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Abstract

Alchemical free energy calculations estimate free energies by using unphysical intermediates.
In addition to the computation of absolute solvation and binding free energy differences,
this method can be used to compute relative free differences, for instance, the energy
difference of binding between two ligands. Usually, the number of atoms between the two
end states, i.e., the two molecules of interest, is not the same. However, this is a necessary
condition for the molecular dynamics simulations on which the computation of the free
energy differences is based. To preserve the number of atoms so-called dummy atoms
which act as placeholders have to be introduced. In this Master Thesis, new features for
Transformato, a package which helps to set up relative alchemical free energy calculations,
werde developed. In particular, additional functions for the employment of these dummy
atoms were implemented. Transformato uses a common core scaffold which contains the
atoms present in both molecules. Both initial states of the alchemical transformations
initialized by Transformato do not contain any dummy atoms, but consist solely of the
physical atoms of the respective molecules. However, dummy atoms are generated via two
separate alchemical paths leading to the common core. Starting from the initial states,
physical atoms are successively turned into dummy atoms until the common core structure
is attained. The generation of the common core was optimized and the processing of
hydrogens adjusted. Graph traversal algorithms for the determination of appropriate
mutation routes were applied so that a flawless Transformato workflow without manual
postprocessing is ensured. Finally, the effect of different common core generation and
mutation algorithms on the results of free energy calculations was investigated.
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Kurzfassung

Alchemische Freie-Energie-Berechnungen berechnen freie Energien mithilfe unphysikalis-
cher Zwischenzustände. Zusätzlich zur Berechnung absoluter Differenzen in der freien
Solvatations- bzw. Bindungsenergie kann diese Methode auch zur Berechnung relat-
iver Freier-Energie-Differenzen verwendet werden, beispielsweise für die Berechnung der
Bindungsenergiedifferenz zwischen zwei Liganden. Normalerweise ist die Anzahl der Atome
zwischen den beiden Endzuständen, also den beiden interessierenden Molekülen, jedoch
nicht gleich. Dies ist aber eine notwendige Voraussetzung für die Molekulardynamiksimula-
tionen, auf denen die Berechnung der Freie-Energie-Differenzen basiert. Um die Anzahl der
Atome beizubehalten, müssen Dummy-Atome, welche als Platzhalter fungieren, eingesetzt
werden. Im Zuge dieser Masterarbeit wurden neue Funktionen für Transformato, ein Soft-
warepaket zum Aufsetzen relativer alchemischer Freie-Energie-Berechnungen, entwickelt.
Insbesondere wurden zusätzliche Funktionen für den Einsatz der erwähnten Dummy-
Atome implementiert. Transformato verwendet einen den beiden Molekülen ‚gemeinsamen
Kern‘ (Common Core), der die in beiden Molekülen vorhandenen Atome enthält. Beide
Ausgangszustände der durch Transformato initialisierten alchemischen Transformationen
enthalten keine Dummy-Atome, sondern bestehen ausschließlich aus den physikalischen
Atomen der jeweiligen Moleküle. Dummy-Atome werden jedoch über zwei separate
alchemische Pfade erzeugt, die zum Common Core führen. Ausgehend von den Ausgang-
szuständen werden physikalische Atome sukzessive in Dummy-Atome umgewandelt, bis
die Struktur des Common Cores erreicht ist. Insbesondere wurde die Erzeugung des
Common Cores optimiert und die darin involvierte Verarbeitung von Wasserstoffatomen
verbessert. Es wurden Graphalgorithmen zur Bestimmung geeigneter Mutationsrouten
eingesetzt, sodass ein einwandfreier Transformato-Workflow ohne manuelle Nachbearbei-
tung der Moleküle gewährleistet ist. Abschließend wurde der Einfluss verschiedener
Common-Core-Erzeugungs- und Mutationsalgorithmen auf die Ergebnisse von Freien-
Energie-Berechnungen untersucht.
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1 Introduction

The aim of this Master Thesis is to facilitate the preparation of alchemical free energy
calculations. Such calculations estimate free energy differences by using nonphysical
intermediates, i.e., structures which are not found in nature as existing chemical species.
In addition to the computation of absolute solvation and binding free energy differences,
the method can be used to compute relative free energy differences, e.g., the free energy
difference of binding between two ligands. A problem occurring in the latter approach is
the need for so-called ‘dummy atoms’. Usually, the number of atoms between the two end
states, i.e., the two molecules of interest, is not the same. However, this is a necessary
condition for the molecular dynamics simulations on which the computation of the free
energy differences is based. To preserve the number of atoms, these dummy atoms act as
placeholders [1, 2].

This Master Thesis is concerned with specific methods of handling these nonphys-
ical atoms. A central part is the implementation of new features for transformato,
a package which helps to set up relative alchemical free energy calculations using an
innovative common core (CC) approach [3, 4]. In particular, helper functions are de-
veloped which optimize the employment of the aforementioned dummy atoms. The
implemented functions are collected in the Python package tf-routes available on GitHub
(https://github.com/jalhackl/tf_routes/tree/master/tf_routes).

In the following chapter, the basic principles of alchemical free energy calculations are
explained. The third chapter presents the workflow of transformato. Subsequently, the
need for improving and extending some algorithms of the software package is described
in more detail. Examples of alchemical mutations proposed by the new algorithms
and corresponding CC constructions for transformato are given. Finally, the effect of
different CC generation and mutation algorithms on the results of free energy calculations
is discussed.
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2 Free Energy Calculations

2.1 Basics

In the last few years, the accuracy and feasibility of free energy calculations improved
significantly [5]. The main reasons are developments in the accuracy of force fields [6], the
increase in computational resources and, in particular, the usage of graphics processing
units to cope with the high computational demands. By now, most MD software packages,
like AMBER [7], CHARMM [8] or GROMACS [9], offer functions for alchemical free
energy calculations which facilitates the set-up of such simulations.

Possible applications can be found in rational drug design and drug discovery; e.g.,
during lead optimization, the binding free energy differences between compounds are of
interest. [6] As the free energy difference provides information about the thermodynamic
favorability of a specific process, it can help to find ligands that bind most tightly to a
biomolecule of interest.

One can distinguish between absolute and relative free energy calculations: Absolute
free energy differences are, for instance, solvation or binding free energy differences of
one compound (these results can be compared with the free energy of an unrelated
compound) [10, 11], whereas the latter approach computes the free energy difference
between, e.g., two ligands, which usually are related to each other. For many practical
problems, such knowledge is sufficient, for instance, when the comparison of properties
like binding affinity of two ligands is sought. The relative free energy differences between
two ligands can provide information to predict protein-ligand binding affinities and to
select specific ligands, drugs etc. for optimizing binding affinity. Knowledge of binding
affinities can be harnessed for tasks like protein engineering [5].

Relative free energy calculations harness the concept of a thermodynamic cycle [12];
see Fig. 2.1: The horizontal arrows indicate the paths from the unbound to the bound
state of each of the two ligands, the vertical arrows indicate the transformation from one
molecule to the other one. According to the 2nd law of thermodynamics, the free energy
differences along both paths in the figure leading from the unbound state of ligand A to
the bound state of ligand B must be identical. In other words, we have

∆GA +∆G2 = ∆G1 +∆GB. (2.1)

From this one sees that the relative binding free energy difference between the two ligands
can be expressed as [6]:

∆∆G = ∆G2 −∆G1 = ∆GB −∆GA. (2.2)

To obtain knowledge about ∆∆G = ∆G2 − ∆G1, the evaluation of the alchemical
transformations ∆GA and ∆GB suffices. In practice, the determination of ∆G2 or ∆G1 is
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2 Free Energy Calculations

Figure 2.1: Thermodynamic cycle; red arrows indicate transitions between two states
(unbound–bound) of each ligand, blue arrows indicate ’alchemical’ transform-
ations (Ligand A–Ligand B)

usually much more computationally expensive because the states are vastly different (e.g.,
in the case of ligand binding, water environment vs. protein, and under the assumption
that the ligands exhibit a similar structure) and often requires an experimental set-up;
thus, the alchemical calculation can substitute this step or at least indicate if, e.g., a
certain ligand is a promising candidate.

The vertical part of the depicted thermodynamic cycle is easier to compute because
the change between both states is much smaller (depending on the molecules of interest,
only some atoms change and hence there are fewer annihilation or creation steps) and,
thus, in general, fewer intermediate steps are necessary; however it involves ’alchemical’
transformations, i.e., nonphysical intermediates have to be used.

In general, the free energy is given by F = −kBT lnQ, where Q denotes the partition
function Q =

∫︁
dr exp (−βU) with β = 1

kBT . Hence, the free energy difference between
states i and j can be described as [13]:

△Fij = − 1

β
ln

Zj

Zi
. (2.3)

To compute the free energy differences between two states, various methods exist.
Usually, it is not possible to simply compute the difference between the two end states;
hence, intermediate states have to be taken into account. The difference between the final
states can be expressed as the sum of the difference between these intermediate states:
∆F = F1 − F0 =

∑︁
n∆Fn [14].
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2.2 Methods for evaluating free energy differences

2.2 Methods for evaluating free energy differences

Various approaches for calculating free energy differences exist, e.g., thermodynamic
integration and perturbation. Implementations of the latter approach use the Zwanzig
formula or Bennett’s acceptance ratio method (which is used in the transformato package
described below). In the following, these three approaches will be briefly outlined. (For
a more comprehensive comparison and estimation of performance differences, see [15]
and [16]).

2.2.1 Thermodynamic Integration (TI)

In Thermodynamic Integration [17], the free energy difference between two states is
computed by evaluating the integral over the derivative of the free energy between the
initial and the final state of the transformation/process studied. TI computes intermediate
states depending on the coupling parameter λ. λ = 0 and λ = 1 represent the physical,
initial / final states of the system. Scaling between those two values, i.e., using values
0 ≤ λ ≤ 1, gives rise to the nonphysical, ’alchemical’ intermediate states.

Taking the derivative of the free energy, one gets dF
dλ = d

dλ

∫︁
e−βUdr =

⟨︂
dU(r,λ)

dλ

⟩︂
λ

[13],
where the angular brackets indicate the ensemble average. The free energy difference is
then given as the integral from λ = 0 to λ = 1:

∆F =

λ=1∫︂
λ=0

dF (λ)

dλ
dλ =

λ=1∫︂
λ=0

⟨︃
∂U (λ)

∂λ

⟩︃
λ

dλ. (2.4)

This integral has to be approximated using numerical integration, i.e., ∆F ≈∑︁
iwi

⟨︂
dU(r,λ)

dλ

⟩︂
λi

. The weights wi depend on the choice of the numerical quad-

rature scheme. A popular and simple choice is the trapezoidal rule, which in its
most basic form uses equal spacing between states and approximates the integral by∫︁ λ=i
λ=j

dF (λ)
dλ dλ ≈ i−j

2 (fi + fj). More efficient schemes can lower the number of necessary
λ-states, e.g., Simpson’s rule, Gauss-Legendre Quadrature, cubic spline interpolation or
Clenshaw-Curtis integration. Furthermore, usage of non-equidistant spacing, which can
be easily be applied for the trapezoidal rule, but also for Simpson’s rule, can improve
efficiency. For alchemical free energy simulations, it seems advisable to include the end-
points since those are the only physical states of the simulations (e.g., in Gauss-Legendre
quadrature the endpoints are not included). [15,18]

In any case, the integration scheme and the amount of intermediate steps has to be
chosen in such a way that the introduced bias is below the statistical noise [13]. (For a
more detailed comparison of various numerical quadrature schemes, e.g., the trapezoidal
rule and Simpson’s rule, see [18]).

2.2.2 Free Energy Perturbation / Zwanzig Relation

Free energy perturbation relies on the Zwanzig relation (sometimes called exponential
formula). For each configuration of state A, the energy difference between this state and

5



2 Free Energy Calculations

the corresponding state B is calculated, which is then used to compute the free energy
difference between A and B according to [19,20]

∆FA→B = FB − FA = − 1

β
ln

QB

QA
= −kbT ln

⟨︃
exp

(︃
−∆UA→B

kBT

)︃⟩︃
A

. (2.5)

Several variants of the formula exist: For instance, one can either calculate forward
or backward perturbations (either ∆F (A → B) or −∆F (B → A)), or, as it is usually
the case, use double-wide sampling where energy differences from both directions are
processed [15].

As for thermodynamic integration, usually it is necessary to introduce intermediate
states. The free energy between the final states 0 and 1 is calculated as the sum
of the differences between all adjacent intermediate states; in the case of n states:
∆F0→1 =

∑︁n−1
i=0 (F (i+ 1)− F (i)). There has to be a sufficient number of intermediate

states — there must be significant overlap between the two states — otherwise convergence
is poor. However, there are still use cases when other methods are not feasible [21], and
there exists an extension to non-equilibrium work (Jarzynski’s equation) [21]. In general,
however, it should be only used if the difference between the two states are tiny [13].

2.2.3 Bennett Acceptance Ratio (BAR)

An extension of the perturbation approach for computing the free energy difference
between two states is Bennett’s Acceptance Ratio [22].

Expansion of the denominator and numerator of the ratio of the canonical partition
functions of both states leads to:

Q0

Q1
=

Q0

∫︁
W exp (−U0 − U1) dq

N

Q1

∫︁
W exp (−U0 − U1) dqN

=
⟨W exp (−U0)⟩1
⟨W exp (−U1)⟩0

(2.6)

where W denotes a (for now arbitrary) weighting function. Assuming a Gaussian dis-
tribution of the estimation error in the limit of large samples, the optimal W can be

determined as W (q1...qn) = c
(︂
Q0

n0
exp (−U1) +

Q1

n1
exp (−U0)

)︂−1
[22].

To use Bennett’s acceptance ratio method, two simulations have to be carried out. One
starts at λ = 0, the other one at λ = 1. Forward and backward simulations are processed
simultaneously.

The free energy difference between two λ-states can be expressed as

△F (λi → λj) = β−1

(︄
ln

⟨︁
f
(︁
Uλi

− Uλj
+ C

)︁⟩︁
λj⟨︁

f
(︁
Uλj

− Uλi
+ C

)︁⟩︁
λi

)︄
+ C (2.7)

with the Fermi function f (x) = 1
1+exp(βx) [15, 20].

To obtain the value of the optimum shift constant,

C = β−1 ln
QiNj

QjNi
, (2.8)
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2.3 Soft-core potentials

a self-consistency problem has to be solved iteratively [20].
The free energy between two λ-states is then given by △F (λi → λj) = β−1 ln

Nj

Ni
+C [15].

Nj and Nidenote the number of sampled configurations from state j and i, respectively.
BAR gives a minimal variance free energy estimate. There is also an alternative

derivation for the formula. It can be shown that the Bennett acceptance ratio method
works as a maximum likelihood estimator. Using BAR, one obtains the asymptotically
unbiased estimation (i.e., for an infinite number of measurements it yields an unbiased
estimation) with the lowest variance [23].

Using variational calculus to minimize the variance, ∆F can be expressed implicitly
as:∂ lnL(∆F )

∂∆F =
∑︁ 1

1+exp(β(M+Wi−∆F )) −
∑︁ 1

1+exp(β(M−Wj−∆F )) = 0 , where M denotes

M = β−1 ln
Nj

Ni
[23].

BAR also depends on the overlap between the states; however, it is more robust and
reliable in cases of rather poor overlap [16] (especially when compared to FEP). In any
case, phase space overlap is a necessary condition, without overlap the method will
fail. (Whether BAR outperforms thermodynamic integration crucially depends on the
smoothness of the integrand. For more pronounced changes in molecular properties
between the computed states, BAR seems to be superior [13].)

MBAR, which is used in the transformato package to estimate the free energy differ-
ences, is a further improvement of the BAR method. BAR combines information from one
forward and one backward simulation. In contrast to BAR, MBAR does not only consider
samples of two states, but data from all states is used. Weights have to be determined
for all state combinations. Again, the emerging equations give rise to a self-consistency
problem which can be solved, e.g., via iteration methods or a Newton-Raphson solver.
For state i, an estimation of free energy can be computed as

Fi = −β−1 ln
K∑︂
j=1

Nj∑︂
n=1

exp (−βui)∑︁K
k=1Nk (βFk − βuk)

. (2.9)

The estimate depends on all samples K, in the case of only two states, MBAR reduces to
BAR. Although this formula gives the estimation for state i, it is determined only up to an
additive constant. Thus, only free energy differences, ∆Fij = Fj −Fi are meaningful. [24]

MBAR is also related to another technique for evaluating free energy differences, the
weighted histogram analysis method (WHAM) [25]. As in MBAR, data from all samples
is used simultaneously, but the data is partitioned into bins which are used to generate
histograms of the probabilities. Here, MBAR equals the limiting case for a bin width of
zero. [24,26]

2.3 Soft-core potentials

Alchemical transformations rely on a coupling parameter λ which is used to gradually
modify interactions. For example, by scaling λ, one can weaken the interaction with
one part of the system and remove them completely at the final state. (In the simplest
case, there are only two states corresponding, e.g., to an atom present in one of the

7



2 Free Energy Calculations

two molecules but not in the other one. If the two molecules have more considerable
differences, this annihilation process has to be carried out for each atom, which has to be
transformed into a dummy atom.) The term ’van der Waals endpoint problem’ (or even
’catastrophe’) denotes several problems which can occur when a particle is removed (i.e.,
turned into a dummy atom by turning off its intermolecular interactions). [27]

We illustrate the types of problems, which can arise, in the case of a linear dependence
of the coupling parameter, i.e.

U (λ) = Uo + λ
∑︂

1≤i≤N−1

ui,N . (2.10)

Eq. 2.10 represents a system of N interacting particles. N−1 interact normally throughout
(this is represented by the constant term U0), but the interaction between the N th particle
and its siblings is scaled by λ. For λ = 0 and λ ≈ 0 various issues emerge. If λ = 0, there
are no interactions (and hence no repulsion) and the non-interacting dummy particle
can be located at the exact position of another particle. This could give rise to errors
resulting from divisions by zero. (In contrast to the next two scenarios, this seems to be
a minor problem avoidable by efficient coding, i.e., implementing an additional clause
for this condition to avoid the division by zero. In fact, it appears that all common MD
simulations packages manage this case automatically [27]).

For λ → 0, numerical instabilities can occur because even within a small time-step,
the interactions abruptly can become highly repulsive. It should be noted that this
problem emerges at values λ ≈ 0, but not at λ = 0 (i.e., when the particles are completely
decoupled).

If thermodynamic integration is used, a related problem occurs because
⟨︁
∂U
∂λ

⟩︁
λ
can

become singular. This is obvious for the example using a linear pathway: ∂U(λ)
∂λ =∑︁

1≤i≤N−1 ui,N . As for the problem leading to a division by zero, the fact that one of
the still interacting particles can be located at the same place in the simulation box as
the dummy atom causes this quantity to change unpredictably and, in the worst case,
become singular [27].

The established way to avoid such problems is the usage of soft-core potentials [28–30].
An additional term is added to the particle-particle distance in the Lennard-Jones potential
so that no division by 0 occurs and the corresponding derivative does not become singular.
One possibility is that the usual Lennard-Jones potential is replaced by a slightly modified
potential which ensures that at r = 0, λ > 0 the divisor is never 0 and the division by
zero is avoided:

ULJ (r, λ) = (1− λ)

(︃
A

(r2 + λδ)6
− B

(r2 + λδ)3

)︃
(2.11)

However, the usage of soft-core potentials has some limitations. In particular, the
availability of soft-core potentials depends on the used software package. Free energy
calculations have to be explicitly supported.

8



2.4 Dummy atoms, Single/Dual topology

2.4 Dummy atoms, Single/Dual topology

Usually, the number of atoms of both molecules of interest, i.e., of the two end states of
an alchemical free energy calculation, is not the same. However, the atom number has
to stay constant (as the simulation takes place in the canonical ensemble). Because of
that constraint, so-called dummy atoms are necessary [1]. These dummy atoms do not
participate in any non-bonded interactions, but they have to be connected via bonded
interactions to the rest of the molecule they belong to so that they do not get detached
and float through the simulation box.

There are two main approaches for setting up alchemical mutations, both involving
dummy atoms:

In single topology, during the mutation process, physical atoms, which belong only
to the start state, are transformed into dummy atoms at the end state. Conversely, as
the alchemical transformation proceeds, dummy atoms present at the initial state are
re-transformed into physical atoms of the second molecule.

In dual topology, no direct mutation of real atoms into dummy atoms occurs. However,
both physical molecules are augmented with all dummy atoms of the respective other
state (hence, there is no state during the simulation without dummy atoms). Thus, the
number of dummy atoms equals the number of atoms which have no direct correspondence
in the other molecule. Usually, in total, even more dummy atoms are present in the
system as in a single topology setup [1].

The implementation of such dummy atoms, however, is not without pitfalls. In single
topology, errors can arise if too many bonded interactions are kept. The order in which
interactions are turned off has to be constrained by specific rules to ensure that the
contributions exactly cancel out each other, and attention has to be paid to under which
conditions dummy atom contributions cancel out exactly. [1]

2.5 Serial atom insertion

As an alternative to modifying the coupling parameter, one can try to create new states
by turning off atoms in one step without intermediate values. This approach, called serial
atom insertion, was introduced In [27]. Atoms are turned off serially (one after one or in
small batches). There is no gradual damping of the interactions; the LJ-interactions of a
molecule are either present (λ = 1) or turned off (λ = 0).

A sufficient phase space overlap between neighboring states is crucial for any alchemical
free energy calculation. So, the question arises whether turning off one atom in one step
is in agreement with this prerequisite. The feasibility of this approach relies on Bennett’s
acceptance ratio, which was shown to work with neighboring states created by serial
atomic insertion [27].

In particular, serial atom insertion has the advantage that it works even for MD
programs which lack explicit support for free energy simulations and soft-core potentials
are not needed (because the coupling parameter takes only the values 0 and 1). The free
energy differences between states can be assembled from ’normal’ simulations.

9



2 Free Energy Calculations

The most severe restriction due to the van der Waals endpoint problem is the instability
of the integrator near the end state where an atom has almost vanished (i.e., λ = 0 or
λ = 1). As such states are not used in serial atom insertion, this problem is automatically
avoided.

The feasibility of this approach depends on the sufficient overlap between the states.
Using BAR/MBAR, no intermediate steps are necessary and atoms can be turned off one
by one. Contrariwise, thermodynamic integration cannot be used because it is precisely
the scaling of the interaction parameter between 0 and 1 which is avoided. This also
implies that the singularity risk of the derivative due to the van der Waals endpoint
problem can be neglected (as this part of the problem only concerns thermodynamic
integration).

10



3 transformato

transformato uses a common core scaffold which contains the subset of atoms which
are present in both molecules (i.e., a one-to-one correspondence between atoms of both
molecules, which in the test cases shown below is always based on atom identity). Both
initial states of the alchemical transformations initialized by transformato do not contain
any dummy atoms, but consist solely of the physical atoms of the respective molecules.
However, dummy atoms are generated via two separate alchemical paths leading to the
common core. Starting from the initial states, physical atoms are successively turned into
dummy atoms until the common core structure is reached.

In each transformation step, one physical atom (or, if phase space overlap is sufficient,
a batch of adjacent atoms) is changed into a dummy atom (until the common core is
attained).

The common core architecture circumvents some potential problems associated with
the single and double topology approaches for dummy atoms. The physical end states of
the molecules are mutated until the common core structure is attained. This implies that
both starting states do not contain any dummy atoms (these states are identical to the
physical molecules of interest). Therefore, it is ambiguous if the alchemical transformations
implemented in transformato rather belong to the single or the dual topology paradigm:
As in the latter, different dummy atoms are generated for each molecule along the path
to the common core, but — in contrast to the usual dual topology approach — the final
states are free of any dummy atoms.

The ’removal’ of atoms, i.e., the mutation into dummy atoms, is performed using the
serial atom insertion approach described above; hence, transformato does not rely on
the use of soft core potentials. The computation of the resulting energy differences is
based on MBAR.

Therefore, by setting up the mutation path between two molecules across the connecting
common core and using serial atom insertion, the transformato workflow is independent
of the underlying molecular dynamics package and of the availability of explicit free
energy calculation code. In principle, transformato can work on top of every molecular
dynamics simulation package.

Input can be created via CHARMM-GUI [31]. The solution builder of the website
generates appropriate files to run MD simulations for the systems for which free energy
differences shall be determined (e.g., for relative solvation free energy differences, input
files for both molecules in a water box and in vacuum). [2, 32].
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3 transformato

3.1 Common core approach

The main condition for the common core of two molecules is the existence of a one-to-one
correspondence of atoms, i.e., the existence of a graph isomorphism. The transformato
workflow imposes some further conditions on the properties of the common core:

The junction between the common core and dummy region has to be unique; only one
dummy region is allowed to be connected via one bond to the common core. In particular,
the maximum common substructure must not encompass partial rings (which would imply
that dummy regions are connected via multiple bonds). (In general, such transformations
can pose intricate problems because ring breakage can lead to fast changes in free energy
and cause significant estimation error [33].) To meet these requirements, adjusting of the
parameters and algorithms for finding the common core is important. For facilitating the
construction of appropriate common cores, it was also necessary to improve the processing
of the hydrogen atoms. As hydrogens are turned off beforehand in one step and not via
serial atom insertion like the heavy atoms, it would be detrimental to consider them
in the common core generation (see section ’Processing of hydrogen atoms’ in the next
chapter). In previous versions of transformato, hydrogens were included in the common
core generation steps, which led to small or often even completely infeasible common cores.
Before the common core construction is carried out, hydrogens have to be removed from
the molecule representation. This is an important step because the presence of hydrogen
atoms can lead to a different common core (which is created, using default settings, by
maximizing the number of corresponding atoms) and subsequently a suboptimal mutation
route.

3.2 transformato workflow

During the mutation process, the contributions of the non-CC atoms are turned off
gradually; five stages can be discerned [2]: In the first step, the electrostatic interactions
of dummy atoms are gradually turned off. Next, Lennard-Jones interactions of all
hydrogen atoms outside the common core are removed. This can be carried out in a
single step. During the third stage, the LJ-interactions of the non-CC non-hydrogen
atoms are processed. One atom per step is turned off following the serial atomic insertion
approach. (Possibly, a small group of atoms could be turned off in one step, but it is
not recommended to process more than two atoms at once to ensure sufficient phase
space overlap between the states.) The atom which connects the common core and the
dummy region is called the junction atom and indicated as ’X’ [2] (In the plots in the
next chapters, for simplicity, the indication of the junction atom is sometimes omitted.
However, it should be stressed that, e.g., a transformation to a methane common core
yields, in fact, a CH3X common core.). This dummy atom which is directly connected to
the common core needs special treatment. In contrast to the other atoms of a dummy
region, its LJ interactions are not turned off completely, though its partial charge has to
be zero. [2] This junction atom ensures that the double free energy differences are not
influenced by contributions of dummy atoms. [1] In the last step, it has to be ensured
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3.2 transformato workflow

that both common cores are identical, e.g., differences in charge distribution have to be
adjusted and the bond between junction atom and the common core atom has to be
identical.
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4 Problem description

The main objective of this work was the assessment and improvement of some routines
used in the free energy package transformato. A further goal was to minimize the
necessity of manual adjustments by the user; i.e., reasonable mutation routes should be
generated automatically. The proposed route should be directly usable for the further
transformato workflow.

In a first step, the reliability of the current transformato workflow had to be as-
sessed, for instance the quality of the proposed common cores. Different settings for the
construction of the maximum common substructure were compared.

The order of the transformation steps was optimized, especially for the case of more com-
plex mutation routes which occur for connected dummy regions involving ring structures,
multiple chains or different atom types.

Particularly intricate problems occur for ring structures. In contrast to a chain, which
usually has only one possible mutation order without leading to disconnected components,
multiple possibilities exist for rings. Because of this, the evaluation of the mutation
algorithms in the following sections will focus on such transformations. The mutation
of atoms should neither generate vacancies in the inner part of the molecule nor should
rings remain opened longer than necessary, and a sufficiently systematic and — especially
concerning rings — symmetric processing of the nodes has to be performed. These rules
have to be implemented by maintaining the crucial constraint that no atoms are detached
from the main part encompassing the CC, i.e., no disconnected components must emerge
under any circumstances.

Using a graph representation of the involved molecules, the construction of the inter-
mediates between the final states was optimized. New algorithms were written in Python
and subsequently integrated into the existing transformato package. Finally, the effect of
different algorithms on the efficiency of the free energy calculations was validated through
molecular dynamics simulations.

To obtain a reliable test set of molecules, SDF (Structure Data File)-files containing
positional information about suitable ligands were downloaded from the PDBbind-CN [34]
database. These test molecules cover a broad range in size, complexity and potentially
intricate compounds, like polycyclic structures and highly branched chains.

4.1 Overview of algorithms and software packages used

The transformato package is written in Python. Therefore, Python packages were also
used for molecule processing and graph representations. The creation of molecule objects
and the determination of the maximum common substructure is done via RDKit [35].
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4 Problem description

NetworkX [36] provides functions for graph visualization and analysis. It is easy to
convert molecules created using RDKit into NetworkX graph-objects and hence utilize
the functions of NetworkX for the molecules and CCs constructed. Particularly, graph
traversal algorithms like breadth-first and depth-first search can be easily implemented
(see below).

4.2 Assessment of CC settings

RDKit allows the search for a maximal common substructure (which can serve as the
CC for transformato) via the rdFMCS.FindMCS-function. Per default, the objective is
to maximize the number of atoms, albeit different settings, like maximizing the number
of bonds or ignoring or equalizing specific atom types are available. Currently, for
transformato maximization of atoms and atom identity is used. As stated above, the
presence of hydrogens can influence the maximum common substructure heavily because
the number of atoms is modified, and this quantity is maximized for the maximal common
substructure.

Settings concerning the allowed involvement of ring structures in the CC are of crucial
importance. Firstly, these parameters can influence the CC construction drastically
and, secondly, they can even be decisive whether the generated CC is valid for the
transformato workflow. Especially for the generation of CCs for polycyclic molecules,
e.g., sterols, these parameters are of utmost importance. Important ring-related settings
are ringMatchesRingOnly, completeRingsOnly and the ringCompare-parameter.

To obtain valid CCs of molecules involving cyclic structures for the processing of
transformato, ringMatchesRingOnly and completeRingsOnly must be set to True:
The former argument indicates that ring atoms of one molecule are only matched against
ring atoms of the other molecule, the latter ensures that no partial rings are involved in
the CC. Especially, the latter constraint is a necessary condition for a valid CC. Otherwise,
if partial rings take part of the CC, dummy regions will be inevitably connected to the
CC via multiple bonds.

The ringCompare-parameter parameter accepts the StrictRingFusion-argument. It
imposes that in the case of multiple rings, aromaticity is properly considered. Fig. 4.1
illustrates the effect of the parameters on the CC of two cyclic molecules, cholesterol, and
cortisol. However, as shown in the bottom row of fig. 4.1, enforcing StrictRingFusion
can still lead to maximum common substructures that are not valid transformato CCs
in the case of a dummy region which is connected via multiple ring atoms of the same
ring with the common core.

These problems occur because the requirements for a valid transformato CC are
stricter than the constraints imposed by RDKit (even when all ring-related parameters are
applied, i.e., ringMatchesRingOnly, completeringsonly and strictringfusion): For
transformato, it is not only indispensable that the CC solely comprises complete rings,
but also the dummy regions consisting of the non-CC atoms must not contain parts of a
ring structure (which implies that there has to be a unique connection between dummy
region and CC). This is due to the aforementioned constraints on the junction atom X:
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4.2 Assessment of CC settings

When it is connected to the CC via one single atom (and, as the CC consists of a single
connected component, it, therefore, is not part of a cyclic structure), it is guaranteed that
the contributions from dummy atoms cancel out and do not influence the calculation of
the double free energy differences [2].

When an invalid CC is generated, it appears to be advisable to warn the user that
the generated CC does not fit the expectations of the transformato workflow. The new
mutation algorithms presented below can deal with such invalid CCs. A helper function
arbitrarily chooses one of the connections between the CC and the dummy region, and the
other ones are ignored for the mutation path. However, this only ensures that a mutation
route is returned; the current transformato workflow is not adapted to deal with such
CCs properly. Therefore, it only makes sense for test purposes and may not provide a
reasonable input for the regular workflow.

Alternatively, one can check after the creation if the CC is valid. If it is not, one could
for instance search for a new CC encompassing fewer atoms until a valid CC is found (see
below). A further option would be to prohibit the involvement of ring atoms for the CC
of this particular pair of molecules.

Furthermore, an efficient and straightforward solution for avoiding the generation of
invalid CCs, which always yields the best — i.e., largest — valid CC if one exists, has
been implemented: The basic observation is that if CC atoms within a cyclic region
give rise to an invalid CC, it is impossible that any atoms within this region could
participate in a valid one (if this would be the case, the whole cyclic region would be
already in the generated CC). After generating a CC with standard parameters, it is
checked if the additional requirements concerning the ring structure hold, i.e., if the
non-CC atoms (as well as the CC atoms) of both molecules do not participate in a partial
cycle. (Alternatively, one could check if a path between the non-CC atoms adjacent to
the CC, i.e., the X-atoms, exists. If this is the case, the CC obviously is not valid, since
no unique atom which connects the CC and a specific dummy region is present.) If this is
not the case, the rings that contain atoms which participate in the partial ring causing the
invalid CC are removed from the representation used for creating the maximum common
substructure and afterward a new search for a valid CC is started. This procedure is
repeated iteratively until a valid CC is found.

Of course, in the worst scenario, i.e., if both (non-identical) molecules only consist of
ring-participating atoms, no valid CC for transformato may exist. Similarly, the size
of the valid CC may be tiny compared to that of the physical end states, which may
make the CC approach as implemented in transformato very inefficient. In general,
if at least one of the molecules solely consists of a polycyclic compound without any
functional groups etc., and the other one does not have the same compound, no valid CC
can exist. A — maybe rather contrived — example of such a pair of molecules and the
construction of a valid CC via the iterative approach is given in fig. 4.2. One sees that
even the activation of the ring-related parameters of RDKit is not sufficient to yield a
valid CC, whereas the iterative approach gives the desired result. However, the resulting
valid CC (which has the maximally possible size) is small compared to the original size of
the molecules, despite the apparent similarity between both structures.
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Figure 4.1: ’Strict fusion’ can affect the construction of the CC drastically, illustrated for
cholesterol (top row) and cortisol (bottom row). First and second columns: CC
of the two molecules without strict fusion; third and fourth column: common
core of the two molecules with strict fusion. In the images of the full molecule
graph (first and third column), CCs are marked in red. In the example shown,
none of the settings yield a valid CC for transformato; the iterative approach
explained in the main text would be necessary to obtain one.

Figure 4.2: CCs of cholesterol (left) and 1-propylpyrene (right); top row: CompleteR-
ingsOnly = False; middle row: CompleteRingsOnly = True; bottom row:
iterative approach to obtain a valid transformato CC
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4.3 Graph algorithms

4.3 Graph algorithms

Using NetworkX and RDKit, the molecules and their CC are represented as graphs (in
which nodes indicate atoms and edges bonds between them). The selection of the optimal
mutation route can be understood as a graph traversal problem, in which the constraints
mentioned above are either implemented via the weights of the edges or by sorting. Hence,
the main task was to find suitable algorithms and graph initializations to ensure an
optimal processing of the mutation path.

Depth First Search (DFS) follows each chain of the graph as long as possible, i.e.,
until a leaf node is reached. In contrast, Breadth First Search (BFS) explores all chains
simultaneously [37]. Problems and differences of both algorithms are illustrated using
several examples below. As will be discussed in more detail, the main problem of DFS
is that it produces undesired outcomes. Often, heavy atoms near or next to the CC
atoms are processed during the first steps of the graph algorithm, which may lead to an
early opening of rings. Processing is completed only at a (much) later stage. Phrased
differently, atoms are turned into dummy atoms in a highly ’asymmetric’ manner.

In each of the algorithms implemented, the root of the graph traversal is the node
which connects the dummy region and the CC, i.e., the junction atom ’X’. The shortest
paths to all nodes of the dummy region are determined.

The longest of these shortest path identifies the node which has the greatest distance
from the root (i.e., the atom with the greatest distance from the CC). Therefore, the last
element of the list returned by the search algorithm indicates the atom which has to be
removed first; hence, the list of mutations orders has to be reversed.

If weighted graphs are used, the Dijkstra algorithm can be applied. It finds the shortest
path between two nodes or between a root node and all other nodes of the weighted graph
(the weights indicate the edge length from one node to the other one). For unweighted
graphs (or, equivalently, graphs with uniform weights), the Dijkstra algorithm reduces to
BFS. Fig. 4.3 shows the different routes for modified weights. In the test cases presented
below, all graphs are initialized with uniform weights.
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Figure 4.3: Comparison of different graph traversal algorithms. Green nodes represent
the root atom; left: depth first search (DFS); middle: breadth first search
(BFS); right: Dijkstra algorithm. In the Dijkstra algorithm, blue atoms have
increased weights; the edges connecting blue colored nodes have increased
weights leading to a mutation route differing from BFS; in the transformato
workflow, the final processing of the nodes happens in reversed order; i.e., the
atom first visited is removed last

4.4 New functionality added

4.4.1 Functions for creating mutation paths

To use the newly implemented mutation algorithms, the graph object is initially created
with weights according to the atom type stored in a dictionary. The simulations shown
below use uniform weights; hence, all atom types are treated equally. However, it
is possible to modify these to enforce a specific mutation route (e.g., accelerating or
postponing the processing of heteroatoms).

The core functionality is given by the mutation processing functions. Currently, three
new functions are implemented, in addition to the simple, existing DFS-approach. These
four main functions for computing mutation routes are:

1. _calculate_order_of_LJ_mutations: this function performs the DFS algorithm,
and is the only one previously available in transformato. It may lead to defective
mutation routes (various examples are shown below and compared to the routes
created by the improved algorithms) and, hence, should only be used for test
purposes. The other three algorithms are new, and all of them resolve most of the
problems of this existing earlier algorithm (especially issues related to the isolated
removal of ring atoms).

2. _calculate_order_of_LJ_mutations_new: the BFS/Dijkstra-algorithm is applied
once for creating a mutation route.

3. _calculate_order_of_LJ_mutations_new_iter: the BFS/Dijkstra-algorithm is
applied iteratively, i.e., after each removal of an atom, until all atoms of the dummy
regions are processed.

20
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4. _calculate_order_of_LJ_mutations_new_iter_change: similarly to the last func-
tion, this approach works iteratively. In contrast to _calculate_order_of_LJ_-
mutations_new_iter, after each removal of an atom, the algorithm/routine for
the next step is chosen depending on the current state: If the last processed atom
belongs to a cycle or a chain, the algorithm prioritizes the pruning of this cycle or
chain before other parts of the molecule are processed.

These functions can be further modified by passing arguments which activate some
helper functions. Auxiliary functions carry out tasks to ensure the desired mutation route;
e.g., the function cycle_checks counts the number of cycles an atom participates in.
Further features of all algorithms are ’preferential removal’; i.e., if two atoms have the
same priority (given by the current weight) for the next mutation step, the weight of the
atom which is next to an already removed atom is updated so that this atom is processed
next. In the following, the most important of these functions are shortly described:

• cycle_checks(G): this function takes a NetworkX-graph object as input, checks
which atoms participate in how many cycles/rings and finally returns a dictionary
with the atoms as key and the number of rings the atom is participating in as value
and a dictionary with the degree (i.e., number of edges) of each atom node. It
is currently used in _calculate_order_of_LJ_mutations_new (via the change_-
route_cycles-function).

• change_route_cycles(route, cycledict, degreedict, weightdict,G): this
function is used in _calculate_order_of_LJ_mutations_new and sorts nodes
according to degree, cycle participation and information about the nodes which
have been removed immediately before. The preliminary mutation path is sorted
using a cycle and degree dictionary. If nodes have the same weight (i.e., distance
from root), the node participating in more cycles is removed later. If nodes have
the same weight (i.e., distance from root) and same cycle participation number, the
node which has more neighbors already processed is removed earlier.

• cycle_checks_nx(G): This function modifies the weight of the graph, nodes par-
ticipating in many cycles get lower weight. It is currently used in _calculate_-
order_of_LJ_mutations_new_iter and ..._new_iter_change. It returns a nx-
graph-object with updated weights (according to cycle participation of the atom).

• order_checks_nx(G, removearray, G_total): This function performs the ’pref-
erential removal’. If a node is connected to the node removed in the previous step,
its weight gets a small increase so that the removal of this node is prioritized. It
is currently used in _calculate_order_of_LJ_mutations_new_iter and returns
a nx-graph-object with updated weights.

If the cyclecheck-argument of the new mutation algorithms is set to True, updates are
updated according to cycle participation (as the systematic processing of ring structures is
one of the central goals, this functionality should always be enabled, except for comparison
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and test purposes). If in the case of _calculate_order_of_LJ_mutations_new and _-
calculate_order_of_LJ_mutations_new_iter the options ordercycles or ordercheck,
respectively, are also set to True, weight updating according to preferential removal decides
that the node in which neighborhood nodes have already been turned off is removed next
if there is no reason to prioritize one of the nodes (i.e., without preferential removal, the
weight of the nodes would be the same).

In each algorithm, all nodes of the graph (i.e., atoms) are usually initialized with the
same weight (e.g., 5). Alternatively, the user could also pass an individual dictionary with
different weights for each atom type. For the graph algorithms, NetworkX is used. For
example, the BFS- / Dijkstra-algorithm starting from the node connecting common core
and dummy region is implemented via the NetworkX-function single_source_dijkstra
which determines the path length of all dummy nodes to the root.

The main difference between these algorithms is that in _calculate_order_of_LJ_-
mutations_new_iter and ..._iter_change the graph traversal part performed using the
Dijkstra algorithm is applied after each exclusion step; i.e., n! atoms are visited instead
of n. Even for relatively large molecules, the additional computational cost is negligible,
in particular in comparison to the computational time needed for the search of the CC.
The advantage of the iterated version is that after each mutation step, weights can be
updated or even the search algorithm can be modified. This feature allows for different
mutation strategies depending on the current state. Such an approach is demonstrated
in _calculate_order_of_LJ_mutations_new_iter_change. This algorithm takes into
account whether the last removed node was part of a chain or a cycle. Depending on
the state, the chain, or cycle, is processed fully before the algorithm moves on to other
parts of the molecule. Fig. 4.4 demonstrates the difference between the two versions of
the iterated algorithm. An additional, more practical difference should be kept in mind.
Whereas in the non-iterated algorithm the mutation route has to be reversed (since the
atom node with the highest distance from the root is the first which has to be turned off),
in the iterated versions, at each iteration the node with the highest distance is added to
an array which determines the final mutation route.

The mutation routes computed by the various algorithms can be visualized directly
via RDKit. The route is represented by a color gradient used for the atoms involved in
the mutation process (_show_common_core_gradient). By default, the color spectrum
ranges from red to green; the first atom to be removed is colored red, the last in green.
Furthermore, an animated 3D-visualization of the mutation process is implemented using
py3Dmol (animated_visualization_3d_v2) [38].
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Figure 4.4: Example of the differences between the iter- and iter_change-algorithms;
Top: iter; Bottom: iter-change; iter-change processes all atoms within
a chain or a ring at once (if possible) before switching to other parts of the
molecule
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Figure 4.5: Examples demonstrating that the addition of hydrogens can influence the
construction of the CC; left: initial state; middle: CC; right: final state. Rows
1)–2) and rows 3)–4) each show the same pair of molecules, in the respective
upper row without, in the lower with hydrogens. In the representations of
the end states, the CCs are marked in red. While in the first example (rows
1)–2)), the inclusion of hydrogens does not affect the CC generation, the
CCs generated in rows 3) and 4) change when hydrogens are added to the
RDKit-molecule representation

4.4.2 Processing of hydrogen atoms

Fig. 4.5 illustrates that the presence of hydrogens can influence the CC generation dra-
matically. In particular, the maximum common substructure for a molecule representation
with hydrogens might contain fewer heavy, i.e., non-hydrogen, atoms than the substructure
for a representation with hydrogens removed (although, including the hydrogens, the
total number of atoms is higher in the first case). Since hydrogen atoms are turned off in
a single step en bloc during the transformato workflow, the mutation route algorithm
should not take hydrogens into account. Therefore, the CC should be generated for a
molecule representation without considering hydrogens. Nonetheless, it is necessary that
the molecule representations processed by transformato contain all hydrogens in explicit
form because the indices of these atoms in the underlying data structures are used in
some steps, e.g., for scaling the van der Waals interactions of the hydrogen atoms to zero.

This problem was solved by removing and adding hydrogens appropriately. In a first
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step, the transformato function determining the CC (_find_mcs in mutate.py, which
is the Python file containing most transformato-functions responsible for generating the
CC and the mutation paths) had to be modified. To obtain the desired CC but retain
the transformato workflow, the following scheme was implemented: A deep copy of
both molecules is created. The hydrogens of these copies are removed; then their CC is
computed. For both molecules, the indices of the atoms corresponding to the CC are
determined. Finally, it is checked for each CC atom of both molecules whether hydrogen
atoms are in its neighborhood. If such hydrogens are found, their indices are added to
the lists of CC atoms. These lists of atoms, including hydrogens, are stored for both
molecules and the function returns the maximum common substructure (determined for
the molecules without hydrogens). Thus, the procedure yields the necessary output for
further processing in transformato: The molecule representations and lists of CC atoms
for both of the molecules include hydrogens, but the maximum common substructure
giving rise to the CC is computed only for the heavy atoms.

Similarly, the functions for computing the mutation routes had to be adapted for input
molecules containing hydrogens. By default, a helper function removes the hydrogens
from the graph representation as well as the corresponding indices from the list with the
atoms of the dummy regions before the mutation algorithms are applied. Afterward, the
hydrogen atoms adjacent to CC heavy atoms are added to the CC.

A special problem occurs for molecule pairs with switching ’X’-atom; fig. 4.6 shows
2-/7-pyrrolidinindole as an example. The red highlighting shows a correct CC for both
molecules; in each of them one should note the hydrogen atom, which is directly bound
to one of the CC-carbon atoms, but itself is not part of the CC. If the hydrogens were
included, the resulting CC would not be valid anymore: It is necessary that a further
dummy region emerges which consists solely of one hydrogen atom because otherwise the
CCs would have a different number of atoms and would not be isomorphic anymore. If,
however, the CC is generated without hydrogens, the information which of the hydrogens
turns into a dummy region is lost and the construction of a valid CC cannot be assured.
It has to be stressed again that the presence of these hydrogen dummy regions does
not affect the mutation steps, but is nonetheless crucial for the internal transformato
workflow.

There is a straightforward way to circumvent this problem: From the substructure
matches, the mapping between the CC atoms of each molecule can be read off. For each
(non-hydrogen) CC atom, one counts how many hydrogens are connected to it. Finally, the
minimum number of hydrogens is added to the CC. (In the case of 2-/7-pyrrolidinindole,
this means that for each CC atom one hydrogen is added, except for the 2- and 7- position
because for these positions in one molecule no hydrogen is connected). In this context,
also the difficulty that there are possibly many substructure matches has to be mentioned.

It is even possible that substructure matches differ solely regarding hydrogens. A para-
meter was added to the function which searches for the maximum common substructure
to handle this case. If iterate_over_matches is set to true, one of the substructure
matches with most hydrogens, i.e., the biggest possible substructure, is selected. Fig. 4.7
shows two CCs, only differing in the number of hydrogens.
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Figure 4.6: left: 2-pyrrolidinindole; right: 7-pyrrolidinindole. In each structure, one of
the hydrogens indicated by the arrows — exactly the hydrogen atom which is
placed at the position of the junction ’X’-atom at the other end state — must
not be part of the CC (otherwise, the CC would be invalid)

Figure 4.7: neopentane/methane CCs; upper row: CCs maximizing the number of atoms
including hydrogens; lower row: CCs without considering hydrogens
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Figure 4.8: Comparison of typical DFS- (left) and BFS-mutation route (right) for a single
ring structure. In all depictions of mutation routes, the CC is shown in dark,
the color gradient starts at red, indicating the atom removed first, and ends
at green. DFS starts at the ring atom adjacent to the carbon atom bonded
to the oxygen, and, thus, ring breakage gives rise to one long chain which is
processed subsequently. By contrast, BFS starts at the ring position most
distant from this carbon and the two emerging chains are processed in a
symmetric fashion.

4.4.3 Examples of processing molecules

As described above, the current version of transformato implements one suboptimal
route finding algorithm using DFS and several new versions based on BFS. For single rings,
BFS (or, in the case of different weights for various atom types, the Dijkstra algorithm)
automatically processes the atoms in the most symmetric way, starting at the atom with
the highest distance from the root), whereas DFS gives rise to a long chain. Fig. 4.8
illustrates this difference.

In more complex molecules, the systematic exploration of chains in depth first search
inevitably leads to big local gaps in processing of the molecules. Fig. 4.9 illustrates this
problem for a benzene ring which is directly attached to the CC. As DFS goes along one
path until the end; i.e., until a leaf node is reached, four atoms of the ring are visited first,
whereas the remaining two are explored last. Therefore, these two atoms are turned off
first, but then the algorithm continues at a wholly different location and the remaining
ring atoms persist in the system until the end of the mutation process. By contrast, BFS
automatically produces the desired result for this system.

A similar scenario is shown in fig. 4.10. One ring atom (indicated by the red circle),
which is adjacent to the X-junction atom, is processed last by DFS. Hence, it is processed
first in the resulting transformato workflow, opening the ring, whereas the other atoms of
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Figure 4.9: Top: DFS-algorithm; Bottom: BFS-algorithm; CC in dark; the red arrow
indicates the undesired processing of the ring atoms in the DFS case.

the ring are removed much later. More complex ring structures exacerbate these problems.
Fig. 4.11 shows an example where also the processing of the substituents is affected.

Multiple rings pose special difficulties for the mutation algorithms because the processing
of one of the rings can easily lead to gaps in the adjacent ones. Figs. 4.12 and 4.13
illustrate that severe problems may occur when using DFS. As in the case of one ring, the
exploration route implies that one of the rings is opened in such a way that it gives rise
to a lengthy chain. Furthermore, an atom belonging to two or more rings is visited early,
whereas other atoms of the ring are explored much later, so that both ring structures are
opened and torn apart (fig. 4.12). Likewise, one half of each of the rings is turned off
many steps before the remaining ring atoms are processed (fig. 4.13).
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Figure 4.10: Left: DFS-algorithm; Right: BFS-algorithm; CC in dark; the red arrow and
circle indicates the undesired processing of the ring atoms in the DFS case

Figure 4.11: Left: DFS-algorithm; Right: BFS-algorithm; CC in dark; the red arrow
indicates the undesired processing of the ring atoms in the DFS case
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Figure 4.12: Top: DFS-algorithm; Bottom: BFS-algorithm; CC in dark; the red arrow
indicates the undesired processing of the ring atoms in the DFS case
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Figure 4.13: Top: DFS-algorithm; Bottom: BFS-algorithm; CC in dark; the red arrow
indicates the undesired processing of the ring atoms in the DFS case

31





number of
processed

routes

dummy atoms
(mean)

atoms/dummy
region (mean)

number of
cycles (mean)

polycyclic [%]

378 26.97 16.30 1.66 30.16

Table 5.1: Some statistics about the twenty ligands selected from the PDBbind-CN
database and the calculations they were used for. Number of processed routes:
total number of computed routes for a specific combination of two molecules;
dummy atoms (mean): average number of total dummy atoms required for
the computed mutation routes; atoms/dummy region (mean): number of total
dummy atoms divided by the number of dummy regions; number of cycles
(mean): average number of cyclic structural elements in all mutation routes;
polycyclic: percentage of mutation routes which involve polycyclic structures,
i.e., there are atoms present that participate in multiple cyclic elements

5 Results

A set of twenty ligands from the PDBbind-CN database were downloaded and used for
testing CC construction, as well as mutation routes. General information about the
ligands can be found in table 5.1. It should be noted, however, that the CCs for some of
these ligand pairs violate the rules of transformato concerning a valid CC; i.e., dummy
regions are connected by more than one atom to the CC (which basically implies that the
atom is part of a ring structure).

In the current implementation of the mutation algorithm, this problem is solved by a
helper function which chooses one of the possible connections between one of the atoms
to the CC. For the following processing of the mutation algorithm, this connection is
arbitrarily distinguished and the other ones removed.

5.1 Visualizations

The mutation route is visualized using a color gradient, in addition to numbering, see the
earlier figures. Py3dMol [38] is used for a 3D-animation of the mutation process. Fig. 5.1
shows two molecules and their shared CC.
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5 Results

Figure 5.1: Two Visualizations of the mutation route with Py3Dmol (left column) and
RDKit (right column). First and third row: Representation of the physical end
states, left: spheres represent CC atoms, whereas non-CC atoms are shown in
licorice representation; right: CC atoms are highlighted in red. Middle row:
CC of the two end states.
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5.2 Scoring schemes

Several scoring schemes have been implemented to assess and compare the mutation
routes proposed by the new algorithms.
1) Betweenness centrality: Betweenness centrality measures the number of shortest paths
going through a specific node [39]. More central atoms will have a higher, atoms remote
from the CC will have a lower centrality coefficient. In particular, the last atom of a chain
has a coefficient of 0 because no path between two other atoms visits the representing
node. After each step, the node is removed from the graph. For avoiding undesired
mutations, the maximum betweenness centrality of all mutation steps is more decisive;
hence, the average of the mean as well as the maximum betweenness centrality of all
removed nodes is shown below.

Figure 5.2: Betweenness centrality for the test ligands from the PDBbind-CN data set.
Maximum and mean betweenness centrality are much higher for DFS than
for all BFS-based mutation route algorithms. Curves are density estimates of
the histograms.

2) Closeness centrality: Closeness centrality of a specific node is given by the inverted
distances between this node and all other nodes of the graph [39]. Similar to betweenness
centrality, more ’important’, central atoms have a higher closeness centrality, whereas
atoms more distant from the CC have a lower closeness centrality. For using this centrality
measure as a scoring function for the mutation algorithms, the dummy region with the
highest number of atoms (simply because this is probably the most ‘interesting’ one,
it would also be possible to take the average of all dummy regions etc.) is selected.
The closeness centrality of each node representing a dummy atom for the full graph
representation, including all CC and dummy atoms, (i.e., all atoms, including already
removed ones are used for calculating the statistics) is computed. For a ‘good’ mutation
route, the atoms should be removed approximately in ascending order of their closeness
centrality: The first atoms should have a high distance to most of the other atoms and
consequently low closeness centrality, whereas the ones removed later should be the
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more ‘important’ nodes with high closeness centrality. This is checked by computing
Spearman’s Rank correlation coefficients for each mutation route. The correlation between
the order of mutation and closeness centrality is determined. A higher positive correlation
coefficient shows that the closeness centrality of the atoms removed is increasing and,
thus, indicates a ’better’ route. The computed correlation coefficients for all mutation
paths are visualized via histograms.

Figure 5.3: Histogram showing the distribution of the Spearman’s Rank correlation coeffi-
cients of the closeness centrality values computed for the test ligands from
the PDBbind-CN data set. It was checked if the closeness centrality of the
removed atoms increases during mutation. A ’good’ mutation route should
show an increase in closeness centrality because at the beginning the atoms
with a high distance from the other atoms (and hence the CC atoms) and
thus a low closeness centrality are removed. When atoms are removed with
ascending closeness centrality — which indicates a ’good’ mutation route —,
this leads to a higher positive correlation. Closeness centrality is computed
for the full graph representation, including all CC and dummy atoms. Curves
are density estimates of the histograms.

3) Ring-related scores: As stated above, the processing of ring structures is of crucial
importance and pronounced differences between DFS and BFS occur. Four properties
were calculated: The mean asymmetry at ring opening was measured: After the first
atom of a ring structure is removed, usually two chains emerge. The length difference
(i.e., the difference in atom number) of these two chains was measured. If both chains are
equally long, the asymmetry is 0.
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The ’asymmetry during ring disassembly’-score does not only evaluate the first atom
removed from a ring, but checks at each mutation step involving a ring atom if asymmetric
chains emerge.

The ’mean number of open rings’ indicates how many ring structures are opened on
average, and the ’mean processing time of rings’ determines how many mutation steps it
takes to process a ring completely (until only one atom of the former ring structure is
present).

Even using the new algorithms, it is possible that a ‘broken’ ring exists for several
mutation steps because atoms from other areas of the dummy region (e.g., a longer chain)
are processed before the ring continues to be processed. However, in contrast to DFS,
it should not happen that a ring near to the CC is opened, but some of its atoms are
processed much later, and hence the mean and maximum time should be significantly
shorter.

To compare the mutation algorithms, calculation of the scoring functions for the
selection of ligands from the PDBbind-CN data set was performed.

In general, the computed statistics match the expectations. The range of betweenness
centrality scores is much lower for BFS, suggesting that central nodes, i.e., atoms in a
ring next to the common core, are processed last, whereas isolated ones, i.e., atoms at
the final position of a chain, are processed preferably (fig. 5.2). Likewise, the correlation
between the order of mutation of an atom and its closeness centrality scores is higher
for BFS-based approaches because atoms distant from the common core are visited only
at the final iterations of the algorithms and so there is a stronger positive correlation
between closeness centrality and mutation order (fig. 5.3). For many mutation routes,
the correlation of the BFS approaches is almost perfect, i.e., near to one, whereas for
DFS it is much lower. All scoring functions show that the BFS-based algorithms tend to
prune the molecule graph at positions more distant from the CC at the beginning of the
processing, and rings are processed in a more systematic and ’symmetric’ manner (fig.
5.4).

In the plots presenting the scoring-functions, all molecule combinations from the
PDBbind-CN data set were used. Thus, the selection of molecule pairs gives rise to
CCs and dummy regions with entirely different properties (e.g., number of atoms and
presence of cyclic structures) and many ’trivial’ structures are over-represented. It could
be insightful to use only a subset (e.g., only molecules with dummy regions involving
multiple ring structures or a minimum number of dummy atoms) or to try even a larger
selection from the PDBbind-CN database.
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Figure 5.4: Ring-related scores for the PDBbind-CN test set. upper row: left: difference
in number of atoms in the emerging chains after first removal of a ring atom,
a score of 0 means symmetric processing; right: difference in number of atoms
in the emerging chains after removal of a ring atom, lower score means more
symmetric processing; lower row: left: mean number of open rings in the
test molecules after each processing step, lower score means that rings are
processed sequentially and not in parallel; right: mean number of mutation
steps until a ring is totally processed. Curves are density estimations of the
emerging distributions.
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5.3 Results for selected molecule pairs

For a selection of small molecules taken from [4, 40], the relative solvation free en-
ergy differences were calculated using transformato with the old and the new muta-
tion route algorithms. In particular, we studied the three pairs toluene/methane, 2-
methylfuran/methane, and 2-methylindole/methane, as well as the solvation free energy
difference between 2-cyclopentyl-indole and 7-cyclopentyl-indole (2-/7-CPI). For the last
case, the free energy differences were recomputed only for the new algorithms; however,
earlier results using the old algorithm were used for comparison. This is one of the most
interesting examples because the old CC generation, which searched for the CC including
hydrogens without the improvements reported in ’Processing of hydrogen atoms’, gener-
ated a smaller CC (fig. 5.5). Thus, one would expect that for this example, differences
should be especially pronounced.

Although these molecules are rather small and simple, they encompass some of the
most interesting features, like rings. For instance, the mutation route for toluene is
fundamentally different depending on the algorithm: the old algorithm starts next to
the atom of the phenyl group that is connected to the methyl substituent — which
serves as the CC — and processes the rest of the atoms in a chain-like manner. By
contrast, the new one starts at the atom with maximum distance from the substituent and
proceeds symmetrically until the CC is reached. An overview of the molecules and the
corresponding mutation routes is shown in figs. 5.10 and 5.11. The simulation results are
averaged over four runs (except 2-CPI/7-CPI, for which only three runs were performed).
For all these examples, the standard deviation is smaller using the new route finding
algorithm and adapted settings for the generation of the CC (fig. 5.6 and table 5.2).

For the 2-/7-CPI-transformation, a relative free energy difference of −1.55 ± 0.10
kcal/mol is computed using the CC and the route proposed by the new algorithms.
In [1], for this transformation, −1.43± 0.30 kcal/mol was determined with the smaller
cyclopentane-X CC. It can be assumed that the differences between the old and new
mutation route are even more pronounced because in [1] the calculations were repeated
five times and averaged, in contrast to only three replicates for the run with the new
mutation route. Of course, a direct comparison with the same number of replicates
would be advantageous to quantify the improvement, but in any case, the change in
standard deviation is remarkable. Calculation of the absolute free energy differences of
both molecules yield −1.58± 0.30 kcal/mol. This indicates that the new route not only
provides a smaller error, but also leads to a more accurate result.

However, probably the greatest advantage is that the mutation route for the new, bigger

mutation partners old algorithm (DFS) new algorithm (BFS)
toluene/methane 2.02 ± 0.21 2.05 ± 0.04

2-methylfuran/methane 1.47 ± 0.24 1.60 ± 0.16
2-methyl-1H-indole/methane 7.85 ± 0.23 8.20 ± 0.13

Table 5.2: results for a selection of mutation partners
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Figure 5.5: mutation routes for 2-cyclopentylindole (upper row)/7-cyclopentylindole (lower
row); left: small CC with DFS-algorithm; right: bigger CC with BFS-
algorithm; CC in dark; the smaller CC is obtained when hydrogens are
not removed before the computation of the maximum common substructure
(it should be noted that in this case even further manual post-processing is
necessary because one atom of the indole is also attached to the CC)
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Figure 5.6: comparison of results for mutating 2-methylindole, toluene and 2-methylfuran
to methane.
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CC needs fewer states (only five in contrast to nine heavy atoms have to be mutated).
An additional means for detecting differences between the outcome of the mutation

algorithms is to compare runs of different sampling length. The results of the MD runs
set up with transformato can be evaluated using the functions of the MBAR class of
pymbar [24]. Python scripts were written to evaluate the computed free energy differences
for different simulation lengths. There are two crucial parameters: the reduced potential
energy of an uncorrelated configuration n at a specific state k (u_kn) and the number of
uncorrelated snapshots n (N_k). By removing the same number of configurations at each
state k and adjusting (N_k) accordingly, shorter simulations were generated artificially. In
5.12, 5.13 and 5.14, a comparison between old and new route for molecule pairs consisting
of toluene, 2-methylfuran, 2-methyl-1H-indole and methane is presented. The mean of
the calculated free energy differences as well as the standard deviation is shown. In 5.15,
free energy differences for the 2-CPI-mutations at the two conditions (water box and
vacuum) are visualized. As expected, for longer simulation lengths the standard deviation
decreases, whereas very short simulation lengths (i.e., a very low number of configuration
snapshots as input for the MBAR computations using pymbar) lead to unreliable results.
However, looking at the evolution of the free energy difference mean value and standard
deviation, it is difficult to confirm the superiority of one of the mutation routes for these
three transformations or to indicate a sufficient minimum simulation length. Furthermore,
the pymbar-package [24] allows the computation of overlap plots. Figs. 5.7, 5.8, and
5.9 show overlap plots and the change of free energy difference of one run between the
states for toluene → methane and overlap plots for 2-methyl-1H-indole. In the case
of 2-methyl-1H-indole (the mutation involves processing of a double ring), significant
differences for the water box between the old and new algorithm are discernible.
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(a) toluene/vacuum old (b) toluene/vacuum new

(c) toluene/waterbox old (d) toluene/waterbox new

Figure 5.7: Overlap plots for toluene → methane: upper row: vacuum, lower row: water
box; left: old mutation algorithm, right: new mutation algorithm
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(a) toluene/vacuum old

(b) toluene/vacuum new

(c) toluene/waterbox old

(d) toluene/waterbox new

Figure 5.8: free energy differences per state for toluene → methane
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(a) toluene/vacuum old (b) toluene/vacuum new

(c) toluene/waterbox old (d) toluene/waterbox new

Figure 5.9: Overlap plots for 2-methyl-1H-indole → methane: upper row: vacuum, lower
row: water box; left: old mutation algorithm, right: new mutation algorithm
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Figure 5.10: left: DFS-algorithm; right: BFS-algorithm; CC in dark; from top to bot-
tom row: mutation routes for toluene/methane, 2-methylfuran/methane,
2-methylindole/methane
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Figure 5.11: left: DFS-algorithm; right: BFS-algorithm; CC in dark; mutation routes for
2-cyclopentylindole/7-cyclopentylindole
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Figure 5.12: toluene → methane; left: water box; right: vacuum; mutation routes for
toluene/methane; first row: mean value, bars indicate standard deviation;
middle row: standard deviation; third row: difference to full-length simulation
(i.e., the last value is zero)

48



5.3 Results for selected molecule pairs

Figure 5.13: 2-methylfuran → methane; left: water box; right: vacuum; mutation routes
for 2-methylfuran/methane; first row: mean value, bars indicate standard
deviation; middle row: standard deviation; third row: difference to full-length
simulation (i.e., the last value is zero)
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Figure 5.14: 2-methylindole → methane; left: water box; right: vacuum; mutation routes
for 2-methylindole/methane; first row: mean value, bars indicate standard
deviation; middle row: standard deviation; third row: difference to full-length
simulation (i.e., the last value is zero)
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Figure 5.15: left: 2-CPI → CC for 2-/7-CPI; left: 7-CPI → CC for 2-/7-CPI; first row:
mean value, bars indicate standard deviation; middle row: standard deviation;
third row: difference to full-length simulation (i.e., the last value is zero)
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6 Conclusion

Simulation results for the molecule pairs used in [4,40] demonstrate the superiority of the
new mutation algorithms. In each case, the standard deviation of the new algorithms
is smaller and for 2-/7-CPI the free energy difference is closer to the result of absolute
free energy calculations. In this report, only tests on rather small molecules and simple
transformations have been carried out. Additional comparisons of mutation routes for
more molecules and closer examination of the obtained results are necessary.

Especially for more complex transformations, an evaluation of the relation between
sampling length and standard deviation for different mutation routes could be insightful.
In such cases, differences between protocols might be more pronounced, and choosing an
algorithm which allows for shorter sampling length by minimizing variance would lower
the computational cost.

To investigate such correlations systematically, one could apply the mutation algorithms
to a series of molecules with exactly defined, small modifications (for example, one
added/removed atom or ring structure). This would allow one to probe if the size of
the dummy regions or the CC and the combination of some elements, e.g., rings, have
an effect. However, it should be stressed that in most cases the effects probably will be
moderate and smaller than the estimated standard error of the simulations.

The tf-routes package presented in this work also allows processing heavy non-carbon
atoms with specific priorities; i.e., atoms of different types can be represented as nodes
with different weight, which impacts the mutation route. It would be interesting if there
are more pronounced differences for molecules with such atoms.

However, in any case, more results for molecules with different structure (e.g., different
size and number of rings and chains, possible different atoms systems) and different
sampling length would be necessary. The molecule pairs assessed so far are rather small
and do not cover the space of possible structures at all.

Elucidating the apparently more complex and specific role between mutation order and
resulting free energy differences could allow further improvement of the mutation route
creation (given that the overall differences suggest that further optimization is expedient).

The main contribution of this work is the adjustment of the CC generation and the
implementation of new mutation algorithms. The main steps of the workflow are outlined
in fig. 6.1. The red arrows indicate steps which are indispensable for the correct processing
of hydrogens and are of particular importance for molecule pairs with terminal junction
‘X’-atoms at different positions as in the shown 2-CPI/7-CPI transformation.

The greatest advantage of the new algorithms in comparison to the old versions is
certainly that they always should yield a correct CC and a ’reasonable’ route for every
molecule pair (if a correct CC exists). In particular, the lack of special treatment of CC
hydrogen atoms produced faulty common cores in previous versions of transformato.
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Figure 6.1: Main steps of processing a molecule pair: 1) remove hydrogens, but store a copy of the
original molecule objects so that the information about the position and RDKit id of the
hydrogens does not get lost 2) use representation without hydrogens to extract maximum
common substructure according to transformato constraints 3) Create a mutation route
for each molecule 4) add hydrogens again so that the molecules can be processed further in
the transformato workflow 3b) the CC is endowed with hydrogens at the correct position
using the information from the original molecule objects 4b) the CC with hydrogens at
specific positions is mapped on both molecules to create the final representation
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The new processing always generates a valid CC with the maximal number of heavy
atoms. Furthermore, the old mutation route algorithm often led, especially in the case
of bigger molecules, to atom removals in regions near the CC before chains etc. were
systematically processed. Now both parts of the workflow, CC generation and mutation
route determination, are adjusted and should always yield reasonable and efficient mutation
routes.
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representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
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