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Abstract 

 

After Sinn’s (2008) groundbreaking article on the green paradox effect and its potential consequences for 

efficient environmental policies a large body of research developed to analyze different model assumptions 

and their consequences for the existence of green paradox effects. Given that many countries today try to 

implement carbon taxes that start low and increase over time one of the central driving forces of the green 

paradox it’s seems prudent to have a look at a neglected assumption concerning the green paradox that of 

an endogenous resource stock. This paper starts with a baseline model based on Stiglitz (1976) then extends 

the model based on Österle (2015) / Sinn (2008) to a new market structure and reintroduces a basic form of 

uncertainty. It is then extended considerably to a model based on Van d. Ploeg (2013) that also includes a 

backstop with or without uncertainties concerning its arrival time. It is shown that the model results 

concerning an increasing carbon tax as the environmental policy are robust to these modification of the 

original models in almost all cases giving certain necessary new assumptions, that the effects of uncertainty 

in our extended model are ambivalent and that a constant tax doesn´t cause a green paradox under the 

specific assumptions. 

 

Nach Sinn’s (2008) bahnbrechendem Artikel über den Grünen Paradox Effekt und seine potentiellen 

Konsequenzen für die Umweltpolitik entstand eine umfangreiche Literatur zum Thema um unterschiedliche 

Modellannahmen und ihre Konsequenzen für die Existenz des Effekts zu analysieren. Gegeben das 

zahlreiche Staaten heute versuchen CO2 Steuern einzuführen, welche auf niedrigem Niveau starten und 

danach über die Zeit ansteigen, scheint es angemessen sich einer vernachlässigten Annahme bezüglich des 

Grünen Paradoxons zu widmen, der eines endogenen Ressourcenbestands. Diese Arbeit startet mit einem 

Grundmodel basierend auf Stiglitz (1976) erweitert das Model dann basierend auf Österle (2015) / Sinn 

(2008) in Bezug auf die Marktstruktur und führt eine einfache Form von Unsicherheit ein. Das Model wird 

danach wesentlich erweitert basierend auf Van d. Ploeg (2013) um eine Backstop-Technologie mit und ohne 

Unsicherheiten bezüglich der Ankunftszeit. Es wird gezeigt, dass die Resultate bezüglich einer steigenden 

CO2 Steuer als der Umweltpolitik robust bezüglich der Modifikation der originalen Modelle sind in nahezu 

allen Fällen, gegeben gewissen notwendigen Annahmen, dass die Effekte der zusätzlichen Unsicherheiten 

in unserem erweiterten Modell ambivalent sind und das eine konstante Steuer nicht zu einem grünen 

Paradoxon führt gegeben die spezifischen Annahmen. 

  



4 

Contents 

 

1 Introduction ............................................................................................................................. 6 

1.1 The Green Paradox problematic ........................................................................................ 6 

1.2 Exploration: an endogenous resource stock ...................................................................... 8 

1.3 Significance of modeling endogenous resource stocks ..................................................... 9 

1.4 Monopoly in Resource extraction .................................................................................... 11 

1.5 Summary of the following chapters ................................................................................. 12 

2 The baseline model with given resource stock and a monopolistic firm .......................... 13 

2.1 Assumptions .................................................................................................................... 13 

2.1.1 The optimal control problem .................................................................................... 13 

2.1.2 Notation .................................................................................................................... 14 

2.1.3 Taxation .................................................................................................................... 14 

2.1.4 The demand function ................................................................................................ 15 

2.1.5 The damage function ................................................................................................ 16 

2.2 Optimal temporal distribution ......................................................................................... 16 

2.3 Existence of weak and strong green paradox .................................................................. 20 

3 The model with an initial investment decision and monopolistic competition ................ 22 

3.1 Assumptions .................................................................................................................... 22 

3.2 The exploration phase ...................................................................................................... 24 

3.3 The Weak Green Paradox ................................................................................................ 25 

3.4 The Strong Green Paradox .............................................................................................. 27 

3.5 Uncertainty ...................................................................................................................... 32 

4 The model with a substitute technology .............................................................................. 36 

4.1 Assumptions .................................................................................................................... 36 

4.2 The post backstop phase .................................................................................................. 38 

4.3 The pre backstop phase with known arrival time ............................................................ 41 

4.4 The pre backstop phase with unknown arrival time ........................................................ 44 

4.5 The case of no backstop ................................................................................................... 52 

4.6 The exploration decision ................................................................................................. 53 

4.7 Taxation and the green paradox effects ........................................................................... 54 

4.8 Numerical Simulation ...................................................................................................... 62 



5 

4.9 Findings ........................................................................................................................... 68 

5 Discussion of model assumptions ......................................................................................... 71 

5.1 The damage function ....................................................................................................... 71 

5.2 The Initial resource stock ................................................................................................ 72 

6 Conclusions ............................................................................................................................ 72 

7 Appendix ................................................................................................................................ 75 

7.1 Monopoly with endogenous resource stock and no backstop ......................................... 75 

7.1.1 Effect of α on the condition for a S.G.P. .................................................................. 75 

7.1.2 Model with uncertain property rights ....................................................................... 75 

7.2 The backstop model ......................................................................................................... 78 

7.2.1 Derivation of S1/b for a known arrival time of the backstop..................................... 78 

7.2.2 Case of no backstop: 0b   ...................................................................................... 79 

7.2.3 Case of imminent backstop: b  ........................................................................ 79 

7.2.4 Case of a perfect backstop:    ............................................................................ 80 

7.2.5 Jump in paths at time T: ........................................................................................... 80 

7.2.6 Partial derivatives for the P factor and investment .................................................. 81 

7.2.7 Efficiency of the optimal paths ................................................................................ 83 

8 References .............................................................................................................................. 84 

 

  



6 

1 Introduction 

 

Anthropogenic climate change might be one of the greatest environmental challenges mankind has 

ever faced (IPCC, 2018) as Earth´s climate and in particular it´s atmosphere should be understood 

as a global public good and the past and current rate of resource extraction by resource owners 

solving their intertemporal allocation problems creates huge external effects in the absence of 

effective regulation. These are difficult to internalize because of commitment and enforcement 

problems of international climate treaties and the still essential role non-renewable resources play 

as energy and production inputs. 

 

While afforestation and with technological progress sequestration might play auxiliary roles 

successful environmental policy mainly needs to flatten the extraction path of non-renewable 

resources especially fossil fuels ideally keeping them in situ. While the optimal carbon emission 

regulations are well studied and modelled Chichilnisky & Heal (1994), Nordhaus & Yang (1996) 

Sinclair (1994), Van der Ploeg & Withagen (2012a) the failure to successfully implement them has 

led to the study of imperfect environmental policies as well. Unintended consequences of well-

intended but suboptimal demand reducing policies might under specific conditions lead to a failure 

of reducing climate damages from resource extraction or even see an increase in global emissions 

often caused by an insufficient understanding of the dynamics of the supply side reaction. 

 

1.1 The Green Paradox problematic 

 

A green paradox refers to a situation in which – well intended – climate policy designed to lower 

climate damages actually leads to a worsening of climate damages versus a baseline scenario, 

because the supply side reaction of the resource owners is not correctly understood or taken into 

account by the policy maker. Future and anticipated policies that aim to reduce the demand for a 

non-renewable extracted resource increase the present (and near future) equilibrium rate of 

extraction of the resource, causing a frontloading in the extraction path as it distorts the relative 

marginal profits such that future extraction becomes less attractive. It is quasi the intertemporal 
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form of the spatial import leakage. This intertemporal substitution of resource extraction quantities 

caused by demand reducing policies might be a consequence of the perfectly or near perfectly 

inelastic total supply (and reserves to be exploited). For non-renewable resources this intertemporal 

dimension of the extraction decision is of great importance (Di Maria & van der Werf, 2012). 

 

Sinclair (1992) presented a model that showed the “paradoxical” finding that carbon taxes rising 

over time might actually worsen the problem by frontloading the extraction of non-renewable 

resources and also causing an exhaustion effect as resource production has to fall faster 

subsequently capital formation is reduced in the model. He argued that a dynamic approach that 

takes the supply side and thereby the time profile of the extraction decision sufficiently into account 

is needed. 

 

The main contribution that got the Green Paradox discussion started is Sinn´s (2008) paper, where 

he stated that the policies used by the Kyoto abatement countries might actually worsen the climate 

change problem because of their focus on the demand side. According to Sinn the problem is 

fundamentally caused by a stronger downward pressure on future non-renewable resource prices 

caused by the climate policies than on the current prices, which as in the case of Sinclair creates an 

incentive to frontload extraction by the forward looking resource owners. So the relative net value 

of the resource is changed for example by an increasing tax and the producers tilt there production 

toward the present. Therefore we see an accelerated accumulation of greenhouse gases in the 

atmosphere and the climate policy leads to even faster global warming, a phenomenon he called 

“the green paradox”. 

 

Sinn shows in his model - based on Hotelling’s theory of exhaustible resource extraction 

(Hotelling, 1931) – that focusing on an intertemporal supply side perspective such a green paradox 

occurs in the case of an increasing cash-flow tax as well as in the case of an increasing sales tax 

(where the growth rate of the tax is higher than the social discount rate) and does not happen for 

constant taxes. Importantly Sinn also argues (p. 381) that such a problem might also arise for the 

majority of policies that aim to reduce the demand for non-renewable resources via various forms 

of subsidies for replacement technology, quantity constraints or “green products” as they will shift 
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the carbon demand curve downward at each point in time. If the resource owners are able to 

anticipate this they will again extract more in the present and less in the future in his model and so 

the climate policies will not mitigate the damaging effects on the climate as they were intended to 

do. Since then a number of papers have been published on the topic. 

 

An important differentiation of the Green Paradox that is going to be used in this paper is that 

developed by Gerlagh (2011) into a weak form that only sees initial or short term increases in the 

climate damage from the implementation of the environmental policy while the strong form means 

that the present value of the sum of all future climate damages increases vs the baseline scenario. 

For an overview on the subsequent green paradox literature I would suggest Di Maria & v. d. Werf 

(2012). Which give a classification of the literature into several categories. 

 

One of the assumptions widely used concerning the modelling of the Green Paradox problematic 

is that of a fixed and known resource stock given at the beginning of the planning horizon of the 

resource owners. In reality firms have to invest in exploratory activities and geographical studies 

which are costly and risky (Bhattacharyya, 2011). This paper intends to expand the analysis of the 

green paradox phenomenon under the assumption of endogenous resource exploration as an initial 

outlay and look at a different market structure (monopoly) for a case without a backstop technology 

and a case with a backstop technology with and without a certain arrival time. 

 

1.2 Exploration: an endogenous resource stock 

 

Non-renewable resources (NRR) have a unique status among the factors of production as they need 

to be discovered and once they are their utilization rate is limited by geological and economic 

factors. So is for example the recovery rate often inversely related to the speed of extraction. 

Generally it holds that as known resource deposits decline extraction costs increase as labor and 

capital use of extraction intensifies as less favorable resource reservoirs with lower grades and 

which are less accessible are used. The smaller the reserves get the higher the chance that 

undiscovered resource deposits might exist that have lower extraction costs. (Lambertini, 2013) 
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The resource producers balance at the margin the cost of unknown deposits vs the costs of known 

deposits (Adelman, 1970). Exploration further is used to maintain and increase reserves as like 

inventories reserves are also held to reduce the risk of supply shortages or uncertainties of future 

costs of producing them. In any case the exploration process – with and without uncertainty – plays 

an important part in the debate on non-renewable resources and its effects on resource extraction. 

See Peterson (1978), Arrow and Chang (1982), Mohr (1988), Quyen (1988 and 1991) and Cairns 

& Quyen (1998). 

 

Most models of resource extraction and basically no models concerning the green paradox with the 

exception of Österle (2015) a paper by Van der Ploeg (2013) that focuses on efficiency effects and 

subsidies and a new model by Day & Day (2022) that shows that for a specific form of upfront tax 

deductions for the development of resource reserves downward sloping tax profiles cause weak 

and may cause strong green paradox effects assume a fixed resource stock with which the 

extracting firm is already endowed. In reality exploration and development effort is needed to 

develop this resource stock which is a central aspect of resource supply. Exploration can be 

understood as investment in capital in the form of resource reserves. Policies and market conditions 

have been shown to influence extraction and exploration differently in certain models. If the 

resource owners for example fear expropriation of their resource stocks they have an incentive to 

speed up extraction but exploration might be discouraged Bohn & Deacon (2000). Peterson (1978) 

shows that increasing discount rates might cause decreased extraction rates in the long run rather 

than accelerated ones. 

 

1.3 Significance of modeling endogenous resource stocks 

 

There are a number of arguments why exploration of natural resources might still play a big role 

in resource economics. Vast amounts are still spent by mining companies and oil producers on the 

discovery and the development of new resource deposits which for many non-renewable resources 

have significantly increased in the last decades (Arezki, van der Ploeg, & Toscani, 2019). New 

geographic areas have become available for extraction like the Arctic and now potentially even the 

Antarctic. New technology becomes available enabling future large-scale marine mining 
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(Marvasti, 2000) and eventually even space will be a new frontier for exploitation of resources. 

Therefore many resources that are termed exhaustible might be actually better called non-

renewable instead (Stürmer & Schwerhoff, 2012). Including exploration in some form into models 

of resource extraction when analyzing potential green paradox problems seems therefore to be a 

useful exercise. 

 

Investment in new technology enables firms to increase their reserves but with diminishing returns 

as progressively lower grade resource deposits are unlocked or access to the resources becomes 

more difficult as they are deeper down in mines etc. On the other hand the resource quantities 

unlocked by these new technologies increase exponentially which means the diminishing returns 

from investment in exploration technology are offset by the geological distribution of these 

resources (Stürmer & Schwerhoff, 2012). While some authors like Sinn (2012) argue that the 

majority of discoveries have already been made and exploration might not be as important to be 

modeled and firms can just be endowed with their resource stocks at least in certain fields like shale 

oil and gas but also for certain minerals and their associated technology it is clear that exploration 

still has significance for the non-renewable resource markets to play in the coming decades (Kim 

& Lee, 2018; Luderer et al., 2018). 

 

The reality of still rising non-renewable resource stocks that could cause additional failures in 

environmental policy gives then also an argument for additional intervention. If treaties like the 

Paris Agreement want to limit future profitability of non-renewable resource sources sufficiently a 

good understanding of potential resource stocks that can still be developed is of great importance. 

While such policies that set clear and strict limits to the amount of the carbon that can be emitted 

clearly reduce the revenues that can be created from new discoveries at the same time such policies 

especially if they have long lead times could also cause “black gold rush” like effects where 

resource owners and developers speed up the exploration process to still get the resources 

developed and out of the ground before this no longer is profitable (McGlade & Ekins, 2015 and 

Cairns, 2014). 
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Furthermore in the future depending on economic development more conservative administrations 

might come into power and reverse or at least postpone some of the climate policies which could 

mean that exploration might play a more important role again. Given the current situation of energy 

insecurity in Europe as a consequence of the conflict in Ukraine this might be the case even with 

less conservative and even green parties in power. Finally it is interesting to note that one of the 

explanations for the inconsistency of the implications of the basic Hotelling framework and also of 

empirical studies on the price path of non-renewable resources might be the assumption of a fixed 

and known resource stock (Kronenberg, 2008) and that to better understand the reaction of resource 

owners to demand reducing policies might actually require a look at the costs and uncertainties of 

exploratory efforts. 

 

With the total extraction amount given an endogenous change in the price at any date causes the 

intertemporal substitution effect as it modifies the relative marginal profits between extractions 

now and later which is the main argument for Sinn’s (2008) green paradox effect. But this price 

change might change the total extraction amount given as exploration might become more or less 

profitable and therefore the resource stock available might change. This stock effect can be 

dominated by a substitution effect. The price of a NRR is affected by its price at another date even 

if the costs between dates are independent. This is because of the scarcity rent included in the 

marginal extraction costs so the resource rent from extraction instead of keeping it in situ that 

means that the extraction costs at all dates are connected. So we have to deal with this intertemporal 

substitution relative to “normal” goods that don´t have this problem since they are not affected by 

eventual exhaustion. Exploration is affected by these resource rents from extraction and so depends 

on the future prices which are affected by taxes and therefore the resource stock that will be 

developed. 

 

1.4 Monopoly in Resource extraction 

 

Since we extend the model in 3 different forms in a monopoly market structure a few words on the 

Literature here. For a general overview of the implications of a monopolistic market structure in 

resource extraction models of non-renewable resources see Dasgupta and Heal (1979) and 
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Krautkraemer (1998). Concerning the green paradox literature most models deal with competitive 

markets but a few confirm their findings for the case of monopolistic extraction like Grafton et al. 

(2010). As to my knowledge it hasn´t been analyzed specifically for a green paradox model that 

includes an endogenous resource stock and a backstop technology given our specific form of 

demand function and an increasing cash flow tax. 

 

1.5 Summary of the following chapters 

 

Chapter 2 develops a baseline model of resource extraction to later refer to where the market form 

is set to a monopoly the resource stock is kept exogenous and the different model assumption are 

explained in detail. The model shows the basic mechanism behind the 2 forms of green paradox 

effects. It is then expanded to an endogenous resource stock in chapter 3 which changes the findings 

concerning the existence of the weak and strong green paradox as a consequence of the climate 

policy (an increasing cash flow tax). We then take a small look at a basic form of uncertainty 

concerning property rights which were included in Sinn’s (2008) original paper. After that we 

expand to a model in which there is the potential that a backstop technology becomes available and 

how it influences initial and total extraction differently in chapter 4 based on Van der Ploeg (2013) 

where we will take a look how a constant and an increasing tax will affect the existence of a green 

paradox. After that we have a small discussion about two of the assumptions used the damage 

function and the modelling of the initial resource stock decision in chapter 5. In the following 

Chapter 6 conclusions about the model results are discussed and summarized to finally be followed 

by the appendix with the derivations used. 
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2 The baseline model with given resource stock and a monopolistic 

firm 

 

We start with a baseline model based on Stiglitz (1976) and then expand from there to see if and 

how this affects the existence of weak and strong green paradox effects. This is done to better 

isolate the effects specific assumptions might have as quite a few papers on the topic stress that the 

occurrence of the weak and strong green paradox effects strongly depends on the specific 

underlying assumptions and it is often hard to assess in advance what might be relevant or not (Di 

Maria & van der Werf, 2012). Furthermore this basic model is used to explain the different 

components used in detail and potential alternatives and finally illustrates the mechanism that 

causes green paradox effects in a simple and clear way but still in a dynamic setup instead of the 

often used 2-period models. 

 

Limited supply sources in resource markets make it significantly more common that there exists 

market power than in traditional goods markets. It seems natural to take a closer look at the extreme 

case where the resource is provided by a single supplier which is done here and continued to be 

used in all the following chapters as well. This model will then be extended in the next chapters to 

include a resource stock that is chosen based on an investment decision / cost function, uncertainty 

and a backstop technology. 

 

2.1 Assumptions 

 

2.1.1 The optimal control problem 

 

The monopolistic firm maximizes its profit from extracting a homogenous, single, known and 

absolutely scarce non-renewable resource (NRR) with a price that depends on the amount extracted 

such that pt = p(Rt). There are no extraction costs (other than the scarcity cost of extraction of 

course) and there are also no capacity restriction for the extraction process (costless, immediate). 
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This gives for the case with a given initial resource stock the following constraint optimal control 

problem: 

 

0

max ( ) rt

t t t
R

t

p R R e dt






  
(2.1.1) 

subject to: 

𝑆̇𝑡 = −𝑅𝑡, 𝑡 ∈ [0, ∞]
0 0

0
, 0 , t

t
S given R dt S




   

(2.1.2) 

 

2.1.2 Notation 

 

We have that t denotes time, t ≥ 0. The market price of the NRR is pt = p(Rt) with Rt as the supply 

of the resource which equals the quantity extracted and consumed in t (which is our control) St is 

the remaining reserves at time t with St > 0 (and therefore our state variable). S0 is the initial stock 

of an exhaustible, homogenous resource in t = 0 with S0 > 0. The constant exogenously given 

discount rate is denoted by r. θt is the tax factor and we will use λt as the current value costate 

variable used which is the shadow price of resource in situ. A “^” above a variable indicates a 

growth rate and a “.” above a variable means a time derivate. 

 

2.1.3 Taxation 

 

In general any taxation of discovered deposits reduces the private value of these deposits and so 

reduces the profitability and scale of exploration. This can be complicated to model if uncertainties 

about exploration are taken into account. A thorough analysis of the effects of taxation on resource 

extraction was given by Long & Sinn (1985). We will analyze the case of an increasing tax here 

since one of the main reasons why green paradoxes might occur is that such taxes start “small” and 

then increase over time too slow or too fast as we will see which facilitates green paradox effects. 

Here no uncertainty is assumed and the tax is an increasing cash flow tax as was used by Sinn 

(2008) with: 
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ˆ

0

t

t e   (2.1.3) 

 

Where θt is the tax factor (the percentage of the revenue the firm can keep), θ0 is the initial tax 

factor and with θ̂ < 0 as the constant given growth (decline) rate of the tax factor. Therefore the 

tax factor will decrease slower / the tax rate increase slower for higher growth rates θ̂.The tax rate 

therefore is 1 - θt. This means that if there is no tax we will have θt =1 ∀𝑡 ≥ 0 and θ̂ = 0. We will 

have a look at the impact of a constant tax factor in Chapter 4. 

 

2.1.4 The demand function 

 

The demand function is assumed to be: 

 

1/( )t t tR f p p    (2.1.4) 

 

With f´(pt) < 0, isoelastic with 1/μ as the constant, absolute value of the elasticity of demand. 

Marginal revenue is therefore (1-μ)pt. 

 

According to Dasgupta and Heal (1979, p. 159+) this specific form ensures given our model 

assumption that the optimal time horizon of extraction is infinity for this model, which makes the 

optimization process easier as the optimal time horizon for the extraction part is thereby already 

given and if there is no reason to assume that the economy does terminate at a specific future date 

this might actually be the most appropriate way to model it. Of course there is always the possibility 

that the world will end at some future date which rationally should be accounted for. See Dasgupta 

and Heal (1979, p. 155) for a discussion about this. This also means that we have 0, 0t tS    . 
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2.1.5 The damage function 

 

The following damage function is used to model the climate damage caused by extraction of the 

resource which equals utilization in our model in a simple way which originally was taken from 

Gerlagh (2011): 

 

0

rt

t tR e dt


    
(2.1.5) 

 

Ω is the NPV of the climate damage caused by resource extraction and χt is to be understood as the 

shadow price on emissions, according to Gerlagh (p. 87). With 
ˆ

0

t

t e   and its growth rate 

positive indicating that the marginal climate damage is increasing over time. This reflects an 

assumption in climate change literature (see for example Ulph & Ulph, 1994) that an increase in 

the concentration of greenhouse gases in the atmosphere leads to increasing marginal damages 

caused to the climate. For a further discussion about this assumption please look at chapter 5.1. 

This is also why it is so important how the intertemporal distribution of extraction looks like even 

if the amount that is extracted over the whole time horizon stays the same or diminishes. 

Furthermore it is assumed that the growth rate of the marginal climate damages ̂  will be lower 

than the discount rate r. 

 

2.2 Optimal temporal distribution 

 

The (current value) Hamiltonian is given by using our demand function (2.1.4) as: 

 

1( )t t t t t t t t tH p R R R R R        

 

The maximum principle is: 
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 
1/

(1 ) 0

/ (1 )

R t t t

t t t

H R

R





  

  





   

  
 

(2.2.1) 

 

the dynamic constraint: 

𝜆̇𝑡 = −𝐻𝑆 + 𝑟𝜆𝑡 ⇔ 𝜆̇𝑡 = 𝑟𝜆𝑡 (2.2.2) 

 

The transversality condition we have is: 

lim 0rt

t t
t

S e


  (2.2.3) 

 

With no extraction costs HS is 0 and drops out of the dynamic constraint. We know therefore that

0

rt

t e  . Using again the demand function gives us the price as: ( ) / (1 )t t tp R      

 

Then using the dynamic constraint (2.2.2) as well as the definition of tax factor θt (2.1.3) gives us 

the following for the price path of the resource (the price will now just simply be written as pt to 

keep it compacter if it doesn´t lead to confusion): 

 

ˆ ˆ( ) ( )0
0

0(1 )

r t r t

tp e p e 

 

  


 
(2.2.4) 

 

Differentiation with respect to time and dividing by the price gives us the growth rate of the price 

path which in our model is a modified form of the Hotelling rule for a model with a tax factor as: 

 

𝑝̂𝑡 = 𝑝̇𝑡 𝑝𝑡⁄ = 𝑟 − 𝜃 > 𝑟. 
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The resource owner demands a higher price increase then without an increasing tax (would he only 

demand r then he would sell more of the resource in the current period because he knows revenue 

will further decline which increases supply in the current period which leads to a lower price which 

increases the growth rate and equilibrium then means that the equation is satisfied). We see that 

this form of a tax is not neutral. The right hand side gets larger and keeping the price constant the 

rate of change of the price must increase which means it will cause frontloading of extraction and 

given the resource constraint an extraction path that needs to be steeper. Furthermore (2.2.4) tells 

us now that initial price is: 

 

0
0

0(1 )
p



 



 

(2.2.5) 

 

Which will be relevant when we expand the model to include an endogenous initial resource stock 

in Chapter 3. Differentiating the demand function with respect to time and plugging in our finding 

that the growth rate of the price is ˆr   we get the growth rate of extraction as: 

 

𝑅̇𝑡 = − 1 𝜇⁄ 𝑝(𝑅𝑡)−1 𝜇−1⁄ 𝑝̇𝑡 = − 1 𝜇𝑅𝑡⁄ 𝑝̂𝑡 ⇔ 𝑅̇𝑡 𝑅𝑡⁄ = 𝑅̂𝑡 = −(𝑟 − 𝜃) 𝜇⁄ < 0 

 

So the optimal growth rate of extraction is constant and smaller than zero consisting of the interest 

rate the tax factor and the elasticity of demand. The higher the elasticity of demand the faster the 

decline. Solving the differential equation gives the optimal extraction path therefore as: 

 

ˆ( )

0

r t

tR R e





 

  

(2.2.6) 
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Since:  
ˆ ˆ ˆ( ) ( ) ( )

1/1/ 1/

0 0 0 0/ (1 )

r t r t r t

t tR p e p e R e

  
      

     
      , this means that 

resource extraction will be positive as long as the absolute value of the elasticity of demand which 

is 1/ μ is greater than one. Otherwise higher prices would always lead to a higher output since there 

are no restrictions on maximal output per period meaning extraction would be nil in all periods 

with infinitely high prices. We will exclude this extreme case. This is a well-known fact in resource 

extraction models with monopolistic market structure (Stiglitz, 1976). So there will be at least some 

extraction in every period which of course will become infinitesimally small as time approaches 

infinity and the extraction rate goes to zero asymptotically. 

 

As there are no extraction costs it can never be optimal not to extract all of the resource since the 

extraction of every last unit will be profitable. It must therefore hold that the initial resource stock 

equals the total sum of all extraction over the infinite time horizon: 
0

0
tR dt S



 . Using this fact 

and the equation for the optimal extraction path (2.2.6) we can rewrite the initial extraction rate as: 

 

0
0

ˆ( )r S
R






  

(2.2.7) 

 

And therefore get for the resource extraction path: 

ˆ( )

0
ˆ( )

r t

t

r S
R e







 


  

(2.2.8) 

 

Inserting into the inverse demand function t tp R   and using our optimal extraction path with our 

state equation gives us then also the paths for price and the resource stock: 
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(2.2.9) 

 

ˆ( )

0

r t

tS S e





 

  
(2.2.10) 

 

2.3 Existence of weak and strong green paradox 

 

A week green paradox exists if the initial damage increases if the increasing tax is implemented. 

The initial damage is just equal the initial extraction rate R0. Remember that if there is no tax then 

̂  = 0 and we see from (2.2.7) that in this case the extraction rate in the initial period R0 would be 

minimal. A week green paradox will therefore exist always in this simple model with an exogenous 

resource stock if there is there is any kind of tax. The initial tax factor θ0 is not relevant for the 

initial extraction but the faster the tax factor declines (lower 𝜃) / the faster the tax rate increases the 

higher the initial extraction and therefore damage will be. 

 

For the strong green paradox we have to now look at the net present value of overall damage Ω 

(2.1.5) and see if the implementation of the tax increases it with: Ω = ∫ 𝜒0𝑒−(𝑟−𝜒̂)𝑡𝑅𝑡𝑑𝑡
∞

0
. Inserting 

the optimal time path we found for extraction (2.2.8) and integrating this gives us: 

 

0 0
ˆ( )

ˆˆ( )

r S

r r

 

  


 

  
 

(2.3.1) 

 

For the baseline scenario total damage is therefore also independent of the initial tax factor. Next 

we look at how Ω depends on the growth rate of the tax factor: 
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   

 

 

Which is strictly negative since we assumed:  𝑟 > 𝜒̂. So again the case without any taxes minimizes 

overall damage and any implementation of the tax will also cause a strong green paradox to occur. 

The higher the growth rate of the tax / the faster the decline of the tax factor (lower 𝜃) the higher 

the environmental damage caused. As S0 is given and the total extraction stays the same the increase 

in the growth rate of the tax makes it necessary for the firm to frontload its extraction after 

optimization thereby increasing total climate damage based on our damage function without the 

possibility to compensate by changing its investment in the resource stock. This is the core 

mechanism for our form of the green paradox. 

 

In the simple baseline model based on Stiglitz (1976) with a monopolistic resource extraction firm 

both the weak and the strong green paradox will occur if the environmental policy is implemented 

since the total extraction does not change given the fixed resource stock and no extraction costs 

and the tax will simply lead to a frontloading of the extraction path increasing initial and total 

environmental damage. From this basis let us next take a look at a model with an initial investment 

decision for the initial resource stock S0. 
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3 The model with an initial investment decision and monopolistic 

competition 

 

3.1 Assumptions 

 

The following model setup is based on Sinn (2008) concerning uncertainty, Österle (2015) 

concerning the idea for an analytical solution for the condition for the existence of a green paradox 

and Lasserre (1991) for the modelling of the exploration endogenously via an upfront investment. 

The market structure remains monopolistic the demand function used is slightly different than in 

Österles model to get a nicer condition for the existence of the strong green paradox and we will 

have a small look at a simple form of uncertainty of property rights at the end. Later in Chapter 4 

we will expand the model by including a green alternative, a backstop technology that will change 

its price and for which the arrival time is not known and compare it whit this model as a special 

case. As discussed in chapter 1 there are many reasons why the resource stocks for firms should 

not be assumed as just given since taxes will effect exploratory effort via the change in optimal 

extraction decisions. So while the taxes set an incentive to speed up extraction they also give an 

incentive to reduce exploration and therefore this countervailing forces will make the existence of 

green paradox effects less plausible. The firm now has to optimize its initial costs for its investment 

in the creation of the initial resource stock S0. 

 

So instead of having S0 as given it is now endogenously developed initially by the monopolistic 

resource extracting firm before extraction actually starts at t = 0 This exploratory effort creates 

upfront cumulative costs: C(S0) with C´(S0) > 0 and C´´(S0) > 0 with increasing costs per unit. Or 

it requires stated otherwise an upfront investment for the initial resource stock with S0 = E(I) with 

the assumptions that E´(I) > 0 and E´´(I) < 0 so that S0 increases with investment but at a declining 

rate (Gaudet and Lasserre, 1988). Such increasing costs and declining returns for exploratory effort 

are standard assumptions in resource exploration literature see for example Pindyck (1978) or 

Dasgupta and Heal (1979) since it seems reasonable that the more a resource is already explored 

the higher the effort for the next unit becomes (given the technological level for discoveries). So 

the assumption is that the investment in exploration / the exploration cost needs to be paid before 
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extraction starts which also avoids the problems of concavity of the value function appearing when 

exploration and extraction of the NRR are modeled to occur simultaneously see Pindyck (1978). 

 

To keep things manageable we use the following specific form for such a rising and convex cost 

function which is again slightly modified from Österle to get a bit cleaner derivations than her in 

the end for the condition of the strong green paradox: 

 

1

0 0( )C S S    (3.1.1) 

 

With α > 0 and β > 0. Such functional forms are for example often used for cost function in shale 

oil exploration see for example Henriet & Schubert (2019). Please note that although Österle states 

in her paper that according to Lasserre (1991, p. 105) the optimization for the exploration could be 

expressed as: 
0

0( ) min ( , )rt

t t
T

C S e c s S dt

 


   and subject to: 𝑆̇−𝑡 = 𝑠−𝑡. With –T < 0 as the initial 

exploration date where there are no discoveries yet. The (future) resource owner now could exert 

exploratory effort with cost of c(s-t,S-t) with s-t the discovery rate and S-t the accumulated total 

discoveries. In this way the resource stock S0 for the extraction phase could be developed over a 

development period. But this is not actually used in her model where we assume the previously 

given form and will equate the marginal costs with the marginal profits as we will see and the 

exploratory effort is therefore a onetime investment at the beginning before extraction starts. We 

lastly assume, that the total reserves of the resource on earth are SE > S0 and SE – S0 remains 

untapped as it is not economically feasible to recover it in market equilibrium. 

 

The model is therefore now expanded by an endogenously determined initial resource stock so 

the optimization decision of the monopolistic firm is given by: 
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0

0

max ( ( ) ) ( )rt

t t t
R

p R R e dt C S



 

 
 
  

(3.1.2) 

subject to: 

𝑆̇𝑡 = −𝑅𝑡, 𝑡 ∈ [0, ∞]
0 0

0
, 0 , t

t
S endogenous R dt S




   

(3.1.3) 

 

In the extraction phase the net present value of the cumulative costs C(S0) for exploration are 

already determined (note that they are outside the integral sign) and therefore a constant so that we 

get the same optimal paths. The initial extraction rate as in the baseline model of the monopolistic 

resource owner is therefore given by (2.2.7) and the extraction path by (2.2.8). 

 

3.2 The exploration phase 

 

Modelling exploration is a tricky subject in resource extraction models and in order to keep the 

calculations reasonably complex we use a technique based on Lasserre (1991, p. 105+). He states 

that in the initial time period of the extraction phase the total marginal costs for the initial resource 

stock needs to be equal to the marginal utility that extraction of the resource offers which is 

represented by its shadow price λ0. To clarify this further, the economic interpretation of the costate 

variable λ is that of the shadow price of the resource in situ. It gives the marginal loss in present 

value of the resource in situ if the current rate of extraction is increased (marginal user cost). The 

optimal rate of extraction is chosen such that it equates this marginal user cost with marginal 

profits. Which means that: 

 

0 0´( )C S   (3.2.1) 

 

 

This is a transversality condition for t = 0 that tells us that the exploration cost for an additional 

unit of the resource needs to be equal to the value of the non-renewable resource in situ, its initial 
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shadow price (initial scarcity rent). Up to this point the cost for exploration needs to be paid in 

optimum (Gaudet & Lasserre, 1988). Of course our λ0 is different than the one we would have 

gotten in a competitive market. Using our specific form for the cost function (3.1.1) and the initial 

price from (2.2.5) we therefore get: 0 0 0( 1) (1 )S p      . Next we use our equation for the 

initial extraction rate (2.2.7) and our specific isoelastic demand function (2.1.4) and get: 
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0 0 0
0 0 0 0

ˆ ˆ(1 ) (1 )( )
( 1) (1 )

ˆ ( 1) ( 1)( )

R r r
R R R
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            

        
 

 

We now have the following expression for the initial extraction which we will use to compare the 

tax and the no tax scenario: 

 

1

0
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ˆ (1 )( )

( 1)

r
R



    

  

    
    
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(3.2.2) 

 

3.3 The Weak Green Paradox 

 

A weak green Paradox arises in a situation where the initial damage in the policy scenario (T) is 

larger than the initial damage in the scenario without taxes (NT). So we have that: 0 0

T NTR R  we 

insert the extraction rate we found for the initial period (3.2.2) and remember that for the case with 

no tax we have a tax factor for the initial period 0 1   (the company can keep everything / the tax 

rate therefore is 0) and the growth rate of the tax factor is given by ˆ 0  . This gives us: 
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The condition for the existence of a weak green paradox therefore is: 

 

 0
ˆ1 / r



 


   
(3.3.1) 

 

The occurrence of a weak green paradox can now only happen for certain cases of the tax schemes. 

It is more likely the higher the initial tax factor 0  / the lower the initial tax rate and the higher the 

growth rate of the tax / the decline of the tax factor (lower ̂ ). Which can be seen in Figure 1 for α 

= 0.5 and r = 0.03 and the absolute value of ̂ . Furthermore one cannot exclude the possibility of 

the existence of a W.G.P. for any growth rate of the tax factor which is also the case in Österle’s 

model with a competitive market structure. Since 00 1   and the right hand side of our condition 

(3.3.1) is always smaller than 1 for any admissible growth rate of the tax factor other than 0 (in 

which case there is no tax). 

 

Figure 1: Shows for which combinations of the tax components a weak green paradox occurs (above the graph). 
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Furthermore the higher r ceteris paribus the higher the R.H.S of our condition and the less likely is 

a W.G. P. ceteris paribus. Lastly a high α increases the change for a weak green paradox given the 

tax scheme. This is the case because a high α means greater marginal discovery costs, so the 

reduction in discoveries caused by the tax is relative smaller therefore the price increase is also 

smaller and we have a lower reduction in the extraction rate. This is visualized again for the 

absolute value of ̂  in Figures 2 and 3. 

 

  

Figure 2: The effect of the discount rate with r = 0.2, a = 0.5 Figure 3: The effect of α with r =.0.03, α = 0.8 

 

3.4 The Strong Green Paradox 

 

We again have to look at the NPV of total damage Ω now to see if the policy scenario causes a 

strong green paradox to occur. Starting with the definition of the damage function, 
ˆ

0

t

t e   and 

inserting our expression for the optimal extraction path (2.2.8) and finally our expression for the 

optimal extraction in the initial period R0 (3.2.2) we find: 
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So the reformulated total damage is given by: 
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(3.4.1) 

 

With this expression for the NPV of total damage we can compare the policy scenario and the no-

tax scenario to see when a strong green paradox might occur. Formally the condition is 
T NT  

(again with T standing for the tax case and NT for the case without taxes). Inserting the expression 

we found again remembering that θt =1 and θ̂ = 0 for the case without taxes: 
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Which gives us the following condition for the existence of the strong green paradox as: 
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(3.4.2) 

 

We see that a high initial tax factor / low initial tax rate makes the existence of a strong green 

paradox more likely (as always ceteris paribus). So if the tax rate starts out relatively low and the 

growth rate of the tax is held the same total taxation will therefore be lower and exploration 

relatively higher than in a case with a high initial tax burden (and constant held growth rate). Which 

means that the frontloading of extraction might be the dominant effect. 

 

The effect of the growth rate of the tax factor depends on other parameters, but it can be seen that 

if it goes toward 0 then the right hand side of the inequality will go towards 1 and it therefore would 

become less and less likely that a strong green paradox will occur. If on the other hand the growth 

rate of the tax goes toward minus infinity then the right hand side of the equation would go toward 

infinity and so a strong green paradox would then also no longer appear. So we have a range and 

if the growth rate of the tax factor gets too big or too small it can no longer exists. In between it 

still depends on the other parameters if a strong green paradox can exist or not (most strongly but 

not alone on α). Again matching the results of the competitive model. This is visualized in Figure 

4 as always for absolute values of the growth rate of the tax factor for the case where the other 

parameters allow for the existence. 
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Figure 4: The range of growth rates of the tax factor that allow for a strong green paradox with:  r = 0.1, χ = 0.01, α = 4, μ = 1 

 

Further we see that if the growth rate of the damage function factor ̂  is small then the S.G.P. is 

more likely for given parameters. The smaller the growth rate of damage function factor is, the 

more influence the frontloading of extraction has and the more climate damage is caused. We see 

this in Figure 5 (low in blue). 

 

 

Figure 5: Effects of a low (blue) and high (red) growth rate of damage factor. 
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The discount rate r plays a role insofar as a higher discount rate ceteris paribus will allow green 

paradox effects to exist for higher growth rates of the tax which of course would be logical as the 

real cost of taxation would then be lower. This is shown in Figure 6 (note the scale of the x axis). 

For the parameter α from the exploration cost function we have (see 7.1.1) that an increasing α 

which means greater marginal exploration cost in absolute terms ceteris paribus increases the 

chance for a strong green paradox ceteris paribus, like it did in the case of the weak green paradox. 

 

 

Figure 6: The effects of the discount rate on the existence of the S.G.P. 

 

We can now see that the existence of the weak and the strong green paradox depends on the form 

(initial tax factor and the growth rate of the tax) of the implementation of the specific tax schedule. 

Ceteris paribus the weak green paradox is more likely to occur if the initial tax factor is high and 

if the growth rate of the tax is high. Again for holding the other parameters constant the strong 

green paradox will be less likely to occur if the initial tax factor is low and furthermore it can only 

potentially occur for a growth rate of the tax that isn´t too high or too low but even in this range 

must not occur depending on the other parameters. We found that this range increases in the 

discount rate. 
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Despite the change in market structure and the use of a slightly different demand and cost function 

these findings match the findings of Österle’s model with a perfect competitive resource extracting 

firm given that the elasticity of demand is assumed as bigger than one (which is needed to guarantee 

a solution where prices don´t become infinite and extraction 0 in all periods as we stated in Chapter 

2). So we see that given our assumptions the market form makes no relevant difference when we 

analyze the existence of weak and strong green paradoxes in this particular model specification. Of 

course such a finding still means that we now know that we need not worry if the observed market 

that resembles the assumption of the model is of competitive or monopoly form when we want to 

know if our specific climate policy could cause a weak or strong form green paradox. 

 

The reason for this result might be the specific combination of no extraction costs which we require 

for an analytical solution and the use of an isoelastic demand function which can be considered 

nearly a standard assumption in resource extraction literature as it makes derivation far easier 

keeping our model an (quasi)autonomous one. We therefore will expand the model now further 

and take a look at uncertainty next. 

 

3.5 Uncertainty 

 

While we get for our model that the price or in case for a model that would include extraction costs 

the net price grows with the rate of interest and the growth rate of the tax factor this has not been 

observed as the actual development path of the prices of non-renewable resources in reality 

(Halvorsen & Smith, 1991). One explanation for this that has been proposed are insecure property 

rights. 

 

Sinn accounted in a basic form for uncertain property rights in one variant of his original model by 

letting: te   be the probability for the survival of the property rights until time t. With ρ > 0 and 

constant as the instantaneous expropriation probability (Sinn, 2008, p. 12). Therefore our basic 

model (2.1.2) would now look like this: 
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0

max ( ) rt t

t t t
R

t

p R R e e dt


 



  
(3.5.1) 

subject to: 

𝑆̇𝑡 = −𝑅𝑡, 𝑡 ∈ [0, ∞]
0 0

0
, 0 , tS given R dt S



   
(3.5.2) 

 

With all other assumption equal the net price now rises with: 

 

𝑝̇𝑡

𝑝𝑡
= 𝑟 − 𝜃 + 𝜌 

(3.5.3) 

 

Let us ignore the tax for now and focus on ρ. The resource owner that sells a unit of the resource 

at time t and invests it on the capital market for one period in a model without uncertainty will 

have: ( 1)tp r  . Keeping it in situ gives him 𝑝𝑡 + 𝑝̇𝑡 instead. If however we have uncertainty then 

the resource owner that sells today still gets the same in return tp r but the one that doesn’t extract 

will now only get 𝑝̇𝑡 − 𝜌𝑝𝑡 in (expected) return indicating a steeper price path and faster extraction 

(Sinn, 2008). This means the resource owner now chooses a steeper extraction path taking into 

account this uncertainty. 

 

Exogenous Resource Stock: 

 

If the resource Stock is given and we know like in our first model that full extraction will happen 

over the infinite time horizon such uncertainty will cause additional frontloading of the extraction 

path and therefore has the same effect as an increase in the interest rate. The derivation of the 

conditions for the weak and strong green paradox is of course straight forward as it closely follows 
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the previous one but can be found in (7.1.2) for completeness and easier traceability. No matter 

how small the uncertainty is it will always increase initial extraction as: 

 

0
0

ˆ( )r S
R

 



 
  

(3.5.4) 

 

The NPV of total climate damage will increase as well with the inclusion of uncertainty since: 

 

0 0
ˆ( )

ˆˆ( )

r S

r r

  

   

 
 

   
 

(3.5.5) 

 

and therefore: / 0d d  . 

 

Endogenous Resource Stock: 

 

For the model with an endogenous resource stock we then get as the condition for the weak green 

paradox: 

0

ˆ
1

r



 




 
  
 

 

(3.5.6) 

 

which shows that the effect of this simple form of uncertainty are identical to the effects of the 

growth rate of the tax factor in chapter 3. The condition for the strong green paradox is now: 
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ˆ ˆ
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ˆ( )r r r
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 


   

 

   
     

      
 

(3.5.7) 

 

Which means ρ extends the space in which the strong green paradox exists for high growth rates 

of the tax (remember that it only could exist if the growth rate of the tax rate wasn´t too high or too 

low). So while the findings don´t change much if we include insecure property rights in this form 

having it in the model reminds us of one of the reasons why reality often doesn´t match the results 

of models that don´t include it at all and see resources extracted faster than by the classical 

Hotelling rule. We will now turn to a more elaborate form of modelling uncertainty and see how it 

affects the extraction paths and the decision for the optimal initial resource stock. 
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4 The model with a substitute technology 

 

If the demand for the non-renewable resource depends also on the price of a green alternative and 

the NRR is taxed increasingly or equivalent would be an increasing subsidy of the green alternative 

(Sinn, 2008) then more of the NRR should stay in situ which is the goal. Instead of modelling this 

with extraction costs we are looking at how this effects the exploration decision if it has to be costly 

chosen based on a certain and uncertain arrival time for a backstop technology. The idea for this 

modification is based on a paper by Van d. Ploeg (2013) who looks at a model with backstop with 

uncertain arrival time in the context of the green paradox and how its arrival changes the optimal 

paths of extraction. The term backstop was coined by Nordhaus (1973) for a substitute technology 

for the exhaustible resource which is not constrained by exhaustibility. Like nuclear fusion these 

are often not quite ready to replace NRR at a larger scale (Gerlagh & Lise, 2003).  

 

We first follow the methods to derive the optimal paths and will then change this model by again 

using our increasing cash flow tax and a constant one and take a closer look at a case where the 

backstop date is announced in advance. Van d. Ploeg (2013) focuses on the welfare aspects and 

suggests subsidies to deal with them, while we will take a quick look on the endogenous resource 

stock part and give a specific form to the investment function to make our numerical simulations 

based on optimized resource stocks. Our findings concerning the green paradox will differ therefore 

from his paper slightly and confirm our findings for our previously used model. 

 

4.1 Assumptions 

 

The prospect of such a backstop technology changes the optimal paths for extraction and prices as 

we will see and also effects the incentive for exploration of the NRR and the initial investment 

decision for the resource stock. There are now two phases: before and after the backstop. The 

backstop technology that at a random time T will become available reduces the cost of a green 

substitute for the NRR by a fixed amount Δ (see for example Dasgupta and Heal, 1979). The price 

for the green alternative which is ψ drops therefore to ψ – Δ after the backstop becomes available 
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(with ψ ≥ Δ > 0). The resource owner chooses his extraction path and total investment in 

exploration in the beginning once the optimal decisions of the two later phases are calculated. 

 

To get the resource stock in time t = 0 S0 the monopolist choses a level of Investment in exploration 

in the beginning with ε as the price of exploratory activity and I as the quantity of investment which 

gives us the optimal investment into developing the initial resource stock. For our exploratory 

investment we have that 0 ( ), ( ) 0, ( ) 0.S E I E I E I     This is further explained and applied when 

we make the exploration decision chapter 4.6. The uncertainty component will be explained in 

chapter 4.4 where the optimal path decisions are derived for the phase before the backstop arrives 

with uncertainty. The probability distribution is thereby chosen to be an exponential distribution. 

See Hoel (1978) for a discussion on this. The rest of the notation stays the same. The problem of 

the monopolist is therefore now (we will add the tax later): 

 

,
0

max rt

t t
I R

t

Exp p R e dt I






 
 

 
  

(4.1.1) 

subject to: 

𝑆̇𝑡 = −𝑅𝑡, 𝑡 ∈ [0, ∞], 0 0
0

0, , t
t

S endogenous R dt S



   

(4.1.2) 

 

So we maximize the expected value of the (discounted) profits minus the investment for exploration 

made in the beginning. The demand function (for the NRR) is now given for the two time intervals 

before and after the backstop comes online with: 

 

, [0, )

( ) , [ , ]

t t

t t

R cp t T

R cp t T

 

 









 

   
 

(4.1.3) 
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Therefore the price for the NRR now depends also on the price for the green alternative and the 

inverse demand function for the NNR is accordingly given for our 2 phases by: 

 

1/

1/

( , ) ( / )

( , ) (( ) / )

t t

t t

p R c R

p R c R

 

 

 

 



  
 

(4.1.4) 

 

With c > 0 constant as autonomous consumption of the resource. We again assume that μ the 

elasticity of demand is bigger than 1 with marginal revenue now (1- 1/μ)pt. Therefore prices will 

stay finite and we will have full depletion over the infinite time horizon as explained before. So 

again the stock constraint in (4.1.2) will hold with equality. The green substitute can replace the 

NRR with σ as the constant cross elasticity, bigger than 0 that shows how good the NRR can be 

replaced by the green one. The optimization problem therefore has 3 sub problems: First an 

exploration decision is made, where the optimal investment is chosen, then the phase where the 

backstop isn´t available yet and the green substitute is relative expensive and lastly the post 

backstop phase where the price of the green alternative is relatively cheaper. We start in reverse 

order with the last phase where the backstop is already available. Prices, extraction rates, stocks 

and value functions for the post backstop phase will be indicated by an “A” (since we start with 

this phase in our calculations, or as “after” the substitute becomes available) and for the pre 

backstop phase we use a “B” as in the “before” the price gets cheaper. After these both phases the 

optimal resource stock is then determined based on the results in chapter 4.6. 

 

4.2 The post backstop phase 

 

Since the backstop has already arrived there is no uncertainty here. The Hamiltonian of the problem 

is given by: 

 

H = R pt t t tR   (4.2.1) 
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Using the maximum principle and our findings from the previous chapters gives us that

0

rt

t tp e    . Therefore we find for the growth rate of the price the same way as before for phase 

A (remember we include both forms of the tax factor later): 

 

ˆ 0A

tp r   (4.2.2) 

 

Taking the time derivative of the demand function (4.1.3) and using the inverse demand function 

(4.1.4) to substitute in for 𝑝𝑡
−μ

 gives us: 

 

𝑅̇𝑡 = −μ(ψ − Δ)𝜎c𝑝𝑡
−μ−1

𝑝̇𝑡 = −𝜇𝑝̂𝑡𝑅𝑡 (4.2.3) 

 

Which gives us with (4.2.2) the optimal growth rate of extraction for phase A:  

 

ˆ 0A

tR r    (4.2.4) 

 

And therefore the optimal extraction path as: 

 

( )A t T r

t TR R e    (4.2.5) 

 

Using the stock constraint in (4.1.2) which as we said holds with equality and inserting our 

extraction value for time T and integrating gives for the resource stock at the beginning of the phase 

A: 
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rT

A r t T rt T
T t T T

T T T

R
S R dt R e dt R e e dt

r


 



  
         T TR S r  . 
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We can now state all three paths for the resource stock, the extraction rate and the price for the post 

backstop phase. We insert the extraction path into the state equation and get for the optimal path 

of the resource stock: 

 

( )A r t T

t TS S e    (4.2.6) 

 

Which needs to obviously be smaller or equal to ST. Therefore the optimal extraction rate with ST 

is: 

( )A r t T

t t TR rS rS e       (4.2.7) 

 

Now we just use the optimal extraction path again with the inverse demand function (4.1.4) and 

get the optimal price path for t > T: 
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(4.2.8) 

 

As in chapter 3 the higher the elasticity of demand and the higher the interest rate the faster the 

decline in extraction (and resource stock). How they are affected via the change of the resource 

stock in t = T will be seen in the next phase. The price is now also influenced by how good the 

substitute can replace the NRR and also on how much cheaper the backstop makes the green 

alternative (the price path will be lower in a cheaper substitute and in a better substitutability). 
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The optimal value function wA for the monopolist showing the discounted profits after the backstop 

for the resource Stock ST can be calculated by plugging in (4.2.7) and (4.2.8) we just derived into 

our objective function integral and discounting it for our time interval [T,∞]: 
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Which gives us: 
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(4.2.9) 

 

The optimal value function therefore decreases in the reduction in the price of the green alternative 

and the cross elasticity (cheaper green alternatives and better substitutability decrease the price of 

the resource and therefore profits which means the discounted value of wA is lower) and it is higher 

the higher the remaining resource stock in t = T. Now we go back one phase from this deterministic 

part and look at the optimal decisions before the backstop became available. 

 

4.3 The pre backstop phase with known arrival time 

 

We first look at a simpler special case and assume that the time when the new technology becomes 

available is known and given by T = 1/b (which will be the expected value for it in the next 

subchapter). In phase A our resource extracting firm uses the extraction, resource and price paths 

we just calculated and there is no uncertainty. Since the date is known exactly there can be no 

sudden jump in the price path and it has to have the derived growth rate r like before (4.2.2). The 

initial price p0 is therefore now given via (4.2.8) by: 
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(4.3.1) 

 

Inserting this into our demand function (4.1.3) gives us the initial extraction rate: 
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(4.3.2) 

 

The extraction path before the backstops arrival is therefore given by: 

( 1/ )

1/ .B r t b

t bR rS e








  
  

 
 

(4.3.3) 

 

To get the resource stock in time t = 1/b we insert the extraction path in our state equation (4.1.2) 

giving: 

𝑆̇𝑡
( 1/ )
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Integrating both sides over the timespan until the backstop is available at 1/b and solving for S1/b 

gives (appendix (7.2.1)): 
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(4.3.4) 

 

Therefore the price, extraction and the resource stock paths for both phases can be calculated. We 

get the optimal resource stock, extraction rate and price path after the backstop directly by using 
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the found resource stock in (4.3.4) and just plugging it into our equation for the optimal paths for 

phase A (4.2.6) to (4.2.8). For the pre backstop phase we use our equations (4.3.1) and (4.3.3) to 

get the optimal paths before the backstop arrives. The extraction paths for phase B and A therefore 

are given by: 
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(4.3.5) 
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(4.3.6) 

 

We see the frontloading effect on extraction caused by the backstop even if there is no uncertainty 

about the arrival time. For the resource stocks we therefore have: 
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(4.3.7) 
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(4.3.8) 

 

We see that as prices increase at r and extraction and the resource stock declines at μr the path in 

(4.3.8) satisfies this. If we would set Δ to 0 meaning there is no backstop / the backstop has no 

effect then the depletion rates of the NRR are not influenced by the price of the green substitute. 

For the general case where the change in price from the backstop is bigger than 0 the resource stock 

at t = 1/b will be smaller than in the case without a backstop. The extraction rate then has to be 

higher before the backstop makes the RR cheaper as ( / ( ))   > 0 and the effect is stronger 

the better the substitutability (given by a higher parameter σ).The optimal price path will have a 
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growth rate of r for the whole time span. There are no jumps in the case with a certain date for the 

price path which will change when we introduce uncertainty about the arrival time. Of course it is 

not very realistic to assume that we know exactly when for example fusion energy will become 

available. Let us turn to the case with an uncertain arrival time T. We visualize the paths later 

together. 

 

4.4 The pre backstop phase with unknown arrival time 

 

Now we look at the more complicated case where we don´t know when time T when the backstop 

comes online will be and get our optimal paths and the value function wB for this phase. Uncertainty 

is hereby modeled by giving us the following probability that the substitution technology comes 

online before time t: 

 

Pr.( ) 1 ( ); 0, 0T t Exp bt t b        (4.4.1) 

 

Where E(T) = 1/b gives us the expected time at which the backstop makes the green substitute 

cheaper. The properties of the exponential distribution of memorylessness and a constant b give 

us: Pr.( ) Pr.( ); , 0T x t T x T t x t       . Which means that if the backstop hasn´t arrived after 

for example 20 periods the conditional probability that it will take at least 10 more periods is equal 

to the unconditional probability to see the arrival at least 10 more periods after the starting time 

which makes our calculations easier. 

 

The idea is that before the backstop is discovered the resource owner has to deal with the 

uncertainty at each point in time t < T that at x > t it might happen and reduce demand for the NRR 

by making the green alternative cheaper. We now have a value function for this phase of the 

following form that incorporates this uncertainty and which describes the modified discounted 

profit maximization decision of the firm: 
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(4.4.2) 

 

In order to solve this phase of the model we need to derive the H.J.B. equation. We look at what 

happens before time T when we go from t to t+Δ (Δ  0).The resource owner is confronted in this 

very small time span with the uncertainty that the backstop might come online and how he 

optimizes for that for optimal extraction. The “hazard” for the resource owner is that the cheap 

alternative comes online. The “survival” function is given by 1 – F(t) = bte  for our probability 

distribution used. The hazard rate b(t) is given by the growth rate of the survival function and 

therefore is given by ˆ /bt bt

tB be e b         So the exponential distribution gives us a constant 

rate b (which is multiplied by Δt). We now look at this value function (4.4.2) before the backstop 

comes online over this infinitesimally small time period and start our reformulation: 
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Our approach is as follows. We try to get a term that for Δt  0 as the derivative of the value 

function with respect to time on the left hand side. So what we did here is to first multiply by the 

discount factor and open up the 2nd term in the bracket. Then we subtracted ( )B

t tw S  from both 

sides and then divided by Δt and therefore have the time derivative for the change in t 

infinitesimally small. Now on the right hand side we can use the rule of Bernoulli to evaluate the 

limits of the indeterminate forms for the 2 fractures with: 
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Next we substitute for the time derivative of the value function 𝑤̇𝐵 that we got on the left hand side 

with a factor times the time derivative of the resource stock 𝑤𝑆
𝐵𝑆̇. So the marginal change in the 

value function 𝑤̇𝐵 is equal to the marginal change in the resource stock times the factor 𝑤𝑆
𝐵. 

Therefore we get (and using our state equation) the following HJB equation (suppressing the time 

index to keep it compacter): 

 

   max ( , ) ( , , , ) ( , , , ) ( , ) ( , , , )
B

B B B B B A B

S
R

R p R R w S b b w S b w S rw S b             (4.4.3) 

 

This means the optimal profit value of the extracted resource minus the expected reduction in value 

from the possibility of a backstop technology showing up is equal to revenue with interest rate r. 

We will now leave out the arguments of the value functions and only add them in when we should 

need them. Differentiating the profit with respect to our control the extraction rate RB using the 

inverse demand function and setting equal to 0 yields as the optimal price path for phase B: 

 

1
(1 ) 0

1 1/

B
B B B S
t S t

w
p w p

 
    


 

(4.4.4) 

 

So marginal revenue of extraction of the NRR has to equal marginal value in situ in optimum. 

We now get the optimal extraction path for t < T by inserting this into the demand function 

(4.1.3): 

 

1 1/B

t B

S

R c
w






 
  
 

 
(4.4.5) 
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Next we can insert this extraction path and price path into (4.4.3) and get therefore the following 

equation: 

 

𝑐𝜓𝜎

𝜇
(

𝑤𝑆
𝐵

1 − 1/𝜇
)

1−𝜇

− 𝑏(𝑤𝐵 − 𝑤𝐴) = 𝑟𝑤𝐵 
(4.4.6) 

 

We used 𝑤̇𝐵 = 𝑤𝑆
𝐵𝑆̇ which means this a FODE with the value function ( , )A A

tw w S   as the 

inhomogeneity. Since 
1/

1 1/( ) /A

Tw c r S


        (4.2.9) we therefore guess that the value 

function we are looking for is 
1 1/B

tw S   . The inhomogeneous part often has the same functional 

form but with different coefficients so we have to find a way to determine it and can find via the 

method of undetermined coefficients a P with ( , )P P b   that satisfies the following equation: 

 

1
1 ( )

( )
c P c

P b r b
r

    

 

   
    

 
 

(4.4.7) 

 

Therefore we indeed found an expression for the value function in phase B with: 

 

1 1/( , , , ) ( , )B

t tw S b S b      (4.4.8) 

 

We can now enter this expression in our equations for the price path (4.4.4) and the extraction rate 

(4.4.5) and using that: 𝑤𝐵 = 𝑃𝑆𝑡
1−1/𝜇

, which means 𝑤̇𝐵 = (1 − 1/𝜇)𝑃𝑆𝑡
−1/𝜇

𝑆̇𝑡 and therefore 

𝑤𝑆
𝐵 = (1 − 1/𝜇)𝑃𝑆𝑡

−1/𝜇
 this gives us for the price path and the extraction path before the backstop: 

 



48 

1/B

t tp PS   (4.4.9) 

1/(1 1/ )

1 1/

B t
t t

PS
R c c P S


  

 





 
  

 
 

(4.4.10) 

 

We then can plug in the extraction path in our state equation (4.1.2) and get directly from the 

differential equation the resource extraction path: 

 

0

B c P t

tS S e
    

(4.4.11) 

 

Let us also define ( , , )D D b c P       as an inversely related factor to P. It measures 

extraction speed in phase B (the decline rate of the extraction rate). If we use D c P    and 

insert our resource stock path just calculated we get the following optimal paths for extraction, 

price and the resource stock in terms of the initial S0 for phase B as: 

 

1/ /

0

B Dt

tp S Pe  , 0

B Dt

tR S De , 0

B Dt

tS S e  (4.4.12) 

 

Therefore our growth rates for the price and extraction (and therefore resource stock) in phase B 

can be directly seen as D/μ and –D. For comparison here are our optimal paths from phase A from 

before: 

 

1/

( )( )A t T r

t

T

c
p e

rS






  
  
 

, 
( )A r t T

t TR S re    , 
( )A r t T

t TS S e    
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Specific cases for the model parameters b and ψ are discussed in appendix (7.2.2) to appendix 

(7.2.4) like for example our model from the previous chapter without a backstop. The results from 

this will be used in the following. To see exactly what happens at time T when we observe a jump 

in the extraction and price paths when the backstop is introduced please take look at appendix 

(7.2.5). There will be a summary at the end of this chapter however. Let us now take a look at how 

our two factors, P and D are influenced by the change in their parameters by looking at the total 

differential for the P function and also get therefore insights into the extraction speed factor D. The 

partial derivatives are derived in appendix (7.2.6). Using (4.4.7) gives us the total differential for 

the P function with: 

 

1/

( )
( (1 1/ ) ) ( ) ( )

( )

b c P
r b c P dP d P c r db

r b


    

    
   

  
       

  
 

 

For b = 0 see appendix (7.2.2) D P c r     and for b  ∞ see appendix (7.2.3) we have

( )
( )

D P c r r


 




  



  


 for Δ > 0 which we have by assumption. Therefore: 

 

; 0D r b    (4.4.13) 

 

We see that that D is higher the higher b (the chance for a backstop occurring). The extraction rate 

today and in the near future is increased (frontloading) to counter the disadvantage of the backstop 

for the resource owner which creates a price wedge which reduces the profit factor P and therefore 

the NPV of profits. We have therefore: 

 

( , , ) 0, ( , ) 0; 0b bD b P b b        (4.4.14) 
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We also see that 0P   for b > 0 for all admissible values of the cost reduction Δ and therefore 

if the green alternative gets marginally cheaper through the backstop the profit factor P declines 

and D will increase. In short the cheaper the backstop makes the alternative the lower profits will 

be and the faster extraction will be (frontloading) for a given resource stock: 

 

0, 0; (0, )D P       (4.4.15) 

 

We further see that ( )r D r b     see appendix (7.2.4) for all b > 0 and that D is highest if the 

backstop technology means an elasticity of supply that is infinite for the green substitute which 

means that Δ = ψ i.e. there is no more need for the NRR in this extreme case once the backstop has 

arrived. 

 

Appendix (7.2.5) shows us that at the time of the arrival of the backstop the lower cost of the green 

alternative let extraction of the NRR RT jump down by a fixed value. The price at t = T will drop 

as long as the following condition for σ (substitutability) and Δ (price reduction) holds: 

 

( ) /D r






 

(4.4.16) 

 

Let us visualize the P and D factors in the following figures 7 and 8 for a backstop that strongly 

reduces the price of the green alternative in blue and for a less effective one in red with b on the 

horizontal axis. The parametrization used is: r = 0.03, c = 1, ψ = 500, Δ = 400 / 200, μ = 2, σ = 1 

and c = 1. We see the maximal value for P at 91.297 for the no backstop case. The cheaper the 

backstop makes the green alternative and the sooner the expected arrival date the lower P will be. 

D shows the opposite picture and has its lowest value at b = 0 with 0.06. If the backstop is more of 

a danger to the monopolist or is expected to arrive sooner the extraction speed will be higher for a 

given resource stock. 
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Figure 7: The Profit factor for a strong (blue) and a weak cost reduction of the green substitute 

 

 

Figure 8: The extraction speed D for a high (blue) and low reduction in cost of the green substitute. 
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As a summary: After T, the price increases with a growth rate of r and the extraction rate / resource 

stock declines with μr with the paths in (4.2.6), (4.2.7) and (4.2.8). Before T, the growth rate of the 

price is higher with ˆ / /B

tp P c D      and the extraction rate / resource stock declines faster 

with: P c D   in anticipation of the uncertain arrival of the backstop technology. This effect is 

stronger the higher the chance of the arrival and the higher the cost reduction from the backstop 

for the green alternative is. The extraction and resource stock as well as the price path before T are 

given by (4.4.12). As a consequence of the change to the backstop technology there is a jump 

downward for the extraction rate and the price will also jump down if the price of the RR drops 

enough and if the substitutability for the NRR is high enough in combination. This is for a given 

resource stock. 

 

4.5 The case of no backstop 

 

A few more words on the case where there is no backstop and we would be back in the model in 

chapter 3 except for the substitute. If b = 0 then the backstop will never be discovered or can be 

thought of as available from the initial period as just a cheaper green energy alternative. If we use 

b = 0 in (4.4.7) than we can easily solve for P with:  
1/

/P c r


   and therefore for

1( / )D P c c r c r           . Then we will have the optimal extraction paths after (4.2.7) 

and before (4.4.12) the backstop with ; (0, )A B

t t tR R rS t      as can be seen by 

0 0

B Dt rt rt rt

t t tR S De rS e rS e e rS          . The resource stock path will accordingly also 

have a decline rate μr over the whole time span. The price path will over the full time scale depend 

on ψ or ψ – Δ for the never discovered / always there cases. Which means they will have the same 

growth rate and no jumps but will start from a higher or lower initial level. This was our model in 

chapter 3 without the green alternative (and therefore a different demand function). 
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4.6 The exploration decision 

 

Now the final step is to get an optimized S0 by choosing how much to optimally invest which was 

assumed given until know. We take the optimal value function wB (4.4.8) for the time when the 

decision for the resource stock is made at time t = 0 and plug in our investment function E(I) with 

E´(I) > 0 and E´´(I) < 0 for the initial resource stock. Therefore: 

 

1 1/

0( ) ( ( )) ( , ) ( )B Bw S w E I P b E I      (4.6.1) 

 

Then we use that in optimum marginal profit of investing in another unit of exploration of the 

resource needs to equal marginal costs as we discussed in chapter 3. Which gives for our total cost 

of εI that marginal costs are ε and we therefore have: 

 

1
1

(1 ) ( ) '( )E I E I P




   
(4.6.2) 

 

Taking the partial derivatives and using our findings from the total differential for P we get the 

total differential for I as (see appendix 7.2.6): 

 

( ( ))'( ) ''( )

( ) '( )

bP db P dE I E I
dI d

E I E I P

 
 



  
   

 
 

(4.6.3) 

 

Compared to our previous model investment now depends additionally on the degree to which the 

price of the green substitute gets cheaper Δ and on how likely it is that the backstop becomes 

available (higher b means lower 1/b, means faster arrival). We therefore see that investment in 

exploration decreases obviously in the costs of investment ε, in a cheaper price of the substitute via 
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the backstop and in a higher probability of a backstop occurring as P declines in b and in a bigger 

Δ. Compared to a baseline monopolist model that is efficient with our assumptions (7.2.7) we 

therefore have higher inefficiency via a lower then optimal initial resource stock caused by the 

uncertainty but which helps the climate by keeping more resources in situ. This means summarized: 

 

0, 0, 0.bI I I     (4.6.4) 

 

 

4.7 Taxation and the green paradox effects 

 

We have seen that extraction paths will be steeper initially as a consequence of the uncertainty in 

the backstop model. This frontloading of extraction means higher extraction rates early for a given 

resource stock, but the same uncertainty about the arrival time of the backstop will effect initial 

exploration investment and therefore the initial resource stock. We can now finally extend the 

model and look how taxes intended to reduce the profit of the resource owner and thereby keeping 

the NRR in situ effect our optimal paths with all 3 sub problems solved. 

 

Let us start with a few words about the case t   since we didn´t discuss it in chapter 3 before 

we analyze our increasing cash flow tax again. A constant tax factor will only decrease the NPV 

of the profits of the resource owner but will not change the demand function or the state equation 

and therefore all paths of extraction, price and resource stock (4.2.6), (4.2.7) and (4.2.8) are not 

affected by it. We can just take the constant tax factor out of the integral sign of the optimization 

problem. This would be the case in our previous model without a backstop as well. So we still have 

that ˆ A

tp r  therefore. The value functions wA from (4.2.9) will be nearly identical just multiplied 

by the θ and the same holds therefore for wB from (4.4.8) which is now given by 

1 1/( , , , , )B

t tw S b S       which reduces their discounted value. This gives us exactly the same 

for the optimal paths in phase B from (4.4.12) as well. For the investment decision our equation in 

(4.6.2) changes to: 
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1
1

(1 ) ( ) '( )PE I E I 




  . 

 

We immediately see that the partial derivative of Investment with respect to the tax factor is given 

by 𝐼𝜃 =
𝜀

𝜃
> 0 and find the total differential with: 

 

( ( ) )

.
'( ) ''( )

( ) '( )

bP d P db
d d

PdI
E I E I

E I E I

 
 




 

  
 


 

 
 

 

 

We see the same effects of uncertainty on the investment decision about arrival time, decrease in 

the price of the green substitute and costs of investment as before in (4.6.4). We find 0I   

unsurprisingly. The lower the fixed tax factor / the higher the fixed tax rate the lower future profits 

will be discouraging exploration. So with a constant tax factor / rate S0 and ST will be lower but 

the optimal paths themselves will be from these lower initial resource stocks unchanged. Therefore 

no relative frontloading occurs and therefore no weak and no strong green paradox effects manifest 

(since the total amount extracted needs to be lower now). Of course the uncertainty of the backstop 

date itself leads to faster extraction initially before its arrival. So while such a tax does nothing to 

make it worse for the environment (there of course will be effects on welfare) it also does not help 

prevent the frontloading caused by uncertainty in this model from the backstop itself which was 

not a problem in chapter 3 since as we said the paths are unchanged. In addition it was already 

discussed by Sinn (2008) why such a tax would be problematic to implement since it needed to be 

chosen very high and unannounced. We therefore look at the more realistic case next. 

 

 

 



56 

Increasing cash flow tax: 

 

We will again use an increasing cash flow tax of the form: 
ˆ

0 0
ˆ,0 1, 0t

t e       . With θt as the 

tax factor and θ0 the initial tax factor in period t = 0. The optimization problem therefore changes 

to: 

 

,
0

max rt

t t t
I R

t

Exp p R e dt I 






 
 

 
  

 

 

With the same depletion equations as before. With such a tax our Hamiltonian looks like it did in 

the model in chapter 3 just with the price of the NRR now also depending on the price of the green 

substitute. The growth rate of the extraction rate and of the price in phase A will be therefore given 

by ˆˆ ( )A

tR r r        and ˆˆ A

tp r r   . Using our state equation we can find the paths for 

prices and extraction for phase A via the same procedure as before as: 

 

1/

ˆ( )( )( )

ˆ( )

A r t T

t

T

c
p e

r S






 

 
 

    
 

(4.7.1) 

 

ˆ( )( )ˆ( )A r t T

t TR S r e         (4.7.2) 

 

The optimal resource development path is then given by: 

 

ˆ( )( )A r t T

t TS S e      (4.7.3) 
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This means the extraction rate in t = T will be higher given S(T) and the extraction path will decline 

therefore steeper with ˆˆ ( )A

tR r r        than in the no-tax case. It also means that the price 

path will be steeper but will start at a lower level for the given resource stock in t = T. Lastly the 

resource stock path will also be steeper in its decline for a given S(T). As long as we would assume 

a given resource stock the effects would be clear and cause weak and strong (given the stock 

constraint of full depletion) green paradox effects in phase A. 

 

The optimal value function after the backstop wA changes from (4.2.9) and its counterpart wB for 

the pre backstop phase from (4.4.8) and they now have the tax factor as an argument and are given 

by: 

 

1/

1 1/( )
( , , )

ˆ( )

A

T T T T

c
w S S

r





  

 


  

   
 

 

(4.7.4) 

 

1 1/ˆ( , , , , ) ( , , )B

t t t tw S b b S           (4.7.5) 

 

Whereby the derivation of the HJB equation follows the same procedure as before and our guess 

for the form for wB changed now by the tax factor θt to 1 1/B

t tw S    . For the factor P we get 

therefore that equation (4.4.7) changes to: 

 

1

1 ( )ˆ( )
ˆ( )

c P c
P r b b

r

    


  

   
     

 
 

(4.7.6) 

 

Which ˆ( , , )P P b    satisfies now with the growth rate of the tax as an additional argument. 

Therefore we can have a look at the optimal paths before the backstop comes online and see that 

they have the same form as before the tax was introduced in (4.4.12). But as we just said of course 
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our P factor solves now (4.7.6) and is different than before depending on the growth rate of the tax 

factor. The same is true for the extraction speed factor ˆ( , , , )D D b    which now also depends 

on ̂ . The paths for phase B are therefore given by: 

 

ˆ1/ ( , , , ) /

0
ˆ( , , )B D b t

tp S P b e        

ˆ( , , , )

0
ˆ( , , , )B D b t

tR S D b e        

ˆ( , , , )

0

B D b t

tS S e     

 

 

Like before we can now look how the factors P and D will change in their arguments. The partial 

derivatives for P are again found in appendix (7.2.6). The total differential is given by: 

 

1 1
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  

 
                            

  
   

 

(4.7.7) 

 

Which gives us (remember ˆ ˆ( , , , ) ( , , )D b P b c        ): 

 

ˆ ˆ0, 0, 0, 0, 0, 0.b bD D D P P P          (4.7.8) 

 

The profit will be smaller for a higher probability of the backstop arriving and for high Δ meaning 

for larger decline in the cost of the green substitute after arrival of the backstop. Which matches 

our findings before the tax was introduced. For D we have the opposite. Additionally now the 

slower the tax factor declines (higher ̂ ) / the slower the tax rate increases the higher the P factor 

and the lower therefore the extraction speed D since future resource rents are reduced only slowly. 

Our equation for the optimal exploration decision in the beginning is now given by: 
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We find straight forward that the partial differential of investment with respect to the growth rate 

of the tax factor is: ˆ ˆ( / )I P P
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We again have: 

 

0, 0, 0bI I I      (4.7.9) 

 

Which matches our findings in the model without and increasing cash flow tax (4.6.4). Investment 

will decline in its cost, in a faster arrival time of the backstop and in higher reduction of the price 

of the green substitute via the backstop. For the effects of the tax on exploration itself we see using 

(4.7.8) that: 

 

0 ˆ0, 0I I 
   (4.7.10) 

 

The higher the initial tax factor / the lower the initial tax rate, the higher investment will still be 

and therefore the resource stock but again not higher than without a tax of course. Any positive tax 

factor therefore will lead to lower overall extraction. The higher ̂  so the slower the decline rate 
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of the tax factor / increase of the tax rate the higher will be investment as future resource rents 

shrink slower again but not above the case without a tax. Extraction will be frontloaded. A weak 

green paradox therefore will only manifest like in our model without a backstop in chapter 3 if the 

reduction in the initial resource stock is not strong enough to compensate for the initial frontloading 

The existence of a strong green paradox is also ambivalent only existing for certain combinations 

of the initial tax factor and the decline rate of the tax factor and the specification of the other 

parameters as well. But the tax now affects the extraction path and the investment decision that is 

already affected by the uncertainty connected to the backstop. So the effects compound. Without 

an endogenous resource stock both green paradox effects would exist like in Chapter 2 for any 

form of tax and the uncertainty would just lead to frontloading of extraction as well which again 

shows the importance of modelling it endogenous. 

 

Subsidies, positive feedback effects and tipping points 

 

Van der Ploeg comes to the conclusion that with appropriate subsidies the green paradox will exist 

initially as a consequence of environmental policies but then disappear as the effect of lowered 

overall extraction will most likely dominate the frontloading. An optimally designed government 

subsidy that helps speed up the arrival time of the backstop might then be useful (and also deal 

with welfare effects). But this of course strongly depends on the damage function used (we discuss 

the damage function a bit more in Chapter 5). There might be tipping points caused by positive 

feedback effects in the carbon cycle that play a role here. For example the speed up of resource 

extraction leads to large scale melting of the polar ice caps which reduce the reflection capacity of 

the planet or huge amounts of methane are released from thawing permafrost areas, changes in 

vegetation can release or bind huge amounts of carbon etc. so that the GHG released by extraction 

effect the GHG released into the atmosphere by natural causes (Winter, 2014). 

 

We might then have the situation that the initial speed up of extraction caused by making b endogen 

via an environmental policy that subsidies innovation to push the date for the arrival of the backstop 

forward will push us over the tipping point whereas without or a milder policy the backstop would 

have arrived later and the tipping point could have been avoided but early enough so that enough 
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of the resource stays in the ground to avoid too much increase in temperature. There might be a 

sweet spot in the middle for which it is best for the backstop to arrive and carbon pricing might 

need to play an important role in addition to subsidizing innovation to speed up the advent of a 

backstop technology in order to avoid green paradox effects (Winter, 2014). 
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4.8 Numerical Simulation 

 

We will now visualize some of our findings in the following figures. We will focus on the 

extraction paths which most directly show the effects of the model additions and the tax on the 

frontloading of extraction and the initial resource stock. The parametrization used is b = 0.05, r = 

0.03, c = 1, ψ = 500, Δ = 400, μ = 2, σ = 1 and ε = 1 (investment costs). The backstop is expected 

for T = 1/b = 20. If the resource stock is assumed exogenously given we set it at S0 = 500. The 

investment function E(I) is set to S0 = αIβ with α = 1 and β = 0.9. These will be used if not otherwise 

stated in the following. 

 

Let us first take a look at the extraction paths if the resource stock is exogenously given and there 

is only the frontloading response to isolate the effects. We compare our model without a backstop 

to different cases with a backstop. We see in Figure 9 in red the extreme case of ψ = Δ (NRR is 

obsolete after the backstop) which means that the profits will be lowest for the discussed cases with 

a P factor of P = 55.90 and the extraction rate initially will be highest accordingly with the decline 

rate D = 0.16 before the backstop arrives. This will after some time change because of the faster 

depletion and extraction will become slower. In green we see the “standard” backstop case with 

uncertainty. Using equation (4.4.7) we have that P = 70.096 and the decline rate of extraction before 

the backstop arrives as D = 0.1018. In magenta we have the case were the arrival time of the 

backstop in known. In blue we see our original model without a backstop (we set b = 0 as in (7.2.2)) 

and get P = 91.287, D = μr = 0.06 for the whole time horizon. Once the backstop arrives extraction 

rates jump down by a fixed amount and then decline at the same optimal rate -μr although from 

different resource stock levels ST as a consequence of different initial extraction rates (in case of 

the perfect backstop extraction rates will be 0). The initial extraction rates for the given resource 

stock are R0 = 30 for the case without a backstop, 39 for the case with a known arrival time, 50.9 

for the case with uncertainty about the arrival time of the backstop and 80 for the special case where 

the NRR becomes obsolete as soon as the backstop is there. 
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Figure 9: Extraction paths for an exogenous resource stock. In blue the no-backstop case, in magenta the case with a known 

arrival time, in green the backstop with unknown arrival time and in red the case with infinite elasticity of the substitute. 

 

Let us next take a closer look at the uncertain arrival time and optimized initial resource stock S0. 

We see in Figure 10 the extraction path for an optimized S0 comparing our model without a 

backstop (b = 0) as the blue line and the paths of our model with a backstop for 2 cases. In green 

the case where the guess for the arrival time was right at T = 1/b = 20 and for a case where the 

guess was wrong and the backstop arrived delayed at T = 30 (in red). The decline rate of the 

extraction path of the non-backstop model is μr for the whole time horizon starting now from the 

significantly higher initial resource stock relative to the backstop cases. For the backstop models 

we have a steeper decline rate D in both cases before the backstop arrives (lines are identical until 

T 20) and then the jump down in extraction once the backstop arrives after which the decline rates 

are the same with μr < D again from different resource stock levels meaning that in the case where 

the backstop arrives at T = 30 there will be faster extraction speed for longer and a smaller jump 

down meaning more frontloading.  

 

The uncertainty about the arrival time leads to higher extraction rates for a – given - resource stock 

which will eventually reverse because of this higher decline rate. In the case depicted the initial 

extraction rates are indeed higher for the backstop cases but if the endogenous initial resource stock 
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would decline even stronger vs the no-backstop case as a consequence of the uncertainty it could 

also be that initial extraction rates are lower. In our parametrization the extraction rates will get 

lower relatively fast for the backstop models quite some time before the backstop arrives vs the no 

backstop-model. 

 

Figure 10: Extraction paths with no backstop (blue) and for a model with a backstop and a wrong guess (green) and right guess 

(red) for the arrival date of the backstop. The expected arrival date was T = 20. 

 

We now take a look how the extraction paths change if we allow for an optimal exploration decision 

in Figure 11. The optimal initial resource stocks here are S0 =284 from (4.6.2) and our specific 

form of the investment function for the standard backstop case, S0 = 437 for the case without a 

backstop since there is no uncertainty here encouraging investment. Furthermore S0 = 196 for the 

special case of the perfect backstop and S0 = 350 for the case of the known arrival time. We see 

that for our parametrization the extraction paths still show higher initial extraction rates vs the no 

backstop-case but since the initial resource stocks will now be lower if endogenously determined 

caused by the lower P factor they are now much lower than before. If the resource stocks would 

have declined even more than we depicted based on our parametrization because of the uncertainty 

/ cheaper price of the green alternative then initial extraction rates could be lower vs the no-

backstop case. The case were the arrival time is known is less inefficient and the resource stock 

decline is relatively smaller than in the uncertain case and the extreme case of the perfect backstop 
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shows the strongest decline in the initial resource stock. This again shows the importance of 

allowing an optimized initial resource stock decision in our model. 

 

Figure 11: Extraction paths for a known arrival time (magenta) vs unknown but correctly guessed case (green) the perfect backstop 

case (red) and our model without a backstop (in blue). 

 

Let us turn to the effects of taxation next. We showed that a constant tax will leave the optimal 

paths unchanged but lowers profits and thereby investment in exploration and so the initial resource 

stock. This means initial extraction rates will be lower as the tax factor decreases and total 

extraction will be lowered which means that both green paradox effects are avoided. This is shown 

exemplary for our “standard” backstop case with a solid line for θ = 1 (no tax), a dashed line for θ 

= 0.9 and a dotted line for θ = 0.7 in Figure 12. It was explained in the previous chapter and by 

Sinn (2008) why it is unlikely that such a tax is implemented however. 
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Figure 12: The effects of a constant tax. Solid means no tax, dashed for a low tax rate, dotted for a high tax rate. 

 

We now look at the effect an increasing cash flow tax has on our model without and with a 

backstop. P will now satisfy (4.7.6) in the tax case and depends on the growth rate of the tax factor 

which we set to 𝜃 = −0.05. And for the initial tax factor we have θ0 = 0.8. The tax will reduce 

profits, increase extraction speed and lower the initial resource stock just like the inclusion of the 

backstop itself. Investment will be affected through the change in P caused by the growth rate of 

the tax factor and through the initial tax factor as seen in (4.7.10). Our optimal value function wB 

changed to (4.7.5) and has now the tax factor as an argument which means that our condition for 

the optimal resource investment in t = 0 changed to 
1/

0(1 1/ ) ( ) '( )PE I E I    . 

 

We therefore get a decline of the profit factor to P = 48.82 for our backstop model as we expected 

since future profits are lowered and a speed up of extraction with D = 0.21 showing the frontloading 

of extraction caused by declining future resource rents. Our investment decisions therefore gives 

us a lower S0 = 157. For our model without a backstop P also declines to P = 55.9 giving us a D = 

0.16 = ˆ( )r   and a decline in the initial resource stock to S0 = 196. Figure 13 depicts this with 

the extraction path of the model without a backstop as always in blue and dotted for the case with 
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a tax and in green for our backstop model (again the dotted line showing the tax case). In the model 

without a backstop the extraction path still declines over the whole time horizon with the same now 

higher rate of ˆ( )r  in the tax case from a higher starting point. For the back stop model the 

decline rate after the backstops arrival also changes from r to ˆ( )r   and the decline rate before 

the backstops D will be faster as we just saw as well. The effects of the tax itself are of the same 

nature qualitatively in both models. For this parametrization the extraction rates again increase 

initially for both cases after the introduction of the tax which means a weak green paradox occurs. 

Of course like in our model in chapter 3 the weak green paradox exists for a range of combinations 

of initial tax factors and growth rates of the tax and might be avoided through a higher reduction 

in the resource stock for different parametrizations. 

 

Figure 13: The effects of an increasing cash flow tax (dotted lines) on extraction paths of the model without a backstop (blue) and 

with a backstop (green). 

 

Two comments on the price paths in Van der Poleg’s model here. First the jump for the price path 

at the backstops arrival will only be downward for the NRR if the backstop technology is good 

enough with high enough σ and Δ in combination as is shown in appendix (7.2.5) and otherwise 

will jump upward. Second the price paths are different for the case of the backstop never arriving 

and the case of it existing from the beginning as lower prices of the green alternative. In the latter 
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case the price paths will be lower. This is depicted in Figure 13 for the case that the backstop arrives 

at its expected time T = 20. 

 

 

Figure 14: Price paths for weak backstop in red and strong backstop in green and for the no backstop cases (dotted for the case 

with high prices for the green substitute). 

 

4.9 Findings 

 

The addition of uncertainty in the model by Van der Ploeg via the unknown date of the arrival of a 

backstop technology leads to steeper extraction paths before the backstop arrives caused by 

lowered future profits as demand for the NRR will decline in cheaper prices of the green alternative 

vs a model without a backstop. The extraction rate will jump down at the arrival time of the 

backstop and then follow a flatter extraction path that matches the one in our model without a 

backstop but from a lower starting point (7.2.5). The price path will also be steeper (in its increase) 

before t = T and there will be a jump downward or upward in the price of the NRR depending on 

how good the backstop technology substitutes the NRR and how strong it reduces the price of the 

alternative (4.4.16). This is for a – given – initial resource stock. The steepest extraction path is 
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seen for the case of a perfect backstop technology where the NRR becomes obsolete once the 

backstop arrives. 

 

The initial resource stock decision is however also affected by the uncertainty and will now not 

only be lower in its cost but also in a higher decrease of the price of the green alternative and in a 

shorter arrival time of the backstop (4.6.4). So while the uncertainty speeds up extraction 

additionally it also lowers the resource stock additionally. It basically adds another layer of the 

same countervailing forces the tax itself causes. 

 

When we add a constant tax to the model it lowers the net present value of profits and therefore 

affects initial investment in exploration which will be lowered as the tax is set higher, creating a 

lower initial resource stock. The optimal paths are not changed from this new lower resource stock 

levels in both phases however and will therefore not create either green paradox effect as no 

frontloading occurs and total extraction will be lower. 

 

An increasing tax leads to an increased decline rate of extraction in the phase after the backstop 

given by our equation for the extraction path in (4.7.2) compared to the case without a tax (4.2.7) 

since ˆ( )r r   which is the same finding as in chapter 3. Before the backstop comes online the 

paths found have the same form as in the case without a tax (4.4.12) but the growth rate of the tax 

factor now influences our profit factor P and the inversely related D which is a measure of 

extraction speed. The faster the tax factor declines / the tax rate increases (the lower ̂ ) the faster 

the extraction speed D and the decline in profits as seen in (4.7.8). Furthermore any tax will 

decrease the initial resource stock in S0 and consequently given our findings for the extraction rates 

(and resource paths) ST given the resource constraint must hold. The higher the initial tax factor is 

the higher investment in exploration but since 0 [0,1]   it can never be higher than without a tax. 

The higher the growth rate of the tax factor / the slower the tax increases the higher the initial 

investment remains but again always below the case of no tax which is seen in (4.7.10). 
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Furthermore will S0 and ST not be affected by the uncertainty of the backstop technology coming 

online in a different way through the initial tax rate or the growth rate of the tax as seen in (4.7.9). 

We see that the introduction of an increasing cash flow tax into our model with a backstop doesn´t 

show a different influence of exploratory costs, of a cheaper green alternative after the arrival of 

the backstop and of the probability of the arrival of a backstop vs a baseline model without the tax 

concerning the exploratory decision and therefore the resource stocks. 

 

There is additional frontloading now as the backstop and the tax cause it and there is an additional 

reduction in the resource stock also caused by these two. The uncertainty of the backstop arrival 

time itself causes frontloading and therefore worsens initial climate damage for a given resource 

stock but the initial resource stock will be lower as this uncertainty reduces the value of exploration. 

The tax causes frontloading of extraction in both phases and reduces initial investment efforts. 

Depending on the relative size of these effects of increasing extraction speed and declined resource 

stocks in the 2 phases we could observe an increase or decrease in initial and total damages and 

therefore for a probability of a weak and strong green paradox vs a no-backstop model. It was again 

shown that modelling the initial resource stock endogenously is important to see that the green 

paradox only exists for certain specifications of the tax. Optimal climate policy that tries to avoid 

green paradox effects has to take care to look at the specific effects technological progress has on 

the frontloading of extraction and the investment in exploration to be fully effective. 

  



71 

5 Discussion of model assumptions 

 

5.1 The damage function 

 

We want to add a small discussion about two of the assumptions used in the models concerning 

generalizability of the results. Since the weak green paradox only looks at initial extraction it is of 

course irrelevant for it how the damage function we use looks like. The choice of the right damage 

function is on the other hand highly important for the existence of a strong green paradox effect as 

the function we use in Chapter 2 and 3 assumes that the marginal damage a unit extracted causes 

increases slower than the interest rate which means that the discounted marginal damage decreases 

as time progresses so damage is driven relatively stronger by the timing then by total extraction 

and a flattening of the extraction path is seen as preferable to just keeping more of the resource in 

situ. Damage functions exhibiting constant marginal environmental damage independent of timing 

(Allen et al., 2009) and ones that try to incorporate tipping points (Dietz et al, 2021) or lagged 

adjustment processes between the atmospheric accumulation of carbon and the climate damage 

(Houghton et al, 1992, Chap. 3) put the focus on cumulative extraction instead. 

 

Neither is the depreciation of CO2 (or other GHG) in the atmosphere taken into account which 

would probably have a decreasing rate caused by the saturation of the carbon-sink capacities of for 

example heating oceans although increasing CO2 might also lead to more biomass in the form of 

forests that could absorb more and an increasing amount of it (Houghton et al, 1992). Since we are 

dealing with a model with an infinite optimization horizon at least the later should be kept in mind 

concerning the results. In any case it is not a simple task to know what makes the damage function 

more realistic and what actually doesn´t. 

 

The assumption of our model is, that the climate damage only depends on the accumulated 

emissions and increases smoothly while in reality nonlinearities and tipping points may play a role 

(Lenton, 2008) which potentially could cause accelerated accumulation and even higher damage 

per unit of extraction as time progresses. There are on the other hand some arguments that the effect 
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of intertemporal frontloading might not be that severe if cumulative extraction is the main 

determinant of the behavior of the system (Allen, 2009). 

 

5.2 The Initial resource stock 

 

Any initial tax in our models reduces S0 since 0 (0,1)  . There is no initial tax rate that allows the 

capital stock to be bigger in a scenario with taxes than in a scenario without taxes. The models used 

see exploration as an initial investment based on the idea that the exploratory effort is a sunk cost. 

But in reality an increasing tax could theoretically affect exploration by causing a “black gold rush” 

(Cairns, 2014) which could be understood as a speed up of exploration much like the frontloading 

happening for the extraction. This could in itself cause additional environmental damage and would 

make resources earlier available for extraction thereby frontloading extraction potentially 

additionally. Or put another way the accumulation of resources could be finished earlier than t = 0 

in our model and therefore extraction could start earlier. On the other hand the lower value of the 

explored resource stock might discourage exploration and lower S0 like it does in our models 

especially since exploration costs are very often seen as sunk cost and therefore our modelling 

might actually be not as unrealistic as one might think. Additionally concerns are how much 

exploration could actually be sped up because of limitations of manpower, technology, and 

environmental laws etc. which effects exploration potentially even more than extraction. (Cairns, 

2014). 

 

6 Conclusions 

 

After our motivation for using an endogenous resource stock we started with a simple classical 

model of resource extraction under monopolistic market structure akin to Stiglitz (1976) to have a 

baseline for later additions to the model, to explain in detail the assumptions and to show the 

countervailing forces caused by the increasing tax most clearly. This led to the existence of a weak 

and a strong green paradox given our model specifications for any possible tax scheme with the 
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additional finding that the higher the decay rate of the tax factor (the faster the tax increases) the 

higher was total damage just like in Sinn’s model since the resource stock was exogenously given. 

 

Extending the model to the case where an optimized exploration decision is made in the beginning 

after which extraction starts and keeping the monopolistic market structure we found that it now is 

important how the environmental policy is designed. The existence of a weak green paradox is 

more probable for a high initial tax factor / a low initial tax rate and for a fast decreasing tax factor 

/ a fast increasing tax rate for the other parameters held constant. Furthermore one cannot exclude 

the possibility of the existence of a W.G.P. for any growth rate of the tax factor. The existence of 

a strong green paradox also increased in probability in a high initial tax factor and the growth rate 

of the tax had now a range for which a strong green paradox could exist with too low and too high 

values excluding the possibility for its existence (but even for this range it must not exist given the 

other parameters). The other model parameter were analyzed for their specific effects on the two 

tax scheme elements. Additionally it was shown that with a simple form of uncertainty concerning 

property rights that were present in Sinn’s (2008) original paper that those exhibits the same effect 

as the discount rate does for the weak and strong form of the green paradox. The results were then 

visualized. The findings of Österle therefore where replicated with the new market structure given 

an assumption about the elasticity of demand to exclude extreme cases and under a slightly 

modified but still isoelastic demand function. 

 

In Chapter 4 the model was extended to a form that includes a green alternative to the NRR resource 

a backstop technology that will lower the price of the green substitute and uncertainty about its 

arrival time based on Van der Ploeg (2013). It was explained that the growth rates of extraction 

were now different before and after the arrival of the backstop. For a given resource stock initial 

extraction rates increased vs a non-backstop variant with even higher speed up if the date of the 

backstops arrival is not known and the stronger the backstop lowers the price of the green 

substitute. At the time of the arrival of the backstop extraction jumped down by a fixed amount. 

After the arrival of the backstop the extraction rates followed the same decline rate as in our model 

without a backstop but from lower (and less efficient) resource stock levels caused by lower 

investment caused by the uncertainties which reduce profits. 
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It was shown that the resource stock in both phases will further be lower if an increasing cash flow 

tax is introduced. The uncertainties introduced changed the structure of the optimized paths for 

extraction, prices and the resource stock reinforcing the effects that the backstop itself caused and 

showed the same reaction to the tax like in our model in chapter 3. These findings also hold for the 

exploratory effort which did now additionally decrease based on the other additions to the model 

(a cheaper price of the green substitute caused by the backstop and a higher probability of the 

backstop arriving). It was shown that investment declined in a decline of the initial tax factor and 

in a faster increase of the tax rate. 

 

The uncertainties about the backstops arrival time itself introduced an additional speeding up of 

extraction which increases the chance for a green paradox effect but also reduced investment in 

exploration which lowers it. The findings of the original model therefore are also robust to the 

implementation of a backstop technology with uncertainty about its arrival time if the original 

assumptions of no extraction costs and the specific form of the iso-elastic demand function are kept 

concerning our increasing cash flow tax. It was furthermore shown that a constant tax in this 

specific model only effected the investment decision (by lowering investment) and did not change 

the optimal paths of extraction, price and the resource stock in both phases given the new lower 

resource stocks like in Sinn’s (2008) original model. The findings were then visualized by a 

numeric simulation taking into account the change in the initial resource stock. We closed with a 

short discussion of certain model assumptions that could be further investigated. 
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7 Appendix 

 

7.1 Monopoly with endogenous resource stock and no backstop 

 

7.1.1 Effect of α on the condition for a S.G.P. 

 

Let us define the R.H.S. of (3.4.2) as: 
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We see that the right hand side is strictly decreasing in α. Of course this could also be shown with 

the partial derivative with respect to α which is strict smaller than 0. 

 

7.1.2  Model with uncertain property rights 

 

The optimization problem is now: 
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The current value Hamiltonian:  
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Using that the initial resource stock has to equal total extraction we find the initial extraction rate 

and the extraction path formulated for the initial resource stock: 
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Plugging Rt into the damage function Ω (2.1.5) and solving the integral gives equation: 

0 0
ˆ( )

ˆˆ( )

r S

r r

  

   

 
 

   
. 

To make S0 endogen we again equate the marginal cost of total exploration and the shadow price 

of the resource in period t = 0 and get the following expression for the initial extraction rate: 
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For the W.G.P. we compare 0 0

T NTR R and get the following condition: 
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And for the S.G.P. we again get our expression for total climate damage as: 
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Giving us: 
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If we compare 
T NT    we finally get the condition for the existence of the strong green 

paradox: 
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7.2 The backstop model 

 

7.2.1 Derivation of S1/b for a known arrival time of the backstop 
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And we have: 
/

1/ 0 0
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bS S e S   

 

7.2.2 Case of no backstop: 0b   

Using (4.4.7) we have that:  
1

( ) /P c r    and therefore D c P r    . So when there 

never is a backstop or think of it as just a lower price of the green alternative from the very 

beginning we are back in our model from chapter 3 for the decline rate of the extraction path. We 

see that the decline rate of extraction is the same for the whole time span of the model and the 

extraction paths of A and B are identical for all t. 

 

7.2.3 Case of imminent backstop: b  

 

From (4.4.7) we get that: 
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
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 This is larger than rμ for Δ > 0 (otherwise the 

backstop technology would have no effect on the price). Therefore P is higher without a backstop 
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ever arriving (b = 0) and D is higher (independent of the green substitute’s price) if it is imminent 

that the backstop arrives. 

 

7.2.4 Case of a perfect backstop:    

 

This gives us from (4.4.7) that:
1( ) / ( )c P P r b      and therefore: 
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This means extraction speed will be faster and profit will be lower (for any b > 0) than the standard 

case since if the backstop arrives there will be no more demand for the NRR since ψ – Δ = 0. The 

extraction path before the backstop arrives is therefore given by: 
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7.2.5 Jump in paths at time T: 

 

If we look at the point in time just before the backstop technology arrives we get from (4.4.12) that 

at t = T- immediately before t = T we have for the price, the extraction rate and the resource stock 

using D c P   : 
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T TS S e S

   . 

So the stock of the resource at t = T and immediately before that is the same. Inserting into our 

paths from phase A (4.2.7) and (4.2.8) with t = T and the current resource stock gives: 
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So the extraction rate jumps down when the backstop arrives and the price will also jump down if 

the combination of cost reduction and probability of arrival is high enough. Otherwise it will not 

change if the last term holds with equality or the price will instead jump up if the effect of the 

backstop is too weak. 

 

7.2.6 Partial derivatives for the P factor and investment 

 

P factor for the case without taxes:  

 

For our P factor ( , )P P b  and D P c  in the no tax case (4.4.7) we find the partial 

derivatives as:
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This gives the total derivative as: 
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Investment for the case without taxes: 
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For our optimality condition without tax 
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This gives the total derivative as: 
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P factor for the case with an increasing tax:  

 

For our P factor ˆ( , , )P P b   and D P c  in the no tax case (4.7.6) we find the partial 

derivatives as: 
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This gives the total derivative as: 
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7.2.7 Efficiency of the optimal paths 

 

Stiglitz (1976) showed that for no extraction costs and isoelastic demand the optimal growth rate 

of prices has to be equal to the interest rate r and the optimal decline rate of the extraction rate has 

to be -μr if there are no taxes and if there is no uncertainty in the case of a monopoly. If there is no 

backstop technology then P = P(ψ-Δ,0) and D = D(ψ,Δ,0) as b = 0 and the efficient paths are: 
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 if the backstop exists from the start as a cheaper substitute. 
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Therefore the efficient paths of extraction and resource stock are not affected by the price of the 

substitute and the price path depends on the price of the substitute or the cheaper price for the 

substitute. After the backstop the optimal paths are efficient given a ST that is too low and before 

the backstop they are too high in the backstop model. They start at too high levels and then decline 

/ increase too fast that is why ST is too low. 
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