading, since any extremum is (technically) included in the definition.
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Next we turn to the second variation, which is vital for the stability of min-
imal surfaces. The second variation is defined as δ2vvol(St) =

d2

dt2
vol(S)|t=0.

Let again St be a family of surfaces with variational vectorfield v = ϕm and
assume that S0 is a minimal surface, i.e. p = 0, then

δ2vvol(S) =δ
2
v

ˆ
S0

√
det g (3.53)

=

ˆ
S0

ϕδvp
√
det g (3.54)

=

ˆ
S0

ϕLmϕ
√
det g ≥ λ

ˆ
S0

ϕ2
√
det g (3.55)

where λ denotes the lowest eigenvalue of Lv. Note that λ exists since Lv is a
self-adjoined elliptic operator on a compact domain. In the second equality
the first variation of the mean curvature 3.2.3 was used. Now the stability
of minimal surfaces can be introduced.

Definition 3.2.7. (Stability of minimal surfaces)
Let S be a minimal surface and Φ a variation of S with variational vectorfield
v = ϕm. Then S is called stable if δ2vvol(S) ≥ 0 for all ϕ ≥ 0 with ϕ ̸≡ 0.

Lemma 3.2.8. (Equivalent definitions of stability)
The following statements are equivalent

1. δ2vvol(S) ≥ 0

2. λ ≥ 0

3. ∃ϕ ≥ 0 on S such that δvp ≥ 0

Proof. The implications (1) ⇔ (2) and (1), (2) ⇒ (3) follow from equations
(3.53) and (3.55). However how (1) and (2) follow from (3) is not obvious,
for a proof see for example [3].
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3.3 Stability and Marginally Outer Trapped Tubes

The following section is largely based on [3]. For a given MOTS S in a leaf
Σ0 of a spacetime foliation {Σt} of spacelike hypersurfaces it is natural to
pose the question whether there exists a hypersurface T foliated by the time
evolution of S for every leaf Σt. One crucial criterion for the existence of
such a smooth time evolution is the stability of the initial MOTS, which is
the subject of this section. If it exists, the hypersurface T is then called
marginally outer trapped tube (MOTT), a more precise definition can be
found below.

3.3.1 First and Second Variation of the Null Expansion

The quantity used to classify the stability of MOTS is the first variation
of the null expansion. First recall the definition of the variation of an ar-
bitrary surface S from 3.2.1. Although this definition was introduced in a
Riemannian context, it works completely analogous for a spacetime. We
denote the resulting family of surfaces under a variation Φ with respect to
the vectorfield q along S as St. We can then (similarly to 3.2.2) define the
first variation of the null expansion.

Definition 3.3.1. (First variation of the null expansion)
Let St be a one parameter family of surfaces along the vectorfield q as above,
l+t a differentiable (with respect to t) nowhere zero null vector in the normal
bundle of St and θt the null expansion scalar with respect to l+t on each
surface St. Then the first variation of the null expansion is defined as

δqθ = ∂tθt|t=0 (3.56)

Note that δqθ is linear, but not C∞linear in q. Our next aim is to introduce
a linear elliptic operator that gives the first variation of the null expan-
sion which is of great practical value. First we need the following technical
lemma.

Lemma 3.3.2. (Explicit form of the first variation of the null expansion)
Let S be a surface with second fundamental form vector Kµ

AB and induced
covariant derivative ∇. Let l+ and θ be as before and decompose the varia-
tional vector q in its tangential and normal parts tan(q) and nor(q), respec-
tively. The normal component can also be expressed in terms of the null
basis {l+, l−} as nor(q) = bl+ − u

2 l
− for two functions b and u on S. Then

the first variation of the second fundamental form is given by

δqθ =aθ + tan(q)(θ)− b
(
Kµ
ABK

νABl+µ l
+
ν + Ḡµν l

µ
+l
ν
+

)
−∆Su+ 2sA∇Au

(3.57)

+
u

2

(
R−H2 − Ḡµν l

µ
+l
ν
− − 2sAsA + 2∇As

A
)
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where a = −1
2 l

−
µ ∂tl

µ
+t|t=0 and sA = −1

2 l
−
µ∇Al

µ.

Remark 3.3.3. This lemma is the analogon to 3.2.3. There we calculated
the first variation of the mean curvature δvp. Since the null expansion can
be decomposed as θ± = H ± p, some similarity is expected. The additional
terms arise from the addition of H. The proof is rather technical and can
be found in [3], appendix A.

3.3.2 The Stability Operator

Next we can define the stability operator. First we introduce a different
decomposition of nor(q) in terms of l+ and an arbitrary vectorfield v normal
to S with normalization vµl+µ = 1, which, as opposed to l−, does not restrict
the causal character of v anywhere on S. The vector v is then uniquely
defined by a function V according to vµ = −1

2 l
µ
− + V lµ+. We use {v, l+}

as a normal basis. Lastly we introduce a vector uµ = 1
2 l
µ
− + V lµ, which is

orthogonal to v and satisfies uµuµ = −vµvµ = −2V .

Definition 3.3.4. (Stability operator)
For a function ψ and any vector v normal to S satisfying lµ+vµ = 1 as above
the stability operator is defined as

Lvψ =−∆Sψ + 2sA∇Aψ+(
1

2
R− V Kµ

ABK
νABl+µ l

+
ν − Ḡµν l

µ
+u

ν − sAsA +∇As
A

)
ψ (3.58)

Remark 3.3.5. Note that this is not the same operator as in equation
(3.22), but the same name was chosen to highlight the analogous nature.

The following lemma will provide the connection between the stability op-
erator and the first variation of the null expansion.

Lemma 3.3.6. (First variation of the null expansion in terms of stability
operator)
Let S be a MOTS, then the first variation of the null expansion in the
direction of the null vector ψl+ and any normal vector ψv as above is then
given by

• δψl+θ = −ψ
(
Kµ
ABK

νABl+µ l
+
ν + Ḡµν l

µ
+l
ν
+

)
• δψvθ = Lvψ

respectively.

Proof. Most of the work has already been done in Lemma 3.3.2. The re-
sult follows immediately from plugging the respective vectors into equation
(3.57).
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First recall the definitions of the various vectors used:

• q = tan(q) + bl+ − u
2 l

−

• v = V l+ − 1
2 l

−

• u = 1
2 l

− + V l+

We proceed by checking the first equality of the lemma:

δψl+θ =aθ + tan
(
ψl+

)
(θ)− ψ

(
Kµ
ABK

νABl+µ l
+
ν + Ḡµν l

µ
+l

ν
+

)
(3.59)

−∆Su+ 2sA∇Au+
u

2

(
R−H2 − Ḡµν l

µ
+l
ν
− − 2sAsA + 2∇As

A
)

=− ψ
(
Kµ
ABK

νABl+µ l
ν
+ + Ḡµν l

µ
+l
ν
+

)
, (3.60)

where the first two terms vanish because S is a MOTS and l+ is normal
to S. The last terms are zero since u = 0. Next we calculate the second
identity, where the first two terms are omitted for the same reason

δψvθ =− ψV
(
Kµ
ABK

νABl+µ l
+
ν + Ḡµν l

µ
+l
ν
+

)
−∆Sψ + 2sA∇Aψ (3.61)

+
ψ

2

(
R−H2 − Ḡµν l

µ
+l
ν
− − 2sAsA + 2∇As

A
)

=−∆Sψ + 2sA∇Aψ (3.62)

+

(
1

2
R− V Kµ

ABK
νABl+µ l

+
ν − Ḡµν l

µ
+u

ν
+ − sAsA +∇As

A

)
ψ

=Lvψ (3.63)

where H2 vanishes after the second equality since the mean curvature can
be written as Hµ = −1

2

(
θ−lµ− + θ+lµ+

)
(see 3.1.7) thus H2 = 0 because S is

a MOTS (θ+ = 0) and {l+, l−} are null.

3.3.3 Stability of MOTS

Similarly to the stability of minimal surfaces in 3.2.7 we can define stable
MOTS in terms of the first variation of the null expansion and subsequently
use the stability operator to find practical criteria for stability with the help
of some PDE theory.

Definition 3.3.7. (Stability for MOTS)
Let S be a MOTS and v a vectorfield normal to S satisfying vµl

µ
+ = 1. If

there exists a function ψ ≥ 0, ψ ̸≡ 0 on S, such that

• δψvθ ≥ 0, S is called stable

• δψvθ ≡ 0, S is called marginally stable

• δψvθ ≥ 0 and δψvθ ̸≡ 0, S is called strictly stable
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with respect to the direction v.

Remark 3.3.8. First note that the stability of the MOTS depends on the
direction v, however when it is clear from the context the phrase ”with re-
spect to the direction v” is often omitted.
Secondly, in the literature the same definition can often be found as ”strictly
stably outermost MOTS”. It is not immediately obvious why a stable mots
needs to be outermost, but this follows from the so-called barrier property.
Since the barrier property is not treated in this thesis the label ”outermost”
is omitted. For further reading on barrier properties of MOTS see for ex-
ample [3] section 7.

For operators of the form of the stability operator the principal eigenvalue
λ, which is defined as the eigenvalue with the smallest real part, exists.
Additionally the eigenfunction ϕ corresponding to λ, called the principal
eigenfunction, is positive everywhere. This result can be found in [13] in
section 6.5.2. We can now, similarly to the above section, draw the con-
nection between stability in terms of the first variation and the stability
operator.

Lemma 3.3.9. (Stability of MOTS in terms of the stability operator)
Let S ⊂ Σ0 be a MOTS and λ the principal eigenvalue of the stability
operator Lv. Then S is stable iff λ ≥ 0 and strictly stable iff λ > 0.

Proof. Suppose the principal eigenvalue satisfies λ ≥ 0 for stability and
λ > 0 for strict stability. Consider the variation δϕv where ϕ is the principal
eigenfunction. Then δϕvθ = Lvϕ = λϕ by Lemma 3.3.6, which corresponds
to being stable or strictly stable depending on whether λ ≥ 0 or λ > 0.

For the converse direction note that the adjoint operator L† with respect to
the standard L2 inner product ⟨·, ·⟩ has the same principal eigenvalue λ = λ†

with principal eigenfunction ϕ†. We can now calculate for (strictly) stable
S:

λ ⟨ϕ†, ψ⟩︸ ︷︷ ︸
>0

= ⟨L†
vϕ

†, ψ⟩ = ⟨ϕ†, Lvψ⟩ = ⟨ϕ†, δψvθ⟩ ≥ 0(> 0), (3.64)

which concludes the proof.

3.3.4 Marginally Outer Trapped Tubes

As mentioned in the introduction of this section we want to define MOTTs
and link their existence to the stability of a MOTS in the initial leaf Σ0.
This section will be kept short since the technicalities exceed the scope of
this thesis, for a more detailed treatment see for example [3] or [2].
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Definition 3.3.10. (Marginally Outer Trapped Tube)
Let

(
M , ḡµν

)
be a spactime foliated by hypersurfaces {Σt}. A co-dimension

one submanifold T is called marginally outer trapped tube (MOTT) if
T ∩ Σt = St, where each St is a MOTS.

The following theorem demonstrates the importance of the stability of a
given MOTS for the existence of a MOTT. The proof is omitted here, but
can be found in [3] as Theorem 9.2.

Theorem 3.3.11. (Existence of MOTTS)
Let

(
M , ḡµν

)
be a spacetime foliated by smooth hypersurfaces Σt for t ∈

[0, T ] and assume the leaf Σ0 contains a smooth and strictly stable MOTS
S0. Then for some τ ∈ (0, T ] there exists a smooth MOTT adapted to the
foliation

T[0,T ) = Φ(S0 × [0, τ)) , (3.65)

where Φ denotes the variation of S0 as in Definition 3.2.1. Additionally
every St for t ∈ [0, τ), St = Φ(S0 × [0, t)) is a smooth and strictly stable
MOTS.
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Chapter 4

Visibility

4.1 Conformal Completions

For the remainder of this thesis conformal completions are of vital impor-
tance, since they are a main tool for the study of global properties of space-
times. Introduced first by Roger Penrose, a conformal completion of a given
spacetime is a manifold with boundary where its interior is the original
spacetime. This lets us characterize infinities and later on visibility (or
invisibility) of sets from these infinities. The following definitions and ex-
amples are based on section 3.1 in [8]. We start of with the central definition
of this section.

Definition 4.1.1. (Conformal Completion)

A pair (M̃ , g̃) is called a conformal completion at infinity of (M , g) if M̃ is
a manifold with boundary and the following conditions hold:

• M is the interior of M̃ .

• On M̃ there exists a function Ω such that the metric g̃, defined as Ω2g
on M , extends smoothly to the boundary of M̃ , with the extended
metric maintaining its signature on the boundary.

• Ω is positive on M , smooth on M̃ and vanishes on

S := ∂M̃ ,

with dΩ vanishing nowhere on S .

We set S + := S ∩J+(M ) and S − := S ∩J−(M ). Conformal completions,
specifically S +, let us introduce a notion of the asymptotic behaviour of
spacetimes.

Definition 4.1.2. (Asymptotic behaviour of spacetimes)

Let (M , g) be a spacetime with conformal completion (M̃ , g̃). Then (M , g)
is called
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• asymptotically flat, if S + is null

• asymptotically de Sitter, if S + is spacelike

• asymptotically anti de Sitter, if S + is timelike

4.1.1 Examples of Conformal Completions

Minkowski spacetime

One of the simplest examples of a conformal completion is the one of
n-dimensional Minkowski spacetime. In the following n ≥ 2 is assumed.
First introduce coordinates u = t−r, x = 1/r and xA on Rn+1\{r = 0}, with
(r, xA) being the usual spherical coordinates on Rn. In these coordinates the
metric takes the form

η = x−2(x2du2 + 2dudx+ dω2), (4.1)

where dω2 is the standard round metric on the sphere Sn−1. Then Ω := x
can be used as the conformal factor to rescale the metric, yielding

η̃ := Ω2η = x2du2 + 2dudx+ dω2. (4.2)

Clearly this metric extends smoothly to the boundary S + = {x = 0}. Note
that S + ≈ R × Sn−1. This construction is referred to as the standard
conformal completion of Minkowski spacetime at future null infinity. We
denote R4 with the hypersurface {x = 0} attached M̃+. An analogous

construction of M̃− (by replacing t with −t in all formulae above) called
standard conformal completion of Minkowski spacetime at past null infinity
yields S − = {x = 0} in the extended spacetime. The whole completion is
then given by adding S + and S − simultaneously. It turns out a few addi-
tional boundary points can be added to the conformal completion, namely
i0, called spatial infinity, the future timelike infinity i+ and the past timelike
infinity i−, for details see [8]. A sketch of the construction can be seen in
figure 4.1.
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i+

S +

i0

i−

S −

Figure 4.1: Conformal completion of Minkowski spacetime. The dashed
line represents {r = 0}. Every point in the diagram represents a (n − 2)-
dimensional sphere, except for r = 0, i± and i0, which are points.

Special care must be taken in adding the aforementioned points {i0, i+, i−},
since the resulting topological space is no longer a manifold unless some
identifications are made. We now proceed to construct these points and
make the necessary identifications.
Let xα be the standard coordinates in Minkowski spacetime for which the
metric is diagonal with constant entries. Then we introduce new coordinates
in the region where ηµνx

µxν < 0 and x0 < 0 by

yα =
xα

ηµνx
µxν

. (4.3)

Since ηµνy
µyν = 1

ηµνx
µxν and y0 > 0 the map x 7→ y is a differomorphism

from {ηµνxµxν < 0, x0 < 0} to {ηµνyµyν < 0, y0 > 0}.
The past light cone of the origin of the x-coordinates is the future light cone
of the origin of the y-coordinates. The point i− is then defined as the origin
of the y-coordinates, and the point i+ is obtained similarly by reversing the
time orientation in the construction above.
The spatial infinity i0 is again defined as the origin of new coordinates, which
are obtained by using the transformation (4.3) on the set {ηµνxµxν > 0}.
This set is then diffeomorphically mapped to {ηµνyµyν > 0}. Figure 4.2
below portrays the complete conformal completion of Minkowski spacetime.
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i+

S +

i0

i−

S −

Figure 4.2: Entire conformal completion obtained by rotating figure 4.1
around the {r = 0}-axis. Note that i0 is again only a point, even though it
is drawn as a circle in the diagram.

De Sitter spacetime

This example is of special importance for this thesis since we consider appli-
cations of theorems in the next chapter specifically for de Sitter and asymp-
totically de Sitter spacetimes. Consider de Sitter spacetime

M =
(
−π
2
,
π

2

)
× Sn−1, g = cos−2(t)(−dt2 + dS2

n−1). (4.4)

With the conformal factor Ω := cos−1(t) and the round metric dS2
n−1 on

the (n − 1)-sphere S2
n−1. De Sitter spacetime conformally embeds into the

Einstein static universe

M ′ = R× Sn−1, g′ = −dt2 + dh2. (4.5)

The conformal completion is then given by M̃ = [−π/2, π/2] × Sn−1 with
S ± = {±π/2} × Sn−1 and g̃ = −dt2 + dS2

n−1.
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−π
2

t = 0

π
2 S +

S −

Figure 4.3: Conformal completion of de Sitter spacetime where every circle
{t = const.} represents a sphere Sn−1, including S ± as the top and bottom
of the cylinder, respectively.

4.2 Visibility in Asymptotically De Sitter Space-
times

In this section we study the visibility (or rather invisibility) of weakly
trapped surfaces and marginally outer trapped regions, which will be de-
fined later, in an asymptotically de Sitter setting. The theorems presented
and their proofs can be found in [9]. Here some calculations are explained
in some more detail.
In an asymptotically flat setting it has been shown that trapped surfaces are
externally invisible (see Theorem 6.1 in [10]). That means given a future
conformal completion and certain energy and causality conditions there are
no trapped surfaces in I−(S +, M̃ ). This result can be extended to weakly
trapped surfaces in the asymptotically de Sitter case in the following man-
ner.

Theorem 4.2.1. (Visibility of weakly trapped surfaces for S + spacelike)
Suppose (M , g) satisfies the null energy condition and admits a conformal

completion (M̃ , g̃) which is future causally simple with respect to M (i.e.

J+(K, M̃ ) is closed for all compact K). Suppose S + is spacelike. Let

A ⊂ M be a set such that J+(A, M̃ ) does not contain all of S +. Then

there are no weakly trapped surfaces in J+(A, M̃ ) ∩ I−(S +, M̃ ).

Proof. We aim to construct two different null hypersurfaces that intersect
on one null geodesic which connects a supposed weakly trapped surface to
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S + and then apply the maximum principle for smooth null hypersurfaces
to reach a contradiction.
Suppose there exists a weakly trapped surface S ⊂ J+(A, M̃ )∩I−(S +, M̃ )

for some set A ∈ M such that J+(A, M̃ ) does not contain all of S +. Since

J+(S, M̃ ) also does not contain all of S + there exists a point

q0 ∈ ∂
(
J+(S, M̃ ) ∩ S +

)
= ∂J+(S, M̃ ) ∩ S +. (4.6)

Our next goal is to define a geodesic sphere that meets ∂J+(S, M̃ ) in ex-
actly one point. To this end we introduce a Riemannian metric h on S +,
and let U be a normal convex neighbourhood around q0. Let q1 be a point
in U\J+(S, M̃ ), chosen such that some points of J+(S, M̃ ) are within the

injectivity radius of q1. Let q be the point on ∂J+(S, M̃ ) ∩ U that mini-

mizes the h-distance from q1 to ∂J+(S, M̃ ) in Ū . Let r > 0 be this dis-
tance and S+ the geodesic sphere centered around q1. Note that S+ is a
smooth hypersurface in S + that includes q but does not meet I+(S, M̃ )

since ∂J+(S, M̃ ) = J+(S, M̃ )\I+(S, M̃ ). The last equation holds because

J+(S, M̃ ) is closed since we assumed causal simplicity and I+(S, M̃ ) is the

interior of J+(S, M̃ ).

Since q ∈ J+(S, M̃ ) there exists a null geodesic γ : [a, b] 7→ M̃ satisfy-
ing γ(a) ∈ S and γ(b) = q emanating orthogonally from S. Since S + is
spacelike and γ is a null-geodesic, γ must intersect S + transversally, and
hence γ([a, b)) ⊂ M . Additionally, since γ does not enter the timelike fu-
ture of S there are no null focal points, and hence the null exponential map
has full rank at all points along γ. This allows one to generate a smooth
null hypersurface N1 ⊂ J+(S, M̃ ) containing the segment γ|[a,b−ε] for some
ε > 0. Furthermore let N2 be a smooth null hypersurface which is a subset
of J−(S, M̃ ) and contains γ(a, b].
Below is a sketch of the basic idea of the construction of the null hypersur-
faces N1 and N2, since this is a proof via contradiction the picture does not
represent a possible scenario and should only help with visualisation.
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Figure 4.4: Construction of the null hypersurfaces N1 and N2

Since S is future weakly trapped by assumption, both θ± are non-positive
on S. Let θ1(s) be the null mean curvature of N1 along γ, then θ1(a) ≤ 0.
The vorticity for orthogonally emanating congruences of null geodesics from
a surface vanishes, hence the Raychaudhuri equation simplifies to

θ′1 = −Ric(K,K)− Tr(σ2)− θ21
n− 2

, (4.7)

where K is a null vectorfield proportional to γ̇ and σ denotes the shear
tensor (see [17] equation 2.10). Applying the null-energy condition yields
θ′1 ≤ 0, since both other terms are also obviously non-positive. Therefore
θ1(s) ≤ 0 for all s ∈ [a, b− ε].
Our goal now is to find an expression and a bound for the null mean curva-
ture on N2 to subsequently apply a maximum principle to reach a contra-
diction. To this end we define a null vector K̃ at q that is future outward
pointing and orthogonal to S+. Since K̃ lies in S +, it is null with regard to
the unphysical metric g̃ = Ω2g. Since K̃ is proportional to γ̇ and there exists
a unique (up to positive rescaling) smooth future directed null vectorfield
on N2, we can extend K̃ to N2. Because this extension is unique only up to
a positive rescaling we can choose the normalization

K̃(Ω) = g̃(K̃, ∇̃Ω) = −1. (4.8)

along γ near q. This normalization is possible because Ω → 0 as one ap-
proaches S + and K̃ is null. Since γ is a maximizing geodesic from S to
q, it has to start orthogonally to S. The same argument can be applied
backwards to conclude that γ also has to meet S+ orthogonally.
Next we want to relate the null expansion scalar θ̃+2 in the unphysical metric
to θ+2 in the physical metric. We now choose a spacelike 2-surface S ⊂ N2
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with projector hµν = gµν + l(µKν), where l denotes the second null direction
with normalization lµK

µ = −1. Note that under the conformal transfor-
mation g → g̃ = Ω2g the vectors l and K turn into l̃ = Ω−1l, K̃ = Ω−1K
to satisfy g̃µν l̃

µK̃ν = −1. Using equations (3.1.7) and (D.3) in [23] for the
covariant derivative under conformal transformations we get

θ̃+2 =h̃µν∇̃µK̃ν (4.9)

=
(
∇µK̃ν − 2K̃σδ

σ
(µ∇ν) log Ω− gµνg

σλK̃σ∇λ log Ω
)
h̃µν (4.10)

=
(
∇µ(ΩKν)− 2ΩKσδ

σ
(µ∇ν) log Ω− gµνg

σλΩKσ∇λ log Ω
)
h̃µν (4.11)

=
1

Ω
∇µKνh

µν +
(
Kν∇µΩ− 2(δσ(µ∇ν) log Ω)ΩKσ+ (4.12)

+ gσλ(∇λ log Ω)ΩKσ

) 1

Ω2
hµν . (4.13)

Using hµνKν = 0 and gµνh
µν = (n− 2) yields

θ̃+2 =
1

Ω
θ+2 + gµνg

σλ(∇λ log Ω)Kσ
1

Ω
hµν (4.14)

=
1

Ω
θ+2 + (n− 2)gσλ(∇λ log Ω)Kσ

1

Ω
(4.15)

=
1

Ω
θ+2 + (n− 2)

1

Ω2
gσλKσ (4.16)

=
1

Ω
θ+2 + (n− 2)

1

Ω
K̃(Ω). (4.17)

Finally we can rearrange the last equation to obtain

θ+2 = −(n− 2)K̃(Ω) + Ωθ̃+2 . (4.18)

On N2 the null expansion scalar θ̃+2 is bounded, therefore close to q we have
θ̃+2 > 0 since the first term in equation (4.18) is positive and the second is
arbitrarily small because Ω → 0 as one approaches q. On γ near q we now
have the following relation between the null expansion scalars for both null
hypersurfaces,

θ+1 ≤ 0 < θ+2 . (4.19)

At this stage we introduce the following terminology, we say N1 lies to the
future of N2 near q, if for a neighbourhood U ∈ M̃ around q, N1 ∩ U ∈
J+(N1 ∩ U,U). Since S + does not meet I+(S, M̃ ), this is clearly true.
This and equation (4.19) lets us apply the maximum principle for smooth
null hypersurfaces, which states that N1 and N2 coincide near q. However,
this is not the case by construction, thus we have reached a contradiction
and concluded the proof.
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As is apparent from the last line of the proof, understanding the maximum
principle for smooth null hypersurfaces is of vital importance. The next
section is dedicated to this theorem (see 4.3.1), but first we conclude our
study of visibility.

Weakly trapped surfaces as in the previous theorem make assumptions on
both null expansion scalars θ±. We can find an analogous statement for
weakly outer trapped regions, which only require the null expansion scalar
to be non-positive on the boundary for the outward direction.

Definition 4.2.2. (Weakly outer trapped region)
Let (M , g) be a spacetime and let T be a compact connected spacelike
hypersurface with ∂T =: S ∈ M . If S is a weakly outer trapped surface
(i.e. θ+ ≤ 0) with respect to the outward direction of the region, we call T
a weakly outer trapped region.

With this definition at hand, we conclude this section with a theorem re-
garding the visibility of such weakly outer trapped regions.

Theorem 4.2.3. (Visibility of future weakly outer trapped regions for S +

spacelike)

Suppose (M , g) admits a conformal completion (M̃ , g̃) that is asympto-

tically de Sitter, is causally simple w.r.t. M̃ and satisfies the null energy
condition. Let A ∈ M be a set such that J+(A, M̃ ) does not contain all

of S +. Then there are no weakly outer trapped regions in J+(A, M̃ ) ∩
I−(S +, M̃ ).

Proof. The proof is very similar to the one of Theorem 4.2.1. Suppose
there exists a weakly outer trapped region T , with boundary S, contained
in J+(A, M̃ )∩I−(S +, M̃ ) for an arbitrary set A ∈ M . Then S is a weakly
outer trapped surface by Definition 4.2.2. We again construct a null geodesic
γ : [a, b] 7→ M̃ with γ(a) ∈ S and γ(b) ∈ ∂J+(T, M̃ ) ∩ S +. Since γ does
not enter the timelike future of T , we know that γ̇(a) points in the outward
direction. Since S is weakly outer trapped and (M , g) satisfies the null
energy condition, similarly to the proof in Theorem 4.2.1, θ+(s) ≤ 0 along
γ(s) for all s. The rest of the proof is exactly the same, and we find a
contradiction via the maximum principle for smooth null hypersurfaces.
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4.3 The Maximum Principle for Smooth Null Hy-
persurfaces

In this section we present the maximum principle for smooth null hypersur-
faces, which can also be found in [14]. First we state the theorem, the proof
of which will be the main objective of this section.

Theorem 4.3.1. (Maximum principle for smooth null hypersurfaces)
Let N1 and N2 be smooth null hypersurfaces in a spacetime (M , ḡ). If

• N1 and N2 meet at p ∈ M and N2 lies to the future of N1 near p

• the null expansion scalars θ1 of N1, and θ2 of N2, satisfy θ2 ≤ 0 ≤ θ1

then N1 and N2 coincide near p and this common null hypersurface satisfies
θ = 0.

The main idea of the proof will be to intersect both null hypersurfaces with
a spacelike hypersurface through the point p ∈ M , and then show that the
spacelike intersections agree. In order to do that, we have to express the
spacelike intersections as a graph over some base surface and reformulate the
null expansion scalar as a quasi-linear elliptic operator acting on the graph
function. Then we can use a maximum principle for quasi-linear elliptic
operators to show that the spacelike intersections have to agree. But before
we can proceed with the proof, some prerequisites are required to accomplish
the above.

Remark 4.3.2. (Guide to literature)
The maximum principle for null hypersurfaces has been treated extensively
in several papers, for example in [14] and [4]. In [14] the hypersurfaces N1

and N2 are intersected with a timelike hypersurface in order to prove the
equality of the resulting spacelike intersections represented by C2-functions.
While we here we only deal with the smooth case we feel that our proof
is slightly simpler since we intersect the hypersurfaces N1 and N2 with a
spacelike hypersurface in order to show the equality of the resulting spacelike
intersections.
To show the equality of the spacelike intersections a maximum principle for
quasi-linear elliptic operators is used. [14] references a maximum principle
by A.D. Alexandrov, which was difficult to find in the literature. In this
thesis it is substituted with a more readily available alternative.

4.3.1 Maximum Principle for Quasi-Linear Operators

First we need to introduce quasi-linear operators and the appropriate max-
imum principle for the task at hand. The following mostly relies on [13].
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Definition 4.3.3. (k-th order partial differential equations)
Let F be a map

F : Rn
k × Rn

k−1 × · · · × Rn × R× Ω 7→ R (4.20)

for an integer k ≥ 1 and an open subset Ω ∈ Rn. Furthermore let

Dku(x) = {Dαu(x) : |α| = k} (4.21)

be the set of k-th order derivatives of u(x). Then the expression

F (Dku(x), Dk−1u(x), . . . , Du(x), u(x), x) = 0 (x ∈ Ω) (4.22)

for u : Ω 7→ R is called a k-th order partial differential equation.

Definition 4.3.4. (U -admissibility)
Let Ω ⊂ Rn be compact and U ⊂ Rn × R × Rn. We say u ∈ C2(Ω) is U -
admissible if (x, u(x), ∂u(x)) ∈ U for all x ∈ Ω, where ∂u = (∂1u, . . . , ∂nu).

Definition 4.3.5. (Uniformly elliptic Quasi-linear operator)
Let u ∈ C2(Ω) be U -admissible and aij , b ∈ C1(U) with aij symmetric and
1 ≤ i, j ≤ n. We then call a second order partial differential operator Q
quasi-linear if it can be written as

Q[u] = aij(x, u, ∂u)∂iju+ b(x, u, ∂u). (4.23)

Furthermore Q is uniformly elliptic if for each (x, r, p) ∈ U , and for all
ξ = (ξ1, . . . , ξn) ∈ Rn, ξi ̸= 0

• there is a constant CE > 0 such that

aij(x, r, p)ξiξj ≥ CE∥ξ∥2 (4.24)

• and ∣∣∣∣∂aij∂pk

∣∣∣∣ , ∣∣∣∣∂aij∂r

∣∣∣∣ , ∣∣∣∣ ∂b∂pk
∣∣∣∣ , ∣∣∣∣∂b∂r

∣∣∣∣ ≤ CE . (4.25)

We can now proceed with the main result of this section, which is needed in
the proof of Theorem 4.3.1. This corollary including its proof can be found
in [1] as Theorem 2.4. There it is stated for lower regularity, but for our
purposes a slightly weakened version suffices since the functions we apply it
to will be smooth.

Corollary 4.3.6. (Maximum principle)
Let Ω ⊂ Rn be compact, and U ⊂ Rn×R×Rn. Furthermore let u0, u1 : Ω →
R be U -admissible C2(Ω) functions and Q a uniformly elliptic quasi-linear
operator satisfying the following.

1. There is a constant CM such that Q[u0] ≤ CM ≤ Q[u1]

2. u1 ≤ u0 in Ω, and there is at least one point x ∈ Ω with u1(x) = u0(x).

Then u0 ≡ u1 in Ω.
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4.3.2 Graph Representation of Spacelike 2-Surfaces

We now proceed with our objective of expressing a spacelike surface as a
graph and subsequently the null expansion as a quasi-linear elliptic operator.
First let (N , g) be a spacelike hypersurface in a spacetime (M , ḡ). Then we
choose a surface S ∈ N that we want to express as the graph of a function
over some base surface R ∈ N that is close to S but otherwise arbitrary.
Next we choose Gaussian normal coordinates such that the line element in
N close to R is locally given by

ds2 = dr2 + hABdx
AdxB (4.26)

and R is parametrized by r = r0. Next we define a function f(xA) on R
such that S is given by r′ = r − f(xA) = r0. This construction expresses
the surface S as a graph over R. Let m be the unit normal of R in N , the
associated mean curvature is then given by p = ∇im

i. Primed quantities
will in general refer to S while their un-primed counterparts lie in R. Thus
the mean curvature of S is given by p′ = ∇im

′i and its metric by h
′
AB. Next

we introduce some useful notation for the following calculations:

• fA = ∂f
∂xA

• F 2 = hABfAfB

• ψ2 = 1 + F 2

In order to calculate the null expansion as an operator acting on f(xA), we
need the following three technical results.

Lemma 4.3.7. (Metric on S)
In the setting described above the metric on S and its inverse are given by

• h′AB = hAB + fAfB

• h′AB = hAB − fAfB
ψ2 .

Proof. Using the definition of r′ in the metric yields

ds2 =dr2 + hABdx
AdxB = (dr′ + fAdx

A)2 + hABdx
AdxB (4.27)

=dr′
2
+ 2fAdx

Adr′ + fAdx
AfBdx

B + hABdx
AdxB. (4.28)

And thus

h′AB =hAB + fAfB. (4.29)
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We can now easily see that h′AB has the above form by

h′ABh
′BC =(hAB + fAfB)

(
hBC − fBfC

ψ2

)
(4.30)

=δCA − hAB
fBfC

ψ2
+ hBCfAfB − fAfBf

BfC

ψ2
(4.31)

=δCA − fAf
C

ψ2
+ fAf

C − F 2fAf
C

ψ2
(4.32)

=δCA − fAf
C

ψ2
+

(1 + F 2)fAf
C

ψ2
− F 2fAf

C

ψ2
(4.33)

=δCA . (4.34)

Lemma 4.3.8. (Relation of the metric determinants)
Let | · | denote the determinant of the respective metric, then for the setting
above

|h′| = ψ2|h| = ψ2|g|. (4.35)

Proof. This proof is also a straightforward computation using the two di-
mensional Levi-Civita symbol εAB.

|h′| =εACεBDh′ABh′CD (4.36)

=εACεBD(hAB + fAfB)(hCD + fCfD) (4.37)

=|h|+ 2εACεBDhABfCfD, (4.38)

where in the last equality εACεBDfAfBfCfD vanishes since εAC is anti-
symmetric and fAfC is symmetric. So

|h′| =|h|+ |h|hCDfCfD︸ ︷︷ ︸
F 2

(4.39)

=ψ2|h|. (4.40)

The next goal is to express the null expansion scalar θ′ = H ′ ± p′ in terms
of geometrical objects on R and the graph function f .
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Lemma 4.3.9. (p′ and H ′ in terms of f and quantities on R)
The mean curvatures p of R and p′ of S satisfy the following relation

p′ =
p

ψ
− ψ∆Rf − hABfB∂A

1

ψ
(4.41)

where ∆R denotes the Laplacian on the reference surface R. Furthermore
H ′ is given by

H ′ = K − 1

ψ2
Kijg

ikgjl(δkr − fAδAk)(δlr − fBδBl) (4.42)

for K = gijKij .

Proof. Recall that the metric on N has the form (4.26) in these coordinates.
Then from the condition gijmimj = 1 it is clear that the unit normal on
R is given by mi = δri where mr denotes the component in the r-direction.
The unit normal on S is m′

i =
1
ψ
∂r′

∂xi
= 1

ψ (δri − fAδiA), which is also easily

checked by gijm′
im

′
j =

1
ψ2ψ

2 = 1. The mean curvature on S then reads

p′ =∇im
′i =

1√
|g|
∂i

[√
|g|gij 1

ψ
(δrj − fAδAj)

]
(4.43)

=
1√
|h|
∂r

√
|h|
ψ

− 1√
|h|
∂A

(√
|h|hABfB
ψ

)
(4.44)

=
p

ψ
+ ∂r

1

ψ︸︷︷︸
=0

− 1√
|h|
∂A

(√
|h|hABfB
ψ

)
(4.45)

=
p

ψ
− 1

ψ
∆Rf − hABfB∂A

1

ψ
. (4.46)

Next we calculate H ′:

H ′ =(gij −m′im′j)Kij (4.47)

= gijKij︸ ︷︷ ︸
=:K

−Kijm
′im′j (4.48)

=K − 1

ψ2
Kijg

ikgjl(δkr − fAδAk)(δlr − fBδBl) (4.49)

With the previous results we can now write the null expansion as a quasi-
linear elliptic operator θ acting on a function f .
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Definition 4.3.10. (Null expansion operator)
For a surface S represented by a graph function f on a reference surface R
we define the null expansion operator by

θ[f ] =
p

ψ
− 1

ψ
∆Rf − hABfB∂A

1

ψ
+ (4.50)

+K − 1

ψ2
Kijg

ikgjl(δkr − fAδAk)(δlr − fBδBl)

where K = gijKij .

Theorem 4.3.11. (Null expansion as quasi-linear elliptic operator)
The null expansion operator is quasi-linear and elliptic. For a surface S
represented by a graph f the following holds.

θ(S) = θ[f ] (4.51)

Proof. Comparing the definition of θ[f ] with Lemma 4.3.9 immediately yields

θ[f ] = p′ +H ′ (4.52)

showing the equality θ(S) = θ[f ]. It remains to prove that θ[f ] is indeed a
quasi-linear elliptic operator as in Definition 4.3.5. The only second order
terms we have to check to ensure quasi-linearity are

• 1
ψ2∆Rf = 1

ψ2h
ABfAB and

• hABfB∂A
1
ψ .

Here ψ is a function of first order derivatives of f as can be seen from
Definition 4.3.2. Thus the first term is clearly quasi-linear. For the second
term a short calculation is required.

hABfB∂A
1

ψ
=− ψ−2hABfB∂Aψ (4.53)

=− 1

2
ψ−2hABfB∂A

√
1 + fCfC (4.54)

=− 1

2
ψ−3hABfB∂A

(
fCfC

)
(4.55)

=− 1

2
ψ−3hABfB

(
fCA fC + fCfCA

)
, (4.56)

where fCA = ∂C∂Af . This is also clearly quasi-linear second order.
Concerning ellipticity we can view equation (4.50) as a Laplacian perturbed
by terms containing f and its derivatives up to second order. Choosing
the reference surface R close enough to S ensures that f, fA and fAB are
sufficiently small and such that θ[f ] is elliptic. Generally speaking (4.50)
is a ”prescribed mean curvature equation”, which are treated in detail in
[15].
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To conclude this section we finally prove Theorem 4.3.1.

Proof. Let N be a spacelike hypersurface passing through the point p as
described in the theorem. Choose a spacelike reference surface R ∈ N close
to p and represent the spacelike intersections S1 := N1 ∩ N and S2 :=
N2∩N as graphs of the functions f1 and f2 on R, respectively. If necessary
shrink N such that Si are close enough to R. From the assumptions in the
theorem we know the following:

• f1 ≤ f2 (because N1 lies to the future of N2)

• f1(p) = f2(p)

• θ[f2] ≤ θ[f1] by assumption and Theorem 4.3.11.

Thus we can apply Corollary 4.3.6 to find f1 = f2 and hence S1 = S2.
Furthermore let l+i be the outward pointing null normal of Si, then the null
hypersurfaces Ni are locally obtained by the exponentional map acting on
l+i . We can write the null normal as l+i = n +mi where n is the timelike
unit normal to N and mi the unit normal to Si in N . We see that since
f1 = f2 and S1 = S2 also m1 = m2 and hence l+1 = l+2 . It follows that N1

and N2 agree near p and this common hypersurface has null mean curvature
θ = 0 since by assumption θ2 ≤ 0 ≤ θ1.
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Chapter 5

MOTS in De Sitter
Spacetime

In this chapter we study MOTS specifically in 4-dimensional de Sitter space-
time. Consider the vacuum Einstein equations with positive cosmological
constant Λ

Ḡµν = −Λḡµν . (5.1)

Then 4-dimensional de Sitter spacetime is defined as the solution to the
above equation which in local coordinates can be written as

M =
(
−π
2
,
π

2

)
× S3, ḡ = cos−2(t)(−dt2 + dS2

3) (5.2)

where dS2
3 denotes the round metric on the 3-sphere.

Before investigating MOTS we investigate why the singularity theorems fail
for de Sitter spacetime. First we state both classical singularity theorems
regarding timelike and null geodesic incompleteness. An overview of these
theorems can be found in e.g. [22].

Theorem 5.1. (Penrose singularity theorem)
Let (M , ḡ) be a spacetime such that

1. R̄µνx
µxν ≥ 0 for all null vectors x, i.e., the null energy condition holds.

2. there is a non-compact Cauchy surface C, and

3. there is an achronal trapped surface S.

Then M is future null geodesically incomplete.

Condition 2. is not satisfied in de Sitter spacetime because every spacelike
Cauchy surface is compact and timelike/null hypersurfaces contain causal
curves (see Definition 2.3.4) .
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Theorem 5.2. (Hawking singularity theorem)
Let (M , ḡ) be a spacetime such that

1. R̄µνx
µxν ≥ 0 for all timelike vectors x, i.e., the strong energy condition

holds

2. there is a compact spacelike Cauchy surface C in M , with

3. its mean curvature vector Hµ everywhere past pointing timelike.

Then M is future timelike geodesically incomplete.

This theorem does not apply because the strong energy condition does not
hold, which can be seen from the following calculation. First we take the
trace of equation (5.1), yielding

ḡµνR̄µν −
1

2
R̄ḡµν ḡµν =− Λḡµν ḡµν . (5.3)

Using ḡµν ḡµν = 4 we get

R̄− 2R̄ =− 4Λ. (5.4)

And so

Λ =
1

4
R̄. (5.5)

Now let x ∈ TM be a timelike vector and use the Einstein equations (5.1)
to calculate

R̄µνx
µxν =

(
1

2
R̄ḡµν − Λḡµν

)
xµxν (5.6)

=

(
1

2
R̄− Λ

)
ḡµνx

µxν =
1

4
R̄ḡµνx

µxν < 0. (5.7)

The inequality holds because de Sitter spacetime has constant positive cur-
vature (R̄ > 0) and x is timelike by assumption.

Since the remainder of this chapter is dedicated to MOTS in de Sitter space-
time the question arises why there are trapped surfaces but no singularities
in M . Intuitively this can be explained by the positive cosmological con-
stant which is responsible for an accelerated expansion of spacetime. This
expansion counteracts the convergence of geodesics prohibiting the forma-
tion of a singularity.

We proceed with the study of MOTS in de Sitter spacetime. For the remain-
der of this chapter we fix n = 4 and Λ = 3. To find MOTS S with induced
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metric hAB in spacelike slices N = {t = const.}, we need to calculate the
null expansion scalars

θ± = H ± p = hABKAB ± p. (5.8)

First we derive a useful alternative expression for the second fundamental
form on N .

Lemma 5.3. (Second fundamental form for foliation with vanishing shift)
Let N = {t = const.} be a leaf in a spacetime foliation with induced metric
g, normal vector n and lapse N as in section 2.4. Furthermore assume the
foliation has vanishing shift vector Nα = 0. Then the second fundamental
form Kij on N can be written as

Kij =
1

2N

d

dt
gij . (5.9)

Proof. First we calculate as in [5] equation (2.52)

Kµν = h α
µ h β

ν ∇αnβ (5.10)

= (δ α
µ + nµn

α)(δ β
ν + nνn

β)∇αnβ (5.11)

= (δ α
µ + nµn

α)δ β
ν ∇αnβ (5.12)

= ∇µnν + nµn
α∇αnν (5.13)

where we used the identity nµ∇νnµ = 0. Recall the action of the Lie deriva-
tive in direction of a vectorfield X on the metric g and an arbitrary vector-
field V

• LXgµν = 2∇(µXν)

• LXV
µ = Xσ∇σV

µ + V σ∇σX
µ.

Also note that the metric on N can be decomposed as

gµν = ḡµν + nµnν . (5.14)

With this in mind we can calculate the Lie derivative of g:

Lngµν = Ln(ḡµν + nµnν) (5.15)

= 2∇(µnν) + nµLnnν + nνLnnµ (5.16)

= 2(∇(µnν) + n(µn
σ∇σnν)) (5.17)

= 2Kµν , (5.18)

where the last equality holds because Kµν is symmetric. The result now
follows from a calculation that can be also be found in [23] as equation

53



E.2.30,

Kµν =
1

2
Lngµν (5.19)

=
1

2

(
nσ∇σgµν + gµσ∇νn

σ + gσν∇µn
σ
)

(5.20)

=
1

2
N−1

[
Nnσ∇σgµν + gµσ∇ν(Nn

σ) + gσν∇µ(Nn
σ)
]

(5.21)

=
1

2
N−1g σ

µ g γ
ν

(
Ltgσγ − LNgσγ

)
(5.22)

=
1

2
N−1

(
d

dt
gµν −∇µNν −∇νNµ

)
. (5.23)

The last two terms are zero since Nµ = 0 by assumption, yielding

Kµν =
1

2N

d

dt
gµν . (5.24)

By similar reasoning as in Remark 3.1.5 we get

Kij =
1

2N

d

dt
gij . (5.25)

Lemma 5.4. (Second fundamental form on N for de Sitter spacetime)
In de Sitter spacetime the second fundamental form on spacelike slices
N = {t = const.} reads

Kij =
sin t

cos2 t

(
dS2

3

)
ij

(5.26)

Proof. Comparing the definition of the lapse in equation (2.4) with the met-
ric (5.2) yields N = cos−1(t). It is obvious that the foliation has vanishing
shift and the result follows immediately from Lemma 5.3, i.e.,

Kij =
1

2
cos t

d

dt
gij =

1

2
cos t

2 sin t

cos3 t

(
dS2

3

)
ij

(5.27)

=
sin t

cos2 t

(
dS2

3

)
ij
. (5.28)

This explicit form is key to the calculations which are the contents of the
following sections.
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5.1 Spherical MOTS in de Sitter Spacetime

We choose spherical coordinates for g on N = {t = const.}:

gijdx
idxj =cos−2 t

(
dψ2 + sin2 ψ(dζ2 + sin2 ζdϕ2)

)
, (5.29)

ψ ∈ [0, π], ζ ∈ [0, π], ϕ ∈ [0, 2π). (5.30)

The volume element is then given by

√
g :=

√
det gij =

sin2 ψ sin ζ

cos3 t
. (5.31)

We can now investigate the null expansion scalars for 2-surfaces S given by
{ψ = const.} ⊂ N in order to find MOTS. On such surfaces the induced
metric reads

hAB = cos−2 t
(
dS2

2

)
AB

, (5.32)

where dS2
2 denotes the standard metric on the 2-sphere. Recall the curvature

form of the null expansions scalars (3.1.10)

θ± = hABKAB ± p. (5.33)

We first calculate the mean curvature p. The unit outward normal of S in
N takes the form m = (cos t, 0, 0). Then

p = ∇im
i =

1
√
g
∂i
(√
gmi

)
(5.34)

=
cos3 t

sin2 ψ sin ζ
∂ψ

(
sin2 ψ sin ζ

cos3 t
cos t

)
(5.35)

=
cos3 t

sin2 ψ sin ζ

2 sinψ cosψ sin ζ

cos2 t
(5.36)

=
2 cos t cosψ

sinψ
(5.37)

= 2 cotψ cos t. (5.38)

Now we calculate the first term in equation (5.33). First we project Kij

onto the surface S to get KAB in the following manner

h i
a h

j
b Kij =

sin t

cos2 t

(
dS2

2

)
ab
, (5.39)

hence

KAB =
sin t

cos2 t

(
dS2

2

)
AB

. (5.40)
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Where h i
a = hijhaj =

(
dS2

2

) i

a
. Next we contract KAB with the metric on

S to yield H

H = hABKAB =cos2 t
sin t

cos2 t

(
dS2

2

)AB (
dS2

2

)
AB

(5.41)

=δAA sin t (5.42)

=2 sin t. (5.43)

Combining the previous calculations yields the following equation for the
null expansion scalars:

θ± = ±2 cotψ cos t+ 2 sin t (5.44)

For the surface to be marginally outer trapped the null expansion w.r.t. the
outward direction has to be zero. In this case both θ± = 0 yield MOTS as
per Remark 3.1.3. In the first case θ+ = 0, we calculate

2 cotψ cos t+ 2 sin t = 0 (5.45)

− cotψ =
sin t

cos t
(5.46)

cotψ =− tan t (5.47)

ψ =t+
π

2
. (5.48)

For the other case (θ− = 0), similarly we get

ψ = −t+ π

2
. (5.49)

We next picture the situation in the conformal completion of de Sitter (see
4.1.1). It is apparent that the MOTS travel ”outward” in the conformal
completion as t increases. Recall that the time evolution of MOTS is called
a marginally outer trapped tube (MOTT). They are depicted in the figure
below.
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ψ = π
2

T − : θ− = 0

π
6

R−

−π
2

0

π
2

ψ = π
2

T + : θ+ = 0

R+

Figure 5.1: MOTTs T ± and marginally outer trapped regions R± in com-
pactified de Sitter spacetime.

In this picture two dimensions are suppressed, a circle {t = const.} rep-
resents a 3-sphere and two antipodal points a 2-sphere. The equator at
(t = 0, ψ = π/2) satisfies both (5.48) and (5.49) and is therefore a marginally
trapped surface. Marginally outer trapped regions R± are defined as com-
pact hypersurfaces R± with ∂R± = S±, where S± is a MOTS (analogously
to Definition 4.2.2). The ”outward” traveling of MOTS in the picture above
intuitively looks like the surfaces are shrinking and converging to a single
point on the north pole and south pole respectively at t = π/2. This is how-
ever an artifact of the conformal completion, how this looks in the physical
metric is demonstrated in the figure below.
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Figure 5.2: MOTS for different times[20]

The figure depicts cross-sections of 3-spheres growing in size with t in de
Sitter spacetime. At the neck ({t = 0}) the MOTS lies on the equator. The
size of the MOTS stays constant and counteracts the growth of the 3-spheres
by traveling toward the poles. This can be seen by explicitly calculating the
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area of MOTS S for θ+ = 0 as

vol(S) =

ˆ
S

√
h =

ˆ π

0

ˆ 2π

0

sin2 ψ sin ζ

cos2 t
dζdϕ (5.50)

=2π
sin2 ψ

cos2 t

ˆ π

0
sin ζdζ (5.51)

=4π
sin2 ψ

cos2 t
(5.52)

=4π
sin2(t+ π

2 )

cos2 t
(5.53)

=4π
cos2 t

cos2 t
(5.54)

=4π, (5.55)

where we used equation (5.32) to calculate
√
h and equation (5.48) to sub-

stitute for ψ since S is a MOTS. Clearly vol(S) does not depend on t and
equals the usual volume of 2-spheres. Note that the case θ− works analo-
gously since cos2 (−t) = cos2 t.

Next we investigate the existence and visibility of weakly trapped surfaces
in the spherical foliation in the context of Theorem 4.2.1. Note that the
global conditions of the theorem are fulfilled for the conformal completion
at hand. The crucial aspect is the choice of the set A, specifically when
J+(A, M̃ ) does not contain all of S +, the theorem asserts that there are no

weakly trapped surfaces in J+(A, M̃ ) ∩ I−(S +, M̃ ). Choosing A as either
MOTS S±

t := {t, ψ = ±t + π/2} for any t > 0, the causal future of A does
not contain all of S +, except for t = 0. Thus the theorem can be applied
for S±

t for any t > 0. Therefore there are no weakly trapped surfaces in

J+(A, M̃ )∩I−(S +, M̃ ). This is in accordance with our findings since none
of the MOTS are weakly trapped surfaces except at t = 0 (see figure 5.1).

The theorem does not apply at t = 0, because J+(S+
0 , M̃ ) contains all of

S + as mentioned before.

We can also study the visibility of marginally outer trapped regions in the
context of Theorem 4.2.3. Similarly to the previous paragraph the global
conditions are satisfied. The marginally outer trapped region R−

t at time t
corresponding to the MOTS S−

t is given by ψ ∈ [0, ψ−] where ψ− = t+π/2,
in accordance with equation (5.49). The marginally outer trapped region for
the other direction R+

t works analogously and they clearly exist for all times
t. However, this does not contradict the theorem since the causal future of
every MOTS does not contain an entire marginally outer trapped region, as
is clear from figure 5.1.
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Furthermore, we can illustrate that the marginally outer trapped regions do
not contain trapped surfaces with the following figure.

Figure 5.3: θ± depending on t ∈ (−π/2, π/2) and ψ ∈ (0, π). The green
surface depicts the 0-plane, the blue surface θ+ and the orange θ−.

MOTS are found at the intersection of either θ+ or θ− with the green sur-
face. Both θ± = 0 at (t = 0, ψ = π/2), as in figure 5.1. Recall a surface is
trapped if both θ± < 0, which is the case where the green surface is visible.
This is the only zone not covered by marginally outer trapped regions. It
is also apparent that the respective null expansions of the marginally outer
trapped regions are positive inside the region and negative outside (this is
also explicitly calculated in the proof of Theorem 5.1.1 below).

Lastly, we investigate the stability of the spherical MOTS. If they were
stable the marginally outer trapped regions would contain trapped surfaces.
Since there are no trapped surfaces within a marginally outer trapped region
R± we expect all respective MOTS to be unstable, which holds true by the
following theorem.
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Theorem 5.1.1. (Stability of spherical MOTS)
MOTS of spherical topology in the foliation (5.29) of de Sitter spacetime
are unstable.

Proof. Recall Definition 3.3.7, saying that a MOTS S is stable if there exists
a function ψ ≥ 0 with ψ ̸≡ 0 on S such that

δψvθ
± ≥ 0, (5.56)

for a vector v normal to S and satisfying vµl
µ
± = 1. Since ψ ≥ 0 and v is

directed outwards of the region R± (because of the condition vµl
µ
± = 1), ψv

is also directed outwards. To satisfy equation (5.56) the null expansion has
to be positive close to the MOTS S± but also outside of R±. We can check
the sign of θ± close to S± by differentiating (5.44) with respect to ψ.

∂θ+

∂ψ
=− 2 cos t

sin2 ψ
< 0, since cos t > 0 for all t (5.57)

∂θ−

∂ψ
=
2 cos t

sin2 ψ
> 0 (5.58)

Since θ± = 0 on ∂R± = S±, this implies the respective null expansion
θ± is positive inside the marginally outer trapped regions R± and negative
outside. This is also illustrated by figure 5.3. However this contradicts
equation (5.56) and thus concludes the proof.

5.2 Toroidal MOTS in de Sitter Spacetime

In this section we extent our analysis to MOTS in de Sitter of toroidal
topology. To this end we introduce the following coordinates on N = {t =
const.}

gijdx
idxj =cos−2(t)

(
dτ2 + sin2 τdψ2 + cos2 τdϕ2

)
, (5.59)

τ ∈ [0, π/2], ψ, ϕ ∈ [0, 2π). (5.60)

The metric on the 2-Surfaces S = {τ = const.} reads

hAB = cos−2 t
(
dT 2

2

)
AB

, (5.61)

where
(
dT 2

2

)
denotes the metric on the 2-torus. We again need to calculate

both terms of the null expansions scalars in equation (5.33). Starting with
the mean curvature, the unit outward normal of S in N takes the form
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m = (cos t, 0, 0). Using the volume element g = sin2 τ cos2 τ
cos3 t

we can calculate

p = ∇im
i =

1
√
g
∂i
(√
gmi

)
(5.62)

=
cos3 t

sin τ cos τ
∂τ

(
sin τ cos τ

cos3 t
cos t

)
(5.63)

=
cos3 t
1
2 sin 2τ

∂τ

(
1
2 sin 2τ

cos3 t
cos t

)
(5.64)

=
cos3 t

sin 2τ
· 2 cos 2τ

cos2 t
(5.65)

=
2 cos t cos 2τ

sin 2τ
(5.66)

= 2 cos t cot 2τ. (5.67)

Next we calculate the second term in (5.33). The second fundamental form
of S reads KAB = sin t

cos2 t

(
dT 2

2

)
, which is obtained by a similar calculation as

in the spherical case in (5.39). We proceed with the calculation to obtain

hABKAB = cos2 t
sin t

cos2 t
δAA︸︷︷︸
2

= 2 sin t. (5.68)

Combining the previous results yields

θ± = H ± p = 2(± cos t cot 2τ + sin t). (5.69)

Finally the toroidal MOTS w.r.t. the l+-direction (i.e. θ+ = 0) are then
parametrized by

cot 2τ = − tan t (5.70)

⇒ t = 2τ − π

2
, (5.71)

and w.r.t. the other direction (θ− = 0) by

t = 2τ +
π

2
. (5.72)
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Figure 5.4: MOTT T − : θ− = 0 with two dimensions suppressed. Four
points at equal times along T − represent a torus, the red dotted lines in-
dicate marginally outer trapped regions R− and the future lightcone of the
MOTS at t = π/6 is drawn in gray.

63



π
6

π
4

0

t = π
2

τ = π
2

π
4

π
4 3π

8
3π
8

π
3

π
3

π
6
π
6

T +

R+
0

J+
(
S+
π/6

)

l+ l+

Figure 5.5: MOTT T + : θ+ = 0 similarly to the previous figure. Dotted red
lines indicate marginally outer trapped regions R+ and the future lightcone
of the MOTS at t = π/6 is drawn in gray.
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For T + the marginally outer trapped region R+
t corresponding to each

MOTS at time t is given by τ ∈ [0, τ+], where τ+ = t/2+π/4 in accordance
with equation (5.71). Similarly the marginally outer trapped regions R−

t for
T − are given by τ ∈ [τ−, π/2] for τ− = t/2− π/4.

We can now, similarly to the previous section, apply Theorem 4.2.1 and
Theorem 4.2.3. A similar analysiscan be found in [6]. The global conditions

in the theorem are again fulfilled, the crucial issue is whether J+(A, M̃ )
contains all of S +. However, A can still be chosen freely, in particular as a
MOTS. The first theorem, concerning the existence of weakly trapped sur-
faces, works similarly to the spherical case. The only weakly trapped surface
exists at t = 0, however the causal future of the MOTS S±

0 contains all of
S + and the theorem does not apply.

Regarding Theorem 4.2.3 we first consider marginally outer trapped regions
R+
t corresponding to T +. The marginally outer trapped regions associ-

ated with T − work analogously. Let S+
t be the MOTS in the timeslice

{t = const.}. When the set A is chosen to be the initial MOTS S+
0 , al-

ready every slice t ≥ π/4, in particular S + (i.e. {t = π/2}), is contained

in J+(S+
0 , M̃ ). Thus the theorem cannot be applied, which is consistent

with our findings since marginally outer trapped regions exist for all times.
The earliest MOTS where its causal future does not contain all of S + is
given on the timeslice t = π/6, as can be seen in Figure 5.5. Choosing this
MOTS as the set A, at first glance seems to contradict the theorem, since it
can be applied and states no weakly outer trapped regions are contained in
J+(S+

π/6, M̃ ) ∩ I−(S +, M̃ ). But we know that there are marginally outer

trapped regions for all times, in particular for timeslices after t = π/6.
However no timeslice to the future of the MOTS at t = π/6 is completely

contained in J+(S+
π/6, M̃ ), especially no marginally outer trapped region.

This can easily be seen as each marginally outer trapped region contains the
set τ = 0 which is not included in the causal future of any MOTS S+

t for
t > π/6, as is clear from figure 5.5. This is again consistent with Theorem
4.2.3.

An analogous statement to Theorem 5.1.1 on stability holds here.

Theorem 5.2.1. (Stability of toroidal MOTS)
MOTS of toroidal topology in the foliation (5.29) of de Sitter spacetime are
unstable.

65



Proof. The proof works completely analogous to Theorem 5.1.1. The deriva-
tives of θ± with respect to τ read

∂θ+

∂τ
=− 4 cos t

sin2 2τ
< 0 (5.73)

∂θ−

∂τ
=

4 cos t

sin2 2τ
> 0. (5.74)

Which concludes the proof by the same reasoning as in the spherical case.

The sign of θ± inside and outside the marginally trapped outer regions is
illustrated in the figure below.

Figure 5.6: θ± depending on t ∈ (−π/2, π/2) and τ ∈ (0, π/2). The green
surface depicts the 0-plane, the blue surface θ+ and the orange θ−.

This figure is very similar to Figure 5.3 and the same conclusions can be
drawn with the only exception that both θ± = 0 now at (t = 0, τ = π/2).
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Abstract

In this thesis we study the theory of marginally outer trapped surfaces (or
MOTS, for short) and their visibility. A closed spacelike surface in a space-
time (M , g) is called trapped if both congruences of normal (future directed)
null geodesics are converging. If M contains such a trapped surface, satis-
fies the null energy condition and admits a non-compact Cauchy surface the
spacetime is singular by Roger Penrose’s classical singularity theorem[19].
Trapped surfaces mark the point of no return when a singularity forms as
the result of a gravitational collapse. MOTS are a generalisation of trapped
surfaces, in the sense that only one of the congruences has zero convergence.
As such they are an integral part in the mathematical study of black holes.

In the first part of this thesis we review some of the Lorentzian geometry
needed and then delve into the theory of marginally outer trapped surfaces.
There, several important notions such as the stability of MOTS and the
closely related minimal surfaces are explored. Afterwards we present visibil-
ity theorems regarding MOTS in asymptotically de Sitter spacetimes based
on the recent work by Piotr T. Chruściel, Gregory J. Galloway and Eric Ling
[9]. The final part gives a detailed exposition of MOTS and their visibility,
specifically in de Sitter spacetime.

In summary, the present work serves as a basis for further investigations,
for example, in the field of MOTTs (Marginally Outer Trapped Tubes).
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Zusammenfassung

In dieser Arbeit untersuchen wir die Theorie der marginal nach außen gefan-
genen Flächen (kurz MOTS) und deren Sichtbarkeit. Eine geschlossene rau-
martige Fläche in einer Raumzeit (M , g) wird als gefangen bezeichnet, wenn
beide Scharen von normalen zukunftsgerichteten Nullgeodäten konvergieren.
Wenn M eine solche gefangene Fläche enthält, die Null-Energie-Bedingung
erfüllt und eine nicht-kompakte Cauchy-Fläche zulässt, ist die Raumzeit sin-
gulär - das ist die Aussage des klassischen Singularitätstheorems von Roger
Penrose [19]. Bildet sich als Folge eines Gravitationskollapses eine Singu-
larität, begrenzen gefangene Flächen den Punkt ohne Wiederkehr. MOTS
dienen als Verallgemeinerung der gefangenen Flächen und sind somit ein
integraler Bestandteil der mathematischen Theorie schwarzer Löcher.

Im ersten Teil dieser Arbeit geben wir einen Überblick über die benötigten
Themen der Lorentzsche Geometrie und vertiefen uns dann in die Theorie
der MOTS. Dort werden wichtige Begriffe wie die Stabilität von MOTS und
die der eng verwandten Minimalflächen behandelt. Anschließend stellen
wir Sichtbarkeitstheoreme bezüglich MOTS in asymptotischen de Sitter-
Raumzeiten vor, die auf einer neuen Arbeit von Piotr T. Chruściel, Gregory
J. Galloway und Eric Ling beruhen [9]. Der letzte Teil ist eine ausführliche
Darstellung von MOTS und ihrer Sichtbarkeit speziell in der de Sitter Raumzeit.

Zusammenfassend dient die vorliegende Arbeit als Grundlage für weitere
Untersuchungen, zum Beispiel auf dem Gebiet MOTTs (Marginally Outer
Trapped Tubes).
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