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Abstract

The present thesis seeks to summarize the theoretical fundamentals of cooling optically levitated

nanoparticles in all degrees of freedom, comprising both translational and rotational motion. In

preparation to further studies, we also treat interactions with the environment, which give rise

to heating and ultimately to decoherence. We explain the experimental steps undertaken so far

and describe our current setup as well as envisioned modifications, which we are planning to

implement in order to create a versatile and reliable platform for the investigation of rotational

quantum phenomena.

A particle that is optically trapped inside a tightly focused laser beam behaves, to a first approxi-

mation, like a harmonic oscillator and hence features quantized energy levels. Successful cooling

will thus allow us to approach the ground state of energy as a well-defined quantum state. This

serves as a prerequisite towards the demonstration of matter-wave interference, which is one of

the central predictions of quantum physics, in mesoscopic systems and also holds promise of

finding application in ultrasensitive force and torque sensing techniques.

To that end, we are planning to apply the method of coherent scattering cooling, which exploits

the optomechanical interaction between the levitated particle and the two polarization modes

of an optical resonator. In more concrete terms, a suitable choice of detuning between the

wavelength of the laser and the resonance of the cavity causes an enhancement of the inelastic

scattering of blue-shifted photons, which carry away mechanical energy of the particle.

As first steps towards our goals, we determine the linewidth of our resonator, which constitutes

one of the central parameters governing the cooling efficiency, stabilize the laser frequency

with respect to the cavity resonance, detect particles with a diameter of 100 nanometers using

both a scattering fiber inside the vacuum chamber and balanced detectors in backscattering,

demonstrate loading of the trap in low vacuum using laser-induced acoustic desorption and

measure the power spectral density of the particle motion in preparation to parametric feedback

cooling and the transition to high vacuum.





Zusammenfassung

In der vorliegenden Arbeit fassen wir die theoretischen Grundlagen der Kühlung optisch levitierter

Nanoteilchen in allen Freiheitsgraden sowohl der Translation als auch der Rotation zusammen und

gehen dabei in Vorbereitung auf weiterführende Untersuchungen auch auf jene Umwelteinflüsse

ein, welche der Dämpfung ihrer Bewegung entgegenwirken bzw. in weiterer Folge zu Dekohärenz

führen. Darüber hinaus erklären wir die zu diesem Zweck bereits unternommenen experimentellen

Schritte und beschreiben den derzeitigen Aufbau bzw. anvisierte Modifikationen, mit denen

wir planen, eine vielseitige und zuverlässige Plattform für die Beobachtung rotationsbezogener

Quantenphänomene zu schaffen.

Da sich ein Teilchen in einer von einem stark fokussierten Laserstrahl erzeugten optischen Falle in

erster Näherung wie ein harmonischer Oszillator verhält, dessen Energieniveaus quantisiert sind,

wird die erfolgreiche Kühlung eine Annäherung an einen wohldefinierten quantenmechanischen

Zustand, den energetischen Grundzustand, ermöglichen. Dies soll als erster Schritt dienen, um in

Zukunft das Phänomen der Interferenz von Materiewellen als eine der zentralen Vorhersagen der

Quantenphysik in mesoskopischen Systemen zu demonstrieren und kann zudem Anwendung in

hochsensitiven Kraft- und Drehmomentsensoren finden.

Hierfür planen wir die Methode der kohärenten Streukühlung anzuwenden, welche sich die

optomechanische Interaktion zwischen dem levitierten Teilchen und den beiden Polarisations-

moden eines optischen Resonators zunutze macht. Konkret bewirkt eine geeignete Verstimmung

der Wellenlänge des Lasers gegenüber der Resonanzfrequenz des Resonators eine Verstärkung

der inelastischen Streuung höherenergetischer Photonen, welche die Bewegungsenergie des

mechanischen Oszillators aufnehmen und schlussendlich dissipieren.

Als erste Schritte in Hinblick auf unsere Ziele ermitteln wir die Linienbreite unseres Resonators,

welche einen für die Kühleffizienz wesentlichen Parameter darstellt, stabilisieren die Frequenz des

Lasers mithilfe der Pound-Drever-Hall-Technik in Bezug auf die Resonanz des Resonators, detek-

tieren Teilchen mit einem Durchmesser von 100 Nanometern sowohl mithilfe einer Streufaser im

Inneren der Vakuumkammer als auch in Rückstreuung durch symmetrische Detektion, demon-

strieren das Laden der Falle in Grobvakuum mittels laser-induzierter akustischer Desorption und

messen die spektrale Leistungsdichte der Teilchenbewegung in Vorbereitung auf parametrische

Kühlung und den Übergang in den Hochvakuumbereich.





Preface

It is hard not to be mesmerized by quantum physics: Not only has it sparked some of the most

famous (and perhaps also most intense) disputes in the physics community and continues to do

so – at least when it comes to contemplating the various interpretations of quantum mechanics

–, but it has also continuously stood the test of a century-long search for inconsistencies in its

theoretical framework. And yet, though it is extremely powerful, it is also subject to a multitude

of misconceptions, ranging from minor fallacies that arguably nobody is immune to, all the

way to complete misappropriation in the field of mysticism [1]. While it is unfortunate that

such a beautiful theory has been put out of context by people who lack even the most basic

understanding of it, it is hard to deny that the apparently counterintuitive features quantum

systems display – most notably their ability to appear in superposition states and to feature

nonlocality – stimulates imagination and may evoke association with supernatural behavior in

the layman’s mind.

Obviously, it is not true that the quantum world is accessible only through a high-tech physics lab.

We witness its implications when we switch on a fluorescent lamp, navigate with GPS or stick a

note onto the fridge with a magnet. Despite this fact, it is probably not a fallacious assumption

that our lifelong experience of macroscopic objects behaving according to the classical laws

of physics has made a decisive contribution to the mystification of what is a mathematically

consistent theory (which, of course, does not preclude the existence of possible generalizations).

It does hence not come as a surprise that the challenging task of bridging this divide by demon-

strating quantum phenomena with mesoscopic states, both in the sense of comprising a “large”

number of individual entities and individual objects with “high” mass, has drawn the attention of

many research groups in the past decade. Experiments range from matter-wave interferometry

with macromolecules [2, 3] to both interferometric [4] and non-interferometric [5–7] tests fo-

cusing on localization models as a possible extension to quantum theory that would explain the

transition to classical behavior at the macroscopic level.

I, too, used to be to some extent dissatisfied with the ostensible contradiction between what I

learned during my classes and what I observed during the (notably short) periods in-between.

When Markus gave me the chance to work on an experiment that may at some point contribute

towards resolving this imbalance and challenging the common notion of quantum physics

pertaining merely to “tiny stuff”, while at the same time holding the promise of providing

a basis for novel ultrasensitive sensing techniques, I simply listened to my gut feeling and agreed

to set off on what turned out to be an exceptionally rewarding journey in a field that had been

completely foreign to me...
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Chapter 1

Introduction

Levitated nano- to micrometer-sized particles have emerged as a promising testbed for the investi-

gation of quantum phenomena at mesoscopic scales [8–12]. Above all, they can be extremely well

isolated from the environment in the sense that their oscillations inside the confining potential

can be preserved for a large number of periods as quantified by the mechanical quality factor.
This fact constitutes a crucial prerequisite for limiting the adverse impact of decoherence. Experi-

mentally, quality factors of up to 10
11

have already been achieved [13]. Moreover, nanoparticles

exhibit exceptionally low zero-point motion due to their large mass, which implies that the wave

function corresponding to the lowest energy state is well-localized in space.

There are several means by which a particle can be kept afloat against gravity in the absence of

any nearby surfaces, e.g. by electrical [14], magnetic [15] or even acoustic [16] forces. Which

method is the most pertinent in a given setting strongly depends on the properties and size ranges

of the particles under investigation, the required degree of control as well as geometric constraints

and the type of surrounding medium. Optical levitation is particularly intriguing as it does not

demand the presence of any fields other than that of the laser, does not pose any restrictions

on charge states and allows for high trapping frequencies. The latter point in particular renders

particles trapped by light an ideal platform to uncover the "quantum world" in comparatively

massive structures.

As a preliminary step towards that objective, the system needs to be prepared in a well-defined

quantum state. The motional ground state is a natural choice to that end, since it arises as the

limit of a thermal state when the temperature approaches zero. Even though the interaction with

the environment prevents the particle from reaching that state exactly, mean occupation numbers

within the quantum regime [17, 18] and even below unity [19, 20] have already been achieved in

one or more dimensions and using various techniques. Still, the ro-translational ground state has

remained elusive to date.

The final aim of our project is to close this gap and to demonstrate 6D cooling of a levitated

nanoparticle. While there remain several experimental challenges that we have yet to overcome,

this thesis seeks to provide an overview of the theoretical framework, our current setup, the

experimental steps undertaken so far and the modifications that we are planning to implement.

The fact that cooling the motion of nanoparticles is still an ongoing challenge while laser

cooling techniques for atoms and molecules, cf. e.g. refs. [21–24], have been well-established for

several decades may appear odd at first glance. However, the absence of individually addressable

transitions between energy levels in particles comprised of billions of atoms precludes the appli-

cability of the more traditional methods to the systems of our interest.

In a different sense, the (from an atomic point of view) enormous size of our particles is also a

virtue as it facilitates the observation of their motion in real time. This fact may be exploited to

counteract displacements from the particle’s equilibrium position by applying a suitable feedback,

either in the form of parametric feedback [25] or cold damping.



Like the name suggests, the latter approach relies on the exertion of a force that is proportional

to the particle’s velocity, which can be achieved with the help of electrodes [26] or, more recently,

by periodically varying the trap position [27]. Parametric feedback cooling, on the other hand,

employs a modulation of the laser power in response to the particle’s displacement in such a

way that the latter experiences a stronger restoring force as it moves away from the center. An

analogous approach may be adopted electrically in combination with an electrodynamic trap

[14].

Feedback cooling is eventually limited by the photon recoil imparted to the particle at high

laser intensities and low pressures [28]. Low intensities, on the other hand, reduce the detection

efficiency, which is especially problematic for smaller particles as the Rayleigh scattering intensity

scales with the sixth power of their size.

Parametric feedback cooling will serve us as a pre-cooling method to keep the particle trapped at

intermediate pressures. We will briefly discuss the scheme and how we are going to employ it in

further detail in sec. 4.1.5.

Cavity-based cooling schemes provide an alternative way of removing energy from a nanomechan-

ical oscillator. One may, for example, resort to a Sisyphus-type cooling technique [29]. Remindful

of the mythological figure’s futile attempts to roll a rock onto a mountaintop, the basic idea

behind this method is to make the particle lose more kinetic energy as it “climbs up” the optical

potential hill of the standing light wave inside the driven cavity than it gains when it falls back

to the minimum.

To see how this works, note that the presence of the dielectric effectively increases the optical

path length as long as the particle is located close to an antinode. Taking into account the delayed

response by the resonator, a wise choice of the detuning of the driving field with respect to the

cavity resonance causes the intracavity intensity and thus the steepness of the optical potential

to assume its largest value when the particle moves away from the minimum, while the potential

flattens as the particle approaches an antinode. Despite being originally introduced as a novel

atom cooling technique [30, 31], it has been noted from the beginning that it is equally well-suited

for more complex systems. Indeed, the method has already been applied to control the rotation

of levitated nanorods [32]. The main drawback of this technique is the fact that pumping the

cavity introduces phase noise from the laser, which, as we will concretize in sec. 3.4.2, limits the

attainable minimum occupation number.

We consequently choose the coherent scattering approach [33], whereby the cavity is not driven

externally, but merely by the light that the dielectric scatters from the trapping beam. In all

brevity, an appropriate detuning of the cavity with respect to the trapping field enhances the

scattering of Anti-Stokes photons, which carry away energy that has previously been stored in the

particle’s mechanical motion. A detailed account of the theoretical aspects is given in sec. 2.

This method features several attractive advantages associated with the low cavity population

[34], most notably the suppression of phase noise and the ability to detect the particle’s motion

in a clean way without any contribution from non-interacting photons. Coherent scattering has

already been successfully applied to cool the translational degrees of freedom (close to) to the

ground state [35, 36].

The aforementioned working principle holds under the assumption that one is operating within

the sideband-resolved regime, i.e. that the cavity decay rate is smaller than the mechanical reso-

nance frequency. While this criterion is met in our experiment as we will see in sec. 4.2.2, it is

worth mentioning that it can be hard to attain. In particular, this is the case in combination with

small mode volumes as realized in microscopic resonators [37] or when the oscillation frequency

is small. While cavity-assisted cooling schemes in the sideband-unresolved regime have been

suggested, they require the presence of an auxiliary mechanical mode [38] or the introduction of

squeezed light into the cavity [39].
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Once their preparation has been demonstrated, ro-translationally cold nanoparticles would open

up the path to explore a novel type of quantum interference [10], which is targeted at the ori-

entational degrees of freedom and finds experimental appeal as it avoids the need for a grating

and allows for shorter free-fall times. Extending the setup to host multiple particles also seems

feasible, paving the way towards preparing and observing entanglement in nanomechanical

oscillators [40, 41].

The thesis is organized as follows: In sec. 2, we outline the theoretical framework of the coherent

scattering technique in both the translational and orientational degrees of freedom. In sec. 3, we

analyze the main sources of decoherence and heating and hint at possible countermeasures. In

sec. 4, we present our current setup and the experimental steps undertaken so far. In sec. 5, we

summarize a few of the existing proposals on potential applications of levitated nanoparticles,

which, in part, rely on the ability to prepare them close to their motional ground state. Finally,

we suggest in sec. 6 several modifications and extensions to our setup, which we are planning to

implement in the near future.
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Chapter 2

Theoretical Aspects

In this section, we provide a concise account of the motion of an optically levitated particle placed

inside an empty cavity and explain under which circumstances we expect cooling to take place.

We start by reviewing the notion of “motional temperature” of a single-particle system like ours.

We then write down its Hamiltonian and the relevant equations of motion. Finally, we solve

these equations in Fourier space to obtain an expression for the effective damping that causes

the particle to dissipate mechanical energy.

In sec. 2.2, we consider only the center-of-mass degrees of freedom and turn to the more general

description including rotations in sec. 2.3. We assume the reader to be familiar with the concepts

of electromagnetic field quantization [42] as well as with the basics of cavity physics and Gaussian

beams [43].

2.1 The Langevin Equation and the Definition of Mo-

tional Temperature

We will first elaborate on what we mean by “cooling” a single particle and how we aim to extract

information on its motional state. To that end, we start from the Langevin equation, which is the

equation of motion for a particle subjected to a fluctuating external force Fext(t). More specifically,

the position z of a classical one-dimensional damped harmonic oscillator with mass m, natural

frequency Ω0 and damping rate γ evolves in time as

z̈(t) + γż(t) + Ω2
0z(t) =

Fext(t)

m
. (2.1)

By Fourier transforming eq. (2.1), we obtain the relation

z̃(Ω) = χ̃(Ω)
F̃ext(Ω)

m
, (2.2)

where

χ̃(Ω) =
1

Ω2
0 − Ω2 + iγΩ

(2.3)

is called the mechanical susceptibility. Applying the convolution theorem to eq. (2.2) yields a more

intuitive interpretation of χ(t) as the system’s response function,

z(t) =
1

m

∫ ∞

−∞
dt′ χ(t− t′)Fext(t

′), (2.4)

which determines how the dynamical variable reacts to an impulsive force applied at some earlier

time t′ < t.



We now define the autocorrelation function (ACF) Rξξ of an arbitrary (complex) variable ξ(t) as

Rξξ(τ) = lim
T→∞

1

T

∫ T/2

−T/2

dt ξ(t)ξ∗(t+ τ). (2.5)

and invoke the Wiener-Khinchin theorem, which states that the power spectral density (PSD)

Sξξ(Ω) of that variable is equal to the Fourier transform of its ACF provided that the process

is a wide-sense stationary stochastic one, i.e. a process for which the product ξ(t)ξ∗(t + τ)
depends only on the time shift τ [44]. The PSD quantifies the power contained in a signal per

unit frequency, where “power” is to be understood in a broader sense as the strength of a signal

regardless of whether it actually corresponds to a physical energy. We are thus left with

Sξξ(Ω) =

∫ ∞

−∞
dτ Rξξ(τ)e

iΩτ . (2.6)

As can be seen immediately from eq. (2.5), the ACF of the z-coordinate evaluated at τ = 0 is

simply the expectation value of z2. On the other hand, we can convert this to an integral over the

PSD by virtue of eq. (2.6),

⟨z2⟩ = Rzz(0) =
1

2π

∫ ∞

−∞
dΩSzz(Ω). (2.7)

The particle being in contact with a thermal reservoir, its energy will fluctuate over time. We may,

however, still employ the equipartition theorem to find that the mean squared displacement ⟨z2⟩
is directly linked to the kinetic temperature T 1

by the relation

1

2
mΩ2

0⟨z2⟩ =
1

2
kBT. (2.8)

This implies that the temperature of our system is proportional to the area underneath the PSD,

T =
mΩ2

0

2πkB

∫ ∞

−∞
dΩSzz(Ω). (2.9)

We will now explain how the stochastic forces, which may correspond to collisions with back-

ground gas, recoil of photons or any other type of noise, are connected to Szz(Ω). We defer a

more detailed treatment of the different noise sources to sec. 3.4 and keep the discussion general

for now.

Without loss of generality, we can evaluate eq. (2.5) at t = 0 to find the autocorrelation function

as long as the statistical properties of the respective variable do not change in time. It is then a

simple exercise to demonstrate that [45]

Sξξ(Ω) =

∫ ∞

−∞
dτ ⟨ξ(t)ξ∗(t+ τ)⟩t=0 e

iΩτ =

∫ ∞

−∞
dΩ′ ⟨ξ̃(Ω′)ξ̃∗(−Ω)⟩. (2.10)

We may then use eq. (2.2) to find that the motional PSD Szz(Ω) is related to the Fourier transform

of the stochastic external force by

Szz(Ω) =

∫ ∞

−∞
dΩ′ ⟨F̃ext(Ω)F̃ext(Ω

′)⟩
m2

χ̃(Ω)χ̃∗(Ω′), (2.11)

where we have taken into account that z(t) is real.

1
At this point, we should emphasize that we can take eq. (2.8) as a definition for T , which is not related to the

particle’s internal temperature.
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If we are dealing with a white noise process, which is characterized by a flat frequency spectrum,

the PSD of the z-coordinate has a Lorentzian shape,

Szz(Ω) ∝
1

(Ω2
0 − Ω2)2 + Ω2γ2

. (2.12)

The proportionality factor, which we do not need to specify for the time being, is linked to the

damping rate γ by virtue of the fluctuation-dissipation theorem.

So far, we have assumed all observables to be classical. A quantum treatment reveals [45] that

unlike in the previous case Sξ̂ξ̂(Ω) ̸= Sξ̂ξ̂(−Ω) in general. This has a crucial consequence when

computing the probability for a transition to occur between the discrete energy levels of a quantum

harmonic oscillator under the influence of an external perturbation. Indeed, the corresponding

rate in the upwards direction is proportional to SFF (−Ω), while the reverse rate is proportional

to SFF (Ω). We refer the reader to ref. [45] for a detailed derivation and state only the result that

the temperature of a harmonic oscillator in a steady state (which need not necessarily correspond

to the thermal equilibrium) is given by

T =
ℏΩ
kB

[
ln

(
SFF (Ω)

SFF (−Ω)

)]−1

. (2.13)

2.2 Coherent Scattering Cooling of the Center-of-Mass

Motion

2.2.1 Optomechanical Hamiltonian of an Isotropic Dielectric

Describing the time evolution of any quantum system first requires us to find its Hamiltonian. In

our case, it must account for the relevant electric fields, the particle motion and the particle-field

interaction. We will now review the individual contributions and note that the total field in our

case is just the sum of the intracavity field Ecav(r) and the strong, coherent trapping field Etw(r),

E(r) = Ecav(r) + Etw(r). (2.14)

Field Hamiltonian

In accordance with the standard procedure of electromagnetic field quantization [42], we may

define operators â (â†), termed annihilation (creation) operators, which lower (raise) the photon

number associated with a particular mode by one. Given a number state |n⟩ks containing a

definite number of n photons in the mode of wave vector k and polarization s, their action may

be defined by the equations

âks|n⟩ks =
√
n|n− 1⟩ks (2.15a)

â†ks|n⟩ks =
√
n+ 1|n+ 1⟩ks. (2.15b)

As derived for example in ref. [42], the electric field operator may be written in terms of â and â†

as

Êks(r, t) = i

√
ℏωk

2ϵ0Vm

ϵks
(
âksf(r)e

−iωkt − h.c.
)
, (2.16)

where h.c. denotes the Hermitian conjugate, Vm is the quantization volume, ϵ the polarization

direction, ωk = c|k| the frequency of the light field and f(r) the spatial mode function, which
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must satisfy the Helmholtz equation (
∆+ k2

)
f(r) = 0 (2.17)

under appropriate boundary conditions. We defer a discussion of the specific shape of f(r) to

later. For now, we merely note that approximating the trapping field as coherent
2

allows us to

treat its field Hamiltonian as constant and neglect it henceforth as it does not affect the dynamics.

We are thus left with the intracavity field, the Hamiltonian of which can be shown to read [47]

Ĥfield = ℏωcav

(
â†â+

1

2

)
. (2.18)

The last term is the zero-point energy, which also adds an irrelevant offset and is thus of no further

relevance. Eq. (2.18) is valid for a single mode. When more modes are relevant (as will be the

case in 6D cooling, see sec. 2.3), the Hamiltonian is just the sum of the respective single-mode

expressions.

Particle Hamiltonian

A dielectric particle, which we assume to be linear and (for now) isotropic, acquires a dipole

moment d,

d = αE, (2.19)

when subjected to an external electric field. The proportionality constant α is the polarizability,

which is related to the refractive index n via the Clausius-Mossotti relation [48],

α = 3ϵ0V
n2 − 1

n2 + 2
, (2.20)

where V is the particle volume. The dipole moment possesses a potential energy inside the

external field, which is given by [49]

Udip(r, t) = −1

2
α|E(r, t)|2. (2.21)

By virtue of eq. (2.14), the total Hamiltonian features a term pertaining to the trapping field

∝ |Etw|2, one to account for the cavity mode ∝ |Êcav|2 and another one corresponding to the

cross term ∝ ÊcavE
∗
tw
+ Ê†

cav
Etw, where we quantized the cavity field as prescribed by eq. (2.16).

The first contribution differs from the latter two (which we will treat later) in that we can neglect

the particle’s backaction on the trapping field. It hence gives rise to a stationary potential for the

particle motion.

We idealize the mode profile of the trapping field as Gaussian
3

with the propagation direction

coinciding with the x-axis,

ftw(r) =

√
Wy0Wz0

Wy(x)Wz(x)
e
− (y−y0)

2

Wy(x)2
− (z−z0)

2

Wz(x)2 ei[k(x−x0)+ϕ(r−r0)]. (2.22)

Here, r0 ≡ (x0, y0, z0) and ϕ(r) is a position-dependent phase,

ϕ(r) =
1

2
kx

(
y2

x2 + x2yR
+

z2

x2 + x2zR

)
− 1

2
arctan

(
x

xyR

)
− 1

2
arctan

(
x

xzR

)
. (2.23)

2
A compelling argument for why this is justified is presented in ref. [46].

3
In practice, additional mode cleaning steps may prove necessary for this assumption to hold.
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We also allowed for an elliptical beam shape in anticipation of the requirements for simultaneous

cooling in all ro-translational degrees of freedom. Here, Wy(z)(x) denote the half-axes, Wy0(z0)

the corresponding waists and xyR(zR) the associated Rayleigh lengths

xyR(zR) =
πW 2

y0(z0)

λ
, (2.24)

where λ is the wavelength of the beam.

A dielectric particle with a refractive index larger than unity behaves as a high-field seeker

inside a light field and is thus attracted to the point of highest intensity, i.e. to the maximum of

|ftw(r)|2 in our case.
4

When the beam is focused tightly enough, the restoring forces along all

axes are sufficient to keep the particle trapped. We defer a detailed account of the experimental

requirements to realize such an optical tweezer to sec. 4.1.2 and for now just assume that the

oscillation amplitude is sufficiently small to allow a harmonic approximation of the trapping

potential

Utw(r) = −1

2
α|Etw(r)|2. (2.25)

In this case, the basic quantization rules for the harmonic oscillator (see e.g. ref. [47]) apply.

We denote the associated (phononic) annihilation and creation operators for degree of freedom

j ∈ {x, y, z} by b̂j and b̂†j , respectively. At a given tweezer beam power Ptw, the corresponding

trapping frequencies Ωj read

Ωx =
2λ

π

√
αPtw

πcϵ0mWy0Wz0

(
1

W 4
y0

+
1

W 4
z0

)
(2.26a)

Ωy =
2

Wy0

√
2αPtw

πcϵ0mWy0Wz0

(2.26b)

Ωz =
2

Wz0

√
2αPtw

πcϵ0mWy0Wz0

. (2.26c)

The mechanical Hamiltonian is then given by

Ĥmech = ℏ
∑

j∈{x,y,z}

Ωj b̂
†
j b̂j. (2.27)

Importantly, the components of the position and momentum vectors may be expressed in terms

of b̂j and b̂†j as [47]

ĵ = jzpf

(
b̂†j + b̂j

)
(2.28)

and

p̂j = imΩjjzpf

(
b̂†j − b̂j

)
, (2.29)

respectively, with the zero-point fluctuation

jzpf =

√
ℏ

2mΩj

. (2.30)

4
As we will clarify in sec. 4.1.2, the equilibrium position of the particle does not coincide exactly with this

maximum due to the impact of radiation pressure.
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Interaction Hamiltonian

We now turn to the discussion of the interaction with the cavity field. Its mode function fcav(r)
exhibits the same form as eq. (2.22) in the radial directions, but axially the reflection at the cavity

mirrors generates a standing light wave with a sinusoidal amplitude pattern. Taking the cavity

axis as the z-axis and placing the origin of our coordinate system into the center of the cavity we

obtain

fcav(r) =
w0

w(z)
cos(kz)e

−x2+y2

w(z)2 , (2.31)

where we neglected the phase shift, eq. (2.23), which does not contribute significantly close to the

center in view of the cavity waist being much larger than that of the tweezer. The quantization

volume that we have encountered in eq. (2.16) is the cavity mode volume Vcav,

Vcav =

∫ ∞

−∞
dx

∫ ∞

−∞
dy

∫ L/2

−L/2

dz |fcav(r)|2 =
π

4
Lw2

0 (2.32)

with L denoting the length of the cavity.

For sufficiently small displacements, we may then expand |fcav(r)|2 in all translational degrees of

freedom around the particle position (x0, y0, z0),

|fcav(x0 +∆x, y0 +∆y, z0 +∆z)|2 ≈ e
−2

x20+y20
w(z0)

2

[
cos2(kz0)

(
1− 4x0

w(z0)2
∆x

− 4y0
w(z0)2

∆y

)
− k∆z sin(2kz0)

]
,

(2.33)

where we assumed the beam radius to remain approximately constant and we retained only the

terms linear in ∆x, ∆y and ∆z. We then define

U0 =
αℏωcav

4ϵ0Vcav

(2.34)

and insert eq. (2.33) into eq. (2.21), which, upon applying the rotating wave approximation [50]

and neglecting the fast-oscillating terms proportional to ââ and â†â†, yields the optomechanical

interaction terms

Ĥ(0)
cav = −U0e

−2
x20+y20
w(z0)

2 cos2(kz0)â
†â (2.35a)

Ĥ(z)
cav = kU0zzpfe

−2
x20+y20
w(z0)

2 sin(2kz0)â
†â
(
b̂z + b̂†z

)
(2.35b)

Ĥ(x)
cav = U0xzpfe

−2
x20+y20
w(z0)

2
4x0

w(z0)2
cos2(kz0)â

†â
(
b̂x + b̂†x

)
(2.35c)

Ĥ(y)
cav = U0yzpfe

−2
x20+y20
w(z0)

2
4y0

w(z0)2
cos2(kz0)â

†â
(
b̂y + b̂†y

)
. (2.35d)

From eq. (2.35), it is evident that the strongest interaction with the x- and y-motion takes place

at the antinodes of the standing light wave, while the z-motion couples most strongly half-way

between a node and an antinode.

Let us now focus on the interference term proportional to Ê†
cav
(r)Etw(r) + Êcav(r)E

∗
tw
(r). We

have already said that it is safe to neglect fluctuations in the electric field of the trapping beam

and we may hence replace the corresponding operator Êtw by its mean value,

Etw(r, t) = ⟨Êtw(r, t)⟩ = i|α̃0|
√

ℏωtw

2ϵ0Vtw

ϵtw

(
ftw(r)e

i(ϕ−ωtwt) − f ∗
tw
(r)e−i(ϕ−ωtwt)

)
, (2.36)
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where α̃0 = |α̃0|eiϕ is the (complex) coherent amplitude of the trapping field and the tilde has been

added to avoid confusion with the polarizability. The coherent amplitude and the quantization

volume of the trapping field Vtw are of no further importance and we merely note that Etw, which

we define as

Etw = |α̃0|
√

2ℏωtw

ϵ0Vtw

, (2.37)

is related to the classical intensity Itw by the familiar relation Itw = 1
2
cϵ0E

2
tw

.

We can now again make use of the rotating wave approximation and retain only terms oscillating

at the difference frequency of the cavity and trapping modes. A suitable choice of the phase

leaves us with

Êcav(r, t)E
∗
tw
(r, t) + h.c. =

√
ℏωcav

2ϵ0Vcav

Etw Re(ϵ∗
cav

· ϵtw)
(
âfcav(r)f

∗
tw
(r)e−i(ωcav−ωtw)t + h.c.

)
.

(2.38)

Another Taylor expansion to first order around r = r0 in combination with eq. (2.21) yields the

interaction terms

Ĥ
(0)
cav-tw = −1

2
α

√
ℏωcav

2ϵ0Vcav

Etw Re(ϵ∗
cav

· ϵtw)e
− x20+y20

w(z0)
2 cos(kz0)

(
âe−i(ωcav−ωtw)t + h.c.

)
(2.39a)

Ĥ
(z)
cav-tw =

1

2
α

√
ℏωcav

2ϵ0Vcav

Etwkzzpf Re(ϵ
∗
cav

· ϵtw)e
− x20+y20

w(z0)
2 sin(kz0)

(
âe−i(ωcav−ωtw)t + h.c.

) (
b̂z + b̂†z

)
(2.39b)

Ĥ
(x)
cav-tw =

1

2
α

√
ℏωcav

2ϵ0Vcav

Etwxzpf Re(ϵ
∗
cav

· ϵtw)e
− x20+y20

w(z0)
2 cos(kz0)

·
[(

2x0
w(z0)2

+ i

(
1

2xzR
+

1

2xyR
− k

))
âe−i(ωcav−ωtw)t + h.c.

](
b̂x + b̂†x

) (2.39c)

Ĥ
(y)
cav-tw =

1

2
α

√
ℏωcav

2ϵ0Vcav

Etwyzpf Re(ϵ
∗
cav

· ϵtw)e
− x20+y20

w(z0)
2

2y0
w(z0)2

cos(kz0)

·
(
âe−i(ωcav−ωtw)t + h.c.

) (
b̂y + b̂†y

)
.

(2.39d)

We have now derived all terms of the optomechanical Hamiltonian for the translational degrees

of freedom.

2.2.2 Coherent Scattering into the Cavity Mode

We have already mentioned in sec. 1 that one particularly elegant feature of the coherent

scattering technique is the absence of external cavity driving. Still, the dielectric particle scatters

some of the light from the trapping field in the direction of the mirrors. We will now investigate

how this affects the cavity parameters and the particle-field dynamics.

In view of the fact that our particle is significantly smaller than the wavelength of the incident

light, r/λ ≲ 1/10 (and the same is true for the modified wavelength inside the medium λ/n [51]),

we may employ Rayleigh’s theory of scattering.
5

We can then assume the dielectric to behave like

an oscillating dipole, which radiates according to the well-known dipole radiation pattern [48]

dPtot

dΩ
=

c

32π2ϵ0
k4d2 sin2 θ, (2.40)

5
If the particle is too large for the Rayleigh approximation to be applicable but its refractive index differs only by

a small amount from that of the surrounding medium, the somewhat weaker Rayleigh-Gans criterion may still hold

[51].
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where θ is the angle between the dipole axis and the direction of observation, dΩ = sin θ dϕ dθ
denotes the solid angle element and the absolute value of the dipole moment d is related to Ptw

by

d = 2α

√
Ptw

πcϵ0Wy0Wz0

. (2.41)

Integrating eq. (2.40) over the entire solid angle yields the total scattered power

Ptot =
c

12πϵ0
k4d2. (2.42)

Let us first treat the case of homogeneous spherical particles and defer a discussion of the

anisotropic case to sec. 2.3. We may then take the polarizability to be a scalar quantity, which

means that the dipole axis coincides with the polarization direction of the incident light wave.

According to eq. (2.40), we maximize scattering into the cavity mode by choosing the polarization

axis to be orthogonal to the cavity axis (θ = π/2).

The scattered light is subsequently reflected many times by the cavity mirrors. This gives rise

to constructive interference and thus to a substantial enhancement of the intracavity intensity

provided that the modes are matched, i.e. that the spatial profile of the radiated field has a

sufficient overlap with the cavity mode as quantified by the overlap integral [34]

η =
1

Etw

√
πw2

0

2

∫
dAE∗

rad
(r)E00

cav
(r)√∫

dA |E00
cav
(r)|2

. (2.43)

In the above equation, Erad is the total radiated field [48],

Erad(r) =
k2

4πϵ0

e−ikr

r
α (n× Etw(r0))× n, (2.44)

where n is the direction of observation and E00
cav
(r) is the (Gaussian) TEM00-mode of the cavity,

which (just like the scattered spherical wave) does not include the retroreflected part. The overlap

is normalized to the incident rather than to the radiated power to account for the finite scattering

probability and is evaluated in the plane perpendicular to the cavity axis in the far-field (z ≫ λ).

The exact position does not matter, because in this regime the radius of curvature of the scattered

spherical wave and the TEM00-mode of the cavity exhibit the same linear scaling with distance.

It is shown in ref. [34] that under the assumption of orthogonal polarization we get

ηmax =
kα

ϵ0πw2
0

. (2.45)

Provided that the particle is isotropic, the amplitudes of the fields scattered towards the left and

the right mirror are equal and given by [34]

Emirr = iηEtw. (2.46)

Denoting by R1 and R2 the reflectivities of the mirrors, Emirr reduces by a factor of
√
R1R2 after

each round trip. In the following, we will always assume that R1 = R2 ≡ R.

Considering that the left- and right-travelling fields differ only by a phase of e2ik∆z
and under the

condition that the resonance condition is fulfilled, i.e. ωcav = ωtw, we obtain for the intracavity

field amplitude the expression

Ecav = Emirr

∞∑
n=0

Rn
(
1 + e2ik∆z

)
= Emirr

1 + e2ik∆z

1−R
≈ Emirr

F
π

(
1 + e2ik∆z

)
, (2.47)
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where

F =
π
√
R

1−R
≈ π

1−R
. (2.48)

is the cavity’s finesse.

Let us now examine the case in which the resonance frequency of the cavity and the frequency

of the trapping beam differ by the detuning ∆ = ωcav − ωtw. After each round trip, the field then

acquires a phase of e−i∆τ = e−i∆/∆νFSR , where the cavity’s free spectral range

∆νFSR =
c

2L
(2.49)

is the separation between two adjacent resonance frequencies. In that case, we have

Ecav = Emirr

∞∑
n=0

(
Re−i∆/∆νFSR

)n (
1 + e2ik∆z

)
= Emirr

1 + e2ik∆z

1−Re−i∆/∆νFSR

≈ Emirr

1 + e2ik∆z

1−R + i ∆
∆νFSR

= Emirr∆νFSR

1 + e2ik∆z

κ
2
+ i∆

,

(2.50)

where the approximation is justified as long as ∆ ≪ ∆νFSR and R ≈ 1. We have also introduced

the cavity decay rate

κ = 2π
∆νFSR

F
. (2.51)

The intracavity power consequently reads

Pcav = 4Pmirr∆ν
2
FSR

cos2(k∆z)(
κ
2

)2
+∆2

. (2.52)

The above equation is not yet entirely appropriate to describe our system as it does not account

for the scattering of the intracavity field by the nanoparticle or the modification of the detuning

that its presence stipulates. The latter appears in the equation of motion for the mode operator,

which we discuss in the subsequent chapter. The intracavity scattering, on the other hand, yields

an additional contribution κscatt to the “bare” decay rate that we defined in eq. (2.51).

While we did not consider the coupling to the free-space modes in the Hamiltonian, we may still

find the latter correction heuristically noting that a photon travelling back and forth between the

cavity mirrors encounters the scattering center at a frequency of twice the free spectral range

and that the scattering probability is simply the fraction of the incident power that is scattered

into free space. We then get [34]

κscatt = 2π · 4
3
∆νFSR|η|2k2w2

0|fcav(r)|2 (2.53)

and the effective decay rate is given by

κeff = κ+ κscatt. (2.54)

2.2.3 Translational Equations of Motion and Cooling

We are now ready to discuss the exact mechanism by which coherent scattering of tweezer light

into the empty cavity mode is capable of dampening the motion of a nanomechanical oscillator.

We will give a brief conceptual outline before working out the mathematical foundations.

While an optical cavity in principle permits a countably infinite number of resonance frequencies,

their comparably large separation ∆νFSR ≫ ∆, κ allows us to focus on a single mode and neglect
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Figure 2.1: Conditions required for coherent scattering cooling as explained in the

main text. When the detuning ∆ between the frequency of the trapping laser ωtw

and the cavity resonance is chosen appropriately, the transfer function of the latter

(shaded in blue) comprises all frequency peaks, thus enhancing the scattering of

Anti-Stokes photons and leading to cooling in all degrees of freedom. Here, only two

peaks are displayed corresponding to the motion along y (red) and along x (green)

for the sake of clarity.

all the others. The number of possible states of the light field in our frequency range of interest

is hence constant, but the density of states follows a Lorentzian curve, which is peaked at the

resonance frequency and has a width that corresponds to the decay rate.

According to Fermi’s Golden Rule, the transition probability is proportional to exactly this density

of (final) states. A transfer function that is sharply peaked at a specific frequency may thus

significantly enhance the probability of energy being transferred from the mechanical into

the optical mode. This is analogous to the Purcell effect [52], which originally refers to the

enhancement or suppression of spontaneous emission by an atom inside an optical resonator,

but is straightforwardly generalized to scattering of light by a mesoscopic particle [53].

In order to observe a cooling effect, the scattering of photons that are more energetic than those of

the incident field must be enhanced. In this way, mechanical energy is carried away and eventually

dissipated. We thus require blue detuning of the cavity, i.e. ∆ > 0, and operation within the

sideband-resolved regime, where κ < Ωj . This mechanism avoids the need of addressing individual

transitions as is the case in conventional laser cooling. The above conditions are illustrated in fig.

2.1.

Ideally, the detuning should be exactly equal to the mechanical frequency. However, since the

trapping frequencies pertaining to the various degrees of freedom differ, multidimensional cooling

requires a certain compromise to be made. This is also true regarding the position of the particle

inside the cavity mode, since – as we have seen in sec. 2.2.1 – the optomechanical couplings along

the different axes attain their maximum at distinct phases inside the standing light wave.

For the sake of conciseness, we focus on the motion along the z-axis in the following quantitative

treatment i.e. we set ∆x = ∆y = 0, and defer a more general discussion to sec. 2.3. In addition,
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we place the particle onto the cavity axis such that x0 = y0 = 0. Let us also define the constants

g0 = kzzpf

U0

ℏ
(2.55)

and

Ed =
α

2ℏ

√
ℏωcav

2ϵ0Vcav

Etw. (2.56)

We then transform the optomechanical Hamiltonian,

Ĥ = Ĥfield + Ĥmech + Ĥcav + Ĥcav-tw, (2.57)

where the individual contributions have been, respectively, defined in eqs. (2.18), (2.27), (2.35)

and (2.39), to a frame of reference rotating at the frequency of the trapping beam ωtw. This is

accomplished by the unitary transformation Û = e−iωtwâ†ât. The new Hamiltonian is given by

Ĥ ′ = Û †ĤÛ − iℏÛ † ˙̂U = ℏ
[
∆− U0

ℏ
cos2(kz0) + g0 sin(2kz0)

(
b̂z + b̂†z

)]
â†â

+ ℏΩz b̂
†
z b̂z − ℏEd Re(ϵ

∗
cav

· ϵtw)

[
cos(kz0)

− kzzpf sin(kz0)
(
b̂z + b̂†z

)] (
âe−iωcavt + â†eiωcavt

)
.

(2.58)

As one can infer from eq. (2.58), g0 quantifies the coupling between the cavity field and the

mechanical mode, while Ed is to be interpreted as the rate at which coherent scattering drives

the cavity.

The latter process displaces the quantum state of the cavity field in phase space. Equivalently, we

may leave the state invariant and instead transform the mode operator according to â→ â+ α̃
[34], which is accomplished by the unitary transformation D̂†(α̃)âD̂(α̃), where D̂(α̃) = eα̃â

†−α̃∗â
.

We may hence expand

â†â 7→
(
â† + α̃∗) (â+ α̃) = â†â+ â†α̃ + âα̃∗ + |α̃|2. (2.59)

Using eqs. (2.45), (2.46), (2.50) and (2.56), it is a simple exercise to show that the amplitude of the

coherently driven intracavity field is given by the expression

α̃ =
iEd

κ
2
+ i∆

eik∆z Re(ϵ∗
cav

· ϵtw) cos(k∆z) ≈
iEd

κ
2
+ i∆

eikz0 Re(ϵ∗
cav

· ϵtw) cos(kz0). (2.60)

The modulus square of eq. (2.60) has an intuitive interpretation as the mean number of photons

⟨n⟩p in the coherent field,

|α̃|2 = ⟨n⟩p =
E2

d(
κ
2

)2
+∆2

[Re(ϵ∗
cav

· ϵtw)]
2 cos2(kz0). (2.61)
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Upon incorporation of the coherent drive, the (final) optomechanical Hamiltonian reads

Ĥopt = ℏ
[
∆− U0

ℏ
cos2(kz0) + g0 sin(2kz0)

(
b̂z + b̂†z

)] (
â†â+ â†α̃ + âα̃∗)+ ℏΩz b̂

†
z b̂z

+ ℏg0 sin(2kz0)|α̃|2
(
b̂z + b̂†z

)
− ℏEd Re(ϵ

∗
cav

· ϵtw) cos(kz0)

[
(â+ α̃) e−iωcavt

+
(
â† + α̃∗) eiωcavt

]
+ ℏEdkzzpf Re(ϵ

∗
cav

· ϵtw) sin(kz0)

[
(â+ α̃) e−iωcavt

+
(
â† + α̃∗) eiωcavt

](
b̂z + b̂†z

)
,

(2.62)

where we have once again discarded irrelevant constant terms.

Now that we have written down Ĥopt, we can apply Heisenberg’s equation of motion, which for

an arbitrary, not explicitly time-dependent operator Â reads [47]

dÂ

dt
= − i

ℏ

[
Â, Ĥopt

]
. (2.63)

Evaluating eq. (2.63) at t = 0 and using the commutation relations[
âi, â

†
j

]
=
[
b̂i, b̂

†
j

]
= δij (2.64a)[

âi, b̂j

]
=
[
â†i , b̂j

]
= 0, (2.64b)

we find for the transformed mode operator and the position operator

˙̂a =− i

[
∆− U0

ℏ
cos2(kz0) + g0 sin(2kz0)

(
b̂z + b̂†z

)]
â

− iEdkzzpf Re(ϵ
∗
cav

· ϵtw) sin(kz0)
(
b̂z + b̂†z

)
− ig0α̃ sin(2kz0)

(
b̂z + b̂†z

)
− κeff

2
â

=−
(
i∆eff +

κeff

2

)
â− i

[
EdkRe(ϵ

∗
cav

· ϵtw) sin(kz0) +
g0
zzpf

α̃ sin(2kz0)

]
ẑ

(2.65a)

˙̂z =
p̂z
m
, (2.65b)

where we have artificially added the decay term.
6

From eq. (2.65a), we can also identify the

effective detuning

∆eff = ∆− U0

ℏ
cos2(kz0) +

g0
zzpf

sin(2kz0)ẑ ≈ ∆− U0

ℏ
cos2(kz0). (2.66)

The last approximation accounts for the fact that the mean displacement is much smaller than

the wavelength, which means that g0z/zzpf ≪ U0/ℏ, cf. eq. (2.55). In combination with eqs. (2.28)

6
A rigorous derivation based on the coupling of the system with an external heat bath is presented in ref. [54].
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and (2.29), eq. (2.65) yields the equation of motion for the z-coordinate,

¨̂z =− Γ ˙̂z − Ω2
z ẑ − ℏ

Edk

m
Re(ϵ∗

cav
· ϵtw) sin(kz0)

(
â† + α̃ + â+ α̃∗)

− ℏ
g0

mzzpf

sin(2kz0)
(
â†â+ α̃â† + α̃∗â+ |α̃|2

)
+
Fext(t)

m

≈− Γ ˙̂z − Ω2
z ẑ − ℏ

Edk

m
Re(ϵ∗

cav
· ϵtw) sin(kz0)

(
â† + â

)
− ℏ

g0
mzzpf

sin(2kz0)
(
α̃â† + α̃∗â

)
− 2ℏ

Edk

m
Re(ϵ∗

cav
· ϵtw)Re(α̃) sin(kz0)

− ℏ
g0

mzzpf

|α̃|2 sin(2kz0) +
Fext(t)

m
,

(2.67)

which features a mechanical damping Γ to account for the effect of collisions with background

gas and an associated fluctuating force Fext(t) as explained in sec. 2.1. Eq. (2.67) reveals that

there are two distinct types of coupling: one that is proportional to the square root of the photon

number inside the cavity, referred to as dispersive coupling, and one that depends only on the

drive rate Ed. Interestingly, those two couplings exhibit a vastly different spatial variation. The

latter is maximal at a node of the cavity mode, where the intracavity intensity vanishes.

While both types of coupling can give rise to cooling as we will demonstrate shortly, an un-

populated cavity allows us to benefit from the complete elimination of phase noise. Still, we

need to estimate the maximal coupling that we can attain. We restrict ourselves to the resolved-

sideband limit, where κ≪ Ωz , such that a suitably chosen detuning allows us to approximate√
(κ/2)2 +∆2 ≈ Ωz . In that case, the ratio of the maximal coupling strengths is given by

max gcav-tw

max gdisp

=
Edkzzpf

g0Ed√
(κ/2)2+∆2

≈
Ωzkzzpf

g0
=

4ϵ0ΩzVcav

αωcav

. (2.68)

We expect the coupling from the interference field to dominate over the dispersive coupling for

our current cavity parameters. As we aim to reduce the cavity’s mode volume in order to increase

Ed, however, this ratio may eventually be reversed. Finding the ideal placement of the particle is

thus a delicate matter, which additionally requires a profound assessment of the degree to which

phase noise poses a problem at the relevant frequencies. We treat this question in further detail

in sec. 3.4.2. We can also identify two kinds of constant forces ∝ ℏEdkRe(α̃)Re(ϵ
∗
cav

· ϵtw) and

∝ ℏ(g0/zzpf)|α̃|2, which vanish when the particle is placed in a node.

We can now finally evaluate the Fourier transform of eqs. (2.65a) and (2.67). This will allow us to

find the mechanical susceptibility in analogy to eq. (2.3) and hence the PSD of our mechanical

oscillator, which is related to its temperature by eq. (2.9). We obtain

ˆ̃a(Ω) =− iχ̃a(Ω)

[
EdkRe(ϵ

∗
cav

· ϵtw) sin(kz0) +
g0
zzpf

α̃ sin(2kz0)

]
ˆ̃z(Ω) (2.69a)
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ˆ̃z(Ω)

χ̃z(Ω)
= − ℏ

Edk

m
Re(ϵ∗

cav
· ϵtw) sin(kz0)

(
ˆ̃a†(Ω) + ˆ̃a(Ω)

)
− ℏ

g0
mzzpf

sin(2kz0)
(
α̃ˆ̃a†(Ω) + α̃∗ˆ̃a(Ω)

)
+
F̃tot(Ω)

m

= − ℏ
m

[
(iχ̃∗

a(−Ω)− iχ̃a(Ω))

(
E2

d
k2 sin2(kz0)Re(ϵ

∗
cav

· ϵtw)
2

+

(
g0
zzpf

)2

|α̃|2 sin2(2kz0)

+
2Edkg0
zzpf

sin(kz0) sin(2kz0) Re(ϵ
∗
cav

· ϵtw)Re(α̃)

)]
ˆ̃z(Ω) +

F̃tot(Ω)

m

= − ℏ
m

(iχ̃∗
a(−Ω)− iχ̃a(Ω))

·
∣∣∣∣Edk sin(kz0) Re(ϵ

∗
cav

· ϵtw) +
g0
zzpf

α̃ sin(2kz0)

∣∣∣∣2 ˆ̃z(Ω) + F̃tot(Ω)

m
,

(2.69b)

where we absorbed the constant forces into the total force F̃tot and defined

χ̃a(Ω) =
1

κeff

2
+ i(∆eff − Ω)

(2.70)

χ̃z(Ω) =
1

Ω2
z − Ω2 − iΩΓ

. (2.71)

We also made use of the fact that χ̃a†(Ω) = χ̃∗
a(−Ω) as one can easily check by writing down the

equation of motion for â† in analogy to eq. (2.65a). Inserting those expressions into eq. (2.69b),

we find that

z̃(Ω) = χ̃′(Ω)
F̃tot(Ω)

m
, (2.72)

where

χ̃′−1(Ω) = Ω2
z − Ω2 − iΩΓ−

ℏ
m

2∆eff

∣∣∣Edk sin(kz0)Re(ϵ∗cav · ϵtw) +
g0
zzpf

α̃ sin(2kz0)
∣∣∣2(κeff

2

)2
+ (∆eff +Ω)(∆eff − Ω) + i

κeff

2
[(∆eff − Ω)− (∆eff +Ω)]

= Ω2
z − Ω2 − iΩΓ−

ℏ
m

2∆eff

∣∣∣Edk sin(kz0)Re(ϵ∗cav · ϵtw) +
g0
zzpf

α̃ sin(2kz0)
∣∣∣2 [(κeff

2

)2
+∆2

eff
− Ω2 + iκeffΩ

]
[(κeff

2

)2
+ (∆eff +Ω)2

] [(κeff

2

)2
+ (∆eff − Ω)2

]
= Ω2

z − Ω2 − iΩΓ−
4Ωz∆eff

∣∣Edkzzpf sin(kz0)Re(ϵ∗cav · ϵtw) + g0α̃ sin(2kz0)
∣∣2 [(κeff

2

)2
+∆2

eff
− Ω2 + iκeffΩ

]
[(κeff

2

)2
+ (∆eff +Ω)2

] [(κeff

2

)2
+ (∆eff − Ω)2

] .

(2.73)

From eq. (2.73), we can identify an effective mechanical susceptibility with a modified damping

Γeff,

Γeff = Γ +
4Ωz∆effκeff

∣∣Edkzzpf sin(kz0) Re(ϵ
∗
cav

· ϵtw) + g0α̃ sin(2kz0)
∣∣2[(

κeff

2

)2
+ (∆eff + Ω)2

] [(
κeff

2

)2
+ (∆eff − Ω)2

] . (2.74)

We hence obtain for the final effective temperature

Teff = T
Γ

Γeff

, (2.75)

which, by virtue of eq. (2.8), translates to an average phononic occupation number

⟨n⟩ = ⟨z2⟩
z2

zpf

=
kBT

mΩ2
zz

2
zpf

Γ

Γeff

. (2.76)
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Additionally, we should point out that eq. (2.73) also contains an effective mechanical frequency

Ωz,eff =

√√√√√Ω2
z −

4Ωz∆eff

∣∣Edkzzpf sin(kz0)Re(ϵ∗cav
· ϵtw) + g0α̃ sin(2kz0)

∣∣2 [(κeff

2

)2
+∆2

eff
− Ω2

]
[(

κeff

2

)2
+ (∆eff +Ω)2

] [(
κeff

2

)2
+ (∆eff − Ω)2

] . (2.77)

The damping of the motion along the x- and y-axis follows along the same lines. For the sake of

completeness, we only state the respective equations of motion:

¨̂x =− Γ ˙̂x− Ω2
xx̂−

ℏEd

m
Re(ϵ∗

cav
· ϵtw) cos(kz0)

[
i

(
1

2xzR
+

1

2xyR
− k

)
(â+ α̃) + h.c.

]
+
F

(x)
ext

m

(2.78a)

¨̂y =− Γ ˙̂y − Ω2
yŷ +

F
(y)
ext

m
. (2.78b)

Eq. (2.78) reveals that the x-motion couples to the phase of the trapping beam. The y-motion

does not couple directly to the optical mode. However, cooling is still possible provided that

Ωy ̸= Ωz [34]. According to eqs. (2.26b) and (2.26c), this requires an elliptical beam shape of the

tweezer, Wy0 ̸= Wz0.

2.3 Coherent Scattering Cooling of the

Spatio-orientational Degrees of Freedom

Thus far, we have only considered cooling of the translational motion. We now extend the

discussion to elucidate how coherent scattering allows to address all spatio-orientational degrees

of freedom of an anisotropic particle simultaneously. More precisely, our particles are assumed

to be elliptically shaped and to feature a uniform material composition. Just like in sec. 2.2, we

will see that an appropriately chosen detuning of the cavity mode with respect to the laser field

in combination with a suitable positioning along the cavity axis causes the particle to dissipate

mechanical energy.

We will first review the interaction of an anisotropic particle with an external electric field, which

will enable us to determine the Hamiltonian of the total system. We will then outline the steps to

solve the resulting equations of motion and identify the effective damping rate that is responsible

for the cooling effect.

2.3.1 Orientational Degrees of Freedom and Rotational Dynamics

Since we now need to account for the spatial extent of our particle, we must first define a body-
fixed frame of reference that is co-moving with the particle and allows us to unambiguously

specify its orientation. We choose its axes to coincide with the principal axes of the ellipsoid

and refer to this particular option as the principal axis frame. This choice of coordinate system is

shown in fig. 2.2.

The body’s orientation is then fixed by three angles Ω = (α, β, γ), termed Euler angles, which

describe the rotation that transfers the space-fixed into the body-fixed frame of reference. The

choice of these angles is not unique and we will in the following adopt the x-y′-x′′ convention as

displayed in fig. 2.3. In this case, the angles correspond to a rotation of the space-fixed frame by

α around the x-axis, followed by a rotation by β around the y′-axis of the new coordinate system

(x′, y′, z′) that results from the first rotation and eventually a rotation by γ around the x′′ axis of

the final coordinate system (x′′, y′′, z′′).
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Figure 2.2: Coherent scattering of an optically levitated ellipsoidal particle inside

a cavity. The principal axis frame is chosen as the body-fixed frame of reference in

such a way that the polarizabilities along the body-fixed axes obey α1 ≥ α2 ≥ α3.

When subjected to an external electric field, the response of an anisotropic particle depends on its

orientation. It is then no longer adequate to treat the polarizability as a scalar quantity. Instead,

it must be described by a tensor, which is diagonal in the principal axis frame,

α = diag(α1, α2, α3). (2.79)

Without loss of generality, we can choose the axes in such a way that α1 ≥ α2 ≥ α3.

Assuming an elliptical particle with half-axes a1, a2 and a3, the elements of the polarizability

tensor differ by depolarization factors Lj [51], which read

V ϵ0
αj

=
1

n2 − 1
+ Lj, (2.80)

where

L1 =
a1a2a3

2

∫ ∞

0

ds

(s+ a21)
3/2
√

(s+ a22)(s+ a23)
(2.81)

and the others follow by cyclic permutation of the indices.

We may transform α from the principal axis to the space-fixed frame according to

α(Ω) = R(Ω)αRT (Ω), (2.82)

where the rotation matrix R(Ω) is given by the product

R(Ω) = Rx(α)Ry(β)Rx(γ)

=

(
cos(β) sin(β) sin(γ) sin(β) cos(γ)

sin(α) sin(β) cos(α) cos(γ)−sin(α) cos(β) sin(γ) − sin(α) cos(β) cos(γ)−cos(α) sin(γ)
− cos(α) sin(β) cos(α) cos(β) sin(γ)+sin(α) cos(γ) cos(α) cos(β) cos(γ)−sin(α) sin(γ)

)
.

(2.83)

We can convince ourselves of the correct order of the matrices by keeping in mind that they

correspond to rotations of the space-fixed frame. If we want to compute the dipole moment in

the space-fixed frame according to d = α(Ω)E, we must hence first perform an inverse rotation

of the electric field vector to obtain its components in the principal axis frame, then apply the

diagonal polarizability tensor and finally rotate back to the original frame.
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Figure 2.3: The Euler angles in x-y′-x′′ convention. A rotation around the x-axis by

an angle α is followed by a rotation of β around the y′-axis of the new coordinate

system that results from the first transformation and finally by a rotation of γ around

the x′′-axis.

In analogy to eq. (2.21) for the isotropic case, the optical potential now reads [55]

Udip(r, t) = −1

2
E∗(r, t) ·α(Ω)E(r, t). (2.84)

When exposed to a light field, the interaction of the induced dipole moment with the electric

field does hence not only give rise to a conservative optical force, the time-average of which is

given by [55]

⟨Fdip⟩ =
∑

i∈{x,y,z}

⟨di(t) · ∇Ei(t)⟩, (2.85)

where di and Ei denote the real parts of the components of the dipole moment and the electric

field, respectively, but also a conservative torque

⟨Ndip⟩ = ⟨d× E⟩. (2.86)

Like in sec. 2.2, E(r) is just the sum of the intracavity field and trapping field. The torque also

features a self-induced contribution from the scattered field, which only becomes relevant when

the external torque is (close to) zero [56]. In addition, the laser exerts non-conservative radiation

pressure and torque, which we can neglect for the moment, but will become important when we

discuss particle trapping in sec. 4.1.2.

Eq. (2.86) states that the torque induced by a linearly polarized light field tends to align the axis

of the largest polarizability with the polarization axis. As an example, a dielectric experiences zero

torque at Ωmin = (0, 0, π
4
) when the laser beam is polarized in the direction ϵlin = 1√

2
(0, 1, 1)T .

In the case of circular polarization, ϵcirc =
1√
2
(0, 1, i)T , the particle always experiences a torque

directed along the tweezer axis, which will cause it to spin in the plane of polarization until it

reaches a steady-state angular frequency due to the damping forces that act against the continued

acceleration.

As we will see in sec. 2.3.2, addressing the rotational degrees of freedom requires elliptical

polarization of the trapping beam [55], which can be interpreted as a superposition of horizontal

and vertical polarization with a constant phase difference. Assuming the latter to be equal to π/2,

the polarization vector may be written as ϵell = (0, cosϕ, i sinϕ)T , where ϕ ∈ [0, π/4) is called

the ellipticity parameter.
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2.3.2 Optomechanical Hamiltonian of an Anisotropic Dielectric

Like in sec. 2.2.1, the optomechanical Hamiltonian that we are looking for contains terms

pertaining to the bare fields, the particle motion and the particle-field interaction. The only

differences to the previous treatment are the tensor form of the polarizability, the presence of the

angular degrees of freedom and the fact that we now need to take both orthogonal polarization

modes of the cavity field into account, which, for simplicity, we assume to be degenerate in

frequency.
7

Field Hamiltonian

Let us first write down the field term. Making again the approximation that the free spectral range

of the cavity is large enough for only one resonance frequency to be relevant to the dynamics, we

obtain an expression for the cavity field that is completely analogous to eq. (2.16),

Êcav(r, t) = i

√
ℏωcav

2ϵ0Vcav

∑
j∈{1,2}

ϵj

(
âjfcav(r)e

−iωcavt − â†jf
∗
cav
(r)eiωcavt

)
, (2.87)

where the indices refer to the two polarization directions. As we did before, we then switch to

a frame of reference rotating at the frequency of the drive laser. The field Hamiltonian thus

becomes

Ĥfield = ℏ∆
(
â†1â1 + â†2â2

)
. (2.88)

Particle Hamiltonian

It is well-known from classical mechanics that we may use generalized coordinates and their

conjugate momenta to treat all degrees of freedom on the same footing. Specifically, we obtain

the conjugate momenta pq from system’s Lagrangian L according to

pq =
∂L
∂q̇
, (2.89)

where q ∈ {x, y, z, α, β, γ}. The Hamiltonian then takes the form

H =
∑
q

pq q̇ − L. (2.90)

Under free evolution, the potential vanishes and the Lagrangian is simply the sum of the linear

kinetic and the rotational energy. The former yields the familiar expression p2/(2m), while the

rotational energy depends on orientation and is given by

Erot(Ω) =
1

2
L · I−1(Ω)L, (2.91)

with L denoting the angular momentum and

I(Ω) = R(Ω)IRT (Ω) (2.92)

the moment of inertia tensor in the space-fixed frame of reference. Just like the polarizability

tensor, I = diag(I1, I2, I3) is diagonal in the principal axis frame and [55]

Ik =
1

5
m(a2l + a2m), k ̸= l ̸= m. (2.93)

7
In practice, care must be taken due to possible birefringence of the mirrors [34].
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By virtue of eq. (2.90), we need to express the rotational energy, eq. (2.91), in terms of the time

derivatives of the Euler angles. These are related to the angular velocities ω1, ω2 and ω3 in the

principal axis frame by the transformation [57]ω1

ω2

ω3

 =

 cos β 0 1
sin β cos γ − sin γ 0
sin β sin γ cos γ 0

α̇β̇
γ̇

 ≡ A

α̇β̇
γ̇

 (2.94)

as can be seen by adding up the projections of the angular time derivatives onto the respective

axes of the body-centered frame [57] and comparing with fig. 2.3. Converting to the space-fixed

frame, we consequently get

Erot(Ω) =
1

2

(
Lx Ly Lz

)
I−1(Ω)

Lx

Ly

Lz


=

1

2

(
α̇ β̇ γ̇

)
AT (Ω)RT (Ω)I(Ω)R(Ω)A(Ω)

α̇β̇
γ̇


=

1

2

(
α̇ β̇ γ̇

)
AT (Ω)IA(Ω)

α̇β̇
γ̇


=

1

2

(
α̇ β̇ γ̇

)( sin2 β(I2 cos2 γ+I3 sin
2 γ)+I1 cos2 β (I3−I2) sinβ sin γ cos γ I1 cosβ

(I3−I2) sinβ sin γ cos γ I2 sin
2 γ+I3 cos2 γ 0

I1 cosβ 0 I1

)α̇β̇
γ̇


≡ 1

2

(
α̇ β̇ γ̇

)
B(Ω)

α̇β̇
γ̇

 .

(2.95)

Using eq. (2.89), it is then a simple exercise to compute the respective conjugate momenta as

pα = α̇
[
sin2β

(
I2 cos

2γ + I3 sin
2γ
)
+ I1 cos

2β
]
+ β̇(I3 − I2) sin β sin γ cos γ

+ γ̇I1 cos β
(2.96a)

pβ = α̇(I3 − I2) sin β sin γ cos γ + β̇(I2 sin
2 γ + I3 cos

2 γ) (2.96b)

pγ = I1(α̇ cos β + γ̇) (2.96c)

or, in a more compact form, pαpβ
pγ

 = B(Ω)

α̇β̇
γ̇

 . (2.97)

We may now promote the conjugate momenta to operators, multiply eq. (2.97) from the left

with B−1(Ω) and insert the result into eq. (2.95) to obtain the expression for the free-rotation

Hamiltonian,

Ĥrot =
1

2

(
p̂α p̂β p̂γ

)
B−1(Ω)

p̂αp̂β
p̂γ


=

1

2I2 sin
2 β

[(p̂α − p̂γ cos β) cos γ − p̂β sin β sin γ]
2

+
1

2I3 sin
2 β

[(p̂α − p̂γ cos β) sin γ + p̂β sin β cos γ]
2 +

p̂2γ
2I1

.

(2.98)

Eq. (2.98) reveals that the rotational degrees of freedom are highly coupled. However, in the

presence of a strong trapping field, the rotational motion decouples close to the potential minimum.

23



In this regime, the dynamics are librational rather than rotational, i.e. the angular coordinates

perform small oscillations around their equilibrium position rather than full revolutions about

any axis. In that case, the kinetic Hamiltonian becomes

Ĥkin =
∑
q

p̂2q
2mq

, (2.99)

where mx = my = mz ≡ m and mα = I2, mβ = I3 and mγ = I1.
An harmonic approximation of the trapping potential Utw = −1

2
E∗

tw
· α(Ω)Etw leaves us with the

problem of quantizing a 6D harmonic oscillator, which results in

Ĥmech = ℏ
∑
q

Ωq b̂
†
q b̂q (2.100)

in complete analogy to eq. (2.27). As before, the trapping frequencies are obtained from the

second-order coefficients in the expansion of the optical potential around the minimum (r,Ω) =
(rmin,Ωmin), i.e.

Ωq =

√
1

mq

∂2Utw

∂2q

∣∣∣∣
rmin,Ωmin

. (2.101)

Interaction Hamiltonian

We are now ready to discuss the optomechanical interaction terms. For the contribution of the

cavity field, we get

Ĥcav =
ℏωcav

4ϵ0Vcav

|fcav(r)|2
∑

j,j′∈{1,2}

ϵ∗j ·α(Ω)ϵj′
(
â†j âj′ + âj â

†
j′

)
, (2.102)

where we have again applied the rotating wave approximation and the mode operators satisfy the

canonical commutation relations [âj, â
†
j′ ] = δjj′ , [âj, âj′ ] = 0. We may hence rewrite eq. (2.102)

in a more familiar form,

Ĥcav =
ℏωcav

4ϵ0Vcav

|fcav(r)|2
∑

j,j′=1,2

ϵ∗j ·α(Ω)ϵj′
(
â†j âj′ + â†j′ âj + δjj′

)
=

ℏωcav

4ϵ0Vcav

|fcav(r)|2
[
2ϵ∗1 ·α(Ω)ϵ1

(
â†1â1 +

1

2
1

)
+ 2ϵ∗2 ·α(Ω)ϵ2

(
â†2â2 +

1

2
1

)
+ ϵ∗1 ·α(Ω)ϵ2

(
â†1â2 + â†2â1

)
+ ϵ∗2 ·α(Ω)ϵ1

(
â†1â2 + â†2â1

)]
≈ ℏωcav

2ϵ0Vcav

|fcav(r)|2
[
ϵ∗1 ·α(Ω)ϵ1 â

†
1â1 + ϵ∗2 ·α(Ω)ϵ2 â

†
2â2

+ 2Re(ϵ∗1 ·α(Ω)ϵ2)
(
â†1â2 + â†2â1

)]
,

(2.103)

where the cross terms â†1â2 and â1â
†
2 refer, respectively, to the conversion of a photon in polar-

ization mode 2 to a photon in polarization mode 1 and vice versa. We also omit the constant

terms in the last approximation. From eq. (2.103) it is evident that the particle can couple to both

polarization modes depending on its orientation.

What is left to write down is the interference term Ĥcav-tw proportional to Êcav ·α(Ω)E∗
tw
+ h.c..

In analogy to eq. (2.38), we obtain the expression

Ĥcav-tw = −1

2

√
ℏωcav

2ϵ0Vcav

Etw

∑
j∈{1,2}

Re(ϵ∗j ·α(Ω)ϵtw)
(
âjfcav(r)f

∗
tw
(r)e−iωcavt + h.c.

)
, (2.104)
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which is already in the rotating frame of reference. As we have done in sec. 2.2.1, we may then

restrict ourselves to the deep trapping regime, in which the displacements of all ro-translational

coordinates are sufficiently small to allow for the linearization the interaction Hamiltonian. This

means that we also need to expand the polarizability tensor α(Ω) to first order, the result of

which is presented in ref. [58], eq. (27c). By linearizing the Hamiltonian, we also neglect the

couplings between the different mechanical modes, which appear only in the second order of the

expansion.

2.3.3 Ro-translational Equations of Motion and Cooling

We are now interested in the dynamics of the mode operators. We have already outlined the way

to do this in sec. 2.2.3, but we now need to account for the coupling between the two polarization

modes as a result of the off-diagonal terms in the polarizability tensor. The equation of motion

for the âj’s is thus most conveniently written as a matrix equation [58],

˙̂a = M(r,Ω)â+ ζ(r,Ω), (2.105)

where â = (â1, â2)
T

, ζ is the drive vector and the matrix M contains the effective detuning and

the decay rate,

Mjj′ = −i[∆eff]jj′ −
1

2
[κeff]jj′ , (2.106)

where

[∆eff]jj′ = ∆δjj′ +
ωcav

2ϵ0Vcav

|fcav(r)|2Re
(
ϵ∗j ·α(Ω)ϵj′

)
(2.107a)

[κeff]jj′ = κδjj′ + 2π
4∆νFSRk

4

3ϵ20π
2w2

0

|fcav(r)|2Re
(
e∗j ·α2(Ω)ej′

)
. (2.107b)

The effective decay rate κeff coincides with eq. (2.53) once the scalar polarizability, which is

contained in the mode overlap η by virtue of eq. (2.45), is replaced by the corresponding tensorial

expression. The components of the drive vector read

ζj = i

√
ωcav

2ℏϵ0Vcav

Etwf
∗
cav
(r)ftw(r)Re

(
ϵ∗j ·α(Ω)ϵtw

)
+ i

ωcav

2ϵ0Vcav

|fcav(r)|2α̃j

∑
j′∈{1,2}

Re
(
ϵ∗j ·α(Ω)ϵj′

)
,

(2.108)

where the first term stems from the overlap of the cavity and the trapping field and the second

from the coherent offset of the cavity field. The equations of motion thus read

˙̂aj = −
∑

j′∈{1,2}

(
i [∆eff]jj′ +

1

2
[κeff]jj′

)
âj′ + ζj (2.109)

˙̂q =
p̂q
mq

, (2.110)

where p̂q has been defined in eq. (2.89).

In order to solve these equations in Fourier space, we would like to eliminate the coupling between

the optical modes. As is immediately obvious from eq. (2.107), the off-diagonal elements of M
vanish when |fcav(r)|2 = 0, i.e. when the particle sits in a node of the cavity field.

8
If the particle

is located at a different position, we may still define the polarization modes in such a way that

8
Note that in this case, the cavity is unpopulated and the coupling to the rotational degrees of freedom as well

as to the x-motion vanishes.
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the optical modes are decoupled. Indeed, since ∆eff and κeff are both symmetric, their sum is

also symmetric and M is hence diagonalizable.

In the case of a stably trapped particle, for example, we may treat both modes independently if we

choose ϵ1 to point in the tweezer direction and ϵ2 in the y-direction. The linearized Hamiltonian

then takes a form that is analogous to eq. (2.62) upon applying the transformation âj → âj + α̃j ,

Ĥopt ≈ ℏ
∑
j

∆
(0)
eff,j

(
â†j âj + â†jα̃j + âjα̃

∗
j

)
+ ℏ

∑
q

Ωq b̂
†
q b̂q

+ ℏ
∑
j

G
(0)
j

[
(âj + α̃j) e

−iωcavt +
(
â†j + α̃∗

j

)
eiωcavt

]
+ ℏ

∑
jq

G
(1)
jq

(
b̂†q + b̂q

) [
(âj + α̃j) e

−iωcavt +
(
â†j + α̃∗

j

)
eiωcavt

]
+ ℏ

∑
jq

g
(1)
jq

(
b̂†q + b̂q

)(
â†j âj + â†jα̃j + âjα̃

∗
j + |α̃j|2

)
,

(2.111)

where ∆
(0)
eff,j is the zeroth-order term in the expansion of eq. (2.107a), G

(0)
j pertains to the con-

stant part of eq. (2.104) and the linear coupling rates G
(1)
jq and g

(1)
jq quantify the first-order

optomechanical coupling induced by eqs. (2.104) and (2.103), respectively. We consequently

obtain

˙̂aj =−

(
i∆

(0)
eff,j +

κ
(0)
eff,j

2

)
âj − i

∑
q

(
G

(1)
jq + g

(1)
jq α̃j

)(
b̂†q + b̂q

)
(2.112)

¨̂q =− Γq
˙̂q − Ω2

q q̂ −
ℏ

mqqzpf

G
(1)
jq

[
(âj + α̃j) + h.c.

]
− ℏ
mqqzpf

g
(1)
jq

(
â†jα̃j + âjα̃

∗
j + |α̃j|2

)
+
F

(q)
ext (t)

mq

.

(2.113)

We omitted the sums over j because every degree of freedom couples to just one optical mode.

The external force is to be understood in the generalized sense, i.e. it also includes torques acting

on the angular coordinates.

We can now write down the equations of motion in Fourier space in complete analogy to the

procedure outlined in sec. 2.2.3. We then get

ˆ̃aj(Ω) = −iχ̃aj(Ω)
∑
q

(
G

(1)
jq + g

(1)
jq α̃j

)(
ˆ̃b†q(Ω) +

ˆ̃bq(Ω)
)

(2.114)

ˆ̃q(Ω)

χ̃q(Ω)
= − ℏ

mqqzpf

[
G

(1)
jq

(
ˆ̃a†j(Ω) + ˆ̃aj(Ω)

)
+ g

(1)
jq

(
ˆ̃a†j(Ω)α̃j + ˆ̃aj(Ω)α̃

∗
j

)]
+
F̃

(q)
tot (Ω)

mq

,

(2.115)

where

χ̃aj(Ω) =
1

κ
(0)
eff,j

2
+ i
(
∆

(0)
eff,j − Ω

) (2.116)

χ̃q(Ω) =
1

Ω2
q − Ω2 − iΓqΩ

. (2.117)

We henceforth omit the superscript (0) of the effective detuning and decay rate. According to eq.

(2.114), the equations for the generalized coordinates are still indirectly coupled via the optical
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modes. Given a sufficiently small linewidth of the mechanical resonances we may, however,

evaluate χ̃aj(Ω) at the mechanical resonance frequency and neglect the contributions from other

degrees of freedom [58]. Putting all together, we consequently get

ˆ̃q(Ωq) = χ̃′
q(Ωq)

F̃
(q)
tot (Ωq)

mq

, (2.118)

where

χ̃−1
q (Ωq) = −iΩqΓq −

ℏ
mqq2zpf

2∆eff,j

∣∣∣G(1)
jq + g

(1)
jq α̃j

∣∣∣2(κeff,j

2

)2
+ (∆eff,j + Ωq) (∆eff,j − Ωq)− iκeff,jΩq

= −iΩqΓq −
4Ωq∆eff,j

∣∣∣G(1)
jq + g

(1)
jq α̃j

∣∣∣2 [(κeff,j

2

)2
+∆2

eff,j − Ω2
q + iκeff,jΩq

]
[(κeff,j

2

)2
+ (∆eff,j + Ωq)

2
] [(κeff,j

2

)2
+ (∆eff,j − Ωq)

2
] .

(2.119)

The effective damping for the q-coordinate thus reads

Γeff,q =Γq +
4Ωqκeff,j∆eff,j

∣∣∣G(1)
jq + g

(1)
jq α̃j

∣∣∣2[(κeff,j

2

)2
+ (∆eff,j + Ωq)

2
] [(κeff,j

2

)2
+ (∆eff,j − Ωq)

2
] , (2.120)

from which the effective temperature follows according to eq. (2.75).

(a) (b)

Figure 2.4: Minimum mechanical occupation number as a function of (a) the ellip-

ticity ψ at ϕ = 0.78π, θ = 0.83π, where ϕ denotes the phase of the cavity mode at the

position of the particle and θ is the angle between the cavity axis and the minor axis

of the elliptical tweezer cross section, (b) the phase ϕ at ψ = 0.15π, θ = 0.82π. We

assume a SiO2 nanoparticle with principal diameters of (148, 150, 152)nm, a cavity

with a length of L=18mm, a finesse of 295,000 and a waist of w0 = 97µm, tweezer

waists of Wx0 = 650nm, Wy0 = 800nm and a tweezer power of 250mW at a detuning

of ∆ = 2π·116kHz, a pressure of p =10
-9

mbar and room temperature. The simulation

is based on the expressions for the coupling constants provided in ref. [58].

From the coupling rates, which we have not specified, but are stated in ref. [58]
9
, we can

immediately see that choosing the axis of largest trapping beam intensity to align with the

9
Note that the coupling rates in ref. [58] are with respect to a coordinate system defined by the propagation

direction of the tweezer and the intensity main axes of its elliptical cross section. We continue use the same coordinate

system as in sec. 2.2, which is related to the former by a rotation around the x-axis by the angle θ defined in ref. [58].
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cavity axis would lead to zero coupling of the y-motion. A vanishing ellipticity would still allow

coupling in all degrees of freedom. However, γ would then only be weakly coupled [58]. In order

to be able to achieve simultaneous ground state cooling in all degrees of freedom, the separation

between the respective trapping frequencies must be sufficiently small, which requires a particle

asphericity at the percent level [55].

In fig. 2.4, we display the attainable occupation numbers (not including phase noise) for our

current cavity parameters. As long as phase noise can be ignored, an improvement in the cavity

waist from 97µm to 50µm would theoretically allow us to reach occupation numbers below unity

in all degrees of freedom.
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Chapter 3

Heating Mechanisms and Decoherence

Noise gives rise to adverse effects in the form of heating and, more generally, to decoherence. In

this section, we will provide an overview over the various mechanisms, discuss their effect on our

experiment and hint at possible ways to mitigate them.

3.1 Decoherence and Open System Dynamics

Suppose that we prepare a system in a pure quantum superposition state comprised of d linearly

independent normalized vectors {|ψi⟩}di=1 in a suitable basis. Such a superposition state is

characterized by a state vector |ψ⟩ with

|ψ⟩ =
d∑

i=1

ai|ψi⟩,
∑
i

|ai|2 = 1. (3.1)

As any reputable introductory book on quantum mechanics (e.g. ref. [47]) will highlight, there is

a clear distinction between such a state and a classical mixture of {|ψi⟩}di=1, which is described

in terms of a density matrix of the form

ρ̂ =
∑
i

|ai|2|ψi⟩⟨ψi|,
∑
i

|ai|2 = 1. (3.2)

The density matrix ρ̂′ = |ψ⟩⟨ψ| differs from eq. (3.2) by the presence of off-diagonal elements,

termed coherences. These have a crucial consequence when it comes to the time evolution of the

wave packet described by eq. (3.1). Restricting ourselves to a superposition of two distinct states

(d = 2), the individual phases ϕ1 and ϕ2 that the two constituents acquire during their evolution

bring about a sinusoidal variation in ∆ϕ = ϕ2 − ϕ1 of the probabilities to obtain |ψ1⟩ or |ψ2⟩ in a

measurement. If the state were characterized by a classical mixture, those probabilities would

remain constant and equal to |a1|2 and |a2|2 respectively.

The above scenario describes an idealized situation in which any interaction with the environment

can be neglected. In reality, however, a quantum system can never be perfectly isolated, causing

the environment to gain information on the particle’s state. If it is then possible to reliably

distinguish between the corresponding environmental states, the initial superposition state

collapses into a classical mixture, i.e. it decoheres.
More formally, let us suppose that we manage to prepare our system in a well-defined quantum

state (e.g. the motional ground state) at time t = 0. At this particular time, the system and the

environment, represented by the state |Φ⟩, are decoupled,

|Ψ(0)⟩ = |ψ⟩|Φ0⟩. (3.3)

Assuming an interaction Hamiltonian that is diagonal in the system of interest, the coupling

causes the environmental state to evolve in a way that depends on the system state. For our



initial superposition, eq. (3.1), this means [59](∑
i

ai|ψi⟩

)
|Φ0⟩ 7→

∑
i

ai|ψi⟩|Φi(t)⟩. (3.4)

Provided that the environmental states are orthogonal, ⟨Φi(t)|Φj(t)⟩ = δij , tracing over the

environment destroys the coherences in the system density matrix, i.e.

ρ̂ 7→
∑
i

|ai|2|ψi⟩⟨ψi|, (3.5)

which is just eq. (3.2).

While illustrative, the above argument is of limited practical relevance, because we cannot keep

track of all environmental degrees of freedom. Instead, let us focus exclusively on the system’s

density matrix, but allow it to evolve non-unitarily in time. Specifically, we are looking for a

superoperator L satisfying

˙̂ρ = Lρ̂. (3.6)

To that end, we first make the Markov approximation and assume that the environment is

memoryless at relevant timescales. This means that self-correlations present in the environment

decay faster than the system of interest undergoes significant changes [60]. In addition, we

suppose that the coupling between system and environment is weak enough such that the density

matrix of the environment can be taken to be approximately constant and that the system and

the environment remain separable [60]. It can then be shown that the time evolution of ρ̂ takes

the form of a Lindblad master equation
1

[60],

˙̂ρ = − i

ℏ

[
Ĥ, ρ̂(t)

]
+
∑
i

(
L̂iρ̂(t)L̂

†
i −

1

2

{
L̂†
i L̂i, ρ̂(t)

})
, (3.7)

which only depends on the instantaneous density matrix. A derivation of eq. (3.7) is outside the

scope of this thesis and can be found elsewhere, e.g. in ref. [60].

We conclude by arguing that the jump operators L̂i give rise to decoherence. Writing down the

non-unitary part of eq. (3.7) explicitly for a Hermitian
2

jump operator of the form

L̂ =
∑
i

λi|ψi⟩⟨ψi|, (3.8)

where λi ∈ R, a straightforward calculation yields [59]

ρ̇kl
∣∣

non-unitary
= −1

2
(λk − λl)

2ρkl, (3.9)

i.e. an exponential decay of the off-diagonal matrix elements. In the above equation, ρkl =
⟨ψk|ρ̂|ψl⟩.

3.2 Master Equation for Ro-translational Cavity Cool-

ing

We are now left with the task to identify the jump operators relevant to our system in order to

write down the master equation and find an expression for the spatio-orientational localization

rate (see sec. 3.3). Apart from the cavity decay, which is accounted for by the jump operator

L̂cav =
√
κâ [61], we need to consider collisions with residual gas, Rayleigh scattering of tweezer

photons and the scattering, emission and absorption of thermal photons.

1
This is a special case of the more general Born-Markov master equation. It turns out, however, that the latter

can always be written in the form of eq. (3.7) if one applies the rotating wave approximation [60].
2
Assuming hermiticity is not a requirement for the conclusion to hold, but gives a more compact result.
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3.2.1 Gas Collisions

The Lindblad operators pertaining to gas collisions may be inferred from the monitoring approach

to decoherence [62], which is based on the assumption that “probe particles” colliding with the

test particle at random times induce a fictitious measurement process. Alongside a correction to

the system energy, which we will ignore in the following, this gives rise to incoherent evolution

[63]. Denoting by Q the momentum transfer, by p the momentum of the test (or tracer) particle,

by r its coordinates and by pgas the momentum of the gas particle, it can be shown [63] that the

resulting jump operators have the form

L̂Q,pgas
= eiQ·r̂/ℏL̂(pgas,p;Q), (3.10)

where eiQ·r̂
is just the translation operator in momentum space,

eiQ·r̂/ℏ|p⟩ = |p+Q⟩, (3.11)

and L̂(pgas,p;Q) is a complicated expression [63, 64],

L̂(pgas,p;Q) =

√
ngasmgas

Qm2
∗
µ

(
pgas,⊥Q +

(
1 +

mgas

m

)Q
2
+
mgas

m
p̂∥Q

)1/2

· f
(
rel(p

gas,⊥Q̂, p̂⊥Q)−
Q

2
, rel(pgas,⊥Q, p̂⊥Q) +

Q

2

)
,

(3.12)

which incorporates the details of the scattering process and involves the gas number density

ngas, the mass of the gas particles mgas, the reduced mass m∗ = m · mgas/(m + mgas), the

momentum distribution of the gas µ(p), the elastic scattering amplitude f(pf ,pi) from an initial

momentum pi to a final momentum pf as well as the components of the momenta orthogonal

and parallel to Q, p⊥Q and p∥Q, respectively. The relative momentum rel(pgas,p) is defined as

rel(pgas,p) = (mpgas −mgasp)/(m+mgas) [64].

Relevant to our experiment is the limit mgas/m→ 0, since our particles are more massive than

the molecules of the surrounding air by many orders of magnitude. In that case, the recoil of the

test particle upon a gas collision can be neglected, m∗ ≈ mgas and rel(pgas,p) ≈ pgas. Eq. (3.12)

hence simplifies to [64]

L̂(pgas,p;Q) ≈
√

ngas

Qmgas

µ

(
pgas,⊥Q +

Q

2

)1/2

f

(
pgas,⊥Q − Q

2
,pgas,⊥Q +

Q

2

)
. (3.13)

Intuitively, eq. (3.10) describes the displacement of the test particle in momentum space upon a

collision with a gas particle multiplied by the (operator-valued) rate at which the gas particle is

scattered from an initial momentum pgas,⊥Q +Q/2 to pgas,⊥Q −Q/2. Note that eq. (3.13) does

not depend on p anymore and that pgas,⊥Q is conserved during the collision. We will see in sec.

3.3 how this gives rise to localization in position.

The Lindblad operator follows from eqs. (3.7) and (3.10) by integration over all momentum

transfers and gas momenta in the plane perpendicular to Q [63], i.e.

Lgas =

∫
dQ

∫
Q⊥

dpgas

(
L̂Q,pgas

ρ̂L̂†
Q,pgas

− 1

2

{
L̂†
Q,pgas

L̂Q,pgas
, ρ̂
})

. (3.14)

We would typically assume a Maxwell-Boltzmann distribution for the gas momenta. The exact

form of the scattering amplitude depends on the type of potential one takes as a basis for the

interaction (e.g. Van der Waals, hard sphere, charge-dipole, dipole-dipole etc.) and will not be

treated in further detail here due to its limited relevance to the experiment.
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3.2.2 Scattering of Tweezer Photons

Let us now investigate the effect of Rayleigh scattering of photons from the trapping beam.

We assume that the incident wave is a plane wave
3
, which is polarized in the ϵtw-direction, i.e.

Ein = ϵtwEtwe
ik·r

. In the far-field limit, the electric field Erad scattered by the particle is a spherical

wave of the form

Erad(r) = Etw

eik
′·r

r
f(k′,k; Ω), (3.15)

where k = kn and k′ = k′n′
denote, respectively, the wave vectors of the incoming and scattered

beams, and |k| = |k′|.
Comparing with eq. (2.44) and keeping in mind that the polarizability is a tensorial quantity

as we are dealing with geometrically anisotropic particles, we arrive at the expression for the

scattering amplitude f(k′,k; Ω)

f(k′,k; Ω) =
k2

4πϵ0
(n′ ×α(Ω)ϵtw)× n′ =

k2αp(Ω)

4πϵ0
(n′ ×mp(Ω))× n′, (3.16)

where mp(Ω) = α(Ω)ϵtw/αp(Ω) is the normalized polarization vector inside the dielectric.

Just like gas collisions, the scattering of photons displaces the state of the particle in momentum

space. Multiplying the corresponding operator by the scattering amplitude and the square root

of the incident photon flux Itw/(ℏω) yields the sought-after jump operators for photon scattering

[65]

B̂k′s′ =

√
Itw

ℏω
e−i∆k·r̂ϵ′s′ · f(k′,k; Ω), (3.17)

where ∆k = k(n′ − n) and ϵ′s′ (s′ ∈ {1, 2}) are the two orthogonal polarizations of the scattered

radiation.

The tweezer photons are (to a good approximation) characterized by a sharp momentum distribu-

tion, i.e. µ(p) = δ(p− ℏk). Obtaining the total Lindblad operator still requires us to sum over

the two polarization states and integrate over all propagation directions of the scattered wave.

We hence obtain

Ltw =
∑

s′∈{1,2}

∫
d2n′

(
B̂k′s′ ρ̂B̂

†
k′s′ −

1

2

{
B̂†

k′s′B̂k′s′ , ρ̂
})

. (3.18)

It is worth emphasizing that this decoherence channel obviously disappears when the particle is

left to evolve freely with the trap switched off. However, residual light inside the cavity (due to

the finite decay time) would give rise to a similar effect, albeit with enhanced scattering along

the cavity axis (cf. sec. 2.2.2) and incident flux from both directions along the cavity axis.

3.2.3 Absorption, Scattering and Emission of Thermal Photons

The scattering of thermal photons can be treated in an analogous way as explained in the previous

section. The main difference is that thermal photons impinge on the test particle isotropically and

are distributed over a wide frequency range with the average occupation number at temperature

T given by [60]

⟨n(k)⟩ = 2

e
ℏck
kBT − 1

. (3.19)

In addition, we need to take the wavelength-dependence of the polarizability into account, i.e.

αp(Ω) = αp(k,Ω). Integrating over all outgoing directions and averaging over all incident

3
This is a valid approximation near the focus of the (Gaussian) tweezer beam as long as the finite extent of the

field can be disregarded.
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directions, polarization directions and wavenumbers, we get the expression for the Lindblad

operator [66]

Lscatt =
c

2

∑
s.s′∈{1,2}

∫
S2

∫
S2

d2n′ d2n

∫ ∞

0

dk k2⟨n(k)⟩
(
Ŝkk′ss′ ρ̂Ŝ

†
kk′ss′ −

1

2

{
Ŝ†
kk′ss′Ŝkk′ss′ , ρ̂

})
,

(3.20)

where

Ŝkk′ss′ = e−i∆k·r̂ϵ′s′ · f(k′,k, ϵs; Ω). (3.21)

The actual photon distribution may deviate significantly from eq. (3.19) due to the finite emissivity

of the surrounding walls. However, it may still serve as an indicator for the relevant wavelength

range.

Similarly, absorption of thermal radiation gives rise to momentum kicks of ℏk. We may hence

define the respective jump operator [67]

Âk = eik·r̂, (3.22)

from which the Lindblad operator follows again by averaging over all incident directions and

wavenumbers
4

as

Labs = c

∫
S2

d2n

∫ ∞

0

dk k2⟨n(k)⟩σabs(k)

[
Âkρ̂Â

†
k −

1

2

{
Â†

kÂk, ρ̂
}]

, (3.23)

where the absorption cross section σabs is given by [67]

σabs(k) =
k

ϵ0
Im[α(k)]. (3.24)

At room temperature, the peak of the blackbody emission spectrum is at a wavelength of about

10µm. In this regime, the absorptivity of SiO2 is substantial and we hence assume absorption of

thermal photons to constitute a significant decoherence source.

A similar reasoning applies to the emission of thermal photons, in which case the particle receives

a momentum kick of −ℏk′
. In complete analogy to before, the jump operator now reads

Êk′ = e−ik′·r̂
(3.25)

and, consequently, the Lindblad operator

Lem =
c

(2π)3

∫
S2

d2n′
∫ ∞

0

dk k2⟨n(k)⟩σem(k)

[
Êk′ ρ̂Ê†

k′ −
1

2

{
Ê†

k′Êk′ , ρ̂
}]

. (3.26)

While we may equate the particle’s emission cross section σem with its absorption cross section

σabs, we need to bear in mind that it is much hotter than its environment. This changes the

number distribution, eq. (3.19), to ⟨n(k)⟩ = 2 exp(−ℏck/(kBT )) [68], which significantly reduces

the probability of occupying low-energy modes. In addition, the factor of 1/(2π)3 accounts

for the mode density. SiO2 is virtually transparent across a broad frequency range from UV to

mid-infrared and we do hence not expect significant contributions from thermal emission at

wavelengths below 5µm.

Additional uncertainties concern possible surface effects and the potential non-uniformity of the

temperature distribution. If the particle is unevenly heated in the optical trap, one may define an

effective temperature [69]

Teff =

(
1

V

∫
V

d3rT 4(r)

)1/4

, (3.27)

4
Note that polarization does not play a role here.

33



which corresponds to the total emission spectrum. Locally, however, the emitted radiation might

have a rather different distribution, which would lead to an anisotropy in the emission pattern,

potentially allowing one to distinguish between particle orientations

Yet, we do not believe that this is an issue in our setup, since our particles are significantly smaller

than the waist of the trapping beam, which we hence assume to heat our particles evenly [70].

3.3 Spatio-orientational Localization Rate

We will now examine how the master equation, eq. (3.7), is connected to the rate at which the

various decoherence channels give rise to localization in position and orientation. We have already

mentioned in sec. 3.1 that the coherences decay exponentially with time as expressed by the

differential equation [65]

ρ̇(rΩ, r′Ω′; t)
∣∣

non-unitary
= ⟨rΩ|Lρ|r′Ω′⟩ = −Λ(rΩ, r′Ω′)ρ(rΩ, r′Ω′; t), (3.28)

where ρ(rΩ, r′Ω′; t) = ⟨rΩ|ρ̂(t)|r′Ω′⟩. Note that if the environment exhibits spherical symmetry,

the localization rate can only depend on the absolute distance of the orientations and positions

[60, 66]. This may be assumed, for example, as far as collisions with air molecules are concerned,

but not for scattering of tweezer photons,

Putting together eqs. (3.7) and (3.28), we can readily establish the relation between decoherence

and the Lindblad master equation as

ρ̇(rΩ, r′Ω′; t)
∣∣

non-unitary
=
∑
i

⟨rΩ|L̂iρ̂L̂
†
i −

1

2

{
L̂†
i L̂i, ρ̂

}
|r′Ω′⟩. (3.29)

For scattering of gas molecules, the form of the jump operators, eq. (3.10), implies that the

decoherence rate Λ is given by the expression

Λ =
ngas

mgas

∫
dQ

Q

∫
Q⊥

dpgas µ

(
pgas +

Q

2

)[
1

2

∣∣∣∣fΩ(pgas,⊥Q − Q

2
,pgas,⊥Q +

Q

2

)∣∣∣∣2
+

1

2

∣∣∣∣fΩ′

(
pgas,⊥Q − Q

2
,pgas,⊥Q +

Q

2

)∣∣∣∣2
− e−iQ·(r′−r)fΩ

(
pgas,⊥Q − Q

2
,pgas,⊥Q +

Q

2

)
f∗Ω′

(
pgas,⊥Q − Q

2
,pgas,⊥Q +

Q

2

)]
,

(3.30)

where the orientational degrees of freedom are accounted for by an angular dependence of the

scattering amplitude [66] that appears in eq. (3.13). Eq. (3.30) reduces to eq. (93) in ref. [63] if the

scattering amplitude does not depend on Ω.

The remaining decoherence rates are obtained in an analogous fashion. As illustrative examples,

let us write down the ones pertaining to scattering of thermal radiation in the cases where,

respectively, only the orientational or only the translational degrees of freedom are relevant.

Using eq. (3.20), we get in the former case [66]

Λ =
c

4

∑
s,s′∈{1,2}

∫
S2

∫
S2

d2nd2n′
∫ ∞

0
dk k2⟨n(k)⟩

∣∣∣∣ϵ′s′ · [f(k′,k, ϵs; Ω)− f∗(k′,k, ϵs; Ω
′)
]∣∣∣∣2, (3.31)

which has an intuitive interpretation in that the decoherence becomes stronger the more dis-

criminable the scattering amplitudes are in the respective orientations. Likewise, in the second

scenario, we have [66]

Λ =
c

2

∑
s,s′∈{1,2}

∫
S2

∫
S2

d2n d2n′
∫ ∞

0

dk k2⟨n(k)⟩
(
1− e−i∆k·(r′−r)

) ∣∣∣∣ϵ′s′ · f(k′,k, ϵs)

∣∣∣∣2. (3.32)
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It can be shown [60] that under the assumption of an ideal blackbody spectrum, the translational

decoherence rate due to scattering of thermal photons scales with V 2T 9
, highlighting the potential

benefit in cryogenically cooling the environment. The orientational localization rate exhibits "only"

a scaling with T 7
[66], which can make orientational superpositions an appealing alternative to

spatial ones in a high-temperature environment.

To conclude the discussion, let us take another look at eq. (3.32). In the limit of very short (de

Broglie-) wavelengths λdb = h/p as compared to the size of the spatial superposition, the phase

factor does not contribute to the integral as it oscillates too rapidly. In that case, the localization

rate is simply equal to the scattering rate and does not increase further with growing separation.

This is called the short-wavelength limit [60]. Conversely, in the long wavelength limit, a single

scattering event cannot fully resolve the particle’s position and the respective decoherence rate

scales with the square of the separation [60].

An ellipsoid that is orientationally delocalized by an angle of π/2 around an axis perpendicular to

the longest half-axis a1 has a tip-to-tip spatial separation of
√
2a1. Setting a1 ≈ 50nm, the short

wavelength limit applies, for example, to decoherence by collisions with ambient gas molecules

due to their notably short de Broglie wavelength in the pm range.

3.4 Heating Mechanisms

In the previous section, we have described the dominant decoherence factors. Now we will take a

closer look at the various heating mechanisms that we need to overcome in order to be able to

prepare our system close to the ground state.

The rate of change in the mean phonon number obeys the equation [71]

d

dt
⟨n⟩ = −Γ⟨n⟩+ γheat, (3.33)

where γheat denotes the heating rate, i.e. the rate at which phonons are introduced into the system.

In a steady state, the heating rate is proportional to the damping,

γheat = ⟨n0⟩Γ (3.34)

with the stationary mean phonon number ⟨n0⟩. The system hence dissipates energy until heating

and damping equilibrate. We have already said in sec. 2.1 that the final energy of the system

is proportional to the area underneath the motional PSD, which, in turn, is the sum of the

individual PSDs pertaining to each type of perturbance in the system. We will now quantify those

contributions and discuss their origin.

To that end, we need to introduce photonic and mechanical noise operators âin and b̂in, respectively,

in accordance with the textbook formalism for the quantum Langevin equation [72]. They are

essentially the operator analogue to the classical stochastic force encountered in eq. (2.1) and

pertain to an external heat bath to which the system of interest is coupled. While we rather

carelessly disregarded these operators in sec. 2, we now need to take them into account as they

contain the correlations that explain the connection between the noise present in the system and

the phononic occupation number.

In particular, we can make the Markovian approximation and assume delta-correlated mechanical

input noise [73], which is justified when the relaxation time of the system is much larger than

the relaxation time of the environment
5
, i.e.

⟨b̂†
in
(t)b̂in(s)⟩ = nbδ(t− s), (3.35)

where nb is the occupation number of the thermal bath. In Fourier space, the above relation can

be shown to read [73]

⟨ˆ̃b†
in
(Ω)ˆ̃bin(Ω

′)⟩ = nbδ(Ω + Ω′). (3.36)

5
In view of the large Q-factors attained in levitated optomechanical systems, this is a reasonable assumption.
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At pressures above 10
-7

mbar, the dominant contribution to the mechanical noise comes from gas

damping, which we will now investigate.

3.4.1 Gas Damping

We assume that the motion of our particle is in thermal equilibrium with its surroundings, i.e. that

there is no net flow of energy between the environment and the system. The thermal occupation

of a mechanical modes of a given frequency Ω0 is then specified by the temperature of the

ambient gas T according to the familiar relation

⟨n⟩ = kBT

ℏΩ0

. (3.37)

We may then apply the fluctuation-dissipation theorem to relate the thermal damping rate Γth to

the corresponding stochastic force Fth. Its autocorrelation function reads
6

[74]

⟨Fth(t)Fth(t
′)⟩ = 2ΓthmkBTδ(t− t′). (3.38)

We are only interested in the free molecular regime, in which the mean free path of the air

molecules is large compared to our particle’s characteristic length.
7

Under that condition, the

damping rate that a spherical particle
8

experiences is proportional to the pressure p [76],

Γ =
64

3

pr2

mv̄
. (3.39)

Introducing the universal gas constant R and the molar mass of air M , the mean velocity of the

gas v̄ is given by

v̄ =

√
8RT

πM
. (3.40)

Fourier transforming eq. (3.38) yields a flat force PSD,

Sth

FF (Ω) = Sth

FF = 2ΓthmkBT. (3.41)

By virtue of eq. (2.11), the thermal contribution to the motional PSD reads

Sth

zz(Ω) =
kBT

m

2Γth

(Ω2
z − Ω2)2 + Γ2

th
Ω2
. (3.42)

The procedure to integrate eq. (3.42) is outlined in ref. [77] and we only state the result

1

2π

∫ ∞

−∞
dΩSth

zz(Ω) =
kBT

mΩ2
z

, (3.43)

which does not depend on the pressure of the gas or the size of the particles. The maximum of the

PSD, which occurs at Ω = ±Ωz , however, does scale with 1/Γ and hence with 1/p. So, while the

total thermal occupation stays constant (as it should according to the equipartition theorem), the

PSD becomes more spread out as the pressure is reduced and the phononic occupation around

the spectral peak at the resonance frequency becomes smaller.

6
The delta-like correlation is, of course, an approximation, which accounts for the the large number of collisions

on the timescale of the observation, rendering the environment effectively memoryless.
7
At room temperature and a particle size of ∼100nm, this limit is already attained at modest pressures of a few

tens of millibars.
8
The corresponding rate for an ellipsoidal particle can be found with the help of surface integrals [75]. However,

since the shape of the particles that can be efficiently cooled in all degrees of freedom by coherent scattering deviates

only slightly from that of sphere, we expect eq. (3.39) to provide a suitable approximation.

36



The treatment thus far was purely classical. In the quantum domain, we must take the non-

commutativity of the thermal noise operator into account. The Langevin equation for the

mechanical mode operator in the absence of any coupling to photonic modes reads in Fourier

space [73]

ˆ̃b(Ω) = −
√
Γˆ̃bin(Ω)

i(Ωz − Ω) + Γ/2
, (3.44)

from which the PSD for
ˆ̃b(Ω), Sbb(Ω), follows as

Sbb(Ω) =

∫ ∞

−∞
dΩ′ ⟨ˆ̃b†(Ω)ˆ̃b(Ω′)⟩

=
Γnb

(Ω + Ωz)2 + (Γ/2)2
,

(3.45)

where we used eq. (3.36). We can find Sb†b† in an analogous way, which allows us to write down

the expression for the PSD of the respective motional degree of freedom [73, 78],

Szz(Ω) = z2
zpf

(Sbb(Ω) + Sb†b†(Ω))

= z2
zpf
Γ

[
nb

(Ω + Ωz)2 + (Γ/2)2
+

nb + 1

(Ω− Ωz)2 + (Γ/2)2

]
.

(3.46)

Unlike the classical expression, eq. (3.46) is not symmetric with respect to frequency. Indeed, as

one approaches the ground state, the Stokes peak (at the positive mechanical frequency) becomes

more pronounced. This is the basis for sideband asymmetry thermometry, whereby one detects this

imbalance as a sign for cooling down to the "quantum level". In particular, the negative frequency

peak vanishes in the ground state, where ⟨n⟩ = 0, as there are no more phonons to annihilate.

In the above treatment, we have neglected any possible accommodation of gas particles, i.e.

we have assumed them to be reflected instantaneously and specularly upon impinging on the

nanoparticle. This is, in fact, mostly not the case. For SiO2 at room temperature, the larger part

of the ambient gas is diffusely reflected as quantified by an accommodation coefficient of 0.77

[79]. This raises another complication as the gas particles can no longer be assumed to emerge

from the particle at the same temperature as the impinging particles [70]. The (classical) thermal

PSD of the center-of-mass motion, eq. (3.42), is hence modified to [70]

Sth

zz(Ω) =
kBTeff

m

2Γeff

(Ω2
z − Ω2)2 + Ω2Γ2

eff

, (3.47)

where the effective temperature

Teff =
TimΓim + TemΓem

Γem + Γim

(3.48)

depends on the temperatures of the impinging an emerging gas particles Tim and Tem, respectively,

as well as the associated damping rates Γim and Γem. The effective damping
9

is defined as [70]

Γeff = Γim + Γem. (3.49)

Despite the negligible absorption of SiO2 in the infrared, particle loss due to melting may occur

as a result of small impurities alongside a large tweezer intensity and poor heat conductivity in

mid- to high vacuum [70]. This substantiates the need to achieve a clean mode profile of the

trapping beam in order to minimize the required optical power.

9
Be aware that this "effective damping" has nothing to do with the one defined in eq. (2.74).
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We may also invoke the fluctuation-dissipation theorem to relate the stochastic torque Nth acting

on the particle to the thermal PSD. The analogue to eq. (3.38) reads [56]

⟨Nth(t)Nth(t
′)⟩ = 2ΓthIkBTδ(t− t′), (3.50)

with I denoting the moment of inertia. Equivalently to the discussion above, this equation leads

to a thermal PSD of

Sth

γγ(Ω) =
kBT

IΩ2

2Γth

Ω2 + Γ2
th

, (3.51)

where γ is some rotational degree of freedom. Eq. (3.51) holds e.g. for a particle that is rotationally

accelerated around a well-defined axis inside a circularly polarized tweezer and hence decoupled

from all other rotational degrees of freedom. The latter assumption does not hold for free motion.

A more general treatment is outside the scope of this thesis and can be found e.g. in ref. [80].

3.4.2 Phase Noise

We have already mentioned that one of the main appeals of cooling by coherent scattering is the

opportunity to avoid phase noise to a large extent. Indeed, the limit on the laser linewidth to

achieve optomechanical cooling becomes more stringent in proportion to the number of photons

inside the cavity [81] as we will now analyze.

Phase noise results from unavoidable spontaneous emission events inside the laser, which are

characterized by random phases. After some time t, the sum of these individual contributions

adds to the total phase of the light field according to [82]

ϕ(t) = ϕ0 +
∑
i

Ei
sp

E0

sin
(
ϕi

sp

)
= ϕ0 +∆ϕ(t), (3.52)

where E0 and ϕ0 are, respectively, the electric field amplitude of the laser beam and its phase

in the absence of any perturbations, Ei
sp
≪ E0 is the field generated by the i-th spontaneously

emitted photon and ϕi
sp

is the corresponding phase. Since the spontaneous emission events

are mutually independent and their number per unit time is large (with respect to reasonable

sampling periods), the central limit theorem may be employed to demonstrate that the probability

density function of the phase change acquired over a sufficiently large time interval approaches

a Gaussian distribution [82]. It is unbiased in the sense that ⟨∆ϕ(t)⟩ = 0.

Phase fluctuations obviously do not play a role in trapping the particle, since we are then only

interested in the average field. However, they are converted to amplitude and intensity noise

inside a cavity [83]. To clarify this, let us suppose that the coherent amplitude α, which we

defined in eq. (2.60)
10

, features a time-dependent phase shift,

α(t) = αeiϕ(t). (3.53)

It can be shown that as a consequence of the Gaussian nature of the noise process, the amplitude

autocorrelation decays with time as [82]

⟨α(t2)α∗(t1)⟩ = |α|2e−ΓL|t2−t1|/2. (3.54)

According to eq. (2.10), this gives rise to a Lorentzian PSD, the width of which is just the laser

linewidth ΓL,

Sαα(Ω) = |α|2 ΓL

Ω2 + (ΓL/2)
2 . (3.55)

10
We omit the tilde henceforth to avoid confusion with the Fourier transform. We also again operate within

a frame of reference rotating at the trapping beam frequency, which is why the explicit time dependence of the

coherent amplitude vanishes.
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When the phase fluctuations are sufficiently small, we may expand the phase factor to first order,

yielding [83]

⟨α(t2)α∗(t1)⟩ = |α|2⟨eiϕ(t2)e−iϕ(t1)⟩ ≈ |α|2 (1 + ⟨ϕ(t2)ϕ(t1)⟩) (3.56)

and, as a result,

Sαα(Ω) = |α|2 [2πδ(Ω) + Sϕϕ(Ω)] . (3.57)

Eq. (3.56) only incorporates the instantaneous phase ϕ(t) and does not account for the change

in detuning ∆ 7→ ∆ + ϕ̇ and hence neither for the modulation of the coupling rate. The

approximation is only valid if the variations in the phase occur over a timescale that is much

larger than the cavity decay time [83], which we can safely assume as ΓL ≪ κ in our experimental

setup.

We now again restrict ourselves to the motion along z. By virtue of eq. (2.60), assuming that the

particle is located in an antinode of the cavity and approximating

√(
κeff

2

)2
+∆2

eff
≈ Ωz [34], we

can rewrite eq. (3.57) as

Sαα(Ω) =
E2

d

Ω2
z

[2πδ(Ω) + Sϕϕ(Ω)] . (3.58)

We may henceforth omit the term proportional to δ(Ω) as we are only interested in the contribu-

tion in proximity to the mechanical resonance [73].

Let us now demonstrate that phase noise gives rise to a stochatic force on the particle that

increases the mean phonon number by [84]

⟨nϕ⟩ = Sϕ̇ϕ̇(Ωz)
|α|2

κeff

, (3.59)

where Sϕ̇ϕ̇(Ωz) the frequency noise PSD at the mechanical frequency Ωz . Sϕ̇ϕ̇ is closely related to

the phase noise PSD Sϕϕ by the relation Ω = dϕ/dt, which gives [34]

Sϕ̇ϕ̇(Ω) = Ω2Sϕϕ(Ω). (3.60)

For the sake of the argument, we assume that phase noise is the only source of photonic noise.
11

The corresponding noise operators satisfy [73]

⟨ˆ̃a†in(Ω)ˆ̃ain(Ω′)⟩ = Ω2
z

κeff

Sαα(Ω)δ(Ω + Ω′). (3.61)

We have already seen in sec. 2.2.3 that the mechanical frequency, the detuning and the damping

all shift due to the optomechanical interaction. In terms of these effective values Ωeff, ∆eff and

Γeff, respectively, the Fourier transform of the mechanical mode operator (including the noise

inputs) can be shown to read [73]

ˆ̃b(Ω) =−
√
Γˆ̃bin(Ω)

i(Ωeff − Ω) + Γeff/2
+

iG

i(∆eff − Ω) + κeff/2

√
κeff

ˆ̃ain(Ω)

i(Ωeff − Ω) + Γeff/2

+
iG

−i(∆eff + Ω) + κeff/2

√
κeff

ˆ̃a†
in
(Ω)

i(Ωeff − Ω) + Γeff/2
.

(3.62)

In our case, we have

G = EdkzzpfRe(ϵ
∗
cav

· ϵtw) sin(kz0) + g0α sin(2kz0). (3.63)

11
The generalization to multiple noise sources is straightforward as it only requires the definition of the associated

operators and the analysis of the correlations between them.
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We may then use the input correlations, eqs. (3.36) and (3.61), to evaluate the PSD of the

mechanical mode operator [73],

Sbb(Ω) =

∫ ∞

−∞
dΩ′ ⟨b̂†(Ω)b̂(Ω′)⟩

=
Γnb

(Ωeff + Ω)2 + (Γeff/2)2
+

|G|2κeff [1 + (Ω2
z/κeff)Sαα(Ω)]

[(∆eff − Ω)2 + (κeff/2)2] [(Ωeff + Ω)2 + (Γeff/2)2]

+
|G|2Ω2

zSαα(Ω)

[(∆eff + Ω)2 + (κeff/2)2] [(Ωeff + Ω)2 + (Γeff/2)2]
.

(3.64)

According to eq. (3.46), the PSD of the z-motion is then given by

Szz(Ω) = z2
zpf

(Sbb(Ω) + Sb†b†(Ω))

= z2
zpf

[
1

(Ωeff + Ω)2 + (Γeff/2)2
+

1

(Ωeff − Ω)2 + (Γeff/2)2

]
·
(
Γnb +

|G|2κeff [1 + (Ω2
z/κeff)Sαα(Ω)]

(∆eff − Ω)2 + (κeff/2)2
+

|G|2Ω2
zSαα(Ω)

(∆eff + Ω)2 + (κeff/2)2

)
+ z2

zpf

Γ

(Ωeff − Ω)2 + (Γeff/2)2
.

(3.65)

Comparing with eq. (3.46), we see that the terms pertaining to the mechanical input noise

operator are precisely the thermal contribution to the quantum PSD. Disregarding this part and

evaluating the remaining one at Ω = Ωeff = ∆eff leaves us with

Sphase

zz (Ωeff) = z2
zpf

[
1

(2Ωeff)2 + (Γeff/2)2
+

1

(Γeff/2)2

]
·
(
|G|2 [1 + (Ω2

z/κeff)|α|2Sϕϕ(Ωeff)]

κeff/4
+

|G|2Ω2
z|α|2Sϕϕ(Ωeff)

(2Ωeff)2 + (κeff/2)2

)
.

(3.66)

If we can additionally assume our system to be in the deeply sideband-resolved regime Ωeff ≫
κeff

12
, the equation simplifies further to

Sphase

zz (Ωeff) ≈ z2
zpf

[
1

(2Ωeff)2 + (Γeff/2)2
+

1

(Γeff/2)2

]
4|G|2

κeff

(
1 +

Ω2
z

κeff

|α|2Sϕϕ(Ωeff)

)
. (3.67)

Keeping in mind the relation between Sϕϕ and Sϕ̇ϕ̇, eq. (3.60), the last term of the above equation

is indeed proportional to eq. (3.59) as we wanted to show. In short, this result states that the

phononic occupation number increases in proportion to the phase noise PSD Sϕϕ(Ω) and the

intracavity photon number |α|2, which, in turn, is maximal when the particle is placed in an

antinode of the cavity (cf. eq. (2.60)).

3.4.3 Recoil Heating

Just like residual air molecules, photons also impart random momentum kicks to the particle, cf.

sec. 3.2.2. The resulting recoil heating contributes significantly only at very low pressures, but will

be the dominant factor in the regime below ∼10
-7

mbar [34]. To estimate its magnitude, we only

need to take into account the scattering from the trapping beam. Despite the amplification of the

scattered light by a factor ofF/π inside the cavity, the fact that only a tiny fraction of the incoming

light is scattered into the mode alongside the large ratio of the waists w2
0/(Wx0Wy0) ≈ 105 leads

to an error at the sub-percent level.

12
In our current setup, we only have Ωeff > κeff.
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Recalling that the force exerted along the z-axis by the scattering of photons is just Fz = Pz/c,
where Pz is the power scattered in the z-direction, the corresponding force PSD can be shown to

read [85]

Srec

FF (Ω) = Srec

FF =
2

5

ℏω
2πc2

Pscatt (3.68)

if z is perpendicular to the polarization axis and with the factor 2/5 replaced by 1/5 for the parallel

direction. Note that even though the induced dipole does not radiate along its axis, the particle

still feels a force in that direction, albeit only half as large. Pscatt denotes the total scattered

power, which is given by eq. (2.42).

From eq. (2.11), the displacement PSD follows as

Szz(Ω) =
2

5

ℏω
2πm2c2

Pscatt

(Ω2
z − Ω2)2 + Γ2Ω2

. (3.69)

3.4.4 Displacement Noise

Finally, we need to mention displacement noise, which arises from fluctuations of the trapping

center as a result of vibrations and may indeed render ground state cooling impossible if not

mitigated [86]. The corresponding heating rate in terms of the motional PSD, which needs to be

obtained experimentally, is given by [86]

γdisp = π
Ω2

z

4z2
zpf

Szz(Ωz). (3.70)

Eq. (3.70) exhibits a proportionality toP
3/2
tw , providing yet another reason why the optical trapping

power needs to be limited even though the optomechanical coupling rate increases with larger

tweezer intensity (cf. sec. 2.2.3).
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Chapter 4

Experimental Realization

We will now provide a brief overview over the various tasks that we have been working on in

preparation of ro-translational cooling. We will then explain our current experimental setup and

discuss possible modifications that have yet to be implemented.

4.1 Experimental Steps

One of the more challenging experimental steps has proven to be the preparation of the optical

tweezer in such a way that it allows to stably and reliably trap our particles. Secondly, we need

to launch the latter in a clean and efficient manner, preferably under mid (or even high) vacuum

conditions. Once a particle is captured, we must place it in the right position in the standing light

wave of the cavity, which we have to lock to a suitably detuned frequency (cf. sec. 2.2.3). Finally,

we need to keep track of the particle’s motion employing various complementary detection

schemes.

4.1.1 Trap Loading

A variety of mechanisms have been implemented by different groups to load optical traps, among

them nebulization [34, 87], laser-induced acoustic desorption (LIAD) [88] and piezo loading [89].

Recently, direct loading through hollow-core fibers has also attracted interest [90]. Electrospray

ionization (ESI) is another widely used technique to launch particles into the gas phase [91]. While

typically applied for smaller species such as biomolecules, volatilization of nanoparticles in mass

ranges up to GDa has also been demonstrated [92]. However, ESI produces highly charged ions

and is thus more appropriate for use in combination with mass spectrometers or electrodynamic

traps. As we will explain in further detail below, we have so far employed nebulization and LIAD

in our setup.

Nebulization

Dispersing the particles in an aerosol is attractive because it is simple to implement and has

proven to work reliably in our experiment. We use an ultrasonic nebulizer (Omron MicroAir

U100), which creates ultrasonic sound waves by shaking a piezoelectric actuator. These waves

subsequently travel to the surface of the colloidal particle solution, where they prompt the

formation of droplets. A high frequency is generally favorable as it minimizes the droplet size

[93]. A small droplet volume, in turn, lowers the probability of agglomeration and/or co-trapping

of several nanoparticles at once.

We dilute the commercially available 100nm SiO2-solution (Corpuscular), which comes at a

concentration of 5%, in a ratio of 1:1000 in isopropanol, ultrasonicate it for 10 minutes to avoid

agglomeration and fill about 5ml of the solution into the designated container. The nebulizer is



surrounded by a bell jar in which aerosol builds up within a few seconds upon switching on the

device, leading to noticeable haze. We then manually open the valve connecting the bell jar and

the vacuum chamber for about half a second to enable the inflow of gas [34].

This technique features some evident drawbacks. We estimate that we spray billions of particles

into the chamber each time we open the valve. This would cause the cavity mirrors to get

clogged immediately and – to a lesser extent – also degrade the tweezer lens over time. The large

concentration of particles inside the chamber and their chaotic motion is also witnessed by the

fact that we observe successful trapping even 10 minutes after turning off the source.

Moreover, particles can only be trapped once a sufficiently high pressure is attained. In practice,

we capture no particles below 100mbar and find the largest success rate even above 500mbar.

Trapping at lower pressures would, however, be preferable in order to avoid the risk of losing them

while pumping down and because it would potentially allow us to instantly initiate feedback

cooling, thereby reducing the experimental complexity.

While in particular the expected contamination of the optics prevents us from applying this

technique systematically, we maintain that it allows us to quickly and reliably judge whether the

quality and intensity of the tweezer beam suffice to trap particles.

Laser-Induced Acoustic Desorption

LIAD is a tempting alternative for launching nanoparticles as it is cleaner than the aforementioned

nebulization in the sense that the particles are injected in a more directed manner, it works at

lower pressures, does not add significant complexity to the setup and is also remarkably versatile.

Indeed, it has already proven to work not only in desorbing inorganic nanoparticles [88] but

also for biological particles in various size ranges from small amino acids [94], (functionalized)

porphyrins [95] up to bacteria [96]. As visualized in fig. 4.1, the method works by irradiating an

opaque, usually metallic foil, on which the particles are adsorbed, with short, intense laser pulses.

In our case, we use 6ns pulses from a frequency-doubled Nd:YAG beam at a wavelength of 532nm

and a pulse energy of a few mJ.

One major drawback of this technique is the fact that the particles may be ejected at high initial

velocities within a range that appears to be strongly dependent on the type of foil [95]. Without

complementary cavity cooling, particles launched by LIAD can only be optically trapped in the

diffusive regime, i.e. if their motion is governed by random collisions with background gas rather

than the directed expulsion from the substrate. Buffer gas cooling hence becomes a necessity. In

addition, the alignment of the pulsed beam with respect to the tweezer is critical given that the

particles can only be trapped within a region of a few µm
3

around its focus (cf. sec. 4.1.2).

While a systematic investigation of the relation between the particles’ velocity distribution and

the substance and thickness of the substrate has yet to be conducted, we expect that once avail-

able, these results will help us greatly in our endeavor to optimize the trapping efficiency.

To prepare the sample, we glue a piece of commercial aluminum foil, which has a thickness of

about 15µm, onto a metallic frame with dimensions of 8x8mm, apply one to two droplets of the

same particle solution that we have used for nebulization onto the substrate and let the solvent

evaporate for about 15 minutes. We then insert the sample into a holder that is mounted on a

SmarAct nanopositioning stage, which we can move along all three spatial axes.

The choice of foil was made for the purely pragmatic reason that we reliably obtained particle

signals using it. Desorption from thicker aluminum foils (150 and 300µm) resulted in a significantly

lower yield. We also tested Teflon-coated glass slides, but noticed that substantial amounts of

Teflon fragments were ejected alongside our nanoparticles.
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Figure 4.1: Sketch of laser-induced acoustic desorption (not to scale). The sample

foil is irradiated with a focused 532nm laser pulse upon which particles are ejected

and decelerated by ambient gas. Under the condition of adequate alignment and

sufficient slowing, they are captured by the trapping beam and the scattered light is

picked up by a multimode fiber.

So far, we have only witnessed successful trapping of particles when we placed the sample at a

distance of about 7-7.5mm from the focus of the tweezer at a pressure of 15mbar.
1

This is rather

peculiar, since our time-of-flight measurements conducted at around 10
-4

mbar, where gas friction

is virtually absent, point towards a mean initial velocity of 40m/s. If this were accurate, the

particles would already thermalize after less than 700µm as is shown in fig. 4.2a.
2

The simulation

is based on a simple elastic collision model and does not account for possible accommodation,

i.e. any exchange of energy between the particle and the gas molecules. The damping rates

Γbg obtained from an exponential fit of the curves shown in fig. 4.2b agree with the analytical

expression [80]

Γbg =
8pr2

3m

√
2πmgas

kBT
(4.1)

to within 5%.

It is not only crucial to carefully select the sample height to meet the required stopping distance,

but also to avoid cutting off the highly divergent tweezer beam, as this would deteriorate the

focus quality.

For practical reasons, we place the sample on top of the tweezer and irradiate it from above such

that the particles are ejected in the downward direction. Given the short timescale of the particles’

time-of-flight, which is on the order of hundreds of µs, we do not expect the gravitational force

to affect the trapping probability in a significant way. Still, placing the tweezer focus on top of

1
The cavity was not inserted while conducting these tests and we were thus able to freely choose the distance to

the tweezer focus.
2
The particles reach terminal velocities on the order of cm/s.
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(a) (b)

Figure 4.2: Simulated velocities of SiO2-particles with a diameter of 100nm as

function of (a) distance from the sample and (b) flight time given initial velocities of

20m/s (blue), 40m/s (orange) and 60m/s (green) at a pressure of 15mbar.

the substrate and shooting from the bottom constitutes a viable alternative [29].

While we have succeeded in trapping particles at much lower pressures than what was feasible

using the nebulization technique, the need for buffer gas cooling still makes LIAD incompati-

ble with high vacuum. In addition, the particles’ diffusive motion again raises the concern of

contaminating the cavity mirrors. Indeed, preliminary trials indicate that the finesse may drop

significantly after a few dozen to a hundred shots.

Depending on the trapping efficiency that we can ultimately attain, combining LIAD with the

cavity might hence require us to spatially separate the trapping region from the latter. Once

we have captured a particle, we would move the focus back to the intended position. We have

already witnessed that our particles remain stably trapped when moving the lens back and forth

at speeds of a few mm/s.

The exact mechanism by which the particles are eventually ejected from their substrate is not yet

fully understood. Huang et al. [97], for example, deem an explanation based on the transfer of

momentum from an acoustic shock wave incompatible with their experimental data and view

it more in line with a surface stress model. Importantly, they found the laser fluence to not

significantly affect the particles’ forward velocity and observed that the expulsion events do not

occur at a single instant in time but are temporally distributed [97].

The latter point in particular is remarkable because it means that velocity measurements based

on the particles’ time-of-flight (with respect to the laser pulse) need to be interpreted with care

as they do not account for the delayed expulsion. This is all the more significant, the smaller the

distance between the sample and the detection region. Consider, for example, the delay time

distribution displayed in fig. 4.3. If the results were governed predominantly by the desorption

time, this would cause us to underestimate the initial velocity and might hence provide an

explanation for the discrepancy between the calculated aerodynamic stopping distance and the

actual distance required to trap, which, as mentioned previously, appears to be several times

larger in our setup.

Alternatively, one can calculate the particle velocity from its passage time through the tweezer,

i.e. from the width of the corresponding peak in the scattering signal. The applicability of this

method is, however, limited in our case as the beam’s small Rayleigh length of approximately 2µm

brings about a large measurement uncertainty. Still, if the time-of-flight measurement provided

a reliable estimate of the initial velocity (which we can currently not assume for aforementioned

reasons), comparing the average delay to the average flythrough time would allow us to narrow
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Figure 4.3: Distribution of the time delay between the LIAD pulse and the detection

signal for 100nm SiO2 particles desorbed from conventional aluminum foil at a sample

distance of 2.5mm. The data are obtained from 100 detected events in high vacuum

(red), 138 events at 16mbar (blue) and 95 events at 25mbar (green), respectively. For

the sake of clarity, error bars are displayed only for the HV measurement.

down the range of distances from the focus at which the particles pass the tweezer and hence to

exclude potential alignment errors.

The (actual) particle size is another possible source of error as we cannot entirely rule out the pos-

sibility of agglomeration despite the heavy dilution of the sample and the prior ultrasonification.

In view of the fact that the damping rate scales linearly with the inverse of the particle diameter,

cf. eq. (4.1), clusters would require a larger stopping distance at a given initial velocity. We seek

to avoid misinterpretation by only taking signals into account that have a certain minimum

prominence and distance from each other (in case there are more peaks in one trace) to filter out

potentially anisotropic particles.

Lastly, we emphasize that we expect the ejected particles to carry a significant number of charges

[98], which we have yet to characterize. In order to avoid interactions with stray fields, we

possibly need to implement a neutralization mechanism [99]. While this would allow us to get rid

of charges on the surface, an intrinsic dipole moment may remain, which can cause decoherence,

cf. sec. 3.

4.1.2 Particle Trapping

We trap our particles using an optical tweezer as pioneered by Arthur Ashkin [100]. The elec-

tric field of the tightly focused laser beam induces a dipole moment in the dielectric, which

consequently experiences a gradient force Fgrad towards the point of the largest intensity, i.e.

Fgrad = −∇Utw, (4.2)

where Utw was defined in eq. (2.25).

Particles inside an optical field are, however, also subject to non-conservative radiation pressure,

which originates from the momentum transfer of photons that are either absorbed or scattered.
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For our purposes, we may neglect the contribution due to absorption as silica features hardly any

extinction in the near-infrared. As far as the contribution due to scattering is concerned, applying

once again the Rayleigh approximation readily yields the expression for the radiation pressure

force Frad

Frad = Itwσscatt/c, (4.3)

where σscatt is the scattering cross section integrated over the whole solid angle

σscatt =
8π

3
k4r6

(
n2 − 1

n2 + 2

)2

. (4.4)

(a) (b)

(c) (d)

Figure 4.4: The area in green is the region in the plane orthogonal to gravity (y = 0),

in which a spherical SiO2 particle of (a) 100nm, (b) 435nm diameter can be stably

trapped at a pressure of 15mbar, a tweezer waist of 1µm and a wavelength of 1550nm

under the idealized assumption that it is initially at rest, while (c) and (d) display the

respective regions for a 100nm particle with initial velocities of (-0.1, 0.3, 0.1)m/s and

(-0.5, 0.8, 0.5)m/s, respectively. The tweezer axis is the x-axis. There is no position at

which trapping is possible above a particle diameter of 435nm, in accordance with eq.

(4.8).
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The presence of radiation pressure displaces the particle’s equilibrium position inside the tweezer

slightly downstream and restricts both the region in phase space in which a particle can be stably

trapped and the admissible size range. These limits are independent of laser power, which enters

linearly both in the gradient force and in the radiation pressure.

We can estimate the maximum radius rmax a particle can have to be in principle trappable. The

intensity distribution of a Gaussian beam is given by the expression

Itw(r) = I0
W0

W (x)
e
− 2(y2+z2)

W (x)2 , (4.5)

where

I0 =
2Ptw

πW 2
0

(4.6)

and, remembering the definition of the Rayleigh length xR, eq. (2.24),

W (x) = W0

√
1 +

(
x

xR

)2

. (4.7)

We can now set y = z = 0 and evaluate the two forces at x = xR, where the ratio Fgrad/Frad is

maximized. Imposing the condition that the gradient force has to dominate over the radiation

pressure at least at that point, we obtain the equation

rmax =

(
3λ5

32π5W 2
0

n2 + 2

n2 − 1

)1/3

. (4.8)

This results in rmax ≈ 218nm for a waist of W0 = 1µm and a wavelength of 1550nm, which agrees

with our simulation (see fig. 4.4). Trapping large particles is, however, demanding as the require-

ments imposed on initial positions and velocities become increasingly strict with growing size.

This is because the optical potential scales linearly with polarizability (and hence volume), while,

according to eq. (4.4), the radiation pressure grows in proportion to the polarizability squared.

Even for our 100nm particles we find the trapping region to be only a few cubic micrometers

large.

As eq. (4.8) reveals, the gradient force can only dominate over the radiation pressure if the beam

waist is sufficiently small. We hence require the spot size to be diffraction-limited, in which case

the waist is related to the numerical aperture (NA) of the lens by the equation

W0 =
λ

π · NA
. (4.9)

Given our NA of 0.81, this yields a theoretical limit of W0 ≈ 610nm at λ = 1550nm.

In order to come close to that value in the experiment, it has proven crucial to precisely align the

tweezer beam with respect to the lens. Even a slight deviation of a few mrad from orthogonal

incidence impairs the focus quality to such an extent that trapping becomes infeasible. This is

due to significant comatic aberration as depicted in fig. 4.5. Since the lens is glued onto its holder,

which we can only move along the three spatial axes, we need to compensate for any tilt by

adapting the direction of the incident beam.

To that end, we illuminate the flat side of the lens from the backside of the vacuum chamber

using a laser diode with a wavelength of 405nm, for which the lens is not anti-reflection coated.

We make sure that the beam is reflected into itself by placing a pinhole directly in front of the

collimator of the diode, at a distance of about 80cm from the lens. We subsequently place a mirror

into the beam path and adjust it until the reflected light passes again through the same pinhole.

Finally, we move the lens out of the way and align the trapping beam with respect to that very
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(a) (b)

Figure 4.5: Theoretical spot diagrams obtained for our custom Thorlabs aspheric

tweezer lens at an angle of incidence of 0° and 1°, respectively (values are in mm). The

figures were created using the RayOptics library for Python.

mirror until the incident field and the backreflex from the tweezer again overlap. We estimate

that this technique allows us to reduce the angular imprecision to well below 5mrad.

When we loaded the trap using the nebulization technique and hence started at pressures of a

few 100mbar as discussed in sec. 4.1.1, we lost the particle as soon as we opened the valve to

evacuate the vacuum chamber. While we have now replaced our original isolation valve with a

continuously adjustable one, which alleviates this issue, the complication is avoided altogether

by loading the trap at about 15mbar using LIAD. However, even though the particle does not get

sucked up by the pump immediately, we have still consistently been losing it as we reduced the

pressure to the range between 1 and 5mbar.

As we have already alluded to in sec. 3.4.1, it is possible that this has been a consequence of the

large tweezer intensity, which we required to be on the order of tens of MW/cm
2

for successful

trapping due to an unsatisfactory beam profile. Indeed, as noted by Millen et al. [70], this may

already be too much for the particle to "survive", depending on the presence of contaminants.

The latter point together with the fact that we have been facing difficulties in resolving the

mechanical frequencies in the Fourier transform of our trapping signal highlights the need for

the tweezer to feature a clean Gaussian mode profile. We now achieve this by letting the beam

pass through a single-mode fiber, which filters out the undesired field components. Despite the

modest coupling efficiency of 30% that we currently attain, we expect significant improvement in

the quality of the signal. As a first step in that direction, we have recently managed to reduce the

trapping power to 200mW without losing the particle.

In the near future, feedback cooling will assist us in keeping the particle trapped during the

transition to high vacuum [101, 102], cf. sec. 4.1.5. This will, for example, counteract photophoretic

forces, which occur as a result of a non-uniform surface temperature [103]. While a vertical trap

setup, where the tweezer propagates antiparallel to gravity, in combination with a high-NA lens

can circumvent the need for feedback cooling [104], we expect that it is indispensable in our setup.

In the medium term, we will also have to consider electrodynamic traps as a possible extension

to our current method. While optical tweezers are in principle simpler to implement and exhibit

higher trapping frequencies, ion traps feature larger trapping volumes and depths [14] and allow

for direct capture in high vacuum [98]. This is particularly relevant if we want to investigate

particles of smaller mass, which diffuse more easily. In addition, fragile species might not survive

direct irradiation with an intense optical trapping field.
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4.1.3 Cavity Locking and Finesse Measurement

As we have already argued in sec. 2.2.3, eq. (2.74), the coherent scattering cooling scheme requires

the optical tweezer to be detuned with respect to the cavity resonance by an appropriate amount.

If not compensated for by a feedback mechanism, unavoidable thermal and mechanical drifts

would cause fluctuations in the detuning over time and thus render cooling impossible. We choose

to stabilize the laser frequency with respect to the cavity mode rather than the other way around

and have so far successfully locked to the cavity resonance. The experimental demonstration of

the required frequency shift is still outstanding, but we discuss the implementation in our setup

in sec. 4.2.2.

Very generally speaking, locking the laser frequency onto the cavity resonance requires an active

feedback from the cavity response, which can originate either from the reflected or transmitted

light. From that, an error signal is derived, which a PID (proportional-derivative-differential)

controller subsequently converts to a control signal. This signal is fed to the laser and prompts it

to adjust the output frequency in a way that counteracts drifts away from the desired value.

One might feel tempted to obtain the error signal directly from the cavity transmission by

defining a setpoint at half the maximum of the corresponding peak. Subtracting this value from

the original signal yields a negative voltage when the transmission is lower than the setpoint

and a positive one when it is higher. This is called side-of-fringe locking. While it is simple to

implement, this method suffers multiple drawbacks. The most obvious one is that the error signal

is symmetric about the transmission maximum, which precludes the ability to lock directly onto

the maximum of the transmission. This inevitably compromises the intracavity optical power

and acquisition range [105].

A more sophisticated approach is top-of-fringe locking. In short, this scheme employs a (very

small) modulation of the laser. The modulation input is then multiplied with the transmission

signal, yielding an error signal that is antisymmetric about the resonance and features a zero-

crossing [106]. However, the locking frequency is ultimately limited by the laser’s modulation

frequency, which in our case is at most 100kHz. This is merely about three times larger than the

cavity decay rate and hence not sufficient to ensure a stable lock.

We consequently choose to employ the more elaborate Pound-Drever-Hall technique. We will

only explain the basic concept here and refer the reader to ref. [107] for a detailed treatment of

the mathematical background. In simple terms, the error signal used in this scheme stems from

the interference between light at the (near-)resonant carrier frequency and a sideband, which

is separated from the latter by an RF frequency that is much larger than the cavity linewidth.

The carrier enters the cavity and eventually leaks out again with a phase shift that depends on

the detuning and is equal to π in case of perfect resonance, while the sideband is rejected by the

cavity and reflected from the first mirror without phase shift.

The power of the total reflected field is subsequently detected by a photodiode. The term of

interest is the interference term of this signal, which oscillates at the RF frequency and contains

the phase relation between the carrier and the sideband [107]. Importantly, the relative phase is

not symmetric about the cavity resonance. In order to get rid of the fast oscillation, the electrical

signal from the detector is then mixed with the (appropriately phase-shifted) RF signal that

generated the sideband and passed through a low-pass filter before it enters the PID. We discuss

the practical implementation in our setup in sec. 4.2.2.

Resonance Detection

Before we can activate the PID, we have to find the resonance frequency. We drive the cavity

at the lowest possible laser output power of 20mW, which we then attenuate by 25dB to avoid

50



instabilities due to thermal lensing. In order to automize the search for the resonance, we write a

Python script that establishes communication with the laser (using the software development kit

provided by NKT Photonics), prompts it to modulate the output wavelength at the maximum

range using an externally generated triangular signal, and gradually increases the wavelength

offset. The laser accomplishes the latter by adapting its temperature and hence the length of its

internal cavity. This procedure continues until a transmission signal from our cavity is detected.

The driving signal has an amplitude of 1V, which is shifted by two 1.5V batteries for technical

reasons, and a frequency of 300mHz.

Figure 4.6: Simplified illustration of the resonance detection and PID activation

procedure. The laser wavelength is modulated by an externally generated RF signal

with an amplitude of 1V. The wavelength offset is then gradually increased until

the oscilloscope triggers on the presence of a resonance. At that point, the script

aims to keep the transmission signal within a range of ±0.75V of the RF signal and

to continuously reduce the modulation range. At the lowest range, the modulation

signal is turned off and the PID is enabled.

Once a signal in transmission has been obtained, we still need to narrow down the modulation

range of our laser in order for the PID controller to work. To that end, we complement the script by

a basic custom PID, which seeks to maintain the resonance at the zero-crossing of the modulation

signal. If the transmission maximum occurs at a negative voltage, we increase the wavelength

and vice versa. As soon as we keep the resonance within ±0.75V for more than 10 seconds, we

reduce the modulation range by 20% until we are down to the smallest one possible. At that point,
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Figure 4.7: Overlap of the cavity mode and the ingoing beam as a function of

distance between the coupling lens and the center of the cavity for initial beam

diameters of 0.4mm (blue), 0.87mm (orange) and 1.21mm (green). We currently use a

collimator with a beam diameter of 0.87mm. The light is focused by a plano-convex

lens with a beam focal length of 75mm, which is also approximately the distance to

the cavity center. The cavity length is assumed to be 18mm, the width of the mirrors

3mm and their radius of curvature 5cm, cf. sec. 4.2.2.

the transmission signal is limited by the cavity decay time and the PID is switched on, which,

provided a suitable choice of parameters, keeps the cavity locked. The (simplified) procedure is

illustrated in fig. 4.6.

The Pound-Drever-Hall technique only works under the condition of efficient coupling to the

cavity mode as measured by the dip in the backreflex from the mirrors. We get a maximal value of

about 70%, which is satisfactory for our purposes. The theoretically achievable coupling efficiency

as a function of distance between the lens and the center of the cavity is displayed in fig. 4.7 for

different diameters of the ingoing collimated beam.

We use a RedPitaya as a function generator for the modulation signal, as an oscilloscope to

measure the cavity transmission and transfer the data to our script and as PID controller, the

working principle of which we will now clarify.

PID Controller

A PID controller takes an error signal e(t) as an input and generates a control signal c(t) by

applying a proportional (P), integral (I) and derivative (D) correction with the aim of counteracting

any deviation of e(t) from zero, i.e.

c(t) = Kpe(t) +Ki

∫ t

0

dτ e(τ) +Kd
de(t)

dt
. (4.10)

A large Kp-parameter increases the sensitivity as it causes even minor changes in the input to

stimulate a pronounced response by the PID, but also entails the risk of overcorrection. The

integral term adds up the values of the error signal over time. This is meant to counteract drifts

52



that occur over a larger timescale. If, on the other hand, positive and negative values of the error

signal consistently cancel each other out, the integral term in the control signal vanishes.

The derivative term acts on the rate of change of the error signal and has predictive character.

A large positive (negative) slope at a specific point in time indicates a higher (smaller) value of

the error signal in the future, which the PID controller seeks to prevent. Applying the derivative

correction is, however, only constructive if the noise in the error signal is very low. Since this does

not hold in our case, we set Kd to zero.

Finesse Measurement

In order to measure the cavity’s finesse, we first have to determine its free spectral range. To

that end, we modulate the beam using an electro-optic modulator (see sec. 4.2.2) and vary the

modulation frequency until the cavity transmission peaks corresponding to the carrier and the

sidebands overlap. When this is the case, they fulfill the resonance condition at the same time,

indicating that they are separated by exactly one FSR.

Thereafter, we imprint sidebands at 200kHz as a reference. They fulfill the resonance condition

at a different point in time as the laser scans over a range of frequencies. A Python script then

detects the transmission peaks pertaining to the carrier and the sidebands and fits them to

Lorentzian curves. From the full widths at half-maximum, the separation of the peaks in time

and the modulation frequency, it computes the cavity’s linewidth and, by virtue of eq. (2.51), the

finesse. We find the FSR at 8.22GHz and measure a finesse of 295,000, which is only slightly lower

than the 314,000 that we would theoretically expect invoking eq. (2.48) at a nominal reflectivity

of 99.999%.

Obtaining a valid result requires the width of the transmission curve to be limited by the cavity

decay rather than the frequency at which the laser modulates its wavelength. Secondly, the

sideband frequency has to be chosen wisely, i.e. significantly larger than the cavity’s decay rate

to prevent the carrier and sideband peaks from overlapping, but small enough to avoid drifts in

the resonance during the modulation.

4.1.4 Detection

We will now provide an overview over the different detection schemes that we currently (or are

planning to) employ to keep track of the particle’s motion.

Direct Scattering

As a simple first step, we insert a multimode scattering fiber with a numerical aperture of 0.5 at

a 45° angle with respect to the tweezer-cavity plane as illustrated in fig. 4.1. In order to avoid

picking up any green light scattered from the LIAD beam, we place a longpass filter with a cutoff

wavelength of 1500nm in front of the photodiode.

It is worthwhile to estimate how close we should position the focus of the trapping beam to the

tip of the scattering fiber. This consideration is contingent upon whether the detection efficiency

is limited by the fiber’s active diameter or its numerical aperture. The latter holds whenever the

distance D between the scattering center (which we can assume to be located in the focus of the

tweezer) and the fiber tip satisfies

D <
d

2 · tan(arcsin(NA)/2)
, (4.11)

where d is the diameter of the fiber core, which in our case is 600µm. Under that condition, the

cone of the scattered light that is picked up by the fiber is fully contained within its active cross

sectional area. As a consequence, we can move the tip close to the focus (and hence maximize

the signal) without becoming more sensitive to alignment as long as D ≲ 1.1mm. In order not
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to cut off the highly divergent tweezer beam, we choose a distance of 200µm as a reasonable

compromise.

As for the alignment, we first position the lens such that the beam is focused onto the fiber tip,

which we verify by observing the shadow of the fiber with an InGaAs infrared camera (Xenics

Bobcat 320). The fiber is inside the focus when the upright and inverted shadows overlap. We

then displace the lens diagonally (i.e. parallel to the fiber) by the desired distance.

Figure 4.8: Motional PSD of a trapped SiO2 nanoparticle at a pressure of 12.2mbar.

The first peak at a frequency of 2π·14.0kHz corresponds to the oscillation in the

x-direction (along the tweezer axis), while the second one at 2π·55.0kHz pertains to

the motion along y and z. The red curve indicates a fit with eq. (3.42).

In fig. 4.8, we show the PSD of a trapped nanoparticle at 12.2mbar obtained from the scattering

fiber. However, a fit with eq. (3.42) indicates a particle radius of (164.6 ± 0.6)nm compared to

the expected 75nm. Further data are required to determine whether this disparity is a matter of

coincidence or of a systematic issue.

Alternatively, one may detect the light that is scattered in the forward or the backward direction

of the tweezer beam. We choose the latter option and employ a balanced detection scheme,

which we will now explain.

Balanced Backscattering Detection

By detecting the light scattered in the opposite direction of the incident beam, we benefit from

the larger numerical aperture of the tweezer lens as well as from the fact that the direction of

observation is guaranteed to be perpendicular to the polarization axis. The latter point ensures

that the scattering intensity is maximized, cf. eq. (2.44).

More concretely, we can estimate the total scattered power for a SiO2 nanoparticle of 100nm

diameter, a tweezer power of 200mW, a wavelength of 1550nm and a waist of 1µm to be about

310nW according to the relation

Pscatt = σscattItw, (4.12)
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where σscatt is given by eq. (4.4). Out of that, the tweezer lens would pick up 60nW and the

scattering fiber between 900pW when the polarization axis is parallel to the fiber and 23nW when

it is orthogonal.

In addition to the above considerations, the backscattered light allows us to employ a balanced

detection scheme [34] in order to differentiate between the mechanical oscillations along the

two spatial axes perpendicular to the propagation direction of the tweezer. To that end, we first

split the beam of the scattered light into two equal parts, cut one beam in the horizontal and the

other one in the vertical direction using D-shaped mirrors and detect both halves of each beam

using balanced photodetectors (Thorlabs PDB440C-AC). Those detectors subtract the two input

signals from each other and generate a corresponding RF output at a bandwidth of 15MHz.

The difference in the incident power is given by

∆Pin =
cϵ0
2

[∫ 3π/2

π/2

dϕ

∫ ∞

0

dr r |Ein(r, ϕ)|2 −
∫ π/2

3π/2

dϕ

∫ ∞

0

dr r |Ein(r, ϕ)|2
]
, (4.13)

where (r, ϕ) denote the polar coordinates in the plane perpendicular to the propagation direction

of the light and Ein the incident field. Naively, one might suspect that the imbalance in the

respective powers is due to a spatial displacement of the beam as a result of the particle’s motion.

However, given the small amplitude of the oscillations, which is only on the order of hundreds of

nanometers even prior to cooling, this effect would be unobservably small.

Instead, the detection method relies on the difference in the phases acquired by the scattered

spherical wave as it travels from the location of the particle to the tweezer lens [76]. When the

particle is displaced from the center of the focal spot, those phases are asymmetric about the

optical axis. Upon overlapping the scattered light with a reference beam, this gives rise to an

observable shift in the intensity distribution. While we ultimately aim to enhance its power using

the reflection from a glass plate, a faint reference is always present due to the non-zero reflection

of the lens and the other elements inside the optical path. In that sense, the detection constitutes

a self-homodyne measurement as we will explain in further detail below.

Homodyne Detection

By superimposing a probe signal with a strong local oscillator, one can measure either of the

quadratures of the light field under investigation (or a combination of both). What is observed

in the end is determined by the phase of the reference. Balanced homodyne detection, which

we have already alluded to in the previous section, is a special case of this technique, whereby

light from both outputs is collected to generate the difference signal. This effectively eliminates

common noise from the local oscillator.

The reference can either be obtained by splitting off a fraction of the ingoing tweezer beam, which

is then recombined with the backscattered light at a beamsplitter, or, as mentioned before, we

may exploit the light that is retroreflected at normal incidence by a glass plate. We perceive the

latter as the more stable and hence preferable option. In a more sophisticated approach [108],

one could also use the light reflected by a mirror downstream of the focus. This would, however,

also influence the trapping potential and hence bring about additional complications.

Irrespective of how we obtain the reference, the key point is that this detection scheme is sensitive

to the particle’s ro-translational motion, which is encoded in the phase of the scattered light, i.e.

ϕsig = ϕsig(r(t),Ω(t)). In particular, this is also true for the axial degree of freedom along the

propagation axis of the tweezer. To see this, note that the total electric field is given by the sum

of reference and signal,

Etot = Erefe
i(ϕref+ωt) + Esige

i(ϕsig(r(t),Ω(t))+ωt). (4.14)

The intensity is hence proportional to

|Etot|2 = |Eref|2 + |Esig|2 + 2ErefEsig cos
(
ϕref − ϕsig(r(t),Ω(t))

)
. (4.15)
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Since |Eref| ≫ |Esig|, the amplitude of the last term is substantially larger than |Esig|2. Restricting

ourselves to the motion along the z-axis and assuming that we can expand z(t) harmonically, we

can write [76]

cos
(
ϕref − ϕsig(z(t))

)
≈ cos(ϕref − ϕ0 cos(Ωzt))

= cos(ϕref) cos(ϕ0 cos(Ωzt)) + sin(ϕref) sin(ϕ0 cos(Ωzt))

= cos(ϕref)

(
J0(ϕ0) + 2

∞∑
n=1

(−1)nJ2n(ϕ0) cos(2nΩzt)

)

− 2 sin(ϕref)
∞∑
n=1

(−1)nJ2n−1(ϕ0) cos[(2n− 1)Ωzt],

(4.16)

where Jn(z) are the Bessel functions of the first kind. Getting rid of the first term of eq. (4.16) by

imposing ϕref = −π/2 [76] ensures that the dominant contribution comes from the oscillation

at the mechanical frequency Ωz . Filtering out the constant terms in eq. (4.15) by means of

the balanced detection yields a signal that varies sinusoidally with Ωz at a strength that is

proportional to the amplitudes of the reference and the scattered field as well as to the amplitude

of the mechanical oscillation provided that ϕ0 ≪ 1.

Heterodyne Detection

Heterodyne detection is conceptually similar to the homodyne scheme, but assumes the two

fields to oscillate at distinct frequencies ωref and ωsig, respectively. We will employ this technique

in order to differentiate between the Stokes and Anti-Stokes photons that the particle scatters

into the cavity mode and eventually leak out through the mirrors. This will allow us to extract

the motional temperature via sideband asymmetry thermometry, cf. sec. 3.4.1.

As we will discuss in further detail in sec. 4.2.1, we couple a small fraction of the tweezer beam

into a polarization-maintaining fiber and use this as a reference. In analogy to the previous

calculation, the modulus squared of the total field incident on the detector reads

|Etot|2 = |Eref|2 + |Esig|2 + 2ErefEsig cos
(
ϕref − ϕsig(r(t),Ω(t)) + (ωref − ωsig)t

)
. (4.17)

Defining ∆ω = ωref − ωsig and again regarding only the motion along z, we can expand

cos
(
ϕref − ϕsig(z(t)) + ∆ωt

)
≈ cos(ϕref +∆ωt)

(
J0(ϕ0) + 2

∞∑
n=1

(−1)nJ2n(ϕ0) cos(2nΩzt)

)

− 2 sin(ϕref +∆ωt)
∞∑
n=1

(−1)nJ2n−1(ϕ0) cos[(2n− 1)Ωzt].

(4.18)

Setting the phase of the reference equal to zero results in

cos
(
∆ωt− ϕsig(z(t))

)
≈ J0(ϕ0) cos(∆ωt) +

∞∑
n=1

(−1)nJ2n(ϕ0)

{
cos[(∆ω − 2nΩz)t]

+ cos[(∆ω + 2nΩz)t]

}
−

∞∑
n=1

(−1)nJ2n−1(ϕ0){
sin[(∆ω − (2n− 1)Ωz)t] + sin[(∆ω + (2n− 1)Ωz)t]

}
.

(4.19)

The spectrum hence features a peak at the difference frequency and sidebands at the harmonics

of the mechanical frequency. Their signal strength is proportional to the modulus squared of

the corresponding cavity transfer function, eq. (2.70), at the given detuning [34]. A large ∆ω is

generally preferable due to a lower noise floor [76], but it must not exceed the detector bandwidth,

which, as we have said previously, is 15MHz in our case.
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4.1.5 Optical Feedback Cooling

As we have already mentioned, optical feedback cooling [25] will allow us to go to high vacuum

without losing the particle as we traverse the intermediate pressure regime [102].

To that end, we place an acousto-optic modulator (AOM, Brimrose) in the beam path and drive

it at an RF frequency of 85MHz using a signal generator (Tabor LS3084B). We optimize the

alignment until the efficiency of diffraction into the first order is maximal and reduce the RF

power to 160mW, at which point the diffraction efficiency amounts to about 20%. This is sufficient

for our purposes, since we expect the required modulation depth to be on the order of a few

percent [109].

We aim to keep the power of the electrical signal as low as possible in order to minimize degrada-

tion of the beam shape due to thermal lensing. As we are only interested in intensity modulation,

we henceforth only use the zeroth diffraction order and dump the first. Upon switching on the

signal generator, we let the AOM heat up for 15 minutes in order to stabilize the output beam.

The next step that we will need to undertake is to lock on the frequencies in the FFT, cf. fig.

4.8, using a lock-in amplifier (Zurich Instruments HF2LI). This device extracts the phase and

amplitude of a specific frequency in a noisy input signal, yielding a clean output that is in phase

with the particle’s motion and drives the amplitude modulation. To that end, the lock-in amplifier

employs a phase-locked loop (PLL), whereby it mixes (i.e. multiplies) the noisy signal with a

reference of a known phase and frequency. This procedure generates a spectrum featuring the

sum and the difference frequency of the two inputs. The latter is extracted by passing the signal

through a low-pass filter. A PID controller subsequently creates a feedback signal, which is fed to

a voltage-controlled oscillator and converted to a frequency modification of the reference to close

the loop.

If the scattering signal is sensitive to the particle’s position rather than its absolute distance from

the trap center (as is the case in balanced detection, cf. sec. 4.1.4), the modulation must be at

twice the frequency of the feedback signal. However, if we use the signal from the scattering

fiber, which is only dependent on the particle’s displacement, the modulation frequency must

match that of the detected signal.

4.2 Setup

Our basic setup is displayed in fig. 4.9. The cornerstone of our experiment is the Koheras Adjustik

E15 laser from NKT photonics, which is connected to a Koheras Boostik E15 fiber amplifier. The

laser operates at a wavelength of 1550nm and features an ultra-narrow linewidth of <1kHz as

well as exceptionally low phase noise of 0.4µrad/(m
√

Hz) at 10kHz.
3

The maximum output power

is 10W. The wavelength is a sensible choice as both SiO2 and Si
4

exhibit extremely low absorption

in the near-infrared regime.

We place an isolator (IO-5-1550-HP) right behind the (pre-installed) collimator terminating

the optical fiber of the laser, followed by a λ/2-plate and a polarizing beamsplitter (PBS). The

combination of the waveplate and the PBS allows us to continuously tune the effective optical

power even below the minimal output power of the amplifier, which is about 500mW. We keep

the transmitted (p-polarized) beam as it features a more satisfactory beam profile and dump the

s-polarized contribution that is reflected by the PBS.

The beam is then divided into two branches by a beam sampler, which for p-polarized light and

at a 45° angle reflects about 0.6% of the incident radiation.

3
This is based on the specifications and has not yet been tested.

4
We might want to use Si instead of SiO2 in the future due to its higher polarizability.
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Figure 4.9: Simplified sketch of our current setup. The tweezer beam passes an

AOM, a mode cleaning fiber (MCF), a λ/2 and a λ/4-plate, a 70:30 beamsplitter and

a telescope before it enters the vacuum chamber (shaded in blue). A small fraction of

the beam is split off by a beam sampler and coupled into a polarization-maintaining

fiber. Half of that light passes an EOM and a filtering cavity (FC) and is used for

locking the cavity, while the other half serves to perform heterodyne detection.

We will now separately discuss those two parts of the setup. The major part of the optical power

is dedicated to the tweezer, while the rest is coupled into an optical fiber and used for cavity

locking and for heterodyne detection as explained in secs. 4.1.3 and 4.1.4, respectively.

4.2.1 Tweezer Preparation

After the beam sampler, the tweezer passes through the AOM and is subsequently coupled into

a single-mode fiber for mode cleaning. We detect a small portion of the light with the help of

a fiber-based 95:5 beamsplitter to keep track of the coupling efficiency and employ a circulator

to detect the particle’s motion along the tweezer axis. Since we eventually require the beam

to be elliptically polarized as we have argued in sec. 2.3, we insert a λ/2 and a λ/4-plate upon

recollimation.

After that, the beam is guided through a 70:30 beamsplitter, which serves the purpose of deflecting

the backscattered beam. As we have said previously, we are then planning to insert an uncoated

glass plate with a reflectivity of about 3% at normal incidence to derive the reference. We estimate

that the reflected power exceeds that of the backscattered light by a factor of 10
5
.

The transmitted beam is subsequently expanded tenfold with a telescope, which consists of an

aspheric lens with 10mm focal length and an achromatic doublet with a focal length of 100mm.

Thereby, we completely fill the aspheric tweezer lens (custom-made by Thorlabs) after the beam

enters the vacuum chamber via two periscope mirrors. The large beam diameter alongside the

lens’ high NA of 0.81 ensures a diffraction-limited spot size, which we require both for successful

trapping (see sec. 4.1.2) and to enhance the optomechanical coupling. The tweezer lens is mounted

on a SmarAct nanopositioning stage, which can be moved along all three spatial axes.

Backscattering detection using the D-shaped mirrors and the balanced photodetectors has also

already been set up.
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Figure 4.10: The current version of our optical cavity. The mirror holder, which

is clamped onto an aluminum block, is made out of Zerodur to reduce thermal

perturbations and features a hole on the top through which the particles are injected.

The mirrors are separated by a distance of about 18mm. Design by Stephan Troyer.

4.2.2 Cavity and Cavity Locking

Our optical cavity, which is shown in fig. 4.10, is formed by two spherical mirrors (FiveNine

Optics) with a diameter of 7.75mm, a nominal reflectivity of 99.999% and a radius of curvature

(RoC) of 5cm. They are separated by a distance of approximately 18mm, which means that we

are operating far away from the border of the stability zone. This results in an undesirably large

beam waist of about 100µm inside the cavity as follows from the relation [110]

w2
0 =

λ

2π

√
d(2RoC− d), (4.20)

where d is the distance between the mirrors.

While a smaller waist would be preferable, early attempts to obtain a transmission signal using

mirrors with an RoC of 1cm, which would reduce the waist to about 38µm, have failed due to

complications regarding the alignment. While we still intend to eventually employ the 1cm

mirrors, we for now content ourselves with the 5cm counterparts.

The alignment of the cavity is then facilitated by visually preadjusting the beam using a laser

diode with a wavelength of 1370nm. There, the cavity mirrors are transmissible enough to observe

the outgoing light with an infrared detector card but still sufficiently reflective for the light of

three to four cavity roundtrips to be visible. Overlapping them provides a valuable indication of

the required beam direction and position.

In order to counteract drifts in the cavity resonance due to thermal fluctuations, we resort to

a cavity holder made out of Zerodur
®
, a special glass-ceramic by Schott, which features an

exceptionally low thermal expansion coefficient of 0 ± 0.1ppm/K. The cavity mirrors are glued

into the holder, implying that the in- and outcoupling mirrors constitute the only degrees of

freedom for alignment.

As far as the locking is concerned, we have already mentioned that we couple a tiny fraction of the

tweezer beam into a polarization-maintaining fiber. We then maximize the power in the horizontal

polarization direction by rotating the fiber collimator until the signal in the vertical output port of

a fiber-based PBS drops to zero. We let half of the light pass through an electro-optic modulator

(EOM), which is driven by a signal generator (Rohde & Schwarz SMA100B) with a frequency
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range of 8kHz to 12.75GHz. The EOM exploits the Pockels effect, i.e. a variation in the refractive

index of a material as a result of an applied voltage, to modulate the phase of the electric field

according to

E0e
iωt 7→ E0e

iωt+iβ sin(ωmodt), (4.21)

where ωmod is the modulation frequency. Following a similar argument as outlined in sec. 4.1.4

for homodyne detection, it can be shown that this modulation imprints sidebands at the integer

multiples of the modulation frequency with weights that are determined by the Bessel functions.

While we have only driven the cavity resonantly so far, we eventually need to add an offset

corresponding to the desired detuning (cf. sec. 2.2.2) plus one free spectral range. The latter shift

is required in order to distinguish the locking signal from the light scattered by the particle. This

means that we need to isolate the first sideband, which we will do with the help of a fiber-based

filtering cavity (Luna Innovations) with a low finesse of 100.

For manufacturing reasons, the filtering cavity is connected to non-polarization-maintaining

fibers, which requires us to add polarization paddles in front of it. Rotating them by an appropriate

amount gives rise to (controlled) stress-induced birefringence, allowing us to attain the desired

output polarization. We will verify the polarization state using another fiber-based polarizing

beamsplitter. We then let the beam pass through a circulator and couple it into the cavity. In

order to do so efficiently, the beam diameter, the focal length of the lens and the distance from the

lens to the center of the cavity must be chosen in such a way that the mode overlap is maximized

as shown in fig. 4.7.

For the locking itself, we use a Toptica PDH detection module (PDD 110). This device contains

a signal generator with a frequency of 10MHz and adjustable amplitude, an amplifier for the

error signal as well as a phase shifter. We drive the EOM with the (amplified) RF signal from

the PDH module and detect the backreflex of the cavity using the circulator. The corresponding

photodiode is connected to the error signal input of the module. The resulting PDH signal is then

passed through a low-pass filter and directed to the RedPitaya, whereupon the PID converts it to

the servo signal, see sec. 4.1.3.

We also pick up the light that the particle scatters into the cavity to perform heterodyne detection,

cf. sec. 4.1.4. The reference is provided by the remaining half of the beam, which is not used

for locking. The required frequency shift is accomplished by means of two fiber-based Fiber-Q
®

AOMs (Gooch & Housego) with an operating frequency of 200MHz.
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Chapter 5

Rotational Quantum Phenomena and Applica-

tions

Gaining control over rotational degrees of freedom and exploring their quantum behavior is a

critical task for several reasons, a concise summary of which is provided by ref. [111]. Apart

from the elemental interest in generalizing proven concepts to more complex forms of motion, it

constitutes a promising pathway towards ultrasensitive pressure [13] and torque [13, 112, 113]

sensing, which may not only allow to experimentally verify the existence of Casimir torques

[114] and the closely related vacuum friction [115, 116], but also highlights the potential for

commercial applicability provided that questions of scalability and integrability are addressed.

On the more fundamental side, the nonlinearity of rotations gives rise to peculiar effects that

are worth studying in the quantum domain such as precession [117] and the tennis racket effect
[118]. The latter refers to the periodic flipping of the axis of medium moment of inertia – the

mid-axis – in an extended object featuring three distinct moments of inertia in the frame of

reference that diagonalizes the inertial tensor. While the period of the flipping diverges as the

initial conditions approach perfect mid-axis rotation [118] and the tennis racket flips of particles

inside an ensemble with probabilistically distributed rotational states hence quickly average out

to zero, Ma et al. found [118] that quantum tunneling between rotations in opposite directions

may render the flips persistent given that the temperature is sufficiently low.

As we will discuss in further detail below, the quantization of angular momentum opens up a

novel route towards high-mass interferometry [10]. In addition, several proposals have been put

forward advocating levitated nanoparticles as ideal testbeds in the search for physics beyond the

standard model [119] and even hinting at the possibility to utilize them as qubits [120]. While it

is (as of now) at least doubtful that levitated mesoscopic objects offer any notable technological

advantage over more established systems such as trapped ions [121] or superconducting qubits

[122] in the field of quantum information processing, the experimental methods that have been

and still need to be developed in order to conduct even proof-of-principle demonstrations will

allow for some valuable insights into how the quantum world unfolds in settings that are closer to

our intuitive perception of reality, for example in complex (bio-)molecules and ultimately perhaps

even in living organisms [123].

In the present section, we will summarize a few of the existing proposals and experiments with

the aim of providing a compelling argument for further research in this field.



5.1 Orientational Quantum Revivals

In view of our group’s background, one of our main interests lies in the prospect of conducting

interferometric experiments with rotational quantum states [10] in the foreseeable future. When

a particle is initially prepared in a well-defined orientation and then released from its trapping

potential to evolve freely, the wave packet disperses into a rotational superposition comprising

(in the ideal case) all possible angular momentum states.

Given the system’s initial state |ψ(0)⟩ and Hamiltonian Ĥ , which we assume to be time-indepen-

dent, its state after some time t reads

|ψ(t)⟩ = e−iĤt/ℏ |ψ(0)⟩. (5.1)

In the case of a quantized free rotor, we have Ĥ = L̂2/(2I), where L̂2
is the squared total angular

momentum operator. Unlike the Hamiltonian of a harmonic oscillator, the free rotor Hamiltonian

features unequally spaced eigenvalues Ej = ℏ2j(j + 1)/(2I), j ∈ {0, 1, 2, ...}. Assuming a

perfectly well-defined initial orientation, |ψ(0)⟩ is a balanced superposition when written in the

angular momentum basis {|j⟩}. We therefore get for |ψ(t)⟩ the expression
1

|ψ(t)⟩ ∝
∞∑
j=0

e−i ℏ
2I

j(j+1)t |j⟩. (5.2)

This superposition eventually returns to the original localized state whenever ℏt/(2I) is an integer

multiple of π, i.e. after integer multiples of the revival time τ ,

τ =
2πI

ℏ
. (5.3)

Orientational quantum revivals constitute a direct test of angular momentum quantization in

massive objects as they critically rely on the fact that the quantum number j can only take integer

values.

Furthermore, this scheme does not require the particles to be prepared in a spatial superposition

[8, 124], which is challenging to implement in practice. Near-field interferometry based on the

Talbot effect [9], for example, would require flight times amounting to at least the Talbot time

τT =
md2

2πℏ
, (5.4)

where d is the grating period. Inserting the expression for the moment of inertia of a solid sphere
2
,

Isphere =
2

5
mr2, (5.5)

into eq. (5.3), we observe that τ/τT scales with (r/d)2. When the grating period of the Talbot

interferometer is larger than about twice the particle diameter, we have τ < τT. This is a

significant advantage of the orientational revival approach because the shorter evolution time

relaxes complications imposed by gravity – most notably the required height of the interferometer

– and decoherence. Another valuable feature is the fact that it allows the same particle to be used

again after each run. This is crucial due to the lack of loading mechanisms with high repetition

rates and, in addition, prevents experimental errors caused by variations in the particle shape.

1
We note that this state is not normalizable. This is because – for the sake of intuitiveness – we took the initial

wave function to be infinitely sharply peaked in orientation space, which is not a physical assumption. For a proper

treatment under realistic conditions, we refer the reader to ref. [10].
2
This assumption is made for simplicity and because our particles would in the end only slightly deviate from a

perfectly spherical shape.

62



The protocol [10] consists of an initial alignment stage, whereby the nanorotor is oriented by

means of two counterpropagating linearly polarized laser beams, followed by a free evolution

upon releasing the particle from the trap, detection of the orientational quantum revival by the

light it scatters as a function of time around t = τ , and switching the optical potential back on to

repeat the experimental run.

For an (almost) spherical silica particle with a diameter of 50nm, which is roughly the size that

we aim for in our cooling experiment, the revival time is on the order of seconds. An experimental

realization hence does not seem entirely out of the question once the rotational degrees of freedom

can be reliably cooled. However, in order to minimize the revival time (and hence the distance of

free fall) and to facilitate the initial orientation, thin, light nanorods are probably best suited for

this task.

5.2 Ultrasensitive Sensing

Considering the excellent isolation of optically levitated nanoparticles in ultra-high vacuum, their

small mass (or moment of inertia) in comparison to macroscopic objects, the ability to couple

their ro-translational motion to optical fields and their versatility in that they are responsive to

various types of interactions, it does not come as a surprise that they have found application

as ultrasensitive detectors of forces and torques. Ultimately, this could even allow to beat the

standard quantum limit [125, 126], which bounds the product of measurement imprecision and

backaction and may only be overcome using specially tailored states such as squeezed states

[127] or involved noise-cancelling techniques like backaction evasion [128]. Still, even the most

sophisticated approach will fail if thermal fluctuations, which constitute an independent and

ever-present source of noise (cf. sec. 3.4), are not mitigated by cooling.

As hinted at previously, levitated nanosensors may even open the way to observe Casimir torques

[114], the rotational analogue to the more extensively studied Casimir force, which arises as a

consequence of vacuum fluctuations when an object is placed in close proximity to a surface [129].

In their paper, Xu and Li [114] propose to levitate a nanorod inside a linearly polarized tweezer

near a birefringent plate. The Casimir torque is expected to change the particle’s orientation

provided that the long axis of the rod is neither parallel nor perpendicular to the plate’s optic

axis [114].

Experimentally, the rotational motion of a silicon nanorod has successfully been locked to an

external clock [13]. The phase lag between the driving force and the rotation provides a direct

measure of the external torque exerted on the test particle and the damping induced by collisions

with gas molecules. The latter, in turn, is directly proportional to the pressure when the mean free

path of the particles is large compared to the size of the object. The force sensitivities attained

with optically levitated nanoparticles have improved significantly in a short period of time with

state-of-the-art experiments now operating within zepto- [130] and even yoctonewton [131]

ranges. At this level, it is already possible to measure the rate of heating caused by photons

scattering off the probe particle [85]. This is a formidable task as the photonic recoil can only

dominate over collisions with background gas in the limit of extremely strong isolation from the

environment.

5.3 Search for Beyond-Standard Model Physics

Levitated nanoparticles have repeatedly been suggested as promising candidates in the search

for beyond-standard model physics [119]. As the more traditional collision experiments become

exceedingly demanding with increasing collision energy thresholds, improvements in the mea-

surement sensitivity that enable the direct observation of tiny couplings gain further attraction.

As alluded to in sec. 5.2, nanoparticles have the potential to serve this purpose.
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Some of those detection schemes rely on narrow wavepackets and/or non-trivial quantum states,

the preparation of which necessitates efficient cooling and control. This is the case, for example,

in the proposed investigation of short-range gravitational forces by the shift of the interference

fringes in a Talbot interferometer located in close proximity to a wall of varying density [132] or

in the search for ultralight dark matter by its decohering effect on a spatial superposition of a

massive object [133], where a broad distribution of motional states would degrade the visibility

of the interference fringes.

In the future, it may be possible to extend the latter proposal to include (and potentially benefit

from) rotational decoherence. More specifically, one of the biggest obstacles standing in the

way of observing dark matter-induced decoherence is the expected rarity of collision events and

the large mass of the test particle that is hence required. Preparing such particles in a spatial

superposition is challenging, in particular if a large separation is required in order to operate

within the short-wavelength limit (cf. sec. 3).

In the context of orientational superpositions, the relevant length parameter is not the delocaliza-

tion distance but the dimensions of the particle itself, which can in principle be scaled up much

more easily. Because larger particles tend to scatter preferentially in the forward direction, it

may even be favorable to operate within the long-wavelength limit in the search for light dark

matter. The short-wavelength limit would then still apply to collisions with ambient gas molecules

because they are much more massive than the particles that one seeks to detect.

In the long-wavelength regime and assuming a spheroidal particle with two identical main axes

such that α1 = α2 ̸= α3, the decoherence rate is proportional to the squared sine of the angular

distance between the respective orientations [66]. Observing such a dependence together with

the right choice of particle size would allow to constrain the range of possible de Broglie wave-

lengths of the decoherence source. While this would, of course, not imply the presence of hitherto

unknown types of matter and the experimental challenges still remain, it may constitute another

way of characterizing the underlying process. It is also noteworthy that the ratio between the

rotational and translational decoherence rates scales with the inverse of the mass of the colliding

particle [134]. In view of the rivaling scattering of ambient gas, light dark matter may thus have

a higher chance of decohering a rotational superposition than a spatial one.

Another proposed experiment seeks to reveal potential modifications to Newton’s law of gravity

by measuring the displacement of a cooled microsphere trapped inside an optical cavity close to

an oscillating source mass of varying density behind a mirror surface [135]. While only spherical

particles were originally considered, such a test might as well benefit from the consideration

of rotational degrees of freedom via the torque an oscillating mass distribution exerts on the

particle.

However, not only possible modifications to the inverse-square law but the nature of the gra-

vitational force itself largely remains a mystery as a unifying theory of gravity and quantum

mechanics does still not exist. This is (partly) due to the elusiveness of the graviton. An idea by

Bose et al. [136] addresses the latter issue based on their argument that gravity is only able to

generate entanglement if the force is mediated by a quantized field. Unfortunately, their proposal

relies on the simultaneous creation of spatial superpositions of two micron-sized particles over

distances on the order of 100µm [136], which is highly unlikely to be experimentally feasible in

the near future.

Still, gravitational entanglement can not only be established between two spatial superpositions

but potentially also between a translationally and a rotationally delocalized particle. In fact, as

Carlesso et al. argue [137], even a single “quantum torsion balance” composed of two nanospheres

that are connected by a rigid rod of negligible mass can serve to test the “quantumness” of gravity.

To that end, the particle needs to be prepared in an orientational superposition state and one

would detect the change in the separation angle after a sufficient time of free evolution. On

the experimental side, silica nanodumbbells, which geometrically resemble the aforementioned
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nanomechanical torsion balance, have successfully been synthesized, optically trapped and driven

to GHz rotations [138].

5.4 Quantum Information Processing

The fact that quantum systems can exist in superposition states has ushered in a new era of

information processing. Bearing in mind the linearity of the unitary operators that represent the

time evolution of a closed quantum system, performing a single quantum operation on such a

state is equivalent to applying a classical function to multiple inputs at once. This gives rise to

a massive speed-up in certain computational tasks as compared to what a classical computer

is able to achieve. Perhaps most famously, this is true for the problem of boson sampling [139].

The most basic non-trivial carriers of quantum information are two-dimensional systems, termed

qubits. A profound discussion of the criteria a specific system needs to satisfy in order to make a

suitable qubit for quantum information processing goes beyond the scope of thesis and may be

found elsewhere [140]. We may, however, still ask ourselves whether levitated nanoparticles can

in principle serve this purpose.

Indeed, Romero-Isart et al. [123] propose a protocol to create a phononic superposition of the type

|ψ⟩ = 1√
2
(|0⟩+ |1⟩) by injecting a single-photon state into an optical cavity in which the particle

is harmonically trapped and cooled to the ground state. The pulse can be tailored in such a way

that the photonic and phononic excitations are swapped with a probability of 1/2, generating

a maximally entangled state between the two systems. A balanced homodyne detection of the

output mode then leaves the particle in a superposition of the ground and first excited state [123].

The question remains whether such systems are scalable and if (and how) it is possible to apply a

universal set of quantum gates.

The latter requires a way to make the qubits interact with each other in a controlled and coherent

manner and indeed, there has been progress on how to achieve that in multi-particle systems [141,

142]. Of particular importance in that regard are entangling gates, which are capable of generating

non-classical correlations given certain input states. An example for such an operation is the

CZ-gate, which is defined by the transformation CZ|i⟩|j⟩ = (−1)ij|i⟩|j⟩, where i, j ∈ {0, 1}.

The CZ-gate together with all single-qubit operations constitutes a universal set of gates for

quantum computing [143]. Exploiting the optical binding [142] between particles in separate

optical tweezers with individually tunable phases, it would be conceivable to implement a CZ-gate

in a way similar to the Cirac-Zoller scheme [143]. Such a protocol would require cooling the

center-of-mass normal mode of two coupled mechanical oscillators to the ground state and the

ability to individually address the particles and excite their motional states.

It must be noted, however, that the energy levels of a quantum harmonic oscillator are not suitable

as qubits because they are equally spaced and can hence not be individually addressed. Luckily,

optical potentials are highly tunable, which permits the introduction of anharmonicities [144]

that give rise to a more complex level structure. This will likewise affect the orientational degrees

of freedom since, as we have seen in sec. 2.3, they also feel a harmonic potential generated by the

trapping beam.

It is well-known that entanglement provides a valuable resource not only in the field of quantum

computation, but also in quantum cryptography and communication. Different techniques have

been suggested to create and certify entanglement with levitated nanoparticles. One promising

idea is based on coherent scattering and requires only modest modifications from our current

setup [40]: If two particles are trapped in separate tweezers, the power of which (and hence the

respective mechanical frequencies) may be individually controlled, and the cavity is detuned

by the average of those frequencies, the detection of a Stokes photon leaves the oscillators in

a maximally entangled Bell state |Ψ+⟩ = 1√
2
(|01⟩+ |10⟩), provided that both were initially

prepared in the ground state. This technique would also allow to entangle different degrees of

freedom pertaining to the same particle [40], but care needs to be taken as their couplings to
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the light field exhibit a distinct dependence on the phase of the standing wave. On the other

hand, the use of a single particle instead of two avoids issues associated with imperfections in

their shape and mass. Entangling the rotational with the translational motion may eventually

turn out to find intriguing applications as those are affected by distinct kinds of interactions and

decoherence mechanisms.

A potentially more robust scheme [41], which does not require individual photon counting,

subjects the particles to oppositely detuned tweezers and introduces additional dispersive coupling.

This allows to cool down the joint Bogoliubov mode,

β̂ =
1√

λ21 + λ22

(
λ1b̂1 + λ2b̂

†
2

)
, (5.6)

where λ1,2 denote the optomechanical coupling rates of the respective particles, to the ground

state and to generate a Gaussian entangled two-mode squeezed state [41] as certified by a

violation of the Duan criterion of separability for continuous-variable systems [145],

∆2(x̂1 + x̂2) + ∆2(p̂1 − p̂2) ≥ 2. (5.7)

While we have focused on optical means of preparing and manipulating the motional states of

particles in the above discussion, this is not the only option. An all-electrical alternative [120],

which comprises initial cooling as well as the generation of superpositions and entanglement,

relies on the confinement of a charged nanoparticle in a quadrupole ion trap, which is coupled

to a superconducting charge qubit via the charge induced on the endcaps by the particle’s ro-

translational motion. Preparing the superconducting qubit in a superposition of charge states

[146] allows to entangle the mechanical motion with the qubit state [120].
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Chapter 6

Conclusion and Outlook

The previous section hinted at the indisputable disparity between the multiple ideas and pro-

posals that have been brought forward and the experimental progress to date. By acquainting

ourselves with the theoretical framework, estimating the expected cooling efficiency for a range of

parameters, demonstrating stable and semi-automated locking of a high-finesse cavity, detecting

and trapping SiO2 nanoparticles with diameters of 100 and 150nm in intermediate vacuum and

measuring the motional PSD of the latter, we have laid the groundwork to further pursue our

final goal and demonstrate cooling of a levitated nanoparticle in all ro-translational degrees of

freedom. While this is a demanding task in its own right as we have experienced first hand,

it would only pave the way for a profound examination of the "quantum behavior" of large particles.

Until then, we are still faced with a plethora of challenges. One of the most critical ones is trap

loading. Ultimately, we would wish for a particle source that is reasonably simple to implement,

versatile, clean, highly repetitive, reliable and compatible with high vacuum in combination with

an optical trap. LIAD only satisfies the first two criteria and – to a very limited extent – the third.

While we have shown the method to be in principle applicable for our purpose, cf. sec. 4.1.1, there

is ample room for improvement. Optimizing the current source and testing new ones will thus

become a top priority.

Advancing our current detection capabilities will also be at the forefront of our efforts. We are

very optimistic that the interferometrically enhanced detection of either forward or backward

scattered light as discussed in sec. 4.1.4 will allow us to further improve our sensitivity and

facilitate the observation of spectrally resolved peaks in the power spectral densities pertaining

to both translational and rotational degrees of freedom.

At a later stage in our experiment, we will also need to gain a better understanding of the various

decoherence sources that might stand in the way of observing genuine quantum phenomena.

We have already said in sec. 3 that we expect thermal decoherence to be one of the most dif-

ficult to overcome as it requires us to minimize the absorption and emission of blackbody radiation.

The latter point is obviously closely related to the particle’s internal temperature. A more mundane

reason for which we need to limit internal heating is the possible disintegration of our particles.

As alluded to in sec. 4.1.2, melting is a potential concern even for our nominally transparent SiO2

spheres. This will become all the more serious as we aim to extend our research towards controlling

the ro-translational motion of complex biological entities such as viruses or bacteriophages.

Indeed, while those tend to be less massive than the nanoparticles that we are currently looking

into
1
, seemingly in contradiction with the endeavor pursued by large parts of the community to

demonstrate quantum phenomena at ever-increasing mass scales, there are several reasons why

it is worthwhile to study them nonetheless. Firstly, there is obviously a philosophical appeal to

the notion of biologically active systems, perhaps one day even living organisms, appearing in a

1
This is just a rule of thumb, which does not apply to all species. There are viruses containing hundreds of

kilobase pairs [147], corresponding to dimensions of several hundreds of nm.



quantum superposition state. However, even on a more pragmatic note, particle masses on the

order of 10
6
amu would correspond to orientational revival times on the order of ms, cf. eq. (5.3),

thus easing complications associated with gravitational free-fall. In addition, quantum-enhanced

sensing, for example in the form of single-photon recoil spectroscopy [148], may reveal biologically

relevant properties of the particles in the absence of any surrounding medium that may perturb

them.

While the coherent scattering technique is in principle very general in that it does not rely on any

specific intrinsic property of the particles other than their polarizability, the potential fragility

of biological specimens may render it unavoidable to shield them from direct irradiation with

intense laser light. In that case, the concept of sympathetic cooling [149] may come to the rescue.

This would require an ion trap, which is yet another update to our current setup that we are

planning to incorporate in the intermediate term. Even if sympathetic cooling is not required

(or, indeed, possible), their comparatively large trapping regions [108] will facilitate capturing

particles at lower pressures, ideally even in ultra-high vacuum if temporal control is applied [98].

It is hence not a surprise that hybrid traps [150], which combine the benefits of both optical and

electrodynamic trapping potentials, become increasingly attractive.

On the other hand, a smaller particle mass goes along with a reduced optomechanical coupling,

cf. eq. (2.56), which must be counteracted by decreasing the cavity mode volume. This will require

us to employ microfabricated cavities [37].

In this outlook, we have deliberately outlined two paths to proceed that appear rather distinct at

first glance. However, as we have argued, there are plenty of synergies to benefit from. While

ground-state cooling of a tailored nanoparticle remains a desirable goal for us, we would like

our setup to eventually provide a general framework for further studies, allowing us to pursue a

top-down approach in mass, but a bottom-up approach in structural complexity.

But what would we expect to find out? After all, there has not been any evidence of quantum

physics breaking down at any point so far and the notion of biologically active complexes to

follow (to whatever extent) different laws of nature than "dead matter" seems rather preposterous.

Still, it is an essential part of our jobs as (aspiring) scientists to not take anything for granted, to

remain curious and to continuously challenge the way we perceive things to work. In this spirit,

I will not conclude by making an excessively bold promise, nor by attempting one last time to

convince the reader of the significance of our work, but by making a plea to both the scientific

community and the public to appreciate not only the great discoveries that have shaken our

world view, but to some degree also the tiny surprises and yes, even the failures along the way

that not rarely have ultimately led to breakthroughs in the first place.
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