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Abstract 

Machine learning (ML) models require an extensive, user-driven selection of molecular descriptors in order to learn 
from chemical structures to predict actives and inactives with a high reliability. In addition, privacy concerns often 
restrict the access to sufficient data, leading to models with a narrow chemical space. Therefore, we propose a frame-
work of re-trainable models that can be transferred from one local instance to another, and further allow a less exten-
sive descriptor selection. The models are shared via a Jupyter Notebook, allowing the evaluation and implementation 
of a broader chemical space by keeping most of the tunable parameters pre-defined. This enables the models to be 
updated in a decentralized, facile, and fast manner. Herein, the method was evaluated with six transporter datasets 
(BCRP, BSEP, OATP1B1, OATP1B3, MRP3, P-gp), which revealed the general applicability of this approach.
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Introduction
The importance of machine learning (ML) approaches in 
drug discovery and in silico toxicity prediction has shown 
a significant increase in recent years. As available toxic-
ity data has significantly increased [1–3], ML approaches 
became an essential part of the drug discovery pipe-
line. Public–private partnerships such as eTOX [4] and 
eTRANSAFE [5], as well as public databases (ChEMBL 
[6], PubChem [7]) enable trustful data supply for the 
establishment of predictive ML models. For training 
and improving the performances of ML models, a large 
amount of data is crucial [8]. However, when seeking to 
pool data from multiple sources, multiple restrictions 
occur. Companies quite often restrict access to in house 
data due to their business value. In addition, collecting, 
curating, and preserving data requires a lot of effort and 
time.

Furthermore, once a sufficient amount of qualitative 
data is established, additional challenges can occur on 
the path towards the creation of efficient ML models. The 

selection of chemical descriptors best suited to derive 
models of sufficient quality is one of them. The selec-
tion of a proper set of descriptors is an extensive, time-
intensive, and still mostly manual process, especially 
when trying to understand relationships between chemi-
cal properties and their effect on biological targets [9]. 
Depending on the biological target, the descriptors best 
suited can considerably vary. Combined with the fact 
that additional hyper-parameters have to be tuned for 
each model, the creation of high accuracy ML models 
becomes an exhaustive process.

To overcome these issues and allow the user to estab-
lish predictive models in an easy and fast way, we cre-
ated a framework that can be used in a semi-automated 
fashion for the creation and/or re-training of ML models 
for predicting inhibitory activity towards ABC and SLC 
transporters. Furthermore, in comparison to previous 
methods our approach does not require descriptor selec-
tion and hyperparameter search which enables fast and 
efficient model building.

A set of transporters, mainly used in this study, has 
caught the attention of regulatory agencies such as 
FDA, EMA, and the Japanese regulatory agency, as 
the inhibition of these proteins may play a role in 
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drug-drug interactions and/or drug-induced liver 
injury. Therefore, the prediction of inhibitory profiles of 
small molecules towards these set of transporters can 
help to guide safety assessments of new drugs as often 
requested or recommended by regulatory agencies. 
Additionally, the knowledge can further help in terms 
of prioritization of compounds at the early Drug Dis-
covery stage by medicinal chemists [10–17].

Combining Jupyter Notebooks (JNs) [18] as a frame-
work for creating ML models and high-quality data 
regarding transport membrane proteins to train these 
models, shareable models can be built for the assess-
ment of compounds for their interaction profile. In 
general, JN is a web-based interactive computing plat-
form that enables the combination of computer code 
(e.g. python) and rich text elements (e.g. figures). A 
web browser is used to navigate in the JN app, and the 
established graphical user interface allows a better rep-
resentation of files and so-called notebook documents. 
These notebook documents can be executed as well as 
read by users, as they contain code, rich text, images, 
plots, interactive figures and widgets. These notebooks 
can be easily shared since they are saved as structured 
text files (JSON format) and enable the transfer of the 
code of the model from one instance to another for 
re-training the model [19]. This allows the enrichment 
of the chemical space of the model. The notebook fur-
ther provides a generalizable set of molecular descrip-
tors for the ABC and SLC transporter families that has 
been shown to be applicable at least for the transporter 
proteins BCRP, BSEP, OATP1B1, OATP1B3, MRP3, 
and P-gp. The procedure was selected as it comprises 
the possibility of sharing the notebook in a facile man-
ner and the creation of workflows for non-experienced 
users. By uploading data to the JN, the code can be exe-
cuted which will allow the creation of models and the 
verification of the models within the JN. In addition, 
due to the ease of the integration of RDKit, JNs com-
prise a versatile tool for cheminformatics tasks.

Subsequently, JNs are great tools for educational pur-
poses. The TeachOpenCADD platform by AG Volkamer 
has demonstrated this by creating JNs with step-by-step 
tutorials that can be used as a teaching platform for 
classroom lessons and self-studying. Open-source data 
and Python packages are used as tools for establishing 
both ligand- and structure-based approaches. The usage 
of these JNs provides knowledge in the field of chem-
informatics and structural bioinformatics for students 
and users interested in these topics [20]. Therefore, our 
JN not only offers the possibility of improving the ML 
models, model building and predictions for the six end-
points but also offers students, universities and interested 
users to learn more about model building, data handling, 

datasets, standardization procedure, descriptor calcula-
tion and model evaluation in cheminformatics.

Methods
Dataset preparation
In this study, datasets of six different transmembrane 
transport proteins (BCRP, BSEP, OATP1B1, OATP1B3, 
MRP3, P-gp) were used as a case study [21–46]. Firstly, 
datasets from the Vienna LiverTox Workspace (LiverTox) 
[47] were chosen, as these datasets were already pub-
lished and used for the development of predictive mod-
els. The corresponding web service allows the prediction 
of substrates and inhibitors for a set of ABC and SLC 
transporters.

Secondly, an in-house KNIME workflow was used for 
the retrieval of additional new data from public plat-
forms such as ChEMBL and PubChem (ChEMBL26 [48], 
CheEMBL27 [49], ChEMBL28 [50], PubChem [7]). The 
data from ChEMBL 26 and 27 were used as additional 
training sets (see below), while data from ChEMBL 28 
and additional data from Pubchem served as test sets. 
Activity values were taken from the original publication 
and class labeling for binary classification was applied 
based on a threshold of an IC50 value of 10 µM. All data 
sets were provided in sdf-format together with a binary 
classification (0/inactive or 1/active) for each of the six 
endpoints. For each compound the InChIs (IUPAC Inter-
national Chemical Identifiers), InChI Keys and SMILES 
(Simplified Molecular Input Entry Specification) were 
calculated. All datasets are available on GitHub at https://​
github.​com/​Pharm​infoV​ienna/​Retra​ining_​Noteb​ook/​
tree/​main/​data.

Before following the standardization protocol, stereo-
chemistry information was removed from the InChIs 
and duplicated InChIs were identified. In case duplicates 
show the same class label, one of the compounds was 
kept. Otherwise, both compounds were removed. Data 
cleaning and standardization was performed using a 
modified version of the Standardizer provided by Atkin-
son (available at https://​github.​com/​flatk​inson/​stand​ardis​
er). This tool was applied to remove salts, neutralize, and 
discard non-organic compounds. Tables 1 and 2 show the 
number of data points available per transporter for Liv-
erTox and for the newly collected datasets. The datasets 
were further used to generate classification models which 
allow the prediction of inhibitors for a number of liver 
transporters involved in severe side effects.

Descriptor selection
For the characterization of the chemical space related 
to ABC and SLC transporter inhibition, a variety of 
molecular descriptors from the RDKit library (version 
2020.09.1) were used [51]. These molecular descriptors 
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enable the translation of chemical structures into 
numerical representations of atomic or molecular prop-
erties of compounds. In total, 197 two-dimensional 
(2D) descriptors were chosen as a starting point for the 
selection of features applicable for ABC and SLC trans-
porters. Herein, three different feature selection meth-
ods from the scikit-learn Python library (version 0.24.2) 
were applied: VarianceThreshold, Univariate feature 
selection, and Recursive feature elimination. By apply-
ing VarianceThreshold all calculated molecular descrip-
tors with zero variance were removed. As a next step, 
best descriptors were selected based on a univariate 
statistical approach. ANOVA-f was chosen over mutual 
information due to the nature of the six transporter 
datasets. This method estimates the degree of linear 
dependency by using the F-test approach. In paral-
lel, recursive feature elimination (RFE) was performed 
to select features by recursively considering subsets of 
molecular descriptors. A random forest wrapper was 
used for assigning the weights. As a last step, the results 
of both univariate feature selection and recursive fea-
ture elimination methods were compared from each 
dataset. Molecular descriptor results were then manu-
ally aligned with each other. 70 features were found to 
match within all transporters using the top 50 scored 
ANOVA-f method and 170 using the RFE method. The 
resulting 70 descriptors were used for the creation of 

the final models (see Fig. 1). A graphical representation 
of the workflow can be seen in Fig. 2.

Model generation
Four different classifiers, namely logistic regression, 
support vector machine, random forest, and k-nearest 
neighbor were used for model generation. The scikit-
learn Python library (version 0.24.2) implementations 
were used to train binary classification models for the six 
above mentioned datasets.

Table 1  Overview of the six transporter datasets which are provided on the LiverTox workspace

Endpoint LiverTox training LiverTox test

Actives Inactives Actives Inactives

Breast cancer resistance protein (BCRP) 432 542 109 86

Bile salt export pump (BSEP) 114 410 43 116

Organic anion transporting polypeptide 1B1 (OATP1B1) 178 1472 64 137

Organic anion transporting polypeptide 1B3 (OATP1B3) 116 1547 40 169

Multidrug resistance associated protein (MRP3) 32 52 – –

P-glycoprotein (Pgp) 612 549 86 48

Table 2  Overview of the six transporter datasets that were used for the training of the models

The training set comprises data from LiverTox plus those extracted from ChEMBL 26 and 27, the test set contains data extracted from ChEMBL 28 and PubChem

Endpoint Training Test

Actives Inactives Actives Inactives

Breast cancer resistance protein (BCRP) 904 786 149 38

Bile salt export pump (BSEP) 221 1100 3 7

Organic anion transporting polypeptide 1B1 (OATP1B1) 292 1675 18 3

Organic anion transporting polypeptide 1B3 (OATP1B3) 168 1818 13 4

Multidrug resistance associated protein (MRP3) 74 569 0 3

P-glycoprotein (Pgp) 1281 953 136 236

Fig. 1  Schematic overview of the descriptor analysis carried out for 
both ABC and SLC transporters
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Hyperparameter grid search
To find the optimal parameters for each classifier, a grid 
search of the hyperparameters was performed. The fol-
lowing parameters were used:

Logistic regression:
C: 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 1, 10, 50, 100, 1000
max_iter 1,10,100,100,1000,10000.

Support vector machine:
C: 0.01, 0.1, 1.0, kernel: linear.
C: 0.01, 0.1, 0.5, 1.0, 10.0, 50, 100, 1000, kernel: rbf,
C: 0.01, 0.1, 0.5, 1.0, 10, 50, 100, 1000, gamma: 0.0001, 

0.001, 0.01, 0.1, 0.5, 1.0, 10.0, 50.0, 100.0, C: 0.0001, 
0.001, 0.01, 0.1, 0.5, 1, 10, 50, 100, kernel: rbf

Random forest:
n_estimators: 10, 25, 50, 75, 100, 250, 500.
max_depth: 2, 3, 4, 6, 10, 15, 20.

k-Nearest neighbor:
n_neighbors: 3, 5, 9, 11, 13, 17, 19,
weights: uniform.
distance metric: Euclidean.

Training procedure, cross‑validation, and evaluation
In a first step, prediction models were generated sim-
ply based on the LiverTox dataset and the settings men-
tioned above. The performance of these models was 
compared with the ones obtained from the LiverTox 
models [47] to validate our approach.

In a next step, the newly collected datasets of the six 
transporters were used for the training of the actual 
models. The performance of the models was evaluated 
using a tenfold cross-validation, and the statistical met-
rics, such as accuracy, sensitivity, specificity, and bal-
anced accuracy were calculated (see Table 3). For that, 
the scikit-learn Python library was used. Additionally, 
an external test set was used to test the new generated 

models. This test set was collected from ChEMBL28 
and PubChem and only data which was novel to the 
training set was kept.

Applicability domain
Local outlier factor (LOF) as described by Breunig and 
coworkers was used for the calculation of the applicabil-
ity domain [52] and as implemented in the scikit-learn 
Python library (version 0.24.2). In this approach the local 
densities of the nearest neighbors of a compound are 
compared to its local densities, and a factor from 0 to 1 
is assigned. In brief, if the local density is greater or equal 
to its surrounding, a compound is considered inside the 
domain, otherwise it is considered outside the domain.

The following parameters were used:

–	 5 nearest neighbors
–	 novelty = True
–	 Contamination = 0.1
–	 Euclidean metric
–	 Minmax scaled descriptors
–	 First two principal components were chosen as input

Results
Descriptor analysis
Three different feature selection methods were applied. 
Variance threshold setting to zero, univariate feature 
selection using ANOVA-f, and RFE with a random for-
est wrapper (default settings) were used for the retrieval 
of the most relevant molecular descriptors from the 
RDKit module for each dataset. However, once molecu-
lar descriptors with constant values were removed, the 
ANOVA-f and RFE method were applied. For the RFE 
method, different sets of descriptors were obtained for 
each transporter. The obtained descriptors were then 
aligned with each other for the identification of the most 
frequent descriptors occurring in each dataset. However, 
170 descriptors were obtained, which is still considered 
as a high number considering the basic principle of par-
simony in QSAR. Therefore, we conducted in parallel the 
ANOVA-f approach. Instead of using all scored molecu-
lar descriptors, we decided to use only the best 50 scored 
molecular descriptors for the alignment procedure. As 
our idea was to keep the number of descriptors as low as 
possible, we set the threshold to 50 for the alignment, as 
the performance of the models decreased in individual 
cases when a lower number was applied. The alignment 
of each set of resulted descriptors from the six trans-
porter proteins was then conducted. This resulted in a 
final set of 70 descriptors. The impact of 197, 170 and 
70 descriptors on all four models were then examined 
by calculating the balanced accuracy for each dataset. 

Fig. 2  Graphical Illustration of the workflow for model generation
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Table 3  Statistical metrics for all four models of each dataset

Models LR SVM RF k-NN

Train Test Train Test Train Test Train Test

BCRP

Accuracy 0.73 0.74 0.76 0.67 0.80 0.70 0.76 0.70

Sensitivity 0.75 0.81 0.75 0.69 0.79 0.71 0.79 0.74

Specificity 0.69 0.50 0.77 0.61 0.83 0.63 0.73 0.53

Balanced accuracy 0.72 0.65 0.76 0.65 0.80 0.67 0.76 0.63

F1-score 0.74 0.83 0.77 0.77 0.80 0.79 0.78 0.79

AUC​ 0.80 0.65 0.83 0.65 0.88 0.67 0.80 0.63

Precision 0.74 0.86 0.79 0.87 0.85 0.88 0.77 0.86

MCC 0.46 0.28 0.53 0.25 0.61 0.28 0.52 0.23

BSEP

Accuracy 0.84 0.72 – 0.78 – 0.83 -

Sensitivity 0.22 – 0.84 – 0.79 – 0.52 -

Specificity 0.96 – 0.69 – 0.77 – 0.89 -

Balanced accuracy 0.59 – 0.77 – 0.77 – 0.71 -

F1-score 0.30 – 0.54 – 0.57 – 0.53 -

AUC​ 0.73 – 0.85 – 0.87 – 0.79 -

Precision 0.59 – 0.42 – 0.50 – 0.60 -

MCC 0.28 – 0.44 – 0.49 – 0.45 -

OATP1B1

Accuracy 0.86 0.38 0.80 0.76 0.85 0.71 0.87 0.71

Sensitivity 0.20 0.33 0.74 0.83 0.63 0.72 0.35 0.67

Specificity 0.97 0.67 0.81 0.33 0.89 0.67 0.96 1

Balanced accuracy 0.59 0.50 0.77 0.58 0.74 0.69 0.65 0.83

F1-score 0.27 0.48 0.52 0.86 0.55 0.81 0.43 0.80

AUC​ 0.77 0.50 0.83 0.58 0.84 0.69 0.81 0.83

Precision 0.47 0.86 0.40 0.88 0.49 0.93 0.58 1

MCC 0.24 - 0.44 0.15 0.47 0.29 0.34 0.47

OATP1B3

Accuracy 0.91 0.35 0.84 0.71 0.86 0.59 0.92 0.65

Sensitivity 0.14 0.23 0.81 0.77 0.77 0.69 0.36 0.62

Specificity 0.98 0.75 0.84 0.50 0.87 0.25 0.97 0.75

Balanced accuracy 0.56 0.49 0.83 0.64 0.82 0.47 0.67 0.68

F1-score 0.20 0.35 0.46 0.80 0.48 0.72 0.41 0.73

AUC​ 0.79 0.49 0.88 0.64 0.89 0.47 0.80 0.68

Precision 0.45 0.75 0.32 0.83 0.35 0.75 0.50 0.89

MCC 0.20 − 0.02 0.44 0.25 0.46 − 0.05 0.38 0.31

MRP3

Accuracy 0.88 – 0.60 – 0.59 – 0.78 –

Sensitivity 0 – 0.77 – 0.68 – 0.20 –

Specificity 0.99 – 0.58 – 0.59 – 0.86 –

Balanced accuracy 0.5 – 0.67 – 0.62 – 0.53 –

F1-score 0 – 0.43 – 0.37 – 0.21 –

AUC​ 0.44 – 0.67 – 0.63 – 0.57 –

Precision 0.1 – 0.35 – 0.32 – 0.34 –

MCC 0 – 0.30 – 0.20 – 0.12 –

P-gp

Accuracy 0.74 0.65 0.72 0.68 0.76 0.68 0.71 0.64

Sensitivity 0.81 0.92 0.72 0.81 0.81 0.92 0.76 0.88
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Interestingly, we obtained similar results using only 70 
descriptors from the ANOVA-f approach (see Fig.  3) 
compared to 197 and 170 descriptors obtained from the 
RFE method. Therefore, we decided to implement the 
resulted 70 molecular descriptors retrieved from the 
ANOVA-f approach in the Jupyter Notebook.

Performance of the ML models
For the development of predictive models that can be 
shared in an easy manner and used for all six transporter 
datasets, four distinct modeling strategies were applied. 
Logistic regression-, support vector machine-, random 
forest- and k-nearest neighbor classifiers were used to 
train models with the datasets from LiverTox. This con-
cept was used to validate our approach to use it for the 
actual model generation. The comparison of the perfor-
mance indicated similar results as shown in the docu-
mentation of LiverTox. The support vector and random 
forest models performed overall better. For the improve-
ment of the models, new datasets for all six transporter 
datasets were collected from ChEMBL and PubChem. 
Further, newly published data from Chembl28 and 
PubChem were used as external datasets, whereas the 
previous versions were implemented for the training of 
the four modeling approaches. Again, the three feature 
selection methods and a hyperparameter search were 
conducted for the optimal number of descriptors and 

parameters. Finally, we obtained for each transporter two 
models, support vector and random forest, with a very 
similar balanced accuracy ranging from 0.67 till 0.83 for 
SVM and 0.62 till 0.82 for RF via tenfold cross validation 
within the various transporters. Overall, we observed 
that training the models with a subset of all descriptors, 
addition of new chemical space and the application of the 
grid search can improve the model performance as com-
pared to the LiverTox models, especially considering the 
balanced accuracy.

Discussion
Fast and facile model generation for binary classifica-
tion tasks that are applicable for more than one trans-
porter and additionally allow a retraining of the model 
is of great interest. Current ML model approaches that 
were developed are often based on one protein when 
trying to predict substances as transporter inhibitors or 
non-inhibitors [32, 53–55]. This makes it harder to gen-
eralize models when trying to predict substances for 
a group of transporters. As the selection of appropri-
ate molecular descriptors can vary from one protein to 
another, this becomes a quite challenging step. There-
fore, we established a Jupyter Notebook that allows 
the user to generate classification models for six trans-
porter proteins (BCRP, BSEP, OATP1B1, OATP1B3, 
MRP3, P-gp) without intensive descriptor analysis and 

Table 3  (continued)

Models LR SVM RF k-NN

Train Test Train Test Train Test Train Test

Specificity 0.64 0.28 0.71 0.50 0.70 0.35 0.64 0.32

Balanced accuracy 0.73 0.60 0.71 0.65 0.76 0.64 0.70 0.60

F1-score 0.78 0.75 0.73 0.74 0.79 0.77 0.75 0.74

AUC​ 0.80 0.60 0.77 0.65 0.80 0.64 0.76 0.60

Precision 0.77 0.64 0.78 0.69 0.80 0.66 0.75 0.64

MCC 0.46 0.27 0.44 0.33 0.53 0.34 0.43 0.25

Test: External Dataset

*Train: tenfold cross-validation

Fig. 3  Comparison of the performances (balanced accuracy) of random forest models using 197, 170 and 70 descriptors
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hyperparameter search. Moreover, these models can be 
shared between two instances for additional training. 
Our analysis indicated that 70 molecular descriptors 
from the RDKit module can be used for the creation of 
well-performing predictive models when random for-
est and support vector classifiers are used. The com-
parison of the feature selection methods implemented 
in the scikit-learn Python library showed to be useful 
for the reduction of descriptors by maintaining a good 
performance for most of the transporter models and 
establishing a general set of 70 descriptors for all six 
transporter proteins. However, in the case of MRP3 
an overall low performance was obtained due to a low 
amount of available data points. The data gathering step 
revealed that only two transporter proteins, namely 
BCRP and P-gp, covered a well-balanced number of 
actives and inactives. This can be visualized when com-
paring the resulted precision with the remaining data-
sets that are unbalanced. Both, P-gp and BCRP models, 
predict correctly 76 to 80% of the cases when a random 
forest classifier was chosen. Interestingly, for all except 
MRP3, both good sensitivity and specificity values 
were retrieved, although the other transporters pos-
sess an unbalanced dataset. Only for OATP1B1 a sen-
sitivity lower than 70% was obtained. Best performance 
was retrieved using the BCRP dataset with a balanced 
accuracy of 80%, precision of 85%, and sensitivity and 
specificity values from 79 to 83%. This can be explained 
by the high number of well-curated data points and the 
balanced number of actives and inactives in the dataset. 
Nevertheless, these models can be used for re-training 
and therefore the performance can increase once more 
data is available. For each transporter protein a ten-
fold cross-validation was performed and an external 
dataset was used for a thorough evaluation, after the 
final model was trained. A reasonable amount of test 
compounds was collected for BCRP and P-gp trans-
porters. In the case of OATP1B1 and OATP1B3 more 
than 17 compounds were retrieved, and less than 10 

compounds were obtained for BSEP and MRP3. There-
fore, an external validation was meaningful when BCRP 
and P-gp test sets were evaluated. In both cases, the 
balanced accuracy, specificity decreased by more than 
20% compared to the cross-validation, which still indi-
cated a moderate performance. This could be explained 
by the fact that 31 compounds from the BCRP and 35 
compounds from the P-gp test set were out of domain, 
when local outlier factor algorithm was used for the 
applicability domain estimation (Table  4) [52]. Using 
the same approach for OATP1B1 and OATP1B3, indi-
cated a total of 9 outliers and similar decrease in per-
formance. For the remaining test sets no results could 
have been retrieved due to the low number of data 
points obtained from ChEMBL28. Nevertheless, a ten-
fold cross validation was carried out for each trans-
porter dataset indicating performances close to 80% 
for five out of six transporter datasets, making it a val-
uable and feasible tool for the prediction of new data 
related to both ABC and SLC transporters. Addition-
ally, this approach benefits from the model’s ability to 
be updated and shared in a facile manner using Jupyter 
Notebook.

Conclusion
In this study, we present a JN which enables the user to 
generate classification models for six transporter proteins 
(BCRP, BSEP, OATP1B1, OATP1B3, MRP3, P-gp) based 
on four different classifiers with pre-selected descriptors 
and without extensive hyperparameter search. In addi-
tion, the notebook can further be used to create models 
for additional transporters as well as retraining of the 
existing prediction models using pre-defined descriptors 
as well as hyperparameters with an extended/novel data-
set. The JN can be as well used for educational purposes, 
especially for the ones interested in the creation of pre-
dictive ML models for inhibitory activity predictions.

Table 4  Applicability domain estimation for all six transporter protein test sets

Endpoint LOF result

Compounds
In-domain

Compounds
Out of 
domain

Breast cancer resistance protein (BCRP) 156 31

Bile salt export pump (BSEP) 9 1

Organic anion transporting polypeptide 1B1 (OATP1B1) 15 6

Organic anion transporting polypeptide 1B3 (OATP1B3) 14 3

Multidrug resistance associated protein (MRP3) 3 0

P-glycoprotein (Pgp) 201 35
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