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Today’s most precise optical instruments—gravitational-wave interferometers and optical atomic clocks—rely on long
storage times for photons to realize their exquisite sensitivity. Optical fiber technology is the most widely deployed plat-
form for realizing long-distance optical propagation. Yet, its application to precision optical measurements is sparse. We
review the state of the art in the noise performance of conventional (solid-core) optical fibers from the perspective of pre-
cision optical measurements and quantum technology that rely on precise transfer of information over long distances.
In doing so, we highlight the limitations of this platform and point to the opportunities that structured fiber technology
offers to overcome some of these limitations.
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1. INTRODUCTION

An ancient material—sand—underlies much of the technological
prowess of the modern world. In particular, the information age
that we live in is enabled by the fact that ultra-pure fused silica can
sustain ultra-low-loss optical propagation [1,2]. A century-long
pursuit in ceramic science and glass technology [3–6], together
with theoretical understanding of optical loss mechanisms in these
materials [1,7], has resulted in optical fibers limited only by intrin-
sic losses as low as ≈ 0.14 dB/km (at a wavelength of 1.55 µm)
[8]. Together with the laser, low-loss optical fibers enable the
delivery of highly coherent radiation across large distances.

Indeed, optical loss is a convenient figure of merit to gauge
the maturity of an optical technology and a relevant one for its
application in both classical and quantum technologies. Today’s
most precise measurements—incidentally, of space [9,10] and
time [11,12], at a precision around one part in 1020—are car-
ried out using ultra-low-loss optical interferometers. Low loss in
these interferometers leads to less optical quantum noise thereby
improving their sensitivity [13]. In optical quantum networks
the effect of loss is two-fold: loss of photons that carry quantum
information and/or losses in the classical communication channel
required to complete a quantum communication protocol both
limit the fidelity of communication [14]. In both cases, reduction

of losses and extraneous noise are central to the scientific goals they
serve.

On one hand, state-of-the-art free-space Fabry–Perot
interferometers—such as the ones employed in Advanced LIGO
or as references in optical atomic clocks—realize losses as low as
≈10 ppm/km [15], which is apparently three orders of magnitude
lower than the state-of-the-art loss of contemporary solid-core
optical fibers [8,16]. This is possible since photons interact only
occasionally with lossy mirror surfaces. On the other hand, losses
in the few-micrometer-thick mirror coatings of interferometer cav-
ities can be as large as several tens of dB/km, orders of magnitude
worse than the pristine fused silica core of an optical fiber.

In an optical fiber, precisely because the optical field lives in a
medium, physical processes in the medium induce optical noises
and nonlinearities that preclude the use of high powers to over-
come the limitations posed by the already miniscule losses. It is in
this context that structured optical fibers seem to offer a unique
opportunity: structuring of the core offers a new degree of freedom
that allows independent engineering of optical noises and losses.
In fact, just last year, a structured fiber with loss comparable to a
solid core was demonstrated [17]. Figure 1 depicts the dramatic
progress in the reduction of optical loss achieved in structured
fibers in recent years, while solid-core fiber technology seems to
be limited by 40 years of incremental improvement. Thus, the
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Fig. 1. Evolution of fiber attenuation for solid- (red) and hollow-core
fibers (blue) for wavelengths in the telecom C-band (lines to guide the
eye). Solid-core fibers improved from about 10 dB/km (1973) [18],
0.2 dB/km (1979) [19], 0.154 dB/km (1986) [20], 0.15 dB/km (2002)
[21], 0.149 dB/km (2013) [22], and 0.1467 dB/km (2015) [23] to finally
0.1419 dB/km (2017) [8,16]. Initial losses in hollow-core photonic
bandgap fibers (HC-PBGF) of 1.72 dB/km (2004) [24] and 1.2 dB/km
(2005) [25] were significantly reduced over the last years by use of nested
antiresonant nodeless fibers (NANF) down to 0.65 dB/km (2019) [26],
0.28 dB/km (2020) [27], and even 0.174 dB/km (2022) [17]. While for
solid-core fibers, the improvements slowly converge towards the theoreti-
cal minimum governed by Rayleigh scattering, HCFs and in particular
antiresonant fibers show rapid development and might surpass solid core
fibers in the near future.

question of whether optical fiber technology, given its mature state,
can supplant or supplement the conventional platforms employed
in precision and quantum measurements needs a fresh appraisal.

We first review the primary limitations of solid-core optical
fibers as it pertains to applications in precision optical sensing,
including the effect of optical noises and nonlinearities. We then
discuss the state of knowledge of these same factors in structured
optical fibers, and highlight opportunities for further research into
their properties. Given the obvious practical advantage of optical
fibers over free-space optical links—immunity to electromagnetic
interference, single-mode performance, and ease of deployment—
we expect that a careful study of the optical noise properties of
structured fibers may renew interest in the application of optical
fibers to precision quantum sensing and communication.

To quantify the performance of large optical fiber interferom-
eters, and ultimately be able to compare them to their free-space
counterparts, a simple Mach–Zehnder interferometer (MZI) is
considered (Section 2). We work out all known relevant sources of
intrinsic noise in an optical fiber that can affect the performance
of such an interferometer. In particular, we review a panoply of
noises intrinsic to optical fibers (Section 3) including scattering
processes, thermodynamic noises, and noises due to nonlinear
optical processes. We then briefly survey the major extrinsic sources
of noise (Section 4) that affect all fiber interferometers, including
environmental perturbations and noise arising from the input
optical field. The results we derive for this concrete example can be
easily transferred to other topologies and applications that rely on
phase coherence.

2. OPTICAL FIBER MACH–ZEHNDER
INTERFEROMETER

We consider the MZI shown in Fig. 2: a fiber coupler (FC) splits
the incoming light field—prepared in a pure polarization state

of the form E(t)= p0 E0exp(iω0t), with unit polarization p0,
amplitude E0, and angular frequency ω0—into two branches of
lengths L1 and L2 before they are recombined at a second FC.
This simple choice already discounts the spatial mode of the field,
whose potential distortions in the fiber are not of interest to us. The
outputs of the second FC are directed to a pair of photosensitive
detectors whose output photocurrents are subtracted and recorded.
To consider the possibility of heterodyne detection, one of the arms
of the interferometer carries an ideal modulator, which shifts the
frequency of light in that arm byωh .

It can be shown [see Supplement 1] that the optical power
falling on the two detectors A/B is

PA,B (t)= P0 R A,B (1± VA,B cos η cos[ωh t + φ(t)]), (1)

where P0 ∝ |E0|
2 is the power sent into the interferometer. The

splitting ratios of the two FCs and the losses along each arm are
captured by R A,B , describing the transmissivity of each arm of
the interferometer, and VA,B , which is the ideal (perfect polari-
zation overlap) interference visibility as measured by detectors
A/B . Note that in general, R A 6= RB and VA 6= VB . The angle
between the polarization states of light (in the Poincaré sphere, see
Supplement 1) before they enter the combining FC is given by 2η,
while φ(t)= φ̄ + δφ(t) is the phase difference between the two
arms, consisting of a mean phase offset φ̄—possibly due to a length
mismatch between the two arms—and a fluctuating phase δφ—
consisting of the signal of interest, riding atop extraneous phase
fluctuations from the interferometer. The difference photocurrent
ultimately recorded is proportional to PA − PB . Thus, Eq. (1)
suggests that noise in the photocurrent is primarily due to apparent
fluctuations in the phase, polarization, and optical power in the
interferometer.

The precise manner in which these fluctuations are transduced
into the photocurrent depends on how the signal phase is extracted
[28–34]. The simplest and most sensitive is active homodyne
demodulation where the interferometer is maintained at quadra-
ture (i.e., φ̄ = π/2) using a feedback loop. For an interferometer
with a large difference in the mean length between the two arms,
this can be most easily achieved by controlling the laser frequency,
while for a nearly balanced interferometer, by controlling the
residual length difference. In either case, depending on the rel-
ative ratio of the extraneous noise in the phase quadrature and
environmental noise that drives the interferometer away from
the phase quadrature, the choice of gain of the feedback loop to
stabilize the interferometer will dictate where the signal of interest
is best extracted from. In the high-gain regime—necessary when
environment noise tends to destabilize the interferometer, and
there is no separation in frequency between the signal and extra-
neous noise—the signal is best extracted from inside the feedback
loop. In the complementary low-gain regime, the signal can be
extracted from outside the feedback loop [35]. In heterodyne
readout [32], the signal can be upconverted to frequencies around
the heterodyne local oscillator, thereby producing a convenient
frequency separation between the phase fluctuations and electronic
noise from the photodetection process. The price to pay is that
additional quantum noise in heterodyne readout makes it at least
3 dB less sensitive than homodyne readout [36,37].

In the ideal case of (balanced) homodyne detection, all noise
that obfuscates a phase signal of interest arises from various physi-
cal processes intrinsic to the optical fiber that produces apparent
phase and polarization noise. In the following, we tour the zoo of
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Fig. 2. Top panel shows a schematic fiber Mach–Zehnder interferometer probed by a noisy laser and perturbed by environmental noises (see Section 4).
In addition to these extrinsic sources of noise that affect the interferometer, the optical fiber is itself a source of a panoply of noises, depicted schematically
in the bottom panel (Section 3). The most important linear sources of intrinsic noise are shown in the first row and discussed in Section 3.A, while we break
down the nonlinear noise terms, shown in the second row, in Section 3.B. Thermodynamic phase noise, arising from a combination of mechanical and ther-
mal dissipation, is one of the main limitations in optical fiber interferometry and is especially important for long fibers at low (.1 kHz) Fourier frequencies
(Section 3.A.2). In addition, elastic scattering of light by transverse acoustic modes in the fiber, an effect known as guided acoustic-wave Brillouin scatter-
ing (GAWBS), leads to a very complex phase noise spectrum with resonances occurring already in the low MHz range and a behavior at low frequencies that
is not yet fully understood. Polarization noise in a fiber interferometer arises from birefringence fluctuations in either the fiber itself or the fiber connection
to the laser (Section 3.A.3). Rayleigh scattering, where light scatters off static density variations frozen into the fiber, becomes an important source of noise
for narrow-linewidth lasers (Section 3.A.1). For high input powers, nonlinear scattering effects, such as self- and cross-phase modulation (SPM/XPM), add
phase noise to the output signal, where the latter occurs only if multiple wavelengths are multiplexed into the fiber. Four-wave mixing (FWM) is also of par-
ticular importance for wavelength division multiplexing applications and introduces power losses depending on the phase matching between the involved
light fields. Finally, the inelastic scattering of photons from acoustic (stimulated Brillouin scattering, SBS) or optical (stimulated Raman scattering, SRS)
phonons restricts the transmittable power through an interferometer, where the former is the dominant source of nonlinear power loss (Section 3.B).

such noises. These include linear noise sources (Section 3.A)—
where the propagating optical field does not change the material
properties of the fiber—and nonlinear noise sources (Section 3.B).
Finally, we discuss some noises extrinsic to the fiber (Section 4),
which by dint of their insidious and ubiquitous character afflict all
applications of precision fiber interferometry.

3. INTRINSIC NOISES IN SOLID-CORE OPTICAL
FIBER INTERFEROMETRY

A. Linear Noise Sources

1. RayleighScattering

One of the most basic of optical noises in a waveguide is that due
to scattering from static surface roughness and density variations.
The interference of this randomly Rayleigh-scattered field with the
incident field can manifest as optical noise [38–41]. The magni-
tude of this noise depends on the interplay between the coherence
length of the light source and that of the density variations [39],
and the efficiency with which the scattered field is mode matched
with the incident one. In an optical fiber, only a small fraction of
the Rayleigh backscattered light is recaptured [38].

The main concern in a fiber Michelson interferometer is the
first order backscattering process, while Mach–Zehnder geom-
etries suffer from double Rayleigh backscattered (DRB) light. For
the MZI considered in this paper, the field at the end of each arm is
the sum of the incident (forward propagating) field and the DRB
field. Assuming that the polarization does not change along the

fiber (this represents the worst case scenario), the DRB field exiting
the i th arm is [41]

δE DRB
i (t)=

∫ L i

0
dz′

∫ z′

0
dzE0

(
t − τi −

2(z′ − z)n
c

)
× e−(

α
2+iβ)[L i+2(z′−z)]ρi (z′)ρi (z), (2)

where E0(t)≡ E0 exp(iδψ(t)) is the field at the entrance of the
MZI (with phase fluctuations δψ), L i = cτi/n the arm length
(with n the refractive index), and α, β respectively the power
attenuation (in units of m−1) and the propagation constant in
the fiber. The random field ρi (z) describes the fraction of light
randomly scattered per unit length at position z along the i th
fiber; it is modeled by a circular white Gaussian zero-mean process
(assumed to be uncorrelated between the two fiber arms) [39–41]:〈
ρ∗i (z)ρ j (z′)

〉
= αs Sδijδ(z− z′), where αs is the scattering cross

section and S the recapture efficiency. The field that subsequently
exits the MZI and illuminates the detectors A, B (see Fig. 2) are

E A,B (t)=
1

2
[E1(t)+ δE DRB

1 (t)] ±
1

2
[E2(t)+ δE DRB

2 (t)], (3)

where we have assumed that the entrance and exit couplers are
symmetric (the configuration that minimizes noise coupling), and
E i (t)= E0(t − τi ) exp[−( α2 + iβ)L i ] is the mean field exiting
the i th arm. With balanced detection, i.e., when the outputs of
the two detectors are subtracted with equal gain, the resulting
fluctuations in the homodyne photocurrent are
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δihom(t)∝ 2Re
[
E ∗1 (t)δE DRB

2 (t)+ E ∗2 (t)δE DRB
1 (t)

]
. (4)

Fluctuations in the photocurrent can be referred to apparent phase
noise. In the regime of interest—where the laser coherence time tc
is much longer than the light travel time in the arms—we estimate
the DRB phase noise spectrum as (see Supplement 1)

SDRB
φ (ω)=

5

9

(
αs S
2α

)2

(2αLmax + e−2αLmax − 1)
2tc

1+ (ωtc )2
.

(5)
Here, Lmax is the larger of the two arm lengths, and an extra factor
of 5/9 accounts for depolarization due to DRB [42]. Importantly,
the DRB-induced phase noise scales as 1/tc in the limit of laser
coherence time much longer than the observation time (which,
for state-of-the-art CW lasers [11,12], is ω& 2π · 20 mHz).
[Note that DRB in the input fiber lead can be assumed to add to the
relative intensity noise (RIN) for narrow-linewidth lasers [43,44].]

2. ThermodynamicPhaseNoises

The fact that the optical fiber is in thermal equilibrium at a tem-
perature T produces fundamental thermodynamic fluctuations in
its geometric and material properties that appear as apparent phase
noise.

Thermoconductive noise [45–49]. The dissipation of heat
in the fiber material causes apparent fluctuations in temperature.
Since the phase acquired by light passing through a medium of
(effective) refractive index n and length L is knL (k = 2π/λ is the
magnitude of the wave vector), temperature fluctuations can mani-
fest as apparent phase fluctuations via the temperature-dependent
expansion of the fiber, and via the temperature-dependent changes
in the refractive index. The resulting phase noise is [47]

STC
φ (ω)=

4π2L2

λ2

(
dn
dT
+ nαL

)2

SδT(ω), (6)

where,αL = (1/L) dL/dT is the temperature coefficient of length
expansion.

The apparent temperature noise SδT follows from the fluc-
tuation dissipation theorem [50,51] (FDT). The so-called
“direct form” of the FDT [52] implies that any dissipated thermal
power in the medium Wdiss results in a temperature fluctuation,
SδT(ω)= (8kB T/ω2)(Wdiss/Q2

0), where Q0 is the magnitude of
the heat injected at frequencyω. For a Gaussian optical beam with
a mode field radius rmf propagating through a fiber core of thermal
conductivity κ , the FDT implies that [48]

SδT(ω)=
kB T2

πκL
Re[e (iωr 2

mf)/(4D)E1(e
(iωr 2

mf)/(4D))]. (7)

Here, E1(x )=
∫
∞

x t−1e−t dt is the exponential integral function,
and D= κ/CV is the thermal diffusivity (assuming a volumetric
heat capacity at constant volume CV ). The above expression can be
approximated by the so-called Wanser formula [46,47]

SδT(ω)=
kB T2

2πκL
ln

[
k4

max +
ω2

D2

k4
min +

ω2

D2

]
, (8)

with kmax = 2/rmf and kmin ≈ 2.405/a (a being the fiber outer
radius). A comprehensive table of constants can be found in
Supplement 1.

Thermomechanical noise. Thermoconductive noises
ultimately arise due to thermal dissipation—and associated tem-
perature fluctuations—in the active region of the optical fiber. By
contrast, thermomechanical noise is due to mechanical dissipation,
causing Brownian motion of the lengthwise elastic continuum that
constitutes the fiber medium [53].

The 1D elastic continuum of the fiber length can be described
as a sum of normal mode harmonic oscillators, each at a frequency
ω` = (`π/L)

√
E/ρ (E is the elastic modulus and ρ the mass

density), modal mass m` = ρAL/2 (A the transverse area), and
loss angle φ`(ω) (which is experimentally determined). The loss
angle quantifies the imaginary part of the complex spring constant
assumed in the structural damping model [54], and represents the
degree of anelasticity. Knowing the admittance of each normal
mode in terms of these parameters, the FDT predicts an apparent
length fluctuation due to thermomechanical noise [48]:

STM
L (ω)=

4kB T
ω

∑
`

ω2
`φ`(ω)

m`[(ω2 −ω2
`)

2 +ω4
`φ

2
` (ω)]

. (9)

If the loss angle is assumed frequency independent and uniform for
all modes, i.e., φ`(ω)= φ0, the above expression reduces, in the
low-frequency regime (i.e.,ω�ω`), to

STM
L (ω)≈

4kB T Lφ0

3AE
1

ω
. (10)

These length fluctuations can be referred to apparent phase noise:

STM
φ (ω)=

(
2πn
λ

)2

STM
L (ω). (11)

The frequency scaling suggests that thermomechanical noise
dominates thermoconductive noise at low frequencies, and
ultimately limits the long-term phase stability of long optical
fiber links. The latter conclusion, however, relies on the poorly
understood low-frequency behavior of the loss angleφ(ω).

The sum of thermomechanical and thermoconductive noise,
S therm
φ = STM

φ (ω)+ STC
φ (ω), is in excellent agreement with exper-

imental results for frequencies down to about 0.2 Hz [49,55].
However, even though the overall shape and magnitude of the
observed spectrum follows these models, the resonances pre-
dicted by the thermomechanical theory have not apparently been
observed. Together with the measured deviations at lower frequen-
cies, where it is not clear whether the deviations below 0.2 Hz are of
a technical or fundamental nature, this indicates the need for future
investigations.

Guided acoustic-wave Brillouin scattering. First observed
in the context of squeezing quantum optical fluctuations using
optical fibers [56,57], guided acoustic-wave Brillouin scattering
(GAWBS) refers to the scattering of light into the propagation
direction by transverse acoustic modes of the optical fiber. Unlike
Brillouin scattering (described in Section 3.B), which is stimulated
by light, GAWBS is seeded by thermal fluctuations of the acous-
tic modes and is therefore independent of the optical power in
the fiber.

The dominant acoustic modes of the fiber responsible for
GAWBS are the transverse radial “breathing” modes and radial
“torsional” modes with a near-zero longitudinal wave vector.
The former mediates random scattering in the propagation
direction—through the photo-elastic effect—akin to pure phase
noise, whereas the latter can additionally produce polarization
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noise due to birefringence fluctuations. Consequently, they are
labeled depolarized modes, whereas the pure radial components
are called polarized modes. As far as phase noise is concerned, the
primary contribution for single-mode fibers (SMFs) is due to the
polarized modes (more so at low frequencies) [58]. Therefore, here
we restrict attention to the polarized modes.

The elastic equations in the cylindrically symmetric frame of the
optical fiber dictates the behavior of polarized modes. Assuming
free boundary conditions, the various normal mode frequencies
are given by ω` = (vL/a)y`, where vL is the longitudinal acoustic
velocity, a is the fiber radius, and y` satisfies the characteristic equa-
tion (1− α2)J0(y`)− α2 J2(y`)= 0, with J` the Bessel function
of order `; here, α = vT/vL , and vT is the transverse acoustic
velocity. Each frequency mode corresponds to the elastic radial
motion of the fiber, which can be described by an eigenfunction,
U`(r , t)=C`(t)J1( y`r /a), whose amplitude, C`, has the rms

value
√
〈C 2

` 〉 =

√
kB T/(m`ω

2
`) due to the equipartition principle

[59]. Here, m` = πa2Lρ
∫ 1

0 J 2
1 (y`x )x dx is the effective mass of

the mode and L the fiber length.
The photo-elastic effect determines the influence of this radial

strain on the propagating optical field. Denoting by Pij the compo-
nents of the photo-elastic tensor, the refractive index fluctuations
are given by [57]

δn(r , t)=
∑
`

n3
eff(P11 + P12)C`(t)

2

×

(
2

r
J1

( y`r
a

)
−

y`
a

J2

( y`r
a

))
. (12)

The refractive index seen by the light is the average of this expres-
sion over the optical mode profile of the fundamental LP01 mode
of the fiber core. In a SMF, where most of the optical field is
confined to the core, we have that y`r /a � π , implying that
the first- and second-order Bessel functions in Eq. (12) can
be approximated by y`r /(2a) and y 2

` r 2/(8a2), respectively;
then the refractive index change can be approximated by δn ≈
n3

eff(P11 + P12)
∑

` C`(t)y`/(2a). Referring to a phase noise,
δφradial

GAWBS = (kL)δn = (kL)n3
eff(P11 + P12)

∑
` C`(t)y`/(2a),

from which it follows that

SGAWBS
φ (ω)=

(
kLn3

eff(P11 + P12)

2a

)2 ∑
`

y 2
` SC`(ω). (13)

Treating the elastic normal modes as harmonic oscillators with
loss angles φ`(ω), the spectrum of their amplitudes, SC` , has the
form of a single term in Eq. (9). Just as in the case of thermome-
chanical noise, the question of the behavior of the loss angle at
low frequencies seems to be poorly understood. For example, if
loss is assumed to be due to internal dissipation [54] (and thus φ
being independent of ω over a large range of frequencies), then
the phase noise due to GAWBS would exhibit a 1/ω behavior
at low frequencies, whose magnitude seems inconsistent with
some low-frequency measurements [49,55]; on the other hand,
a “velocity-damped” model for mechanical loss (φ ∝ω) would
predict frequency-independent noise due to GAWBS; however,
such a loss model is inconsistent with fused silica [60]. The model
correctly predicts the resonance frequencies, and for frequencies

around the first resonance (ω1 = (νL/a)y1) and above, the magni-
tude of the spectrum is in good agreement with experimental data,
for both polarized [61] and depolarized [58,62] GAWBS.

The treatment of radial–torsional modes can be obtained analo-
gously, with a different characteristic equation leading to a more
complex spectral distribution. The dependence on the azimuthal
angle of these modes produces a fluctuating birefringence in the
fiber leading to depolarization [62,63].

3. PolarizationNoise

An ideal straight segment of fiber is cylindrically symmetric about
its length, implying that the polarization state of light propagating
in it is two-fold degenerate, i.e., any orthogonal pair of polarization
states propagates through it with the same propagation constant.
Real-world non-idealities such as imperfections during the manu-
facturing process or extrinsic factors such as stresses (from bending
or twisting), and environmental perturbations can lift this degen-
eracy, leading to birefringence. Fluctuations in the birefringence
will cause the polarization to fluctuate.

The polarization evolution along a fiber can be conveniently
described as the action of a 4× 4 Müller matrix on an input
polarization state, ŝ i , represented as a Stokes vector in a Poincaré
ball [64]. Since most modern fiber components show negligible
polarization-dependent loss, the Stokes vector is confined to its
surface. The transformation of the polarization state can then be
visualized as a simple rotation. Each polarization state corresponds
to a single point on the sphere’s surface, where all linear polariza-
tion states lie on the equator and left- and right-circular states are
located at the two poles. Within this picture, it is easy to see that
whenever the input polarization is aligned with one of the two
eigenvectors of the Müller matrix of the fiber, polarization is pre-
served during transmission [65]. There exist alternate conventions
for choice of polarization bases in the literature. For example, for
narrow-linewidth light sources, one could choose polarization
bases that are orthogonal with respect to the output of the fiber
[66]. Or, polarization bases can be chosen so as to be invariant to
the polarization mode dispersion of the fiber [67], which have the
advantage of being insensitive to frequency changes in the fiber to
first order [68].

In an interferometer, where each path is in general independent,
the same input state is transformed to a different output state.
Since the interference depends on their overlap, random bire-
fringence fluctuations in the two arms or the input fiber cause
variations in the visibility factor, the low-frequency part of this
effect being called polarization-induced fading (PIF) [65,69] (see
Supplement 1 for more details). Additionally, these fluctuations
can induce apparent output phase noise that can be minimized by
maximizing the visibility [65,70,71]. Several techniques have been
documented to evade PIF: (a) use of polarization-maintaining
(PM) fibers, although PM fibers are unsuitable for precision inter-
ferometry due to their higher loss and dependence on operating
conditions [72]; (b) polarization diversity reception [72], where
three independently polarized receivers are used to ensure that
perfect interference (at DC) happens in at least one of them—the
trade-off is a significant reduction of contrast due to losses; (c)
active control of the birefringence of the output fiber lead [73], or
input polarization [74]; (d) use of Faraday mirrors (in a Michelson
topology) [75]. Some combination of these techniques may enable
recovery of visibility.

https://doi.org/10.6084/m9.figshare.21207683
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A far more insidious effect is thermodynamic fluctuations of the
birefringence of a non-ideal fiber (or a PM fiber) [76], which can
manifest as broadband phase and amplitude noise. For an amor-
phous material such as fused silica that forms the core of a SMF, this
variety of thermodynamic polarization noise is sub-dominant to
the other thermodynamic phase noises.

B. Nonlinear Noise Mechanisms

Nonlinear optical activity of fused silica—the major component
of the core of single-mode optical fiber—can lead to optical noises
stimulated by the field propagating through it. Because the silica
molecule possesses inversion symmetry, all even-order electric
susceptibilities vanish. Thus, the leading order optical nonlinearity
is mediated by the third-order electric susceptibility χ (3). As we
shall now see, it suffices to describe a majority of relevant nonlinear
noise effects found in optical fibers [77].

Kerr effect. The optical intensity of light propagating down a
fiber can change its refractive index:

n(I )= n0 +
3 Re{χ (3)}

4ε0c n2
0

I ≡ n0 + n2 I ; (14)

here, n0 =

√
1+ Re{χ (1)}2 is the (effective) linear refractive index,

and I = P0/Aeff is the optical intensity due to the (average) power
P0 focused in a transverse area, Aeff ≈ πr 2

mf.
If light of a single frequency is propagating down the fiber,

the intensity-dependent refractive index leads to self-phase
modulation (SPM). This is captured by the additional phase,
φSPM = kn2L eff I , accumulated over an effective fiber length,
L eff = (1− exp[−αl ])/α, where the linear absorption coeffi-
cient α is measured in m−1. (The effective length is the length of
a lossless fiber having the same nonlinear impact as a lossy fiber
with exponentially decaying intensity along its length. For modern
commercially available fibers with attenuation coefficients as low
as α ≈ 0.16 dB km−1, the effective length is L eff . 27 km.) The
SPM mechanism can transduce laser power fluctuations, δP , into
phase fluctuations:

δφSPM = γ L effδP , (15)

where we combined the fiber properties for a given wavelength in
the nonlinear coefficientγ = kn2/Aeff.

In an interferometer, the coupling between intensity fluctua-
tions of the light source and output phase noise crucially depends
on the splitting ratio of the first FC and the two arm lengths of
the interferometer. For an interferometer with a perfect 50/50
splitting ratio of the first FC, one obtains (see Supplement 1)

SSPM
φ (ω)=

(
4γ P0

9

)2

|L eff,1 − e−iωτ L eff,2|
2SRIN(ω), (16)

where τ denotes the time delay between the arms, L eff,i is the
effective length of the i th arm, and SRIN is the relative intensity
noise (RIN) spectrum. An extra factor of 8/9 was introduced
to account for the random polarization evolution in a standard
fiber [78,79] (this factor is absent for PM fiber arms). If the two
arms of the interferometer are equal in length, i.e., τ = 0 and
L eff,1 = L eff,2, the fluctuations at the output are correlated and the
noise due to SPM vanishes. For a finite but small length difference,
L eff,1 ≈ L eff,2 = L eff, the square of the absolute value in Eq. (16)

reduces to 4L2
effsin

2(ωτ/2). Finally, when one arm is substantially
longer, e.g., L2� L1 ≈ L eff, the same term reduces to L2

eff.
If light of multiple frequencies is present in the fiber, the inten-

sity of one field can modulate the phase of another, an effect called
cross-phase modulation (XPM) [77]. XPM is effective only for
those fields whose spatial overlap is significant, which explains
its significance in the core of an optical fiber. For a pair of fields
(labeled with indices i, j ) of identical polarization, it can be shown
that the refractive index experienced by the i th field is modulated
by the j th field’s intensity I j according to [77]

ni (I j )= n0,i + n2,i Ii + 2n2,i I j , (17)

capturing both SPM and XPM. This implies that the phase of the
i th field is modulated as

δφi
XPM = 2γi L effδP j , (18)

where γi = kn2,i/Aeff. In an interferometer, where the first FC
has 50% transmission, the induced phase noise in the i th beam is
related to the intensity noise of the j th beam via

SXPM
φ,i (ω)=

(
8γ P0 j

9

)2

|L eff,1 − e−iωτ L eff,2|
2S j

RIN(ω), (19)

where again complete polarization scrambling is accounted for by a
factor of 8/9. Such models, particularly for XPM, were developed
in comparatively recent perturbative approaches [80–83] that
detail the Kerr effect not only in its single- and multi-channel
forms, but also for stochastic variants (arising with amplified
spontaneous emission, for example) and for arbitrary pulse shape.
Indeed, in characterizing a large fraction of SPM and XPM as
phase noise, the models pave the way for noise cancellation using
long-temporal correlations [81].

Generalizing further, any third-order nonlinear interaction
among three waves producing a fourth in the process is called
four-wave mixing (FWM). This mixing is of particular importance
for wavelength division multiplexing, where the frequencies are
equally spaced and significant cross talk between channels can
occur [84]. FWM does not contribute noise in optical interfer-
ometry, but rather produces nonlinear power losses depending
on the phases of the involved fields. If only two input fields are
present (at frequencies ω1,2), secondary waves at frequencies
ω3 = 2ω1 −ω2 =ω1 −1ω and ω4 = 2ω2 −ω1 =ω2 +1ω,
with 1ω=ω2 −ω1, are created. These frequencies are of par-
ticular interest because they appear close to the ones of the two
input fields, ω1 and ω2, provided that |1ω| �ω1,2. The power
transfer from the primary to the secondary waves can be expressed
as [85–87]

P3 = η(γ L eff)
2 P 2

1 P2e−αL , (20)

with the scattering efficiency,

η=
α2

α2 +1β2

(
1+

4e−αL sin2 (1βL/2)(
1− e−αL

)2

)
, (21)

depending strongly on the phase matching between primary and
secondary waves. The power scattered into the fourth beam, P4, is
obtained by interchanging P1 and P2 in Eq. (20).

The phase mismatches for ω3 and ω4 can be written as1β3 =

2β(ω1)−β(ω2)−β(ω3) and 1β4 = 2β(ω2)−β(ω1)−β(ω4),
respectively. Taylor expanding the propagation constants

https://doi.org/10.6084/m9.figshare.21207683
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up to third order in ω around the central frequency, ω0 =

(ω1 +ω2)/2, results in [86,88]

1β3,4 =−
d2β

dω2
|ω01ω

2
±

1

2

d3β

dω3
|ω01ω

3

=
2πc1λ2

λ2
0

(
D(λ0)±

1λ

2

dD
dλ
|λ0

)
, (22)

with the plus sign for1β3 and the minus sign for1β4. To obtain
the wavelength-dependent expression, the dispersion parame-
ters D(λ)= d/dλ(dβ/dω)= (−2πc/λ2)d2β/dω2 and 1λ=

λ1 − λ2 were used. The phase mismatch should be as large as pos-
sible to avoid efficient FWM and thus high nonlinear losses in the
primary waves.

Stimulated Brillouin and Raman scattering. Inelastic scat-
tering of optical photons by acoustic or optical phonons, which
represent the mechanical vibrations of the fiber medium, is another
important class of nonlinear effects in optical fibers. This manifests
as optical loss into the mechanical modes. When the mechanical
mode is at acoustic frequencies, the effect is called Brillouin scat-
tering, while if the phonons are at optical frequencies, it is termed
Raman scattering. Their effect is two-fold: they primarily limit the
optical power that can be employed but can also transduce noise
from the phonon field onto the optical field. The consequence of
an optical power threshold is that by limiting the usable power, the
attainable signal-to-shot-noise ratio (at large Fourier frequencies,
where shot noise can dominate extraneous noises), which scales as
1/
√

P , is limited.
The optical threshold due to stimulated Brillouin scattering

(SBS) arises as follows. The pump field beats with the sponta-
neously backscattered acoustic Stokes waves [89]. The resulting
interference pattern changes the material density via electro-
striction, creating a forward propagating refractive index grating
from which more pump photons are backscattered. As soon as a
certain threshold pump power is reached, the Stokes wave builds
up rapidly and limits the transmittable power. A good approxima-
tion to estimate the Brillouin threshold in standard single-mode
step-index fibers is [90]

Pth,B =
κK Aeff

gB L eff
, (23)

where gB is the Brillouin gain coefficient, which is the value
of the Lorentzian-shaped Brillouin gain spectrum at the
Brillouin frequency ωB . For standard single-mode silica fibers,
ωB ≈ 2π · 11 GHz [91], with gB ≈ 1.68× 10−11 mW−1 at
1550 nm. The numerical factor κ ≈ 19 accounts for modern
low-loss optical fibers [92]. The mixing efficiency K between the
pump and the Stokes wave depends on the input polarization as
well as the properties of the fiber. For a completely scrambled input
polarization, K ≈ 3/2, while for fibers with negligible birefrin-
gence and linear input polarization, K = 1 [93]. Note that this
simple formula does not account for other fiber geometries, and
the effective area needs to be replaced by the acousto-optic effective
area [94,95].

Stimulated Raman scattering (SRS), on the other hand,
involves photon scattering off of molecular vibrations of the
constituents of the fiber, which oscillate at ωR & 2π · 10 THz.
In this process, forward and backward scattering of both Stokes
and anti-Stokes light is possible, where the latter is nevertheless
typically much weaker due to the limited number of excited optical

phonons at thermal equilibrium (kB T/~ωR � 1). In the absence
of a second input field, with a frequency difference close to the
molecular resonance frequency, the stimulated process builds up
from noise. The interference between the two fields then drives the
molecular resonances, creating a positive feedback loop leading
to the stimulated process. Under the assumption of a Lorentzian
gain profile, the threshold power, defined as input pump power for
which Stokes and pump powers are equal at the fiber output, for
forward SRS is given by [90]

Pth,R =
16p Aeff

gR L eff
, (24)

where p ranges from one for overlapping and two for completely
scrambled polarization between the pump and the Stokes wave.
The numerical factor of 16 needs to be replaced by 20 for backward
scattering, which is why it is rarely observed in fibers due to the
almost exponential increase of Stokes power beyond the threshold.
The Raman gain coefficient, g R , denotes the maximal value of the
Raman gain spectrum. For standard SMFs, the peak occurs at a
frequency difference between the pump and Stokes wave of about
13.2 THz, where g R ≈ 1.1× 10−13 mW−1 at 1550 nm [96].
Even though the gain coefficient is about two orders of magnitude
lower than the one for SBS, the short lifetimes of optical phonons
make the gain spectrum for the Raman interaction about six orders
of magnitude wider (∼40 THz). This is a very attractive feature
exploited in Raman amplifiers, where signal frequencies can be
amplified over a broad range as long as the pump wave is chosen
such that their frequency difference falls within the spectrum.

From the two nonlinear scattering processes described above,
SBS is in optical fiber interferometry by far more critical due to
the larger gain coefficient, Pth,B/Pth,R ≈ g R/gB ≈ 10−2. Beyond
the threshold power, the backreflected Stokes wave experiences
a very rapid growth while at the same time depleting the pump.
Once a maximal level is reached, any additional incident power
is reflected towards the front end of the fiber, limiting the usable
power at the other end. Even though SBS does not directly con-
tribute to phase noise, it affects other power sensitive noise terms
such as shot noise. For long, high-performance optical fibers with
L eff ≈ α

−1
≈ 27 km, the Brillouin threshold for a pump wave-

length at 1550 nm, K = 3/2, and κ = 19 predicted by Eq. (23)
is about 5 mW. Assuming the first beam splitter of the interfer-
ometer to have 50% transmission, the maximal laser power for
long-baseline optical fiber interferometry is about 10 mW.

The noise transduced by both effects is sub-dominant to other
linear sources of thermodynamic noise. For Raman scattering, this
is due to the fact that Raman-active phonons are not thermally
populated at room temperature. For Brillouin-active phonons,
their much larger frequencies, compared to the mechanical modes
that participate in GAWBS, etc., imply that their contribution is
sub-dominant.

4. EXTRINSIC NOISES IN OPTICAL FIBER
INTERFEROMETRY

A. Source and Electronic Noise

A real-world laser is a non-ideal oscillator whose output exhibits
fluctuations in both its amplitude and phase. Noise in the ampli-
tude is typically characterized through the fluctuations it causes
in the optical power, normalized by the average output power of
the light source, and is termed RIN. Such power fluctuations are



Review Vol. 9, No. 11 / November 2022 / Optica 1245

converted into phase fluctuations and limit the sensitivity of opti-
cal interferometers; they are also known to limit the performance
of optical communication systems [97]. In an interferometer, the
transduction of RIN to output noise depends on the demodulation
approach and arm length difference. Assuming the time delay
difference between the arms to be much smaller than the corre-
lation time of the power fluctuations, the RIN-equivalent phase
noise for active homodyne detection at a single detector is given
by SRIN/V 2, which is at best as low as SRIN (when the visibility
is V = 1), and much worse in general. Balanced detection offers
immediate mitigation of this stringent limit by subtraction of the
large DC component (see Supplement 1 for details). Assuming
50/50 FCs (VA = VB ≡ V ) and independent photodiodes with
adjustable gains, G A and G B , the RIN equivalent phase noise is
given by

SRIN
φ (ω)=

(
ε

2G A R AV

)2

SRIN(ω), (25)

where ε ≡ G A R A − G B RB . The RIN contribution is
due to both classical and quantum noises, viz., SRIN(ω)=

Sclassical
RIN (ω)+ 2hc/(λP ), with h being Planck’s constant, c

the speed of light, λ the optical wavelength, and P the optical
power. Thus, the RIN-equivalent phase noise, proportional to the
imbalance ε2, can be made arbitrarily small. (Note, however, that
phase noise due to quantum fluctuations, Squantum

φ = 2hc/(λP ),
which has the exact same form as RIN from amplitude quantum
noise, cannot be suppressed in this fashion.) This conclusion
is crucially reliant on precisely maintaining the quadrature
demodulation of the homodyne, as small deviations from this
point will transduce RIN to apparent phase noise according to
SRIN
φ (ω)= tan2(1φ)SRIN(ω), where 1φ is the phase deviation

from quadrature, which is typically the dominant transduction
process. RIN coupling can also be reduced by choosing a hetero-
dyne detection scheme, where, e.g., with phase-sensitive detection
[98], the DC part is suppressed by the low-pass filter during the
demodulation process, however, at the expense of a 3 dB reduction
in sensitivity.

Laser phase noise refers to phase fluctuations δψ(t) of the
electric field, E (t)= E0 exp[i(ω0t + δψ(t))]. Assuming sta-
tionarity, it can be shown that the electric field autocorrelation,
RE (τ )≡ 〈E ∗(t)E (t + τ)〉, is [99,100]

RE (τ )= E 2
0 exp

iω0τ −

∞∫
−∞

Sδψ (ω) sin2
(ωτ

2

) dω

2π

 . (26)

It is typical to speak of “frequency noise” as frequency-
equivalent phase noise, defined by δν ≡ δ̇ψ/(2π), for which
Sδν(ω)= ( ω2π )

2Sδψ (ω). A less informative, but common, measure
of phase noise is the “linewidth,” defined as the full-width at half
maximum (FWHM) of the electric field power spectral density
SE (ω)=

∫
∞

−∞
RE (τ )exp(−iωτ)dτ .

Phase noise in the laser at the input of an interferometer can
manifest as an apparent phase signal if there is an optical time
delay τ between the two arms when they recombine. At recom-
bination, the phase difference between the two fields due to laser
phase noise is φ(t)= δψ(t)− δψ(t − τ). Taking the Fourier
transform gives the transfer function (1− exp(−iωτ)) from δψ

toφ; consequently [101–103],

Sφ(ω)= 4 sin2
(ωτ

2

)
Sδψ (ω)

= (2πτ)2sinc2
(ωτ

2

)
Sδν(ω),

where sinc(x )= sin(x )/(x ). Thus, laser phase or frequency
noise directly manifests as an apparent phase signal φ sensed by
the interferometer. At low Fourier frequencies, i.e., ω� τ−1,
sinc(ωτ/2)≈ 1, so that Sφ(ω� τ−1)≈ (2πτ)2Sδν(ω). The
same relation holds for a heterodyne scheme, where the output
oscillates at the modulation frequency before it is mixed down to
DC in phase-coherent detection.

The final stage of the measurement—the conversion of photons
to an electrical signal at the photodetector—can also add noise
that is indistinguishable in a single measurement from any phase
signal in the interferometer. This type of “dark noise,” known as
noise-equivalent power (NEP) (∼10−12 W ·Hz−1/2 at frequen-
cies & 1 kHz for modern low-noise photodetectors), originates
from noise processes in the photodiode or thermal Johnson noise
from the subsequent electronics. However, its effect can be evaded
in most cases by employing a succeeding low-noise large-gain
(i.e., low-noise-figure) amplifier, or mitigated by subtracting its
estimate from an independent reference measurement. A promi-
nent example where detector dark noise cannot be as easily evaded
is when the interferometer is fed with non-classical light.

B. Geophysical and Environmental Sources of Noise

Seismic ground motion is relevant at frequencies below 100 Hz.
Its origins can range from the mundane—such as anthropogenic
and earthquakes—to deeply fundamental aspects of the coupled
dynamics of the Earth’s core, oceans, and atmosphere [104–106].
The 10−100 Hz region is typically dominated by anthropo-
genic sources [107], which exhibit significant diurnal and spatial
variation, and is thus difficult to model. However, because these
disturbances are carried by surface waves, their propagation is
attenuated over length scales of a few km. Earthquakes and their
aftershocks dominate the ground motion at a few Hz. Below 1 Hz
is a sequence of fundamental and universal spectra of seismic and
atmospheric noises. The largest of these fundamental sources is
the secondary microseism [105,108,109] at 0.1−1 Hz causing
vertical ground motion of ∼10 µm ·Hz−1/2; a factor of five
smaller is the primary microseism at∼0.02−0.1 Hz; another order
of magnitude smaller is the seismic hum [110] at ∼1−20 mHz.
Correlated with the microseism ground motion are microbarom
atmospheric pressure fluctuations of ∼(0.1−1) Pa ·Hz−1/2 at
infrasonic frequencies [111,112].

Ground motion causes strain on an optical fiber, which is
transduced to apparent phase noise via the strain-optic effect.
Assuming a fiber under isotropic stress, the phase change
per unit fiber length and pressure (p) is approximately [113]
δφ/(Lδ p)≈ β(1−2ν)

2E (n2(2P12 + P11)− 2), where E and
ν denote Young’s modulus and the Poisson ratio of the fiber,
respectively, and n the core refractive index. For modern fibers,
δφ/(Lδ p)≈ 3 · 10−5 rad Pa−1m−1 at λ= 1.55 µm. If the fiber
arms are spooled freely—as a means to fold a long optical path
length into a compact space—and placed vertically, the spooled
fiber experiences strain [114], δL/L = (νSρS h/4E S)δa , where
ρS is the density of the fiber spool, h its height, E S the Young’s
modulus, νS its Poisson ratio, and δa the local vertical acceleration.
The resulting phase noise is

https://doi.org/10.6084/m9.figshare.21207683
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S seis
φ (ω)= 2

(
Ccmrr

knLνSρS h
4E S

)2

Sa (ω), (27)

where Ccmrr denotes the common mode rejection ratio (CMRR)
accounting for the fraction of seismic noise coupling that is the
same along both arms. (In principle, the CMRR can be modeled if
the geometry of the arms and correlation length of the seismic field
are known; in practice, it is usually measured.) If the fiber is spooled
on an elastic core of a length of several meters, atmospheric pressure
fluctuations—correlated across similar length scales—can couple
into the interferometer [115].

If the fiber interferometer is confined to a region of space smaller
than the correlation length of some of these geophysical seismic
noises, active vibration isolation can mitigate their effects [55]. For
applications where the majority of the optical fiber is outside of
the laboratory, temperature changes along the fiber are typically
among the most dominant sources of noise. Since both the effective
refractive index and the fiber length are functions of temperature,
the phase change per unit length and temperature change is [113]
δφ/(LδT)≈ k[(n/L)dL/dT + dn/dT]. Depending on the fiber
used, even hundreds of radians per meter per degree are possible.
In general, the combined phase noises of fibers exposed to urban
environments over short time scales are Gaussian distributed
[116].

Terrestrial gravity fluctuations [117] arise from the geophysical
motion of large masses—seismic density waves [118], atmospheric
pressure waves, or even the motion of clouds [119]—that couple
to the interferometer via direct Newtonian gravity. For example,
the typical displacement noise on a∼100 km long spool of optical
fiber due to Newtonian noise from the ambient seismic Rayleigh
wave field is∼10−19m ·Hz−1/2 at 10 Hz and falls off roughly as the
fourth power of frequency—orders of magnitude smaller than the
motion from direct seismic motion. However, terrestrial gravity
fluctuations cannot be shielded and thus represent the ultimate
achievable limit of sensitivity on Earth.

5. INTRINSIC NOISES IN STRUCTURED-CORE
FIBERS

Due to technological advances and theoretical knowledge gained
in the last few decades, silica-based optical fibers predicated on
total internal reflection (TIR) have reached a point where they can
be only marginally improved. The most important parameters for
changing the properties in these structures are the choice of mate-
rial and the concentration of added dopants. To overcome these
limitations, optical fibers with alternative light guiding principles
have been intensively researched over the last 30 years.

Photonic crystal fibers (PCFs) are optical waveguides with
microstructured, periodic transverse refractive index profiles
[120]. These microstructured fibers confine light to the core by
modified TIR (M-TIR) [121], photonic bandgaps (PBGs) [122–
124], or antiresonant (AR) reflection [125]. Waveguides based on
M-TIR, termed index guiding fibers, have a solid core surrounded
by a periodic air-hole cladding with a lower average refractive
index. By changing the size and separation between the holes, they
allow for much greater design flexibility as compared to TIR-based
fibers [126–128]. In hollow-core fibers (HCFs), light is guided via
either PBGs (HC-PBGFs) [129–131] or the anti-resonance occur-
ring at the glass membranes making up the boundary of the fiber
core (HC-ARFs) [132,133]. Since light propagates mainly in air
in these structures, low-loss guidance with reduced latency, higher

damage thresholds, and weaker nonlinear and thermal impacts are
possible.

The properties of PCFs strongly depend on the transverse struc-
ture in addition to the choice of materials. Thus, they offer much
more flexibility in their design and can be optimized for a wide
range of different applications. While the losses in HC-PCBFs
remain hampered by high propagation losses (with a lowest docu-
mented loss of 1.7 dB/km [24]), HC-ARFs benefit from a smaller
overlap of the guided mode with the glass, at 10−5 as compared
to 10−4 in HC-PCBFs [131]. Compounded with advantages in
polarization and mode purity, HC-ARFs in particular present a
noteworthy alternative to conventional silica-based SMFs for opti-
cal fiber interferometry, though we extend the discussion below to
both HCF types with the hope of representing a better overview of
the available literature.

Rayleigh scattering and attenuation. Due to the low overlap
between the optical mode and the silica membranes of properly
designed hollow cores, one can naively assume at least 50 dB reduc-
tion in the backscattering coefficient. However, it is important
to note that scattering in such fibers does not operate through
Rayleigh scattering, but rather by scattering related to variations
in the core dimensions and surface roughness caused by frozen-in
thermally excited surface capillary waves during the fiber draw.
Consequently, the actual scattering coefficient in those structures is
higher than for conventional SMFs [25,134–136]. Since Rayleigh
scattering is one of the main causes of loss at telecom-wavelengths
for silica-based fibers, HCFs with low attenuation coefficients
are expected to show lower backscattering (controlling for factors
such as directivity and recapture coefficient). Negative curvature
fibers [133] and in particular doubly nested AR nodeless fibers
(DNANFs) [137] have nowadays attenuation coefficients as low
as 0.174 dB/km [17] (S/C-band), and are expected to go below
0.1 dB/km in the not too far future. This type of fiber achieved
a backscattering coefficient of −118 dB/m, which is more than
40 dB below the one for conventional solid-core fibers [135] and
is particularly useful to enhance the sensitivity of fiber optic gyro-
scopes [138]. Backscattering from the air of an air-filled NANF has
also recently been investigated [139].

Thermal noise. Because the thermo-optic coefficient of air is
much smaller than the one for fused silica at a constant volume,
HCFs show a greatly reduced phase response to external tempera-
ture variations [139]. Indeed, the thermal sensitivity of HC-PBGF
has been measured to be more than one order of magnitude lower
than that of solid-core fibers [140–142]. This is particularly impor-
tant for applications where the fiber cannot be shielded from the
environment, and the interferometric arms do not share common
temperature drifts, e.g., for frequency dissemination. By cooling
silica-based HCFs, it is even possible to build interferometers that
are insensitive to external temperature drifts if operated close to the
zero-crossing temperature of the thermal expansion coefficient of
fused silica [143,144]. In conventional solid-core fibers, this is pos-
sible only at much lower temperatures [145], as they are dominated
by the thermo-optic effect and the core and cladding regions have
different doping concentrations with different thermal expansion
coefficients. The thermal sensitivity can also be lowered by reduc-
ing the thickness of the coating and thus its contribution to the
thermal expansion, which has been shown to provide an almost
30-fold reduction of thermal sensitivity in NANFs over solid-core
fibers [146]. Similarly, PM PCFs show a larger birefringence and
a more than 30-fold reduction in the temperature dependence
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of birefringence compared with PM solid-core fibers [147]. In
addition, the intrinsic thermodynamic fluctuations limiting the
performance of conventional fiber interferometers are expected
to be much smaller in HCFs, particularly with evacuation. Even
absent evacuation, air-filled fibers and have been shown to compare
favorably, and even surpass conventional SMF interferometers for
some frequency ranges, although the comparison was made for
SMFs with very small fiber cores [148]. A recent theoretical and
experimental study has painted a clearer picture [149], showing
that fundamental noise can indeed be lower in HCFs provided that
the core is evacuated and sealed below atmospheric pressure (about
0.15 atm. in [149]).

GAWBS. GAWBS has been intensively studied in both solid-
core PCFs [150–155] as well as HCFs [156–159]. The GAWBS
spectrum for polarized and depolarized modes can be tailored by
adjusting the transverse geometry of the fiber and thus the overlap
between the optical and acoustic modes to either weaken its impact
or enhance it for sensing applications. In HCFs, the spectrum con-
tains contributions from the optomechanical coupling between
the acoustic modes supported by the silica capillaries (cladding)
and air (core) with the optical modes [159]. Thus, the type of gas
and its pressure are two additional degrees of freedom for tuning
the optomechanical coupling. If low phase noise is required, evacu-
ation of the core as for intrinsic thermal noise reduction could be a
viable solution.

Polarization. Similar to conventional solid-core fibers,
properly designed HC-PBGFs support two nearly degenerate,
orthogonal fundamental modes [160]. Even though most of
the optical power propagates through air, deformations in the
transverse structure induced either during manufacturing or oper-
ation can lead to significant polarization mode splitting [161].
Intentional asymmetries in the structure surrounding the core can
be used to produce PM HC-PBGFs [25] with extinction ratios of
more than 30 dB over hundreds of meters of fiber [162]. With AR
fibers, early results indicate the possibility of achieving extremely
low polarization mode coupling without intentional birefringence,
outperforming conventional and PM fibers by up to three orders
of magnitude [163]. Additionally, this level of polarization purity
is very robust against environmental perturbations, making AR
fibers ideal candidates for high-precision fiber optic sensing.

Nonlinear noise. The ability to change the transverse geometry
of PCFs allows to engineer the size of the mode field and thus the
intensity inside the fiber, which in turn governs the nonlinear
behavior [164]. HCFs also allow the strength of the nonlinearity
to be modified by the filling material; when filled with air, the non-
linear interactions and associated phase perturbations are much
smaller than those with an appropriate gas or liquid filling [165]. In
particular, air-filled HC-PCFs have an effective nonlinearity that
is three orders of magnitude lower compared to SMFs [166,167].
This allows to increase the threshold powers for SBS and SRS,
which in turn enables higher signal powers to be delivered to the
detectors.

6. CONCLUSION

Solid-core optical fibers have come a long way since their introduc-
tion as transmission channels for communication systems in the
1970s. Due to continuous technical improvements, optical loss of
contemporary solid-core SMFs is only 0.14 dB/km, which makes
them very attractive for diverse applications. One particularly
useful type is optical fiber interferometry, in which the fibers serve

as both a transmission channel and a transducer for various external
perturbations that change the properties of the propagating optical
field. Depending on the application, the transduction of these
external parameters may manifest as signal or noise, and sensitivity
to them may be desirable or extraneous. We have chosen to view
the optical fiber as a conduit for phase-sensitive dissemination of
light. This view encompasses applications ranging from distribu-
tion of a precise frequency reference for optical clock networks to
phase reference for quantum optical networks and phase sensing
for gravitational-wave detection. These applications are the most
technically demanding deployments of optical phase stability and
sensing in the current era.

Under laboratory conditions (i.e., thermally and acoustically
shielded), the sensitivity of an optical fiber interferometer at low
frequencies is limited mainly by fundamental thermodynamic
fluctuations and seismic noise. We illustrate the current typically
achievable phase noise performance of an optical fiber MZI under
ideal laboratory conditions in Fig. 3. With a fiber attenuation
coefficient of 0.16 dB/km (best commercially available fiber),
the maximal power per arm is restricted to 12 mW right under
the SBS threshold. That power also allows us to ignore nonlinear
losses from SRS. As the noise budget suggests, seismic and fun-
damental thermal phase noises dominate at frequencies below
about 100 kHz. Note, however, that according to current the-
ory, GAWBS appears to be the dominant source of noise, which,
however, does not reflect the results obtained in thermal noise
measurements, indicating a discrepancy in the understanding of
acoustic losses that dictate GAWBS at low frequencies. Careful
investigation of the broadband acoustic loss of the GAWBS mode
is necessary to resolve this inconsistency. A similar inconsistency
exists for thermomechanical noise, whose predicted resonance
peaks—originating in the normal mode expansion (each mode is
treated as a harmonic oscillator)—were not observed [49,55]. In
this plot, DRB is negligible due to the small recapture and Rayleigh
scattering coefficients. Assuming a short input fiber lead, the con-
version between laser frequency to intensity noise due to DRB at
the input can also be safely ignored. The RIN coupling is shown
for a typical commercially available narrow-bandwidth fiber laser
and assuming a balanced homodyne demodulation scheme, where
the gains of the photodiodes are equal to within ∼10 ppm. Shot
noise is calculated for the interferometer operating at quadrature
with 50/50 FCs and equal visibilities of 0.9 at both detectors with
a quantum efficiency of 0.9 each. For the arm length imbalance
of 1L = 1 m assumed here, the transduction of the frequency
noise of a commercial fiber laser onto output phase noise is still
sub-dominant to fundamental thermal noises. For more significant
length differences between the arms, e.g., in the largely imbalanced
interferometers used for the dissemination of optical frequencies,
frequency noise is subdominant to environmental noises [170]
but would exceed the thermal noise floor in carefully designed
laboratory experiments. Finally, at the relatively low input powers
we assume here, together with the monochromaticity of the input
light, and nearly equal arms lengths, the effects of SPM, XPM, and
FWM are also negligible.

One of the most demanding applications for such an inter-
ferometer (in a Michelson configuration) is gravitational wave
detection. (In fact, the optical fiber technology available in the
1980s was examined in this context [171].) Although a fiber-based
interferometer would reduce the operational costs and provide
other advantages—such as single-spatial-mode propagation, much
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Fig. 3. Projected low-frequency sensitivity of a 10 km fiber interferometer, pumped with 12 mW power (see text for details), with an arm length imbal-
ance of 1 m. Sensitivity is primarily limited by a combination of thermodynamic, and seismic noises at frequencies up to a MHz, with some contribution
from DRB around mHz frequencies. The primary thermodynamic contribution is from GAWBS, here assumed to exhibit the typical structural damping
mechanism. Other thermodynamic noises, originating from thermal dissipation, lurk less than an order of magnitude below. Seismic noise is estimated
using known models for the PSD distribution of global ambient seismic surveys [107,168,169]. (Other relevant parameters used to produce this plot are
available in Supplement 1.)

reduced vacuum requirements, and compact geometries—the
obtainable phase sensitivity is still orders of magnitude worse than
contemporaneous free-space multi-km interferometers (which
realize 10−9 rad/

√
Hz at 100 Hz). Even in the absence of ther-

mal noise, SBS would limit the amount of usable power and thus
establish an unacceptably high level of shot noise. Optical fiber
interferometers can also potentially be used for other fundamental
applications, such as testing the interplay between general relativity
and quantum physics with light [172–178]. Again, fundamental
thermal noise sets the sensitivity limit, which is, nevertheless, much
less demanding compared to gravitational wave detection.

Long optical fibers are most frequently used outside the labora-
tory, for sending light signals between spatially separated locations.
The noise caused by environmental perturbations typically exceeds
thermodynamic noise by orders of magnitude, which is why in
many practical applications, the fiber is embedded in an interfer-
ometer for active phase stabilization. This allows, for example, the
dissemination of optical frequency standards over distances up to
almost 2000 km [179–183]. A related field is relativistic geodesy,
where the clock rates of optical frequency standards are compared
via optical fiber links to gain information about differences in
gravitational potentials between sites [184,185]. It is truly remark-
able that actively stabilized optical fiber interferometers provide
enough stability to use general relativistic time dilation as a tool
to measure differences in altitude. Interferometric phase stability
is also required for many quantum communication protocols
[116,186], for example, in the recently much acclaimed field of
twin-field quantum key distribution [187,188], which avoids the
need for quantum repeaters between the sites.

Taken together, it seems that solid-core optical fiber technol-
ogy is quite mature, with little room for further improvement in
noise performance, except for a lack of complete understanding of
thermo-optic losses at infrasonic (<10 Hz) frequencies.

Rapid development in the past few years in the production of
structured-core optical fibers with losses approaching those of
solid-core fibers offers a potential roadmap for optical-fiber-based
platforms for quantum technology and precision measurements.
The scanty state of knowledge of the noise processes in these fibers
is an open invitation for academic research. Although it is hard to
imagine an orders of magnitude improvement in noise properties
in such fibers, any improvement will break the barrier of dimin-
ishing returns observed in the solid-core fiber platform and will
therefore produce new opportunities for science and technology.
In particular, HCFs are a promising platform to come close to
the sensitivity performance of free-space interferometers, while
keeping advantages such as single-spatial-mode operation, ease of
deployment, and operational costs.
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