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Abstract

The topic of this thesis are gaps in partially ordered sets, where we in par-
ticular concentrate on the sets “w and P(w). We start with gaps in “w,
introduce important types of these gaps and state their basic properties.
Then we investigate the behaviour of gaps under forcing and show that it is
possible to both introduce gaps via forcing and destroy certain gaps using
forcing. In Chapter 4 we switch our focus to gaps in P(w) and show that
there are Special Gaps which are not Hausdorff Gaps. Then the influence
of additional axioms, in particular versions of MA and PFA, is dealt with in

chapter 5.

Abriss

Das Thema dieser Arbeit sind Liicken in partiell geordneten Mengen, wobei
wir uns insbesondere auf die Mengen “w und P(w) konzentrieren. Wir begin-
nen mit Liicken in “w, fithren wichtige Typen dieser Liicken ein und geben
ihre grundlegenden Eigenschaften an. Dann untersuchen wir das Verhalten
von Liicken unter Forcing und zeigen, dass es moglich ist, sowohl Liicken
durch Forcing einzufiihren als auch einige Arten von Liicken durch Forcing
zu zerstoren. In Kapitel 4 wechseln wir unseren Fokus auf Liicken in P(w)
und zeigen, dass es Spezielle Liicken gibt, die keine Hausdorff-Liicken sind.
Dann wird der Einfluss zusétzlicher Axiome, insbesondere Versionen von
MA und PFA, in Kapitel 5 behandelt.
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Chapter 1

Introduction

For any partially ordered set (X, <,) it is possible to define the notion of
a gap in X as, roughly speaking, two sequences of elements of X that are
somehow “asymptotically close”. More specifically, a gap consists of two
sequences (x;)icr and (x;);jes, indexed by totally ordered index-sets I,.J,
such that (z;)scr is increasing and (x;);c is decreasing with respect to the
order inherited from I and J, respectively, such that (x;);cs is pointwise
below (xj)jcs. The gap-property than states that there exists no element
y € X which is “between” (x;)ier and (z;)jcs, ie. x; <,y < x; for all
iel,jeld.

We will investigate mostly the case of X = “w with the order <, defined
by letting f < ¢ if and only if the difference of g and f tends to infinity.
Closely related to this is the space P(w), partially ordered by almost in-
clusion C*. As index-sets we will almost always consider ordinals. For the
scope of this work, interesting questions are in particular results on the ex-
istence of certain types of gaps (possibly under additional axioms), on the
relation between different types of gaps and on the influence of forcing on
gaps.

Pioneer work on these topics has been done by Hausdorff, for example
in [1] or [2]. Hausdorff showed (in ZFC) that there exist gaps of a certain
type, which we will name after him (see Theorem 12). An important role
in the development of the theory of gaps also played Rothberger (see for
example [3] or [4]), who will be the name-giver of the very important so-called

Rothberger-Gaps. Later on it was among others Kunen who investigated in



particular the influence of forcing on gaps.

This work is roughly structured as follows:

In Chapter 2 we will consider basic properties of gaps. We introduce
certain types of gaps such as Hausdorff Gaps, Special Gaps and Rothberger
Gaps (see Sections 2.3 and 2.4), for which we state and prove some of the
most important properties. All results can be derived from ZFC without
using any more delicate techniques such as forcing.

In Chapter 3 we bring forcing into play and investigate questions such as
the possibilities of introducing and destroying gaps (see Sections 3.1 and 3.2,
respectively), as well as circumstances under which gaps cannot be destroyed
using forcing (Section 3.3).

Chapter 4 deals with gaps in P(w), where we consider similarities and
differences to gaps in “w. In Section 4.2 we introduce towers and consider
their connections with gaps in P(w). This will lead to the result that the
space of Hausdorff Gaps and Special Gaps do not coincide.

The last Chapter is dedicated to the investigation of the influence of
additional axioms on the gaps. We will focus especially on Martin’s Axiom
in different versions (see Section 5.2) and the Open Coloring Axiom, where
as a corollary we obtain results for the Proper Forcing Axiom (see Section
5.3).



Chapter 2
Gaps in “w

In this chapter we introduce and discuss basic properties of gaps in (“w, <),
where “w is the set of functions f: w — w, which we will call reals. By <

we denote a partial order on “w, defined by
f < g if and only if ILm g(n) — f(n) = oc.

Given some relation R(n, fo, ..., fm), depending on n € w and reals fy, ..., fm,
we say that R holds eventually if there exists k € w such that R(n, fo, ..., fm)
holds for all n > k.

Most of the time we will not explicitly say that we consider (Yw, <),
however, all considerations and results in this chapter are with respect to
(Yw, <), if not otherwise stated. This chapter mostly follows [5], however,

we sometimes provide more detailed or slightly different proofs.

2.1 Definitions and First Interpolation Theorem

We start with defining the notion of a pregap and a gap, give some basic
properties of them and prove the so called First Interpolation Theorem. The

following definition is a more general version of the definition given in [5].

Definition 1 (Pregap). Given two totally ordered sets (I, <p), (J, <) with

minimal element and an ordered pair of sequences of reals ({ fi}icr, {g;}jer)s

we say that ({fi}tier, {g;}jes) is an (I, J)-pregap if
fil = fi2 = 9j» = G5

for all 11 <71 12 and jl <J jQ, where il,ig €I and jl,jg e J.



This immediately leads us to the main thing of interest, the notion of a

gap:

Definition 2 (Gap). A pregap ({fi}icr,{9;}jes) is an (I, J)-gap if there is
no real h € “w such that

fi=h =<y

for all ¢ € I and all j € J. If there is such an h we say that h interpolates
the pregap ({fi}icr, {9;}jes)-

Remark. For the majority of cases we will use as index sets I, J ordinal
numbers «, f with the usual ordering. Then we write ({f,}y<a,{95}s<3)
for an (a, B)-pregap. However, the definition above allows us to make some

more general statements.
Intuitively, it is not surprising that we have some kind of symmetry:

Proposition 1. Let a and 8 be ordinals. If there is an («, 5)-gap in (Yw, <),
then there is an (8, a)-gap in (Yw, <).

Proof. Let ({fy}y<a>{9s}s<p) be an (a,B)-gap in (“w,<). Define ¢/, =
max{go — fy,0} and f; = max{go — g5,0} for each v < a and each ¢ < f.
Then ({f§}s<p, {9/7}7<a) is a (8, a)-gap:

Since fy < go, eventually g’7 = go — fy for all v < a. Also g5 < go, thus
eventually f§ = go — gs for all 6 < 3. So for 71,72 € o and 41,62 € B with
71 < 72 and 01 < 2, eventually ¢/, < g7, and f5 < f5 , because fy, < f,
and g5, < gs,, respectively. Since f, < gs, also f; < g/, for all v € a and
5 € B. Thus ({F3}s<p, {6 }r<a) i5 a (6, a)-pregap.

If it was not a gap, let h interpolate it. But then A’ = max{gy — h,0}
would interpolate ({fy}y<a; {gs}s<p), since f5 < h < g- implies f, < h' <
gs for all § € 5,7 € a. This is a contradiction to the assumption that

({fy}r<a>{9s}5<p) is a gap. O

Another intuitive and useful result is the following proposition, stating

that it suffices to consider cofinal subsets to prove the gap-property for

(o, B)-pregaps.

Proposition 2. Let a and B be ordinals and ({fy}y<a,{95}5<5) be an
(a, B)-pregap. For A C « and B C 8 both cofinal, the following are equiva-

lent:



1. ({fy}y<ar{9s}ts<p) is a gap,
2. ({fa}aca:{gb}ben) is a gap.

Proof. (1) = (2): The only thing to prove is that there is no h € “w
interpolating ({ fa}aca, {9 }ver). But if there would be such an h, fix v < «
and 6 < . Then there is an ¢ € A and an b € B such that v < a and
d < b, thus f, < fq and g, < g5. Since h interpolates ({fa}aca, {9»}seB),
this implies fy < fo < h < g5 < gs. Because v and § were arbitrary, this
holds for all v € a and all § € 8, which is a contradiction to 1.

(2) = (1): Suppose h interpolates ({fy}y<a,{9s}s<3). But then h
interpolates ({fa}aca,{9s}ven), since A C o and B C . This is a contra-
diction. O

Remark. If we consider an (o, 5)-pregap for ordinals «, 3, Proposition 2
ensures that we can assume « and 3 to be regular cardinals, whenever we

want to prove that the pregap is a gap.

We now state and prove our first result, which is originally due to
Hadamard [6]:

Theorem 3 (First Interpolation Theorem). There are no («, 3)-gaps in

(Yw, <), if a and B are countable ordinals.

Proof. Let ({fy}y<as{9s}s<p) be an (a, 3)-pregap and o, be countable
ordinals. By Proposition 2, we can assume that «, 8 < w.

Suppose a« = 8 = w. Since fi, < fn < gn < gn for all m < n €
w, we can find a natural number k € w such that for all j > k we have
fm(3) < fn(d) < gn(J) < gm(j). We can further choose this k such that
fn(g) +2-n < gn(j) for all j > k. In particular, for each n # 0 we find &,
such that fn—1(j) < fn(J) < 9n(j) < gn-1(j) and f,(j) +2-n < gn(j) for all
j > ky. Inductively, we can build an increasing sequence {ky, },>1 such that

Jo(G) < f1(G) < . < faG) < gn(d) < gn—1()) < - < 90(4)

and f,(j) +2-n < gn(j) for all j > k,,. Define h € “w by h(j) = fu(j) +n
whenever j € [kp,knt+1) and h(j) = 0 for j < k1. Then h interpolates
({fy}v<a>{95}5<p), so this pregap is not a gap.
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If « is finite, extend {fy},<a by fyy = fy for 4/ > a. Then apply the
above argument to construct h, which will interpolate the pregap. The case
that [ is finite is similar. O

2.2 Second Interpolation Theorem

In this section we prove another interpolation theorem, which will be useful
to prove the existence of a Hausdorff Gap. The notions introduced in this
section as well as the first proof of the main results were given in [2], although
we will follow [5] with the notation. We will focus on (1, a)-pregaps for an
ordinal a.

One of the key properties of a (1, «)-pregap is being near to some subset

of a:

Definition 3 (Nearness). Let ({f},{gy}y<a) be a (1, a)-pregap for an or-
dinal o. For n € w, define N = {y € a | Vk > n: f(k) < g,(k)}. Then for
A C a, we say that f is near A if AN Ny is finite for all n € w.

Remark. The notation Nj is a bit misleading, since it suggests that N{
only depends on f and n € w. But in fact, N,{ depends on n and the (1, a)-
pregap ({f}, {gy}y<a). Since it will always be clear from context witch
(1, )-pregap needs to be considered, we avoid to use a more clear (but

lengthy) notation.
We state basic properties of the sets Nﬂ: :

Proposition 4. Let a be an ordinal and ({f},{g}<a) be a (1, a)-pregap.
1. If m<né€w, thenN,{l QNT{.

2. For h € “w, if there is a k € w such that f(n) < h(n) for alln > k,
then fo - Nﬂ: for alln > k.

3. If h is an interpolating real for ({f},{g,}r<a), then NI C N{ for all
but finitely many n € w.

Proof. 1.: If 4 € Ni,, then f(k) < gy(k) for all k > m. Since n > m, this
implies f(j) < g,(j) for all j >n, soy € N{.

2.: Let h € “w and k be as in 2. Fix n > k and suppose v € N/
Then h(j) < gy(j) for all j > n. Fix j > n. Since j > n > k, we have

11



f(7) < h(j) < gy(j). Because j > n was arbitrary, this holds for all j > n,
so 7y € N,{ . Since also n > k was arbitrary, this implies 2.

3.: Let h be asin 3. Then f < h, so we find k € w such that f(n) < h(n)
for all n > k. Thus 2. implies 3. O

Proposition 5. Let a be an ordinal and ({f},{g}<a) be a (1, a)-pregap.
1. If « is finite, then f is near A for all A C «.
2. If f is near A, B C «, then f is near AU B.

3. If f is near A C o and B C « is such that B\ A is finite, then f is

near B.

Proof. 1.: If « is finite, then trivially oo N Nﬁf is finite for all n € w.

2.: If f is near A, B, then AN Nj and BN N{ are finite for all n € w.
Thus (AU B) N Ni = (AN NJ) U (BN Ny) is finite for all n € w.

3.: Let f be near A and B \ A be finite. Note that B = (B '\ A) U A).
Thus BNN] = ((B\ A)NN;)U(ANN{), which is finite for each n € w. [

Proposition 6. Let o be a countable ordinal and ({f},{gy}y<a) be a (1, )-
pregap. If N s infinite and f is near v for each v < «, then N s

unbounded in o and of order type w.

Proof. Suppose N{ is bounded in «.. Then there is v < a such that N < Y,
ie. Ng C ~. But f is near «, since v < «, so N,{ Ny = NT{ is finite, a
contradiction to the assumption that N,]: is infinite.

To see that NT{ is of order type w, assume the contrary. Then there is
B € Nﬂ: which has infinitely many predecessors in N,{ . But 8 € a, so NJ ng

is finite by assumption of the proposition, which is a contradiction. O

Proposition 7. Let o be an ordinal and ({f},{gy}y<a) be a (1, a)-pregap.
If f is near A C a and h interpolates ({f},{gy}y<a), then h is near A.

Proof. Fix n € w and suppose B = N N A is infinite. So we can find
infinitely many v € B such that for all £ > n we have h(k) < g (k). But,
since f < h, we find n* such that for all j > n* the inequality f(j) < h(j)
holds. But then for all £ > max{n*,n} we obtain f(k) < h(k) < g (k).
Thus N;:* N B is infinite. Since B C A, this is a contradiction to f being
near A. O

12



Proposition 8. Let o be an ordinal, ({f},{gy}y<a) be an (1,a)-pregap and
{fn}n@u - “w be such that

1. ({fn}news {9y} y<a) is an (w, )-pregap and fo = f,
2. fn+1 is near N,{ for alln € w.
If h € “w is such that

i f(n) < h(n) for alln € w,

i h interpolates ({fn}new: {9y }y<a);

then h is near o.

Proof. Let h be as in the statement. Note that ({fn.+1},{g9y}y<a) forms a
(1, a)-pregap for each n € w, which is interpolated by h. By Proposition
7, we obtain that A is near NT{ for each n € w, i.e. Nﬁ N NT{ is finite for
each n € w. By Proposition 4, we obtain that there is a k € w such that
Nfl‘ C N{f whenever n > k. But in this case Nf; N NT{ = Nf;,
N! is finite itself for all n > k.

If now n < k, N can not be infinite: Suppose N/ is infinite and fix

implying that

such an n € w. By Proposition 4, we know that N C N} .. where k € w

k+1°
is above. But N ,? 't1 is finite by what we have just shown, so N/ can not be

infinite. O

We can now prove the Second Interpolation Theorem, which is due to
Hausdorff and will be very useful to construct a Hausdorff Gap (first proven
by Hausdorff in [2], page 321):

Theorem 9 (Second Interpolation Theorem). Let a be a countable ordinal
and let ({f},{gy}y<a) e a (1,a)-pregap.
If f is mear v for all v < «, then there is an h € “w that interpolates the

pregap and is near o.

Remark. The important statement of Theorem 9 is that the interpolating
real h is near a. The existence of such an element in “w is already clear by

Theorem 3.

Proof. We use Proposition 8. So we construct a sequence of reals { fy, }new,
such that

13



L ({fn}nes; {9y}r<a) is an (4, a)-pregap with fo = f for all § < w,

2. fn41 18 near Nﬂ; for all n € w.

We construct {f, }ne, inductively:

Let f = fo. Given we have already found {fo, f1,...fn} we define f,,11
as follows:

If NT{ is finite, we can use Theorem 3 and find an interpolating function
fn+1, which is near N{ by Proposition 5.

Now assume N,{ is infinite. By Proposition 6, we obtain that NT{ is of
order type w and cofinal in a. So we can enumerate NT{ as {7i}iew so that
9v; = Gy; Whenever j < i. Then since ({fi}i<n,{gy}r<a) is a pregap, we
obtain f, < g, < gy, < ... < g for every ¢ € w. So for each i € w we can
find k; € w such that f,(j) < ¢+(J) < gy, (J) < ... < g4 () for all j > k;.
Inductively we obtain a sequence {k;}ic, C w, which we can further ensure

to be strictly increasing. Then we define f, 11 by

Gyii(J) if j € [Kis kiy1)
() otherwise

fn+1(j) =

Then f, < fny1 < g4, for all i € w:

By definition of k; we obtain f,(j) < fn4+1(j) for all j € w. For j > k;
we have that f,(j) < ¢,(j) < fat1(J) and therefore f, < fn41, because
fa < G-

To see that f,41 < g4, for all i € w, fix i € w and recall that {k;}ic, is
strictly increasing. For all j > ko we have that fn11(j) = g4, (j), where
I(j) > i. By definition of k;, it follows that fu11(j) = gy, (J) < g,(j) for
J 2 kit2. Since gy, < gy, for all j € w with j > i, we obtain f,,1+1 < gy,

Further f,, 1 is near N,{:

Consider any k € w. Suppose N,f"“ N N7 is infinite. Let k € [k, kiv1)
and fix j > i+ 1. Then for I € [kj,kj11) we obtain fry1(l) = gy,_,(1).
By the choice of the k;’s we also have that g,.(I) < gy,_,(I) = fat1(l), so
v ¢ N g’“’l N N{. But since j > i + 1 was arbitrary, this is a contradiction
to N/™*' N N being infinite.

So we have found our f, 1 as desired.

Continuing this construction, inductively we obtain a sequence { f;, }necw. sat-

isfying 1. and 2.

14



By Theorem 3, we find h € “w that interpolates ({fn}new; {9y }y<a)-
Without loss of generality, we can also assume that f(n) = fo(n) < h(n) for
all n € w. Since {f, }new satisfies 1. and 2., we can apply Proposition 8 and

obtain that h is near «. O

2.3 (wp,wr)-Gaps in (Yw, <)

We consider the special case of (w1, w1)-gaps in this section. We present two
different notions of such gaps, Hausdorff Gaps and Special Gaps, which will

turn out to be closely related.

2.3.1 Hausdorff Gaps

We start with Hausdorff Gaps, which will be our first example of a gap.
We will mainly follow [5] in this section, which is a reformulation of results

originally proven in [2].

Definition 4 (Hausdorft Gap). Let ({fy}y<w:, {95 }5<w, ) be a (w1, w1)-pregap.
Then we say this pregap is a Hausdorft Gap, if f, < g, pointwise and f, is

near ~ for all v € w;.

The notion of a Hausdorff Gap seems a bit misleading at this point, since
we a priori only know that a Hausdorff Gap is a pregap with some special
properties. However, we can show that the name of this notion is indeed
justified:

Proposition 10. A Hausdorff Gap is a gap.

Proof. Let ({fy}y<wi:{95}5<w,) be a Hausdorff Gap. Suppose it is not a
gap. Then we find h € “w interpolating ({ fy }y<w:, {96 }s<wr)-

Fix v € w1. We know f, < h < g,, so there is an k, € w such that
fy(n) < h(n) < gy(n) for all n > k,. Consider {k,},c., and note that this
is a subset of w, so we find an uncountable A C wq such that k, = k for all
a € A, for some k € w.

Because A is uncountable, we can find a* € A such that there are in-
finitely many b € A with b < a*. Fix such a b. Then h(n) < gy(n) for
n > k(= ky). Since k = ky = kg, also fogx(n) < h(n) for all n > k, so
far(n) < h(n) < gp(n) for all n > k. Thus b € N,f“* and because there are

15



infinitely many such b < a*, we obtain that f,; is not near a*. This is a

contradiction to ({fy}y<w:s{9s}s<w,) being a Hausdorft Gap. O

Remark. In the proof of Proposition 10 we did not use the property of
Hausdorff Gaps that f, < g, pointwise. Further we did not use that we
have an (wi,w)-pregap for wq, but just that we have an («, a)-pregap for «

uncountable. So this results generalizes as follows:

Proposition 11. Let ({fy}y<a,{95}5<a) be an (o, a)-pregap and let o be
uncountable. If f. is near v for all v € o, then ({fy}y<a,{9s}s<a) is an
(a, a)-gap.

Although we already obtained some results about the notions of pregaps
and gaps, we do not know that there exist gaps in (“w, <). The following

theorem by Hausdorff [2] ensures their existence, even for Hausdorff Gaps:
Theorem 12. In (Yw, <) there exists a Hausdorff Gap.

Proof. We prove the theorem by constructing a Hausdorff Gap using induc-

tion. For all a € wy we construct a pregap ({fy}y<a;{9s}s<a) such that
1. fy < gy pointwise for all v < «,
2. fy is near v for all v < a.

We start with fy and gg being arbitrary elements of “w such that fy < go.

Now suppose we have already constructed an (a, a)-pregap satisfying 1.
and 2.

If « is a successor ordinal, then there is 5 such that o = 3+ 1. Choose
fa and go in “w such that fg < fo < ga < g3, what we can do by Theorem
3. Without loss of generality, in fact by modifying at most countably many
initial values of f, and g,, we can assume that fz < f, < go < g pointwise.
Since fg is near 3, by Proposition 7, we obtain that f, is near 3. Also,
a\ B = {B} is finite, so Proposition 5 yields that f, is near a.

If o is a limit ordinal, we can use Theorem 3 to obtain an h that in-
terpolates ({,},<as {gs}s<a). Note that ({f,}, {gs}s<a) is a (1, a)-pregap
that is interpolated by h for each v € a. Thus, by Proposition 7, we get
that h is near «y for each v < a. Applying Theorem 9 to the (1, «)-pregap
({h},{9+}y<a) gives us an interpolating h’ € “w that is near a. Then put

16



fa = h'. By Theorem 3, we also get an h” interpolating ({ fy}y<a, {9y }y<a)-
By modifying at most finitely many values of h”, we obtain g, € “w such
that ({fy}y<as {9y }y<a) satisfies 1. and 2.

Thus we can construct an (wq,w;)-pregap satisfying 1. and 2. which is

in consequence a Hausdorff Gap. O

2.3.2 Special Gaps

Another important class of (wy,ws)-gaps in (“w, <) are Special Gaps, which

were introduced by Kunen [7].

Definition 5 (Special Gap). Let ({fy}y<w:, {95 }5<w,) be an (w1, w1)-pregap.
We say that ({fy}y<w:,{95}5<w) is a Special Gap if we find an n € w such
that f(k) < g,(k) for all K > n, v < wy; and for all v < 0 < wy we find an

I >n with f,(1) > g5(1) or f5(1) > g(1).

As for Hausdorff Gaps, we show that the name Special Gap is indeed
justified:

Proposition 13. Let ({fy}y<wi>{9s}s<wi) be a Special Gap. Then it is a
gap.

Proof. Let ({fy}y<wis{9s}6<w,) be a Special Gap. Suppose that we find an
h € “w that interpolates the pregap. For each v < wy we have f, < h < g,
thus we can find a n, € w such that f,(k) < h(k) < g4(k) for all k& > n,.
But then there exists an uncountable set X C w; such that for 7,0 € X we
have ny, = ns =: n.

Consider v # 6 € X. Let i € {0,1,...,n — 1} and observe that for each
such i there are only countably many possible values for f, (i) and f5(7). So
there must be an uncountable set Y C X such that for all v,§ € Y and all
i €{0,1,...,n — 1} we have that f,(i) = fs(i). Using a similar argument
for g, and gs, we can further find Z C Y uncountable such that for all
7,0 € Z we obtain gy(i) = gs(i) for ¢ € {0,1,...,n — 1}. But then for any
7,0 € Z with v < § we obtain that f(k) < gs(k) and f5(k) < g,(k) for
all k& € w. This contradicts the assumption that ({fy}y<w,{95}5<w,) is @
Special Gap. O

We will show that Special Gaps are equivalent to Hausdorff Gaps. There-

fore, we need to define what we mean when we call two gaps equivalent:
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Definition 6 (Equivalence of Pregaps). Let ({fy}y<a;{9s}s<g) and
({f}}9<as{95}6<) be (a,B)-pregaps for ordinals «, 3. We say that the

pregaps are equivalent if
1. for all v < « there exists 7' < a such that f, < f, and f} < fy,
2. for all § < (3 there exists 0’ < § such that g5 > g5 and g§ > gs.

Now the point is the following:

Proposition 14. Let ({f,}y<a: {g5}s<5) and ({f]}r<o: {g5}s<s) be equin-
alent (o, B)-pregaps. Then ({fy}v<a,{95}s<p) is an (o, B)-gap if and only
if ({f3}y<a {95to<p) is an (o, B)-gap.

Proof. Let ({fy}y<as{9s}s<p) be a gap and assume that ({f] }y<a; {g5}s<s)
is not a gap. Let h € “w interpolate ({f]},<a,{95}s<5)-

For v < a we obtain 7' < « such that f, < f;,, thus f, < h. Now let
6 < . We find ¢’ with gs > g5. Thus also h < g5, which implies that h
interpolates ({fy}y<a>{9s5}s<3), a contradiction.

The proof of the other direction is the same, switching the roles of
({fy}y<as {gs}o<p) and ({ ] }r<as {g5}o<p)- O

We can show the first very important result about equivalence of gaps,

which is taken from [5]:
Theorem 15. Fvery Hausdorff Gap s equivalent to a Special Gap.

For the proof we will need the following proposition, which can be found

as Lemma 19.1 in [8]:

Proposition 16. Let x be an infinite reqular cardinal, A < k and f : k —
P(k) be such that x ¢ f(x) and |f(x)| < A for all x € k. Then there exists
X C & such that | X| =k and for distinct x,y € X it holds that x ¢ f(y).

Proof. We use transfinite recursion to construct a sequence of disjoint sub-
sets of P(k), {(Xa)}a<r, such that for all @« < A and z,y € X, we have
¢ Fy):

Note that such X, exist, since the singleton set {z} satisfies x ¢ f(z)
for all z € k by assumption. If we have already constructed {(X3)}s<q, let
X be a maximal subset of k \ [J{Xp | < a} such that for any z,y € X,

x ¢ f(y). The existence of such an X, is ensured by Zorn’s lemma.
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Then there must be an « for which X, has cardinality :

If not, we obtain |X,| < & for all @« < A. For each a@ < A consider Y, =
U{f(x) |z € Xo}UX, and let Y = (J{Y, | @ < A}. Then, since |f(x)] < A
for all x € k and |X,| < K, we obtain |Y,| < k for each @ < X\ and
consequently |Y| < k, because k is regular.

Now pick any z € K\ Y. Then z € v \ U{X3 | B < a} and 2z ¢ f(z)
for any x € X,, for all @« < A. But z ¢ X,, as z ¢ Y, so there must be
an r € X, with x € f(z), because otherwise we would have a contradiction
to the maximality of X,. This holds for all @« < A\. Thus f(z) N X, # 0
and since X, N X3 = 0 for o, € A, we obtain |f(z)| > A. This is a

contradiction. O

Remark. Mappings f : X — P(X) such that = ¢ f(z) for all z € X are

usually called set mappings.
Now we are ready to proof Theorem 15.

Proof of Theorem 15. Let ({fy}y<a,{9s}s5<p) be a Hausdorff Gap. Define a
set mapping h: w; — [wi]<N° by

h(v) ={6 <~ | fy(n) < gs(n) for all n € w}.

The fact that h(v) is finite for each v € w; holds because we consider a
Hausdorff Gap, so f, is near 7.

Because h is a set mapping, we can apply Proposition 16 to A and obtain
an uncountable X C w; such that for all z,y € X we have x ¢ h(y).

Consider the gap ({fz}zex, {9z }zex). Since | X| = wy, this gap is equiv-
alent to ({fy}y<as{9s}s<p). Further for z,y € X with x < y we obtain
x ¢ h(y), thus we can find an n € w for which f,(n) > g,(n). Putting
n = 0, where n is as in Definition 5, we obtain that ({f;}zex, {9z zex) is a

Special Gap. ]

2.4 Rothberger Gaps

In this section we introduce Rothberger Gaps in (Yw <).

Definition 7. For a regular uncountable cardinal number x, we say that

every (k,w)-gap and every (w, k)-gap in (Yw, <) is a k-Rothberger Gap.
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Definition 8. For f,g € “w, we write f =* g for the case that f and g¢

agree for all but finitely many values and say that f and g are almost equal.

Remark. The notion =* is an equivalence relation and respects <, that is,

if fi =* fo and g1 =" g9, then f1 < g1 implies fo < go.

The next theorem, which is due to Hausdorff and Rothberger (see [2] and
[4], modern formulation in [5]), shows that the existence of a k-Rothberger

Gap is equivalent to the existence of (k,0)-gap and a (k, 1)-gap:

Theorem 17. Let k be a regular uncountable cardinal number. Then the

following are equivalent:

1. There exists a k-Rothberger Gap in (“w, <).
2. There exists a (k,0)-gap in (“w, <).
3. There exists a (k,1)-gap in (“w, <).

Remark. By Proposition 2, statement 1. in the theorem can be made more
general to cover all («, 8)-gaps and (8, «)-gaps in (“w, <) for an uncountable
a and a countable ordinal 5. Proposition 1 ensures that (x,0) and (s, 1)

could be replaced by (0, ) and (1, k), respectively.

Proof. 1. = 2.
Without loss of generality, assume that we have a (k,w)-Rothberger Gap
({fy}v<rs{gn}new). We can further assume that {g,}neo is decreasing
pointwise, that means ¢, (i) > g (i) for n < m and all i € w.

We want to construct a sequence of length x in (“w, <), which is un-
bounded and increasing with respect to <. Then this sequence is a (k,0)-
gap. We first construct an <-unbounded sequence in “w:

For all v < s, define the real h, as follows:

max{k € w | gn(k) < fy(k)} if defined
hy(n) =

1 otherwise.
Because f, < g, for each 7 < x and each n € w, h, is well-defined for each
v < K.
We observe that h. is increasing, i.e. that h,(n) < hy(m) for n <
m, because the fact {gy}necw is decreasing pointwise implies that max{k |
ga(k) < ()} < max{k | gm(k) < fo(W)} if 0 < m.
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Claim 1. The set {hy} <y is unbounded in (“w, <).

Proof. Suppose that {h,} <, is bounded and let h be a witness. Without
loss of generality, we can assume that h is strictly increasing.
Define a real f by

gn(1) ifi € [h(n),h(n+1))

1 otherwise.

f@@) =

Then for a fixed v < w, we observe that there is an i, € w such that
h~(i) < h(i) for all ¢ > i, because hy < h. But by the definition of h., this
implies that f,(j) < gi(j) for all ¢ > i, and all j > h(i). Let j > h(iy + 1)
and j € [h(l),h(l + 1)) for some [ > i,. Then since j > h(l), this implies
£0) < () = 1G).

Then even f, < f for all v < s: If not, let v* be a counterexample,
ie. fy« A f. Let § be such that v* < 6 < k. Then applying the argument
we have just given to §, we obtain that there exists some k € w such that
f5(7) < f(j) for all j > k. But since f,- < f5, this is a contradiction to
fy A f. So fy < f for all v < k.

But on the other hand also f < g, for all n € w. To see this, let n € w be
given. Then for j > h(n + 1) we obtain that f(j) < gn(j), because {gn }new
is pointwise decreasing. Since this holds for every natural n, we must have
f = gn for every n € w.

Finally, we obtain that f interpolates ({fy}y<x;{9n}new), which is a

contradiction. O

Now we show that we can thin out {h,} < so that we obtain a strictly

increasing unbounded sequence.

Claim 2. There exists a 3 < k such that h, is unbounded for all vy with
B < v <K.

Proof. Suppose the claim is false. Then we find a cofinal set C' C k such
that for each v € C, hy is bounded. Because h, is increasing, these h,’s are
eventually constant.

Fix v € C. Then there is a n, € w such that h,(n) = hy(n,) whenever
n > n,. By definition of h.,, this implies that there is a k, such that
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fy(k) < gn(k) for all k > k, and all n > n,. Because {gy }new is decreasing
pointwise, this implies f (k) < gn(k) for all k > k, and all n € w.

We can find such a k, € w for all v € C. Since & is regular and C' is
cofinal in k, |C| = k. So there is D C C with |D| = k and ks, = ks, := kp
for all 61,92 € D. We obtain that fs5(k) < gn(k) for all § € D, all k > kp
and all n € w.

This allows us to define

. max{fs(i) |6 € D} ifi>kp
fi) =
1 otherwise.
But then f interpolates ({fs}scp,{gn}new) and thus, by Proposition 2, it
interpolates ({fy}y<«, {gn}new), since D is cofinal in . This is a contradic-
tion. O

Claim 2 allows to assume that h, is unbounded for all v < &, since
otherwise we can remove all corresponding f, from {f,},c. and still have a
(k,w)-Rothberger Gap.

Claim 3. For all v < § < k we find an n € w such that h(m) < hs(m) for

allm > n.

Proof. Let v, be as in the statement of the claim. Then we find [ € w
such that fy(j) < fs(j) for all j > [, since f, < f5. We assumed that h, is
unbounded, so we further find n € w such that h,(n) > [.

Let m > n. By definition, hy(m) = max{k € w | gm(k) < f,(k)} =
k*. But since hy(m) > [, we obtain f,(k*) < fs5(k*) and in particular,
gm (k) < fy(K*) < fs(k*), thus hs(m) = max{k € w | gm(k) < f5(k)} >
k* = hy(m). O

We are now ready to prove the important claim:
Claim 4. There ezists S C k such that |S| = £ and {hs}ses satisfies that

hs, #* hs, for any s; # sa € S.

Proof. Assume the claim is false, then we find a v < & such that for all §, e
with v < § < € < k we have that hs =* h.. Otherwise we would have a
cofinal subset of S with the property of the claim and this set would have

cardinality k, since k is regular.
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But then any function that bounds {hs}s<~ also bounds {hg}g<.. By
Claim 3, it suffices to find g that bounds h. to obtain an upper bound (with
respect to <) of {hg}s<x. By Theorem 3, we can always find such a g,
since this is equivalent to find an interpolating function for the (1, 0)-pregap

({}, {0}).

This implies that {h,},<x is bounded, a contradiction to Claim 1.  [J

Using S C & as in Claim 4, we can define a sequence {ds}scs by putting
do(n) =) h(i).
i=0

Then ({ds}ses,?) is a (k,0)-gap: We can order S C & in the ordering it
inherits from x. Then for si,s2 € S with s; < s we obtain dy, < ds, by
Claim 4 and Claim 3. Also {ds}secs is unbounded in (“w, <), since {hs}ses
is. This proves 1. — 2.

2. = 3.
Assume we have a (k,0)-gap ({fy}y<x,0). Without loss of generality, we
can assume that each f is strictly increasing.

We will make use of the following:

Claim 5. There exists a f < Kk such that for v,0 with § < v < § < K it
holds that

nhﬁrgo imin{i € w | f5(1) > n} —min{i € w | (i) > n}| = oco.

Proof. Suppose the claim is false. Then for any 8 < x we find v,d with
B <y <0< kand limsup,,_,., min{i € w | f5(i) > n} —min{i € w |
fy(i) > n}| < ks for kys € w. Let (y0,d0) be any such pair v,d. For each
B < K, let (vg,93) be the least pair in k£ x k with this property such that
(v8,6p) > supy<pi(Yasda)}, where > is the pairwise order on k x k, i.e.
(a,b) >* (¢,d) if and only a > b and ¢ > d. Inductively, we get a sequence
((v8,08))p<w such that v5 < dg, 73 > sup,<p{Va} and dg > sup,<s{da}-
Then for all 8 < k we observe that f,,(ky, s, +1) > fs5,(i) for all i € w.
Thus we find a set C' C k of cardinality x such that for all §1,8, € C,
k761’551 = kzwwgﬁ2 =: k. Since for all such § we have that f,, < fs5,, we find
lyss5 € w such that f,, (i) < fs,(i) for all i > I, 5,. Thus we find C" C C
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with |C'| = k so that Iy, 5. =l 6., =: 1 for any ci,co € C'. Similarly, we
find C" C C' with |C"| = & such that f,. (i) < f,,, (i) for c1 < cp € C" and
i > 1. We enumerate C” = {cg}g<, and obtain:

fo (1) < frog (b +0) < foo (K +14) < fo, (k+1) < fr, (2-k+14) <.

< Sreg (B k+d) < fo (B+1) -k +1i) <.

for all ¢ > [. This yields a strictly increasing sequence of natural numbers

of length k, a contradiction. O

Now define a sequence of strictly increasing functions { gy, }ne,, as follows:
Let go(k) = k for all k € w and let g, (k) = max{0,k — n} for all k,n € w.
Then we obtain that |go(i) — gn(i)| = n < oo for all n € w and all i > n.

Define

ho(n) = gi(n) if n € [f,(i), fy(i + 1)) for some i € w

go(n) otherwise

Then we claim that ({h,}y<x,{g0}) is our desired (x, 1)-gap:
Claim 6. ({h,}y<x,{90}) is a (k,1)-gap.

Proof. Fix any v < k and k € w. Note that go(n) > g1(n) > ... > gr+1(n)
for all natural n > k, thus |go(n) — gk+1(n)| > k. Now we can find m € w
such that m > k and m > f,(k+1). For j > m, hy(j) = gi(j) for some
[ > k. Thus in this case hy(j) < gr+1(j). Therefore |go(j) — h(j)| > k for
all j > m. Since h, < go pointwise and k € w was arbitrary, we have shown
that lim, o0 (g0(n) — hy(n)) = 00, i.e. hy < go.

Now consider v < § < k. Fix k € w. By Claim 5, we find m € w such
that |min{i | f5(i) > j} —min{i | fy(¢) > j}| > k for all j > m. But then
for all j > m it holds hs(j) — hy(j) > k, since hs(j) = gi(j,5)(j) and hy(j) =
i), where i(j,8) = min{i | f5(i) < 7} and i(j,) = min{i | f,(i) < j}.
As before, since k € w was arbitrary, we have shown that h, < hs.

It is left to prove that ({h,}y<x,{g0}) can not be interpolated by any
g €“w:

Assume this is false and let g be an interpolating function. Define
f(n) = max{i | g(i) > gn(i)}.
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Then f is well-defined, since g < go and |go(7) —gn(i)| =n < co for alln € w
and all ¢ > n.

Now we claim that f is an upper bound in (“w, <) for any f,, which is
a contradiction:

Let v < k. Fix an m € w such that h(j) < g(j) for all j > m. Then we
find n € w such that m € [f,(n), fy(n + 1)).

Consider k > n. Then f,(k) > m, thus h,(j) < g(j) for all j > f, (k).
Fix such a j € w. We can find [ € w with [ > k such that h(j) = g(j), i.e.
J € fy(), fy(I+1)). But now g(j) > gi(j) = h~(j). This holds for all such
J € [fy(1), fy(1+1)), which implies that f(I+1) > f,(I41). This argument
shows that for all [ > k we have f(I) > f(0).

If f would not be an upper bound of f, for all v < s, we could find a
v* < K such that f,« £ f. But for § > v* we have f,» < fs. This implies
f(4) < f5(3) for infinitely many j € w, a contradiction to what we have just
shown. So f, < f for all v < k, a contradiction to ({fy},<x,?) being a
(k,0)-gap. O

3. = 1.: Suppose we have a (k,1)-gap ({fy}y<w,{9}). We define a
(K, w)-pregap ({fq,/}’y<m {9n}new) by

f;(z) =1 f'y(i)a

go =9,

and for n > 0:

. i-g(i)—i-2" if g(i) > 2"
gn(l) =
1 otherwise.

Then the following holds:
Claim 7. ({f}}y<ss {9n}new) is a (k,w)-gap.

Proof. Tt is clear that f! < f; for v <6 < x and gn < g Whenever m < n.

Fix v < Kk and n € w. Since fy < g, we can find m € w such that
9(j) — f+(j) > 2" for all j > m. But then for such a j, g, (j) — £ (j) > j-2",
which tends towards infinity as j — oo. Thus f§ < gn, SO we obtain that
({f'/y}’y<f€7 {gn}new) is a pregap.
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Now suppose there exists an h € “w that interpolates this pregap. Then

we can define b/ by .
n
0= [42)

Let v < x and k € w. Since f < h, we find m, € w such that h(j) >
f1(j)+k for all j > m,. But then for all j > m similarly 2'(j) > fy(j)—i-% >
fy(j). Thus f, < h'. To see this, fix a 6 > v and note that we can find
mgs € w such that h'(j) > f5(j) for j > mg. But then, eventually we have
the relation f, < fs < h/, what implies f5 < h'.

Now fix k € w. We know that h < g, so we can find m € w such
that h(j) < gx(j) for all 5 > m. This is equivalent to gi(j) — h(j) =
§-9(j) —j-2¥ —h(§) > 1 for all j > m. This implies that g(j) — h/(j) > 2*
for all j > m. Since k € w war arbitrary, this implies 4’ < g. But then A’
interpolates ({f,}y<x,{9}), a contradiction. O

Because every (k,w)-gap is a k-Rothberger Gap by definition, Claim 7
proves 3. — 1. O
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Chapter 3
Forcing and gaps in (“w, <)

Up to this point only classical techniques such as induction were used to
obtain the results we have presented in the previous chapters. From a set
theoretical point of view, it is a natural question to ask about the behaviour
of gaps in (“w, <) under forcing. We will introduce a forcing notion that will
produce a gap in (“w, <) and present some results regarding the question
in which cases gaps can be destroyed by forcing and in which cases not.
We will mostly follow [5] and will often use a similar notation, whenever
appropriate.

The reader is assumed to have basic knowledge about forcing. All needed
preliminaries can for example be found in [9], however, this is certainly not
the only source for this material.

There are two results we use quite often in this chapter, therefore we
stress them. We start with a combinatorial fact, the well-known A-System

Lemma:

Proposition 18 (A-System Lemma). Let X be a set and {A, | v < Kk} be a
collection of finite subsets of X, where k is an uncountable reqular cardinal.
Then there is a k-sized subset I C K and a finite R such that A; N A; = R
for distinct i,5 € I.

In the situation of the lemma, we call {A, | v € I} a A-system and the
finite set R the root of {A |~y € I}.

Proof. Let {A, | v < k} be as in the statement of the lemma. Each A, is

finite, so we can find a natural number n such that the set I = {y < & |
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|Ay| = n} has cardinality x and let A = {A, | v € I'}. Now we use induction
on n:

For n = 1, we obtain that A; N A; = 0 for all distinct 4,5 € I. So for
R =10, Ais a A-system of size x with root R and the lemma holds.

For the induction step, let n > 1 and assume the lemma holds for all
m < n.

We consider two cases: First assume that we find an x € X such that
B ={A, € A|z € A,} has cardinality x. Then take B’ = {A,\ {z} | 4, €
B}, which is a k-sized collection of finite subsets of X each of which having
cardinality n — 1, thus by induction hypotheses B’ has a subset which is a
A-system of size k.

Now assume we can not find an x € X which is in xk-many A,’s where
~ € I. Then we can construct a A-system of size k with root R = () by
induction: For the start choose any As from A. Given {As}scs, C A for
some « < k and J,, C I with |J,| < & such that AsNAg = 0 for all §,¢" € J,,
we observe that by assumption each element of (J;c; Ajs is in less than x-

many A,’s, for v € I. Because |Usc; As| < & and |, c; Ay| = K, we can

yel
find 6* € I\ J, such that As» N As = ) for each § € J,. So we can extend
Jo by 0% and obtain a bigger A-system. Thus, inductively we can construct

a collection {As}scs € A which forms a A-system and |J| = k. O

Another fact we will frequently use, most of the time even without ex-
plicitly stating it, is the following Proposition, stating that whenever there
exists an element in a generic extension satisfying some property, we find a

name for it. There are multiple proofs, the one given here is similar as in
[9].

Proposition 19 (Maximal Principle). Suppose that P is a forcing notion.

Let p € P and 14, ...., 7, be P-names such that
plk 3z oz, 11, ..., Tn).
Then there is a P-name 7 such that
plE@(T, 71, ey Tn)-

Proof. For the proof, we write 7 for 71, ..., 7, and M for the collection of

P-names. Let p be as in the statement. Consider the set X = {q < p |

28



Jo € M¥: g IF ¢(0,7)}. For each ¢ € X we can pick o, € M¥ such that
q |- ¢(oq, 7). Using Zorn’s Lemma, we can find A C X such that A is a
maximal antichain below p in P.

Now let

T = U {(v,s) | v € dom{o,} and s < g with s IF v € g }.
qeA
We claim that 7 is as desired:

Let G be generic and p € G. Then G N A # (), since A is a maximal
antichain, thus we find t € ANG. This t is unique, because A is an antichain
and G is a filter. Therefore, the valuation of 7 in the generic extension, 7€,
consists of v such that there is s < ¢ and s I v € o;. Thus 7¢ C atG. On the
other hand, any v € of is such that v € dom{o;} and we can find an r € G
such that r IF v € o4. But since r,t € G we find s € GG such that s < r,t,
thus s I v € ;. But then v € 7¢, what implies atG C 79. We obtain that
t I ¢(7,7), which completes the proof, since t € G.

O

3.1 Forcing gaps

We start by presenting a forcing notion that will introduce a gap in a generic
extension. We follow [5] here.

For ordinals o and S let ¢ be the set a x {0} U5 x {1}. We define
a linear order < on ¢, g by letting (v,7) < (6,7) if one of the following

conditions hold:
e i<j(ie.i=0and j=1),
e i=j7=0and vy <9,
e i =j=1andy>9J.

Note that given a pregap ({fy}y<a,{9s}s5<p), the ordering of ¢, g reflects
the ordering of the pregap with respect to < by identifying f, with (v,0)
and gs with (9, 1).

Now consider the collection F of finite partial functions p: [¢a, 5] <M x

w — w, where as usual [X]<N0 represents the collection of finite subsets of
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a given set X. Then we define the forcing notion F, 3 to be (F, <), where
for p,q € F we let p < ¢ if

1. ¢ Cp,
and, for dom{p} = D, x n,, dom{q} = Dy x ng, where D,, D, €

[¢a,ﬂ]<N0 and n,,ng < w, we have
2. p(di,i) < p(da, i) for di,ds € Dy such that dy < d and i € [ng, ny).

The maximal element of F, g is (), denoted by 1p, ;- To get some insight in

the structure of F, g, we give a condition for compatibility of two elements

p,q € Fo gt

Proposition 20. Let o, 3 be ordinals and p,q € F, . Suppose dom{p} =
D, x ny and dom{q} = Dq X ng, where ng < ny. Let D, = {d},d5, ..., dn},
Dy ={d{,ds,....d%,} and D, N Dy = {di,...,dyn}, all enumerated in order.
Then p and q are compatible if and only if

1. q(d,i) = p(d,i) for all d € D, N Dy and all i < ng,

and

2. p(d1,i) = [{d' € Dy \ Dy | d' < di}| and p(dy+1,7) — p(dy, i) > [{d" €
Dy\ D, | di < d < dis1}| for alli € [ng,np) and allk € {1,...,n—1}.

Proof. First assume that n, = n,. Then, since [ng,n,) = 0, condition 2. of
the proposition is always true.

= : Suppose p and ¢ are compatible, then there is r < p,q, so r
extends both p and ¢. In particular, p and ¢ must agree on their common
domain; this is 1.

<= : If now 1. holds, any r that extends p and ¢ satisfies r < p,q,
since condition 2. in the definition of < always holds if n, = n,.

Now assume ng < np.

— : If p and ¢ are compatible, there is r with r < p, ¢. Then r extends
both p and ¢, so 1. holds. Let dom{r} = D, x n,. Now since r < ¢ and
r < p, by condition 2. in the definition of <, for any i € [ng,n,) it must
hold that r(d,) < r(d',i) for all d < d' € D,. Now let {d' € Dy \ D, | d' <

di} = {e1,...,e;}, enumerated in the order of ¢, g. Then for i € [ng, n;)
r(e1,1) < ...<r(ey,i) <r(di,i) = p(di, 1),
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what implies that p(dy,i) > [, as desired.
If we enumerate {d' € Dy \ Dy, | di, < d' < di41} as {€},...,e}, }, from a

similar argument as above we obtain that
p(dy, i) = 1(dg,i) < r(e},i) < ...<r(ep,i) < r(dgir,4) = p(drs, 1),

and this implies p(d}., ;,7) — p(d},,7) > I":
<= : We define an r € F, g that witnesses the compatibility of p and
q. Let dom{r} = (D, U Dy) x n,,.

First, let r(z) = p(z) for x € dom{p} and r(x) = ¢(x) for z € dom{q}.
We can do this by condition 1. All left to do is to define  on (D, \ D,) x
[ng,np). But then condition 2. guarantees us that there is enough space to
do this. Namely, we can for example define r as follows:

Let r(d, i) = p(dg, 1)+ j if d is the j-th element in the set {d’ € D, \ D, |
dp < d < dgi1}. If d < dy, let r(d,i) = j if d is the j-th element in
{d" € Dy\ D, | d < di}. Finally, if d > d,,, let 7(d,i) = p(d,i) + j where d
is the j-th element in {d’ € D, \ D, | d' > d,}.

Then r is such that r < p, q. O

We state an important property of F, g:
Proposition 21. Let o, 3 be ordinal numbers. Then F, g is ccc.

Proof. Suppose we can find an uncountable antichain A in F,, 3. Enumerate
A as {a;}icw,, so that each a; is a finite partial function [¢, 5] <M x w — w.
We denote the domain of a; with D; x n;, where D; € [¢q 5] <™ and n; € w.

By the uncountability of A we find an uncountable set A’ C A for which
n; = ny := n for i,i’ € A’. By the A-system lemma we can assume that
{D;}ica forms a A-system with root D. Note that the restriction a; [ D xn
is finite for each a;, thus there are at most countably many different such
restrictions. Therefore, we can find A” C A’ for which the restrictions agree,
ie. a; | Dxn=uay | Dxnforii e A”. But then any two elements a;, a;

for 7,7’ € A" are compatible by Proposition 20, which is a contradiction. [J

The following technical proposition will be helpful when proving the

main result of this sector later on:

Proposition 22. Let a, 5 be reqular uncountable cardinals and v < « and

0 < B be limit ordinals such that v < a or 6 < . Consider p € F, g and let
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p' € F, 5 be the restriction of p to [¢5)<N° X w.
Then there is a q € F, s that satisfies

1 g<yp,
2. p is compatible with any v such that r < q and r € Fy 5

Proof. For the proof, we suppose that v < « and § = 8. Further, we may
assume that p # p/, since otherwise the statement is trivially true.

For dom{p} = D, xn;, and dom{p'} = D,y x n,y, first note that n, = n,y,
since we only restrict D, when moving from p to p'.

Enumerate D, N Dy by {di,da, ...,d,} in the order of ¢, 5. We observe
that D, is of the form {di,...,d;,e1,...,€m, dit+1,...,dp}, listed in the order
of ¢o.g, where D)\ Dy = {ex1,...,en} for some m € w. Note that all e;’s are
of the form (v,0) for v < v < a, all d;’s are of the form (u,0) for p < 7,
j < and all d;’s are of the form (p,1) for p < g if j > 1.

Now we use the assumption that v is a limit ordinal and choose m-
many v such that v < 11 < ... < 1, < a. Then we define the desired
element ¢ € F, 5 by letting dom{q} = (D U {(v1,0), ..., (¥m,0)}) x np and
let g(x) = p/(x) for x € dom{p’} and ¢(y) be some natural number elsewhere.

Then ¢ < p/, since the only thing we must consider is that p’ C gq.
This is because condition 2. in the definition of < is trivially true, because
dom{p'} = Dy x ny and dom{q} is of the form Dy x n,,.

Now consider any r such that r € F, 3 and r < ¢q. Let the domain
dom{r} of r be D, x n,. Then r(z) = p(z) for any = € D, N D,, because
r(z) = p/(z) for any such z and p’ is the restriction of p to [¢,5]<N0 x w.
Thus, by Proposition 20, if n, = n,, we are done.

So assume n, # n,, i.e. n, > n, Let d € D, \ D, and note that
D, N D, 2 Dy N D, ={di,ds,...,d,}. Thus the sets {d’' € D, \ D, | dj <
d' < dj41} are empty for all j # i, since this holds for the sets {d’ € D,\ D, |
dj < d < djq1}. Now consider X = {d' € D\ D, | d; < d' < d;11}, which
is of cardinality m, by the definition of r. In fact, X = {(1,0), ..., (v, 0)}.
But then for ¢ € [n,,n,)

r(d;, i) = p(di,i) < r((v1,0),7) < ... <r((Vm,0),1) < r(dit1,1) = p(dit1,1),

thus we can apply Proposition 20 to obtain that r and p are compatible. [J
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Now we define F,, g-names that will form a gap in the generic extension:

For v < o and § < 3 define the F, g-names

Jy={((m,n),p) |m,n € w,p € Fap, ((7,0),m) € dom{p} € {(7,0)} x w
and p((7,0),m) = n}

and

g5 ={((m,n),p) |m,n € w,p € Fop,((d,1),m) € dom{p} C {(4,1)} x w
and p((0,1),m) = n}.

Observe that for a F, g-generic filter G, the evaluation f$ is a subset of
w X w. Further, if (m,n) € f$ then there is p € G such that p((v,0),m) = n.
We will later see that f,? is actually a function w — w. Similarly, this
observations also hold for gs.

Now the main theorem, similar as most of the section form [5], is

Theorem 23 (Generic Gap Theorem). If a and 8 are reqular uncountable

cardinal numbers, then

1, , IF ”({f7}7<a, {95}5<p) is an (o, B)-gap.”

Proof. Let o and [ be as in the theorem. We prove the Theorem in a couple

of steps and start with the following useful observation:

Claim 8. For v < a, § < 8 and k € w, the following sets are dense open:
o D, ={pe€ Fypg|dom{p} =D xn such that n >k and (v,0) € D}
o Ds, ={p € Fop|dom{p} = D xn such that n >k and (5,1) € D}

Proof. We prove for D, for some v < a and k € w, since the proof for
Dg’k is almost the same. Consider any ¢ € F, g. Suppose that the domain
of ¢ is Dy x ng and pick any n such that n > k and n > n,. Let D =
Dy U{(7,0)} and let {d1,...,dm} be the ordered enumeration of D. Then
we define p € F, g by setting p(z) = ¢(z) for x € dom{q} and p(d;,j) =i
for (d;,j) ¢ dom{q}. Then p < q and p € Fy g.

The fact that both sets are open, follows since if p is in D, ;, and ¢ < p,
then p C g, so in particular ¢ € D, . O

Claim 9. Let v < o and § < 3 be given. Then the following hold:
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1. 1p, , -7 fy is a function @ — &7
2. 1F, 4 IF"gs is a function @ — @”

Proof of Claim 9. We only prove 1., as 2. is almost the same.

Fix v < a, let G be a F, g-generic filter and note that f,? is a subset
of wxw. If f$ would not be a function, we could find p,q € G such
that there are m € w and n; # ny € w for which p((v,0),m) = n; and
q((v,0),m) = ny. But since p,q € G, they are compatible, which means
there exists an element that extends both p and ¢, thus such m,n; and no
can not exist. Now since G is a filter, G N D, # 0 for all k € w. But then
ke dom{ff} for all k € w, so that f$ is a function w — w. Since G' was

arbitrary, this gives 1. of the claim. O

Claim 10. Let v1 < 72 < @ and 01 < §o < B be given. Then the following
hold:

1o 1p, , P f <
2. 1p, 5 IF"gs, < gs,”
3. 1p, , k" fry < G5,
In other words,
1F, I ”({fv}Kav {9s}to<p) is a pregap.”

Proof of Claim 10. 1.: Let G be a F, g-generic filter. We know that the
sets D, x and D, are dense open for any k € w, thus so is their inter-
section. This implies that there is some p € G N D, N D, and this
means ((71,0),k), ((72,0),k) € dom{p}. Suppose that the domain of p is
given by D, x n, and consider any m > n,. Now let ¢ < p be such that
dom{q} = D, x ng for ng > m > n,. Then, by condition 2. in the definition
of <, it follows that ¢((y1,0), m) < ¢((2,0),m). This implies that

qIF7 oy (m) < fry(m)7,

thus also
p Ik oy (m) < fon(m)”.
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Since m > n, was arbitrary, it follows that
plE7 £, (m) < fr,(m) for all m > 7,”.
The generic filter G was arbitrary, so we obtain that actually
1p, , IF7 fr1 < fr, eventually pointwise”. (3.1)

To obtain that even

1r, , IF7f < fr7, (3.2)

note that we can w.l.o.g. assume that there are infinitely many ' such
that 71 < v < 72 < @, because « is a regular uncountable cardinal number
and it suffices to prove the theorem (and thus the claim) for a cofinal subset
of @. Then we can apply the argument that lead to 3.1 to n such 7"’s, so

that we obtain
1p, , IE7 f71 < f'% <. < f'% < fﬂ,z eventually pointwise”,

for each n € w. But this implies 3.2.
2. and 3.: We leave out a detailed argument for 2 and 3., since it
is essentially the same argument, just using D:S,k in the one or the other

place. ]

Now suppose that Theorem 23 is false, then we can find a p € F, g and

a F, g-name 7 such that

p IF 77 interpolates ({fv}v@n {95}543)”'

Since p is a finite partial function [¢a 5] <N x w — w, we find limit
ordinals v < o and § < 8 such that at least one of the inequalities v < «
and 0 < 3 holds and p € F, ;5. For the proof, let us assume that § < f.
Then we can also assume w.l.o.g. that 7 € F, 5.

Now fix p’ € F,, g such that p’ < p and n € w and
P 1F 7 7(i) < gs(i) for all § > i (3.3)

Let p” be the restriction of p’ to F, 5. Since v is limit and p’ is a finite
partial set, we can find € < 7 such that p” € Fs5. Then p” < p’ < p and
this implies that

p” IF 77 interpolates ({fw}w@é, {95}5<8)”
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and thus
p// [ 77‘}&6 < 7.

We apply Proposition 22 and find ¢ € F.s such that ¢ < p” and p’ is
compatible with any r € F s if r < q.
Now choose r < ¢ for which there is n’ € w such that

rIF? fo(i) < (@) for all i > n/”. (3.4)

For dom{r} = D, x n, and dom{p”} = D,» X ny, pick some arbitrary

ns > 1+ max{n,n’,n,,ny } and define s € F, g as follows:
e dom{s} = Dy x ng,
e s<p and s,
e 5((,0),ns — 1) > s((0,1),n5 — 1).

This is possible, since r and p’ are compatible and (¢,0) ¢ D, and (5,1) ¢
D,;. Note that
17 fe(ns — 1) > gs(ns — 1)” (3.5)

and, because s < r,p’ by 3.3 and 3.4 also
sIE7 fo(i) < 7(i) < gs(i) for all i > max{s,n'}”.

But this is a contradiction to 3.5, what finishes the proof. O

3.2 Layer’s interpolation order

In the last section we discussed a forcing notion that introduces a gap in a

generic extension - now we consider the following question:

Given an («, 8)-gap, can we find a forcing notion that destroys
it, i.e. that introduces an interpolating real in the generic exten-

sion?

The answer to this question is “yes” and the forcing involved is the following,

introduced by Laver in [10]:
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Definition 9 (Layer’s Interpolation Order.). Suppose ({ fy}y<a,{95}5<5) is
an (o, 8)-pregap in (“w, <) for infinite ordinal numbers « and 5.
Then the Layer’s interpolation order (L, g, <) is the forcing notion de-

fined as follows:

e Elements of L, s are quadruples (X,Y,s,n) such that X € [a]<No,
Y € [B]<M, s is a finite sequence of natural numbers, n € w and for
any v € X, € Y and every m > dom{s} we have that f,(m)+n <
gs(m) —n. The maximal element 1y, , is (0,0, 0, 0).

e For (X,Y,s,n) and (X', Y’,s',n’) in Ly g, we say that (X,Y,s,n) <
(XY, s, n)if

1. X’ CX, Y CY,s Csandn <n,
and

2. for v € X,6 € Y it holds that f,(m)+ n' < s(m) < gs(m) —n/
for all m € dom{s} \ dom{s’}.

Remark. Note that Definition 9 is explicitly dependent from the underlying
pregap. For different (o, 3)-pregaps, there are different L, ’s.

Of course, the point is the following:

Theorem 24. Let o, be infinite ordinals and ({fy}y<a,{95}5<p) be an
(o, B)-pregap. Let Lo g be the corresponding Layer interpolation order. Then

1La,5 I ”({fw}v«xa {96}6<B) is not a gap”.
Proof. Let G be a L, g-generic filter. We claim that
s*=|J{s € “w|3X €[oJ: TV € [|N: In € w: (X,Y,s,n) € G}
is an interpolation real for ({fy}y<a,{9s}s<s), what proves the proposition.
Claim 11. s* is a real.

Proof. Let S = {s € <“w | 3X € [a]<M0: Y € [f]<N: In cw: (X,Y,s,n) €
G} and 5,8’ € S. Then there are X, X', Y, Y’ n,n’ such that (X,Y,s,n) € G
and (X')Y',s',n') € G. Since G is a filer, this implies that they are com-

patible, thus there is r with r D s, s'. Therefore, s* is a sequence of natural
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numbers. We are left with proving that dom{s*} = w, i.e. that s* is of
length w.

Therefore, we show that Ay = {(X,Y,s,n) € Lo | k € dom{s}} is
dense for each k € w. Let k € w and (X,Y,s,n) € Ly g such that, without
loss of generality, k ¢ dom{s}.

Let 8" € <“w be such that dom{s'} = k+1 and s’ [ dom{s} = s, where as
usual ' | dom{s} is the restriction of s’ to dom{s}. Fori € dom{s'}\dom{s}
let s'(i) = & - [(min{gs(i) | 6 € Y} — max{f,(i) | v € X})]. But then, since
for any pair of v € X, € Y we have that f,(i) — n < g5(i) + n, we obtain
that (X,Y,s',n) < (X,Y,s,n).

Thus Ay is dense for any k € w, so GN A # 0, thus s* is indeed a
real. O

Claim 12. f, < s* < gs for all vy < a and all § < .
Proof. Let v < a and § < 3. Then we claim that

1. By ={(X,Y,s,n) e Lo | v € X}

2. Bs={(X,Y,s,n) €eLypg|d €Y}

are dense and open. Since the proofs for B, and B; are similar, we prove
only for B,. Let (X,Y,s,n) € L, g and without loss of generality assume
that v ¢ X. But then (XU{~},Y,s,n)<(X,Y,s,n), thus B, is dense. The
fact that B, is open is clear by definition of <.

Since B, Bs, Ay, are dense open, where Ay, is as in the proof of Claim
11, their intersection is dense open. This implies that, for S as in the
proof of Claim 11, we find s € S such that there are X,Y,n for which
(X,Y,n,s) € GN ByN Bs N A, But then f,(i) < s(i) < gs(i) for each
i € dom{s}. Since s* D s, also f,(i) < s*(i) < g5(7) for all i € dom{s}.
This holds for all £ € w and dom{s} > k, what proves the claim. O

Note that Claim 12 directly implies f, < s* < gs for all v < «a,d < 3.
If not, assume that we find 7' < « for which f,, £ s*. Let 4/ < 7. Since
({fy}y<a>195}5<p) is a pregap, fy < f, < s*, what is a contradiction. The

case that there is ¢’ for which s* £ gs is similar. O

38



3.2.1 Destructibility of gaps

Theorem 24 states that given any gap, we can always find a forcing notion
which destroys it. However, Theorem 24 does not provide any information
about the properties of the respective Layers Interpolation Order. So we

slightly switch our focus and consider the question:

Given a (pre-)gap, for which class of partially ordered sets there

exists a forcing notion that destroys it?

In this section we again follow [5], although in [5] it is suggested that many

results have been known to Kunen before, see [7].

Definition 10. Let ({f}y<a,{95}s5<s) be an (o, B)-gap. Let C be a class of
partially ordered sets. If there is a forcing notion (P, <p,1p) € C such that

e =7 ({/+}1<a, {95}6<p) s not a gap”,

then we say that ({f,}y<a,{95}5<p) is C-destructible. If ({ £, }y<a,{95}5<3)
is not C-destructible, it is called C-indestructible.

Sometimes we also use a closely related notion, which is intuitively clear,

still, we define it for completeness:

Definition 11. Let ({f,}y<a,{95}5<5) be an (o, 5)-gap and let P be a

forcing notion. If

1p I ”({f'y}'y<aa {96}6<B) is a gap”,

then we say that the gap survives forcing with P, otherwise we say that

forcing with P destroys the gap.

To obtain results in connection with Definition 10 we investigate prop-
erties of Layers Interpolation Order for given gaps. We are interested in the

following properties of partially ordered sets:

Definition 12. Let (P, <p) be a partially ordered set.

1. We say a subset ) of IP is centered if for every finite subset S of @) there
exists a <p-minimal element of S in S. If P is the countable union
of centered sets, we say that P is o-centered. The class of o-centered

partially ordered sets is denoted by o — C.
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2. We say a subset () of P is linked, if any two elements of () are com-
patible. If P is the countable union of linked sets, we say that PP is
o-linked. We denote the class of o-linked partial orders with o — L.

3. We say that PP is Knaster, if every uncountable subset of P has an
uncountable subset which is linked. We denote the class of Knaster

partially ordered sets with .

4. For a regular uncountable cardinal A, we say that P is A\-Knaster, if
every v-sized subset of P has a v-sized linked subset for all regular
uncountable cardinals v < A. The class of A-Knaster p.o. sets is
denoted by A — K.

5. We say that P is strongly Knaster, if P is A-Knaster for every regular

uncountable cardinal A and denote the class of such p.o. sets with KCy.

Remark. Note that we the following:

o If a subset @ of P is centered, then it is linked. Thus if IP is o-centered,

it is o-linked.
o If P is o-linked, it is strongly Knaster.

o If P is strongly Knaster, then P is A-Knaster for any uncountable
cardinal A. If P is A-Knaster, then P is Knaster.

e If P is Knaster, then it is ccc.

Proposition 25. Let ({fy}y<a,{95}s5<p) be a (o, B)-pregap such that one
of the following holds:

1. ({fy}y<a:{9s}s<p) is not a gap,
2. « or B has cofinality w.
Then the corresponding Layers Interpolation Order L, g is o-centered.

Proof. 1.: Let ({fy}y<as{9s}s<p) be a pregap and suppose that h interpo-

lates it. For each s € <“w and n € w we define

Ls,n =

{(X,Y,s,n) € Ly g | Vi > dom{s}: ng;(({f,y(i)} +n<h(i)< lgniir/l{g(;(i)} —n}.
ve €
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For any s € “w and n € w, the set Ls, is centered. This holds since if
(X,Y,s,n),(X",Y' s,n) € Lgp, then (XUX' YUY’ s,n) € L, and thus

for each finite subset S there is an element in L, g stronger than every s € S.

Now let
L= |J L

sE<Yw,new
Note that there are only countable many L ,, so that L is o-centered.
Further L is a dense subset of L, g:
Let (X,Y,s,n) € L, 3. Then we know that for any v € X,0 € ¥ we
have that f, (i) +n < gs(i) —n for i > dom{s}. Further we can find m > n

for which

. < B(D) < mi L
max{fy(i)} +n < h(i) < min{gs())} = n,

for all ¢ > m. Thus we can find ¢t € <“w such that dom{t} = m, ¢t |

dom{s} = s and

max{f5(i)} +n < t(i) < min{gs(i)} —n,

for all i € [dom{s},dom{t}). But now (X,Y,t,n) € L and (X,Y,t,n) <
(X,Y,s,n), thus L is indeed dense.

We claim that in order to prove o-centeredness of some partial order
P it suffices to show that there is a dense subset of P which is o-centered,
concluding the proof of 1.

So let D C P be dense and o-centered. Suppose D = J, .,
D; is centered for each i € w. Let D, = {p € P | 3d € D;: d <p p} and
let D' = {D; U D;}icw,. Now since D is dense, |JD' = [J;e,, Di U D} = P.
Note that each D; U D} is centered: If S is finite subset of D; U D}, then
S = {s1,...,s}. Forall s; ¢ D;, i.e. s; € D, replace s; with s} such that

D;, where

s; <p s; and obtain a new finite subset S’. We can do this by definition of
D!. Now S’ C Dj, thus there is an s € P stronger than any element from
S’. But this s is also stronger than any element of S, witnessing that S is
centered.

2.: Without loss of generality we assume that a = w and 5 # w, because
if both «a,8 are w, ({fy}y<a>{95}5<5) can not be a gap and by 1. the
statement of 2. follows.

For s € <“w, n € w and X € [a]<N we let Ls n x be the collection of

(X,Y,s,n) € Ly g for some Y € [B]<N, which is of countable size. But now
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each L, x is centered and

La,ﬁ = U Ls,n,X'

s€E<Ww new,X €la]<No

The last proposition immediately gives the important

Corollary 26. Rothberger Gaps are destructible by o-centered partially or-

dered sets.

Proof. By Proposition 25, for any given Rothberger Gap ({ f,}y<a, {95}5<3),

the corresponding Layer Interpolation Order L, g is o-centered. O
For the next considerations we will make use of the following notions:

Definition 13. Let ({fy}y<a,{95}s<3) be an («, B)-pregap. We call the
pregap symmetric if & and 8 are of the same cofinality and otherwise asym-

metric.

Proposition 27. Let ({fy}y<a;{9s}s<p) be an asymmetric pregap. Then

the corresponding partial order L, g is strongly Knaster.

Proof. Let ({ fy}y<a>{95}s<p) be an asymmetric pregap. Since any o-linked
(and thus in particular any o-centered) partial order P is strongly Knaster,
by Proposition 25 we can assume that both a and § are regular uncountable
cardinals. Without loss of generality, we assume that o < .

Let A= {(X¢,Ye,5¢,m¢) € Lo g | € < v} be given.

First, we suppose that v < (. Since all Y¢ are finite, we have that
U£<VY€ C 3, thus we can find p < 8 such that in fact U§<VY§ C p. But
then A C Ly, and g, is an interpolating element of ({fy}y<a;{9s}s<p). So
by Proposition 25, we obtain that L, , is o-centered and therefore strongly
Knaster. So we find a v-sized linked subset of A in L, ,, which is clearly
also in L, g, witnessing that L, g is strongly Knaster.

Now suppose that v > 3. Because @ < v, we can find a set I C v of
size v such that for all 7,j € I we have X; = X; := X, s5; = s; := s and
n; = nj :=n. But then {(X,Y;,s;,n;) € A|i € I} is a linked subset of A of

size v. O]
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As a corollary, we obtain that asymmetric gaps are destructible by

Knaster partial orders:

Corollary 28. Let ({fy}v<a,{95}s5<p) be an asymmetric gap. Then it is

destructible by a strongly Knaster partial order.

Now we consider symmetric pregaps, for which there is a nice condition
on the corresponding Layer Interpolation Order to decide whether it is a

gap or not:

Proposition 29. Let a be a reqular uncountable cardinal number and sup-
pose ({fy}y<a:r{95}s<a) s a symmetric pregap. Then the corresponding
Layer Interpolation Order Lq, o is c-Knaster if and only if ({ fy}y<a, {95 }5<a)

18 not a gap.

Proof. — : Suppose that the pregap is not a gap. Then, by Proposition
25, we know that L, . is o-centered, what implies that it is a-Knaster.
<= : Now we suppose that L, is a-Knaster. For each v < a we

can find s, € ““w and ny € w for which ({v},{7},sy,ny) € Laq. This
is because fy < gy. Consider the set {({v}, {7}, sy;7y)}y<a. This is a
a-sized subset of L, thus we can find an a-sized set A C «a for which
{({7v}, {7}, 5y, 14) }yea is linked, since L, o is a-Knaster.

Since « is uncountable, we can thin out A to a set B C A of size « such
that s, = s := s and ny = ny = n for all b,V € B.

Note that {({~}, {7}, s,n)}yep is linked. Thus for 7,0 € B such that v #
J, we obtain an (X,Y,t,m) € L, o such that (X, Y, t,m)<({v}, {7}, s,n) and
(X,Y,t,m)<1({d},{6},s,n). By definition of <1 we obtain that v,d € XNY,
s Ct and n < m. Further, again by definition of <1, this implies that

L. fy(i)+n < gs(i) —n and fs(i) +n < g,(i) —n
for all i € [dom{s}, dom{t}),

2. fy(i) + m < g5(i) —m and f5(i) +m < g4(i) —m for all i > dom{t}.

Because m > n we obtain f,(i) + n < gs(i) —n for all i > dom{s} for
any two distinct 7,0 € B. This allows us to define

W) = max{f,(i) | vy € B} ifi> dom{s}

1 otherwise.
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But then h is an interpolating real for the pregap ({f,} eB,{9s}scB)

and since B is of size «, it is cofinal in «, what implies that A interpolates

({fy}y<as 196} 6<a)- ]

Remark. For the special case o = w1, Proposition 29 gives us the following:
An (w1,w1)-pregap is a gap if and only if the corresponding Layer Inter-

polation Order L, ., is not Knaster.

Corollary 30. Let ({fy}v<a,{95}s<p) be an (o, B)-gap. If at least one of
a or B is not of cofinality wy, then the corresponding Layer Interpolation
Order L, g is Knaster.

In other words, if at least one of a or B is not of cofinality wi, then
({fy}y<ar{95}s<p) is KC-destructible.

Proof. If o # (3, the statement follows from Proposition 27.

On the other hand, suppose a = 8 > w;. Note that Proposition 25 allows
us to assume that both « and S are uncountable. Consider an uncountable
subset L of L, g, of size A for some uncountable A\, which we enumerate by
{(Xe, Ye,5¢,m¢) ewr. We want to find an uncountable subset of L which is
linked. Consider {X¢}e<y, and note that J,, Xe & o, since each X is
finite. Now define x = [J;_, X¢ and consider the pregap ({f;}y<x: {9s}s<p)-
Then f,; interpolates this pregap. This implies, again by Proposition 25,
that the corresponding Layer Interpolation Order L, g is o-centered, thus a
countable union of centered sets. Now note that {(X¢, Ye, s¢,n¢) e € Lic g
Since  is uncountable and L, g is the countable union of centered sets, there
is an uncountable subset of {(X¢, Yg, s¢, n¢) }e<w in one of these centered sets.

But this set is linked, thus a witness for L, g being Knaster. O

3.2.2 Destroying (w;,w;)-gaps

We now slightly switch our focus to (w1, wi)-gaps, as we did in Chapter 2
when we discussed Hausdorff Gaps and Special Gaps. Indeed, these notion
will appear again and play a key role in the following considerations. We
will make use of the class of forcing notions preserving wi, which we denote

by €. Then we define a special kind of (w;,w;)-gaps as follows (see [11]):

Definition 14. Let ({f,}y<wis{9s}s<wi) be an (w1, wi)-gap. Then we say
the gap is a strong gap if it ;-indestructible.
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For the rest of this section we follow [11] and will be able to provide two
characterisations of strong gaps, one in terms of the corresponding Layer
Interpolation Order. This is to some extent surprising, as in principle there
are a lot of different forcing notions in €27 which potentially could destroy
the gap. However, it turns out that a combinatorial condition on Ly, .,
does the trick:

Proposition 31. Let ({f,}y<a,{95}5<p) be an (wi,wi)-gap. Then the gap
is a strong gap if and only if the corresponding Layer Interpolation Order

L, ., s not ccc.

Proof. <= : Let ({fy}y<wi>195}5<w;) be as in the statement and suppose
that Ly, «, is not ccc. Thus we can find an uncountable antichain A in
| I

We aim to show that A is still an antichain in any generic extension
obtain by forcing with any P € ;. Then we obtain that L, ., is not o-
linked in any generic extension and therefore in particular not o-centered.
This is because any two elements in A cannot lie in the same linked set, thus
there are at least uncountable many subsets which are not linked. We can
state that as

1p IF "Ly, w, is not o-centered”.

But then, by Proposition 25, we know that ({f,}y<w:,{9s5}s<w,) has to be

a gap in the generic extension, as otherwise L, ., would be o-centered, i.e.

1p IF ”({fw}v<w1:{gé}6<w1) is a gap”.

To see that A is an antichain in any generic extension by P, consider
(X,Y,s,n),(X",Y' ¢, n') € Ly, « for which

1p IF 7 (X, Y, s,n) and (X', Y7, s’,n') are compatible”.

But then, since P € Q; and X,Y, X", Y’ s,s,n,n’ € wy, we obtain that
(X,Y,s,n) and (X', Y’ ¢ n’) are compatible in the ground model as well.
But this implies in turn that if two elements of L, ., are incompatible in the
ground model, they are incompatible in any generic extension by P. Thus
A remain an antichain after forcing with P.

—> : Assume to the contrary that L, ., is not ccc. Then the corre-
sponding gap ({fy}y<w::{9s}s<w,) is destructible by a ccc forcing notion,

which preserves w;. Thus the gap is not a strong gap. O
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There is a nice theorem - again due to Woodin - which gives a second

useful characterisation of strong gaps:

Theorem 32. Let ({fy}y<wi,{95}s<w,) be an (wi,wi)-gap. Then it is a
strong gap if and only if it is equivalent to a Special Gap.

Proof. = : Suppose ({fy}y<wis{9s}s<w) is a strong gap. We aim to find
an equivalent (w1, w:)-gap ({f}}y<wi, {95}6<w; ) such that there is a natural

number m for which:
L f1(4) < g, (j) for all j > m,

2. for all pairs 7,0 < w; we can find an I > m for which f! (1) > g5(I) or

f5(1) > g,(D).

First we make use of Proposition 31 and obtain an uncountable antichain
A in Ly, o, , which we enumerate by {(X,,Y;,sy,n)}y<w,. Because there
exist only countable many s, € <“w and n, € w, we can assume that for
any (X,,Y,sy,ny), (Xs,Ys,85,n5) € A it holds that s, = s5 := s and
n, = ng := n. Similarly, we assume that X, and Y, are all of the same
(finite) cardinality.

Using the A-System Lemma, without loss of generality, we further as-
sume that {X,}y<., and {Y,} <., are A-systems with roots X =
and Y =, ¢, ¥y

We conclude that for any two 7,0 < w; it holds X, \ X5 # 0 and
X5\ Xy # 0 as well as Y, \ Y5 # 0 and Y5\ Y, # 0. If this would not be
the case, assume without loss of generality that we could find ~, ¢ for which
X\ X5 =0,ie X, C X; and since X, and X5 are of the same cardinality,
even X, = X;5. But then if Y, \ Y5 = 0 or Y5\ Y, = () we obtain that
(X5,Y,,s,n) < (X5,Y5,s,n) or vice versa, contradicting the fact that A is

YEWL 'Y
, respectively.

an antichain.

It follows that both J,_,, Xy and U, .,
we can assume that max{X,} € X, \ X and max{Y,} € Y, \ Y, because
Uy <wy Xy and U, ., Yy are cofinal in wy and X,Y" are not.

Now we define for any v < wy:

Y, are cofinal in w;. Thus

max{f,(j) |z € Xy} +2-n if j > dom{s}

1 otherwise.
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and

/() = min{gy(j) |y € Y5} if j > dom{s}
i 1 otherwise.

Then we claim that ({f]}y<w; }> {95 }y<w) is as desired and satisfies 1. and

2.

To see this, first note that since all X, and Y, are finite together with the
fact that {f,}y<w, and {g,}y<w, are ordered with respect to <, we obtain
that eventually f! = frax(x ) +2-n and similarly ¢/, = gnax(y, ). Since we
assumed max{X,} ¢ X and max{Y,} ¢ Y for any v < w;, we obtain that
eventually f # f5 and g/ # g5 for distinct 7,0 < ws.

Further we get that ({f}}y<w }, {9} }y<w,) is equivalent to the given gap
({4} y<wis {95} s<w ), since both U, ., X5 and U, ., Y5 are cofinal in w;.

So we are left with showing that 1. and 2. hold. Therefore, let m =
dom{s}.

To see 1., consider v < w; and observe that f. (j) = fz(j) +2-n for some
r € X, and all j > m. Similarly, ¢’ (j) = g,(j) for y € Y, and all j > m.
Since (X, Yy,s,n) € Ly, «,, we obtain that for j > dom{s} = m we have
that f,(j) +2-n < gy(j) for any z € X,y € Y,. But this implies 1.

For 2., let v # ¢ be given. Consider (X,,Y;,s,n), (Xs,Ys,s,n) € A C
L., ., and note that they are incompatible. But to ensure that (X, Y, s, n)
and (Xs,Ys,s,n) are incompatible, it must be the case that there are x €
Xy, y € Yy and j > dom{s} for which either f,(j) +2-n > gs(j) or
f5(j) +2-n > gy(j). This is exactly statement 2. as needed.

<= : Suppose that ({fy}y<w:;{9s}s<w;) Is equivalent to a Special
Gap. Consider P € ; and let V[G] be a generic extension obtained
via forcing with P. Then we use Proposition 13 in V[G] to obtain that

({fy}y<wis {96 }6<w,) is indeed a strong gap. O

Because Special Gaps are equivalent to Hausdorff Gaps, we obtain the

Corollary 33. Let ({fy}y<wi: {95 }o<w,) be a Hausdorff Gap. Then the gap

1S a strong gap.
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3.3 Gaps surviving forcing

It is a natural question to ask under which circumstances a gap survives a
generic extension. We will establish results for both symmetric and asym-
metric gaps, but also more general consideration are given. For the rest of
this chapter, we follow [5].

We start with a general result stating that forcing with a small poset

preserves gaps:

Theorem 34. Suppose a < (B are infinite regular cardinal numbers such
that at least 3 is uncountable. Let ({fy}y<as{9s}s<p) be an (o, f)-gap and
P be a partial order of cardinality A < B for which o and B are regular

cardinals in any generic extension. Then

1p IF 7 ({f1}y<as {98} o<p) is an (&, B)-gap.”

Proof. We prove by contradiction. If the statement of the proposition is
false, we can use the maximal principle to find a P-name for a real h such
that

1p IF 7 h interpolates ({f7}7<a: {95}5<p)”-

For each § < f we can find ps € P and ns < w so that ps IF "h(i) <
gs(1) for all ¢ > ns”. Then we use that A < 8 and § is uncountable to find
a cofinal subset X C ( such that p, = p := p and n, = ny = n for all
z, 7 € X.

Similarly, for any v < a we can find ¢, € P, with ¢, <p p, and m, < w
such that ¢, IF 7 f, (i) < h(i) for all i > mi,".

We now have to distinct the cases that « is uncountable and « is count-
able. First we assume that « is uncountable, then we can find a cofi-
nal subset ¥ C « for which m, = m, := m for all y,y/ € Y. Then
gy IF 7 f,(3) < h(i) < go(i) for all i > max{m,n}” for any x € X. This

allows us to define, in the ground model, the real t as follows:

i) = max{fy(i) |y €Y} ifi>max{m,n}

1 otherwise.

But then ¢ interpolates ({fz}zex,{fy}yey) which is equivalent to the origi-
nal gap ({fy}y<a,>{9s}s<p), since X,Y are cofinal in «, 3, respectively.
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If o is countable, it is w. We can choose m,, for any v < w in a way such
that m, > mg for all £ <, i.e. the sequence of m,’s is increasing. Now we
are able to define ¢ in V|G| by

max{fe(i) | £ <~} if i € [my, myqa)

1 otherwise

t(i) =

Then ¢ interpolates ({ fy}y<a, {95}5<5)- O

We can extend the previous theorem to forcing iterations. For a precise

definition and further results regarding iterated forcing we refer to [9].

Corollary 35. Suppose o < B are infinite reqular cardinal numbers such
that at least B is uncountable. Let ({fy}y<a,{9s}s<p) be an (a, B)-gap. Sup-

pose there is a B-stage finite support iteration of forcing notions

((Ps |6 < 8),(Qs 6 <B))

such that |Ps| < B for any § < j.
Then ({fy}y<a,{95}s<p) is preserved when forcing with the iteration, or

otherwise stated

IIPﬁ = ”({f'y}'y<a; {96}6<B) s an (d,B)-gap”.

Proof. Suppose to the contrary that there is a Pg-name h for a real that
interpolates the gap. Then we can find a p € Pg that forces this, i.e.

plF7"f, <h < gs forall y < &andall § < 5.

Now we use that ((Ps | & < 3),(Qs | & < 3)) has finite support and
obtain that h is already a P¢-name for some § < §. But this implies that
the restriction of p to P¢ already forces that h interpolates the gap, that
means

p[fll—”ﬁ<h<g};forallv<dandall5<5”.

Now we can use the assumption that |P¢| < 8 and Theorem 34 to obtain a

contradiction. O
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3.3.1 Indestructibility of symmetric gaps

In contrast to Theorem 34, where we did not assume anything except a < 3,
we now distinct between asymmetric and symmetric gaps. Once again, we
follow [5] and start with the result:

Theorem 36. Let o be a reqular uncountable cardinal number and let

({fy}v<ar{95}s<a) be a symmetric (o, a)-gap. Suppose P is a partially or-
dered set that is a-Knaster. Then ({ fy}y<a>{9s}o<a) is a—K-indestructible.

Proof. We aim to show that

1p IF ”({fv}v<a: {95}6<a> is a gap”.

If this not the case, we can find a P-name A and an element p € P such that

plE” ({f7}7<a; {95}s<a) is interpolated by h”.

Now fix an 0 < a. Then for any v < a, let ¢, < p and m, < w be such that
gy IF 7 f(3) < (i) < gs(i) for all i > m.,".

Now because « is uncountable, we can without loss of generality assume

[
y =

Now we use that P is a-Knaster and find a cofinal subset X C « such
that F' = {qz}zex is linked. We can extend F' to a P-generic filter G C P.
But then in V[G] we have that f,(i) < h(i) < g5(i) whenever ¢ > m and for

that m, = m/, =:m for any v,7 < w.

all x € X. So this must hold in the ground model, which allows us to define

() = max{f;(i) |z € X} ifi>m

1 otherwise
But then ¢ interpolates ({f;}zex,{9s}s<a), @ contradiction. O
Theorem 36 immediately gives us the

Corollary 37. Let o be a regular uncountable cardinal number and let

({fy}y<as{9s}s<a) be a symmetric (o, a)-gap. Then ({fy}y<a;{9s}s<a) is
Kv-indestructible.

Now, as in some previous sections, we switch our focus to (w1, w)-gaps,

for which we state a special case of Corollary 37:
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Corollary 38. Let ({fy}y<w» {95 }5<w) be a symmetric (wi,w1)-gap. Then

it is K-indestructible.
We also want to highlight a direct implication of Corollary 37:

Corollary 39. Let a be a reqular uncountable cardinal number and let

({fy v<ar{9s}6<a) be a symmetric (a,a)-gap. Then ({f}y<a,{9s}t6<a) is
o — L-indestructible.

Proof. By Corollary 37, we know that the given gap is Ky-indestructible.
We show that any o-linked partially ordered set is Ky:
Let P be o-linked. Thus we can write P = |

P,,. Now let A be an uncountable cardinal and suppose we have an A-sized

new Pn for linked sets
subset of P, {p¢}e<x. But then it must be the case that there exists a natural
number m such that A-many p¢’s are in P, - this gives the linked subset of

size A witnessing that P is A-Knaster. O

For the case of (w1, w1)-gaps, we now consider a slightly different question

as before, namely:

Given an (w1,w1)-gap, can we force with a partially ordered set
such that the gap is C-indestructible for some class of posets C

after the forcing?

At least for the special case of C = € we will obtain that there is a forcing
notion P, depending on some given (w1, w1 )-gap, such that the gap is equiv-
alent to an i-indestructible gap in any generic extension by P. This is the
goal for the remaining part of this section. Originally this construction is
due to Kunen [7], although it can be found also in [11] or [5]. In the notation
we are using in this work, it is most reasonable to follow [5] for the rest of

the section.

Definition 15. Let f, g, f', ¢ € “w, then we define an equivalence relation

~ on Yw X “w by letting

(fv g) ~ (f’,g’) if and only if f —* f’ and g _x* g/'

For f,g € “w, we denote with [(f,g)] the equivalence class of (f,g) with

respect to ~.
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Definition 16. Let ({fy}y<w:>{95}s<w:) be an (w1, wq)-pregap. Then S, o,

is the collection of finite sets S C “w x “w for which

1. S contains at most one element of [(fy, gy)] and any element of S is in

[(fy99)] for an v < wy,
2. for (f,g) € S it holds that f(i) < g(7) for any i € w,

3. for any two (f,9),(f',g") € S there is a j € w for which f(j) > ¢'(j)
or f'(7) > g(j)-

For S,5" € Sy, wy» we let S < S” if and only if S D S’. The maximal
element 1s,, ., 18 the empty set (.

Remark (Remark and Definition). 1. By property 1. in Definition 16,
for any S € S, ., we have an index-set Ig C wy such that v € Ig if
and only if there is an (f,g) € S with (f,g) € [(fy,9y)]. We will call
Is the support of S and denote it with support(S5).

2. Note that given an equivalence class [(fy, gy)], we can always find a
pair (f,g9) € [(fy,9y)] for which f(i) < g(i) for all i € w. This is
because fy < gy, so we have an k € w such that f(i) < g(i) for all
i > k and we can put f(j) = 0and g(j) = 1 for j < k and still preserve
that f =" f, as well as g =" g,.

We start our investigations on S, ., with a useful combinatorial prop-

erty of Sy, w,, see [11]:

Theorem 40. Let ({fy}y<wi» {95} 5<w) be an (w1, wi)-pregap and let S, o,
be the corresponding partially ordered set. Then S, ., s ccc if and only if

({f7}7<w17 {95}5<w1) s a gap.

Proof. = : We show that if ({f,}y<w., {95 }s<w,) is nOt a gap, then S, .,
is not ccc. Thus let h be an interpolating function for ({f}y<w:, {9s}s<w)-
For any v < wy we can find a pair (f7,9) € [(f,g,)] such that f: (i) < g’ (i)
for all naturals <.

For any v < wi we find an n, € w such that fi(i) < h(i) < g,(i)
for all © > n,. We further find an uncountable subset X C w; for which

n, = ng =: n for any two z,2’ € X. Since the set of initial segments
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{f2(0), f2(1), ..., f2(n)} is countable for all x € X, we can also find an un-
countable set Y C X such that f,(i) = f;,(i) for all i € {0,1,..,n} and
all y,4/ € Y. But then for all y,9/ € Y and all i € w we obtain that
fy(@) < g,,(i) as well as f}, (i) < g, (i) for all i € w.

This means that for y # ', y,y' € Y, {(f}.9,)} and {(f}/,9,/)} are
not compatible in S, w1 Any S < {(fy, 9,)}. {(f}/, 9,,)} must satisfy that
(f3:9y), (1, ;) € S, thus there must be an j € w for which f;(j) > g;,(j)
or f;, (j) > g,(j). But this can not be the case, as we have just shown.

This implies that {Sy}yey, where S, = {(f},g;)}, is an uncountable
antichain in S, o, .

<= : Suppose to the contrary that S, ., is not ccc and we can
find an uncountable antichain A C S, ,,. We show that in this case
({f}y<wis {96} s<wy) is not a gap.

Instead of A itself, we first consider the set of supports of elements of A,
ie. I ={Is|S € A}. Without loss of generality, we can use the A-System
Lemma to assume that [ is a A-system with root R. For any v € R and
any S € A we know by definition of S, ., that S consists of exactly one
element of [(f,,gy)]. Therefore, we can without loss of generality assume
that for any two 5,5 € A and any v € R it holds that the respective
elements of [(f,,gy)] are the same in S and S’; one can also express this
as SN [(fy,99)] = S N[(fy,9y)] for all v € R and all S,5" € A. This also
implies that the indizes of the witnesses of the incompatibility of S, S5’ € A
must lie in Ig \ R and Ig \ R, respectively.

We now aim to “thin out” A to get an (w1, w;)-pregap associated with
it. We do this as follows:

For S € Alet s € Is\ R be the index for which f,; < f, for any v € Ig\
R, v # 7s. Similarly, let g € Is\ R be such that g5 < g5, for any 6 € Is\R,
d # dg. Since vg,ds € I\ R, for distinct S, 5" € A also vg,vs and dg, dg are
distinct, respectively. Thus we obtain a pregap ({fys}sea,; {9ss}sea) which
is by construction equivalent to the given pregap ({fy}y<w:: {95 }o<wr)-

Then, for any S € A, we define the reals

fs(i) = min{f} (i) | v € Is \ R},

gs(i) = max{g. (i) | v € Is \ R},

where fh’y and gﬁy are as in the = -direction. We can define fg and gg this
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way since Ig\ R is finite for any S € A. By our choice of g and dg, we obtain
that fg =* f,; and gs =" g,4. This implies that ({fs}sca,{g9s}seca) is
equivalent to ({ fys}sea, {955 }sca), and thus equivalent to the given pregap
({fv}’y<w1’ {96 }o<wn)-

Now pick any 5,5 € A and observe the following: Since S and S’
are incompatible, we must find indizes s € Is and &, € Ig for which
feg (i) < gf/s/(i) and fé’S, (i) < geg(@) for all i € w. We conclude that this
also holds for fés,gés and fé,S/,gé,S/, respectively, i.e. fés (1) < gg%/ (i) and
fég, (1) < g¢, (@) for all i € w. Since the incompatibility of S and S’ happens
on Is\ R and Iy \ R, we obtain {5 € Is \ R, {g € Ig' \ R.

In particular these inequalities imply that fg(i) < gg/(i) for all i € w.
But this holds for any S € A, so that gg/(7) is an upper bound of max{ fs(i) |
S € A}. Thus we can define h(i) = max{fs(i) | S € A}, which interpolates

({fs}sea,{gs}seca) implying that ({fy}y<w s {95}s5<w,) is not a gap. O

We are now going to state and prove the main result in our considerations
of (w1, w1)-gaps - this is that forcing with S, ., makes the corresponding

(w1,w1)-gap a strong gap in every generic extension by S, ., see [5].

Theorem 41. Let ({fy}y<wi,{95}s<w,) be an (wi,wi)-gap and let S,,, ., be
the corresponding forcing notion. Then in any generic extension by S.,

the gap is Q1 -indestructible, or, otherwise stated

ISwl,wl I ”({f'y}'y<w1a {9s}t6<w) is a strong gap.”

We prove the theorem by showing that in any generic extension by S, .,
there is an equivalent gap that is a Special Gap - and thus the given gap is
a strong gap in this generic extension by Theorem 32.

We show the existence of the equivalent gap by explicitly defining names
for its elements:

To the end of this section, for a given (w1, wr)-gap ({fy}y<wis 196 }s<wr )

define for any v < wy the S, «,-names:

£ ={(m,n), {(f,9)}) | (m,n) € w x w,(f,9) € [(f1,94)] and f(m) = n}

and

97 = {((m,n), {(f.9)}) | (m.n) € wx w,(f,9) € [(f1,9)] and g(m) = n}.
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We will need to make use of a genericity argument, for which the follow-

ing remark will be useful:

Remark. Given a gap ({fy}y<w:, {95 }s<w,) and the corresponding forcing

notion S, ., the following sets are dense open for any v < wy:
D’Y = {S € Swi w1 ’ Y E IS}

Proof of Remark. Let v < wy be arbitrary and consider S € S, ,,. We can
assume without loss of generality that v ¢ Ig. Pick any (f,g) € [(fy,95)]
for which f(n) < g(n) for any n € w. Now since S is finite, we can change
f to f’ such that the value f(1) satisfies f(1) > max{fs(1) | s € Is} and
f = f' elsewhere. Then SU{(f’,9)} € Sw,w, and stronger than S. Thus
D, is dense since SU{(f’,g)} € D,.

The fact that D, is open is clear since S" < S if and only if S’ D 5, i.e.
v € Ig implies v € Ig. O

The first thing on our way to prove Theorem 41 is

Proposition 42. Let ({fy}y<wi>{95}s5<wi) be an (wi,wi)-gap. Let S, o,

be the corresponding forcing notion and let v < wy. Then
1 1g, ., Ik " f7 is a real.”
2. 1g,, ., IF g7 is a real.”

Proof. We prove the Proposition only for 1., since the proof of 2. is nearly
equal word by word.

Let v < wi and ({f; }y<ur, {05} s<wr) be an (wr,wi)-gap. Let G be any
S.; oy -generic filter. Recall that the S, .,-name f7 is defined as

£ ={(m,n) {(f,9)}) | (m,n) € wxw,(f.9) € [(f4,9,)] and f(m) =n},

what implies that the evaluation of f’Y in G, f‘Y G, is a set of pairs (m,n) €
w X w.

Note further that if (m,n) € f.WG, there is {(f,9)} € G for which (f,g) €
[(fy,9+)] and f,(m) = n. Since any two elements of G are compatible and
any S € G can only consist of one element of [(fy,gy)], we obtain that

e . G .
f7 = f. In particular, f7  is a function.
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Still, we need to show that such an (f,g) € [(fy,g,)] exists in G. But
this is ensured by the density of the set D, together with the fact that G is

upwards closed. ]

Remark. The proof of 42 gives us the following useful observations:
For any S,,, «,-generic filter G it holds that in V[G]:

1. f’YG = [ for f such that {(f,9)} € G and (f,g) € [(fy,94)],

2. §5G = g for g such that {(f,g)} € G and (f, g) € [(fs,95)]-

Proposition 43. Let ({fy}y<wi>{95}5<w) be an (wi,wi)-gap. Let S, .,

be the corresponding forcing notion and let v < wy. Then

1s, ., IF ”({f7}7<w1’ {9%}s<w,) is a Special Gap.”

Proof. By Proposition 42, we are left with proving that

]‘Swl,wl I ({f',y}’7<w1> {96}5<w1) is a pregap'”

and that we have indeed a Special Gap.

But by the previous remark, we know that for any S, ., -generic G
we have f‘YG = f for any v < w; where f is such that there is g for
which (f,9) € [(fy,94)]- ThlS 1mphes that f =* f,, thus fV =* f, in
V[G]. similarly, we obtain g =* gs for any § < wy. But this implies that

e G . .
{7 t<w {9° }o<w) is a pregap in V[G].
Note that by Theorem 40 we know that forcing with S, .,, preserves wi,

so that ({f7 }7<w1, {g }6<W1) is in fact an (wy,w;)-pregap in V[G].
To see that ({f’Y Fy<wr s {g }s<w,) is a Special Gap, note that 2. and 3.
of Definition 16 together with the previous remark gives this immediately.
O

It is now easy to show our main result of the section:

Proof of Theorem 41. Let ({fy}y<w:»{95}s<w,) and Sy, «, be as in the state-
ment of Theorem 41. Note that by the previous remark we obtain
15, o, IF 7 ({Fy b {05} o<w,) is equivalent to ({7} y<wrs {9} s<un)”
But then we can apply Theorem 32 to obtain that
1s, ., IF7 ({f'y}'y<w1:{g5}6<w1) is a strong gap.”,
as desired. O
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3.3.2 Indestructibility of asymmetric gaps

In contrast to the last section, we focus on asymmetric gaps and their prop-
erties in connection to indestructibility. Rothberger Gaps will play an im-
portant role in the process. We follow [5] here.

An important result is that asymmetric gaps of sufficiently large size

survive forcing with o — L.

Theorem 44. Let o, be reqular cardinals of size at least wy such that

a < B. Let ({fy}y<as{95}s<p) be an (a,B)-gap and let P € o — L be a
partially ordered set with maximal element 1p. Then

1p =" ({1 }y<ar {95 }6<p) is a gap.”

In other words, if a, 8 are uncountable cardinals, then any («, 5)-gap is

o — L-indestructible.

Proof. Let o, f and ({fy}y<a, {95}5<5) be as in the statement. Suppose the

theorem is false, then we can find p € P and a P-name for a real h such that

p IF " h interpolates ({f7}7<a: {95}5<p)”-

Since p IF ”ﬂ, < h” for any v < a we can choose an p, <p p and
n, € w for which p, IF " (i) < h(i) for all i > n,”. By our usual argument
considering the uncountability of a we can find a cofinal subset A C « such
that for any a,a’ € A it holds that n, = ny = na.

Now we fix an a € A and note that, since p I+ 7 f, < h < g5”, for any
§ < 8 we can find p} <p p, and ns > n4 € w so that p¢ IF " f,(i) < h(i) <
gs(i) for all i > ng”.

By an cardinality argument, we can choose a cofinal B* C /8 for which
ny = ny = n? for all b, € B% where B® and n® crucially depend on the
fixed a € A. Choose an a-sized cofinal set A’ C A for which n® = n? :=n
for any a,a’ € A'.

Using the fact that P is o-linked, we obtain P = (J, ., Px, where each
Py, is linked. For any a € A’, we can find a natural number i and a cofinal
C?% C B“ such that p? € P;. for all c € C°.

We find further A” C A’ cofinal such that i% = i := ¢* for any a,a’ € A”.

Now fix some a* € A” and let C = C*. Then we claim that for all
a€ A" and all ¢ € C we have f,(i) < g.(¢) for all i > n:
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This follows since for any a € A”, p, is compatible with p? for all ¢ € C.
This is because p% € P;« for some ¢ € C* and also pg* € P;«, together with
the fact that P;« is linked and p% <p p,. This allows us to define

1 ifi<n
max{f,(i) | a € A"} else

But then t interpolates {(fs)aca”, (9c)cec}, what gives the theorem,
since A” C a and C C 3 are cofinal. O

If we combine this result with results concerning symmetric gaps, we

obtain that gaps “of at least uncountable size” are ¢ — L-indestructible:

Corollary 45. Let o, be reqular cardinals and ({fy}y<a,{95}s5<p) be a

(o, B)-gap. If both o and B are uncountable, then ({fy}y<a,{95}5<p) is
o — L-indestructible.

Proof. This is a combination of Corollary 39 and Theorem 44. O
We obtain another important result:

Corollary 46. Let a < 3 be reqular cardinals and ({ fy}y<a,{9s}s<3) be an
(a, B)-gap. Then it is equivalent

1. a=uw, i.e. the gap is a Rothberger Gap,
2. ({fy}y<ar{95}5<p) is 0 — L-destructible,
3. Lq g is o-centered.

Proof. 1. = 3.: By Proposition 25, we know that L, g is o-centered.

3. = 2.: Follows, since every o-centered partial order is o-linked.

2. = 1.. We show -1 = - 2: Suppose our given gap is not a
Rothberger Gap. Then we can apply Theorem 44 to obtain that the gap is
not o — L-destructible. O

This corollary can be reformulated as follows:

Corollary 47. A gap is 0 — L-destructible if and only if it is a Rothberger
Gap.
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3.3.3 F,s-indestructible gaps

In section 3.1 we introduced the forcing notion F, g which, for given cardi-
nals a, §, forced an («, §)-gap in generic extensions. Now we come back to

this forcing notion and ask the question:
Which gaps survive extensions made by Fo 57

This question is in particular interesting if we have some gaps at hand and
want to introduce a new gap (using F,, ) while preserving the gaps we have.
We will see that a quite big class of gaps actually does survive forcing with
F, 3 and we have already done some work that will lead us to this. This
section is again due to Scheepers, see [5].

Before we are able to apply one of the previous results, we need the

following;:
Proposition 48. Let o, 3 be ordinals. Then F, g is strongly Knaster.

Proof. We need to show that for any regular uncountable cardinal A and a
A-sized subset S of F, g we can find a A-sized subset L C S which is linked.

So let A be regular, uncountable and a subset S C F, g of size A be
given. We enumerate S as {p,},<x. Recall that any condition p, is a finite
partial function [¢a75]<N0 X w — w. We denote the domain of p, by F}, X n,,.

Now we use that A is uncountable and regular to obtain a A-sized subset
X such that for any z,2” € X we have n, = ny, := n. Consider the set
{Fy}zex and note that we can apply the A-system lemma and get a A-sized
set Y C X so that {F,} ey forms a A-system with root F' € [Bq,5]< 0.
Since there are only countably many options for the finite sets p,(F x n),
we can find a A-sized set Z C Y for which p, [ F xn =p, [ F x n for any
2,2 € Z.

Now consider {p.}.cz C {pv},<x and note that any two elements of
{p:}:ez are compatible, because for their domains F, x n, and F,, X n,
it holds that n, = n, (what implies that condition 2. in the ordering of
F, s is always satisfied) and they agree on their common domain (which is

F x n). But this is the same as saying that {p,}.cz is linked. O

Corollary 49. Let «, 8 be uncountable cardinals, then any symmetric gap

is indestructible by forcing with F, 3.
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Proof. The result follows from Proposition 48 and Corollary 37. O

So the remaining question is: How do asymmetric gaps behave under
forcing with F, g for some cardinals o and (37

In fact, it will turn out that we have already established some results in
connection with this question. However, what’s left is the following result,

stating that “small gaps” survive forcing with F) , for “large x”:

Theorem 50. Suppose o < B are infinite reqular cardinal numbers and let
({fy v<ar{95}ts<p) be an (o, B)-gap. Further let X < &k be infinite regular
cardinals such that B < k. Then ({fy}y<a;{9s}s<p) survives forcing with
Fy.,..

Proof. We prove by contradiction. So let’s suppose the statement of the
theorem is false. Then, by the Maximal Principle, we find a condition p €

F) . and a F) ,-name h for a real, such that

p IF " h interpolates ({f7}7<a: {95}5<p).”

For each § < 8 we can pick a condition ps; < p and a natural number ms
for which

ps I 7 h(i) < gs(7) for all i > ms.”

Now, as usual in this kind of arguments, we use that § is uncountable and can
find a cofinal set X C 8 (similar as we found Z in the proof of Proposition
48), for which m, = my := m for z,2’ € X, the domain of p, is F, x n, the
domains {dom{p, }},cx form a A-system with root F' x n and all conditions
agree on the root, i.e. pp | ' xn =py [ F xn for z,2/ € X. We write
p = ps | F x n for the restriction of some p, (and thus all) to F' x n. Here,
as it follows from the definition of F) ,, we have Fi,, F' € [¢H7A]<N0 X w and
necw.

Now we have to distinct between the cases that a is countable and un-
countable, as usual in such arguments. We start with the countable case:

So assume that « is countable, then, as it is regular, @« = w. For any

J € w we pick ¢j < p and [; € w such that
q; IF 7 f;(i) < h(3) for all ¢ > [;.”

We can choose the ¢; and [; such that lp < I3 <1lp < ... and g0 > q1 >
g2 > ... inductively.
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Denoting the domain of ¢; € F) . with Q; x k;, we note that the set
Q = Ujew (); is countable as a countable union of finite sets. Thus so is
@ X w. On the other hand, the sets dom{ps} \ F' X n are pairwise disjoint,
thus their union is uncountable (in fact, of size 3). Therefore, for each z € X
we can pick a z € X such that < z and (dom{p,}\ (F xn))NQ x w = 0.
In other words, there is a z € X such that its domain does not intersect
with the domain of any g¢;, except possibly on F' x n. Note that since
p. | F'xn=pand g; < p for any j € w. Together with what we have just
shown, this implies that ps and g; are compatible for all i € w. Therefore,
in some generic extension by F) ., we have that f;(i) < h(i) < g.(i) for
all j € wand 7 > [;. In particular, it must hold in the ground model that
[i(i) < ge(i) for all j € w and 7 > ;.

Now we consider the set of z € X for z as above, i.e. A = {z € X |
(dom{p.} \ (F xn))NQ X w = 0}. Because we can find a z € A for which
x < z for any x € X, we conclude that A is cofinal in 3.

This allows us to define
f](l) if7 ¢ [lj,lj_H)

1 otherwise

#(i) =

Then we claim that t interpolates the gap ({fj}jew,{9a}taca). This is
because for any ¢ > ly and i € [I;,1j41) we have that (i) = f;(i) < ga(i) for
all a € A by the way we have chosen [; and A. Since ¢ is piece-wise equal to
some f; it follows that ¢t < g, for any a € A. For a fixed k£ € w, note that
t(i) = f;(i) where j > k whenever ¢ > lj41, thus fi < ¢. This implies that ¢
interpolates ({f;}jcw, {9a}aca), which is equivalent to the original gap.

If now « is uncountable, we proceed as follows: We aim to use a similar
argument as for the countable case, so we pick, for any v < «, a condition

go < p and a natural number [, for which
go IF 7 fo(i) < h(i) for all i > 1,.”

Now we use that « is uncountable and obtain a cofinal subset Y C «a such
that [, = [,y := [, the domains dom{p,} form a A-system with root G x u
and ¢, | G xu=gqy |Gxuforyy Y.

Note that the set B = {z € X | (dom{p,} \ FF xn) NG x u = 0} is of
cardinality (3, because the sets dom{p,} \ F' x n are pairwise disjoint and X

is of size .
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We now prove the claim:

Claim 13. Let b € B be given. Then there exists a b’ > b in B for which
(dom{py} \ F x n) N dom{qy} =0 for ally €Y.

Proof of claim. If the statement of the claim is false, we find a b € B wit-
nessing this. Then for all ¥ > b we find y € Y for which (dom{py} \ F X
n) Ndom{g,} # 0. For b’ we denote the minimal such y € Y with y.
Since |Y| = @ < 8 = |B|, we find a (-sized set C C B such that
Ye = Yo := y* for any ¢, € C. This means that for all ¢ € C we have that
(dom{p.} \ F x n)Ndom{q,~} # 0. But dom{gy~} is finite, what means that
there must be at least two (in fact, S-many) elements of C, say ¢ # ¢y for
which (dom{p., } \ F' x n) Ndom{gy~} = (dom{pe,} \ F x n) N dom{gy-}.
Now this cannot be the case, because the sets dom{ps} \ F' X n are pairwise
disjoint for § < 8 by definition of F' x n. O

Claim 13 guarantees us that the set B’ = {b € B | (dom{pp} \ F x n) N
dom{gy,} =0 for all y € Y} is of cardinality £, thus in particular cofinal.

Further, by the way we have chosen the sets B’ and Y, we know that
py is compatible with g, for all y € Y and all b € B’. Thus we obtain
fy(i) < gp(i) for all i > max{m,l}. So we can define

i) max{fy (i) |y € Y} if i > max{m,I}
1) =
1 otherwise

Then t interpolates ({ f,}yev, {9»}pen’), what gives the theorem. O
Now we can summarise the results we have derived:

Corollary 51. Let «, 3 be ordinal numbers and ({fy}y<as{9s}s<p) be an
(o, B)-gap. Then the gap survives forcing with Fy ,. for any infinite reqular

cardinals X\, k for which A < k.

Proof. We can, without loss of generality, assume that a and 8 are regular
cardinals, since only cofinality matters. Further, we can, without loss of
generality, assume that o < j.

Corollary 49 implies that if ({fy}y<a,{95}s5<p) is symmetric, it survives
forcing with F 4.

If the gap is asymmetric, we have to distinct between cases:
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First, assume that «a, 3 are both infinite. Then, if 5 < k we can use
Theorem 50 to see that the gap survives. On the other hand, if 3 > k, we
note the following: The partial order F) , is of size x, and by Proposition
21 it is also ccc, thus preserves cardinals. Therefore, we can apply Theorem
34 to obtain that in this case the gap survives.

Now assume that o = 1 (this includes all cases where « is finite). Then
we have seen in Theorem 17, in the proof of the “3. = 1.” direction
that we can construct an (w, )-pregap given a (1, 3)-pregap and that the
constructed pregap is a gap if and only if the given (1, 8)-pregap is a gap.
So if any (1, 3)-gap is destroyed by forcing with F) ., so is an (w, §)-gap,
which cannot be the case as we have just shown.

A similar argument can be applied for the case a = 0 using the direction
“2. = 3.” of the proof of Theorem 17. O

Remark. We can state the last result a bit more informal:

Any gap survives forcing with F ,.
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Chapter 4

Gaps in P(w)/Fin

We end our considerations regarding gaps in “w and consider the second
important partially ordered set in this work: Gaps in P(w)/Fin with the
almost inclusion order C*.

We say that an infinite set A € P(w) is almost included in B € P(w)
or almost subset of B and denote A C* B if and only if A\ B is finite and
B\ A is infinite. We write A =* B to express that A\ B and B\ A are both
finite.

Instead of writing (P(w), C*) for the partially ordered set, we will write
P(w)/Fin for simplicity and to highlight that we consider infinite subsets of
w and that we “do not care about finite subsets”.

Main source for this chapter is [12].

4.1 Definitions and connections with gaps in “w

Following [12], the notions of pregap and gap are defined as follows:

Definition 17 (Pregap). Given two totally ordered sets (I, <r), (J, <) with
minimal element and a pair ({A4;}icr, {Bj}jcs) such that A; and B; are
infinite subsets of w, we say that the pair is an (I, J)-pregap if A;; C* A;,,
B, C* Bj, for iy <p iy, j1 <y jsand A, N Bj =0 forallieI,jeJ.

Definition 18 (Gap). Let ({A;}ier, {B;j}jes) be a pregap. Then we say
that the pregap is a gap if there exists no A € P(w) for which A; C* A for
all i € I and AN B; =* () for all j € J. If the pregap is no gap, any A

witnessing this is said to interpolate the pregap.
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Remark. As in the Chapter 2 we will almost always consider ordinal or
cardinal numbers as index sets I, J. However, we state the definition more

general.

The definition we gave here for (pre-)gaps in P(w)/Fin is slightly different
from the definition of (pre-)gaps in “w. So we give a second definition as

used in [5]:

Definition 19 ((Pre-)Gap 2). Given two totally ordered sets (I, <;), (J, <)
with minimal element and a pair ({A;}icr, {Bj}jes) such that A; and B;

are infinite subsets of w, we say that the pair is a pregap of second type if
Ai1 c* Aig c* Bj2 c* le

for all i1 <719 and j; <y jo.
We say that the pregap is a gap of second type if there is no A € P(w)
such that A; C* AC* Bj foranyic I,j € J.

Now the thing is that the definitions are closely related:

Proposition 52. Let (I,<p),(J, <) be ordered sets and ({A;}icr,{Bj}jes)
be a pair of infinite subsets of w. Then if ({Ai}ier, {Bj}jer) s a (pre-)gap

there is a unique (pre-)gap of second type corresponding to it and vice versa.

Proof. = : Suppose ({4i}ticr, {Bj}jes) is a pregap. Put B; = Bf and
Aj = A;, then ({A]}ier, {B] }jes) is a pregap of second type.

Now suppose we can find an A € P(w) that interpolates the pregap
({A}}ier, {Bj }jes). Then A; = A7 C* A for any i € I. Let j € J and note
that BjN A ="0, thus A C* BS = Bj. But then ({4;}icr, {Bj}jes) is not
a gap.

<= If we have a gap of the second type ({4;}icr, {Bj}jcs) we again
set A7 = A; and B} = Bf to obtain a pregap ({A] }ier, { B }jes)-

To see that this is indeed a gap, suppose we are given an interpolating
A for ({Af Yier, B} }jes), ie. A7 C* Aand AN B; =0 foralli € I and all
j € J. Note that A; = A} C* A. Further AN B} = () implies that A C* By,
so ({Ai}tier, {Bj}jes) can not be a gap of second type. O

Remark. This result enables us to switch between the two definitions of a

gap, which we will do without explicitly mentioning.
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Obviously, especially after reading chapters on gaps in “w, the question
arises how gaps in P(w)/Fin and “w are connected. Our first observation is

that whenever we have a gap in “w we can obtain one in P(w)/Fin:

Proposition 53. Let a and B be reqular cardinals. Then if there is an

(a, B)-gap in (Yw, <) there is an («a, B)-gap in P(w)/Fin.

Proof. Suppose we have a gap ({fy}y<a;{9s}s<p) in (“w,<). Let A, =
{(m,n) ew|n < fy(m)} and Bs = {(m,n) | n < gs(m)}. Because fy < f,
whenever v < p < a we obtain A, C* A,. For the same reason it holds
that A, C* Bs and Bs C* B¢ for v < o, 6 < p < 8. This implies that
({Ay}y<as {Bs}s<p) is a pregap.

To see that it is a gap, suppose there is A € P(w) for which A, c* A C*
Bs for any v < o and § < . Then we can define f(m) = max{n | (m,n) €
A} (note that we can do so only because A C* Bs). Then f interpolates
({fy}v<a>{95}5<p), which is a contradiction.

We now use the well-known fact that there is a bijection between w and

w X w to conclude that there is a gap in P(w)/Fin. O

As in the case of gaps in (“w, <) it is in fact enough to consider cofinal

index sets:

Proposition 54. Let ({A,}y<a,{Bs}s<p) be an (a, 5)-pregap for ordinals
a, 8. Consider cofinal sets A C a, B C (3, then it is equivalent:

1. ({Ay}y<as {Bs}e<p) is a gap.

2. ({Ay}yea, {Bs}tsen) is a gap.

Proof. Using the second definition of a gap we gave above, the proof is
exactly the same as for the case of gaps in (Yw, <) given in Proposition
2. O

We shortly switch our focus to the partially ordered set (Yw, <*), where
f <* g denotes that f eventually dominates g.

Then we have the result:

Proposition 55. Suppose o and B are infinite reqular cardinal numbers.
Then there is an (a, B)-gap in (Yw, <) if and only if there is an («, 3)-gap

in (Yw,<*).
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Proof. Since f < g implies f <* g it is clear that if we have a («a,3)-
gap ({fy}y<as{9s}s<p) in (“w, <) it is also a pregap in (Yw,<*). Now we
have to show that it is actually a gap. Suppose the gap is interpolated
by h in (Yw,<*). Then f, <* h <* g; for any v < «,0 < . Since
({fy}v<a>{95}5<p) is a gap in (Yw, <), there is ¥ < aw or 6 < 8 (or both) for
which f, A h or h A gs. We suppose that the first case holds, as the second
case is similar. Now use that « is regular infinite, thus a limit ordinal. So we
can find 4/ > v and obtain f, < f,/. Further f, <* f,, <* h, a contradiction
to fy A h. So ({fy}y<a>{9s}s<p) is indeed a gap in (“w, <*).

Now assume we have a gap ({fy}y<a,{95}s<p) in (Yw, <*). Then define
f5(n) =n- fy(n) so that ff(n) — f(n) =n- (fe(n) — fy(n)). This implies
that f < f¢ for v <& Similarly, with g5(n) = n-gs(n) we obtain a pregap
({f5}y<a>195 Y6<p)- To see that this is in fact a gap, note that given an in-
terpolating function h, by h/(n) = (@} we obtain a function interpolating

({fy}v<a>{95}5<p). But this can not be the case by assumption. O
We now give a very important definition:

Definition 20. We denote with b the minimal cardinality of an unbounded
set in (Yw, <*). Here, a set U C “w is unbounded if there is no h € “w such
that f <* h for all f € U.

Then we can show the interesting result, which is originally due to Roth-

berger [4]:

Theorem 56. The cardinal b is the minimal cardinal K for which there is

a (w, k)-gap in P(w)/Fin.

Remark. As in the previous chapters, we will call a gap of the form (w, k)

or (k,w) an (w, k)-Rothberger Gap.

Proof of Theorem 56. Suppose we have an (k,w)-gap ({Ay}y<k, {Bs}s<w)
such that s is minimal with that property. We aim to find an unbounded
sequence of length k.

We first note the following: A, N Bs # () for all but finitely many v < &,
0 < w and 7y # k. This is because if this would not be the case we could just
take A =
Further, by the basic definition of a pregap, we know A, N By is finite.

<Ay and obtain an interpolating element for the given gap.
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Now we can define
fy(i) = max{n | n € A, N B;}.

We claim that the sequence of reals (fy)y<x is unbounded in (Yw, <*).

So assume this is not the case, then there is f € “w such that f, <* f
for all v < k. Now let A = | ,
fy <* fforall ¥y < k and fy(i) = max{n | n € A, N B;} we can conclude
that AN B; C {1,2,...,f(i)} for any i € w. In particular AN B; is finite

A,, then obviously A, C* A. Since

and this implies A N B; =* (). Therefore, A interpolates the given gap
({Ay}y<k, {Bs}s<w), which is a contradiction.

We have shown b < k. To see that also x < b holds, note that any
unbounded family in (“w,<*) of size b is a (b,0)-gap. By proposition 55,
we can without loss of generality assume that we have an unbounded family
in (Yw, <), that is, a (k,0)-gap. Now we use Theorem 17 to obtain a k-
Rothberger Gap in (“w, <). But now proposition 53 ensures us the existence
of a k-Rothberger Gap in P(w)/Fin and we obtain x < b. O

4.2 Hausdorff Gaps and Special Gaps in P(w)/Fin

similarly to the notions of Hausdorff and Special Gaps in (Yw, <), we can
define this notions in P(w)/Fin as well. We will mostly follow [12] in this
section.

To simplify the language used when speaking about gaps in P(w)/Fin,

we introduce the following notion:

Definition 21 (Tower). A family {T;};c; of infinite subsets of w for some

ordered index-set (I, <j) is called a tower, if T;, C* T}, whenever i1 <7 is.

The relation between gaps and tower is clear: Each (pre-)gap is a pair

of towers.

Definition 22 (Hausdorff Gap). Let ({Ay}y<w,,{Bs}s<w,) be a pregap.

We say that the gap is a Hausdorff Gap if there is a cofinal set C' C wq such

that the set {{ € C'| A¢ N Bs C n} is finite for any n € w and any ¢ < w;.
We denote the class of Hausdorff Gaps with H.

Definition 23 (Subgap). We call the gap ({Ac}cec, {Bc}eec) a subgap of
({A7}7<w17 {35}5<w1)'
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Remark. Given the definition of a subgap, one state the definition of a
Hausdorff Gap using the Hausdorff Property. The Hausdorff Property for a
gap ({A~}y<wi> {Bs}s<w,) is the following statement:

The set {{ € w1 | A¢ N Bs C n} is finite for any n € w and all § < wy.

Then a Hausdorff Gap is a pregap having a subgap that satisfies the Haus-
dorff Property.

As in the case of (Yw, <) the first thing to note is that the name Hausdorff
Gap in indeed satisfied:

Proposition 57. A Hausdorff Gap is a gap.

Proof. Without loss of generality, we assume we are given a gap that satisfies
the Hausdorff Property. We may denote this gap by ({44 }y<w, {Bs}s<w)-
Then we continue similarly as in the proof of Proposition 10.

Suppose ({A}y<a,{Bs}s<p) is not a gap. Then we find a subset of the
naturals A that interpolates the pregap, i.e. A, C* Aand AN B, =* 0 for
any v < wy.

For any v < w; we find a n, such that A, \ A C n,. So we find an
uncountable X C w; such that for all z;,29 € X we have ny, = ng, = n.
Further we find, for any x € X, a m; for which AN B, C m,. So we
find an uncountable Y C X such that for any yi,y2 € Y it holds that
My, = My, = M.

Now fix a y € Y that has infinitely predecessors in Y. We can find such
a y, since Y is uncountable.

Now for any & < y such that £ € Y we obtain that A¢ \ A C n and
AN By Cm. Thus A¢N By C max{n,m} := k. But then {{ <y | AcNB, C

k} is infinite, which is a contradiction. O
Corollary 58. There exists a Hausdorff Gap in P(w)/Fin.

Proof. This follows immediately from Theorem 12 and Proposition 53. The
Hausdorff property follows from the construction of the gap in P(w)/Fin in

the proof of Proposition 53. O

Definition 24 (Special Gap). Let ({ A4} <w,, {Bs}s<w,) be a pregap. We
say that the pregap is a Special Gap if it has a cofinal subgap ({4; }icr, { Bi}icr)
for which (4; N B;)U (A;NB;) # 0 forall i # j € I.
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We denote the class of Special Gaps by SP.

Proposition 59. Let ({Ay}y<w:, {Bs}s<w,) be a Special Gap. Then it is a
gap in P(w)/Fin.

Proof. Let ({Ay}y<w: s {Bs}s<w ) be a Special Gap and suppose that it is not
a gap. Since the pregap is special, we can find a cofinal (thus uncountable)
C C w; for which (4; N B;)U(A; N B;) # 0 for any i < j € C.

Because the pregap is not a gap, we can find A € P(w) such that A, c* A
and B, N A =*{ for all ¥ < wy. This implies that there are ny, m, € w for
which A, \ A C ny and B, N A C m,, for any v < wy. In particular, this
holds for all v € C. We obtain that there is a cofinal set D C C for which
ng, = Ng, = n and mg, = mg, := m for di,ds € D. Letting | = max{m,n},
we obtain that A3\ A C [ and ByN A C [ for all d € D. In particular,
Ag, N By, = Ag, N Bg, N1 for any dy,d2 € D.

Since the set D is uncountable and [ is finite, we can find a cofinal £ C D
such that Ac\ A=a and B.NA =0 for a,b C [ and all e € E. From the
fact that ({Ay}y<w, {Bs}o<w,) is a pregap we know that A, N B, = (), thus
anNb = (. But then for ey, ey € F we obtain that A., N Be, = Ae, N Be, = 0,
since E C D. But £ C C is cofinal and this is a contradiction, because

ECC. O

Proposition 60. Let ({Ay}y<w,, {Bs}to<w,) be a Special Gap. Then the
inverted gap ({B}y<w:, {As}s<w,) is also a Special Gap.

Proof. This follows immediately from the definition of a Special Gap in
P(w)/Fin. O

Definition 25 (Left-Oriented Gap.). Let ({Ay}y<w,, {Bs}s<w,) be a pre-
gap. Then we say that the gap is left-oriented if it contains a subgap that
satisfies Ay N Bs # 0 for all v < § < wy.

We denote the collection of all left-oriented gaps by LO.

The following proposition follows immediately from the respective defi-

nitions:
Proposition 61. Every left-oriented gap is special.

We establish a result that emphasizes the connection between Hausdorff

Gaps and left-oriented gaps.
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Proposition 62. Let ({Ay}y<wi; {Bs}s<w) be a Hausdorff Gap. Then it

is left-oriented.

Proof. The idea of the proof is basically the same as in the proof of Theorem
15. Define f: wy — [wi]<N by

f(y)={6 <yl Asn B, =0}

It is obvious that v ¢ f(v). Further f(y) is countable for any -, because
({A~}y<wr> {Bs}s<w,) is a Hausdorff Gap. Therefore we can apply Proposi-
tion 16 to obtain a cofinal X C w; such that x ¢ f(y) for any z # y € X. But
then ({Az}zex, {Bz}zex) is a subgap that witnessing ({ A }y<wi, {Bs}s<w:)
is a left-oriented gap. O

From Propositions 62 and 61 we get the
Corollary 63. H C LO C SP.

Now it is an interesting question whether the classes of gaps coincide or
not, i.e. if every Special Gap is left-oriented and if every left-oriented gap
is Hausdorff. It will turn out that the answer is no in both cases. In the

remainder of this section we will provide an example that proves this.

4.2.1 Gaps in P(w)/Fin and towers

It is not surprising that there are deep connections between gaps in P(w)/Fin
and towers as each such gap is a pair of towers. To answer the questions of
the end of last section, we have to establish two small results on this. The
following definitions and results can be found in [12].

There are definitions of certain types of towers, similarly as we have for

gaps. Note that we focus on wi-towers.

Definition 26 (Hausdorff Tower). A tower {7} };cy, is called Hausdorff if it
contains a cofinal subtower {7} }icx such that {y <z | T, \ T, C n} is finite
for all z € X and all n € w.

Definition 27 (Special Tower). A tower {7;};c,, is called special if it con-
tains a cofinal subtower {T}};cx such that T, ¢ T, for all z,y € X.

Definition 28 (Suslin Tower). We say a tower is Suslin if it is not special.
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We can state the important results, which also motivate the names for

the towers we just defined:

Proposition 64. Let ({Ay}y<w:,{Bs}ts<w,) be a Hausdorff Gap. Then

{A,}y<w, is a Hausdorff tower.

Proof. Without loss of generality, we assume that ({Ay}y<w;, {Bs}s<w,) it-
self (and not some subgap) satisfies the Hausdorff Property. This means
that {£ <y | A¢ N B, C n} is finite for any v < w; and any n € w.

Suppose that the proposition is false, then we find v and n such that
X ={¢ <~v| A:\ Ay C n} is infinite. For any v < w; we know that
A,N By = 0. But then for £ € X we obtain AcNB, = ((A¢\A)UA)NB, =
(A¢ \ A) N B C n. This contradicts the fact that the gap is a Hausdorff
Gap. O

This result together with the fact that there are Hausdorff Gaps in
P(w)/Fin implies:

Proposition 65. There exists a Hausdorff Tower.
A very similar fact is true for Special Towers:

Proposition 66. Let ({A,}y<wi,{Bs}s<w) be a left-oriented gap. Then

{A}y<w is special.

Proof. Because ({Ay}y<w, {Bs}s<w,) is left-oriented, we may, without loss
of generality, assume that A, N Bs # () for all v < § € wy. For 7,8 € wy,
w.lo.g. v < 4, we have A5 € A, since A, C* As. But now A, N Bs # 0 and
As N Bs =0, thus A, ¢ As. But this means {A,} <y, is special. d

4.2.2 Special Gaps that are not Hausdorff

The goal of this subsection is to prove

Theorem 67. There exists gap ({Ay}y<wi s {Bs}s<w,) in P(w)/Fin that is
left-oriented, but not Hausdorff and such that ({Bs}scw, { Ay} yew) 5 spe-

cial, but not left-oriented.

We prove the theorem by constructing a gap that has the desired prop-

erties. We follow [12] in the process.

72



Proof of Theorem 67. We will define a forcing notion that will add a gap
with the desired properties. We will denote this forcing notion with P.

Conditions in P are of the form p = (I, ny, (Aip, Bip)icr,) for I, €
[wq] <o, np a natural number and A; 5, B; , C np.

The idea is that for a generic G C IP we obtain a gap (A, B,) by letting
Ay = Upeg Ayp and By = U,cq Byp- To ensure that this works, we require
that A; ), N B;p = 0 for i € I, and any p € P. Because we want to obtain a
left-oriented gap, we additionally require that A;, N Bj, # () for any i < j
in I,

The idea as just described also inspires the definition of strengthening a

condition. We say that g < p if
1. I, C I,
2. np < ng,
3. AjgNiny =A;p and B;;Nny, = B; ), for all i € I,

4. for i < j € I and n, < k < ng, if Kk € A; 4 then also k € A;, and
similarly if & € B; 4 then k € B;,.

Claim 14. The sets {p € P | v € I,} are dense for every v < w;.

Proof. Let v < wy be given and (I, np, (Aip, Bip)ic1,) be an arbitrary con-
dition in P. If v € I, there is nothing to prove, so we assume v ¢ I,. Now
let I' = I, U{y} and n’ = n,. Then for A, ,, B, , arbitrary subsets of n’ we
obtain with p’ := (I',n/, (4;p, Bip)icr) that p’ < p. O

Now suppose we have a generic G' at hand and let A, = UpeG A, , and
By = Upeq By,p- We can do that due to conditions 1. to 3. in the definition
of strengthening in P.

Note that due to Claim 14 we obtain that I = (J e Ip is cofinal. So
without loss of generality, we can denote the pair ({A,}yer, {By}+er) (that

is in VIG]) by ({Ay}yew s {Bytyew)-
Claim 15. ({A4}yewr, {By}yew:) is a left-oriented gap in V[G].

Proof. We first show that it is a pregap. For that, we first have to show
that Ay N By = () for any v < w;. But this is ensured by the requirement
on conditions p € P that A;, N B;, = 0 for all i € I,.
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Further we need to verify that A, C* As and B, C* Bs for v < 4. But
this follows from condition 4. in the definition of strengthening in P as any
counterexample, together with the fact that two elements of a generic filter
are compatible, would yield a contradiction to condition 4.

So we obtain that ({A4,}yecw,, {By}yew:) is indeed a pregap. Since for
conditions p € P we require that A; , N B; ; # () whenever i < j, we obtain
that the pregap is in fact a left-oriented gap.

Also, the forcing notion P also preserves wy, because it is ccc. We do not
prove this here, since the proof is somewhat technical and lengthy, however,
it can be found in [12], Theorem 41. O

Now the point is:
Claim 16. The gap ({A,}yew {By}yew ) is not Hausdorff.

Proof. By Proposition 64, it is enough to obtain a contradiction from the
assumption that {A,} <., is Hausdorff (as a tower). So assume that this
tower is Hausdorff. Then we can find a condition p € P and a P-name X for

an uncountable subset X C w; such that
plk"{Az}, ¢ x is Hausdorff.”
Because X is uncountable, we can find an uncountable set Y C w; such that
Y={y<w |3¢,<p:g,€G, yel, andqvlkfyeX}.

We can find Y because of Claim 14. We will now define a condition that
will force that the left part of the given gap, the tower {B,}<.,, is Suslin.

Since I, is finite for all v € Y, we may assume that the I, are all of
the same (finite) cardinality.

Apply the A-system lemma to the collection {/ } ey to obtain a root
R,ie. I, NIy = R for all ¢y, qs asin Y and 7,4 € Y. By Claim 14, we can
assume that I, \ R < I \ R (pointwise) for v < 4. Also, we can assume
that v ¢ R for all v € Y, because Y is uncountable and R is finite.

Now consider ¢, for v € Y. Then ¢, consists of the finite set I, 2 R,
ng, and finitely many pairs (Aiyq,Y’Bi,q—y)iGIq,y of subsets of w. Since Y is
uncountable, we can assume ny, be to equal for all v € Y; we denote this
number by n. Also, for the same reason, we may assume that A4;, = A;
and B; g, = Bj g4 forall i € R and all 7,6 € Y.
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Because the I, are all of the same finite cardinality, we can find h € w
such that |I, \ R| = h. Enumerate the set I, \ R by r],...,r). We can
assume that Br?,% = BT??% for any v,0 € Y and [ < h. We can do this, since
we again consider countably many finite sets over an uncountable index set,
which is Y. Also, since v ¢ R, note that v = 'r? for some [ < h.

Because Y is uncountable, we can find v* € Y that has infinitely many
predecessors in Y. Then we define a special conditions ¢* as follows:

Find 7, the minimal element of Y, which we can find since ¥ C w;.
Define ¢* = (Ig+,n*, (Ai g Big+)) by

].. Iq* — Iqw* U IQ'YO’

2. n*=n+1,
Aiqu* ifi e Ify*
Aig,, U{n}t ifie )\ R,

3. Aig =

L By = Bi g, itiel,
Big,. U {n} ifiel-\R.

Then it is clear that ¢* < ¢, and ¢* < ¢,+. Since ¢, IF v € X and
gy IFy* € X, we obtain ¢* IF 79,7* € X. Because vy is minimal in Y
and condition 4. in the definition of strengthening of the forcing at hand,
together with the fact that By, 4« € By« 4+, we obtain that ¢* IF B, C Byx.
Note that this means that ¢* IF " {By} e, is Suslin.”

Up to this point, we did not make use of the assumption on X that
p - "{Az},c 5 is Hausdorff.”. Using the assumption together with ¢* < p,

we obtain an r < ¢* and m < w such that
rliF"{y <~ |v€ X and A\ Ays Cn+1} <m.

Since I, is finite and v* has infinitely many predecessors in Y, we can
find m-many {&1,&2,....&n} In Y, & < &1, such that I, N [min{Iq61 \
R}, max{I,, ~\ R}] = (. Here the g, are as in the definition of Y. Now we

define a new condition s as follows:

L Iy =1 UU) <iem Lo

2. ng=mn, +m,
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A, if i € I, and i < max{R}

- A U{n,} if i € I, and max{R} < i < min{J,
o A Ung,ng +m) if7€ I, and maX{qum \ R} <i
(Ao, Ufne +}) Nng ifi € Iy \Randi=r7, [ <h
Bir ifi € I,
4 B,=4"

)

Bm{j Ulne,n,+j) ifie quj \ R

Now we claim that s <r and s < g¢, for i = 1,...,m:

It is clear that I, D L”Iq&i and ng > Ny, Nge, -

Also, for ¢ € I, we have A; ; N n, = A;,, because we always add natural
number greater than n, to A;, to obtain Ay;, if ¢ € I,. For i € Igj for
some j € [1,m] we distinct two cases: First, if ¢ € R, by our assumption
onY, A@q{j
because r < ¢* and ¢* € Y. If now ¢ € quj \ R, we use that AT?»% = Ar;;’%
for all v,§ € Y and [ < h. Using a very similar argument we obtain that
B;sNn, = B;, and B; 4 N Nge, = Bi,qgj'

Finally, if i <4’ € I, and n, <1 < ng, ifl € A; ;s then [ € Ay ;. similarly,

=Ai,=AsNnp = AN Nge, » where the last equality holds

ifi<i e quj and Mg, <l < ngifl € Aj 5 then | € Ay 5. The same holds
for Bi,s-
Since s < 7,qg¢,, .., G¢,,, we obtain (with 7 < ¢* < gg,) that

sl {§07€17 7€m} g X

Now consider any &; for j < m. Then = rfj for some | < h. So A¢, s =
Arfi,s = (AT707TU {ns+i})Nns. Note that v* € I, and since [« \ R > I¢, \ R
pointwise, together with v* € I« \ R, we get that Ay« s = A+ U[n,, n.+m).
Thus Ag; s \ Ay s = Ar?“,r \ Ay« » € n+ 1 by definition of the conditions r
and ¢*. But from this we obtain that s I- Ag, \Ay» Cn+1for any j < m,
what implies that

Sy <7 | Ay \ Ay St 1) 2 m.?

which is a contradiction to s < .
We conclude that the assumption that {A;} . ¢ is Hausdorff (as a tower)

is false. This proves the claim.
O

76

€1 \R}



The proof of the previous claim has an important side-result:
Claim 17. The tower {By} e, is Suslin.

Now Claim 16, together with Proposition 64, implies that the generic
gap ({44} yecwr {By}yew ) is not Hausdorff, but left-oriented by Claim 15.
Thus it is also special.

On the other hand, the gap ({By}yew, s {A+}yew) is Special by Propo-
sition 60. But, by Proposition 66 and Claim 17, this gap is not left-

oriented. O
We obtain as a corollary:

Corollary 68. H C LO C SP.
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Chapter 5

Gaps under additional

axioms

It is a typical set-theoretical question to ask what can be stated about
certain objects under ZFC plus some additional axioms, such as CH or MA.
We will follow this approach here as well and derive some results of the gap
structure of (“w, <) under such additional axioms and ZFC. We will mostly
consider gaps in (“w, <), because by Proposition 53 we already know that
the existence of a gap in (“w, <) implies the existence of a gap in P(w)/Fin.

It shall be noted here that many of the results mentioned are not ex-
plicitly proved, since often side-results and lengthy arguments are required
and the goal of this chapter is to provide an overview of the most important
results. However, references are provided for the interested reader. Again,
most of the material can be found in [5], although often the original ideas

appeared in different works, such as [13] or [7].

5.1 Gaps under CH

As a starting point we consider gaps and CH. It turns out that under CH it
is pretty easy to establish the existence of (wy,w1)-gaps, which can be found
in [13]:

Theorem 69 (CH). Assume CH. Then there exists an (wi,w1)-gap in
(Yw, <).
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Proof. Use CH to enumerate “w and denote this enumeration by { fy}y<w,-
We build a gap ({gy}y<w:> {Ay}y<wr) inductively.

Start with g9 and hg as an arbitrary pair for which gy < hg. Then for
v < w1 pick g, and h, such that

1. gy < h,,
2. g¢ < gy < hy < he forall § <,

3. there is no { < v for which g, < f¢ < h,, i.e. the pair (g, h,) cannot
be interpolated by an element from {fe¢}ec,.

We can perform this induction, because if would not be possible to find such
a pair at a step below w; we would have a (v, y)-gap for v countable, which
is not possible by Theorem 3.

The object ({gy}y<wis {fy}y<w:) is obviously a pregap, since it satisfies
conditions 1. and 2. To see that it is indeed a gap, assume that there would
be f € “w interpolating it. Then f = f¢ for { < w;. Pick an v > £ and note
that by condition 3. on the pair (g4, hy) it is impossible that f interpolates
(g, h~y) so in particular it can not interpolate the pregap. Thus the pregap
is a gap. O

Another interesting result is that in presence of GCH there are symmet-
ric gaps of arbitrary large size. We will not give a proof for this fact, an

explanation on how to prove it can be found in [5].

Theorem 70 (GCH). Assume GCH. Then there exist 2% many non-equivalent
(Was wa )-gaps in (Yw,<). The same holds for gaps in P(w)/Fin.

5.2 Gaps under Martin’s Axiom

Another interesting axiom is Martin’s Aziom, most often abbreviated as MA.
There are different versions of MA, often related to Definition 12. They are of
different strength, in the sense that often one is implied by the other. We will
give them below and state their relations. The goal when investigating the
influence of these axioms on the gaps in (“Yw, <) is to use “as less assumptions
as possible”, i.e., reformulated in our situation, to use the weakest version
of MA possible.
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5.2.1 Versions of Martin’s Axiom

Martin’s Axiom in it’s different versions states that for any partial order
satisfying certain properties and any collection of less than 2% many dense
sets, there exists a filter that intersects every element of the collection. The
different variations of MA arise when one varies the properties of the partial

orders that are considered. The versions of MA used here can be found in

[5].

Definition 29. (MA,_¢) MA,_¢ is the following statement:

Let P be a partially ordered set that is o-centered. Then for every collection
{D;Yicr € P(P) of dense sets of size < 280 there exists a filter G C P such
that GN'D; # 0 for any i € 1.

The other versions of MA are absolutely analogous to MA,_¢, still we

state them for the sake of completeness.

Definition 30. (MA,_;) MA,__ is the following statement:

Let P be a partially ordered set that is o-linked. Then for every collection
{D;}ier C P(P) of dense sets of size < 280 there exists a filter G C P such
that GND; # 0 for any i € I.

Definition 31. (MAy,) MAg, is the following statement:

Let P be a partially ordered set that is strongly Knaster. Then for every
collection {D;}icr C P(P) of dense sets of size < 2%0 there exists a filter
G C P such that GND; # 0 for any i € 1.

Definition 32. (MAx) MAg is the following statement:

Let P be a partially ordered set which is Knaster. Then for every collection
{D;}Yicr C P(P) of dense sets of size < 280 there exists a filter G C P such
that GND; # 0 for any i € I.

Definition 33. (MA...) MA,. is the following statement:

Let P be a partially ordered set which is ccc. Then for every collection
{D;Yicr € P(P) of dense sets of size < 280 there exists a filter G C P such
that GO D; # 0 for any i € I.

By the remark given after Definition 12 the following statement is clear:

Theorem 71. MA,, = MAx = MAx, = MA,_ = MA,_c.
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5.2.2 Consequences of MA to gaps in (“w, <)

We will now derive consequences from the presence of the different versions
of MA to gaps in (“w, <). Inspired by Theorem 71 we start with the weakest
axiom, which implies certain requirements on existing Rothberger Gaps (see
[14] or [5]):

Proposition 72. Assume MA,_¢ holds and «, B are infinite reqular car-
dinal numbers. Then for an (o, B)-gap ({fy}y<as{9s}s<p) in “w either
w < min{a, 8} or 2% = max{a, 8}.

Proof. Consider Layers Interpolation Order L, g. We may assume, without
loss of generality that a < .

If o = w, then by Proposition 25 we obtain that L, g is o-centered. For
k,lcewand o < fBlet Spi5={(X,Y,s,n) eL,p|keX, deY, |s| >}
Then every such set is dense open in L, g, as we have seen in the proof of
Claim 12 in the proof of Theorem 24, because the sets S ;s are precisely
the intersection of the dense open sets B,, Bs and Ay in the proof of the
Claim, so this intersection is dense open itself.

By the definition of L, g, if 8 < 2%0 then there less than 280 such sets
Sk,s. But then, by MA,_c, we find a generic G that intersects all sets Sy ; 5.

h = U s

(X,Y,s,n)eG

Defining

then gives us an interpolating element of ({fy}y<a,{9s5}6<3)-
Thus if & = w it must hold that § < 2%, which proves the proposition

since our assumption o < f implies that if & > w also min{e, 8} > w. O

Together with the following little proposition, we will be able to derive

an interesting existence-result on gaps in (“w, <) (and thus in P(w)/Fin).

Proposition 73. There exists an (w, a)-Rothberger Gap for some uncount-

able cardinal o in (Yw, <).

Proof. The proof will make use of Lemma of Zorn. We start with a increasing
sequence of reals (fn)new, i-€. fn < fm for n < m. Now we aim to find a
decreasing sequence (g)y<q such that ({fn}new, {9y }y<a) is a gap. We are

only interested in existence, so we use Lemma of Zorn.
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Let C C P(“w) be the collection of sets X such that X is linearly ordered
by < and we have f,, < g for all g € X, n € w. We know that C is not
empty, because if it were, we would obtain the (w,0)-gap ({fn}new,?), a
contradiction to Theorem 3.

Now we can define a partial order on C as follows: For XY € C let
X <Yifand only if X C Y and f < f' for all f € X, f' € Y. Note that
every increasing chain in (C, <) has an upper bound, namely the union of
the chain elements. This allows to apply Lemma of Zorn.

Thus we find a maximal element C' of C. Let a be the cofinality of C
and order C' with respect to <. Denote the elements of C' by g, for v < a,
where the index respects the ordering of C, i.e. gy < g5 for v < 6. Then
({ fn}tnew {9y }y<a) is a gap, because otherwise C' would not be maximal.

Finally, Theorem 3 implies that « is uncountable. O

Note that the previous proposition did not make use of MA,_¢. However,

combining Proposition 72 and Proposition 73 immediately gives us:

Corollary 74. Assume MA,_c holds. Then there exists an (w, 280)-Rothberger
Gap in (Yw,<).

Later it will be useful to have a more universal version of Proposition

73:

Proposition 75. Consider an infinite regular cardinal number o < 280 and

assume the following:

1. thereis an increasing sequence of reals (fo)y<a that has an upper bound

in (“w, <),
2. for any & < « there is no (£, a)-gap in (Yw, <).

Then there exists some regular cardinal 3 > « for which there is an («, f3)-

gap.

Proof. In the proof of Proposition 73 we only used Theorem 3 two times.
Now we can perform the exact same proof, but with a replacing w and
condition 1 and condition 2 replacing the use of Theorem 3 in the first and

second place, respectively. ]
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It is very interesting that it is even possible to express MA, ¢ as a

statement on the existence of gaps (for a proof, consult [5], [15] and [3]):
Theorem 76. Under the assumption that 280 = Ry, the two statements
(i) MAs—c,
(ii) There is no (wi, 1)-gap in P(w)/Fin,
are equivalent.

Now we switch our focus to MA,,. The assumption of MA,_, does not
imply interesting consequences on gaps in (“w, <) so we leave it out for the
moment. Under MAy,,, there are certain requirements on asymmetric gaps,

as shown by the following result (see [5]):

Theorem 77. Assume MAx,,. Then for an (o, 5)-gap ({fy}y<a,{95}5<p)

in “w, the gap is either symmetric or 280 € {a, 5}

Proof. Without loss of generality assume o < . Consider Layers Interpo-
lation Order Lo g. Let Sy ;5 = {(X,Y,s,n) € Log | v € X, 6 €Y, |s| > I},
then, as in Proposition 72, all such sets are open dense for any v < «a, § <
B, l €w.

Now if ({fy}y<a>{95}s<p) is asymmetric, then by Proposition 27 we
obtain that L, g is in Ky. If we additionally assume § < 2% we can use
MAj,, to obtain a generic G that intersects all sets S,;s. We can then

use (G, as in Proposition 72, to obtain an interpolating element for the gap

(({f+}v<a»{95}5<p), a contradiction. O

We end our short considerations about MAg, with an Independence
result. Therefore, recall that, by Proposition 72, under MAy,, only («, f3)-
gaps can appear for which max{a, 3} < 2%. By Theorem 77 we can thin
out the space of gaps in (“w, <) even further and are left with two possible

types of gaps:
e symmetric (o, a)-gaps for w < o < 280,
e asymmetric (a,2%0)-gaps for w < a < 2%,

Now we consult [5] once again and consider Theorems 85 and 87, which

are summarized as follows:
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Theorem 78. Let 8 be a regular uncountable number.

1. There is a model of ZFC + MAy, for which

(a) B < 2%,
(b) there is an (o, a)-gap for any reqular uncountable o < 2%0,

(c) there is an (a,2%)-gap for any reqular uncountable o < 2%0,

2. There is a model of ZFC + MAy,, for which

(a) B < 2%,
(b) there is no (o, a)-gap for any regular uncountable o < 280,

(c) there is no (a,2%)-gap for any reqular uncountable o < 2%0,
The statement of this theorem can be rephrased as follows:

Corollary 79. The ezistence of (a, B)-gaps in (Yw, <) for regular uncount-
able a, B is independent from ZFC + MAg,.

Again a result found in [5], it is in particular interesting that the stronger

version of MA, namely MAy, has a big influence on the possible types of
gaps:

Theorem 80. Assume MAx holds and o, are infinite reqular cardinal
numbers. Then for an (o, B)-gap ({fy}y<a>{95}s<p) either oo = 3 = wy or
2% € {a, B}.

Proof. The proof is very similar to those of Proposition 72 and Theorem 77,
respectively.

We may assume that the statement of the theorem is false, i.e. assume
we have a gap ({fy}y<a>{9s}s<p) at hand, such that it is not the case
that @ = 8 = w; and o, < 2%, We use Corollary 30 to obtain that
L. s is Knaster. Then with S, ;s as in the proof of Theorem 77 we can
proceed exactly as in the proof of Theorem 72, using MAg, to derive a

contradiction. O

Corollary 81. Assume MAx. Then for any a < 280, o # wy, there exists
an (a,2%0)-gap.

Proof. We start proving the little
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Claim 18. Assume MA,_c. Then every sequence of reals of length less

than 280 has an upper bound.

Proof. Let & < 2% and (fp)p<e be given. If it were not be bounded, then
({fo}p<e,0) would be an (£, 0)-gap, which can not be the case by Proposition
72. O

Now we use the claim (since MAg is stronger than MA,_¢) and with
assumption « # wy combined with Theorem 80 we obtain the two conditions
we need to apply Proposition 75. This gives us a 8 > « for which there is
an (a, §)-gap. Another use of Theorem 80 finishes the proof. O

Note that we can use Theorem 79 and Corollary 81 to distinguish MA
and MAg,, i.e. we have shown the following result, which is a priori com-

pletely independent of gaps:
Corollary 82. MAy, + MAg.

We are now in the situation that the existence of gaps is not forbidden
or required by some version of MA only for (wy,2%0)- and (280, 2%0)-gaps.
There is little influence of MAx on gaps of this kind, which will be clear

after the considerations of MA... and gaps.

Proposition 83. Assume MAccc. If ({fy}y<wis{195}s<wi) @5 an (wi,wr)-
gap, then it is equivalent to a Special Gap.

Proof. Suppose ({fy}y<wis {95 }o<w,) is an (w1, w1 )-gap and consider the cor-
responding partially ordered set S, ,, from Definition 16. We can use The-
orem 40 and obtain that S, ., is ccc. In the remark after Theorem 41 we
have shown that the sets D, = {S € S, o, | 7 € Is} are dense open. Now
we can apply MA .. to {D,}y«., and get a filter G that intersects with each
of the D,’s.

But then we find the desired Special Gap as follows: For v < w; pick
S, € GND,. Since v € Ig , we can find (a,,by) € [(fy,9,)] in S,. Then
by the definition of S, o, the gap ({ay}y<w:, {by}y<w,) is equivalent to
({fy}y<wi:{96}6<wy) and is a Special Gap. O
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What was left undecided by MAx is the question on the existence of
(w1,2%0)- and (280, 2%0)-gaps. This is independent of MA.. (and so in par-
ticular also independent form MAy). The proof of the following can be
found in [5].

Theorem 84. For both of the two statements below there is a model for
ZFC + MAcc. in which the respective statement holds.

1. There exists no (w1, 2%0)-gap and no (280, 2%0)-gap in (“w, <),
2. There exists an (wy,2%0)-gap and a (2%, 2%0)-gap in (“w, <).

Thus the existence of (w1, 2%0)-gaps and (280, 2%0)-gaps is independent from
MA e

We will now end our considerations on gaps and versions of MA and

switch the focus to another axiom.

5.3 Gaps and OCA /PFA

In this section we consider the influence of the Open Coloring Axiom -
abbreviated OCA - and the Proper Forcing Axziom - or abbreviated PFA -

and their effects on gaps in “w.

5.3.1 Gaps and OCA

We start with OCA. The Open Coloring Axiom in the version we consider
was introduced in [14] by Todorcevic. In fact, many statements in this
section are originally due to him.

The statement OCA requires some topology on the real numbers. We
will consider the standard topology on the reals, i.e. the topology that has
the open intervals as a basis. Then we obtain the standard topology on
R? by taking the product topology. A topology on [R]? - the collection of
two-elementary subsets of R - arises in a natural way: We can identify every
two-elementary subset {x,y} € [R]? with (z,y) if x < y or (y,z) if y < .
So any M C [R]? is open if and only if the corresponding set in R? is open.

The following definition is due to Todorcevic [14]:
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Definition 34 (OCA). The Open Coloring Axiom is the following state-
ment:

Let X CR. Then for each partition [X]> = P U Py for which Py is open in
[X)2, ezactly one of the following holds:

1. there exists an uncountable subset Y C X such that [Y]? C Py,

2. there are J; C X, i > 1, for which X =J;2, J; and [J;]* C Py for all
1> 1.

In order to apply OCA in the light of gaps, we have the below crucial
connection (Proposition 86, for which we only give a sketchy proof. For
what follows, endow w with the discrete topology, i.e. every subset is open,
and endow “w with the corresponding Tychonoff product topology. Then in
“w the basic open sets are sets of sequences of natural numbers, were one
element in the sequence is fixed and the other elements vary over w; such
sets are of the form w X ... x w x {n} x w x ... for some natural n. This in
particular also means that sets of the form [ni] X [na] X ... X [n,] X w X ...
are open, where [n;] = {1,2,...,n;}. Note that these sets also form a basis

for the topology on “w.
Proposition 85. The topological space “w is hereditarily separable.

Proof. We aim to show that for each subset X C “w there exists a countable
dense subset of X. Note that if we have an uncountable subset X C “w,
the initial segments (which are finite) of all elements of X are countably
many. Take for each such initial segment one element of X, then we obtain
a countable dense subset in X. If X is not uncountable, the statement is

trivially true. O

Proposition 86. The space “w is homeomorphic to the irrational numbers

with the inherited topology from R.

Sketch of proof. The idea is to use continued fractions to identify sequences
of naturals with irrational numbers. It is a well-known fact from number
theory that we can represent any irrational number as a continued fraction
expansion (see for example [16], Theorem 170).

Conversely, any continued fraction is irrational. So see this, consider a

rational number r. Then write r = rg + % for some rational 7’. Then the
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denominator of 7’ is smaller in absolute value than the denominator of 7.
But the denominator of r is of finite integer, so r is no infinite continued
fraction.

So in a natural way we have a isomorphic function from “w to the positive
irrationals, which we may, for the sake of this proof, denote by I. Namely,

the mapping “w — I can be stated as follows:

(n1,n2,n3,n4,...) — nq +

no +
1

ns + F

Now given a basic open set in I, we know it is of the form (a,b) NI for
real numbers a,b. But then the preimage of (a,b) NI under the mapping
defined above is of the form [n;] X [ng] X ... X [n,] X w x ..., thus open.

Similarly, the image of any set of the form [n1] X [n2] X ... X [np] xw x ...
is a bounded set of irrationals, thus open in I.

This shows that the positive irrationals are homeomorphic to “w. Since
we can split up “w into two parts in a homeomorphic way, e.g. by taking
the odd and even elements of some sequence in “w, we obtain the desired

result. O

Now we are ready to use OCA when considering gaps in “w. OCA is
strong enough to forbid the existence of many type of gaps in “w. In fact,
the only allowed gaps are certain Rothberger Gaps. This result is due to
Todorcevic [14].

Theorem 87. Assume OCA. For any two reqular uncountable cardinal

numbers a < 3 such that 8 > wy there is no («, 8)-gap in (Yw, <).

Proof. Let ({fy}v<a,{95}5<p) be a pregap for a,  as in the statement of
the theorem. We will show that it is not a gap.

To be able to apply OCA, we define a partition.

For each v < o we know that f, < gs for any 6 < . For each such § there
is an n] such that f,(I) < gs(1) for all { > nJ). Because § is uncountable,
there is a minimal n, such that ng = n, for uncountably many § < 3; we
denote the set of such § by I,. Then I, is actually cofinal in 8. By the
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usual argument on cardinalities, we may assume that n,, = n,, =: n for
Y1, 72 < Q.

Now we define the set where we want to use OCA to be X = {(f,9s) |
v <, 6 € I,}. The product “w x “w is homeomorphic to “w, so we can
identify X with some subset of “w and can use OCA on it. To do so, we
need a partition [X]?2 = P, U Py, where P is open.

Let Py be the set {{(fy,9s), (fe, 9p)} | Im > n: fy(m) > go(m) or fe(m) >
gs(m)}.

We show that P; is open: Consider some x = {(fy,9s), (fe,9,)} in Pi.
By definition of P; we can find m > n for which f,(m) > g,(m) or fe(m) >
gs(m). But then we can consider the initial segments fy [ m, gs [ m, fe [ m
and g, [ m. Then the set O C P; of all 2-elementary subsets of pairs of
reals that extend these initial segments is an open neighbourhood of =, what
implies that P; is open.

This allows to apply OCA to X = P; U P,. This means that one the

follow must hold:
1. there exists an uncountable subset Y C X such that [Y]? C Py,

2. there are J; C X, i > 1, for which X = J;2, J; and [J;]? C P, for all
1> 1.

We show that 1. is not possible:

Assume there would be such a Y C X. Suppose Y = {(f¥, ¢¥)}rew, is
listed in a way such that fy < f{ and g§ < ¢¥ whenever v < §. The reason
that this is possible is that for two elements in Y, (f¥,¢%) and (f{,g3), we
have that f3 # f{ and ¢4 # gJ. This follows because {(f¥,d¥), (f{,97)} €
Py and if f = f{ or ¢§ = gJ this cannot be the case by definition of
P; (and in particular the way we have chosen n). Then we obtain that
({ A y<wr- {93 }s<wy) is an (wi,w;)-pregap. Now we use the assumption
that 8 > wy to find a f¢ for which f¥ < f¢ for all v < wy, i.e. this fe
interpolates ({ /4 }y<w:s {9} t6<w, ). So for all ¥ < w; we can find a minimal
natural number i, for which fY(j) < fe(j) < ¢¥(j) for all j > 4,. Since
this holds for all v € w;, we find an uncountable subset of w; such that
the respective i,’s are equal for each of it’s elements; we may denote that
number by ¢*. Then by the minimality of the number n we know that n < ¢*.

This means that for all j > i* we have f3(j) < g§(j) for all 7,6 € wy.
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*

Now we consider the sets of initial segments of the form f¥ | i* and

*k

gy | it
quence of naturals; thus there are at most countably many different such

There are uncountably many of them and each is a finite se-

initial segments. This means that we can find uncountably many elements
{(£77,95), (f{",g87)} in Y for which f{* | i* = fJ" | i* and ¢§" | ¢* =
gé’* [ * for any such 7, € I, where I is some uncountable index-set. But
then no pair {(f¥", %), (f{",92")} can be in Pi: For [ such that n <1 < ¢*
it holds that f¥*(1) = fY*(1) < ¢2*(l) = ¢§". For | > i* we even know
() < gi(j) for all 7,6 € wy and all elements of Y. But then no pair
{887, (fY", g¢")} satisfies the condition to be in P;.

Thus we know that condition 2. must hold. Let X = J;2;J; and
[Ji]? C P».

We show that the pregap ({fy}y<a:{9s5}s<g) is not a gap in this case:

For that we fix an v < a. Consider I, as in the definition of X and for
each 6 € I, chose some index k] € w such that (f,,g5) € Jkg- We can find
kg due to the assumption that 2. holds. Because I, is uncountable, there
exists an uncountable set I;“ C I, for which kg = kg =:k, for ¢,§ € Ij/k. We
can find I} such that it is cofinal in 8. Further, there is a cofinal AC
such that k, = k, =: k for any v, p € A.

Now for two elements v,p € A we note the following: If § € I}, then
fy(1) < g5(1) for all [ > n. This is because otherwise we would obtain a con-
tradiction to {(fy,ge), (fp,95)} ¢ P1 for some ¢ for which (fy, g¢), (5, 95) €
Jg.

Finally, for a fixed v € A we define a function

1 ifl<n
s(l) =

min{gs(l) | 0 € IJ} otherwise

Then, since I is cofinal, the function s interpolates the pregap ({ fy }y<a; {9s}5<5)

what proves the theorem. ]

The next result has a priori nothing to do with gaps, still it is very

interesting and will be immediately useful (see [14] or [5]):

Theorem 88. Assume OCA. Then the minimal cardinality of an unbounded

subset of (Yw, <) is greater than Rj.
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Proof. Consider a subset of “w, S = {f,}y<w,. Without loss of generality
we may assume that the set is ordered, i.e. f, < fs for any v < 6 and further
that each f, is increasing.

We can define a partition [S]? = Py U P, as follows: We let {f., fs} € P
if and only if v < ¢ and there exists a m € w for which f,(m) > fs(m).
As described earlier, we can map [S]? in a unique to the set of pairs S? =
{(fvys f5) | {f+: f5} € [S]? and v < &6}. We do similarly with P; and P, but
will not explicitly denote this (since it is clear from context which object we
refer to).

Consider (fy, fs) € Pi. Then by definition of P; we know that we find
some m € w such that f,(m) > fs(m). Now let f, | m =:r, and f5 [ m =:
rs denote the first m elements of the sequences f, and fs, respectively. Put
O={(f,g) € S?| fIm=r,andg | m =rs}. But then O C P, O is
open and (fy, f5) € O. Thus P; is open.

Now we can apply OCA. It is impossible to write S = (J;2, J; for [J;]* C
P,. Because if it would be, there would be an index j such that J; is
uncountable. Then for all f., f5 € J; for which v < §, we have f,(n) < fs5(n),
because otherwise we obtain a contradiction to [J;]> C P». Now for each
v < wi, let Xy ={(n,m) | m < f,(n)} Cwxw. Sothe X, are basically the
“values below the graph of f,”. Since f, < fs whenever v < J, we obtain
X, ¢ X5 C w xw. So the collection {X,} e;, would be an uncountable
strictly increasing sequence in w X w and this is impossible.

So it must be the case that there exists an uncountable S’ C S that
satisfies [S']2 C Py.

We now need a little side-result, which can be proven using topological

properties of (“Yw, <):

Claim 19. Let {gy}y<w, be unbounded and assume g, < gs and g,(n) <
gy(n + 1) for any v < 6 < wi. Then there are o < f < wy for which

ga(n) < gg(n) for all natural numbers n.

Proof. Because “w is hereditarily separable by Proposition 85, we find a
dense countable subset {g,, }nc,,. Now we pick a £ that is bigger than all
Y-

Since g¢ < gy for all v > &, there is ny such that g¢(k) < gy (k) for

k > n,. Without loss of generality we can assume that n, = ns =: n for

91



v,0 > €.

Now we use the fact that {g,}y<w, is unbounded and obtain that there
must be a minimal m > n such that the set of values {g,(m) | v > &}
is unbounded in w. Further assume that the initial segments of length m
coincide for all g, with v > &, ie. gy [m=gs [ m:=sfor { <~v,0 < wi.

Using that {g,, }new is dense, we find [ € w such that s C g,,. This

holds, since for v > & we have that g, € s x [[,c,w and s x [ ], w is open,

icw
so there must be some element of the dense set in the open set containing
G-

Because ¢ > v; we find h > m for which g,,(k) < ge(k) for k > h.

Now fix some p such that £ < p < wy and such that g,(m) > max{f,, (k) |
k < h} = z. This is possible because {g,(m) | v > £} is unbounded.

Then g, [ m = g, | m, i.e. g,(k) = g-,(k) for k < m. Further, from the
fact that g, is increasing and g,(m) > z, we obtain that g,(k) > g,(k) for
m < k < h. But for kK > h (so also k > n), we know that g,(k) > ge(k) >
g, (k). So we set @ =, and § = p and obtain the claim. O

The claim can be used to see that S’ must be bounded. Otherwise,
we would have a contradiction to the claim, since S’ is of size wi and the

statement of the claim does not hold for S’. O

As an immediate corollary we obtain that OCA forbids some Rothberger
Gaps:

Corollary 89. Assume OCA. Then there exists no (w,w1)-Rothberger Gaps.

Proof. If the corollary was false, by Theorem 17 we obtain that there would
be an (wy,0)-Rothberger Gap. But this contradicts Theorem 88. O

The following result by Scheepers [5] will lead to an interesting Corollary

on cardinal characteristics:

Theorem 90. Assume OCA. Then there ezists an (w,ws)-Rothberger Gap

in (Yw, <).

Proof. By Theorem 88 the minimal cardinality of an unbounded family in
(Yw, <) is at least Ny. We distinguish two cases: If there exists an unbounded

family of size Ng in (“w, <) or not.
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If there is one, we obtain an (ws,0)-gap. Thus we can use Theorem 17
to obtain the statement of the theorem.

If now there is no unbounded family of size Ny, we can apply Proposition
75 for a« = Ng: Condition 1. in the proposition is fulfilled since we have
no unbounded No-sized sequence. Condition 2. of Proposition 75 states
that there are not (&, a)-gaps for £ < a. By Theorem 87, this is true for
¢ = Wy. If this was not true for { = Ry, there would be an (w,ws)-gap, so
the statement of the theorem holds. So assume that there is no such gap.
Then the proposition gives an (3, «a)-gap for 8 > «. But this is impossible
by Theorem 87. ]

Corollary 91. Assume OCA. Then b = Ro.

Proof. By Theorem 90 there is an (w,ws)-Rothberger Gap in (“w, <). Then
by Theorem 17, there is an (ws,0)-gap. So Theorem 88 gives the statement
of the corollary. O

5.3.2 Gaps and PFA

The last axiom we consider is the well known Proper Forcing Axiom - PFA.
We will not explicitly consider it in connection with gaps, since we already
established many some interesting results. This is because PFA implies
OCA, what gives us all the statements we have shown in Section 5.3.1. For

the sake of completness, we state PFA:

Definition 35 (PFA). The Proper Forcing Axiom is the following state-
ment:
Let P be a proper poset and let {Dy} <, be a family of dense sets in P.

Then there exists a filter that has non-empty intersection with each D..
As stated above, the crucial result is:
Theorem 92 (Todorcevic). PFA = OCA.

The prove is rather technical and has nothing to do with gaps, so we will

not prove the statement here. However, a proof can be found in [14].

Remark. Theorem 92 immediately implies that all results we established
in Section 5.3.1 still hold in presence of PFA.
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We summarise the most important results:
Corollary 93. Assume PFA. Then each of the following statements holds:

1. For any two reqular uncountable cardinal numbers a < B such that

B > wy there is no («, 8)-gap in (Yw, <).
2. There exists no (w,ws)-Rothberger Gaps.

3. There exists an (w,ws)-Rothberger Gap in (“w, <).
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