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Abstract
Clustering is a fundamental task in data science. Clustering is concerned with finding
groups of objects in data that share similar characteristics, while keeping dissimilar
objects separated. In recent years, the increase in size, dimensionality and heterogeneity
of data has led to a corresponding increase in clustering methods to address these novel
challenges. For example, clustering high-dimensional objects such as images directly
in the pixel space does not work satisfactorily. This has led to a growing interest in
combining deep learning with clustering, known as deep clustering. Algorithms of this
type combine the non-linear representation of a self-supervised or unsupervised deep
learning algorithm, e.g., an autoencoder, with a clustering objective and optimize both
simultaneously. In this thesis, we focus on learning representations for clustering and
propose several methods that provide novel capabilities to deep clustering algorithms.

We introduce ENRC (Embedded Non-Redundant Clustering), the first deep clustering
method that can find multiple, non-redundant clusterings of different dimensionalities
in high-dimensional data, like images. For instance, the image of a red cube can be
clustered once according to its shape and once according to its color. ENRC does this by
learning to split the representation into useful features for each clustering. In cooperation
with archaeologists, we use ENRC to find non-redundant clusterings of images of Early
Medieval glass beads. This led to the first application of non-redundant clustering to
images of archaeological artifacts.

Building on the idea of splitting the learned representation into further parts, we
introduce ACe/DeC (Autoencoder Centroid-based Deep Clustering). ACe/DeC splits
the autoencoder representation into features relevant to the clustering task and features
relevant to the autoencoder reconstruction task. The separated representation leads to a
more robust clustering performance with respect to the choice of learning rate, removes
difficult to tune hyperparameters and makes the clustering result easier to interpret.

ENRC, ACe/DeC and many other existing deep clustering methods assume k-means-
like clusters during representation learning. This has several limitations, such as the
restriction to spherical clusters. With DECCS (Deep Embedded Clustering with Con-
sensus representationS), we present a deep clustering algorithm that can combine several
existing clustering methods in an ensemble to learn a single consensus representation on
which all ensemble members achieve a consensus clustering. This enables DECCS to find
non-spherical clusters as well.

The introduced methods are built around the notion of prototype-based representation
learning for clustering, where prototypes are used to guide the deep clustering process.
Further, the methods are characterized by incorporating concepts from subspace, non-
redundant, and consensus clustering methodologies, leading to novel approaches in deep
clustering research.
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Kurzfassung
Clustering ist ein grundlegendes Gebiet der Datenwissenschaften. Beim Clustering han-
delt es sich um ein Verfahren das Gruppen von Objekten in Daten findet, die ähnliche
Merkmale aufweisen, während unähnliche Objekte getrennt bleiben. In den letzten
Jahren hat die zunehmende Größe, Dimensionalität und Heterogenität von Daten zu einer
entsprechenden Zunahme von Clustering-Methoden geführt, um diesen neuen Heraus-
forderungen zu begegnen. Beispielsweise funktioniert das Clustering hochdimensionaler
Objekte wie Bilder im Pixelraum nicht zufriedenstellend. Dies hat zu einem wachsenden
Interesse an der Kombination von Deep Learning mit Clustering, dem so genannten Deep
Clustering, geführt. Algorithmen dieser Art kombinieren die nichtlineare Repräsentation
eines selbstüberwachten oder unüberwachten Deep Learning Algorithmus, z. B. eines
Autoencoders, mit einem Clustering-Ziel und optimieren beide gleichzeitig. In dieser
Arbeit konzentrieren wir uns auf das Lernen von Repräsentationen (representation learn-
ing) für das Clustering und schlagen mehrere Methoden vor, die den Deep Clustering
Algorithmen neue Möglichkeiten eröffnen.

Wir stellen ENRC (Embedded Non-Redundant Clustering) vor, die erste Deep Cluster-
ing Methode, die mehrere, nicht redundante Clusterings unterschiedlicher Dimensionalität
in hochdimensionalen Daten wie Bildern finden kann. Zum Beispiel kann das Bild eines
roten Würfels einmal nach seiner Form und einmal nach seiner Farbe gruppiert werden.
ENRC erreicht das, indem es lernt, die Darstellung in nützliche Merkmale für jedes
Clustering aufzuteilen. In Zusammenarbeit mit Archäologen haben wir ENRC einge-
setzt, um nicht redundante Clusterings von Bildern frühmittelalterlicher Glasperlen zu
finden. Dies führte zur ersten Anwendung des nicht-redundanten Clusterings auf Bildern
archäologischer Artefakte.

Aufbauend auf der Idee, die gelernte Repräsentation in weitere Teile zu zerlegen,
führen wir ACe/DeC (Autoencoder Centroid-based Deep Clustering) ein. ACe/DeC
teilt die Autoencoder-Repräsentation in Merkmale, die für das Clustering relevant sind,
und in Merkmale, die für die Autoencoder Rekonstruktion relevant sind. Die getrennte
Repräsentation führt zu einem robusteren Clusteringresultat in Bezug auf die Wahl der
Lernrate, beseitigt schwierig zu bestimmende Hyperparameter und macht das Clustering-
Ergebnis einfacher zu interpretieren.

ENRC, ACe/DeC und viele andere bestehende Deep Clustering Methoden gehen beim
Lernen der Repräsentation von k-Means-artigen Clustern aus. Dies führt zu mehreren
Einschränkungen, wie zum Beispiel die Beschränkung auf sphärische Cluster. Mit DECCS
(Deep Embedded Clustering with Consensus representationS) stellen wir einen Deep
Clustering Algorithmus vor, der mehrere bestehende Clustering-Methoden in einem
Ensemble kombinieren kann, um eine einzige Konsensusrepräsentation zu erlernen, auf
der alle Ensemblemitglieder ein Konsensusclustering erreichen. Dadurch findet DECCS
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Kurzfassung

auch nicht sphärische Cluster.
Die vorgestellten Methoden basieren auf dem Konzept des prototypenbasierten Lernens

von Repräsentationen für das Clustering, bei dem Prototypen zur Anleitung des Deep
Clustering Prozesses verwendet werden. Darüber hinaus zeichnen sich die Methoden durch
die Einbeziehung von Konzepten aus Unterraum-, nicht redundanten und Konsensus-
Clustermethoden aus, was zu neuen Ansätzen in der Deep Clustering Forschung führt.
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1. Introduction
“Features matter.” Ross Girshick et al. [GDDM14]

Clustering is a fundamental task of human cognition, comprising concepts of similarity
and dissimilarity. Already infants are able to group objects with respect to their common
characteristics, like shape and color [GM11]. Clustering in data mining and machine
learning is about formalizing these concepts such that a machine can automatically detect
which objects belong together and which should be separate.

This has many applications in data science [Jai10]. First, the summarization of a large
collection of data instances by their most informative prototypes. Second, to study the
underlying structure of a data set to detect common and uncommon instances during
exploratory data analysis, and third, as unsupervised classification, where we want to
find a natural grouping that is not predetermined by (human) labels. These applications
are not mutually exclusive and usually clustering is used to pursue multiple of these
goals at once. In science more generally, cluster analysis is applied in many different
fields, e.g., to study groups of genes in genome data [But02, TWSW19], group images of
archaeological artifacts according to their common shape and color [MSL+23] or cluster
text data from news articles by grouping them according to their topic [IT95, Gro22].

All these examples have in common that we need to find clusters in complex, high-
dimensional data like genetic microarrays, high resolution images or large corpora of
text. Finding meaningful clusters in such data requires a representation that emphasizes
object discriminability. Traditionally, this has been done using feature engineering/trans-
formation [FPS96], but deep learning [Sch15, LBH15] has given rise to automatic feature
engineering, i.e., representation learning [BCV13]. Feature engineering refers to the
practice of processing and combining existing characteristics in the data to obtain more
revealing features for a desired downstream task, like clustering or classification. For
instance, histograms of oriented gradients [DT05] are commonly used features extracted
from images.

Representation learning automates the practice of feature engineering. This has been
successful in domains where we have large amounts of data and it is difficult to find good
features manually. These domains include data sets of image, video, audio, text, but
also biological data. It remains to be seen whether deep learning is necessary when the
data is tabular [GOV22], as for many tabular data sets non-deep models can outperform
more complex deep models [RR19, GRKB21, SA22, SRP22, GOV22]. Further, feature
engineering and simple models are powerful when we have access to domain knowledge.
Representation learning can help when this is not the case, e.g., when the data is so
complicated that not even domain experts agree on which features to use. Representation
learning can also help when domain knowledge is available, but the task is very complex
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1. Introduction

as the recent interest in physics-informed neural networks shows [KKL+21].
Many of the successes of representation learning in the form of deep learning have

been in the supervised setting with large quantities of labeled data. Deep learning
without labels has only recently taken off in the form of deep unsupervised learning using
(masked) autoencoders [HS06, HCX+22], variational autoencoders [KW14], generative
adversarial networks [GPM+14, GPM+20] or self-supervised learning with contrastive
methods [GH10], like SimCLR [CKNH20].

This plethora of unsupervised representation learning methods has led to an increased
interest of the clustering community forming the sub-field of deep clustering [MGL+18].
Deep clustering methods perform representation learning for clustering. They learn a rep-
resentation that improves cluster performance by increasing the discriminability between
clusters. For instance, the algorithm DEC (Deep Embedded Clustering) [XGF16] learns
a representation for the k-means [Mac65, Llo82, Jai10] algorithm by increasing cluster
separation and cluster compactness. DEC was one of the first deep clustering methods
that sparked a large body of follow up work [MGL+18, AGSC18, RPY+22, ZXZ+22]
and has been cited more than 2,300 times1. The exchange between the representation
learning and clustering community was not one-sided. There are now several methods
that use implicit or explicit clustering objectives in self-supervised representation learning
[CBJD18, CMM+20, ARV20].

For large, high-dimensional data sets, deep clustering algorithms have several ad-
vantages. First, the deep learning literature offers a wide variety of neural network
architectures. This makes deep clustering algorithms suitable for many data modalities.
Second, the learned representations are often low-dimensional, which helps to alleviate
the challenges of the “curse of dimensionality” in clustering. This phenomenon refers
to the difficulty of accurately distinguishing objects in high-dimensional data spaces
[BGRS99, HAK00, AHK01], which can lead to sub-optimal clustering results. Third,
deep clustering algorithms optimize a common objective that includes both a clustering
and a data dependent objective, e.g., the autoencoder [HS06] reconstruction loss. This
allows the learned representations to be suitable for clustering while preserving important
properties of the data. While deep clustering methods have several benefits, they face
a circular dependency problem. To find a good clustering, the algorithm needs a good
representation, and to update the representation, it already needs a good clustering.
In practice, heuristics like alternating between clustering and representation update or
joint optimization of both are used. Empirically, the alternating and joint optimization
outperforms a sequential approach of first pre-training an autoencoder and then clustering
its representation.

In this thesis, we focus on learning representations for clustering using autoencoders
and prototypes. Prototypes are representatives of a cluster that we use as targets to
transform the autoencoder representation. Autoencoders consist of three components:
an encoder, a decoder, and a reconstruction objective. The encoder takes the input data
and compresses it into a low-dimensional representation, while the decoder takes the
compressed representation and aims to reconstruct the original input. The deviation

1According to a google scholar search in March, 2023.
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1.1. Research Goal

between reconstruction and input is measured with the reconstruction loss, e.g., using the
mean squared error. We focus on the autoencoder as it offers a general architecture that
can be applied to many data modalities and is not limited to data that can be augmented.
For instance, contrastive methods rely on extensive augmentation (e.g., random color
changes of images) to avoid trivial solutions. Note, however the methods introduced in
this thesis are not limited to autoencoders and can be used with other data dependent
objectives from self-supervised learning.

1.1. Research Goal

This cumulative thesis contributes three methods for cluster analysis and presents the first
empirical study of non-redundant clustering of high-resolution images of archaeological
artifacts. All presented works are concerned with representation learning for clustering,
removing the need for feature engineering during cluster analysis. This is achieved by
jointly optimizing a prototype-based clustering objective and a data dependent objective,
like the autoencoder reconstruction loss.

In developing the presented methods, the main goal was to make deep clustering
methods more flexible and to allow the use of more advanced clustering methods. This
research goal was motivated by the observation that deep clustering methods are designed
around a particular clustering algorithm. This means that learning a representation for a
specific clustering algorithm will inherit its assumptions. For instance, using k-Means as
a base method will lead to learning a “k-Means friendly” [YFSH17] representation that
consists of spherical clusters without consideration of non-convex shapes or alternative
clustering solutions. Therefore, the choice of clustering method on which the deep
clustering algorithm is based is essential.

There exist many non-deep clustering algorithms that would enhance the capabilities
of deep clustering methods. We focused on incorporating ideas from non-redundant
[MGFS12], subspace-centered [GHPB14, MYPB17], and consensus [SG02] clustering
methods. These families of clustering methods enable deep clustering algorithms that find
multiple, relevant clusterings (non-redundant clustering), that automatically determine
the dimensions needed for clustering (subspace-centered clustering) or that combine
multiple clustering algorithms into a single clustering solution (consensus clustering).

Following this research agenda led to many “firsts” during our work. We introduced the
first deep Embedded Non-Redundant Clustering (ENRC) algorithm [MMA+20], that finds
multiple, non-redundant clusterings and conducted the first non-redundant clustering of
images of archaeological artifacts with ENRC [MSL+23]. With ACe/DeC (Autoencoder
Centroid-based Deep Clustering) [MBM+21] we proposed the first subspace-centered
deep clustering algorithm. Using the ideas from subspace-centered clustering led to an
algorithm that is more robust with respect to the choice of learning rate, removed difficult
to tune hyperparameters and made the clustering result easier to interpret. DECCS (Deep
Embedded Clustering with Consensus representationS) [MTW+22a] is the first deep
consensus clustering algorithm that can be used with many existing clustering methods
to update clusterings and representation together. In [MTW+22a], we also proposed

3



1. Introduction

the idea of a consensus representation, i.e., a representation on which an ensemble of
clustering algorithms achieves the same consensus clustering.

In conclusion, the research goal and the methods presented form the basis for the
subsequent chapters of this thesis. We provide an overview of these chapters below.

1.2. Thesis Structure
The thesis is structured in the following way. In Chapter 2 we provide some background
that is directly related to the contributions made in this thesis. In Chapter 3 we present
our detailed contributions and explain what the proposed methods have in common. In
Chapter 4 we conclude the thesis by discussing the proposed methods with their limitations
and point to exciting future work. The Appendix A contains the four contributed papers
and the detailed listings of co-author contributions.

4



2. Background
The contributions of this work are based on the central fields of representation learning
and cluster analysis. This chapter provides some necessary background information to
help elaborate the contributions made in this thesis. We only briefly discuss each related
area to the extent necessary, because the provided papers in Appendix A are already
self-contained. Interested readers, will find detailed references in each section pointing to
more related work.

2.1. Representation Learning
“Features matter” [GDDM14]. As the quote in Chapter 1 already implies, the success of
data mining and machine learning methods depends on the features used to represent the
data. Traditionally, this meant spending an extensive amount of time with engineering
features that are suited for a specific downstream task. Representation learning [BCV13]
can automate feature engineering and if done successfully will provide great results across
domains and downstream tasks. Bengio, Courville, and Vincent [BCV13] defined it as
“learning representations of the data that make it easier to extract useful information
when building classifiers or other predictors”.

There exist many algorithms for learning “rich representations” [GDDM14] that offer
strong performance on several downstream tasks like classification, image segmentation
or clustering [CKNH20, ZWW+22, HCX+22, CTM+21]. We focus on the family of
autoencoder methods [HS06, KW14, HCX+22] that learn a representation by learning
to reconstruct its input features as we explain next.

2.1.1. Autoencoders
The autoencoder is an unsupervised1 algorithm that learns to predict its input data
[HS06]. This is done by using an encoder to encode an input vector xi ∈ RD into a lower
dimensional representation zi ∈ Rd and then decoding it to reconstruct the original input
as x̂i ∈ RD. The encoder and decoder are typically implemented as non-linear neural
networks that minimize the reconstruction loss over the data set X ∈ RN×D, e.g., using
the mean squared error

Lrec =
N∑︂
i

∥xi − x̂i∥2
2. (2.1)

The autoencoder reconstruction loss serves as a proxy task to learn a non-linear dimen-
sionality reduction of X to Z ∈ RN×d, with d < D. In Figure 2.1 we show an illustration

1Whether it belongs to the self-supervised or unsupervised approaches is up to debate.
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2. Background

of a fully-connected autoencoder that was trained to reconstruct images of handwritten
digits of zeros and ones2. The original 28 × 28 images are flattened to 784-dimensional

Encoder Decoder

Figure 2.1.: Illustration of an autoencoder trained on a small sample of MNIST images
of zeros and ones. The 2-dimensional representation Z shows two separated
clusters of zeros and ones (blue and green).

vectors and encoded in a 2-dimensional representation. The encoded images are then
transformed back to the original space using the decoder. The learned lower dimensional
representation can be used for downstream tasks like clustering or classification.

For our methods, we chose the autoencoder framework, because of its generality. The
reconstruction task can be applied for all data types and is not limited to data that can
be augmented. Based on the data modality the encoder and decoder can be implemented
with existing deep learning architectures like Convolutional Neural Networks [LB+95],
LSTMs [HS97] or Transformers [VSP+17, DBK+21]. Further, there exists a large variety
of autoencoders, e.g., the Denoising Autoencoder [VLBM08], Contractive Autoencoder
[RVM+11], Stacked Autoencoder [BLPL06], Masked Autoencoder [HCX+22], Variational
Autoencoder [KW14] and many more.

2.2. Clustering
Clustering is an unsupervised learning task that, in its most general form, aims to group
similar objects together and separates dissimilar objects. With such a definition we have
many possible interpretations of what a cluster can be. Among other things it heavily
depends on the notion of similarity. Therefore, every clustering algorithm has to make
assumptions, either implicit or explicit, about the clusters it wants to find and what
should be considered similar. The selection of a suitable clustering algorithm is dependent
on the data and the goal of the analysis, which is why over the years many clustering
algorithms have been proposed. For an overview of the broad literature on clustering
see the surveys in [JMF99, KKZ09, Jai10, KKSZ11, BHR+21, XSL23] or the books in
[HKP11, LRU14, TSKK19]. In this thesis, we focus on a small selection of families of
clustering methods, which we will address in the following sections.

2The images are part of the MNIST [LBB+98] data set of handwritten digits and were taken from
https://en.wikipedia.org/wiki/MNIST_database.

6

https://en.wikipedia.org/wiki/MNIST_database


2.2. Clustering

Figure 2.2.: Prototypes for MNIST w.r.t. the mean (upper), median (middle) and medoid
(bottom) of each image per ground truth class (“0” to “9”).

2.2.1. Prototype-based Clustering

The most well-known prototype-based clustering algorithm is k-Means [Mac65, Llo82,
Jai10]. In k-Means each cluster is represented by its centroid, which is simply the mean
of all instances in the cluster. The centroid is a prototypical representation of its cluster
and can be used to summarize the cluster members. Instead of the mean one can use the
median along each dimension of all instances in a cluster, leading to the k-Medians [JD88]
algorithm. Another prototype-based algorithm is k-Medoids [KR90], where clusters are
represented by their medoids. A medoid is the most centrally located object in a cluster,
meaning the prototype itself is an instance of the data. In Figure 2.2 we show mean,
median and medoid prototypes for the classes of the MNIST [LBB+98] data set for
illustration. First, we see that the median prototypes for each digit are less blurry with
sharper edges, whereas the mean prototypes are more blurred, and the medoids are
representative instances of the data. Second, even though the medoids are data objects
we see shared characteristics with the mean and median prototypes. For instance, the
prototype of the digit “1” is right leaning for mean, median and medoid prototypes. There
exist also prototype-based clustering algorithms that represent clusters with multiple
prototypes, e.g., the k-Multiple-Means algorithm [NWL19]. For the development of the
methods presented in this thesis we focused on centroid-based clustering methods, like
k-Means, that use a single prototype per cluster which we explain next in more detail.

Centroid-based Clustering. As k-Means learns prototypes in the form of centroids
it belongs to centroid-based clustering methods as well. k-Means has many available
extensions [Jai10]. For deep clustering the stochastic gradient descent (SGD) k-Means
[BB94] and mini-batch k-Means [Scu10] are most relevant, as they can be easily used with
neural networks. Another benefit of using k-Means like objectives in deep clustering is
that a cluster can be summarized by its prototype, which means that during optimization
only the prototype and not the whole cluster needs to be processed. This is more efficient
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as the number of clusters is usually much smaller than the number of data points. For
the sake of exposition, we will only briefly explain how k-Means works.

k-MeansGround Truth Ground Truth k-Means

Figure 2.3.: Illustration of k-Means clustering for spherical (left) and non-spherical clusters
(right). Corresponding centroids are plotted as squares.

k-Means learns centroids and cluster assignments in an alternating manner. First,
centroids are initialized, e.g., randomly, from the data. Second, data objects are assigned
to cluster centers based on a specified distance function. Third, based on the cluster
assignments new centroids are calculated by averaging the objects inside each cluster.
The second and third steps are repeated until convergence is reached. k-Means is fast
and easy to apply, but it has several downsides. First, it can only find spherical-shaped
clusters and it fails if this assumption is violated. In Figure 2.3 we show an example of
spherical clusters and an example of non-spherical, but convex, clusters that k-Means
clusters incorrectly. Note that the limitation of k-Means w.r.t. the non-spherical clusters
is only important if the clusters are sufficiently close, and other algorithms such as
expectation-maximization clustering [DLR77] can easily separate these two clusters. A
second downside of k-Means is its sensitivity to noise and outlier points. Third, it is
sensitive to imbalanced clusters, e.g., if one cluster contains many more samples than
other clusters. Even though k-Means has these downsides it is still widely used, and
usually one of the first algorithms applied during cluster analysis, due to its simplicity.

2.2.2. Subspace-centered Clustering
Clustering high-dimensional data is associated with the “curse of dimensionality”, which
refers to the problem that distances lose their meaning in high-dimensional spaces
[BGRS99, HAK00, AHK01, KKZ09]. This can lead to sub-optimal clustering results as it
becomes increasingly difficult to distinguish objects from each other. Subspace-centered
clustering (a.k.a. common-subspace clustering) approaches, like Dip’n’Sub [BLBP23],
SubKmeans [MYPB17] or FOSSCLU [GHPB14], avoid the “curse of dimensionality” by
finding a lower dimensional optimal subspace for all clusters. Additionally, subspace-
centered clustering methods assign each data object only to one cluster. This differentiates
subspace-centered clustering from traditional subspace clustering [KKZ09], which assigns
each cluster its own subspace and, depending on the algorithm, data objects can belong
to multiple clusters. The main benefit of subspace-centered clustering methods over
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Figure 2.4.: Non-redundant clusterings according to shape and color for a synthetic (left)
and a real world example of Medieval glass beads (right).

subspace clustering is that a single, common subspace for all clusters is found. This allows
an easy comparison of objects in the single cluster subspace. Additionally, the cluster
subspace is usually lower dimensional than the full data space, making visualizations
easier as the cluster subspace already contains all information necessary for separating
the clusters. For instance, the SubKmeans algorithm learns an optimal subspace for k-
Means. It does so by splitting the data space into two arbitrarily oriented and orthogonal
subspaces. A clustered subspace where the data objects are as close as possible to their
respective cluster centers and a noise subspace where the data distribution is just a single
Gaussian. For many real world data sets the found cluster subspace corresponds better
to the discriminative structure of clustering than the variance preserving representation
of Principal Component Analysis [Pea01], as shown in [MYPB17].

2.2.3. Non-Redundant Clustering

High-dimensional data can often be clustered in more than one meaningful way. Early
subspace clustering algorithms, like CLIQUE [AGGR98] or SUBCLU [KKK04], approach
the clustering of high-dimensional data by searching for all subspace clusters in all
axis-parallel subspaces. A data object can then belong to multiple subspace clusters
without considering whether the multiple clusterings are redundant. As a result, these
approaches may lead to many clusters, making them difficult to analyze. Non-redundant
clustering is motivated by this observation. Non-redundant clustering algorithms find
multiple clustering solutions that are as different as possible, while still preserving relevant
information from the data. This is also in contrast to classical clustering algorithms, like
k-Means, which only find a single clustering solution. In Figure 2.4 we show two non-
redundant clusterings. The left side depicts a toy example of geometric objects, and the
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right side shows a non-redundant clustering for Medieval glass beads from our cooperation
with archaeologists [MSL+23]. Here, both examples can be grouped according to their
shape and color, two valid clusterings that provide different perspectives on the data.

Non-redundant clustering methods have been researched for about two decades. Several
of the proposed methods extend existing clustering algorithms to handle multiple cluster-
ings. The works in [CFD07, MYPB18, LMPB22] are based on k-Means, [YMHP16] uses
expectation-maximization clustering [DLR77] and [NDJ10] extends spectral clustering
[vL07]. After our deep non-redundant clustering algorithm ENRC [MMA+20], the work
of [FZW+21] introduced a probabilistic deep non-redundant clustering algorithm using
variational autoencoders [KW14]. See also [MGFS12] for an overview of non-redundant
clustering algorithms.

For this thesis, mainly NrKMeans [MYPB18] is relevant. NrKMeans extends the
SubKmeans [MYPB17] algorithm to handle multiple non-redundant k-Means clusterings.
NrKMeans needs the number of clusterings and the number of clusters in each clustering
as input parameters. Given these input parameters NrKMeans performs k-Means in each
subspace and optimizes the subspaces using eigenvalue decompositions. Specifying the
input parameters of NrKMeans is difficult in practice. AutoNR [LMPB22] extends NrK-
means to automatically estimate these input parameters using the Minimum Description
Length Principle [Ris78, Grü05] making it more flexible to use.

2.2.4. Consensus Clustering

Consensus clustering combines multiple clustering results into a single robust clustering
solution [SG02]. The underlying motivation is that the individual clustering algorithms all
have limiting assumptions and may only partially discover relevant clusterings. Combining
all the clustering algorithms into one ensemble can lead to better clustering solutions
than considering each clustering individually.

Most consensus clustering algorithms consist of the following steps. First, a set of
base clusterings is generated using individual clustering algorithms. Second, the base
clusterings are combined using a consensus function to obtain a single robust clustering.
The goal of the consensus function is to combine a set of base clusterings into one
final consensus clustering πcc, such that πcc agrees as much as possible with the base
clusterings. A common choice for measuring the agreement is the average normalized
mutual information (NMI) [VEB10] between the consensus clustering and the base
clusterings [SG02]:

πcc = argmaxπ̄

|Π|∑︂
i=1

NMI(πi, π̄), (2.2)

where Π is the set of base clusterings πi. Using the NMI as a measurement of agreement
has the benefit of being invariant to the permutation and absolute values of cluster labels.
Further, the number of clusters can vary between each clustering. Additionally, the
NMI is symmetric. According to [GAH+21], a good consensus function should be robust
(better average performance than the single partitionings), stable (outliers, i.e., poor
partitionings, should not degrade the result) and scalable to large data sets.
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Depending on the consensus function consensus clustering methods can be categorized
into partition-based and object co-occurrence-based methods. Median partition methods
find a partition that is most similar to all the base partitions, see [CS02, TJP05, LDJ07]
for several methods from this family. Object co-occurrence based methods utilize the
co-association matrix to find the ideal partitioning, where the entries of this matrix reflect
how often every two instances are partitioned together, see [FJ05, LBR+15, HWL18] for
example methods. A common strategy for consensus clustering of high-dimensional data
is to use random projections [Joh84, BM01] as done in [FB03, PKBZ15]. Using random
projections is limited to linear transformations, which is why several non-linear consensus
clustering methods using deep learning have been proposed [LSLF16, TLL+19, RDMD21].
For instance, the deep consensus clustering method ConCURL [RDMD21] leverages image
augmentations and random projections for learning a cluster ensemble using Softmax
predictions for different augmented views.

2.2.5. Deep Clustering

Deep clustering combines deep learning methods with cluster objectives to learn rep-
resentations that are more suited for clustering also called “cluster-friendly” [YFSH17].
For recent surveys see [AGSC18, MGL+18, RPY+22, ZXZ+22]. Learning a “cluster-
friendly” representation is only a loosely defined notion and it depends on which cluster
assumptions we make. The general idea is that the deep clustering algorithm changes the
representation such that it better represents the underlying assumptions of the cluster
model. For that the usual procedure is to pre-train a model, e.g., an autoencoder, to
obtain an initial representation and then cluster the representation with the algorithm of
choice. The initial clustering serves as a target to fine-tune the pre-trained model. The
fine-tuning can be done in an alternating or joint manner. The alternating variant works
similar to Expectation-Maximization [DLR77] by alternating between clustering of the
representation and updating (fine-tuning) the representation w.r.t. the obtained labels.
For instance, the DCN [YFSH17] algorithm alternates between a k-Means update and a
representation update given the k-Means centroids. The joint optimization variant uses
either soft cluster labels or a form of mini-batch clustering, e.g., [Scu10], to optimize both
the clustering and representation in a single update step. The algorithm DEC [XGF16]
uses centroids and soft cluster labels to jointly optimize a soft auxiliary target distribution
with the Kullback-Leibler divergence. In Figure 2.5 we illustrate how deep clustering
works on a toy example with two exemplary cluster-friendly representations. Option A
in Figure 2.5 shows a representation that has distinct correlation clusters [KKZ09] and
separated outlier points3. Option B depicts a k-Means friendly representation, where
clusters are spherical and outliers have been assigned to clusters. Option B is what
many deep clustering algorithms focus on, e.g., DEC and DCN, because the centroids
used in k-Means can be easily integrated in deep learning objectives. For instance, the
centroids can serve as targets to which the embedded data objects are “moved” closer to

3Note, that to the best of our knowledge a deep clustering algorithm as in option A does not exist yet.
The depicted example just serves as an illustration.

11



2. Background

Option A: 
Correlation and
outlier preserving 
representation

Deep
Clustering

Option B: 
k-Means friendly
representation

Initial 
representation

Figure 2.5.: Illustration of deep clustering to learn “cluster-friendly” representations.
(Left) An initial representation learned from the data, e.g., using an autoen-
coder, with no clear cluster structure. (Right) Depending on the assumed
cluster model the deep clustering approach moves towards two different
representations and cluster assignments (in color). Option A: Correlations
within clusters are preserved and clusters are better separated from each
other. Outlier points are not assigned to any cluster. Option B: The
representation is more k-Means friendly containing only spherical clusters
(corresponding centroids are plotted as squares). Outliers are assigned to
clusters.

by minimizing their distance.
In general, deep clustering methods optimize a cluster objective together with a data

dependent regularizer. The latter is important to avoid trivial solutions, like mapping all
embedded points to a single cluster. The typical [AGSC18] objective of deep clustering
methods is

L = λ1Lcluster + λ2Lreg, (2.3)

where Lcluster is the cluster objective and Lreg is a data dependent regularizer, e.g., the
autoencoder reconstruction loss (Equation 2.1). λ1 ≥ 0 and λ2 ≥ 0 are hyperparameters
that specify the trade-off between clustering and data dependent objective. In some
methods they are also defined in relation to each other, e.g., λ2 = (1−λ1) with 0 ≤ λ1 ≤ 1.
An instance of the general loss in Equation 2.3 is the loss of DCN [YFSH17], here shown
for a single object i,

Li = λ1∥zi − µi∥2
2 + λ2∥xi − xî∥2

2, (2.4)
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which consists of a k-Means like loss (with fixed centroid µi for embedded sample zi

during the representation update) and an autoencoder reconstruction loss in the form
of the mean squared error. During the representation update of DCN the embedded
data point zi is positioned closer to its corresponding centroid µi. Note that without the
autoencoder reconstruction loss, we could minimize Equation 2.4 by setting all zi and
correspondingly all centroids µi to a constant leading to a trivial solution.

To summarize, for learning cluster-friendly representation we need to make several
design choices. First, we need an algorithm to learn an initial representation that can be
modified, e.g., an autoencoder. Second, we need to select a clustering algorithm for which
we want to learn a suitable representation. Third, we need to combine the clustering and
the representation learning algorithm and optimize a common objective. The third step
introduces a circular dependency problem. If we want to learn a good representation
given a clustering solution, we already need to have a suitable representation for our
clustering algorithm. In practice, heuristics like alternating optimization (updating cluster
labels and representation separately) or joint optimization (updating cluster labels and
representation together) are used. There exist many variations of this “recipe”, especially
the optimization is difficult and requires a high engineering effort, but the general outline
is similar for most methods.
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In this chapter, we explain each method briefly, discuss their contribution in detail
and highlight their common properties. During the development of our deep clustering
methods, we focused on adding new capabilities that are based on approaches from
non-deep methods. We introduced the first deep non-redundant clustering algorithm
ENRC (Embedded Non-Redundant Clustering) [MMA+20] and conducted the first
non-redundant clustering of images of archaeological artifacts [MSL+23] with ENRC.
With ACe/DeC (Autoencoder Centroid-based Deep Clustering) [MBM+21] we proposed
the first deep subspace-centered clustering algorithm that learns a separate cluster
space in the autoencoder representation. Additionally, we introduced DECCS (Deep
Embedded Clustering with Consensus representationS), a deep consensus clustering
method [MTW+22a] that can be used with existing clustering methods and is not limited
to k-Means like clusters.

Inspired by the usage of visual abstracts1 in other fields [RC20] we decided to construct
one visual abstract for each work to explain it in a single figure. All further details are
presented in the corresponding papers in Appendix A. Next, we explain the common
properties of the introduced methods.

3.1. Common Properties of Our Proposed Methods
The contributed methods all learn different representations depending on the underlying
clustering approach, but they have several common aspects. All methods are using the
autoencoder framework for learning an initial representation and use it as a data dependent
regularizer [LPW18] to avoid trivial solutions. The methods use a learned non-linear
transformation to improve the performance of the clustering algorithm. They achieve this
by learning prototypes that serve as targets for the non-linear optimization and therefore
belong to prototype-based clustering methods. During training the representation is then
jointly transformed by updating the cluster assignments and prototypes simultaneously.
This leads to better separated and more compact clusters by “moving” embedded data
instances closer to their prototypes. ENRC and ACe/DeC are both based on k-Means,
but while DECCS uses prototypes as well it is not bound to the k-Means assumptions
as it combines several clustering methods into a single consensus clustering. Overall,
our methods can be summarized under the umbrella of prototype-based representation
learning with deep clustering and we explain the detailed contribution of each method
next.

1See https://www.elsevier.com/authors/tools-and-resources/visual-abstract for some
examples.
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3.2. Representations for Non-Redundant Clustering
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Data with non-redundant clusterings
• Shapes: Cube, Cylinder, Sphere
• Colors: Red, Blue, Green, Yellow

Purple, Grey
• Materials: Rubber, Metal

ENRC
Encoder

Non-redundant 
representation

Color space
Material space
Shape space

Reconstructed 
Prototypes

Input data

ENRC uses an autoencoder and a non-
redundant clustering objective to learn a
representation, where each feature space
corresponds to one clustering. After training
ENRC prototypes are used for interpretation.

Figure 3.1.: Visual abstract for ENRC. The upper part shows a data set of objects
that can be clustered according to shapes, colors, and materials. Once ENRC
is trained we can use the learned non-redundant representation to interpret
the different clusterings (lower part). Each prototype in the non-redundant
representation is reconstructed using the decoder (not shown) and can be
interpreted in the following way: The reconstructed prototypes only represent
the discriminative features to distinguish the clusters, and all other properties
not relevant for this clustering are averaged. The averaging makes color
prototypes blurry and shape prototypes sharp, but without colors.

We introduced in [MMA+20] (Appendix A.1) the first deep Embedded Non-Redundant
Clustering (ENRC) algorithm. In Figure 3.1 we explain the main ideas of ENRC. ENRC
finds multiple, non-redundant clusterings using deep learning. This is in contrast to
k-Means-based, deep clustering methods like DEC [XGF16], which can only find a single
clustering. For instance, images can often be grouped w.r.t. their color and their shape.
Here, DEC would find a single clustering that is a mixture of color and shape, while
ENRC is able to extract both individual clusterings.

We showed in [MMA+20] that ENRC can automatically learn which features are
important for each clustering making the learned non-redundant representation inter-
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pretable. Additionally, ENRC outperformed non-redundant clustering algorithms which
were applied to the same pre-trained autoencoders. This indicates the benefit of a
joint deep clustering approach that fine-tunes the autoencoder further vs. a sequential
approach of just pre-training an autoencoder and then clustering the representation.
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ENRC

Embedded Non-Redundant Clustering of Early Medieval
glass beads. The beads are collected from museums in
Austria, recorded, preprocessed and used for
pretraining. The number of clusterings are estimated
with AutoNR and fine-tuned with ENRC. Prototypes and
their nearest neighbors are used for interpretation.
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Figure 3.2.: Visual abstract for non-redundant clustering of Early Medieval
glass beads. The upper, left part shows a diverse sample of glass beads
varying in color, shape, and decoration (recorded from a side and top view).
The processing pipeline from data collection to interpretation is shown on
the lower, left part. ENRC found four non-redundant clusterings, from which
we reconstructed the prototypes for interpretation. The upper row of the
reconstructed prototypes shows a clustering w.r.t. shapes and decorations.
The two sets of prototypes on the lower left depict clusterings according to
color and the two prototypes in the lower right show a clustering according to
longitudinal size. The seven nearest neighbors for the two shape prototypes
show a high visual similarity indicating that the learned representation
preserved meaningful characteristics of the data.

We also applied ENRC to a real world data set of Early Medieval glass beads that we
collected together with collaboration partners from archaeology [MSL+23] (Appendix
A.4). For this work we extended ENRC to learn augmentation invariances, handle
multiple views and multiple modalities. In Figure 3.2 we explain our approach and
show some qualitative findings. During this work we identified several challenges. First,
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the data is very imbalanced, containing mostly simple beads without decoration and
only yellow, brown, or black colors. Second, the sample size of about 4,700 glass beads
is relatively small for deep learning methods and considering the large variety of the
beads. Third, even though in principle the color and shape of the glass beads can be
varied independently of each other, the sample we have is biased. For instance, most
yellow and black beads are barrel shaped, which leads to a correlation of shape and color
features. This breaks an assumption of non-redundant clustering, namely that multiple
clusterings are non-overlapping, e.g., orthogonal, or statistically independent. ENRC
uses a soft assignment mechanism that allows a partial overlap of clusterings, mitigating
this problem. We have further alleviated this problem by generating additional images
using augmentations, but without a larger, unbiased sample, it is difficult to fully resolve.

This can be seen in the prototypes in Figure 3.2 as well, while the color prototypes
contain mostly color information, there is still some variation in shape. The reconstructed
shape prototypes show mostly shape information, but some variation for lighter and
darker colors is still visible. Nonetheless, to the best of our knowledge this work was the
first application of non-redundant clustering to archaeological image data. We showed
that even in a real-world scenario where ground truth clusterings are not known, we
successfully applied ENRC to find interesting clusterings that overlapped with domain
experts knowledge.
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3.3. Autoencoder Representations for Centroid-based Clustering
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ACe/DeC isolates the cluster information from the
shared information by splitting the representation
into dimensions important for clustering and
dimensions important for reconstruction. This
leads to higher interpretability and more robust
performance for varying learning rates (lr).

Data with cluster- and shared information:
Clustering: Cube, Sphere, Cylinder
Shared: Lighting Conditions

ACe/DeC
Encoder

Cluster space

Shared space

Input data
Lighting

Shapes

Figure 3.3.: Visual abstract for ACe/DeC. The upper part shows a data set of
synthetic objects that can be clustered according to shapes, while the lighting
is mostly relevant for reconstruction. Once ACe/DeC is trained we can use
the learned representation to interpret which information is important for
discriminating the clusters and which information is shared across objects.
The lower part shows the reconstructed prototypes for the cluster and
shared space. The reconstructed cluster prototypes correspond to the three
shapes, while the lighting is less present. The shared space prototype is
an average over the shapes but represents the light information. The split
representation leads to stable performance for different learning rates for
several benchmark data sets (plot on lower right), due to resolving the trade-
off between reconstruction and clustering objectives (explanation in text
below).

In [MBM+21] (Appendix A.2) we introduced the ACe/DeC (Autoencoder Centroid-
based Deep Clustering) framework which automatically learns to split the embedded space
of an autoencoder. In Figure 3.3 we explain our approach and show some qualitative and
quantitative results. ACe/DeC is inspired by the capability of ENRC to automatically
learn which features are important for which clustering. We used this idea to learn to split
the autoencoder representation into a set of features that are important for clustering
(cluster space) and those which are not (shared space). ACe/DeC models the shared

19



3. Contributions

space with a single cluster to capture the features that are shared across all clusters
and are mostly important for preserving additional details about the objects needed for
reconstruction. ACe/DeC is related to subspace-centered clustering methods by learning
a separate space for all clusters.

Clustering-Reconstruction Trade-off. Our motivation for ACe/DeC was the observation
that the reconstruction and clustering objective in deep clustering methods have different
goals that are not necessarily aligned. This has been observed in previous work for
autoencoder-based semi-supervised learning [EM19] as well. For instance, the clustering
objective learns which features are helpful for discriminating the clusters (e.g., the
shapes in Figure 3.3), while the reconstruction objective preserves features important for
reconstruction (e.g., lighting conditions). In most methods this trade-off is handled via
the hyperparameters λ1 and λ2 that weight the cluster and reconstruction objective, as
shown in Equation 2.4. This has the downside of requiring access to a form of supervision,
e.g., ground truth labels, to tune the additional hyperparameters. ACe/DeC does not
rely on these hyperparameters. Instead, ACe/DeC learns an individual weight for each
dimension indicating whether the dimension belongs to the cluster or shared space. The
individual weights create a more flexible way to handle the clustering-reconstruction
trade-off than global (per loss) hyperparameters would allow. This idea can be used
for existing centroid-based deep clustering methods like DCN [YFSH17]. We showed
in experiments that the usage of ACe/DeC made DCN much more stable w.r.t. the
choice of learning rate (lower, right plot in Figure 3.3), a crucial hyperparameter in deep
learning. Additionally, it has the benefit of making the clustering more interpretable by
removing information that is not needed for clustering.
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3.4. Consensus Representations

Embedding the input data Generating base clusterings & approximation Updating representation

Consensus representation where all ensemble
members agree on the same clustering.

S1 S2

S3 S4

Encoder

Input Data Representation

DECCS learns a consensus representation by alternating between
a base clustering generation and representation update step. The
generated base clustering algorithms to are approximated with
classifiers to . The classifier boundaries constraint the movement
inside the representation when embedded objects are moved to their
prototypes ,…, to form spherical clusters. After training steps S1
to S4 this results in a consensus representation of well-separated
clusters that have a simple shape (dense and more spherical) and on
which the ensemble members agree on.

Figure 3.4.: Visual abstract for DECCS. The upper part shows a synthetic input data
set of two half-moon shaped clusters and two Gaussian clusters. DECCS
uses the encoder of a pre-trained autoencoder to get the initial representa-
tion. Given the initial representation DECCS conducts its main steps using
prototypes and constraints learned from the cluster ensemble. The lower
part shows how DECCS transforms the initial representation (S1) in several
update steps to the final consensus representation (S4).

In [MTW+22a] (Appendix A.3) we proposed DECCS (Deep Embedded Clustering
with Consensus representationS) and in Figure 3.4 we show an overview of its main steps.
DECCS is the first deep clustering algorithm that can combine multiple, heterogeneous
clustering algorithms into a single clustering by jointly updating the representation and
clusterings. This is in contrast to many previously existing deep clustering methods,
which are usually limited by the assumption of a single clustering algorithm. In difference
to the deep consensus clustering method ConCURL [RDMD21], DECCS (depending
on the used neural network) can be used with any data type and does not rely on
augmentations to work well. Further, DECCS can include existing clustering algorithms,
whereas ConCURL uses an ensemble of Softmax predictions for different augmented
views. One key notion that we defined in [MTW+22a] is the consensus representation,
which is a learned representation for which all ensemble members reach a clustering
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consensus2. DECCS can learn an instance of a consensus representation that is motivated
by the observation that most clustering algorithms can detect compact and well-separated
clusters in a low-dimensional space (S4 in Figure 3.4). Learning a consensus representation
allows DECCS to learn a consensus function that combines the base clusterings into a
single consensus clustering. This is in contrast to other consensus clustering approaches,
where a consensus function needs to be pre-specified.

2We provide more information on the consensus representation together with a detailed definition in
Appendix A.3 (Definition 1).
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In the following we split the conclusion of this thesis in a discussion, limitations and
future work section and provide some final remarks. The Appendix contains all four
papers with supplementary material and additional information, including the detailed
listings of co-author contributions.

4.1. Discussion
Autoencoding vs. Contrastive Learning. All introduced methods (ENRC, ACe/DeC
and DECCS) are based on the autoencoder framework to learn an initial representation
and to regularize the embedded space during the deep clustering procedure. The autoen-
coder is not strictly necessary, in principle one could replace the autoencoder, with any
other representation learning algorithm, e.g., contrastive methods [CKNH20, CMM+20]
for image data. One important design decision to consider is that the objective of the rep-
resentation learning algorithm is aligned to the clustering objective. A negative example
would be learning a color invariant representation using a contrastive method during pre-
training but wanting to cluster objects according to their color afterwards. Unfortunately,
many contrastive methods rely on extensive image augmentations, including random
color transformations, to perform well. These extensive augmentations are needed to
become invariant against “unnecessary” details for downstream tasks like classification.
For instance, SimCLR ([CKNH20], Figure 5) reported a drop in ImageNet1K [DDS+09]
classification accuracy of approximately 28% when only minimal augmentations (random
cropping and flipping) where used. This was also a reason why we chose the autoencoder
framework for clustering the glass bead data in [MSL+23], as color was an important
property we wanted to preserve.

Domain Knowledge and Cluster-wise Invariances. Most deep clustering methods allow
the inclusion of domain knowledge in the form of augmentations to steer the clustering
solution in the desired direction. For instance, consider the task of clustering the MNIST
[LBB+98] data set of images of hand-written numerals from “0” to “9”. In [MBM+21]
we found that the Normalized Mutual Information (NMI) [VEB10] w.r.t. the ground
truth labels of MNIST increases by 6% in relative performance when cluster predictions
do not change due to slight translations and rotations1. We refer to this desired property
as cluster-wise invariance to distinguish it from the instance-wise invariance used in
contrastive learning. Prototype-based deep clustering methods, like ours, can easily

1Larger random rotations of images in MNIST should be avoided as it could change the meaning of
digits “6” and “9”.
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integrate cluster-wise invariances by “moving” both the embeddings of the original and
augmented object to the same cluster prototype. The prototype determines the cluster
assignments, so objects that are closely embedded to their corresponding prototype
will share the same cluster label. We did not evaluate all our proposed methods with
additional augmentations, as we benchmarked our methods also on data sets that do not
have a commonly used set of augmentations. For instance, in [MTW+22a] we used a
data set based on protein expression levels, where it is not clear which augmentations
are meaningful. We want to note that in principle all our methods can use additional
augmentations and should profit from them if the augmentation invariances align with
the desired clustering.

4.2. Limitations
Dependence on Hyperparameters. Deep clustering methods have many limitations
that make them difficult to use in practice. Among other things, they require large
data sets, specialized hardware, and a long training period. One of the most difficult
problems to solve for deep clustering methods in practice is tuning the hyperparameters
without access to ground truth labels. For deep clustering methods, this is particularly
difficult because there are many possible hyperparameters to tune for the neural network,
but also for the clustering algorithm. Furthermore, the objective used in training may
not result in a learned representation that corresponds to the desired ground truth
clustering. We also faced this issue during the development of our methods. We limited
the dependence on hyperparameters by using the same hyperparameter setting across
data sets for most experiments. In the hope that such a setting will more likely transfer
to other data sets. Some positive evidence for that comes from the independent work
of [YFB21]. They applied our ACe/DeC algorithm in another benchmark with our
provided implementation and hyperparameters, where it performed in the top-5 among
18 compared methods. Additionally, in the real-world application of ENRC to images
of Early Medieval Glass beads [MSL+23], we also had no access to ground truth labels,
but were able to find clusterings that overlapped with domain expert knowledge. We
achieved this by tuning the autoencoder parameters w.r.t. the reconstruction error and
selected the best clustering solutions with multiple unsupervised clustering metrics. Of
course, this does not fix the underlying dependence on hyperparameters and the increased
computational cost that arises during hyperparameter search. We believe that this is an
important avenue for future research for deep clustering, but also for other self-supervised
deep learning methods.

Limited Interpretability. Deep neural networks are black box algorithms that are difficult
to interpret without specialized visualization methods [OSJ+18]. There have been some
deep learning approaches with built-in interpretability, like [CLT+19], but they are not
yet widely used and most research still focuses on improving benchmark performance.
The limited interpretability of deep learning affected our methods as well, making the
embedded space in which clusters are found difficult to understand. Autoencoder centroid-
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based deep clustering methods can decode the prototypes that are found during clustering
using the decoder. For image data this can help with interpreting the found clustering,
e.g., in [MSL+23] we found that the prototypes of the glass bead data correspond to
known depictions of bead types (Figure 11 in [MSL+23]). Further, ACe/DeC and ENRC
are splitting the embedded space according to the different clusterings such that the latent
dimensions encode information that is important for each clustering. We explored this
with ACe/DeC by interpolating the samples in the shared space and reconstructing the
interpolated samples. We found that the interpolations in the shared space of ACe/DeC
encoded information more important for the reconstruction task, like different styles
of writing the digit “7” in MNIST, see Figure 3 in [MBM+21]. Using prototypes and
autoencoder reconstructions can be challenging when trying to interpret high resolution
natural image data, due to a large amount of variation in the background and low
generation quality of autoencoder reconstructions. [BBV21] proposed a diffusion model
that generates high resolution images from embedded spaces for interpretation, that
could be used with our methods as well. Whether this works for other data modalities
and is helpful in practice remains to be seen.

4.3. Future Work

Semi-Supervised Learning. ENRC [MMA+20] and ACe/DeC [MBM+21] would be
suited for semi-supervised extensions in multi-label and single-label classification. This
could be achieved by including the supervision with a classifier inside the autoencoder
embedded space as in [LPW18], calculating prototypes based on a small set of labeled
instances or a combination of both. We believe that this would lead to more data efficient
and interpretable algorithms, by splitting the embedded space in separate parts for each
clustering.

Self-Supervised Learning We would like to investigate the performance of our contrib-
uted algorithms when used with self-supervised or contrastive representation learning
algorithms. We believe this might further improve the clustering performance on image
data. Especially, since contrastive and deep clustering methods both share a discrim-
inative objective and not a generative one, like the autoencoder reconstruction loss.
Additionally, contrastive methods, showed that they can achieve a high classification
performance on common benchmark data sets [CTM+21]. There, has also been some the-
oretical and empirical work that provides evidence that contrastive methods are implicitly
learning a clustering of the input data [PCS+23, SPA+19, HM22, CFN+22, ABD+22].
Contrastive approaches are limited to data where augmentation is possible, but they are
still a promising avenue of future deep clustering research. In fact, existing combinations
of contrastive learning with deep clustering are already showing great results [LHL+21].

Vision Transformers and Masked Autoencoders. The recent work of [HCX+22] in-
troduced the Masked Autoencoder (MAE). The MAE uses a Vision Transformer (ViT)
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[DBK+21] together with a patch masking strategy to learn a representation for down-
stream tasks like supervised finetuning or image segmentation. The MAE revived to some
degree the interest in autoencoding images in pixel space, an approach that was neglected
partially due to the success of other self-supervised methods. Our proposed methods
are all based on autoencoders and subsequently improvements in autoencoding should
lead to improvements for autoencoder-based deep clustering methods. We would like
to do a unified benchmarking across multiple deep clustering algorithms with different
backbone autoencoder architectures (fully connected, convolutional and ViT) to measure
the performance gain from “stronger” architectures. Together with collaborators we
created the open-source ClustPy package2 that already includes several deep clustering
algorithms and with which we plan to conduct the benchmarking study.

Overall, we are excited about research opportunities on the intersection of clustering
and representation learning.

4.4. Final Remarks
For this thesis we developed three algorithms for cluster analysis and conducted the first
empirical study of non-redundant clustering of archaeological artefacts. As described,
each algorithm represents an innovation in the field of deep clustering and will hopefully
stimulate further future work. Compared to the growing scientific literature, this work is
only a small contribution, but we hope it will help practitioners and enable researchers
to discover new patterns in data.

2https://github.com/collinleiber/ClustPy
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Abstract Complex data types like images can be clustered in multiple
valid ways. Non-redundant clustering aims at extracting those
meaningful groupings by discouraging redundancy between clus-
terings. Unfortunately, clustering images in pixel space directly
has been shown to work unsatisfactory. This has increased
interest in combining the high representational power of deep
learning with clustering, termed deep clustering. Algorithms of
this type combine the non-linear embedding of an autoencoder
with a clustering objective and optimize both simultaneously.
None of these algorithms try to find multiple non-redundant
clusterings. In this paper, we propose the novel Embedded
Non-Redundant Clustering algorithm (ENRC). It is the first
algorithm that combines neural-network-based representation
learning with non-redundant clustering. ENRC can find multiple
highly non-redundant clusterings of different dimensionalities
within a data set. This is achieved by softly) assigning each
dimension of the embedded space to the different clusterings.
For instance, in image data sets it can group the objects by
color, material and shape, without the need for explicit fea-
ture engineering. We show the viability of ENRC in extensive
experiments and empirically demonstrate the advantage of com-
bining non-linear representation learning with non-redundant
clustering.
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Abstract

Complex data types like images can be clustered in multi-
ple valid ways. Non-redundant clustering aims at extracting
those meaningful groupings by discouraging redundancy be-
tween clusterings. Unfortunately, clustering images in pixel
space directly has been shown to work unsatisfactory. This
has increased interest in combining the high representational
power of deep learning with clustering, termed deep cluster-
ing. Algorithms of this type combine the non-linear embed-
ding of an autoencoder with a clustering objective and op-
timize both simultaneously. None of these algorithms try to
find multiple non-redundant clusterings. In this paper, we pro-
pose the novel Embedded Non-Redundant Clustering algo-
rithm (ENRC). It is the first algorithm that combines neural-
network-based representation learning with non-redundant
clustering. ENRC can find multiple highly non-redundant
clusterings of different dimensionalities within a data set.
This is achieved by (softly) assigning each dimension of the
embedded space to the different clusterings. For instance, in
image data sets it can group the objects by color, material and
shape, without the need for explicit feature engineering. We
show the viability of ENRC in extensive experiments and em-
pirically demonstrate the advantage of combining non-linear
representation learning with non-redundant clustering.

1 Introduction
Every day massive amounts of complex data like images,
texts, videos and audios are generated and most of them
have no labels. This makes it nearly impossible to apply su-
pervised methods, because it may be too expensive to la-
bel the data or there might not even be a labeling consen-
sus. This calls for unsupervised classification techniques like
clustering, which are unsupervised learning algorithms for
partitioning data into similar groups. Unfortunately, these
kinds of complex domains have been notoriously difficult
to handle for classical clustering algorithms (Xie, Girshick,
and Farhadi 2016). The deep learning ’revolution’ of the
last few years targets these data sets explicitly, which sug-
gests that a combination of both approaches is promising.
Several techniques have been proposed in this area under

∗First authors with equal contribution.
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: This data set can be meaningfully grouped ei-
ther by shapes (cube, cylinder, sphere), by colors (red, blue,
green, yellow, purple, gray), or by materials (rubber, metal).
All of these clusterings are non-redundant.

the terms ’deep clustering’ or ’embedded clustering’. They
combine a flat clustering objective—considering only one
valid clustering— with unsupervised representation learn-
ing through neural networks (Bengio, Courville, and Vin-
cent 2013; Aljalbout et al. 2018). These approaches make
it possible to achieve a high-quality clustering even in the
above described domains. The advantage of an integrated
approach that performs clustering and representation learn-
ing simultaneously is that they benefit from each other. The
clustering provides feedback to the transformation, and in
return the non-linear transformation can alter the embedded
space to improve the clustering. All these methods assume
that the data can be partitioned into only a single valid clus-
tering. Yet, we argue that most modern complex data sets
can be partitioned in multiple valid ways. Techniques from
subspace clustering address these issues, but they deliver
a multitude of redundant clustering solutions, which might
be valid, but are hard to interpret even for domain experts.
Deep subspace clustering algorithms like (Ji et al. 2017;
Zhang et al. 2018) can only find a single valid clustering,
where a cluster can belong to a different subspace. We think
it is necessary to constrain the solution space by only consid-
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ering clusterings, which are highly non-redundant, meaning
that the found clusterings should be as different as possi-
ble. Techniques tackling these challenges are not new. In-
deed, outside of deep clustering there is a whole range of
algorithms for non-redundant clustering (Niu, Dy, and Jor-
dan 2010; Ye et al. 2016; Mautz et al. 2018; Cui, Fern, and
Dy 2007).

In Figure 1 we can see examples of rendered objects
from a data set, which exhibit different aspects of non-
redundancy, such as color, shape or material1. A non-
redundant clustering objective targets the extraction of these
multiple groupings. Applying a deep embedded flat cluster-
ing algorithm on the example in Figure 1 would result in
only a single clustering that would be even—in a best case
scenario—a mixture of shape, color and material. To ad-
dress the challenge of finding non-redundant clusterings in
complex high dimensional data, we propose our novel Em-
bedded Non-Redundant Clustering algorithm (ENRC) that
combines the benefits of a non-linear feature transforma-
tion with a non-redundant clustering objective. To the best
of our knowledge ENRC is the first algorithm that combines
these two aspects. The main contributions of the paper can
be summarized as follows:
• Non-redundant clustering layer: We propose a novel

clustering layer, that axis-aligns the different non-
redundant structures, captured in the embedded space.
Each clustering can have different dimensionalities that
are automatically detected.

• Feature importance: Existing deep clustering methods
have to resort to additional dimensionality reduction tech-
niques like t-sne (Maaten and Hinton 2008) to visualize
their results, which might not show a low dimensional
representation faithful to the found clustering. In contrast
for ENRC each axis-aligned embedded feature has a soft-
assignment weight, where a high feature weight indicates
that this feature is important for the clustering. This leads
to a cluster aware dimensionality reduction for visualiza-
tion.

• Joint feature optimization: Existing non-redundant
clustering methods rely on hand engineered features.
These features might already predetermine what struc-
tures one expects to find, e.g. engineering color features
for detecting clusters based on color. We show that the
joint optimization of ENRC and an autoencoder is able to
to learn the relevant features directly from the data.

• Preservation of non-redundancy: To our knowledge we
are the first to show empirically that non-redundant struc-
ture is preserved in autoencoders and can be recovered by
non-redundant clustering algorithms.

2 Embedded Non-Redundant Clustering
2.1 Overview
An autoencoder is an unsupervised (self-supervised) neu-
ral network which learns to reconstruct its input. It con-
sists of an encoder enc(·) network, which embeds the in-
put data in some latent space and a decoder dec(·) network,

1All figures are best viewed in color.

Figure 2: The architecture of ENRC. The linear layer V T

aligns the essential structures of the different clusterings
along the axes. The clusterings can be of different dimen-
sionality. V maps the clusterings back to the embedded
space.

which tries to reconstruct the original input from the embed-
ding. To avoid a trivial identity mapping, i.e. simple copy-
ing, the latent space dimensionality is often chosen smaller
than the input’s dimensionality or some other regularization
might be used. To explain our ENRC algorithm, we assume
some generic pretrained encoder and decoder, which have
the non-redundant clustering layer in the middle, as depicted
in Figure 2. The novel algorithm finds multiple valid non-
redundant clusterings in the embedded space of the autoen-
coder. To achieve this we introduce two new learnable pa-
rameters. A linear transformation matrix V that aligns the
structures within each clustering with the axis, acting as an
approximation of a rotation. The linearity is sufficient for
this task, as the non-linear relationships are already learned
by the autoencoder. Additionally, we use feature weights βs

that weigh the importance of each feature for each of the
S clusterings acting as a soft separation mechanism of the
space. Due to this the standard autoencoder reconstruction
loss is adapted to:

Lrec = ||x − dec(V V T enc(x))||22, (1)

where the reconstruction acts as a ”non-degeneracy control”
(Le et al. 2011) to prevent the matrix V from degeneration.

In the following, we denote with x[i] the i’th entry of vec-
tor x and X[i, j] is the value of the i’th row and j’th column
of matrix X . Further, we use the weighted squared euclidean
distance, defined as

||a − b||2τ :=
D∑

i=1

τ [i](a[i] − b[i])2, (2)

where a, b ∈ RD are arbitrary vectors—for which we want
to measure the distance—and τ ∈ RD is a weight vec-
tor containing weights for each dimension. An overview of
other used notations can be found in the Supplementary at
https://gitlab.cs.univie.ac.at/lukas/enrcpublic.

2.2 Feature Weighting
In classical non-redundant subspace clustering each clus-
tering gets its own subspace orthogonal to the other sub-
spaces. We relax this discrete assignment to a continuous
weight βs[d] such that each dimension d belongs partially to
a clustering s. This relaxation makes the loss function differ-
entiable w.r.t. β. We require that these weights are positive
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and for a single dimension the fractions over all clusterings
should sum to one:

∀d ∈ {1, 2, .., D} :
S∑

s=1

βs[d] = 1, (3)

where ∀d ∈ {1, 2, .., D}, ∀s ∈ S : βs[d] ≥ 0. We can
implement these constraints using a soft-max function on a
trainable S × D parameter matrix B, s.t.:

βs[d] :=
exp(B[s, d])

∑S
i=1 exp(B[i, d])

.

We can then optimize B without any further constraints. To
express the feature importance during clustering, we utilize
the βs for the weighted squared euclidean distance.

2.3 Compression Loss
The compression loss ’moves’ embedded points z :=
enc(x) closer to their centers μs,k, enhancing the separation
between clusters. As we consider multiple non-redundant
clusterings, we only want to move points, which are close
to their respective centers in each weighted feature space.
This is achieved by the following loss function:

Lcomp =
1

S

S∑

s=1

Ks∑

k=1

1

|Cs,k|
∑

z∈Cs,k

||V Tz − μs,k||2βs
. (4)

Note that μs,k is the k’th cluster center of clustering s in
the already V T-transformed space. Here μs,k is considered
a constant (details on its update below) and only V T, β and
z are updated.

2.4 Updating Data Assignment
For given cluster centers, we assign for each clustering s
each embedded data point z to the closest center for the βs

weighted euclidean distance in the transformed embedded
space:

∀s ∈ S : arg min
k∈[1;Ks]

||V Tz − μs,k||2βs
(5)

2.5 Updating Cluster Centers
Similar to (Yang et al. 2017) we use an adapted version of
mini-batch k-means (Sculley 2010) for updating the cluster
centers and assignments. For each incoming data batch, we
iterate over the weighted feature spaces and update the clus-
terings in each space separately. First we update the cluster
assignments with the previous cluster centers μt−1

s,k with Eq.
5. From this new assignments we calculate a per center up-
date for the current mini-batch in the following way:

μt
s,k = μt−1

s,k (1 − ηs,k) + μ̂t
s,kηs,k. (6)

where μ̂t
s,k is the mean of the assigned points from the cur-

rent mini-batch and ηs,k is a per cluster learning rate. It is
defined as one over the exponential weighted average of past
assignments to the center, ηs,k = 1/At

s,k. The denominator is
given by:

At
s,k = (1 − α)At−1

s,k + αÂt
s,k (7)

with 0 < α < 1 as a discounting parameter and Ât
s,k as

the number of assigned points from the current mini-batch.
If a mini-batch does not contain any points for a cluster, the
center will not be updated.

2.6 Initialization
At the beginning, we aim to find the initial clustering struc-
tures captured in the embedding. Therefore, we only opti-
mize the linear transformation V , the cluster centers μ, and
the βs (respectively B), but keep the autoencoder parameters
fixed (i.e. enc(·) and dec(·)). First, we initialize V as a ran-
dom orthogonal matrix. Next, we soft-assign the first �D/S�
dimensions of the V -rotated space ’strongly’ to the first clus-
tering by setting the beta weights of these dimensions and
the first clustering to 0.9: ∀d ∈ [1 : �D/S�] : β1[d] := 0.9.
The remaining weight of 0.1 for each of these dimensions is
evenly distributed among the other clusterings—reflecting
only a ’weak’ soft-assignment. Then we assign the next
�D/S� dimensions strongly to the second clustering in the
same manner—and so forth. Next, we initialize the cluster
centers μ of each clustering with the initialization procedure
of k-means++ (Arthur and Vassilvitskii 2007) using the dis-
tance metric in Eq. 2. Finally, we optimize w.r.t. Lcomp and
update the cluster centers as described above. To ensure that
V does not degenerate, but instead aligns the structural in-
formation of each clustering with the axis, we force V to
be approximately orthogonal by adding to Lcomp an adapted
version of the reconstruction loss:

Lorth = || sg[z] − V V T sg[z]||22, (8)

where sg[·] is the gradient stop iterator such that z is re-
garded as a constant in this loss term.2 This differentiable
loss avoids degeneration of V by creating an incentive for it
to be approximately orthogonal (allowing only rotation and
reflection). We only keep this loss term during the initial-
ization phase and drop it in the refinement phase. The latter
decision was made based on the results of (Le et al. 2011),
which indicate that the reconstruction loss (Eq. (1)) is suffi-
cient for non-degeneracy control. For smaller data sets, one
could use alternatively the methods proposed in (Mautz et
al. 2018; Cui, Fern, and Dy 2007). This selection of the ini-
tial μ’s, β’s and V is based on the minimal loss and can be
performed several times.

2.7 Clustering Phase
As noted in previous work (Yang et al. 2017) the joint op-
timization of clusterings and embeddings can lead to im-
proved results. The loss function of ENRC combines the re-
construction and compression loss

L = Lcomp + λLrec (9)

This is motivated by the results of (Guo et al. 2017) that
without the space preserving effect of the reconstruction
loss, the found clusterings could become meaningless, be-
cause Lcomp would be trivially fulfilled if it maps all points
into one cluster. The hyperparameter λ > 0 defines this

2Note, that this is equivalent to ||V V T − I||2F , if z is whitened,
see e.g. Lemma 3.1 in (Le et al. 2011).
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trade-off, which we set for all experiments to one. During
training ENRC updates all parameters of the clustering layer
β, V,μs,i and all weight parameters of encoder and decoder
jointly together.

2.8 Cluster Center Reinitialization
Most other recently proposed deep clustering methods do
not provide a mechanism for the case when a cluster does
not get assigned any points after several mini-batch updates.
This can lead to a degradation of performance, as the re-
maining clusters are merged. This scenario is comparable to
the case where a k-means center does not get assigned any
data points during the update step. A common strategy—e.g.
in the scikit-learn package—is to reinitialize the lost center
with a point that is badly represented by its assigned cen-
ter in terms of euclidean distance. We adapt this strategy by
first sampling ns points from the whole data set and em-
bed them in the rotated feature space. We select the clus-
ter with the highest compression loss and choose the point
which is farthest away from this cluster’s centroid. After se-
lecting the new centroid, we conduct l k-means update steps
in the affected feature space. To avoid unnecessary reinitial-
izations due to unbalanced clusters or small batch sizes we
count how often a centroid lost all its points and compare
it to a threshold value v, which increases during training
by �√itert�, where itert is the current mini-batch iteration
count. The latter is a simple heuristic, which accounts for
the observation that in the beginning of training, cluster as-
signments may change more rapidly and become more sta-
ble towards the end. After reinitialization, the count for the
reinitialized center is set to zero again. The parameters l and
ns should be chosen to fit the computational constraints.

3 Experiments
We evaluated ENRC with four different data sets. As we
are the first to address the topic of non-redundant clustering
with neural networks, we needed for our benchmark high-
dimensional data sets, which are labeled and have enough
data points. Note that in real world settings one would use
ENRC for exploratory data analysis, without ground truth
labels, as we show in Section 3.5. To quantify the ability
of finding non-redundant structure in high dimensional data
sets, we adapted three commonly used deep learning data
sets. Additionally, we use the stickfigures data set, which is
often used in the non-redundant clustering literature. Other
commonly used data sets from the non-redundant cluster-
ing literature contain often less than 500 data points, here
stickfigures is already one of the largest, see e.g. (Ye et
al. 2016). A summary of the considered data sets is shown
in Table 2. We implemented ENRC in Python and trained
our networks on a single NVIDIA RTX 2080 Ti. We ran
the comparison method on a machine with four Intel(R)
Xeon(R) CPU E5-2650 Cores and 32 GB RAM. An im-
plementation of ENRC and all experiments is available at
https://gitlab.cs.univie.ac.at/lukas/enrcpublic.

3.1 Data Sets
Concatenated-MNIST We extend the well known MNIST
(LeCun et al. 1998) data set by concatenating two digits side

by side, resulting in 100 possible combinations, named C-
MNIST. With this extension, we show the ability of ENRC
to capture positional non-redundancy. This data set can be
seen as containing two-digit numbers, from 00 to 99, where
each digit (left and right) is independent from the other. To
make it easier to use existing convolutional architectures, we
added black row wise pixels, so the new format is 56 × 56
instead of 28 × 56.

NR-Objects We used a publicly available rendering soft-
ware3, which was used in (Johnson et al. 2017), to generate
objects with three non-redundant clusterings, called (Non-
Redundant) NR-Objects. Each object can be clustered by
three shapes, two materials and six colors. Otherwise the de-
fault settings, which contained lighting jitter, were kept.

GTSRB The German Traffic Sign Benchmark (GTSRB)
data set (Houben et al. 2013) contains real world images of
traffic signs, it has been used in object detection literature for
self-driving vehicles. We use a subset of 4 different traffic
signs ’Speed limit (70km/h)’, ’No passing’, ’Ahead only’,
’Keep right’, which can be clustered w.r.t. to the four types
of traffic sign and their two colors.

Stickfigures The stickfigures data set contains nine basic
objects of dancing figures. It contains three clusterings for
the upper and three for the lower body pose, a more detailed
explanation can be found in (Ye et al. 2016).

We preprocessed all data sets by a channel-wise z-
transformation, to get a zero mean and variance of one. For
the GTSRB data set we used additionally histogram equal-
ization, to improve the low contrast in some of the real world
images. Examples of each data set can be found in the Sup-
plementary.

3.2 Experimental Setup
For our experiments we use a convolutional autoencoder
that utilizes several well-established architectural patterns.
By exploiting skip (or identity) connections within convolu-
tional resnet blocks as described in (He et al. 2015), we are
able to train deeper networks which adapt their depth based
on the data set. We applied some additional techniques from
(He et al. 2018) to improve our autoencoder performance,
e.g. we set the first convolutional layer’s kernel size from
7 × 7 down to 3 × 3 and compensate the effective receptive
field size with additional 3 × 3 convolutions. Additionally,
we start with stride-one convolution instead of stride-two to
avoid discarding 3

4 of the input-image’s pixels just within
the first layers. We set the architecture parameters, such as
the number of feature filters in a convolutional layer, based
on the dimensionality and color channels of the data set and
set the dropout rate based on the achieved reconstruction er-
ror. For all data sets we used the same embedding size of 16,
which resulted in good reconstructions. We used this single
architecture for all data sets.

For each data set we pretrain ten autoencoders and use
them for ENRC and all baseline methods. With this setting
we make sure that all methods have the same starting condi-
tions. Similar to (Xie, Girshick, and Farhadi 2016) we pre-
train the autoencoder first for 10,000 mini-batch iterations

3https://github.com/facebookresearch/clevr-dataset-gen
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Table 1: The NMI averages and standard deviations for the ten pretrained autoencoders. Results marked with * had to be run
on a subset of 10,000 data points due to memory constraints (>32 GB). Best value in bold.

Data Sets Clustering ENRC Orth1 Orth2 mSC Nr-Kmeans ISAAC

NR-Objects
color 1.00 ±0.00 0.70 ±0.09 0.73 ±0.06 0.35 ±0.05 0.92 ±0.09 0.15 ±0.06
material 1.00 ±0.00 0.46 ±0.16 0.11 ±0.12 0.03 ±0.07 0.95 ±0.14 0.53 ±0.08
shape 1.00 ±0.00 0.39 ±0.20 0.20 ±0.08 0.03 ±0.03 0.92 ±0.16 0.60 ±0.07

GTSRB type 0.74 ±0.01 0.57 ±0.07 0.73 ±0.15 0.04 ±0.04 0.72 ±0.01 0.60 ±0.07
color 0.67 ±0.00 0.59 ±0.02 0.63 ±0.03 0.04 ±0.06 0.65 ±0.01 0.59 ±0.04

Stickfigures upper 1.00 ±0.00 0.79 ±0.21 0.00 ±0.00 0.33 ±0.20 1.00 ±0.00 0.37 ±0.05
lower 1.00 ±0.00 0.77 ±0.24 0.00 ±0.00 0.30 ±0.17 1.00 ±0.00 0.39 ±0.08

C-MNIST left 0.83 ±0.04 0.33 ±0.02 0.35 ±0.03 0.07 ±0.02* 0.69 ±0.03 0.29 ±0.13*
right 0.82 ±0.01 0.40 ±0.03 0.41 ±0.04 0.06 ±0.02* 0.70 ±0.03 0.19 ±0.13*

Table 2: Summary of used data sets. The last column shows
the number of ground truth clusterings and the correspond-
ing number of clusters.

Name # Points # Dimensions # Clusters
C-MNIST 60,000 3,136 10; 10
NR-Objects 10,000 16,384 6; 3; 2
GTSRB 6,720 1,024 4; 2
Stickfigures 900 400 3; 3

Table 3: The VI averages and standard deviations for the ten
pretrained autoencoders. Most methods, were able to find
non-redundant clusterings. Results marked with * had to be
run on a subset of 10,000 data points due to memory con-
straints (>32 GB).

Method NR-Objects GTSRB Stickfigures C-MNIST

ENRC 2.39 ±0.00 1.96 ±0.01 2.20 ±0.00 4.56 ±0.01
Orth1 2.31 ±0.03 1.98 ±0.03 2.06 ±0.17 4.41 ±0.06
Orth2 1.20 ±0.07 1.11 ±0.24 0.90 ±0.56 3.13 ±0.20
mSC 2.32 ±0.05 1.99 ±0.09 2.01 ±0.10 4.48 ±0.05*
NR-Kmeans 2.35 ±0.05 1.94 ±0.00 2.19 ±0.00 4.57 ±0.02
ISAAC 1.25 ±1.04 n.a. 1.14 ±0.25 n.a.*

with dropout and then fine tune it for another 5,000 mini-
batch iterations with deactivated dropout. For pretraining the
autoencoder we use image augmentation (rotation, lighting,
zooming), Adam (max-lr = 0.01, β1 = 0.9, β2 = 0.99)
(Kingma and Ba 2014) with weight decay of 0.001. We
boost the training speed of our network with the super-
convergence learning rate schedule outlined in (Smith and
Topin 2017). The intuition behind this idea is that we start
with a low learning rate to warm-up and to slowly find
the correct direction on the loss landscape. During the sec-
ond halve of the training cycle, and close to the end of
training process, we decrease the learning rate as we come
closer to the optimum. Reaching the maximum learning rate
max-lr separates the two training halves and a cosine an-
nealing schedule provides a smooth transition between the
two halves of the training cycle. For fine tuning we halve the
max-lr to ensure smooth convergence and train for the re-

maining mini-batch iterations. Further information about the
experimental setup and architectural details are presented
in the Supplementary and our Python implementation. Af-
ter pretraining we initialize μ, β and rotation matrix V . For
the joint clustering optimization we train for another 20,000
mini-batch iterations, except for the simple stickfigures data
set which converged already at 2,000 mini-batch iterations.
Similar to (Xie, Girshick, and Farhadi 2016) we decrease the
learning rate again and keep decreasing it every 2,000 itera-
tions to ensure a smooth convergence for the joint optimiza-
tion. We set the initial learning rate for β to max-lr = 0.01.
This is motivated by the thought that the feature space soft-
assignments should be updated faster; before the embedding
is linearly transformed by V and clusters are compressed by
Eq. 4. The discounting parameter α in Eq. 7, was set to 0.5
giving equal weight to new and old centers. The cluster reini-
tialization parameters were set to l = 10 and ns = 1, 000,
which ensured a fast re-clustering procedure in case a center
got lost. This setting worked well for all considered data sets
and shifts most hyperparameter setting decisions of the neu-
ral network to the pretraining phase, which is self-supervised
(reconstructing the input) for an autoencoder.

3.3 Evaluation Metrics
To evaluate the quality of the found non-redundant clus-
terings we use the normalized mutual information (NMI)
(Vinh, Epps, and Bailey 2010) for each best matching clus-
tering in the found feature spaces, where 1 is a perfect clus-
tering and 0 indicates that no structure was captured. Ad-
ditionally, we use the average variation of information (VI)
(Meilă 2007) for measuring the redundancy of the found fea-
ture spaces. The VI calculates the similarity between two
different clusterings, where higher values are better. Note
that the VI cannot be computed for a single clustering and
can only be used to compare different clusterings on the
same data set, as the magnitude is data dependent.

3.4 General Results
We compare our ENRC with several state of the art non-
redundant clustering algorithms. For each data set we pre-
trained ten autoencoders and use them for all methods. The
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(a) Color (b) Material (c) Shape

Figure 3: The scatter plots show the dimensions zs with the two highest feature weights βs for each of the three clusterings.
The images below are the reconstructed centers dec(V μs,i) of each cluster. Best viewed in color.

Figure 4: Sorted feature weights βs for each clustering. Up-
per plot shows initial βs. Bottom plot same feature weights
after clustering.

considered comparison methods are Orth1 and 2 (Cui, Fern,
and Dy 2007), Nr-Kmeans (Mautz et al. 2018), ISAAC (Ye
et al. 2016) and mSC (Niu, Dy, and Jordan 2010). We use
these algorithms, because in contrast to subspace clustering
algorithms, they have an additional constraint that tries to
reduce the redundancy between clusterings. A more detailed
discussion can be found in Section 4. Additionally, all of
these algorithms are able to find several clusterings in ar-
bitrarily oriented subspaces. This is important, because we
assume that the non-redundant clustering structure is pre-
served in the autoencoder, but the cluster structure does not
have to be axis-aligned. For all considered data sets we know
the exact number of clusterings and set the methods param-
eters accordingly. We ran Nr-Kmeans, Orth1 and 2 ten times
for each of the ten autoencoders and averaged the best run
in terms of their respective loss function. ISAAC and mSC
were run once for each autoencoder, due to run time con-
straints (more than one day). Our experimental results in
Table (3) show that, except for ISAAC, each method was
able to achieve a quite similar VI. This indicates, that they
were indeed able to find several non-redundant clusterings

from the learned embeddings of the pretrained autoencoders.
Algorithms that found only a single clustering are marked
with ’n.a.’. The clustering performance in accordance to the
ground truth labels is shown in Table 1. Again we see that
all methods are able to recover the non-redundant cluster-
ings from the embedded space of the autoencoder, but only
ENRC is able to jointly transform the space, which results
in even higher NMI values. For the quite simple stickfigures
data set, Nr-Kmeans and ENRC are both able to find the two
clusterings perfectly.

3.5 Case Study
In this section we highlight some of ENRC’s key strengths
by discussing the NR-Objects data set in more detail. In Fig-
ure 4 the feature weights βs before and after training are
shown, where higher values indicate stronger memberships.
We can see that after training of the 16 dimensional feature
space only two are needed for clustering the six colors, an-
other two dimensions for the three shapes and only one for
the two materials. The feature weights of the other eleven
dimensions are evenly distributed between the three non-
redundant clusterings, which indicates that these dimensions
are not important for the specific clustering, but encode some
shared information. The separation of features, into impor-
tant and unimportant for the clusterings, allows ENRC to
visualize the found embeddings without the need of an addi-
tional dimensionality reduction technique like t-sne (Maaten
and Hinton 2008). In Figure 3 we can see scatter plots of the
two highest β-weighted dimensions for each clustering, in-
dicated by the matching subscripts of the βs from the bottom
plot in Figure 4. On the diagonal axis of the scatter plot are
the histograms of each feature. As the material clustering has
only one high feature weight β7 we see that only z7 contains
clustering structure. Since all other feature weights for the
material feature space are indifferent between dimensions,
we can see here for the second dimension z9 a unimodal dis-

5179

A. Appended Papers

46



tribution without clustering structure. For color and shape
the feature weights βs indicate that they need two features
for their clustering, which can be seen in the multiple modes
of the histograms. Another key benefit of using an autoen-
coder is that we can use the expressive power of a neural net-
work to find non-redundant clusterings in the feature space,
but still keep interpretability by utilizing the decoder. Below
each scatter plot in Figure 3 we can see the decoded centers
for each clustering as reconstructed images in the original
pixel space. Each center of the color feature space is exhibit-
ing only the color feature, but is an average of all other clus-
terings like shapes and materials, resulting in splodges of
color. The same can be seen for material, but here the center
for metallic objects is reflective and the one for rubber is not.
The two centers appear to be grey because it is an average
of all six colors. The latter is true for the three shape clusters
as well. While the shape structure is crisp and detailed, the
surfaces appear to be greyish and slightly reflective, because
the information of the other—non-redundant—clusterings is
averaged.

4 Discussion and Related Work
A centroid-based approach like we used in ENRC is quite
common in embedded clustering. To the best of our knowl-
edge, none of the proposed embedded clustering methods
aim to find multiple non-redundant clusterings within a data
set. Algorithms such as DEC (Xie, Girshick, and Farhadi
2016), IDEC (Guo et al. 2017), DMC (Chen, Lv, and Yi
2017) or DEPICT (Ghasedi Dizaji et al. 2017) utilize a pre-
trained autoencoder to embed the data and a Gaussian or
Student-t kernel to softly assign the data points to clus-
ters. DMC directly penalizes the distance of data points
embedded to each center weighted by the assignment. The
other methods utilize a KL divergence loss between the soft-
assignments and an auxiliary probability density function to
harden the clusters. All five methods utilize a mini-batch
gradient descent optimization scheme as ENRC does. DCN
(Yang et al. 2017) is a k-means based method. In contrast to
the above described methods, it performs a hard assignment
like ENRC, however, it alternates between updating the em-
bedding, the cluster assignments and the cluster centers iter-
ating over the full data set in each step. Recent work in deep
subspace clustering, e.g. (Ji et al. 2017; Zhang et al. 2018)
find a single clustering, where each cluster can belong to
a different subspace. With the work of (Zhang et al. 2018;
Fard, Thonet, and Gaussier 2018) we share the idea that
hard assignments in different situations can be relaxed with a
softmax function. In contrast to these ENRC finds common
non-redundant feature spaces for related clusterings. Other
recently proposed methods like GMVAE (Dilokthanakul et
al. 2016) and VaDE (Jiang et al. 2017) utilize variational
approaches or generative adversarial networks, like Clus-
terGAN (Mukherjee et al. 2019). From all above described
method, these last three approaches are the least similar to
ENRC. Further algorithms are discussed in two recent sur-
vey papers (Aljalbout et al. 2018; Min et al. 2018) that pro-
vide a broader overview over proposed embedded clustering
techniques. Multiple and non-redundant clustering methods
are an active research field and in the classical clustering lit-

erature several different methods have been proposed. An
overview and different variations can be found in (Müller et
al. 2012). Methods like (Chang et al. 2017) assume that the
subspaces or views are axis-parallel, however, we assume
that the subspaces in the embedded space are arbitrarily-
oriented. In the following, we only discuss algorithms that
can find non-redundant clusterings in arbitrarily-oriented
subspaces. Orth1 and Orth2 (Cui, Fern, and Dy 2007) are
two clustering algorithms that extract multiple k-means clus-
tering structures sequentially from spaces orthogonal to the
space spanned by the previous cluster centers. The differ-
ence between the two versions is that the orthogonal pro-
jection can be w.r.t. all clusters or just a single cluster to
which a data point is assigned. The main idea of Nr-Kmeans
(Mautz et al. 2018) is that the data space can be split into
several arbitrarily-oriented orthogonal subspaces and within
each subspace the data follows a k-means like clustering. It
also allows for an optional noise space without any cluster-
ing structure. Like in ENRC the method optimizes all sub-
spaces and the clusterings within simultaneously. Further,
it is shown that a parallel clustering extraction can be ad-
vantageous compared to a sequential approach used in Orth.
ISAAC (Ye et al. 2016) utilizes a two step procedure. First,
it uses Independent Subspace Analysis (ISA) to determine
the subspaces. Then, it fits a Gaussian mixture model with
hard assignments within each subspace. Thereby, all param-
eters are estimated based on the MDL principle. All four
of the above described non-redundant clustering methods
have in common that, for each clustering, they find a lin-
ear transformation for the respective subspace. In contrast,
ENRC utilizes the autoencoder to perform a nonlinear trans-
formation and jointly optimizes the clustering. mSC (Niu,
Dy, and Jordan 2010) utilizes the Hilbert-Schmidt indepen-
dence criterion to find multiple non-redundant views for the
relaxed spectral clustering objective. Similar to the autoen-
coder based embedding, the spectral embedding of mSC can
be seen as non-linear, however, its approach is quite different
from the one of ENRC.

5 Conclusion
In this paper we proposed the Embedded Non-Redundant
Clustering algorithm ENRC, to the best of our knowledge it
is the first algorithm that combines an embedded and a non-
redundant clustering objective. Its unique characteristics are
the joint optimization of multiple non-redundant clusterings
together with the non-linear embedding, the intrinsic clus-
ter aware dimensionality reduction and automated feature
extraction. Our experiments show that ENRC and its joint
training procedure has an advantage over a two step process
where the non-linear embedding and non-redundant cluster-
ing are separately optimized. This is in accordance with the
results shown for flat embedded clustering algorithms. We
highlighted some of the benefits of our algorithm ENRC
in a case study showing its interpretable results. In future
work we want to explore the possibility to incorporate dif-
ferent k-means extensions, such as estimating the number of
cluster centers in each clustering. Another interesting direc-
tion would be to leverage the concept of non-redundancy for
semi-supervised learning.
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Abstract
This document adds further information about the training
setup and supplementary material like images for the data
sets presented in the paper and a table with the used nota-
tion in Table 1. The accompanying Python code of ENRC
and the used data sets can be found at https://gitlab.cs.univie.
ac.at/lukas/enrcpublic.

1 Autoencoder Training
We utilize PyTorch (Paszke et al. 2017) machine learning
framework and Fastai library (Howard and others 2018)
for neural network training. We refactored PyTorch basic-
blocks into more abstract ENRC sequential-building-blocks
to improve code readability and to avoid coding mistakes.
We illustrate the encoder’s building blocks in Figure 11, in
top-down increasing abstraction levels. We depict PyTorch’s
basic-blocks in white color and ENRC sequential-building-
blocks in various other colors. The Conv2d applies two di-
mensional convolution over an image grid composed of sev-
eral input channels and scales it down with a stride parame-
ter that is greater than one. We employ the Rectified Linear
Units ReLU introduced in (Nair and Hinton 2010) to miti-
gate the vanishing gradient problem and their leaky variants
to prevent dying ReLU’s respectively. We use two dimen-
sional batch norm blocks BatchNorm2d (Ioffe and Szegedy
2015) to accelerate training by using higher learning rates.
The two dimensional dropout block Dropout2d in (Srivas-
tava et al. 2014) prevents the layer’s neurons overfitting on
certain inputs. The encoder’s convolutional layers contain
conv and res blocks with different depths or number of fil-
ters.

We design the decoder similarly as illustrated in Figure
2. The ConvTranspose2d block in the decoder acts like the
inverse operation of the Conv2d block in the encoder. The
ConvTranspose2d scales up the image grid by padding ze-
ros in-between existing pixels and learns the convolutional
weights for the up-scaled image. The decoder’s inverse con-
volutional layers contain conv trans and res blocks with

∗First authors with equal contribution.
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1All figures are best viewed in color.

Table 1: Most important symbols

Symbol Interpretation
D ∈ N Dimensionality of the embedded space
S ∈ N Number of clusterings
Ks ∈ N Number of Clusters in the s’th clustering
Cs,i Objects of cluster i in clustering s
x A data point or object of the data set
z A data point embedded by enc(x)
µs,i ∈ Rd Cluster center of cluster i of clustering s
V ∈ Rd×d Linear transformation initialized as an

orthogonal matrix (rigid transformation)
βs ∈ Rd Feature weights of clustering s

different depths or number of filters. In order not to clutter
the figures, we omit a few PyTorch blocks, such as the Up-
sample block, which is the first block of the decoder applied
after the last AdaptiveAvgPool2d block of the encoder.

The optimal maximum learning rate is determined with
Fastai’s LR-Finder over a range of potential learning rates.
Both the learning rate and the momentum of Adam op-
timization (Kingma and Ba 2014) are annealed based on
(Smith 2015; Smith and Topin 2017; Smith 2018) during
batch-wise training as illustrated in Figure 3. Our goal is to
train our neural network faster than compared to the standard
methods, so called super-convergence using cyclic learning
in one-cycle. We present ENRC’s network layer and training
settings with corresponding data sets in Table 2. The number
of input pixels are given in PyTorch [width x height x chan-
nels] order. The number of decoder filters at each layer is
organized in the reverse order of number of encoder filters,
therefore is left out. For all data sets the same hidden layer
(hl) dimensionality of 16 was used.

2 Datasets
2.1 NR-Objects
In this section we show a sample of images from the used
data sets and their respective autoencoder reconstructions.
In Figure 4 we show objects from the NR-Objects data set.
To generate the images, we used the publicly available ren-
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Figure 1: The architecture of Encoder. We depict PyTorch’s
basic-blocks in white color and ENRC sequential-building-
blocks in various other colors. < s > indicates stride and
< leaky > indicates leakage-slope respectively.

Figure 2: The architecture of Decoder is very similar to the
architecture of Encoder.

Table 2: Summary of Network Layer and Training Settings.
L2 Regularization with weight-decay= 1e − 3. Filters were
chosen based on number of color channels. C-MNIST &
Stickfigures are only greyscale, whereas NR-Objects & GT-
SRB are RGB images.

Name # Input Pixels # Encoder Filters hl;dropout rate;leaky
C-MNIST 56x56x1 [8,16,32,64,128] 16;0.1;0.1
NR-Objects 128x128x3 [16,32,64,128,256] 16;0.3;0.1
GTSRB 32x32x3 [16,32,64,128,256] 16;0.1;0.1
Stickfigures 32x32x1 [8,16,32,64,128] 16;0.2;0.1

dering software2, which was used in (Johnson et al. 2017).
Each object can be clustered by three shapes, two materials
and six colors.

2.2 C-MNIST
In Figure 5 the images and reconstructions of the indepen-
dently concatenated MNIST digits (LeCun et al. 1998) is
depicted. With this extension we simulate positional non-
redundancy. This data set can be seen as containing two-digit
numbers, from 00 to 99, where each digit (left and right) is
independent from the other. We added black row wise pix-
els, so the new format is 56× 56 instead of 28× 56, which
would result from only concatenating the 28 × 28 MNIST
images.

2.3 GTSRB
In Figure 6 a subset of the used images from the German
Traffic Sign Benchmark (GTSRB) data set (Houben et al.
2013) are shown. The images have been preprocessed with
histogram equalization to account for the low contrast of
some of the images. We used a non-redundant subset of 4
different traffic signs: ’Speed limit (70km/h)’, ’No passing’,
’Ahead only’, ’Keep right’, which can be non-redundantly
clustered w.r.t. to the four types of traffic sign and their two
colors.

2.4 Stickfigures
The stickfigures data set contains nine basic objects of danc-
ing figures. A subset of these objecst is depicted in Figure 7.
It contains three clusterings for the upper and three for the
lower body pose, a more detailed explanation can be found
in (Ye et al. 2016).

2https://github.com/facebookresearch/clevr-dataset-gen
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Figure 3: One-Cycle-Learning. Automated increasing and decreasing learning rates and corresponding momentum adaptation.

(a) Originals

(b) Autoencoder reconstructions

Figure 4: A subset of images from the Non-Redundant-
Objects data set.

(a) Originals

(b) Autoencoder reconstructions

Figure 5: A subset of images from the Concatenated-MNIST
data set.

(a) Originals

(b) Autoencoder reconstructions

Figure 6: A subset of images from the histogram equalized
GTSRB data set.

(a) Originals

(b) Autoencoder reconstructions

Figure 7: A subset of images from the stickfigures data set.
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Abstract Deep clustering techniques combine representation learning with
clustering objectives to improve their performance. Among exist-
ing deep clustering techniques, autoencoder-based methods are
the most prevalent ones. While they achieve promising clustering
results, they suffer from an inherent conflict between preserving
details, as expressed by the reconstruction loss, and finding sim-
ilar groups by ignoring details, as expressed by the clustering
loss. This conflict leads to brittle training procedures, depend-
ence on trade-off hyperparameters and less interpretable results.
We propose our framework, ACe/DeC, that is compatible with
Autoencoder Centroid based Deep-Clustering methods and
automatically learns a latent representation consisting of two
separate spaces. The clustering space captures all cluster-specific
information and the shared space explains general variation in
the data. This separation resolves the above mentioned conflict
and allows our method to learn both detailed reconstructions
and cluster specific abstractions. We evaluate our framework
with extensive experiments to show several benefits: (1) cluster
performance – on various data sets we outperform relevant
baselines; (2) no hyperparameter tuning – this improved per-
formance is achieved without introducing new clustering-specific
hyperparameters; (3) interpretability – isolating the cluster-
specific information in a separate space is advantageous for
data exploration and interpreting the clustering results; and
(4) dimensionality of the embedded space – we automatically
learn a low-dimensional space for clustering. Our ACe/DeC
framework isolates cluster information, increases stability and
interpretability, while improving cluster performance.
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Abstract
Deep clustering techniques combine representation
learning with clustering objectives to improve their
performance. Among existing deep clustering tech-
niques, autoencoder-based methods are the most
prevalent ones. While they achieve promising clus-
tering results, they suffer from an inherent con-
flict between preserving details, as expressed by
the reconstruction loss, and finding similar groups
by ignoring details, as expressed by the cluster-
ing loss. This conflict leads to brittle training
procedures, dependence on trade-off hyperparam-
eters and less interpretable results. We propose
our framework, ACe/DeC, that is compatible with
Autoencoder Centroid based Deep-Clustering meth-
ods and automatically learns a latent representation
consisting of two separate spaces. The clustering
space captures all cluster-specific information and
the shared space explains general variation in the
data. This separation resolves the above mentioned
conflict and allows our method to learn both de-
tailed reconstructions and cluster specific abstrac-
tions. We evaluate our framework with extensive
experiments to show several benefits: (1) cluster
performance – on various data sets we outperform
relevant baselines; (2) no hyperparameter tuning –
this improved performance is achieved without intro-
ducing new clustering-specific hyperparameters; (3)
interpretability – isolating the cluster-specific infor-
mation in a separate space is advantageous for data
exploration and interpreting the clustering results;
and (4) dimensionality of the embedded space –
we automatically learn a low-dimensional space for
clustering. Our ACe/DeC framework isolates cluster
information, increases stability and interpretability,
while improving cluster performance.

1 Introduction
The collection of massive amounts of complex data like im-
ages, text, video and audio gives rise to ever emerging chal-
lenges for data scientists trying to find patterns within data.

∗Authors with equal contribution

(a) (b)

Figure 1: (a) Impact of shared information on cluster performance.
[top left] A synthetic 2D data set with four clusters, that can be
perfectly clustered by all methods (step 0 on x-axis). [top right]
Adding dimensions, which do not contain cluster specific informa-
tion (e.g., unimodal Gaussian distributed), considerably hurts the
performance of DCN (measured in average NMI and 95% confi-
dence intervals over 20 runs). In contrast, DCN combined with our
ACe/DeC framework remains stable as it can isolate the cluster in-
formation. (b) Our ACe/DeC framework applied to the OBJECTS
data set, which consists of images of cubes, spheres, and cylinders
under different lighting conditions. Our framework allows DCN
to isolate the cluster-specific information (the shape), from shared
information mainly relevant for reconstruction (the lighting). [top]
Input sample. [middle] Cluster information: Reconstructions using
only dimensions of the cluster space show distinct shapes, but have
less light information. [bottom] Shared information: Reconstructions
from the shared space dimensions contain only light information.

Often they work in an unsupervised setting without access
to labels, as these might be very costly or impossible to ob-
tain. We can learn these labels with clustering methods, which
partition the data into similar groups. Unfortunately, clus-
tering high-dimensional data such as images directly works
unsatisfactorily. In such situations it is beneficial to combine
clustering with deep learning [Xie et al., 2016] to automati-
cally learn a high-quality, low-dimensional representation for
clustering. This quite recent field of research is termed deep
clustering (DC). Autoencoder (AE)-based DC approaches,
such as DEC [Xie et al., 2016], IDEC [Guo et al., 2017] or
DCN [Yang et al., 2017], in particular, are well-known and
serve as building blocks for many other methods, see, e.g.,
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the survey by [Aljalbout et al., 2018]. AEs are a common
approach to learn non-linear embeddings of high-dimensional
data. They consist of an encoder network, which maps the
input x to a lower-dimensional space and a decoder network,
which produces a reconstruction x̂ optimized for minimizing
a reconstruction loss Lrec = ||x − x̂||. DC methods learn
a ’cluster friendly’ embedding by adding a clustering objec-
tive to the reconstruction loss. DEC, IDEC or DCN, e.g. are
centroid-based as they use a k-means-like objective for ’mov-
ing’ points closer to their respective centroids. They learn
the reconstruction and clustering in a single embedded space,
which blends the features necessary for clustering and recon-
struction, leading to brittle performance and less interpretable
results.

These drawbacks are due to an inherent conflict between
the reconstruction loss of the AE, that tries to preserve all
details and the clustering loss, that tries to abstract from de-
tails. One might say, ”that an AE wants to learn everything
a [clustering algorithm] wants to forget” [Epstein and Meir,
2019]. An instance of this conflict can be seen in the synthetic
data set in Figure 1a. Adding features that are irrelevant for
the clustering, but important for the reconstruction, hurts the
clustering performance of DCN drastically. DCN and other
DC algorithms that consider all features equally important for
clustering and reconstruction, attempt to solve this issue by
weighing the trade-off between cluster loss and reconstruction
loss with a new hyperparameter λ. Importantly, automatically
tuning λ is very hard if not impossible in the unsupervised
setting and existing work leaves open on how to tune this pa-
rameter without access to ground truth labels. However, as we
can see in Figure 1a DCN performs poorly, for low and high
λ values. This shows that a hyperparameter based approach to
address the balancing of reconstruction and clustering loss in
general is not sufficient. Unfortunately, simply removing Lrec
can lead to arbitrary clustering solutions [Guo et al., 2017],
which is why the reconstruction - clustering - dilemma needs
to be approached differently.

In this work we propose to resolve the mentioned draw-
backs with our novel ACe/DeC framework, that is compatible
with Autoencoder Centroid-based Deep Clustering methods.
We rephrase the DC objective to account for both, cluster and
non-cluster information. We do this by learning an individual
weight for each dimension of the embedded space separating
cluster-specific information from shared information, allowing
us to learn good clusterings while keeping all the details. In
Figure 1a we can see how our ACe/DeC framework removes
the impact of irrelevant dimensions and improves the perfor-
mance of DCN considerably. Another instance of irrelevant in-
formation for clustering is shown in Figure 1b. The OBJECTS
data set consists of images of spheres, cubes and cylinders,
with random lighting, where the light source is mostly relevant
for reconstruction, but not for distinguishing between objects
as it is shared across all images. Our ACe/DeC framework
allows DCN to isolate the cluster-specific features from the
ones that are shared as shown in the middle and bottom row
of Figure 1b, respectively.

In the following, we will first introduce the general frame-
work and how the architecture is designed to achieve the space
separation. Then we apply ACe/DeC to one popular AE

Figure 2: The overall architecture of ACe/DeC with the cluster space
and the shared space. Our ACe/DeC framework extends the AE
by introducing a learnable linear d × d transformation matrix V
and two non-negative weight vectors βcs and βss in the embedded
space of the AE. The two weight vectors indicate which dimensions
are important for clustering (βcs) and which are not (βss). Here
the βcs weights indicate that the first two neurons z0, z1 have high
cluster structure, while the last two neurons z2, z3 do not. In the plot
below, one can see an example of a four dimensional embedded space
split by ACe/DeC into two separate 2D spaces. We can see that the
cluster space contains well-separated clusters, while the shared space
contains only a single Gaussian without cluster structure. The matrix
V aligns the clusters along the axes, based on the β-weights.

centroid-based DC procedure, namely DCN. We show ex-
perimentally the improvement of DCN with the framework
compared to the original DCN algorithm as well as other com-
petitors regarding

(1) cluster performance – on various data sets we outper-
form relevant baselines with increased stability regarding
the choice of learning rate and cluster performance. Fur-
thermore, we propose an optional augmentation proce-
dure for image data, that can be used to further increase
cluster performance and stability.

(2) hyperparameter tuning – most DC algorithms use
cluster-specific hyperparameters that have to be tuned
with ground truth labels. We remove such hyperparame-
ters by rephrasing the DC objective to isolate cluster-
specific information from shared information. This
avoids having any data-specific hyperparameters to quan-
tify the importance of cluster information making our
approach more flexible to use in practice.

(3) interpretability – the isolation of cluster information
leads to a natural separation of the embedded space into
a cluster space and a shared space and enables a look
into the AE blackbox. It is essential for visualizing and
interpreting the clustering.

(4) dimensionality of the embedded space – ACe/DeC au-
tomatically determines the number of dimensions needed
for clustering by removing irrelevant features.

2 Methodology
The AE is a key element of DC. It consists of an encoder
network enc(·), which learns to project an input data point
x ∈ RD from a data set X to an embedded (latent) vector
z = enc(x) and a decoder network dec(·), which learns to
project the embedded data point z ∈ Rd back to the original
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data space, resulting in the reconstruction x̂ := dec(z) of x.
The dimension d of z is often chosen to be smaller than the
input dimension D. This bottleneck architecture avoids that the
AE simply learns to copy the input to the output, which would
be possible for d ≥ D, if no other regularization is added.

2.1 Method
To separate cluster information from non-cluster information
we reformulate the commonly used DC objective L = Lcomp +
Lrec. Lcomp is the compression loss which is responsible for
minimizing the distance of a point z to its closest centroid µk
and Lrec is the AE reconstruction loss. Instead, we propose
the loss function L = Lcluster + Lshared + Lrec, where the term
Lshared is responsible for capturing the shared information by
modelling the distance to the mean of the embedded data µ.
In conjunction with the reconstruction loss this has the effect
that we retain variance within the clusters, but are also able to
model the common overall variance. Lcluster compresses the
clusters similar to Lcomp. In particular we use L =

K∑

k=1

∑

z∈Ck

distβcs(V
Tz,VTµk)

︸ ︷︷ ︸
Lcluster

+
∑

z∈C
distβss(V

Tz,VTµ)

︸ ︷︷ ︸
Lshared

+
∑

x∈X
dist2(x, dec(VVTz))

︸ ︷︷ ︸
Lrec

, (1)

where distβs(·), s ∈ {cs, ss} are generic distance functions,
e.g. for the squared euclidean distance (dist2(·)) and for some
d-dimensional vectors h,g we define

distβs
(h,g) = ||h− g||2βs

=
d∑

i=1

βs[i]
2(h[i]− g[i])2. (2)

Additionally, we have K clusters, with Ck as the set of all
embedded data points in the kth cluster with corresponding
centroid µk. C is the set of all embedded data points in the
single shared space cluster with centroid µ = 1

|C|
∑

z∈C z.
We can now compute the assignment of objects to the given
cluster centers in the cluster space by assigning them to their
closest center arg mink∈[1;K] ||VT z−VTµk||2βcs

.
We introduced new learnable parameters above. A linear

d× d transformation matrix V and two non-negative weight
vectors βcs and βss. We explain the intuition behind them in
Figure 2. To learn which dimensions are relevant for clustering,
we need the βs-weights to indicate which dimensions contain
cluster structure, e.g. according to the k-means model, and
which are not. Therefore, we use a trainable d-dimensional
parameter b that is constrained by a sigmoid function βcs[i] =
sigmoid(b[i]) := 1

1+exp(−b[i]) and βss[i] = 1− βcs[i], where
[i] refers to the ith component of a vector. Each component
weighs one dimension of the embedded space. The two non-
negative weight vectors βcs and βss are constrained by βcs +
βss = ~1, because the sigmoid function is between 0 and 1.
These vectors represent a soft-assignment mechanism to the
cluster space (cs) and shared space (ss), respectively.

The linear transformation matrix V can be seen as a linear
layer which, ’guided’ by the β-weights, axis-aligns the cluster
structure along the most important cluster dimensions. With
the above we can measure distances in two separated spaces
using our weighted distances distβs

(·), while still being differ-
entiable. Altogether our ACe/DeC framework is lightweight
requiring only d2 + d trainable parameters for the matrix V
and weights βs, where d is usually much lower than the origi-
nal data dimensionality D. Before we apply ACe/DeC to DCN
we first state the loss function of DCN L = λ

2Lcomp + Lrec

=
λ

2

K∑

k=1

∑

z∈Ck

dist2(z, µk) +
∑

x∈X
dist2(x, dec(z)) (3)

=
λ

2

K∑

k=1

∑

z∈Ck

‖z− µk‖22 +
∑

x∈X
‖x− x̂‖22, (4)

with the trade-off hyperparameter λ > 0. To integrate
ACe/DeC into DCN, we adjust their loss function with our
two new learnable parameters V and b. We can then compute
L = Lcluster + Lshared + Lrec as

K∑

k=1

∑

z∈Ck

‖VTz−VTµk‖2βcs
+

∑

z∈C
‖VTz−VTµ‖2βss

+
∑

x∈X
||x− dec(VVTz)||22, (5)

where we can now learn which dimensions are important to the
k-means clustering and which are not, without any potentially
crucial hyperparameters. To further motivate this loss, one
can think about the βs-weighted euclidean distance from Eq.2
as rescaling the dimensions based on the cluster structure.
If in the ith dimension the k-means centroids represent the
embedded data points better than a single centroid, βcs[i]
will increase and βss[i] will decrease accordingly in the next
update step in order to lower the loss. We show this with a
mathematical analysis by considering the gradient of the loss
function with respect to b[i], which determines the update of
the βs[i]-weights. We present this and further analysis in the
Supplement (SP) [Miklautz et al., 2021] (Sec. 1.1 - 1.5).

Another motivation for combining ACe/DeC with DCN
comes from SubKmeans [Mautz et al., 2017]. We show in the
SP (Sec. 1.6) that for a linear AE both methods optimize the
same objective, because the reconstruction error will then force
V to be orthogonal. With the ACe/DeC+DCN loss function
we only update V and the space weights βs; the update of
centroids and cluster assignments for DCN is done separately.
The original update procedure for DCN is alternating between
the update of the AE parameters with fixed centroids and
updating the cluster assignments and centroids with fixed AE
parameters. We implemented another strategy, which allows
for an update without alternation using mini-batch k-means
[Sculley, 2010], for details see SP (Sec. 1.7).

2.2 Initialization and Augmentation Procedure
We initialize V as a random orthogonal matrix and randomly
assign each dimension to one of the two spaces. We then
perform k-means in the cluster space to get the initial centroids
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µk. As the shared space is modeled with a single cluster, we
initialize its centroid with the mean of the embedded data.
This adds only little overhead and is similar to other k-means
based DC algorithms. We then train V and b while holding
everything else constant to get an initial estimate.

Optionally, our ACe/DeC framework allows to leverage do-
main knowledge in the form of data augmentation to increase
clustering performance. For this we use xaug = f(x), where
the function f augments the input data, e.g., by rotating it.
We then minimize the distance of the embedded augmented
data point zaug = enc(xaug) to the centroid of the original
data point µk, with distβcs

(VTzaug,V
Tµk). This forces the

clusters to be invariant to the augmentation. Additionally, we
make use of our cluster and shared space. We reconstruct
the augmented data point xaug from the shared space and
the original x from the clustered space. With this we ’move’
information unnecessary for clustering to the shared space.

3 Related Work
There are two clustering approaches, which are conceptually
related to ACe/DeC through the idea of separating features
containing clustering structure from features without cluster-
ing structure. The algorithms FOSSCLU [Goebl et al., 2014]
and SubKmeans [Mautz et al., 2017] search for a single op-
timal subspace in the k-means sense, but are bound to linear
relationships and do not scale well to high-dimensional data.
In addition, their objectives are non-differentiable due to dis-
crete subspace assignments making them unsuitable for DC
with gradient-based optimization. Furthermore, they cannot
be optimized jointly together with the AE, limiting their repre-
sentational power and clustering performance.

AE-based DC methods are arguably the most prevalent ones
[Aljalbout et al., 2018; Min et al., 2018]—whether the AE
is only used for an initial representation of the data as in the
DEC algorithm [Xie et al., 2016], or the reconstruction and
clustering objective is jointly optimized as in methods like
IDEC [Guo et al., 2017], DCN [Yang et al., 2017], JULE
[Yang et al., 2016], DualAE [Yang et al., 2019] or DEPICT
[Dizaji et al., 2017]. DEPICT is one of the few methods
that does not introduce a cluster-specific hyperparameter. It
uses a convolutional AE and leverages noise augmentation
for a more robust clustering. IDEC combines a reconstruc-
tion loss with an auxiliary target distribution to minimize the
Kullback-Leibler divergence such as in the DEC algorithm,
weighing the trade-off with a hyperparameter. For DCN, net-
work parameters, (hard) cluster assignments and centroids are
updated in alternation. In each step of DCN the full data set
is passed and a carefully weighted k-means loss is optimized
together with the reconstruction loss. Recently, more power-
ful techniques that combine data-specific architectures with
several cluster-specific hyperparameters have been introduced.
These hyperparameters have to be tuned with ground truth
labels, leaving open how to set them in an unsupervised set-
ting. JULE combines a recurrent convolutional AE with a
joint clustering objective, leveraging a well-tuned triplet loss.
DualAE combines AE-based deep spectral clustering with
mutual information maximization and noise augmentation.

A recently proposed probabilistic DC method is Cluster-

GAN [Mukherjee et al., 2019], which combines a generative
adversarial network (GAN) [Goodfellow et al., 2014] with
a clustering prior. While not an AE-based method, it uses
similar to other existing methods the same space for captur-
ing cluster and non-cluster information, leading to a trade-off
between losses and less interpretable results. In contrast to
our method, ClusterGAN can not distinguish features shared
between all clusters from the ones that are cluster-specific,
as can be seen in Figure 4 of [Mukherjee et al., 2019]. All
of these methods need three cluster-specific hyperparame-
ters tuned by ground truth labels to balance the different loss
terms, but they do not account for the situation that different
dimensions might be less important to the clustering as we
motivated in Figure 1a. This is in contrast to our approach, as
we learn the importance of each dimension and assume that
we have no access to ground truth labels, which is usually the
case for clustering in practice. ACe/DeC shares its idea of soft-
assigned feature spaces with [Ji et al., 2017; Zhang et al., 2018;
Zhang et al., 2019; Miklautz et al., 2020]. However, in con-
trast to these (deep) subspace clustering methods, which find
a separate subspace for each cluster or multiple clustering
subspaces, we find a single cluster subspace for all clusters
and a single non-cluster space for shared information. To our
knowledge we are the first to introduce this idea to DC for re-
solving the clustering/reconstruction trade-off. Our framework
is developed for centroid-based DC methods, which is why we
do not compare to algorithms outside of this family. There are,
of course, powerful classical clustering methods, e.g. HDB-
SCAN [Campello et al., 2013]. However, the clustering notion
is very different (density-based vs centroid-based).

4 Experiments
We evaluate all algorithms with six different data sets focus-
ing on common DC benchmarks like MNIST [LeCun et al.,
1998], Fashion-MNIST [Xiao et al., 2017] and USPS. Ad-
ditionally, we use a data set based on real world images of
traffic signs (GTSRB) [Houben et al., 2013], recorded un-
der different camera angles and daylight conditions, and two
synthetic data sets to show the impact of irrelevant infor-
mation on DC performance. The OBJECTS data set con-
sists of 10, 000 synthetically generated gray scale images of
spheres, cubes and cylinders with 4, 096 dimensions. The
SYNTH-25 data set consists of 12, 000 data points with four
well-separated Gaussian clusters in two dimensions and 25
independent, unimodal Gaussian distributed dimensions with-
out cluster structure (27 dimensions in total), corresponding
to step 25 of the x-axis in Figure 1a. Further explanations
about the experiments, data sets, information on our hardware
setup, compared methods, and all additional experiments are
in the SP (Sec. 2). We uploaded our code and supplement at
https://gitlab.cs.univie.ac.at/lukas/acedec public.

4.1 Quantitative Experiments
In this section we show that by using our ACe/DeC framework,
we can achieve stable cluster performance across data sets with
varying degree of non-cluster information, without tuning of
the hyperparameter λ and using less dimensions for clustering.
For the image data sets we use for all methods 10 pretrained
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Methods SYNTH-25 FMNIST MNIST-Full MNIST-Test OBJECTS USPS GTSRB
ACe/DeC+DCN 1.00 ±0.00 0.62 ±0.00 0.89 ±0.01 0.87 ±0.02 1.00 ±0.00 0.71 ±0.02 0.52 ±0.04
DCN (λ = 0.1) 0.17 ±0.24 0.62 ±0.02 0.87 ±0.01 0.86 ±0.02 1.00 ±0.00 0.71 ±0.03 0.19 ±0.05
DCN (λ = 1.0) 0.22 ±0.21 0.55 ±0.03 0.86 ±0.03 0.83 ±0.03 0.99 ±0.01 0.65 ±0.03 0.16 ±0.07
DCN (λ = 10.0) 0.29 ±0.22 0.55 ±0.04 0.70 ±0.08 0.66 ±0.05 1.00 ±0.00 0.56 ±0.04 0.24 ±0.19
k-means 0.90 ±0.16 0.51 ±0.01 0.50 ±0.00 0.50 ±0.00 1.00 ±0.00 0.61 ±0.00 0.22 ±0.01
SubKmeans 0.84 ±0.13 0.52 ±0.00∗ 0.48 ±0.01∗ 0.48 ±0.02∗ - 0.61 ±0.00 -
AE + SubKmeans 0.11 ±0.10 0.59 ±0.02 0.80 ±0.01 0.79±0.01 0.98 ±0.02 0.65 ±0.02 0.47 ±0.02
AE + k-means 0.11 ±0.10 0.59 ±0.01 0.80 ±0.01 0.79±0.01 0.98 ±0.02 0.65 ±0.02 0.46 ±0.03

Methods + Aug SYNTH-25 FMNIST MNIST-Full MNIST-Test OBJECTS USPS GTSRB
ACe/DeC+DCN N/A 0.64 ±0.01 0.94 ±0.00 0.94 ±0.00 1.00 ±0.00 0.86 ±0.02 0.66 ±0.02
DCN (λ = 0.1) N/A 0.60 ±0.02 0.94 ±0.00 0.95 ±0.01 1.00 ±0.00 0.83 ±0.02 0.64 ±0.02
DCN (λ = 1.0) N/A 0.57 ±0.03 0.94 ±0.00 0.95 ±0.01 1.00 ±0.00 0.84 ±0.03 0.65 ±0.06
DCN (λ = 10.0) N/A 0.57 ±0.03 0.92 ±0.02 0.94 ±0.02 1.00 ±0.00 0.78 ±0.05 0.65 ±0.06

Table 1: NMI averages and standard deviations over 10 (20 for SYNTH-25) pretrained AEs. We compare the results with and without image
augmentation in the upper and lower tables, respectively. The upper table shows that the performance of DCN depends in general quite heavily
on λ. For SYNTH-25 and GTSRB the performance of DCN does not improve considerably for any of the considered λ values. This is mainly
due to the AE, which focuses too much on reconstructing the irrelevant dimensions instead of preserving the cluster information as can be seen
when comparing k-means and AE+k-means for GTSRB and SYNTH-25. This can also be seen for the OBJECTS data set, but the effect is
much smaller. In contrast, ACe/DeC allows DCN to perform stable across all data sets. The lower table shows the performance of ACe/DeC
and DCN leveraging image augmentation (random rotation and shifts). Unsurprisingly, both methods improve through domain knowledge in
the form of augmentation, but DCN still depends on λ for FMNIST and USPS, where the learned augmentation invariances might not be as
relevant. Importantly, image augmentation can not solve this problem for non-image data sets like SYNTH-25.

Methods MNIST-Full MNIST-Test FMNIST # HPs
ACe/DeC+DCN 0.94 0.94 0.64 0
DEPICT 0.92 0.92 0.39 0
DEC 0.74 0.75 0.57 0
IDEC 0.80 0.77 0.61 1
JULE 0.91 0.92 0.61 3
C-GAN 0.89 0.89 0.64 3
DualAE 0.94 0.95 0.65 3

Table 2: Average NMI comparison among recently proposed tech-
niques on common benchmarks. DEC and IDEC have been rerun
based on our re-implementations and other results taken from the
literature. Even though the comparison methods have an unrealistic
advantage—hyperparameters (HP) tuned with access to labels—our
performance is equally strong.

Method MNIST FMNIST USPS GTSRB
SubKM 10∗ 10∗ 10 -
AE + SubKM 9 9 9 9
ACe/DeC+DCN 6 5 5 4

Table 3: Average number of dimensions found for all ten pretrained
AEs with d = 10. The joint non-linear optimization allows our
method to reduce the dimensionality by a factor of two compared to
the linear method SubKmeans (SubKM).

fully connected AEs with an embedding size of d = 10 ac-
cording to the procedure in [Xie et al., 2016]. We use this
basic architecture, because all methods would profit from a
more powerful AE. We benchmark two implementations of
our ACe/DeC framework with DCN. One which leverages
augmentation invariances (random rotation and shifts) and
one which does not. We compare this to DCN with different
values of λ. We used the same settings for the training of all
DC methods (training budget, learning rate, optimizer, etc.,
see the SP (Sec. 2.4) for details). Additionally, we compare

to SubKmeans [Mautz et al., 2017] (AE + SubKmeans), k-
means (AE + k-means) and included the results of k-means
and SubKmeans on the raw data sets as well. Results marked
with ∗ were run on a subset of 10, 000 objects, empty results
were stopped due to run time constraints. Additionally, we
compare our results against a reimplemented DEC/IDEC using
the same pretrained AEs and recently introduced state of the
art DC methods that leverage augmentation and data-specific
architectures, namely DEPICT, JULE, ClusterGAN (C-GAN)
and DualAE where we report the results from the respective
papers. For SYNTH-25 and the experiments in Figure 1a, we
trained for each setting 20 single layer linear AEs with d = D.

Stable cluster performance without hyperparameter tun-
ing. Table 1 shows the Normalized Mutual Information
(NMI) [Vinh et al., 2010] results of the considered methods
and data sets, where an NMI close to 1 indicates perfect clus-
tering and 0 a random one. Our method performs stable across
different data sets, while DCN alone fails for a data set like
GTSRB, that contains several features unrelated to clustering.
In our synthetic SYNTH-25 data set, where the number of
irrelevant dimensions overtakes the number of dimension with
cluster information, we can see that DCN’s performance is
considerably worse independent of its λ value. Augmentation
improves the performance of our method and of DCN, but
DCN still depends on λ for data sets where the learned in-
variances might not be as important, like FMNIST and USPS.
We show that the cluster performance of DCN highly depends
on the choice of λ and its learning rate in Figure 4, while
ACe/DeC stabilizes DCN across different learning rates and
data sets. In Table 2 we compare our method against recently
reported results in the literature that use augmentation and
data-specific neural network architectures. We outperform
DEC, IDEC, DEPICT, JULE and ClusterGAN (C-GAN) and
perform close to DualAE, despite being at a disadvantage as
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Figure 3: Latent space traversal. (Left) Plotting the dimension
with most cluster structure (highest βcs[i]) of ACe/DeC+DCN along
the y-axis, we see that the digits 4,7 and 8 can be easily separated
using a single dimension (colors indicate ground truth labels). The
x-axis shows the direction of most variance in the shared space aka
its first principal component (PC1). The equidistantly spaced markers
(×) along the PC1 axis indicate the traversal along this component.
(Right) Each image shows the reconstructed data point with the
corresponding coordinates in the embedded space plot on the left
side, e.g., the top left image of the digit 4 is the reconstruction of
the data point with the coordinates ’white cross’ and ’yellow star’.
Each row shows the traversal along PC1 for a fixed cluster space
coordinate. Therefore, the cluster identity does not change, while
the style varies as one moves from left to right, e.g., digit seven with
and without horizontal bar. As style is a shared feature for digits, it
is not contained in the cluster dimension, but can be captured in the
shared space. These effects transfer to the other digits as well and
other principal components reflect other features like rotation and
thickness, showing that the shared space can capture multiple sources
of variation at once, see SP (Sec. 2.1) for more details.

we do not exploit ground truth labels.
Dimensionality of embedded space. Table 3 shows
the average dimensions found with SubKmeans and
ACe/DeC+DCN. The flexibility to learn a non-linear represen-
tation allows ACe/DeC to decrease the dimensionality needed
for clustering by a factor of two. See SP (Sec. 1.4 and 2.2) on
how to harden the soft assignments and more experiments.

4.2 Interpretability Experiments
In this section we show how we can use ACe/DeC to interpret
which features are important for clustering and which are not.
Using our framework, we gain three modes of understanding.
First, we can separate the cluster and non-cluster information,
as shown in Figure 1b. Second, we can traverse the latent
space separately from the cluster space. With this we can view
the change of varying information that is shared by all clus-
ters. The analysis of the shared space of our algorithm when
applied to MNIST can be seen in Figure 3. Here the direction
of most variance of the shared space represents variation in
style of MNIST digits. Note, that such an analysis is not pos-
sible for existing DC methods alone, which blend cluster and
non-cluster information in a single space (see SP (Sec. 2.1)
for examples). Third, by selecting the most discriminative di-
mensions based on βcs, we can visualize the embedded space
without the need of an additional dimensionality reduction
technique like t-SNE [Maaten and Hinton, 2008], making our
approach more faithful to the learned embedding as can be
seen on the y-axis of Figure 3. We show another example for
the OBJECTS data set in the SP (Sec. 2.1).

(a) DCN on GTSRB

(b) ACe/DeC on GTSRB (c) ACe/DeC on other DS

Figure 4: Figure 4a shows the average NMIs with 95% confidence
intervals over 10 runs of DCN on GTSRB. We look at the stability of
cluster performance w.r.t. different values of λ and different learning
rates. We vary the learning rate with 10−3γ for γ ∈ {0.1, 0.5, 0.9},
where the start value of 10−3 is based on the pretraining. We can
observe, that the performance of DCN becomes very brittle. Its
performance highly depends on different λ parameter and learning
rate combinations. Furthermore, standard deviation is high for all
parameter combinations. Using DCN with ACe/DeC does not need
the λ hyperparameter, but we analyzed the performance for different
learning rates in Figure 4b. The average NMIs are stable for all γ
values with a standard deviation in a moderate range. The same holds
for the other data sets (DS) as well, see Figure 4c.

5 Conclusion

Sometimes details matter, sometimes they don’t. Current AE-
based DC methods need a priori knowledge about the data in
the form of augmentation invariances or ground truth labels,
to improve clustering results. However, this is an unrealistic
setting for clustering and does not resolve the conflict between
the autoencoder and clustering objective. We introduced our
ACe/DeC framework that enables existing centroid-based DC
algorithms to separate clustering information from shared in-
formation allowing the algorithm to preserve details for re-
construction and to abstract from details for clustering. Fur-
ther, our framework improves interpretability, dimensionality
reduction and performance stability, without a—in practice—
impossible to tune hyperparameter. There are multiple promis-
ing directions to extend our framework, including but not
limited to: integrating ACe/DeC into other centroid-based DC
methods; replacing the reconstruction error with other self-
supervised losses; or making our framework (semi-)supervised
by combining it with a supervised AE [Le et al., 2018].
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Abstract
The supplementary material provides further de-
tails of our work. We explain derivations, relation-
ships to other methods, our cluster update strategy,
the used data sets and show the remaining experi-
ments and visualizations as mentioned in the paper.
Additionally, we describe our hard- and software
setup, experiment settings, as well as the used eval-
uation metrics. For easier reproducibility of our
results we uploaded the code, models and data sets
at https://gitlab.cs.univie.ac.at/lukas/acedec public.

1 Method
In this section, we provide further details about our proposed
framework ACe/DeC and its application to DCN, referenced
in the following as ’Ours’. We provide details about the joint
clustering (Section 1.1) and how to prevent V from degenera-
tion (Section 1.2). We show the derivation for the optimal b
for our weights βs (Section 1.3), derivatives for our loss func-
tion L w.r.t the linear transformation matrix V (Section 1.5)
and the connections between our proposed algorithm and Sub-
Kmeans [Mautz et al., 2017] (Section 1.6) and the mini-batch
clustering procedure (Section 1.7).

1.1 Joint Clustering
The core motivation of deep clustering is to learn functions that
map the input data to a cluster-friendly embedded space. The
usual deep clustering pipeline is structured as follows. First,
pretrain an autoencoder by minimizing the reconstruction loss
Lrec to get an initial low dimensional embedding. Second, to
improve the cluster structure, add a cluster objective Lcomp,
with a carefully selected hyperparameter λ > 0 and jointly
minimize Lrec + λLcomp. Third, rerun k-means in case a cen-
troid lost its cluster. For ACe/DeC all of this stays the same
except that we use a different initialization procedure, that we
do not need a weighting with a hyperparameter and that we
harden the weights for dimensionality reduction.

1.2 Degeneration Prevention for V
To prevent the degenerate solution for V, e.g., collapsing all
points into a single centroid, we include—similar to [Le et

∗Authors with equal contribution

(a) Embedding and centroids (b) Isolating cluster information

Figure 1: (a)ACe/DeC applied to the OBJECTS data set, which
consists of images of cubes, spheres, and cylinders under different
lighting conditions. [top] Embedded space: The plot shows two
dimensions of the ACe/DeC embedded space. The dimension on the
x-axis has a high cluster structure and is therefore assigned to the
cluster space. On the y-axis, we show a dimension of the shared
space that does not contain any discriminating features. [bottom]
Cluster centroids: We show the three centroids from the cluster
space on the right. They contain no varying light information, while
the shared space centroid shown on the very left contains all the
light information, but is an average of the shapes. (b) Isolating
cluster information with our method for MNIST digits four, one and
seven. [top] An input sample. [second from top] We highlighted in
red how ACe/DeC separated the unique features, like cross bar and
serif from the shared ones like rotation [second from bottom]. The
last row shows the respective centroids for each input digit. Using
our ACe/DeC framework we can gain further insights on how the
algorithm arrived at its clustering.

al., 2011]—our parameters in the autoencoder reconstruction
loss Lrec = dist2(x,dec(VVTz)) = ||x−dec(VVT(βcsz+

βssz))||22 = ||x − dec(VVTz)||22. Since βcs + βss = ~1,
the weights drop out of Lrec. To prevent degeneration during
initialization of V and β we fix Lrec to enforce VVT ≈ I.

1.3 βs-weights Analysis

In the main paper we claimed that if in the ith dimension the
k-means centroids represent the embedded data points VTz[i]
better than a single centroid VTµ[i], βcs[i] will increase and
vice versa βss[i] will decrease in the next update step in order
to lower the loss. We argued that this can also be shown with a
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mathematical analysis by considering the gradient of the loss
function with respect to b[i] as this determines the update of
the βs[i]-weights. In this section we provide the according
mathematical derivations.

The ACe/DeC-adapted DCN loss as stated in the main paper
is given by L = λ

2 [Lcluster + Lshared] + Lrec =

λ

2

[
K∑

k=1

∑

z∈Ck

‖VT z−VTµk‖2βcs
+
∑

z∈C
‖VT z−VTµ‖2βss

]

+
∑

x∈X
||x− dec(VVT z)||22, (1)

where, for some vectors h,g ∈ Rd, we define

distβs
(h,g) = ||h− g||2βs

=

d∑

i=1

(βs[i](h[i]− g[i]))
2

=
d∑

i=1

βs[i]
2(h[i]− g[i])2,

(2)

with

βcs[i] :=
1

1 + exp(−b[i])
, βss[i] := 1− βcs[i]. (3)

Note, that for completeness, we here keep the hyperparameter
λ for now, even though it is not included in our optimiza-
tion and learning procedure. As discussed in the main paper,
we can think about the βs-weighted euclidean distance as
rescaling the dimensions based on the cluster structure, as
for dimensions i where Lcluster < Lshared, βcs[i] will increase.
The rescaling becomes also evident with another interpreta-
tion of our βs distances. We can consider it as the squared
Mahalanobis distance,

dist2M (x, µ) =
d∑

i=1

(x− µ)TΣ−1(x− µ), (4)

where the covariance matrix Σ is a diagonal matrix with the
inverse of βs[i]2 as entries.

For the following analysis, we state the k-means loss LKM
and variance (scatter matrix) loss LVar

LK := LKM :=

K∑

k=1

∑

z∈Ck

‖VT z−VTµk‖22

LV := LVar :=
∑

z∈C
‖VT z−VTµ‖22.

(5)

While LVar models the variance of the data, LK is simply the
k-means loss. Rewriting equation (1) with equations (2) and
(5) reads as

λ

2

[
d∑

i=1

βcs[i]
2LK[i] + βss[i]

2LV[i]

]

+
∑

x∈X
||x− dec(VVT z)||22, (6)

where LK =
∑d
i=1 LK[i] and LV =

∑d
i=1 LV[i], with LK[i]

and LV[i] as the k-means loss and variance loss in a single
dimension, respectively. We now take the derivative ∂

∂b[j]L

=
λ

2

(
∂

∂b[j]
βcs[j]

2LK[j] +
∂

∂b[j]
βss[j]

2LV[j]

)

+
∂

∂b[j]

∑

x∈X
||x− dec(VVT z)||22

=
λ

2

[
∂

∂b[j]

(
1

1 + exp(−b[j])

)2

LK[j]

+
∂

∂b[j]

(
1− 1

1 + exp(−b[j])

)2

LV[j]

]
+ 0

=
λ

2

[
2 exp(−b[j])

(exp(−b[j]) + 1)3
LK[j]− 2 exp(b[j])

(exp(b[j]) + 1)3
LV[j]

]

= λ




exp(−b[j])

(exp(−b[j]) + 1)3︸ ︷︷ ︸
u

LK[j]− exp(b[j])

(exp(b[j]) + 1)3︸ ︷︷ ︸
w

LV[j]


 .

When this gradient is negative b[i], and hence βcs[i], will
increase. This is the case, when LK[i] < w

u · LV[i]. Before the
update step, b[i] is fixed, and so w

u is a positive constant. This
means, that b[i], and hence βcs[i], will increase in dimensions,
where LK[i] . LV[i]. This is precisely the case, when the
embedded data points are well represented by their respective
centroids. Note, that wu is monotonically decreasing. Thus,
with increasing b[i], the representation with the k-means cen-
troids needs to become more ’convincing’ (i.e. LK[i] needs to
get smaller) in order that b[i] is further increased and βcs[i] is
further pushed closer to the cluster space. After optimization
these βcs[i] will then be close to 1.

This is the upper bound imposed by the asymptotic maxi-
mum of the sigmoid function. In the reverse case βcs[j] will
decrease, but it is lower bounded by the minimum of the loss
function with respect to b[j]. We will derive this minimum by
setting the derivative ∂

∂b[j]L to zero:

λ

[
exp(−b[j])

(exp(−b[j]) + 1)3
LK[j]− exp(b[j])

(exp(b[j]) + 1)3
LV[j]

]
!
= 0

exp(2b[j])

(exp(b[j]) + 1)3
LK[j] =

exp(b[j])

(exp(b[j]) + 1)3
LV[j]

exp(2b[j])LK[j] = exp(b[j])LV[j]

exp(2b[j])

exp(b[j])
=
LV[j]

LK[j]

2b[j]− b[j] = ln(
LV[j]

LK[j]
)

b[j]∗ = ln(
LV[j]

LK[j]
) = − ln(

LK[j]

LV[j]
)

for λ 6= 0. Updates that are decreasing b[i] occur when
LK[i] > LV[i]. In this case ACe/DeC will try to map all
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points in the dimension to a single center µ[i], including all
other centroids µk[i]. (The amount of retained variance in this
dimension is only influenced by Lrec; see the shared space
of Figure 1a). In this situation we will arrive at µ[i] = µk[i]
and, therefore, LV[i] = LK[i] and b∗[i] = 0. Plugging this
back into the sigmoid function we get β∗cs[i] = sigmoid(0) =
0.5 = β∗ss[i]. We call dimensions where their corresponding
weights are close to 0.5 to be indifferent between the shared
and cluster space. This prevents the degenerate solution of
assigning all dimensions to the shared space. Note, that the
reverse ’trivial solution’ of assigning all dimensions to the
cluster space (βcs = ~1, βss = ~0) is possible, if all dimensions
are important for clustering. If there is no cluster structure
at all in the data set, all dimensions will be indifferent. Note,
that if all βss are zero and consequently all βcs are one, we
arrive at the compression loss of DCN with an additional linear
layer V, but the algorithm has now the freedom to learn this
trade-off. For simplicity we remove the constant term λ

2 in Eq.
(6) in the following sections and call this version of our loss
LOurs.

1.4 Dimensionality Reduction - β-Hardening

After the weights reached a stable solution, the indifferent
weights can be completely assigned to the shared space (i.e.,
βss[i] = 1) for interpretation by including a penalty term.
The penalty depends on the set I = {i : βcs[i] ≤ T} of
indifferent dimensions w.r.t. a threshold value T , where T =
0.5 + ε, ε > 0, small. The penalty is then defined as Lp =∑
i∈I βcs[i] +

∑d
j /∈I βss[j]. The ε should account for the

random variation due to stochastic gradient descent and we set
it to 0.1 for all experiments (ε could also be set automatically,
e.g. by the variance of past updates of βs). Adding the term
Lp to our loss forces the network to slowly push the indifferent
βss into the shared space and the βcs are stronger assigned to
the cluster space. We show in Section 2.2 experimental results
regarding the parameter T .

1.5 Linear Transformation V

In this section, we take a closer look at the derivative of
LOurs with respect to the linear transformation matrix V.
Throughout this section, we will use denominator conven-
tion for the differentiation of a scalar with respect to a matrix.
Since the update of V is independent of the effect of V on
the centroids µk and µ, we have to consider the following
loss term, where X is the set of all data points and Ck is
the set of all data points x assigned to the kth cluster, i.e,

Ck = {x ∈ X |argmin(||Vx−Vµk||2βcs
)}:

LOurs =

K∑

k=1

∑

x∈Ck

||VTx− µk||2βcs

︸ ︷︷ ︸
Lcluster

+
∑

x∈X
||VTx− µ||2βss

︸ ︷︷ ︸
Lshared

+
∑

x∈X
||VVTx− x||2

︸ ︷︷ ︸
Lrec

Let us look at the three terms individually. We start with
Lcluster and rewrite the β-weighted Euclidean norm as a vector
multiplication and diagonal matrix multiplication with the
squares of the entries of the weight vector βcs in the diagonal.
For simplicity of notation, we will define D = diag(β2

cs).

Lcluster =
K∑

k=1

∑

x∈Ck

(VTx− µk)TD(VTx− µk)

By use of the formula ∂
∂XT ((Xa+b)TC(Xa+b)) = ((C+

CT )(Xa + b)aT )T and the identities X = VT , a = x,
b = −µk and C = D, the derivative is given by the following
expression: (Note, that DT = D)

∂

∂V
Lcluster =

K∑

k=1

∑

x∈Ck

∂

∂V
(VTx− µk)TD(VTx− µk)

=

K∑

k=1

∑

x∈Ck

(2D(VTx− µk)xT )T

=

K∑

k=1

∑

x∈Ck

2x(VTx− µk)TD (7)

We get the same for Lshared, except that D = diag(β2
ss) and

µk = µ.

∂

∂V
Lshared =

∑

x∈X
2x(VTx− µ)TD (8)

For the reconstruction loss, we get

Lrec =
∑

x∈X
||VVTx− x||2

=
∑

x∈X
(VVTx− x)T (VVTx− x)

=
∑

x∈X
xTVVTVVTx− 2xTVVTx + xTx
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(a) Cluster space (b) Shared space

Figure 2: Scatter plot matrices for our method applied to OBJECTS for an autoencoder with a six dimensional embedded space (colors
represent ground truth labels). The cluster space only needs two dimensions to represent the cluster structure (Figure 2a), while the remaining
dimensions in the shared space (Figure 2b) do not contain any cluster structure (mixed colors). Note, that all dimensions in the shared space are
unimodal Gaussians (diagonal in Figure 2b).

The derivative is then:

∂

∂V
Lrec =

∑

x∈X

∂

∂V
xTVVTVVTx

︸ ︷︷ ︸
I

−2
∂

∂V
xTVVTx

︸ ︷︷ ︸
II

+
∂

∂V
xTx

︸ ︷︷ ︸
III=0

I) First, we can rewrite the expression as

xTVVTVVTx = tr(xTVVTVVTx)

= tr(VVTxxTVVT )

= tr(VVTXVVT ),

with xxT =: X = XT , i.e. , X ∈ RD×D is a symmetric
matrix. We then get

d(tr(VVTXVVT ))

= tr(d(VVTXVVT ))

= tr(d(VVT )XVVT ) + tr(VVT d(XVVT ))

= tr([d(V)VT + Vd(VT )]XVVT )

+ tr(VVT [d(XV)VT +XVd(VT )])

= tr(d(V)VTXVVT ) + tr(V d(VT )︸ ︷︷ ︸
=d(V)T

XVVT )

+ tr(VVT d(XV)︸ ︷︷ ︸
=Xd(V)

VT ) + tr(VVTXV d(VT )︸ ︷︷ ︸
d(V)T

)

= tr(VTXVVT d(V)) + tr(XVVTVd(V)T )︸ ︷︷ ︸
=tr(d(V)VTVVTXT )

=tr(VTVVTXT d(V))

+ tr(VTVVTXd(V)) + tr(VVTXVd(V)T )︸ ︷︷ ︸
=tr(d(V)VTXTVVT )

=tr(VTXTVVT d(V))

= tr([VTXVVT + VTVVTXT

+ VTVVTX + VTXTVVT ]d(V))

Now it follows from y = tr(Xd(V)) ⇒ dy
dV = XT , where

X is independent from V, that

∂
∂V tr(x

TVVTVVTx)

= VVTXTV +XVVTV +XTVVTV + VVTXV

and since X = XT

= 2VVTXV + 2XVVTV

= 2(VVTxxTV + xxTVVTV).

Summarising, we get that

∂

∂V
xTVVTVVTx =

∂

∂V
tr(xTVVTVVTx) (9)

= 2(VVTxxTV + xxTVVTV)
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II) For the second term we proceed in the same way

xTVVTx = tr(xTVVTx) = tr(VTXV)

Then we get

d(tr(VTXVT )) = tr(d(V)TXVT + VT d(XV))

= tr(VXT d(V)) + tr(VTXd(V))

= tr([VXT + VTX]d(V))

As before we then get

∂

∂V
tr(xTVVTx) = XV +XTV = 2XV

which leads to

∂

∂V
xTVVTx =

∂

∂V
tr(xTVVTx) = 2xxTV (10)

Term III) vanishes, since it is independent of V. With formulas
(9) and (10), we finally get for the reconstruction loss

∂

∂V
Lrec =

∑

x∈X
2(VVTxxTV + xxTVVTV)− 4xxTV

Note, that in the case of an orthogonal matrix, i.e., VVT =
ID, all addends vanish and, therefore, the derivative is 0,
which means that we reach a minimum of this loss term. (Note,
that the reconstruction loss is convex, which means, we cannot
arrive at a maximum.) This is in accordance with the fact that
the reconstruction loss is minimal, when it is zero, which is
precisely the case, when VVT = ID.
To sum up, we get:

∂

∂V
LOurs =

∂

∂V
Lcluster +

∂

∂V
Lshared+

∂

∂V
Lrec

=

K∑

k=1

∑

x∈Ck

2x(VTx− µk)TD

+
∑

x∈X
2x(VTx− µ)TD

+
∑

x∈X
2(VVTxxTV + xxTVVTV)− 4xxTV

1.6 ACe/DeC +DCN and SubKmeans
In the following, we will derive that if we exclude the non-
linearity of ACe/DeC, and further assume hard assignments
for the β-weights (βs = β2

s , s ∈ {cs, ss}), we effectively
solve the same problem as SubKmeans [Mautz et al., 2017].
Thereby we denote with a center dot · the Euclidean scalar
vector product, while no dot is—depending on the objects—
either a matrix-matrix or a matrix-vector multiplication.
We first have a look at the loss function of SubKmeans:

LSUBK =
K∑

k=1

∑

x∈Ck

||P̄TC (VTx−VTµk)||2

+
∑

x∈X
||P̄TN (VTx−VTµ)||2

(11)

subject to

VTV = I. (12)

The matrices

P̄C =

(
Im

0d−m,m

)
P̄N =

(
0m,d−m
Id−m

)

describe the (linear) projections on the m dimensions of the
cluster space and the d −m dimensions of the noise space.
Im is the m dimensional identity matrix and 0k,l is a zero
matrix with k rows and l columns. Without loss of generality,
the dimensions are ordered, such that the first m dimensions
belong to the cluster space. Note, that we can extend these
matrices to squared d × d matrices by simply adding zeros
columns, without changing the meaning—and value—of the
loss. More specifically, with

PC =

(
Im Om,d−m
0d−m,m Od−m,d−m

)

PN =

(
Om,d−m 0m,d−m
Od−m,d−m Id−m

)

the SubKmeans loss can be written as

LSUBK =

K∑

k=1

∑

x∈Ck

||PC(VTx−VTµk)||2

︸ ︷︷ ︸
LC

+
∑

x∈X
||PN (VTx−VTµ)||2

︸ ︷︷ ︸
LN

,

(13)

with the respective losses LC and LN for cluster and noise
space.
Next, we consider the loss function of ACe/DeC + DCN
omitting normalisation factors and the non-linearities:

LOurs

=

K∑

k=1

∑

x∈Ck

||VTx−VTµk||2βcs
+
∑

x∈X
||VTx−VTµ||2βss

︸ ︷︷ ︸
Lcomp

+
∑

x∈X
||VVTx− x||2

︸ ︷︷ ︸
Lrec

. (14)

We can then rewrite the β-weighted Euclidean norm as a
vector multiplication and a point wise multiplication ⊗ with
the weight vector

=

K∑

k=1

∑

x∈Ck

(VTx−VTµk)T · (βcs ⊗ (VTx−VTµk))

+
∑

x∈X

(
VTx−VTµ)T · (βss ⊗ (VTx−VTµ)

)

+
∑

x∈X
||VVTx− x||2
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We can further rewrite the point wise multiplication as a matrix
multiplication with the βs weights in the diagonal

=

K∑

k=1

∑

x∈Ck

(VTx−VTµk)T · (diag(βcs)(V
Tx−VTµk))

+
∑

x∈X
(VTx−VTµ)T · (diag(βss)(V

Tx−VTµ))

+
∑

x∈X
||VVTx− x||2

Rewriting the scalar product of vectors as Euclidean norms
again yields

=
K∑

k=1

∑

x∈Ck

||diag(βcs)(V
Tx−VTµk)||2

︸ ︷︷ ︸
=̂LC

+
∑

x∈X
||diag(βss)(V

Tx−VTµ)||2

︸ ︷︷ ︸
=̂LN

+
∑

x∈X
||VVTx− x||2.

(15)

Assuming hard assignments {0, 1} for the β weights, the di-
agonal matrices diag(βcs) and diag(βss) are effectively the
linear projection matrices PC and PN onto the cluster and
noise space, respectively. Finally, the third sum approximates
the condition given by equation (12).

1.7 Clustering Procedure
In contrast to the original DCN [Yang et al., 2017] cluster-
ing procedure, we proposed an adapted version that is based
on mini-batch k-means [Sculley, 2010]. The original DCN
algorithm uses an alternating update, which holds either the
autoencoder fixed and updates the centroids or fixes the cen-
troids and updates the autoencoder parameters. We imple-
mented a mini-batch strategy, which allows an update without
alternating between full updates, similar to [Miklautz et al.,
2020]. The assignment of objects to their given cluster cen-
ters in the cluster space is done by assigning them to their
closest center, e.g., when integrated in our ACe/DeC frame-
work we compute the βcs-weighted euclidean distance and
arg mink∈[1;K] ||VT z−VTµk||2βcs

(For the shared space, we
have only a single center to which all points are assigned). We
update the cluster centroids by calculating a running mean
for each centroid per mini-batch. We weight the updates with
a per cluster learning rate α = 1

ak
that is calculated with a

discounted weighted average over the number of past assign-
ments for a cluster, where we set the discounting parameter to
0.5 for all experiments. With this, we get the following cen-

troid update rule µk = (1−α)µt−1k +α

∑
z∈CMB

k
VT z

|CMB
k | , where

|CMB
k | is the number of samples in a mini-batch assigned to

the k-th cluster. Similar to [Yang et al., 2017], we detect for
our DCN and its integration with ACe/DeC whether a cluster
has lost all its points. If this is the case we reassign its centroid

to a random point with a small perturbation. After a cluster
was reinitialized, we reset the past assignment count. This
reinitialization makes DCN much more stable and helps it
recover from lost clusters.

2 Experiments
This section contains additional information about the experi-
ments in the main paper including further qualitative (Section
2.1) and quantitative experiments (Section 2.2), the used data
sets (Section 2.3), the experiment setup (Section 2.4) and the
Hard- and Software setup (Section 2.5).

2.1 Qualitative Experiments
In addition to the experiments in the main paper, we isolated
the cluster information for MNIST in Figure 1b and conducted
further latent space traversals for MNIST in Figure 3 and OB-
JECTS in Figure 4. We perform the latent space traversal
along the first three principal components of the shared space.
The reasoning behind this, is that PCA [Pearson, 1901] applied
to a multivariate Gaussian will make the components asymp-
totically independent. Thus, we can visualize the independent
effects of the shared space, which is an approximation of a
multivariate Gaussian (Figure 2b). In the case of MNIST in
Figure 3 and OBJECTS in Figure 4, these effects correspond
to human interpretable concepts. While our main focus is
to separate cluster structure from non-cluster structure, it is
interesting to see that the non-cluster structure can be further
decomposed and interpreted.

We created the cluster space reconstructions of a single data
point with x̂cs = dec(VVT(z � βcs + µk � βss)) and for
the shared space x̂ss = dec(VVT(z � βss + µk � βcs)),
where µk is the closest centroid of z and� is the element wise
product. This can be interpreted as applying the cluster or
shared style of an embedded object to the centroid.

2.2 Quantitative Experiments
Evaluation Metric
To quantify the quality of the found clustering, we use the
normalized mutual information (NMI) [Vinh et al., 2010].
This measure ranges from 0 to 1, where a value close to 0
implies that almost no structure was found, while a value
of 1 indicates a perfect clustering. The NMI measures the
mutual information between ground-truth labels and cluster
assignments normalized by both their entropies. Note, that a
random clustering leads to an NMI of 0.

Dimensionality Reduction
We show in Table 3 the average dimensionality reduction for
different threshold values and the corresponding NMI values
after reduction in Table 2. For hardening βs, we added the
penalty Lp =

∑
i∈I βcs[i] +

∑d
j /∈I βss[j], where I = {i :

βcs[i] ≤ T}, with T = 0.5 + ε, ε > 0, small. The additional
term Lp forces the network to push the indifferent βss into
the shared space and the βcs to the cluster space, effectively
separating the two subspaces. We trained ACe/DeC +DCN for
additional 20,000 mini-batch iterations for all results in Table
2. This can also be automated by stopping training after βs
have converged.
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(a) (b)

(c) (d)

(e) (f)

Figure 3: The latent space traversal of ACe/DeC +DCN along the first three principal components of the shared space varies different properties
of MNIST digits, while the cluster identities remain unchanged. Each row of each cluster (0, 3, 4, 6, 7, 8) corresponds to one principal
component, e.g., PC 1 is the first row, PC 2 the second and PC 3 the third. In Figure 3a, we can see that the first row (PC 1) changes the style of
the digit seven (horizontal bar and serif). The second row (PC 2) changes the thickness and (PC 3) the orientation aka azimuth of the seven (left
leaning vs. straight line). Another example is the digit four in Figure 3c. Here we see again that the first row (PC 1) changes the style between
a four that is closed (left side) and one that is open (right) side. The second and third rows are again changing the thickness and orientation of
the four. These effects transfer to the other digits as well.

Name # Points # Dimensions # Clusters
MNIST 70,000 784 10
FMNIST 70,000 784 10
USPS 9,298 256 10
GTSRB 15,540 3,072 10
OBJECTS 10,000 4,096 3
SYNTH-25 12,000 27 4

Table 1: Summary of used data sets.

2.3 Data Sets
We reported our results on six different data sets. We focused
on common deep clustering benchmarks like MNIST [LeCun
et al., 1998], Fashion-MNIST [Xiao et al., 2017] and USPS.
We describe these three data sets in more detail below. Addi-
tionally, as explained in the paper, we used two synthetically
generated data sets called OBJECTS and SYNTH-25 and the
German Traffic Sign Recognition Benchmark (GTSRB). A
summary of the used data sets can be found in Table 1.

MNIST: The MNIST data set contains 70, 000 images of
handwritten digits, containing ten clusters from 0 to 9. In the

deep clustering literature it has become common to use two
variations of MNIST splits for evaluation. MNIST-Test refers
to a train/test split, where the models have been trained on the
60, 000 training images of MNIST and then evaluated on the
remaining 10, 000 test images. MNIST-Full means that we
train and test on the full data set (70, 000 images) and report
those results.

Fashion-MNIST: Fashion-MNIST (FMNIST) consists of
70, 000 images of different fashion items, containing the ten
clusters T-shirt/top, trousers, pullover, dress, coat, sandal, shirt,
sneaker, bag and ankle boot.

USPS: The USPS data set contains images of handwritten
digits similar to MNIST, but it is more challenging due to the
lower size of only 9, 298 samples.

GTSRB: The German Traffic Sign Recognition Benchmark
(GTSRB) data set contains different images of traffic signs
under varying light conditions and viewing-angles. We use a
subset of ten classes consisting of 15, 540 data points.

OBJECTS: For the OBJECTS data set, we generated
10, 000 gray scale 3D objects with three different shapes (cube,
sphere and cylinder) using the publicly available rendering
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(a) (b)

(c) (d)

Figure 4: (a-c) The latent space traversal of ACe/DeC +DCN along the first three principal components of the shared space varies different light
properties of OBJECTS, while the cluster identities (sphere, cylinder and cube) remain unchanged. Each row of each image block corresponds
to one principal component (PC). In Figure 4a, we see that the first row (PC 1) changes the front light source from left to right. The second row
(PC 2) changes the back light source from left to right and the third row (PC 3) changes the front light source up and down. Note, that on the
left side the light source is weaker. This matches with how the data was generated (see the shared space centroid in Figure 1a, where most front
light comes from the lower right corner). The same can be seen in Figures 4b and 4c. (d) The latent space traversal for DCN without ACe/DeC
along the first principal component yields results that mix several light sources and distorts the three centroids.

MNIST-Full FMNIST USPS GTSRB OBJECTS
Soft 0.89 ±0.01 0.62 ±0.00 0.71 ±0.02 0.52 ±0.04 1.00 ±0.00
T = 0.6 0.88 ±0.01 0.62 ±0.01 0.68 ±0.03 0.50 ±0.05 1.00 ±0.00
T = 0.7 0.87 ±0.01 0.60 ±0.02 0.64 ±0.03 0.42 ±0.10 1.00 ±0.00
T = 0.8 0.80 ±0.04 0.55 ±0.03 0.34 ±0.03 0.25 ±0.13 1.00 ±0.00

Table 2: Average NMIs (mean ± standard deviation) before (Soft As-
signment) and after the dimensions with indifferent βs have been as-
signed to the shared space at the threshold levels T ∈ {0.6, 0.7, 0.8}.
The values of T have been selected according to Table 3, where at
least a single dimension on average should be kept for each data set.
First, we can observe that there is no significant change in cluster-
ing performance for T = 0.6, indicating that the dimensions with
indifferent βs close to 0.5 are indeed not important for clustering. As
we increase the threshold we can see that the cluster performance
drops, because we are removing dimensions that are important for
clustering from the cluster space. We used here the same learning rate
for each T . In practice, one might want to use lower learning rates
for higher T to avoid disruption of the learned embedding. Note, that
one can tune the learning rate or the optimal dimensionality based on
the change from the initial cluster label distribution and the reduced
ones for different thresholds T .

software used in [Johnson et al., 2017]1. Each object has some
additional random lighting jitter coming from three directions
and has 4,096 dimensions in the pixel space. The OBJECTS
data set can be found in the online folder.

SYNTH-25: For the SYNTH-25 data set, we generate
12, 000 data points that form four well separated spherical
clusters. Additionally, we added 25 independent, unimodal
Gaussian distributions that contain no information about the
four clusters. The code for generating this data set can be

1https://github.com/facebookresearch/clevr-dataset-gen

T MNIST-F FMNIST USPS GTSRB OBJ
0.5 10 10 10 10 10
0.6 6 5 5 4 2
0.7 5 4 4 3 2
0.8 4 2 1 1 2
0.9 1 2 0 0 2

Table 3: Average number of dimensions found for different thresholds
T ∈ {0.5, 0.6, 0.7, 0.8, 0.9}. Abbreviations: OBJ = OBJECTS,
MNIST-F = MNIST-Full

found in the code folder.
We pre-process all image data sets by scaling the pixels

from [0, 255] to [0, 1] and applying a z-transformation. For the
GTSRB images we used additionally histogram equalization,
due to the low contrast in most of the images. The SYNTH-25
data set was only z-transformed. The preprocessing scripts
can be found in our supplementary file.

2.4 Experiment Setup
For all our experiments with image data, we use the same
stacked denoising autoencoder [Vincent et al., 2010] archi-
tecture as in [Xie et al., 2016; Guo et al., 2017; Yang et al.,
2017], except for the activation function. We use the Leaky
ReLu [Maas et al., 2013] instead of the ReLU function, which
resulted in better performances for all methods. The used
architecture is designed as a feed forward autoencoder with
dimensionalities D− 500− 500− 2000− d and a mirrored
decoder, were D is the data dimensionality and d is the em-
bedding size. We set d = 10 for all image experiments, which
is equal to the maximum number of clusters k = 10 for all
considered data sets. For each image data set we pretrain
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ten stacked denoising autoencoders and use them for all al-
gorithms. For the augmentation procedure we used random
rotations (20 degrees) and random shifting. During the pre-
training for the augmented version we applied the random
augmentations with a probability of 0.5 to the input data.
Note, that we do not focus here on current state of the art
architectural improvements for autoencoders for deep clus-
tering, as we expect that all approaches benefit from those,
which is why we use the fully connected autoencoders. We use
25, 000 mini-batch iterations per layer resulting in 100, 000
mini-batch iterations in total for the stacked layer-wise pre-
training. Similar to [Xie et al., 2016] we use dropout [Srivas-
tava et al., 2014] with a rate of 0.2 and a noise level of 0.2
during pretraining. The fine-tuning scheme is then performed
on the full autoencoder for additional 50, 000 mini-batch iter-
ations without dropout and noise. For all data sets we set the
batch size to 256 and for optimization we use the Adam op-
timizer (pretraining-lr = 0.001,m1 = 0.9,m2 = 0.99) with-
out weight decay [Kingma and Ba, 2015]. For pretraining and
fine-tuning we set the learning rate to pretraining-lr = 0.0001.
We initialize our algorithm by running 20 times the initializa-
tion procedure and choose the one with the smallest cost. For
DCN, DEC and IDEC we initialize their centers with 20 runs
of k-means using again the run with the smallest k-means loss.
We use additional 100, 000 mini-batch iterations for the joint
clustering procedure. Similar to [Xie et al., 2016], we start for
all methods with a higher learning rate than was used during
pretraining, namely 0.001. To ensure stable convergence we
reduce the learning rate by a factor of 2 every 20, 000 itera-
tions, which equals the learning rate schedule γ = 0.5, we
compared other schedules in the main paper. K-means and
SubKmeans are run ten times on each of the ten autoencoder
embeddings, resulting in 100 runs per data set. We selected
for each of the ten runs the best one in terms of their respective
objective function and average them. For our algorithm the βs
act as a ’guide’ or scaling factor for V and therefore we up-
date them ten times faster than V in all experiments. Results
marked with ∗ where run on a subset of 10, 000 samples and
empty results where stopped due to run time constraints. For
the SYNTH-25 data set we used a fully connected autoencoder
with a single hidden layer and no dimensionality reduction
(because all Gaussian dimensions are independent) resulting
in an autoencoder with dimensionalities 27− 27− 27. For the
synthetic data we ran all methods twenty times to get better
estimates for the mean, because the standard deviations were
quite high for some methods.

2.5 Hard- and Software Setup
We implemented all experiments in Python, using Pytorch
[Paszke et al., 2019] for all deep learning based methods. We
used scikit-learn [Pedregosa et al., 2011] and SciPy [Virtanen
et al., 2019] for implementing k-means and SubKmeans. We
trained all deep clustering algorithms on a machine with a
single NVIDIA RTX 2080 TI GPU (11 GB on-board memory),
96 GB RAM and an Intel(R) Xeon(R) Gold 6130 CPU. K-
means and SubKmeans were run on the same machine, but on
the CPU. The code can be found in the supplementary files.
A single run for DCN took about 90 minutes and for DCN
with our ACe/DeC framework and mini-batch update about

60 minutes (Note, we always trained for the same minibatch
iterations and not epochs for each data set).
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and R. Garnett, editors, Advances in Neural Information
Processing Systems 32, pages 8024–8035. Curran Asso-
ciates, Inc., 2019.

[Pearson, 1901] Karl Pearson. Liii. on lines and planes of
closest fit to systems of points in space. The London, Edin-
burgh, and Dublin Philosophical Magazine and Journal of
Science, 2(11):559–572, 1901.

[Pedregosa et al., 2011] F. Pedregosa, G. Varoquaux,
A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,
A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and

A.2. Details (Don’t) Matter: Isolating Cluster Information in Deep Embedded Spaces

71



E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830,
2011.

[Sculley, 2010] D. Sculley. Web-scale k-means clustering. In
WWW, pages 1177–1178. ACM, 2010.

[Srivastava et al., 2014] Nitish Srivastava, Geoffrey E. Hin-
ton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. Dropout: a simple way to prevent neural networks
from overfitting. J. Mach. Learn. Res., 15(1):1929–1958,
2014.

[Vincent et al., 2010] Pascal Vincent, Hugo Larochelle, Is-
abelle Lajoie, Yoshua Bengio, and Pierre-Antoine Man-
zagol. Stacked denoising autoencoders: Learning useful
representations in a deep network with a local denoising
criterion. J. Mach. Learn. Res., 11:3371–3408, 2010.

[Vinh et al., 2010] Nguyen Xuan Vinh, Julien Epps, and
James Bailey. Information theoretic measures for clus-
terings comparison: Variants, properties, normalization
and correction for chance. Journal of Machine Learning
Research, 11:2837–2854, 10 2010.

[Virtanen et al., 2019] Pauli Virtanen, Ralf Gommers,
Travis E. Oliphant, Matt Haberland, Tyler Reddy, David
Cournapeau, Evgeni Burovski, Pearu Peterson, Warren
Weckesser, Jonathan Bright, Stéfan J. van der Walt,
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Abstract The field of deep clustering combines deep learning and clustering
to learn representations that improve both the learned represent-
ation and the performance of the considered clustering method.
Most existing deep clustering methods are designed for a single
clustering method, e.g., k-means, spectral clustering, or Gaussian
mixture models, but it is well known that no clustering algorithm
works best in all circumstances. Consensus clustering tries to
alleviate the individual weaknesses of clustering algorithms by
building a consensus between members of a clustering ensemble.
Currently, there is no deep clustering method that can include
multiple heterogeneous clustering algorithms in an ensemble to
update representations and clusterings together. To close this
gap, we introduce the idea of a consensus representation that
maximizes the agreement between ensemble members. Further,
we propose DECCS (Deep Embedded Clustering with Consensus
representationS), a deep consensus clustering method that learns
a consensus representation by enhancing the embedded space to
such a degree that all ensemble members agree on a common
clustering result. Our contributions are the following: (1) We
introduce the idea of learning consensus representations for het-
erogeneous clusterings, a novel notion to approach consensus
clustering. (2) We propose DECCS, the first deep clustering
method that jointly improves the representation and clustering
results of multiple heterogeneous clustering algorithms. (3) We
show in experiments that learning a consensus representation
with DECCS is outperforming several relevant baselines from
deep clustering and consensus clustering.
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Note We show here the long version of the paper. For the short paper

version, see [MTW+22b].
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Abstract—The field of deep clustering combines deep learning
and clustering to learn representations that improve both the
learned representation and the performance of the considered
clustering method. Most existing deep clustering methods are
designed for a single clustering method, e.g., k-means, spectral
clustering, or Gaussian mixture models, but it is well known
that no clustering algorithm works best in all circumstances.
Consensus clustering tries to alleviate the individual weaknesses
of clustering algorithms by building a consensus between mem-
bers of a clustering ensemble. Currently, there is no deep
clustering method that can include multiple heterogeneous clus-
tering algorithms in an ensemble to update representations and
clusterings together. To close this gap, we introduce the idea
of a consensus representation that maximizes the agreement
between ensemble members. Further, we propose DECCS (Deep
Embedded Clustering with Consensus representationS), a deep
consensus clustering method that learns a consensus represen-
tation by enhancing the embedded space to such a degree that
all ensemble members agree on a common clustering result. Our
contributions are the following: (1) We introduce the idea of
learning consensus representations for heterogeneous clusterings,
a novel notion to approach consensus clustering. (2) We propose
DECCS, the first deep clustering method that jointly improves the
representation and clustering results of multiple heterogeneous
clustering algorithms. (3) We show in experiments that learning
a consensus representation with DECCS is outperforming several
relevant baselines from deep clustering and consensus clustering.

Index Terms—Deep Clustering, Representation Learning, Con-
sensus Clustering

I. INTRODUCTION

Clustering is the task of unsupervised classification, where
we infer cluster labels from the data.1 Deep clustering (DC)
combines unsupervised deep learning and clustering to learn
representations (embeddings) that improve clustering perfor-
mance. Current DC methods are designed with only a single
clustering model in mind, e.g., DEC [1] which improves the
representation for k-means [2], VaDE [3] for Gaussian mixture
models [4], DeepECT [5] for hierarchical clustering [6], and
SpectralNet [7] for spectral clustering [8]. Relying on the
assumptions of a single clustering model leads to poor results
if the assumptions are not met by the data.

Consensus clustering (CC) can alleviate the limitations of
individual clusterings by combining a clustering ensemble
into a single robust clustering [9]. Unfortunately, applying

1Our code is available at https://gitlab.cs.univie.ac.at/lukas/deccs.

(a) Original (b) Initial AE (c) Update (d) Final CR

Fig. 1. A synthetic data set (a) containing four clusters is embedded (b) with
an autoencoder (AE). DECCS transforms the initial AE embedding via several
updates (c) to the final consensus representation (CR) in which clusters are
compact and well separated (d).

Fig. 2. Cluster performance on initial AE embedding and learned CR for
an ensemble of k-means (KM), Spectral clustering (SC), Agglomerative
clustering (AGG), and Gaussian mixture model (GMM).

current CC methods to high-dimensional data sets leads to
unsatisfactory results, because they are either limited to linear
transformations [10]–[12], only work for k-means like clus-
terings [13], or only use CC information as input features for
DC without updating the CC in response to improved data
representations [14], [15].

In contrast to that, we propose our novel Deep Embedded
Clustering with Consensus representationS (DECCS) method,
which is a DC method that can be applied to high-dimensional
data, finds non-linearly hidden clusters and works with many
existing clustering algorithms. DECCS learns a consensus
representation (CR) that maximizes the agreement between
ensemble members. The key idea we use for consensus repre-
sentation learning with DECCS is that most clustering methods
can find well-separated clusters in a low-dimensional space
that have a simple shape, e.g., dense, spherical clusters. Using
this idea, DECCS learns a consensus representation by trans-
forming the embedded space such that it is trivial to cluster
and, therefore, all ensemble members naturally agree on one
partitioning into clusters. Fig. 1 illustrates on a synthetic data
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Fig. 3. Existing DC methods are limited by their assumed cluster model.
Here they fail, because the data contains clusters of differing shapes.

set how DECCS transforms an initial embedding that contains
clusters of different shapes to a consensus representation that
consists only of dense, spherical, and well separated clusters.
In Fig. 2, multiple, heterogeneous algorithms with different
assumptions about the cluster structure are applied to the
initial autoencoder (AE) embedding (upper row). Initially, the
clustering algorithms perform poorly, but applied to the con-
sensus representation learned with DECCS all algorithms in
the ensemble reach the same, perfect clustering (bottom row)
as measured with the adjusted rand index (ARI) [16]. In Fig. 3,
we apply existing DC methods to the same synthetic data set
using the same AE and plot their learned embeddings. While
this data set can be clustered by classical clustering techniques,
we see that DC methods fail, because their assumptions are
not met. For example, DEC is performing poorly because the
data set contains non-spherical clusters, which is not suited
for k-means. As a consequence DEC is producing a distorted
embedding (first column).

In this work, we tackle the shortcomings of existing DC
and CC techniques and present the following contributions:
(1) We introduce the idea of a consensus representation,

which is a representation that maximizes the agreement
of the applied clustering algorithms by producing similar
clustering results for all clustering methods included in
the ensemble.

(2) We propose DECCS, the first DC algorithm that can
include multiple heterogeneous clustering methods to
jointly improve the learned embedding and clustering
results by simplifying the representation.

(3) Our method is outperforming several relevant baselines
in terms of cluster performance.

II. BACKGROUND - CONSENSUS CLUSTERING

CC can overcome the limitations of individual clusterings
by combining multiple clustering solutions into a single robust
partitioning [9]. In general, CC algorithms consist of two
stages:

1) Generate a set of base partitions using single clustering
algorithms (e.g., k-means, Spectral Clustering, etc.)

2) Combine the base partitions using a consensus function
to obtain a final partition.

Traditionally, the two stages are independent of each other. The
consensus function does not access the original features of the
data set to find the optimal combination of base partitions.

During the design of the consensus function the goal is to
combine a set Π of |Π| partitions πi into one final clustering
πcc, such that πcc agrees as much as possible with the base
partitions. In their framework, [9] suggested to use the average
pairwise normalized mutual information (ANMI) between the
CC and the base clusterings as an objective function to
measure the agreement:

πcc = argmaxπ̄

|Π|∑

i=1

NMI(πi, π̄) (1)

Using the normalized mutual information (NMI) has the
benefit that it is invariant to the permutation and absolute
values of cluster labels and allows for a different number of
clusters ki in each partition πi. Further, the NMI is symmetric
and is 1 if two clusterings match perfectly and 0 if they are
independent of each other.

Instead of the need to design a consensus function to
optimize Eq. 1 our DECCS algorithm learns a (non-linear)
consensus function to learn the consensus representation as
we explain in the following.

III. OBJECTIVE FUNCTION FOR CONSENSUS
REPRESENTATION LEARNING

For our novel problem setting, we use an encoder encΘ that
maps a data point x ∈ RD to a typically lower-dimensional
embedded vector z ∈ Rd, where Θ are the learnable param-
eters of the encoder. Then, let X be an N × D dimensional
input data matrix and Z = encΘ(X) be an N ×d dimensional
embedded data matrix with d < D. Further, let E be a set of
heterogeneous clustering algorithms with potentially different
number of clusters ki, where each ith member ei produces
a clustering result πi = ei(Z). We define the consensus
representation in the following.

Definition 1 (Consensus representation Zcr). Let Θ, encΘ, X,
Z, and E be defined as above. The consensus representation
Zcr maximizes the following objective function:

fΘ = c

|E|∑

i=1

|E|∑

j>i

NMI(ei(encΘ(X)), ej(encΘ(X))), (2)

with Zcr := encΘcr
(X), where encΘcr

is the consensus
representation function and c is a normalization constant
c = 2

|E|2−|E| for the equation to sum to one.

The consensus representation maximizes the agreement of
all partitions with each other, where the agreement is measured
using the pairwise NMI [9]. The optimal encoder parameters
for the consensus representation Zcr are then learned with

Θcr = argmaxΘfΘ. (3)

Note that Eq. 2 allows for degenerate solutions, like setting
Zcr to a constant if encΘ is non-linear. To avoid degenerate
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solutions in practice we include regularizers in the objective,
like enforcing the invertibility of Zcr back to X by using
the AE reconstruction loss. In the following, we introduce our
DECCS method and illustrate how it approaches the consensus
representation learning problem.

IV. METHOD - DECCS

We motivate our consensus representation learning approach
using the observation that most clustering methods are able to
detect compact and well-separated clusters in low-dimensional
spaces. DECCS uses the cluster information from all ensemble
members to learn such a simplified representation. Decreasing
the ambiguity of the representation during training will in-
crease the similarity of the clusterings that ensemble members
will produce, which subsequently increases the pairwise NMI
(Eq. 2) of clustering results. DECCS works by alternating
between representation and clustering update steps until an
agreement is reached through the consensus representation. In
the following, we explain our approach in more detail.

A. Overview

We use a (non-linear) autoencoder (AE) to learn enc by re-
constructing the original input data x from z using the decoder
dec resulting in x̂ := dec(enc(x)).2 The AE reconstruction x̂
is learned by minimizing a reconstruction loss Lrec = ∥x−x̂∥,
e.g., using the mean squared error. Given the AE, our DECCS
algorithm consists of three main steps that we explain in the
following sections. First, we illustrate how we generate a set
of base partitions by applying the cluster ensemble to a sub-
sample of the embedding in Section IV-B. Second, we show
how to approximate each partition with a classifier to label
the remaining data points in Section IV-C. Third, we state
our consensus objective in Section IV-D and in Section IV-E,
we show how the consensus representation is updated. The
algorithm is presented in Section IV-F.

B. Generating base partitions

At the beginning of each round t of our algorithm, we draw
a small random sample Xt of size n < N from X, because
some clustering algorithms are impractical to be applied to
large data sets and re-sampling can make the CC more robust
[17]. Next, we embed the sample using encΘ(Xt) = Zt and
generate a set of base partitions Πt by applying all ensemble
members to the embedding πi = ei(Zt). The sampling
procedure and the low-dimensional embedded space allow
us to use more run-time and memory expensive algorithms,
such as spectral clustering, in our ensembles. Further, using
the sampling and heterogeneous ensembles, we can achieve a
sufficiently diverse set of base partitions Πt.

C. Approximating base partitions

Since we only have cluster labels for n < N data points
due to the random sampling, but require cluster labels for all
N data points, we use a classifier to approximate the clustering

2We reuse enc here, whether it is vector or matrix-valued should be clear
from the context.

for the remaining N−n points. We approximate the set of base
partitions Πt using a set of classifiers Gt, where classifier gi
is trained to predict the corresponding clustering πi. We train
each classifier by minimizing the cross-entropy loss of cluster
labels πi and its prediction, i.e.,

LCE =

|Πt|∑

i=1

Li
CE = − 1

n

n∑

j=1

ki∑

l=1

I[l = πi,j ] log gi(zj), (4)

where πi,j is the cluster label corresponding to the jth data
point and I is the indicator function. While in principle one
can use any classifier for gi we chose linear classifiers with the
Softmax function as output, i.e., gi(x) = softmax(Wix+bi)
with Wi and bi as weights and bias terms respectively. The
linear classifiers can be trained with little overhead, having
only d · ki + ki trainable parameters. Updating the linear
classifiers together with the non-linear encoder allows us then
to approximate non-linear clusterings as well.

D. Consensus Objective

Optimizing Eq. 2 from Definition 1 directly is not possible,
because the cluster ensemble members are not differentiable.
Thus, we learn a low-dimensional representation in which all
clusters are spherical, dense, and well separated, such that
the ensemble members trivially agree on one partition. To
transform non-spherical-shaped clusters into spherical clusters
we ”move” cluster points closer to their cluster representatives.
We choose the mean center of a cluster as the representative
because it is stable across update steps, but other choices like
the median are also possible. In the following, we use the
terms representative and center interchangeably.

Let Cj
πi

be the set of data points in the jth cluster of
partition πi, then we can calculate its center µj using µj =

1

|Cj
πi

|
∑

x∈Cj
πi
encΘ(x), and subsequently can construct the

ki × d matrix Mi containing ki centers µj as row vectors.
Next, we define our differentiable consensus objective as

Lcons =

|Πt|∑

i=1

Li
cons =

|Πt|∑

i=1

∥AiMi − encΘ(Xt)∥2F (5)

=

|Πt|∑

i=1

ki∑

l=1

∑

x∈Cl
πi

∥µl − encΘ(x)∥22,

where Ai is the n × ki one hot encoded cluster assignment
matrix of partition πi, ∥ · ∥22 the squared Euclidean norm, and
∥ · ∥2F the squared Frobenius norm. Here Mi and Ai are
fixed, so the encoder encΘ has to learn parameters Θ that
map embedded data points z = encΘ(x) as close as possible
to their assigned centers across all partitions. Note, that data
points that are close to similar centers across partitions will
receive a higher gradient update due to the summation and
are thus gathering faster than data points that have conflicting
assignments. The centers alone can not capture complex
cluster structures properly, which is why we include the cross-
entropy loss (Eq. 4) in our objective, as we explain in the next
Section.
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(a) Original (b) LCE (c) Lcons (d) LCE + Lcons

Fig. 4. Example of how optimizing LCE together with Lcons is able to enhance
the representation even if cluster centers overlap. (a) A data set with two
clusters (red and blue circle) that have the same centers (red dot and blue
cross). (b) Optimizing DECCS only with LCE learns a representation in which
both clusters are separated by the decision boundary (dashed black line), but
cluster shapes are distorted. (c) Only using Lcons merges both clusters. (d)
Optimizing LCE together with Lcons separates the clusters and transforms
them from circles to spheres, a representation that can be easily clustered.

E. Updating consensus representation

Putting everything together the objective of our DECCS
algorithm is

L =

|Πt|∑

i

λi(Li
CE + Li

cons) + λrecLrec, (6)

where λi = 1
|Πt|−1

∑|Πt|
j=1 NMI(πi, πj) is a weighting pa-

rameter based on the agreement of partition πi with all
other partitions measured as average pairwise NMI to exclude
random partitions and downscale outlier partitions. We choose
the commonly used AE reconstruction loss Lrec as data de-
pendent regularizer to avoid degenerate solutions by keeping
Z approximately invertible. The hyperparameter λrec weights
the importance of Lrec.

The cross-entropy loss Li
CE of each classifier is included

to make sure that the updated representation is still predictive
for each partition, e.g., by avoiding the merging of clusters if
centers of different clusters are the same, as illustrated in Fig.
4. Additionally, we show in the Appendix in Fig. 9 that this
still works even if half of the ensemble members are no better
than chance.

Eq. 6 can be optimized using stochastic gradient descent for
a fixed amount of update steps. Once the training has stopped,
our algorithm starts again with a new round by applying the
clustering algorithms, which will adjust their clustering results
to the updated embedding. Then it again pretrains classifiers to
approximate them and minimizes L. These steps are repeated
for several rounds until a stable agreement is achieved or
a maximum number of rounds T has been reached. In the
following section, we explain our algorithm in more detail.

F. Algorithm

Given a data set X, the pretrained encoder encΘ, and a
parameterized ensemble of clustering methods E , we learn a
consensus representation Zcr and subsequently a consensus
clustering πcc with our DECCS algorithm in the following
way. We encode the input data using encΘ, generate the
base partitions by applying cluster ensemble members on Zt,
approximate the base partitions using classifiers gi and update
the representation by minimizing L. We repeat these steps

Algorithm 1: DECCS
Param : Agreement function a(·), agreement threshold τ ,

subsample size n, regularization weight λrec,
rampup function w(·), maximum number of rounds
T , number of mini-batch training iterations ITER

Input : data set X
initial representation function encΘ
ensemble of clustering algorithms E

Output: Estimated consensus representation Ẑcr and
corresponding consensus clustering π̂cc

1 t = 0;
2 while t ≤ T do
3 draw sample Xt of size n from X and create

corresponding embedding Zt = encΘ(Xt);
// Generate new base partitions

4 generate new empty list for cluster partitions Πt;
5 foreach ensemble member ei ∈ E do
6 insert cluster prediction πi = ei(Zt) into Πt;

// Approximate base partitions
7 initialize list of classifiers Gt;
8 foreach cluster prediction πi ∈ Πt do
9 pretrain classifier gi by minimizing

Li
CE(gi(Zt), πi);

10 insert pretrained classifier gi into Gt;
// Stop if stable agreement or T is

reached
11 if (t > 0) ∧ ((∥a(Πt)− a(Πt−1)∥1 < τ) ∨ (t == T ))

then
12 Ẑcr := encΘ(X), π̂cc := g0(Ẑcr);
13 break;
14 else

// Update consensus representation
15 while j < ITER do
16 foreach mini-batch B ∈ X do
17 calculate for B loss L:
18

∑|Πt|
i λi(Li

CE + w(t)Li
cons) + λrecLrec;

19 update encΘ and Gt using L;
20 j = j + 1;
21 t = t+ 1;
22 return Ẑcr , π̂cc;

for several rounds until a stable agreement is achieved or
we reached a maximum number of rounds T . As agreement
function a(Πt) we use the average pairwise NMI between all
clusterings in the set of partitions Πt. We measure the stability
of the agreement by calculating ∥a(Πt) − a(Πt−1)∥1 < τ ,
where τ is the cluster agreement threshold, a user-specified
parameter, and ∥ · ∥1 is the absolute distance between the
agreement of two subsequent sets of partitions. After the
algorithm stops, it returns the estimated consensus representa-
tion Ẑcr and it’s corresponding estimated consensus clustering
π̂cc. The consensus clustering π̂cc is obtained by applying a
clustering algorithm from the ensemble, e.g., k-means with
the desired k to Ẑcr. If the number of clusters is the same
in all ensemble members (ki = kj ,∀ei, ej ∈ E), we choose
for π̂cc just the result of one of the ensemble members. The
pseudocode of our algorithm is depicted in Algorithm 1. In
Fig. 5, we have a visual illustration of one round of our
DECCS algorithm applied to a synthetic data set, and Fig.
6 shows its optimization over several rounds.
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Fig. 5. Visualisation of one round of DECCS. (1) The encoder is used to embed data points X. (2) Clustering results are generated by applying ensemble
members E = {KM, . . . , SC} to Z. (3) Classifiers gi are trained to predict the corresponding cluster labels πi from Z. (4) Z is updated via minimizing L.

Fig. 6. Consensus representation learning with DECCS over several rounds
for the synthetic data set and E = {KM, SC,AGG,GMM}. Each plot shows
the classification boundaries for each classifier (Clf.) trained on the cluster
partitions. Over several rounds the clusters get better separated and more
compact, leading to the same clustering for all ensemble members.

We use three heuristics for the optimization of DECCS.
First, to speed up convergence we include the predicted
cluster labels of the N − n unclustered data points for each
classifier gi during the computation of Li

cons. These predictions
are updated during each mini-batch iteration for unclustered
data points in the mini-batch B. Second, to account for the
classifiers’ uncertainty we weight each distance computation
in Li

cons with αi,l = gi,l(encΘ(x)), which is the lth entry
of the prediction probability vector of classifier gi. Third, to
enforce the consensus over time t, we increase the weight
of the consensus loss until a maximum weight λcons is
reached. We use the sigmoid schedule as rampup function
w, like [18], to increase the weight w(t) from 0 to λcons

over time. In total, our algorithm needs the following user-
specified parameters, an agreement threshold τ that indicates
how small the agreement gap between two subsequent sets of

partitions should be. The data sampling size n, which should
be chosen w.r.t. computational constraints and demands of
clustering algorithms to have a sufficient number of samples.
The maximum consensus weight λcons is a hyperparameter
that together with the regularization weight λrec trades-off
the confidence in the chosen ensemble with the structure
of the underlying data. The maximum number of rounds
T and the maximum number of mini-batch iterations ITER
for the consensus representation update can be set based
on computational constraints. We speed up the training of
classifiers and encoders using early stopping, a heuristic that
stops training once the loss on a held-out evaluation set starts
to increase due to overfitting.

V. RELATED WORK

A. Consensus Clustering

Based on the consensus function (CF) consensus clustering
methods can be broadly categorized into median partition-
and object co-occurrence based methods. Median partition
methods find a partition that is most similar to all the base
partitions. Object co-occurrence based methods utilize the co-
association (CA) matrix to find the ideal partitioning, where
the entries of this matrix reflect how often every two instances
are partitioned together. Fred et al. [19] introduced Evidence
Accumulation (EAC), a hierarchical clustering algorithm that
uses entries of the CA matrix as a similarity measure that
is used to produce the final clustering. More recently, [20]
extended this idea by proposing Locally Weighted Evidence
Accumulation (LWEA), introducing an entropy-based weight-
ing schema, which makes it more robust to outlier partitions.
Strehl et al. [9], and later Fern et al. [21], utilized the CA
matrix to formulate graph-based algorithms as a consensus
function. Li et al. [22] proposed a more efficient Nonnegative
Matrix Factorization (NMF) based algorithm to factorize the
CA matrix as an alternative.

To generate base partitions for high dimensional data, like
images, a line of research follows the idea of random projec-
tions (RP). Inspired by the Johnson–Lindenstrauss (JS) lemma
[23], [10] introduced with Random Projection Expectation
Minimization (RP+EM) the first RP-based CC algorithm,
where the data is projected onto various lower-dimensional
subspaces using random matrices. The entries of the resulting
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CA matrix are then used for a hierarchical clustering approach.
Similar to this idea, [11] proposed Random Projection Fuzzy
c-Means (RP+FCM), where each subspace is clustered with
a Fuzzy c-Means (FCM) algorithm. Those partitions are then
combined with an agreement function. However, contrary to
DECCS, RP methods are limited to linear transformations.

B. Deep Clustering

Most, current DC methods are designed with only a single
clustering model in mind, e.g., SpectralNet [7] for spectral
clustering, DEC [1], IDEC [24], DCN [25] for k-means like
clustering, VaDe [3] for Gaussian mixture models, or Deep-
ECT [5] for hierarchical clustering or ENRC [26] for non-
redundant clustering, see [27] for an overview. SpectralNet is a
deep extension of spectral clustering for large data and out-of-
sample generalization. DEC minimizes a soft auxiliary target
distribution using the Kullback-Leibler divergence, which is
related to soft k-means [28]. Improved DEC (IDEC) includes
the AE reconstruction loss in the DEC objective to avoid
arbitrary clustering results. In contrast to the soft clustering
objective of DEC, the DCN algorithm uses hard cluster assign-
ments together with an alternating optimization scheme. It al-
ternates between k-means clustering and representation update
to achieve a k-means friendly embedding. VaDE combines a
Gaussian mixture model prior with a variational autoencoder
(VAE) [29] to learn a deep generative clustering. DeepECT [5]
introduced a deep embedded cluster tree to learn a hierarchical
embedding.

The ConCURL [13] algorithm leverages image augmenta-
tion and RPs to learn a cluster ensemble of Softmax pre-
dictions to improve the overall clustering performance. A
difference between their approach and ours is that they are
limited to data that can be augmented, e.g., images or text.
Further, they create a k-means like ensemble by using the
Softmax, see [30] for the connection between the Softmax and
k-means. In contrast to that, our DECCS algorithm can be used
with a wide range of existing clustering methods and is not
limited to k-means. Liu et al. [14] proposed the IEC algorithm
which embeds multiple clustering results with a marginalized
Denoising AE [31] and clusters the learned embedding with
k-means, without considering the original data. Tao et al. [15]
extended the idea of [14] and proposed the AGAE method.
Instead of embedding the clustering results, AGAE uses a
consensus graph constructed from the CA matrix of the base
partitions as an input to a DC method, which together with
the original data produces an enriched embedding. In contrast
to our approach, AGAE does not learn a consensus with
the neural network but uses initial clusterings to construct
a consensus graph as input for their DC algorithm, without
updating the graph during training. Importantly and in contrast
to ConCURL [13] and DECCS, both IEC and AGAE are not
jointly updating the consensus clusterings and representation,
a key feature of DC [27] to improve cluster performance.

VI. EXPERIMENTS

We evaluate our DECCS algorithm with respect to several
aspects. In Section VI-A, we evaluate DECCS w.r.t. its most
important hyperparameters for MNIST [32] as it is usually
done in DC [1], [3], [24], [25] and show that our objective
increases the agreement and cluster performance for all en-
semble members across data sets. Additionally, we perform an
ablation study across data sets. In Section VI-B, we compare
DECCS to several CC and DC methods.
Evaluation Metrics: We evaluate the performance using
normalized mutual information (NMI) [33] and adjusted rand
index (ARI) [16]. Both range between 0 and 1, where 0 indi-
cates no match and 1 a perfect match with the ground-truth.
We evaluate the agreement within an ensemble by calculating
the average pairwise NMI [9] between all clusterings.
Data sets: The synthetic data set (SYNTH) consists of four
clusters and is depicted in Fig. 1a. The real-world data
sets consist of commonly used DC image data sets like
MNIST, Fashion-MNIST (FMNIST) [34], Kuzushiji-MNIST
(KMNIST) [35], and USPS [36] and three UCI [37] data
sets PENDIGITS, HAR and MICE. We provide a detailed
description of the data sets in Appendix A. All data sets are
preprocessed using a z-transformation.
Experimental Setup: For all data sets that have more than
2,000 data points, we use a feed-forward AE architecture with
layers D-500-500-2000-10 for the encoder and a correspond-
ing mirrored decoder, which is the same setting as used in [1].
For the MICE and SYNTH data sets, we have used smaller
networks, with D-256-128-64 and D-20-20-2 for the encoders
and mirrored decoders respectively. We use these architectures
for DECCS, DEC, IDEC, DCN, and VaDE. For SpectralNet3

and ConCURL4, we used the settings that are available in
their public implementations. IEC and AGAE have no publicly
available code, which is why we only show the NMI results
reported in their papers5.

For hyperparameters that are specific to DECCS, we set
λcons to 0.1 for the image data sets and to 10.0 for the UCI
and SYNTH data sets, where the higher weight leads to better
results for all data sets. The sampling size n is set to 0.08 ·N
for data sets with N > 11,000 and to 0.5 ·N for the others.
We let our algorithm run for T = 10 rounds and report the
result with the highest agreement between ensemble members,
thus not needing to specify τ . We train the classifiers and
encoder of DECCS with mini-batch SGD and momentum [38]
set to 0.9 for all data sets and |B| = 256. The classifiers are
pretrained with a learning rate of 0.01 and the representation
updates are done with a learning rate of 0.001, which is
reduced by a factor of 0.9 after each round t. We set the
number of maximum mini-batch iterations to ITER = 20,000
for all data sets. We used the early stopping heuristic during
the classifier pretraining and consensus representation learning

3https://github.com/KlugerLab/SpectralNet
4https://github.com/JayanthRR/ConCURL NCE
5Symbol † indicates results are taken from [14] and ‡ from [15]
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TABLE I
ABLATION STUDY FOR COMBINATIONS OF LOSS TERMS OF DECCS. BEST RESULTS ARE MARKED AS BOLD AND RUNNER-UP IS UNDERLINED. ALL

RESULTS ARE GIVEN IN NMI AS MEAN ± STD OVER 10 RUNS.

Lcons LCE Lrec SYNTH MICE PENDIGITS HAR MNIST FMNIST KMNIST USPS

X 0.17± 0.21 0.44± 0.05 0.12± 0.07 0.01± 0.01 0.45± 0.03 0.42± 0.02 0.27± 0.01 0.52± 0.04
X 0.79± 0.08 0.42± 0.02 0.72± 0.02 0.68± 0.04 0.81± 0.04 0.58± 0.01 0.54± 0.01 0.77± 0.01

X 0.53± 0.03 0.43± 0.02 0.68± 0.01 0.55± 0.05 0.75± 0.01 0.61± 0.01 0.49± 0.01 0.67± 0.02

X X 0.41± 0.02 0.50± 0.04 0.74± 0.02 0.60± 0.03 0.79± 0.01 0.64± 0.01 0.52± 0.02 0.71± 0.01
X X 0.82± 0.09 0.43± 0.04 0.73± 0.02 0.65± 0.06 0.83± 0.02 0.63± 0.02 0.56± 0.01 0.79± 0.01

X X 0.99 ± 0.01 0.55± 0.03 0.82 ± 0.02 0.73± 0.03 0.87± 0.02 0.64± 0.01 0.60± 0.01 0.84± 0.02

X X X 0.99 ± 0.02 0.57 ± 0.03 0.82 ± 0.02 0.75 ± 0.02 0.88 ± 0.02 0.65 ± 0.01 0.61 ± 0.01 0.85 ± 0.01

Fig. 7. DECCS parameter analysis for MNIST. (Left) Average agreement
(thick lines) and 95% confidence intervals for ten runs of DECCS show that in-
creasing the consensus weight λcons leads to an increased agreement between
ensemble members during training. (Right) Average cluster performance for
different values of λcons and λrec over ten runs.

and decreased the learning rate by 0.9 when a loss plateau was
reached.

DEC, IDEC, and DCN are learning k-means friendly em-
beddings, SpectralNet extends spectral clustering, DeepECT
learns hierarchical embeddings, and VaDE is a deep version
of Gaussian mixture models. We, therefore, choose a het-
erogeneous ensemble of k-means (KM), spectral clustering
(SC), agglomerative clustering (AGG), and Gaussian mixture
models (GMM), based on the correspondence of the chosen
DC methods, i.e., E = {KM,SC,AGG,GMM}.

For the CC approaches, we compare against eight methods
(six classical methods, two utilizing RPs). We evaluate the CC
methods on the raw and the AE embedded data sets using the
same ensemble E as DECCS. For all methods, we assume the
number of clusters k to be known. We provide hyperparameter
settings and further details for all methods in Appendix B. We
uploaded the used data sets, our code and further results at
https://gitlab.cs.univie.ac.at/lukas/deccs.

A. Algorithm Evaluation

Ablation study: We evaluate the impact of the individual
components of DECCS’ loss function in Table I. We see that
the combination of consensus loss (Lcons) and cross-entropy
loss (LCE), with and without reconstruction loss (Lrec) perform
best (last two rows) for all data sets. Using only Lcons without
LCE leads to worse results because the classifiers are not
preventing the merging of clusters (first row), as we have
discussed in Fig. 4.
Impact of ensemble size: We evaluated the impact of the
ensemble size by increasing its original size |E| = 4 by

Fig. 8. Average agreement (thick lines) and 95% confidence intervals for ten
runs of DECCS show the increase in agreement between ensemble members
over training across data sets on the left side and the corresponding increase
in cluster performance of DECCS on the right side.

doubling and tripling each member in the ensemble E , leading
to |E×2| = 8 and |E×3| = 16. We evaluated the results by
averaging the cluster performance of DECCS over ten runs on
MNIST, where we achieved the same average NMI of 0.87 for
each ensemble. We believe that we cannot see a benefit here
because we use strong clustering methods, which do not add
more diversity to the ensemble.
Impact of sampling size n: To evaluate the effect of the sam-
pling size n, we varied it for ratios {0.02, 0.04, 0.06, 0.08} of
MNIST (N = 70,000) and averaged the performance over ten
runs. DECCS achieved the same performance (NMI = 0.87)
for all ratios. We chose 0.08 for the remaining experiments as
this was also stable for the other large data sets.
Impact of λcons and λrec: To demonstrate that the objective
of DECCS increases the agreement between cluster ensemble
members, we vary the consensus weight λcons for values in
{0.1, 1.0, 10.0, 100.0} for the MNIST data set while keeping
λrec = 0. We see on the left side of Fig. 7 that a higher value
for λcons leads to a corresponding higher agreement. This
is expected because we enforce the consensus with a higher
weight. The right side of Fig. 7 shows the corresponding aver-
age cluster performance for λrec ∈ {0.0,1.0}. The trend with
and without the reconstruction loss is similarly downwards
trending for very high values because a very highly weighted
consensus loss disregards the underlying structure of the data.
Increase of agreement and NMI during training: On the left
side of Fig. 8, we show how DECCS increases the ensemble
agreement over training for three UCI data sets respectively,
and for MNIST as the behavior for the image data sets was
very similar. This experiment gives additional evidence that
our algorithm can effectively maximize the pairwise NMI
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TABLE II
CLUSTER PERFORMANCE RESULTS MEASURED IN NMI. CORRESPONDING ARI VALUES ARE SHOWN IN TABLEIII.

Method SYNTH MICE PENDIGITS HAR MNIST FMNIST KMNIST USPS

DECCS 0.99 ± 0.02 0.57 ± 0.03 0.82 ± 0.02 0.75 ± 0.02 0.88± 0.02 0.65 ± 0.01 0.61 ± 0.01 0.85 ± 0.01

CSPA [9] 0.75± 0.00 0.35± 0.02 0.73± 0.02 0.49± 0.02 0.59± 0.04 0.53± 0.03 0.46± 0.02 0.65± 0.02
HGPA [9] 0.75± 0.00 0.37± 0.01 0.61± 0.05 0.49± 0.04 0.47± 0.02 0.46± 0.02 0.35± 0.02 0.56± 0.03
MCLA [9] 0.57± 0.08 0.34± 0.01 0.73± 0.04 0.59± 0.03 0.55± 0.05 0.53± 0.02 0.49± 0.02 0.60± 0.08
HBGF [21] 0.62± 0.02 0.33± 0.03 0.72± 0.03 0.48± 0.03 0.58± 0.03 0.51± 0.04 0.46± 0.02 0.64± 0.01
NMF [22] 0.46± 0.05 0.34± 0.01 0.75± 0.03 0.59± 0.03 0.59± 0.03 0.52± 0.03 0.49± 0.03 0.72± 0.03
LWEA [20] 0.60± 0.02 0.37± 0.03 0.76± 0.02 0.59± 0.00 0.62± 0.03 0.56± 0.01 0.51± 0.01 0.72± 0.01
RP+EM [10] 0.61± 0.00 0.46± 0.04 0.67± 0.05 0.46± 0.06 0.48± 0.05 0.50± 0.05 0.44± 0.04 0.64± 0.04
RP+FCM [11] 0.64± 0.05 0.28± 0.08 0.63± 0.01 0.51± 0.01 0.22± 0.02 0.40± 0.01 0.25± 0.01 0.38± 0.02

AE+CSPA [9] 0.76± 0.05 0.41± 0.03 0.73± 0.02 0.53± 0.01 0.84± 0.02 0.59± 0.02 0.54± 0.02 0.74± 0.03
AE+HGPA [9] 0.75± 0.00 0.41± 0.03 0.64± 0.07 0.49± 0.05 0.61± 0.02 0.50± 0.03 0.43± 0.03 0.60± 0.02
AE+MCLA [9] 0.53± 0.11 0.43± 0.02 0.73± 0.05 0.59± 0.06 0.83± 0.01 0.62± 0.03 0.59± 0.02 0.75± 0.06
AE+HBGF [21] 0.65± 0.08 0.40± 0.03 0.71± 0.04 0.53± 0.03 0.83± 0.02 0.58± 0.02 0.54± 0.02 0.72± 0.02
AE+NMF [22] 0.50± 0.13 0.44± 0.04 0.76± 0.04 0.60± 0.01 0.82± 0.04 0.61± 0.02 0.59± 0.03 0.82± 0.04
AE+LWEA [20] 0.61± 0.04 0.46± 0.04 0.75± 0.03 0.58± 0.06 0.86± 0.02 0.65 ± 0.01 0.61 ± 0.03 0.83± 0.03
AE+RP+EM [10] 0.62± 0.03 0.51± 0.04 0.67± 0.04 0.48± 0.04 0.77± 0.04 0.59± 0.02 0.58± 0.03 0.65± 0.03
AE+RP+FCM [11] 0.63± 0.10 0.41± 0.03 0.54± 0.05 0.48± 0.03 0.45± 0.07 0.49± 0.03 0.31± 0.04 0.37± 0.03

SpectralNet [7] 0.72± 0.06 0.27± 0.06 0.82 ± 0.04 0.61± 0.06 0.92 ± 0.00 0.64± 0.01 0.61 ± 0.02 0.83± 0.02
DEC [1] 0.65± 0.03 0.49± 0.02 0.75± 0.02 0.54± 0.09 0.84± 0.01 0.60± 0.01 0.52± 0.01 0.80± 0.01
IDEC [24] 0.64± 0.03 0.50± 0.03 0.76± 0.02 0.53± 0.09 0.85± 0.02 0.62± 0.02 0.55± 0.03 0.81± 0.01
DCN [25] 0.59± 0.08 0.48± 0.04 0.75± 0.02 0.51± 0.08 0.84± 0.03 0.62± 0.02 0.54± 0.04 0.78± 0.04
VaDE [29] 0.62± 0.10 0.45± 0.06 0.75± 0.02 0.54± 0.09 0.83± 0.03 0.65 ± 0.01 0.56± 0.01 0.79± 0.03
DeepECT [5] 0.61± 0.10 0.47± 0.06 0.74± 0.02 0.56± 0.10 0.82± 0.03 0.62± 0.03 0.52± 0.04 0.76± 0.06
ConCURL [13] n.a. n.a. n.a. n.a. 0.60± 0.04 0.48± 0.02 0.30± 0.03 0.49± 0.02
IEC [14] - - 0.72‡ - 0.54† - - 0.64†

AGAE [15] - - 0.74‡ - - - - 0.74‡

between ensemble members (Eq. 2) by learning a consensus
representation. The agreement is stabilizing for all data sets at
round 8, except for MICE which fluctuates at a high agreement
level due to the smaller data set size. The right side of Fig. 8
shows the corresponding increase in cluster performance. We
see that DECCS reaches stable cluster performance already
after round five for all data sets.

B. Cluster performance

In Table II, we show the clustering results of all methods
w.r.t. NMI over ten runs. We see in Table II that for the
SYNTH, MICE and HAR data set DECCS clearly outperforms
the next best method. For the PENDIGITS data set, we
perform similar to SpectralNet in NMI and outperform it w.r.t.
ARI (0.73 vs 0.67). For the MICE data set, we see that all CC
methods improve when applied to the AE embedded space,
but DECCS is still outperforming them, showing that updating
the representation can increase the cluster performance even
further. The highest improvement for the real-world data sets
can be seen for the HAR data set, where we outperform the
next best clustering method (NMI=0.61) by 0.14. The results
on the image data sets show that DECCS outperforms all
comparison methods on USPS. DECCS performs similar to the
DC methods for MNIST, FMNIST, and KMNIST. For MNIST,
we are only outperformed by SpectralNet. Interestingly, the
CC algorithms that are applied to the embedded space for
the image data sets serve as strong baselines, e.g., reaching
0.65 and 0.61 NMI for FMNIST and KMNIST respectively.
DECCS outperforms the deep consensus clustering method

ConCURL for all image data sets. ConCURL heavily relies on
image augmentation and for small, greyscale images there are
fewer augmentation invariances available, which might be the
reason for ConCurl’s poor performance. Further, ConCURL
cannot be applied to non-augmentable data, which is why these
results are marked as not applicable (n.a.).

VII. DISCUSSION AND CONCLUSION

Noise and outlier points: Currently, we have not considered
noise-aware clustering methods, like DBSCAN [39], in our
ensembles. DECCS could be extended to include methods like
DBSCAN, e.g., by excluding noise and outlier points during
the representation update, such that a consensus representation
is learned only for inlier clusters.
Consensus representation learning: With DECCS we have
introduced the first algorithm to learn consensus represen-
tations for CC. In future work, we would like to explore
alternative approaches for optimizing the proposed objective
in Eq. 2, which could lead to novel approaches to CC.

We have proposed the idea of consensus representations, a
novel way of learning a CC by maximizing the agreement
between ensemble members using representation learning.
Additionally, we have introduced the DECCS algorithm, to
the best of our knowledge, it is the first DC algorithm that
can use multiple heterogeneous clustering methods to jointly
improve the learned representation and clustering results.
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sensus clustering with unsupervised representation learning,” in IJCNN.
IEEE, 2021, pp. 1–9.

[14] H. Liu, M. Shao, S. Li, and Y. Fu, “Infinite ensemble for image
clustering,” in KDD. ACM, 2016, pp. 1745–1754.

[15] Z. Tao, H. Liu, J. Li, Z. Wang, and Y. Fu, “Adversarial graph embedding
for ensemble clustering,” in IJCAI. ijcai.org, 2019, pp. 3562–3568.

[16] L. Hubert and P. Arabie, “Comparing partitions,” Journal of classifica-
tion, vol. 2, no. 1, pp. 193–218, 1985.

[17] S. Monti, P. Tamayo, J. P. Mesirov, and T. R. Golub, “Consensus clus-
tering: A resampling-based method for class discovery and visualization
of gene expression microarray data,” Mach. Learn., vol. 52, no. 1-2, pp.
91–118, 2003.

[18] A. Tarvainen and H. Valpola, “Mean teachers are better role mod-
els: Weight-averaged consistency targets improve semi-supervised deep
learning results,” in NIPS, 2017, pp. 1195–1204.

[19] A. L. Fred and A. K. Jain, “Combining multiple clusterings using
evidence accumulation,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 27, 2005.

[20] D. Huang, C.-D. Wang, and J.-H. Lai, “Locally Weighted Ensemble
Clustering,” IEEE Transactions on Cybernetics, pp. 1460–1473, 2018.

[21] X. Z. Fern and C. E. Brodley, “Solving cluster ensemble problems by
bipartite graph partitioning,” in Twenty-first international conference on
Machine learning - ICML ’04. ACM Press, 2004, p. 36.

[22] T. Li, C. Ding, and M. I. Jordan, “Solving Consensus and Semi-
supervised Clustering Problems Using Nonnegative Matrix Factoriza-
tion,” in Seventh IEEE International Conference on Data Mining (ICDM
2007). IEEE, 2007, pp. 577–582.

[23] W. B. Johnson and J. Lindenstrauss, “Extensions of Lipschitz mappings
into a Hilbert space,” in Contemporary Mathematics, 1984.

[24] X. Guo, L. Gao, X. Liu, and J. Yin, “Improved deep embedded clustering
with local structure preservation,” in IJCAI. ijcai.org, 2017, pp. 1753–
1759.

[25] B. Yang, X. Fu, N. D. Sidiropoulos, and M. Hong, “Towards k-means-
friendly spaces: Simultaneous deep learning and clustering,” in ICML,
ser. Proceedings of Machine Learning Research, vol. 70. PMLR, 2017,
pp. 3861–3870.

[26] L. Miklautz, D. Mautz, M. C. Altinigneli, C. Böhm, and C. Plant, “Deep
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APPENDIX

A. DATA SETS

Mice Protein Expression (MICE) [37]: Data set consisting
of 552 vectors with 77 dimensions and 8 ground-truth clusters.
Each vector represents the expression levels of 77 proteins of
the mice’s cortex.
Pendigits [37]: Data set consisting of 10,992 vectors with 16
dimensions, representing 8 coordinates. The coordinates were
gathered during the writing of digits (0 to 9) on a tablet.
Human Activity Recognition (HAR) [37]: Data set con-
sisting of 10,299 vectors with 561 dimensions with records
from smartphones and smartwatches. The data set contains
six clusters corresponding to different human activities.
MNIST [32]: Data set consisting of 70,000 hand-written digits
(0 to 9) with a size of 28× 28 pixels.
FMNIST [34]: Data set consisting of 70,000 goods from
the Zalando online store. Each sample belongs to one of 10
products and has a size of 28× 28 pixels.
KMNIST [35]: Data set consisting of 70,000 Kanji characters
(10 different characters) with a size of 28× 28 pixels.
USPS [36]: Data set consisting of 9,298 hand-written digits
(0 to 9) with a size of 16× 16 pixels.

Fig. 9. Consensus representation (CR) learned with DECCS for two not lin-
early separable clusters. Upper row: Initial clustering results on an autoencoder
(AE) embedding. Two ensemble members (SC, AGG) can perfectly discover
the ground-truth clustering, but the two others (KM, GMM) do not perform
better than chance. Lower row: Clustering results on a CR learned with
DECCS leads to the same, perfect performance for all clustering algorithms

B. EXPERIMENT SETUP

Hardware setup: We trained all DC algorithms on a machine
with a single NVIDIA RTX 2080TI GPU (11GB onboard
memory), 96 GB RAM, and an Intel(R) Xeon(R) Gold 6130
CPU. All other comparison methods were run on the same
machine using only the CPU.
Implementation: We implemented DECCS in PyTorch (https:
//pytorch.org/). Currently, the generation and approximation of
base partitions is done sequentially, but could be further op-
timized using parallelization. One run of DECCS for MNIST
took about one hour, which is in the same order of magnitude
as other DC methods, e.g. DCN needed about 40 minutes.
Parameters of cluster ensemble: For the clustering algo-
rithms in the ensemble E = {KM, SC, AGG, GMM}, we
used the implementations of the sklearn [40] package. For the
real-world data sets, we parameterized them using this setting:

KMeans(n_clusters=k)

SpectralClustering(n_clusters=k,
affinity=’nearest_neighbors’,
n_neighbors=10,
assign_labels=’kmeans’)

AgglomerativeClustering(n_clusters=k,
linkage=’ward’)

GaussianMixture(n_components=k,
covariance_type=’full’,
reg_covar=1e-5)

For the synthetic data sets, we set linkage = ’single’ for
agglomerative clustering.
Consensus Clustering: For the classical methods, we used
the same parameterization as suggested by the authors in
the original papers ( [9], [22], [21], [20]). For the RP-based
methods, we determined the subspace dimension with a grid
search and report the value with the best average NMI over 10
runs. We evaluated the RP algorithms with an ensemble size
of four (size of our ensemble) and 30 (ensemble size used
in [11]) and again picked the run with the highest NMI. The
parameters of the Expectation Maximization (EM) and FCM
algorithms were set according to [10] and [11] respectively.
[11] proposed two versions of their RP-based algorithm, we
run our experiments with both versions and only report the
run with the highest NMI. Aligned with [11], we performed a
grid search for q in [5, 100] for both RP-based methods and
picked the run with the highest NMI. For LWEA, we set the
hyperparameter θ to 0.4, as [20] do for all their experiments.
Except for LWEA, other classical methods are implemented
using the cluster ensemble package.6

Deep Clustering: For the UCI data sets, we determined the
learning rate and other AE parameters, like dropout rate [41],
using a grid search during the AE pretraining taking the
parameters with lowest reconstruction loss. All other AEs were
pretrained with a learning rate of 0.001. All AEs were trained
using early stopping and the learning rate was reduced by 0.5 if
the reconstruction loss reached a plateau. We use for DECCS,
VaDE, DEC, IDEC, and DCN a batch size of |B| = 256. For
VaDE, DEC, IDEC, and DCN, we use a constant learning rate
of 0.0001 for the joint clustering. We train the DC algorithms
for 100,000 mini-batch iterations for all data sets using the
Adam optimizer [42] as was done in the original papers. For
SpectralNet [7], we used for the SYNTH and MICE data set
the same parameters as suggested for small data sets. For the
other data sets (PENDIGITS, HAR, and image data), we used
the same parameters as [7] used for MNIST.
ConCURL [13]: For ConCURL, we used the author’s repos-
itory. For all data sets, we performed ten runs each. In each
run, we trained the algorithm for 300 epochs. To change
the basic architecture as little as possible, we transformed
gray images into three dimensions by copying the gray color
channel. In our experiment, we used PyTorch’s resnet18 with
a hidden MLP of 2048. We chose SGD as the optimizer with a

6https://github.com/827916600/ClusterEnsembles
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TABLE III
CLUSTER PERFORMANCE RESULTS MEASURED IN ARI. BEST RESULTS ARE MARKED AS BOLD AND RUNNER-UP IS UNDERLINED. ALL RESULTS ARE

GIVEN IN ARI AS MEAN ± STD OVER 10 RUNS. DECCS λREC = 1 INDICATES THAT LREC WAS USED, WHILE λREC = 0 ARE THE RESULTS WITHOUT LREC .

Method SYNTH MICE PENDIGITS HAR MNIST FMNIST KMNIST USPS

DECCS (λrec = 1) 0.99± 0.02 0.36 ± 0.04 0.73 ± 0.03 0.65 ± 0.03 0.85± 0.05 0.47± 0.01 0.45 ± 0.01 0.78 ± 0.01
DECCS (λrec = 0) 1.00 ± 0.01 0.33± 0.03 0.72± 0.04 0.62± 0.03 0.85± 0.04 0.47± 0.01 0.44± 0.02 0.77± 0.02

CSPA [9] 0.67± 0.00 0.19± 0.02 0.64± 0.04 0.37± 0.02 0.49± 0.05 0.40± 0.04 0.36± 0.02 0.54± 0.02
HGPA [9] 0.67± 0.00 0.20± 0.01 0.47± 0.08 0.36± 0.05 0.34± 0.03 0.30± 0.03 0.23± 0.03 0.42± 0.04
MCLA [9] 0.43± 0.08 0.17± 0.01 0.61± 0.06 0.46± 0.03 0.42± 0.04 0.36± 0.02 0.35± 0.02 0.52± 0.08
HBGF [21] 0.56± 0.02 0.17± 0.03 0.64± 0.03 0.37± 0.04 0.49± 0.03 0.39± 0.05 0.37± 0.03 0.54± 0.02
NMF [22] 0.37± 0.04 0.19± 0.02 0.63± 0.05 0.46± 0.06 0.47± 0.05 0.37± 0.03 0.37± 0.02 0.59± 0.05
LWEA [20] 0.44± 0.02 0.18± 0.02 0.62± 0.03 0.46± 0.00 0.50± 0.05 0.40± 0.02 0.35± 0.03 0.63± 0.01
RP+EM [10] 0.44± 0.00 0.26± 0.04 0.42± 0.11 0.31± 0.07 0.22± 0.04 0.29± 0.07 0.24± 0.05 0.45± 0.07
RP+FCM [11] 0.53± 0.10 0.15± 0.05 0.47± 0.02 0.32± 0.00 0.12± 0.02 0.25± 0.01 0.14± 0.01 0.20± 0.06

AE+CSPA [9] 0.69± 0.07 0.23± 0.03 0.65± 0.02 0.40± 0.02 0.82± 0.03 0.46± 0.02 0.43± 0.02 0.64± 0.04
AE+HGPA [9] 0.67± 0.01 0.23± 0.02 0.51± 0.08 0.36± 0.05 0.47± 0.04 0.34± 0.04 0.29± 0.03 0.45± 0.03
AE+MCLA [9] 0.42± 0.10 0.23± 0.03 0.62± 0.07 0.43± 0.08 0.78± 0.03 0.46± 0.02 0.45 ± 0.03 0.68± 0.07
AE+HBGF [21] 0.59± 0.10 0.22± 0.03 0.62± 0.05 0.41± 0.03 0.80± 0.03 0.44± 0.02 0.44± 0.02 0.64± 0.03
AE+NMF [22] 0.41± 0.15 0.25± 0.04 0.66± 0.07 0.41± 0.03 0.75± 0.08 0.48 ± 0.03 0.44± 0.05 0.74± 0.09
AE+LWEA [20] 0.45± 0.04 0.25± 0.04 0.62± 0.05 0.41± 0.09 0.81± 0.02 0.47± 0.01 0.45 ± 0.05 0.77± 0.06
AE+RP+EM [10] 0.46± 0.04 0.31± 0.05 0.38± 0.08 0.38± 0.03 0.68± 0.09 0.42± 0.03 0.40± 0.04 0.48± 0.03
AE+RP+FCM [11] 0.54± 0.16 0.22± 0.03 0.37± 0.04 0.35± 0.04 0.29± 0.08 0.30± 0.03 0.18± 0.04 0.21± 0.05

SpectralNet [7] 0.53± 0.08 0.15± 0.04 0.67± 0.08 0.46± 0.09 0.93 ± 0.00 0.47± 0.00 0.42± 0.04 0.67± 0.05
DEC [1] 0.50± 0.03 0.27± 0.03 0.61± 0.04 0.39± 0.11 0.81± 0.02 0.44± 0.02 0.39± 0.01 0.73± 0.01
IDEC [24] 0.49± 0.03 0.29± 0.03 0.62± 0.04 0.40± 0.11 0.82± 0.03 0.46± 0.03 0.41± 0.03 0.74± 0.01
DCN [25] 0.44± 0.08 0.27± 0.04 0.60± 0.04 0.36± 0.11 0.79± 0.06 0.45± 0.03 0.38± 0.05 0.70± 0.07
VaDE [29] 0.49± 0.13 0.25± 0.05 0.61± 0.04 0.38± 0.10 0.78± 0.06 0.48 ± 0.02 0.40± 0.02 0.70± 0.06
DeepECT [5] 0.47± 0.12 0.27± 0.06 0.60± 0.04 0.41± 0.12 0.76± 0.06 0.44± 0.05 0.36± 0.05 0.67± 0.09
ConCURL [13] n.a. n.a. n.a. n.a. 0.48± 0.05 0.34± 0.02 0.20± 0.03 0.33± 0.02

learning rate of 0.015 and set the batch size to 128. The alpha
parameter was set to 0, and the beta and gamma parameters
were set to 1. In the experiment, we set NCE-temp to 0.085
and NCE-k to 4096. For the hyperparameters, we followed
the hyperparameters of CIFAR-10 available in their repository.
For image augmentation, we used random rotations between
-10 and 10 degrees, translations between 0 and 0.1, scaling
between 0.6 and 1.2, and shearing between -10 and 10.
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Abstract Glass beads were among the most common grave goods in the
Early Middle Ages, with an estimated number in the millions.
The color, size, shape and decoration of the beads are diverse.
Accordingly, archaeological classification systems are often sub-
jective, complex and usually limited to one burial field. An
automated, objective, extensible and reproducible classification
system is highly desirable to facilitate the analysis of the archae-
ological artefacts. Using such a system would enable archae-
ologists to get an objective overview of the different types of
glass beads from the early Medieval Ages. From a data mining
perspective this task can be tackled using cluster analysis. As
we want to find multiple clusterings (e.g., color, size, shape and
decoration) from high-dimensional image data, we make use of
deep non-redundant clustering to identify multiple, meaning-
ful clusterings of glass bead images and learn a classification
system in a data-driven way. During the cluster analysis we ad-
dress several challenges associated with the data and as a result
identify high-quality clusterings that show great overlap with
archaeological domain expertise. To the best of our knowledge
this is the first application of non-redundant image clustering
for archaeological data.
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ABSTRACT
Glass beads were among the most common grave goods in the Early
Middle Ages, with an estimated number in the millions. The color,
size, shape and decoration of the beads are diverse. Accordingly,
archaeological classification systems are often subjective, complex
and usually limited to one burial field. An automated, objective,
extensible and reproducible classification system is highly desirable
to facilitate the analysis of the archaeological artefacts. Using such
a system would enable archaeologists to get an objective overview
of the different types of glass beads from the early Medieval Ages.
From a data mining perspective this task can be tackled using clus-
ter analysis. As we want to find multiple clusterings (e.g., color, size,
shape and decoration) from high-dimensional image data, we make
use of deep non-redundant clustering to identify multiple, mean-
ingful clusterings of glass bead images and learn a classification
system in a data-driven way. During the cluster analysis we address
several challenges associated with the data and as a result identify
high-quality clusterings that show great overlap with archaeologi-
cal domain expertise. To the best of our knowledge this is the first
application of non-redundant image clustering for archaeological
data.

CCS CONCEPTS
• Theory of computation → Unsupervised learning and clus-
tering.
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Figure 1: Diverse sample of glass beads varying in color, shape
and decoration. Recorded from a side view and a top view.

1 INTRODUCTION
The field of archaeology is currently going through a phase of
digitalization, with an increasing amount of archaeological data
every year. The growth in data calls for interdisciplinary research
between archaeologist and data scientists. There have already been
successful interdisciplinary collaborations in the restoration of an-
cient texts [2], the rejoining of oracle bones [38] or the analysis
of petroglyphs [40]. In this work, we want to contribute to the
analyzes of glass beads of the early Middle Ages (400-900 AD) using
modern data mining techniques. The largest production areas of
glass beads at that time were in the Middle East. From there, the
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beads reached even the most remote areas of Europe. During that
time glass beads were among the most common grave goods and
their number is estimated to be in the millions [34]. This large
amount of potential data makes it impossible for archaeologists to
analyze it by hand and shows the need for data mining and machine
learning techniques. Another issue is that the glass beads can vary
highly in regards of color, size, shape and decoration. See Figure
1 for such a diverse sample of glass beads.1 The high variety of
different beads leads to the problem of subjectiveness in many of
the used archaeological classification systems, i.e., depending on
the used classification system the same glass bead could be assigned
to different groups. An example is shown in Figure 2, where two
different sources describe the same bead either as speckled [12] or
as confetti2. Both descriptions imply a focus on different attributes.
The adjective speckled would attribute more importance to the dot-
ted pattern, whereas confetti emphasizes both the dotted pattern
and the varying color of each dot.

Figure 2: Example of subjectiveness in existing classification
systems for glass beads. The image shows a glass bead that is
described in the literature either as speckled or as confetti.

We avoid the issue of subjectivity by learning the classification
system directly from the data. Such a classification system has many
benefits. It enables scientists to get an objective overview of the
different types of glass beads from the early Middle Ages and is
applicable to large amounts of data.

We use non-redundant clustering to learn a data-driven clas-
sification system. Non-redundant clustering algorithms can find
multiple clusterings that are mutually non-redundant, i.e., share
as little information as possible, while still preserving important
cluster information [28]. In Figure 3, we show a non-redundant
clustering of almond (a.k.a. melon-seed) glass beads. These can be
clustered according to their colors (black, turquoise or light gray)
or their shapes (leaf-, arrow-, cylindrical-shaped). Both of these
clusterings are equally meaningful. In the context of glass beads,
clusterings according to color, shape, decoration and size can be
expected [32]. The assumption of non-redundant clustering algo-
rithms that different clusterings share almost no information is
consistent with the manufacturing process where, e.g., color and
shape can be varied independently from each other.

We collected and photographed more than 4,500 beads of early
medieval cemeteries in Austria. The beads are mostly made of
glass, but some are also made of other materials. Each object was
photographed once from the side and once from the top, resulting
in more than 9000 images. Examples are shown in Figure 1. We
face several challenges while analyzing these images. The data is
very unbalanced in terms of different attributes, e.g. we have many
1All shown images are resized to the same scale for illustration, if not otherwise
indicated.
2See the entry at the online archaeological data base https://earlymedievaleurope.org/
image.php?i=Confetti.

Figure 3: Example of non-redundant clusterings of almond
(a.k.a.melon-seed) glass beads according to shape and color.

visually simple beads and only few beads with elaborate decorations.
During the recording of the beads, various inaccuracies occur, such
as differing rotations, recording angles and reflections. In addition,
the collected beads themselves contain outliers. For example, we
have instances that are damaged or are not made of glass, but of
rolled metal. Common damages are strong corrosion or broken off
parts. In Appendix B in Figure 13 we show different versions of
barrel glass beads, which are the most common ones in the data.
While they do not have any elaborate decorations, they can still
vary significantly. In Figure 13 we also show some corruptions in
images (4)-(7) , like restoration artifacts, broken parts and corrosion.
These corruptions are also present for other glass bead types.

Our novel pipeline enables us to overcome most of these difficul-
ties and thus provide a high-quality analysis of early medieval glass
beads. The pipeline consist of data selection, representation learn-
ing [3] with deep non-redundant clustering [25] and evaluation of
the results. Overall we present the following contributions:

• First application of non-redundant image clustering for ar-
chaeological data.

• Presentation of a novel and high-quality data set for the data
mining and machine learning community.

• Extension of the deep Embedded Non-Redundant Clustering
(ENRC) algorithm [25] to learn augmentation invariances,
handle multiple views and multiple modalities.

• Step-by-step guideline showing how to apply deep non-
redundant clustering techniques in realistic scenarios with
outliers and absence of ground truth labels.

• Extraction of interesting and high-quality clusters that are
easy to interpret and confirm existing knowledge of experts.

2 OVERVIEW
Before we explain the data and our approach in detail we give a
high level overview in Figure 4. Similar to the KDD process [9] our
pipeline comprises data selection, data preprocessing, representa-
tion learning with deep non-redundant clustering (combined trans-
formation and data mining steps) and the evaluation of the results.
We explain the data selection in Section 3.1, discuss some identified
challenges for mining the data in Section 3.2 and break down our
preprocessing steps in Section 3.3. In Section 4 we introduce some
necessary background before we explain the cluster analysis in Sec-
tion 5. The cluster analysis comprises the autoencoder pretraining
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Figure 4: Our pipeline comprises data selection (gathering and recording of glass beads), data preprocessing (resizing images
and scaling tabular features), representation learning with deep non-redundant clustering and the evaluation of results (model
analysis and interpretation of clusterings).

(Sections 5.1, 5.3) with image augmentations (Section 5.2) for the
deep non-redundant clustering (Sections 5.4 - 5.5). We evaluate our
results in Section 6 with quantitative and qualitative experiments in
Sections 6.2 and 6.3 respectively.Wemake all data, clustering results
and our code available at https://tinyurl.com/cluster-glassbeads.

3 DATA
3.1 Data Selection
We collected 4,669 beads in the region of present-day easternAustria
south of the Danube river. The largest portion comes from the two
cemeteries of Mödling-An der Goldenen Stiege (550 inhumations)
and Vienna-Csokorgasse (720 inhumations). Others were recorded
from various smaller cemeteries, dating from the 4th to the 9th
century AD. We use beads from multiple sites to ensure a regional
and diachronic cross-section of bead forms. Therefore, we collected
the beads from various museums in Austria. Most of them are glass
beads, in rare cases also non-glass beads occur that were used as
pendants. These pendants are quite varied in the material, as it
was common to reuse and recycle objects, e.g. shells, parts of glass
vessels or metal objects. For each glass bead two pictures with a
resolution of 4000 × 4000 pixels were taken; one from the top view
aligned with the hole of the bead and one from a side view that
is orthogonal to the hole, as shown in Figure 1, leading to 9,338
images. Additionally, the weight, length and width of each bead
was measured.

3.2 Challenges
From analyzing the data and the recording process, we identified
the following challenges for mining the data.
Cluster imbalances: The data is very unbalanced in terms of
various aspects. There are many barrel shaped glass beads (shown
in Figure 13), which have a small size and weight. On the left side
of Figure 5 we see that the distribution of the area in cm2 (width
× length) and weight in grams (g) is highly skewed as indicated
by the density plots on each axis. We also see a strong positive
correlation between the area and weight, which makes sense as
almost all beads are made of the same material. The right side of
Figure 5 shows the two smallest and two largest objects, revealing
the diversity of the samples. Additionally, there are many visually

Figure 5: (Left) Scatter plot of size measured as area and
weight of beads. The density plots on each axis indicate that
the data is highly imbalanced, mostly consisting of small and
light beads. (Right) The two smallest beads in the top row
vs. the two largest ones in the bottom row. Here, the images
are not resized to the same scale to show the large relative
difference in size.

Figure 6: Distribution of the main colors in all images as
HEX values, ordered from brighter to darker colors. It shows
a high number of yellow and black beads, summing up to
22.1% and 33.6% of total images respectively.

simple beads and only some glass beads with elaborate decoration.
This has an impact on the color distribution of the data set, as
shown in Figure 6, where we plot the main colors present in the
data. Figure 6 clearly shows that yellow and black are overall the
dominating colors. In the Appendix C.1, we explain how this plot
was created and show, additionally in Figure 17 a two dimensional
embedding of the data according to the main colors.
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Corrupted instances due to aging and restoration: Many beads
show signs of aging due to being in the earth for over 1,000 years.
This leads to issues with the appearance of the beads. Many have
broken parts that influence not only the shape, but also the color as
the surface color might be different as the color of the subsurface
material. In Appendix B in Figure 14 we show a sample of broken
glass beads. Some are not properly recognizable anymore (last two
images on the right), while others have only small missing parts.
Another age related issue is corrosion, which also changes the
overall color of the glass beads (see bead (7) in Figure 13). Some
beads have been restored, e.g. by using varnish to polish the surface.
Unfortunately, in some cases the remaining varnish dried between
the holes, see bead (4) in Figure 13.
Recording artifacts: Issues from data recordings are present as
it is not possible to position diversely shaped beads in the same
angle. Additionally, the orientation of each glass bead is not unique
and varies between glass beads of the same type, e.g. they might
be flipped horizontally or vertically or are rotated in some way.
Small sample size: The data set is quite small (𝑁 = 4, 669), given
the diversity of shapes and decorations. While the main glass bead
types are well covered, there are still a lot of combinations missing.
Additionally, using deep learning requires a large amount of data
to learn good features.
Image and tabular data: For each glass bead we have two im-
ages, a top view and a side view. Additionally, we have measure-
ments about the weight, length and width. In order to learn a good
representation we need to combine these features into a single
meaningful representation for clustering.
Outliers: Many necklaces in the early medieval period contained
other objects beside glass beads as pendants. Recycling and reusing
objects as part of necklaces was quite common, which introduces
some beads made from other materials. In Figure 15 in the Appendix
we show a set of outlier objects. They are mainly outliers in shape
and size, but not necessarily in color, an information that is useful,
e.g. for studying peoples’ color preferences. We decided to keep
them in the data set as they provide additional information.
Unknown number of clusterings: The exact number of ground
truth clusterings and number of clusters in each clustering is not
known. Based on domain knowledge we have some idea on the
number of clusterings as some meaningful partitions like color,
shape, decoration or size are known. However, it is not clear how
many different decorations there are or how many shapes, as it can
be quite subjective to decide on the differences.
Partially overlapping clusterings: Due to the already mentioned
cluster imbalances, the different clusterings are not completely
independent of each other. Almost all barrel shaped glass beads are
either black or yellow, correlating their color and shape clustering.
This is an issue for non-redundant clustering algorithms, which
assume that the clusterings are independent of each other.

3.3 Preprocessing
Given a raw image x of our data set X we perform the following
preprocessing steps. We crop and resize all images to a size of
64 × 64 to account for the large relative differences in size between
the beads as illustrated in Figure 5. After resizing all images to the
same size we cannot infer the relative size anymore, but we have

the weight, length and width measurements to account for that.
The image pixels are then rescaled from 0 - 255 to 0 - 1 intervals and
scaled using ImageNet [7] mean and standard deviation statistics.
After preprocessing, all images of our data setX are of shape 64×64,
resulting in a dimensionality of 𝐷 = 4096. The tabular attributes A
include weight, length and width measurements. We use min-max
normalization to rescale the tabular features to an interval of 0 to
1, because they are of different metrics (centimeters vs. grams).

4 BACKGROUND AND RELATEDWORK
In the following sections we give an overview of existing work in
non-redundant clustering (Section 4.1), deep clustering (Section 4.2)
and classification systems for glass beads (Section 4.3), relate them
to the challenges identified in Section 3.2 and provide necessary
background to understand our analysis pipeline.

4.1 Non-Redundant Clustering
Alternative and non-redundant clustering methods have been ac-
tively researched for about two decades, an overview can be found
in [28]. Non-redundant clustering extracts multiple clusterings that
are as different as possible, while still being informative. Typically,
this involves assigning an individual subspace to each clustering
that contains the features relevant for the respective clusters.

Although we have some theories about which meaningful group-
ings might be present in the glass beads data, such as a clustering
solution each for color and shape, we do not have ground truth
knowledge overall. Therefore, we would like to limit ourselves to
methods that are able to determine a suitable number of cluster-
ings and clusters per clustering automatically. In this way, we hope
to gain insights that we might have missed in a manual analysis.
Potential algorithms are ISAAC [37], MISC [35], NrDipmeans [22]
and AutoNR [17]. ISAAC and MISC both use a combination of
Independent Subspace Analysis (ISA) [33] and the Minimum De-
scription Length (MDL) [11, 31] to find subspaces suitable for clus-
tering. Within these subspaces, ISAAC then uses a combination of
EM-clustering [6] and MDL to automatically identify high-quality
clusters. MISC, on the other hand, uses graph regularized semi-
negative matrix factorization [8] and bayesian 𝑘-Means [36] for
this purpose. The problem with both methods is that identifying the
subspaces through ISA and MDL has a complexity of O(𝑁𝑑3) [37],
where 𝑁 is the number of data points and 𝑑 the dimensionality
of the data. Therefore, these methods are not efficient for large,
high-dimensional data sets. NrDipmeans and AutoNR both utilize
the non-redundant clustering algorithm NrKmeans [21], which,
given the total number of clusters, iteratively executes 𝑘-Means in
each subspace and then optimizes those subspaces using eigenvalue
decompositions. The eigenvalue decomposition has a theoretical
complexity of O(𝐽 2𝑑3)[21], where 𝐽 equals the number of subspaces,
but since we compute eigenvalue decompositions not for the en-
tire feature space but only for each pair of subspaces 𝑖 and 𝑗 , the
actual dimensionality (𝑚𝑖 +𝑚 𝑗 ) is usually much smaller than 𝑑 .
Furthermore, for larger data sets, 𝐽 2 ≪ 𝑁 usually applies. [17] has
shown in a runtime analysis that NrDipmeans and AutoNR are bet-
ter suited for high-dimensional data than ISAAC and MISC. Further,
in contrast to using ISA, the subspaces and cluster assignments are
able to influence each other and are not discovered one after the
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other. Here, the definition of a noise space plays a crucial role. This
is a subspace that only contains a single cluster and accordingly
includes no cluster-relevant structures. Given the total number of
subspaces, NrDipmeans uses the Dip-test of unimodality [13] to
decide whether or not to split a cluster. AutoNR does not even need
to know the number of subspaces a priori, but can use a maximum
threshold to speed up the search. Therefore, subspaces and clusters
within subspaces are repeatedly split and merged. After each oper-
ation, the resulting clusterings are evaluated based on their MDL
costs and the process is repeated with the best intermediate result.

Another feature that we would like to support is the identifica-
tion of outliers. These are samples that do not fit any of the existing
clusters. In the case of non-redundant clustering, it is important
to note that samples declared as outliers in one clustering may be
inliers in another. Therefore, one cannot simply run a common
outlier detection algorithm (see e.g. [4]) as a preprocessing step.
While it is possible to perform outlier detection separately in each
identified subspace, we find it more advantageous if the outlier de-
tection has a direct impact on the definition of the clusters. To the
best of our knowledge, AutoNR is the only non-redundant cluster-
ing algorithm capable of doing this. For this purpose, it again uses
the MDL costs. In summary, AutoNR best meets our requirements
regarding the automatic identification of clusterings, runtime and
outlier identification.

4.2 Deep Clustering
Although AutoNR has shown a better runtime performance than
other non-redundant clustering methods, it still has problems with
very complex data. In particular, it cannot feasibly process high-
dimensional images directly. In the analysis of images, the research
field of deep clustering has achieved very good results in recent
years. Deep clustering is the combination of deep learning and
clustering to learn representations that are improving clustering
performance. For recent surveys see [1, 27, 39]. Many deep cluster-
ing algorithms make use of an autoencoder that is first pre-trained
using a reconstruction loss. In the resulting embedding an arbitrary
non-deep clustering algorithm is executed. This initial clustering re-
sult is then improved by the deep clustering algorithm by updating
both the embedding and the cluster labels. Due to this procedure,
deep clustering algorithms can be combined with many existing
algorithms or even ensembles of them [26]. Although there are
deep clustering algorithms that can work with multiple clusterings
(e.g. [25]) as well as those that are able to determine the number
of clusters (e.g. [16]), the combination of these two techniques has
not yet been extensively studied. Most existing deep clustering
methods, are based on 𝑘-means and return only a single clustering
solution, which is not suited to our data, where we have multiple
valid clusterings. The deep Embedded Non-Redundant Clustering
algorithm ENRC [25] can find multiple clustering solutions. ENRC
has shown superior performance for common image benchmark
data sets against its non-deep competitors like NrKmeans or ISAAC.
ENRC learns multiple non-redundant feature spaces inside an em-
bedded space, e.g., an autoencoder, using gradient descent. Similar
to NrKmeans, ENRC can determine the dimensionality of the rele-
vant clustered spaces automatically. Unfortunately, ENRC has, up

until now, only been applied to benchmark data sets where the num-
ber of ground truth clusterings is known a priori. We circumvent
this issue by using AutoNR instead of NrKmeans as an initialization
to ENRC. Since AutoNR is based on NrKmeans, this can be done
in a natural way. While NrKmeans and AutoNR use hard subspace
assignments for each non-redundant clustering, ENRC uses soft
feature assignment weights. This allows for a partial overlap be-
tween the extracted clusterings, which is important as our data is
biased.

4.3 Glass Beads Taxonomy and Classification
Existing work in archaeology relies on handcrafted and highly sub-
jective characterizations for classification systems of beads. Consid-
ering the number and potential informative value of glass beads, pre-
vious approaches for classification are astonishingly short-sighted
and, above all, regionally and chronologically conceived. In most
cases, beads from individual cemeteries were taken as examples
and examined. The main classification criteria are the size, shape,
decoration and color [30, 32]. How strongly each criteria influences
the determined bead type depends on the individual examiner. Cat-
egorising the shapes is quite subjective as the boundaries between
different shape types like cylindrical and barrel-shaped or melon
seed-shaped or almond-shaped are fluid, which can also be seen in
the variety of shapes present for the same bead type in Figure 3.

Surprisingly, this also applies to the way color is addressed. In
many cases, basic colors such as red, blue or green are used subjec-
tively. For color values in between, expressions such as green-black
or black-green are used. From a scientific point of view, this is
incomprehensible, since color values in particular are perceived
differently by everyone. Sometimes different color scales are used,
such as Munsell’s Soil Color Charts, Munsell Bead Color Book or
other color-coding systems [5]. Here, however, no care is taken to
ensure that the color determination is carried out under constant
conditions (e.g. type of light source). Further, criteria such as orna-
mentation (color overlays) play a decisive role in the classification.
Differences or nuances that could have arisen from the manufac-
turing process are not taken into consideration. Even in this case,
there is no explicit approach, so sometimes completely different
terminology is used although the same decor is described [12]. A
researcher may come up with an attempt to distinguish wavy lines
from zigzag lines or beads from each other considering the number
of dots. Thus, it is left to the individual processor to decide whether,
for example, a cylindrical bead with a wavy line and three dots
in between and one with only two dots form two different types.
In the following Section we explain how to automatically learn a
classification system for glass beads using cluster analysis.

5 CLUSTER ANALYSIS
We account for the issues described in Section 4.3 by using deep
non-redundant clustering to extract several meaningful clusterings
from the data, which makes it easily adaptable if new data arrives,
e.g., from new archaeological sites. In the following sections we
describe how we perform the cluster analysis, which corresponds
to the representation learning and deep non-redundant clustering
steps in Figure 4. An overview of the used notation can be found in
Table 2.
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Figure 7: Illustration of the Mixed Convolutional Autoencoder (MCAE) architecture. MCAE takes the preprocessed images and
tabular features as input, combines them in a common embedding and reconstructs each modality (image and tabular) with
separate decoders.

5.1 Autoencoder Architecture
Similar to other deep clustering approaches [1, 27] and the pretrain-
ing strategy of ENRC we use an autoencoder to learn good initial
features for clustering. The autoencoder consists of an encoder enc,
which learns to embed the input vector x such that z = enc(x) and a
decoder dec, which learns a reconstruction x̂ from z by minimizing
the reconstruction loss w.r.t. the input. A common choice for the
reconstruction loss is the mean squared error between the recon-
struction and the input vector, i.e., ∥x̂ − x∥22. In order to not simply
copy the input, the autoencoder has a bottleneck layer of dimen-
sionality 𝑑 which is smaller than the original data dimensionality 𝐷 .
A vanilla autoencoder usually just takes a single instance as input.
We, on the other hand, need to combine the image of each bead
with its corresponding numerical measurement values to learn a
good representation for clustering.

As we are dealing with image data we chose to design a Mixed
Convolutional Autoencoder (MCAE) based on the ResNet [14] ar-
chitecture to also use the tabular features A. The MCAE consists of
a ResNet50 encoder and decoder with feed forward autoencoder
bottleneck. The feed forward encoder takes the features extracted
from the images via the ResNet encoder and concatenates themwith
the numerical measurements of weight, length and width, denoted
as a. The feed forward encoder projects the combined features to
a lower dimensional embedded space z and passes these features
to a feed forward decoder to reconstruct the numerical features
and to a separate feed forward decoder that passes its features to
the ResNet50 decoder to reconstruct the image. This leads to an
encoder z = enc(x, a) that takes the image x and its attributes a
as input and produces their reconstructions via x̂, â = dec(z). The
reconstruction loss for all images and its attributes is then simply

Lrec =
∑︁

x,a∈X,A
∥x̂ − x∥22 + ∥â − a∥22. (1)

Figure 7 shows an illustration of MCAE and its encoder and de-
coder. For pretraining we reconstruct each view per bead separately
and only later when we cluster the data we combine the views by
averaging them.

5.2 Image augmentations
We make use of color and non-color image augmentations to ac-
count for several of the challenges mentioned in Section 3.2. We
apply random horizontal and vertical flipping together with random

affine transformations like rotations, translations and shearing to
account for biases that were introduced during the data recording.
We use random resized crops in a small interval of 90% to 100% of
the image size to account for beads that are broken or have missing
parts around their edges. We do not use smaller crops as we still
want to preserve the shape information of each bead. The non-color
augmentations are independently applied to each view 𝑥top, 𝑥side
(top and side view image respectively) for a bead x. We denote these
non-color augmentations as aug𝑥𝑡 for 𝑡 ∈ {top, side}. To account
for the color bias we use random inversion combined with random
color jittering, changing the contrast, saturation, brightness and
hue of each image. The random color augmentations are applied
with a probability of 50%, to also keep the original colors present.
Importantly, we use the same color augmentation for each bead
across views to keep the color information consistent. We denote
the color augmentation for a bead x as color𝑥 . In Figure 16 we
show an example of the discussed augmentations on a sample of
beads. We see that we receive more diverse colors and beads with
slightly missing parts (e.g., first image from top left). The detailed
augmentation setting can be found in Table 3 in the Appendix. We
use the image augmentations during the pretraining and clustering
steps, as we explain next.

5.3 Autoencoder Pretraining and Embedding
We pretrain the MCAE on the data with image augmentations using
cosine annealing [18] with linear warmup [10, 20] and the Adam
optimizer [19] with weight decay. We minimize the mean squared
error between the augmented images and their reconstructions.
From the pretrained autoencoders we select the one with the lowest
reconstruction loss on a held out test set and embed the views per
bead with ztop = enc(xtop, a) and zside = enc(xside, a). After that
we average the embedded views to get one combined embedding
per instance, hereby referred to as z := (𝑧top + 𝑧side)/2. We apply
AutoNR on the averaged embedding of the full data set Z to estimate
the number of clusters and get the initial parameters for ENRC.

5.4 Estimating the number of clusterings
We briefly discuss some details of NrKmeans and AutoNR to explain
how the initial clusterings are obtained. NrKmeans is able to iden-
tify multiple clusterings with an arbitrary orientation in the feature
space. For this purpose, it uses an orthonormal matrix 𝑉 ∈ R𝑑×𝑑
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that rotates the embedded data. Each subspace 𝑗 is assigned a pro-
jection matrix 𝑃 𝑗 ∈ N𝑑×𝑚 𝑗 , where𝑚 𝑗 defines the dimensionality
of the subspace, that specifies the relevant features of the rotated
space. Within each subspace defined as 𝑍 𝑗 = {𝑧𝑉𝑃 𝑗 |𝑧 ∈ 𝑍 }, the la-
bels and cluster centers of the corresponding clustering are updated.
The updated cluster properties can then in turn be used to optimize
𝑉 and 𝑃 𝑗 such that the sum of the distances between data points
and cluster centers is globally minimized. Therefore, an eigenvalue
decomposition is performed for each pair of subspaces. Structures
that do not fit any clustering are assigned to the noise space. Updat-
ing the cluster structures as well as 𝑉 and all 𝑃 𝑗 is repeated until
the procedure converges. AutoNR uses a greedy heuristic to find
a NrKmeans result that minimizes the MDL costs, here different
parameterizations are explored. MDL [11, 31] is an unsupervised
metric that specifies how many bits are required to encode a certain
data model. Fewer bits indicate that more structures have been
identified in the data that can be used for compression. This typi-
cally corresponds to a better clustering quality. The exact details
of the encoding are described in [17]. More details on the cluster
estimation steps are explained in Appendix D.

5.4.1 Identify Outliers. The ability of AutoNR to evaluate cluster-
ing results by their MDL costs also allows outliers to be identified
without requiring additional input parameters. For this purpose,
the encoding strategy is used to check for the points farthest from
their respective cluster center whether it is cheaper to encode them
separately or as part of the cluster. If we achieve a higher compres-
sion by considering them individually, they are declared as outliers.
Importantly, the definition of outliers can change after each update
of the cluster structures.

5.5 Deep Embedded Non-Redundant Clustering
Given the learned cluster centers 𝜇 𝑗 for each subspace 𝑗 , cluster
assignments and projection matrices 𝑉 and 𝑃 𝑗 from AutoNR, we
can initialize ENRC. First, we convert the discrete subspace projec-
tion matrices 𝑃 𝑗 to the differentiable feature importance vectors 𝛽j
of ENRC. The feature importance vectors weigh each dimension 𝑝
continuously with a scalar weight 𝛽 𝑗 [𝑝] such that 𝑝 belongs par-
tially to clustering 𝑗 . The 𝛽j weights are all positive and sum over all
𝐽 clusterings in a single dimension to one, such that

∑𝐽
𝑗
𝛽 𝑗 [𝑝] = 1.

They are defined via the soft-max function on a trainable 𝐽 × 𝑑
parameter matrix 𝐵, s.t.:

𝛽 𝑗 [𝑝] :=
exp(𝐵 [ 𝑗, 𝑝])∑𝐽
𝑖=1 exp(𝐵 [𝑖, 𝑝])

.

We convert the discrete projection matrices of one clustering 𝑃 𝑗
to the soft feature weights by initializing the weights of the as-
signed subspace dimensions to 0.9 and distribute the remaining
weights equally to the other clusterings with 0.1/(𝐽 −1). We use the
𝛽 𝑗 -weights to define the 𝛽 𝑗 -weighted squared euclidean distance
| |𝑢−𝑣 | |2

𝛽 𝑗
:=

∑𝑑
𝑖=1 𝛽 𝑗 [𝑖] (𝑢 [𝑖]−𝑣 [𝑖])2 for two real vectors𝑢, 𝑣 . Using

this adapted distance we can learn soft feature space weights and
weigh the importance of each dimension for each clustering sepa-
rately. The initial matrix 𝑉 and cluster centers 𝜇 𝑗 are then passed
from AutoNR to ENRC directly. Given the initial parameters, ENRC

optimizes the autoencoder parameters together with 𝑉 , 𝜇 𝑗 and 𝐵
to learn a deep non-redundant clustering.

During the optimization of ENRC we want to become invariant
between the two views xtop, xside of each bead x and their aug-
mentations. The invariance is only desired against the non-color
transformations specified in Section 5.2, like rotation, flipping and
cropping. The color information for clustering should be preserved,
which is why we apply the same color augmentation to each view
per bead. Note that the color augmentation is only applied with
a probability of 0.5, so we also have beads in their original color.
We adapt the original ENRC objective to account for the desired
invariances. The new ENRC loss is then defined as Lenrc =

𝐽∑︁
𝑗=1

𝐾𝑗∑︁
𝑘=1

∑︁
𝑧top,𝑧side∈𝐶 𝑗,𝑘

| |𝑉𝑇 𝑧top −𝑉𝑇 𝜇 𝑗,𝑘 | |2𝛽 𝑗 + ||𝑉𝑇 𝑧side −𝑉𝑇 𝜇 𝑗,𝑘 | |2𝛽 𝑗 ,

(2)
where 𝑧top, 𝑧side are the encoded views with augmentations, i.e.,
𝑧𝑡 = enc(aug𝑥𝑡 (color𝑥 (𝑥𝑡 )), 𝑎), 𝑡 ∈ {top, side} with the same color
augmentation for bead x and different non-color augmentations per
view.We use the average embedding 𝑧 = (𝑧top+𝑧side)/2 to calculate
the cluster centers 𝜇 𝑗,𝑘 and corresponding cluster assignments
for each bead. Given the cluster assignments we construct 𝐶 𝑗,𝑘 ,
which is the set of tuples of all embedded views across beads in
cluster 𝑘 of feature space 𝑗 . To regularize the embedded space and
avoid arbitrary solutions we include the reconstruction loss into the
objective as well, leading to our final objective L = Lenrc + Lrec.

During the training of ENRC the objective in Equation (2) “moves”
both embedded views per bead closer to their shared center in each
feature space, effectively compressing the embedded space. This
objective makes the cluster assignments invariant to each view
and the applied augmentations while preserving important color
information.

6 EXPERIMENTS
We evaluate our pipeline with quantitative and qualitative exper-
iments. A key challenge is that we do not have access to ground
truth labels and depend on unsupervised metrics for selecting the
best clustering. We show how we can use those to find a suitable
clustering solution. In the qualitative experiments we further inves-
tigate this solution. The detailed software and hardware settings
used for our experiments can be found in Appendix C.3.

6.1 Metrics
We make use of several unsupervised metrics to find the best non-
redundant clustering. First, we use the reconstruction loss Lrec as
defined in Equation 1 to select the best pretrained Mixed Convolu-
tional Autoencoder (MCAE) on a held out test set. Further, among
the best performing autoencoders we select the one that has the low-
est bottleneck dimensionality to avoid the curse of dimensionality
for clustering. To select the best, most informative non-redundant
clusterings we use the average Variation of Information (VI) [24]
for measuring the redundancy of the found clusterings. The VI
calculates the dissimilarity between different clusterings, where
higher values are better. Additionally, we make use of the MDL
costs for AutoNR and ENRC to assess the quality of the clusterings
and their fit to the data. A good non-redundant clustering should
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balance the two metrics. The clustering should be non-redundant
as measured via the VI and it should fit to the data without being
overly complex as measured with the MDL costs. As we are also
interested to learn a view invariant representation with ENRC we
measure the average cosine similarity between the embeddings
of both views for all beads, where a similarity of 0 indicates no
similarity and a value of 1 indicates a perfect overlap.

6.2 Quantitative Experiments
6.2.1 Autoencoder Experiments. We conduct hyperparameter tun-
ing of MCAE using a holdout test set of 10% of the total amount
of data to determine the best values for the learning rate, weight
decay, latent space dimensionality and model type (ResNet18 vs.
ResNet50). We trained all models for 4000 epochs to ensure a proper
reconstruction. The detailed setting and considered hyperparame-
ters can be found in Table 4 of the Appendix. In total, we performed
144 runs with different hyperparameters over two random seeds.
Latent Space Dimensionality: The dimensionality of the em-
bedded space 𝑑 is one of the most crucial parameters to select in
deep clustering. If the dimensionality is too small we would lose too
much information making the subsequent clustering meaningless.
If the dimensionality is chosen too high we face the curse of dimen-
sionality. Therefore, we conduct experiments for 𝑑 ∈ {32, 64, 128}.
In Figure 8 we show a box plot of the test and train reconstruction
losses for all models across the different values for 𝑑 . Overall we

Figure 8: Box plots of reconstruction loss vs. latent space
dimensionality 𝑑 for all pretrained MCAE models.

see that the median test and train reconstruction losses are similar
indicating no severe overfitting. We see that the models with 𝑑 = 32
have a higher median reconstruction loss than the ones with 64
or 128 dimensions. The median loss for the models with 64 and
128 is similar, but we see a much higher variance for the runs with
128 dimensions. The higher variance might be due to the small
amount of data that we have in comparison to the large ResNet50
model. To account for the model capacity we conducted additional
experiments with the smaller ResNet18 model next.
Model Capacity: Our MCAE model with ResNet50 encoder and
decoder has about 110,000,000 parameters, begging the question
whether we need so many trainable parameters for such a small
data set. We compare the ResNet50 model with a version of MCAE
with only ResNet18 encoder and decoder, which has only 23,000,000
parameters. In Figure 9 we show a box plot of train and test re-
construction losses with respect to the two different architectures.
We clearly see that the ResNet50 architecture achieves a better
performance than its ResNet18 counter part without overfitting.

Figure 9: Box plots of reconstruction loss vs. model type for
all pretrained MCAE models.

We believe that we do not overfit to the data due to several rea-
sons. First, the beads are complex to reconstruct and have a high
variety. Second, we make use of image augmentation which ran-
domly changes the images increasing the effective training data size.
Third, we use a low dimensionality for the bottleneck dimension
𝑑 ∈ {32, 64, 128}, which acts as a regularizer against overfitting.
Overall, the ResNet50 version of MCAE with a latent space of 64
performed best.

6.2.2 AutoNR Experiments. For AutoNR we consider three differ-
ent metrics to select the best performing model. We use the MDL
costs, the Average VI and the number of extracted clusterings 𝐽 .
First, we know that we should have at most four clusterings us-
ing the domain knowledge that we want to find clusterings for
color, shape, decoration and size. AutoNR uses a maximum number
of subspaces parameter that limits the search for non-redundant
clusterings, which we set to five (four clusterings and one noise
space clustering). The remaining parameter settings are shown
in Table 5. We applied AutoNR with this setting to all pretrained
ResNet50 models with a 32, 64 and 128 latent space dimensionality
respectively. On average we found two clusterings with 𝑑 = 32 and
four clusterings with 𝑑 ∈ {64, 128}. It seems that a dimensionality
of only 32 is losing too much information relevant for clustering,
underestimating the potential number of clusterings. We selected
the best AutoNR run from the models with 𝑑 = 64 based on the
MDL costs, as these where the best for the MCAE pretraining. This
run also achieved an VI of 3.22, which is close to the median VI
value of 3.37, balancing the non-redundancy with the model fit.

6.2.3 ENRC Experiments. Based on the previous analysis we se-
lected the AutoNR run with the lowest MDL costs from the models
with a latent space of 𝑑 = 64. We used the paramaters learned with
AutoNR to initialize ENRC and remove the found outliers in their
respective subspaces during the optimization with ENRC. Perform-
ing ENRC on top of AutoNR can be seen as a form of fine tuning
the found clustering results to learn the desired invariances and
improve the clusterings. We performed a hyperparameter search
with respect to the learning rate and selected the best run w.r.t. the
MDL costs. The detailed hyperparameter setting can be found in
Table 6. In Table 1 we show how the fine tuning with ENRC changed
the performance metrics against its previous AutoNR results. The
first metric, that changed the most is the average cosine similarity.
After pretraining with the MCAE the cosine similarity is low at
around 0.37 and after fine tuning with ENRC we reached a perfect
view invariant representation with a maximum cosine similarity
of 1. The decoder cannot reconstruct the input views as good as
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Metric Before After
Cosine Similarity 0.37 1.00
Reconstruction Loss 0.14 0.44
Average VI 3.22 2.75
Nr of clusters per subspace 𝑗 [27, 6, 6, 2] [16, 7, 7, 2]
log MDL Costs 6.87 6.84

Table 1: Performance metrics before and after applying
ENRC to the best AutoNR run

before as the invariance in the embedded space increases. This is
why we see an increase of the reconstruction loss from 0.13 to 0.44.
This is not a problem as we are mainly interested in the clustering
performance at this stage. As a result, the Average VI decreased
and the total number of clusters was reduced (41 vs. 32), e.g., due to
the augmentation invariance flipped images are not assigned their
own cluster. The MDL costs improved, shown here on a log scale.
While the change from 6.87 to 6.84 might seem small in the original
scale this corresponds to an improvement of 1e5 or 6%. Next, we
investigate the found clustering of the best ENRC model in more
detail using visualizations.

6.3 Qualitative Experiments
For interpreting the found clusterings we look at the reconstructed
cluster centers and their corresponding nearest neighbors. The
nearest neighbor analysis gives us a tool for interpreting a cluster
based on its most prototypical members. In total the best ENRC run
found four clusterings with 𝐾𝑗 ∈ {16, 7, 7, 2} number of clusters
in each clustering. In Figure 10 we show the reconstructed cluster
centers for each clustering. The top rows shows the 𝐾1 = 16 cluster
centroids, which correspond to different shapes and applied decora-
tions, while the color information is averaged out. The second row

Figure 10: Reconstructed cluster centers per clustering.

shows two clusterings according to color (𝐾2 = 7, 𝐾3 = 7) and one
according to longitudinal size (𝐾4 = 2). The extracted centers can
be used by archaeologists to find the most prototypical bead types,
which offers a more intuitive and quantifiable way of describing a
bead class. To explore the clusterings further we look at the nearest
neighbors of some of the most interesting clusters. In Figure 11 we
show three clusterings according to shape that were extracted. The
first two rows are cylindrical and leaf shaped glass beads. Note, that
we have objects of the same shape but with different alignment
(horizontal and vertical flips) or partially broken pieces inside the
same clusters. The clustering in the last row shows tubular shaped
glass beads. The top view of the tubular beads shows also the diffi-
culty of recording them always from the same angle through the

Figure 11: Nearest neighbors per cluster center of clustering
𝐾1 = 16. The first image (from left to right) is the recon-
structed cluster center and the other seven images are the
corresponding nearest neighbors.

hole. Despite these issues ENRC could find the cluster due to the
learned shearing, rotation and translation invariances.

In Figure 12 we show a sample of outliers that were found using
AutoNR and ENRC. We see that these instances are either rare
beads or no beads at all. While the last glass bead on the right is a

Figure 12: Sample of found outliers. From left to right: mol-
lusc shell, rare glass bead type, large glass bead, metal pen-
dant, piece of metal, large bead made of amber, piece of glass
vessel, rare decoration type.

valid bead type it is flagged as an outlier as it is the only bead with
that specific form and decoration in the data set.

7 FUTUREWORK AND CONCLUSION
As archaeological data baseswill grow, larger data sets of glass beads
will also become available. In future work we want to evaluate the
transferability of our pipeline to larger data sets of other grave
sites. The goal is to have an automatic system that gets better with
more diverse data and is reproducible worldwide. Currently, some
rare bead types are flagged as outliers, which is valid given their
unusual decoration, shape or color, but with growing data it might
be discovered that these bead types are more common and form
their own cluster.

We have proposed the first application of non-redundant clus-
tering to archaeological image data. We showed how unsupervised
model selection can be done for deep embedded non-redundant
clustering algorithms in the absence of ground truth labels. Further,
we introduced a novel, high quality data set of diverse beads that
poses new challenges for non-redundant clustering. We showed
in quantitative and qualitative evaluations that we could find non-
redundant clusterings that align with domain knowledge of experts,
like different subtypes of the melon-seed-shaped glass beads (cylin-
drical and leaf shaped glass beads).
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A SYMBOLS
All symbols used in the paper are briefly explained in Table 2.

Table 2: Overview of the used symbols.

Symbol Description
𝑁 ∈ N Number of samples
𝐷 ∈ N Dimensionality of the images
𝑑 ∈ N Dimensionality of the embedded space
𝐽 ∈ N Number of subspaces

𝑉 ∈ R𝑑×𝑑 Orthogonal (rotation) matrix
𝑚 𝑗 ∈ N Dimensionality of subspace 𝑗

𝑃 𝑗 ∈ N𝑑×𝑚 𝑗 Projection matrix of subspace 𝑗
𝛽 𝑗 ∈ R𝑑 ENRC feature importance vector of subspace 𝑗
𝑋 ⊆ R𝐷 Image data set
x ∈ 𝑋 Single sample of 𝑋

𝐴 ⊆ R3 Set of attributes
𝑎 ∈ 𝐴 Single sample of 𝐴

𝑍 ⊆ R𝑑 Embedded data set
𝑧 ∈ 𝑍 Embedded version of (x, a)

x̂ ∈ R𝐷 Image reconstruction
𝑎 ∈ R3 Attribute reconstruction

B DATA
In this section we show some additional plots for a better overview
of the data. Figure 13 shows a diverse sample of barrel-shaped beads.
In Figure 14 we show some beads that are partially or severely
broken. Some atypical beads are shown in Figure 15. In Figure 16
we show the random augmentations that we applied to get more
robust results.

Figure 13: From left to right variations of barrel glass beads ac-
cording to color (1) - (3); according to restoration artifacts like
remains of varnish partially closing the hole (4) or remains
of glue that causes brown speckles on the beads’ surface (5);
according to age like partially missing parts (6) or changes
to the surface color of a former yellow bead due to corrosion
(7).

Figure 14: Sample of partially broken beads.

Figure 15: Outlier sample: The shown objects are either atyp-
ical or no glass beads at all. From left to right: glass bead with
coin imprint, rare bead type, mollusc shell, piece of glass, lip
of a glass vessel, piece of glass vessel, rolled metal sheet.

Figure 16: Random augmentations applied to images from
Figure 1. Color augmentations are shared across views of the
same bead and increase color diversity.

Figure 17: (Left) The two main colors extracted via 𝑘-means
for a glass bead withwound spiral decoration. (Right) Images
embedded in two dimensions according to the main colors
show large areas of yellow and black beads.

C EXPERIMENT DETAILS
C.1 Colour Plot
To create the distribution in Figure 6, we extracted the two main
colors of each bead by concatenating both views and running 𝑘-
Means with 𝑘 = 2 using the pixels as input. The extracted features
resulted in a six dimensional RGB vector per bead. An example of
two extracted colors are shown in the left part of Figure 17. The
most common extracted color per image was then binned using
𝑘-Medoids [15] to get a robust clustering. Each bar in the plot
represents one medoid extracted with 𝑘-Medoids and the count
represents the size of the cluster. The right side of Figure 17 shows
a UMAP [23] embedding of the glass beads using the two extracted
color features reducing the dimensionality from six dimensions
(two extracted RGB colors) to two dimensions.

C.2 Parameter settings
We provide in Tables 3, 4, 5 and 6 the considered hyperparame-
ter settings for augmentation, pretraining, AutoNR clustering and
ENRC clustering respectively.
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Augmentation Parameter
RandomAffine degrees=(-16, +16),

translate=(0.1, 0.1)
shear=(-8, 8),
p=0.5

RandomResizedCrop size=64,
scale=(0.9, 1.0)

RandomResizedFlip p=0.5
RandomHorizontalFlip p=0.5
RandomInvert p=0.25
ColorJitter brightness=0.3,

contrast=0.5
saturation=0.5,
hue=[-0.5,0.5],
p=0.5

Table 3: Augmentation parameters for PyTorch augmenta-
tion transforms.

Config Parameters
optimizer AdamW
scheduler Cosine annealing
linear warmup ratio 0.1
base learning rate 1e-3, 5e-4, 1e-4, 8e-5
weight decay 0, 1e-2, 1e-3
latent space 32, 64, 128
ResNet18 feed forward layers [512, 1024, latent space]
ResNet50 feed forward layers [2048, 4096, latent space]
activation function ReLU
loss function Lrec
epochs 4000
batch size 256

Table 4: Pretraining parameters

Config Parameter
Number of NrKmeans repetitions 10
Maximum number of clusters per subspace 30
Maximum number of subspaces 5

Table 5: AutoNR setting.

C.3 Software and Hardware Settings
We implemented our pipeline in Python using PyTorch [29]. To
conduct our experiments, we used one node of the EuroHPC su-
percomputer MeluXina (https://docs.lxp.lu). The utilized GPU node
consists of 2 AMD Rome CPUs (32 cores @ 2.35 GHz), 4 NVIDIA
A100-40 GPUs, 512 GB of RAM, and a local SSD of 1.92 TB.

D ESTIMATING THE NUMBER OF
CLUSTERINGS CONTINUED

To deepen our understanding of how our initial clusterings are
obtained we explain here the clustering procedure of AutoNR in
more detail. Initially, AutoNR creates a single subspace containing

Config Parameter
optimizer Adam
scheduler Cosine annealing
linear warmup ratio 0.2
base learning rate 5e-4
weight decay 0
latent space 64
loss function L
epochs 30
batch size 256

Table 6: Best ENRC setting.

all the features of the data set and a single cluster containing all the
data points. Accordingly, we are dealing with a noise space. Next,
an attempt is made to split off a cluster space, which is an additional
subspace with more than one cluster. This operation is also called
noise space split. Here NrKmeans is executed with 𝑘 = [𝑘1, 1], where
𝑘1 is successively increased. The result producing the lowest MDL
costs is used for the following steps. If cluster spaces are present,
AutoNR first tries to split those before executing another noise
space split. For this cluster space split, the existing cluster space
is split into two cluster spaces and NrKmeans is executed with
different parameterizations, where the parameters are bounded
by max(𝑘new1 , 𝑘new2 ) ≤ 𝑘old ≤ 𝑘new1 · 𝑘new2 . If no split was able
to lower the MDL costs, an cluster space merge will attempt to
merge existing cluster spaces. This operation can be understood
as a reversed cluster space split, starting with the highest possible
number of clusters and combining the two closest clusters one after
the other. The operations noise space split, cluster space split and
cluster space merge are repeated as long as NrKmeans results with
lower MDL costs are identified. AutoNR is then performed on a
resampled version of the data to account for the color and size bias
as we explain next.

D.1 Handling the color and size bias
To account for the color and size bias we resample the data using the
extracted color distribution and tabular features 𝐴, before applying
AutoNR. We obtain the resampling weights by clustering the color
and tabular features 𝐴 using 𝑘-means and inversely weighing each
sample with its cluster count. We then randomly sample 10,000
beads without replacement to have more rare beads in the data.
To increase the diversity of this resampled data set w.r.t. to the
colors, we apply the random color augmentations for each bead
with a probability of 0.5, giving us a data set where color and shape
information is more independent from each other. We use this data
set for AutoNR to learn the initial parameters for ENRC. ENRC
is then using the resampling weights for adjusting the sampling
probabilities during the mini-batch training. After ENRC has been
trained we predict the labels for the clean, original data. Using this
we can circumvent some of the color bias in the data. Note, that
the performance metrics in the paper are always reported on the
original data without resampling.
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