

MOPSEUS – A DIGITAL REPOSITORY SYSTEM WITH
SEMANTICALLY ENHANCED PRESERVATION

SERVICES

Dimitris Gavrilis Stavros Angelis Christos Papatheodorou
Digital Curation Unit,

Institute for the Management
of Information Systems,
Athena Research Centre,

Athens, Greece
d.gavrilis@dcu.gr

Digital Curation Unit,
Institute for the Management

of Information Systems,
Athena Research Centre,

Athens, Greece
s.angelis@dcu.gr

Department of Archives and
Library Sciences, Ionian

University, Corfu, Greece and
Digital Curation Unit, Institute

for the Management of
Information Systems, Athena

Research Centre, Athens,
Greece

papatheodor@ionio.gr

ABSTRACT

Repository platforms offer significant tools aiding
institutions to preserve the wealth of their information
resources. This paper presents the data model as well as
the architectural features of Mopseus, a digital library
service, built on top of Fedora-commons middleware,
designed to facilitate institutions to develop and
preserve their own repositories. The main advantage of
Mopseus is that it minimizes the customization and
programming effort that Fedora-commons involves.
Moreover it provides an added value service which
semantically annotates the internal structure of a Digital
Object. The paper focuses on the preservation
functionalities of Mopseus and presents a mechanism
for automated generation of PREMIS metadata for each
Digital Object of the repository. This mechanism is
activated whenever an object is modified and is based
on a mapping of the Mopseus data model to the
PREMIS data model that ensures the validity of the
transformation of the information stored in a Mopseus
repository to semantically equivalent PREMIS
metadata.

1. INTRODUCTION

Nowadays there exist several platforms that support the
development of digital repositories, but a few of them
focus on preservation and facilitate the repository
administrators to implement preservation plans. On the
other hand the existing preservation platforms, such as
CASPAR [8] and Planets [9], provide infrastructures to
meet the requirements for preservation actions of large
memory organizations such as national libraries and
archives. A crucial issue is how much effort users are
required to put in order to develop digital repositories on
top of such platforms, especially when these users are
small institutions with tight, small budgets [15].
Existing repository platforms, such as eSciDoc
(http://www.escidoc.org/), offer a number of powerful
services, while some, such as Blacklight
(http://www.projectblacklight.org/), offer an easy
interface and some other, such as RODA [13]
(http://roda.di.uminho.pt/), provide preservation
features. However they are complex for small – medium

organizations and/or demand a number of pre-requisites
to be setup.

This paper presents Mopseus, a digital library
service, inspired by the conceptualization of [11] and
built on top of Fedora-commons middleware that
provides repository development and management
services in combination with basic preservation
workflows and functionalities. These functionalities are
based on an infrastructure that semantically correlates
the repository content. Mopseus is designed to facilitate
institutions to develop and preserve their own
repositories [1]. In comparison to the Fedora-commons
platform, Mopseus provides a repository system,
without the need of customization and the programming
workload that Fedora-commons involves. Additionally,
Mopseus indexing process is based on a RDMS,
ensuring efficiency.

The main objective of the paper is to present an
enhancement of the preservation features of Fedora-
commons platform implemented by Mopseus. Mopseus
is based on an expressive data model aiming to enrich
the vocabulary of relationships between the entities of
the Fedora-commons model, which are the repository
objects and the data structures they contain. The
proposed vocabulary revises and improves the existing
relationships and defines them explicitly and formally
using RDFS. This extension enables the management of
information concerning the provenance of the Digital
Objects. The new data model is mapped to PREMIS
data model [12] in order to automatically generate and
incorporate valid PREMIS metadata in Fedora-
commons repositories. Each time a workflow, consisted
of a number of events, is carried out and affects the
status of a set of repository objects, then PREMIS
metadata are automatically generated for each affected
object and stored in the repository. Thus the PREMIS
metadata generation mechanism is integrated with the
Mopseus workflow management component, modifies
essentially the logging mechanism and enriches the
FOXML [7] schema of Fedora-commons.

In the next section the Mopseus architecture is
outlined and its data model and main functional
components are presented. In section 3 the main
principles on which the preservation features of

Mopseus are based as well as the mapping of Mopseus
data model to PREMIS data model are presented.
Furthermore the implementation of PREMIS metadata
generation mechanism is demonstrated. Finally in
section 4 the Mopseus innovative features are discussed
and in section 5 the main conclusions of the presented
effort are sketched.

2. ARCHITECTURE

2.1. Data Model

Mopseus is based on the main Fedora-commons entities
which are the digital objects and datastreams and
provides an ontology that defines the relationships
between them. In particular the content of a Mopseus
repository is stored as digital objects, consisting of
datastreams, which can be text/xml, text/rdf or binary
(see Figure 1). Thus Datastreams can be correlated to
form Digital Objects that are structures of data and
metadata. Each Digital Object is described at least by a
Dublin Core record implemented as a Datastream.
Additional descriptive metadata, following any schema,
could be incorporated as Datastreams. A new entity
enhancing the Fedora-commons conceptual schema is
the container. A Container is a Digital Object which
aggregates a set of Digital Objects or other Containers.
For instance a collection of the PhD theses of a
University Department is a Container, which consists of
several Digital Objects (PhD theses) and may belong to
anotherContainer, e.g. the collection of the University's
gray literature.

 Each Mopseus Digital Object is an instance of one of
the following entities named namespaces:

- config: The configuration of the repository itself is
encoded by and stored as Digital Objects of this
namespace. This makes Mopseus a self-describing
repository, which means that all information regarding
the setup of the repository is stored as Digital Object
itself and thus is preserved following homogeneous and
common preservation mechanisms.Thus, the required
knowledge an administrator needs to have in order to
configure and maintain the repository is XML.

- cid: This namespace contains Digital Objects that
describe Containers. Containers can hold metadata (e.g.
DC), binary Datastreams (e.g. a Thumbnail image) and
can form any kind of graph through RDF relations.

- iid: This namespace contains all the Digital Objects
that carry actual information (items), consisting of
Datastreams.

- trm: This namespace contains all Digital Objects
that carry terminology information. These Digital
Objects are encoded in SKOS and each Digital Object
that resides in the trm namespace represents a SKOS
concept.

Another significant entity of the model corresponds to
the notion of workflow, which is a sequence of states (or
events). Each state incorporates a set of basic operations
performed on Digital Objects or Datastreams. The
descriptions of workflows, states and their basic

operations are stored as Datastreams, in the form of
XML documents, and they constitute a part of the Digital
Objects description in the config namespace.

The Mopseus data model relationships are categorized
to the following classes:

- Digital Objects relations: A Digital Object may be
correlated to one or more Containers (or other objects)
through a set of partitive or membership relations given
by Fedora-commons ontology (http://www.fedora-
commons.org/definitions/1/0/fedora-relsext-
ontology.rdfs) and enriched by the DCTERMS
vocabulary for the DC Relation property [6], forming
thus a new ontology named RELS-EXT.

Relationship Domain Range Description
isRDF Object Datastream Denotes that a

Datastream of an
object is an RDF
document.

isThumbnail Object Datastream Denotes that a
Datastream of an
object is
thumbnail.

isImage Object Datastream Denotes that a
Datastream of an
object is an
image.

isImageHighDef Object Datastream Denotes that a
Datastream of an
object is a high
resolution image.

isDocument Object Datastream Denotes that a
Datastream of an
object is a
document.

isDocumentPDF Object Datastream Denotes that a
Datastream of an
object is a
document.

isBinary Object Datastream Denotes that a
Datastream of an
object is a
bitstream.

migratedFrom Object Datastream When an object
is migrated by a
repository, a
Datastream is
generated,
holding all
information
about its
provenace.

Table 1. Mopseus Digital Object – Datastream (RELS-
INT ontology) relations

- Digital Objects - Workflows: The state of a Digital
Object could be modified by a workflow meaning that
there exists a correlation between a workflow and one or
a set of particular affected Digital Object/objects. These
relations are aligned to the vocabulary of PREMIS
EventType element [12] and are directly implemented
through the Mopseus services.

- Digital Objects - Datastreams: A Digital Object is
consisted of one or more Datastreams through a rich

vocabulary of relations referred in Table 1. These
relations enrich the semantics of Fedora-commons
ontology. A crucial relationship for preservation
repositories is the migratedFrom which denotes the
incorporation of a Digital Object from other repositories.

All relationships are described in RDFS and stored in
Datastreams. Specifically, two Datastreams residing in
the config namespace have been implemented:

- RELS-EXT. Contains a slightly enhanced version of
the Fedora provided RELS-EXTontology for describing
relationship types between Digital Objects and
Containers, such as isPartOf, etc.

- RELS-INT. Contains an ontology for characterizing
the constituent Datastreams of a Digital Object and the
relationships between them e.g.isDocument,
isThumbnail, etc. Its main classes and relationships are
presented in Table 1.

Figure 1. Mopseus data model

2.2. Functional Components

Mopseus consists of two different and distinct parts: a
backend which implements the core services of Mopseus
(written in Java) and a frontend PHP and JSP API which
provides out of the box functionalities that are used to
create the different web based GUIs. Only the backend
part of Mopseus and certain Fedora-commons
functionalities, such as the REST based retrieval
mechanisms, communicates directly with Fedora-
commons. The main architectural components of
Mopseus (see Figure 2) are:

- Dynamic definition of XML schemas. Mopseus
provides a service for the definition of metadata
schemas. The service supports the development of XML
schemas, defining the syntax of the metadata elements,
their functionality (mandatory/optional elements) and
presentation. A new XML schema is automatically
transformed into HTML forms and the user can use them
to ingest metadata and produce valid XML documents
stored as Datastreams. The service that translates the
XML schema definition to a working HTML form also
supports a number of other features such as: creating an
object from templates, creating an object from a
mapping mechanism (see below), etc. The metadata
schema definitions are stored in the schemas Digital
Object of the config name space.

- Relations manager. The relations manager allows
for the easy management (insert, delete) of relations both
external (between objects and Containers) and internal
(between Datastreams). The parameters of this service
are the Datastream on which a relation should be added,
deleted or modified and the ontology that keeps the
Mopseus relationships. The service allows the user to
define relations in a flexible manner and use different
ontologies on different Datastreams.

- RDBMS Synchronization. A mechanism was
developed to dynamically synchronize any or all the
elements of the hosted XML schemas with an external
RDBMS database (currently MySQL is supported). This
process features a flexibility which is achieved by
automatically mapping XPath Queries to SQL queries.
Furthermore, this mechanism can also store in the
RDBMS RDF information (e.g. relations) and
Datastream information. This process drastically
improves the efficiency and flexibility of the indexing of
any kind of XML or RDF document stored in
Datastreams, makes easier the implementation of a web
frontend system and the searching process. All the
RDBMS synchronization information are stored in the
sync Digital Object of the config namespace.

- Mapping between XML schemas. This mechanism
allows the mapping between metadata schemas. The
mapping is created through an XSLT tansformation. The
mapping service can take as parameters a Datastream
that contains the XSLT transformation, the Datastream
containing the source XML document and the target
Datastream. It then can automatically perform the
transformation and store the result onto the target
Datastream. The XSLT document itself along with the
mapping rules are stored in the mappings Digital Object
(config:mappings) of the config namespace.

- Workflow engine. The workflow engine allows for
executing sequences of states, such as ingestion,
revision, etc. For each state its input parameters from the
previous states and output parameters, which pass to the
next states are described. A state invokes a specific
service, which in general would be either internal (i.e.
one of the mentioned Mopseus components, e.g. a
mapping between XML Schemas service) or external
(e.g. the use of a data format migration tool, which is not
part of Mopseus). Notice that the current version of
Mopseus does not support external services.

- Preservation service. This service is responsible for
the preservation features of Mopseus and provides the
following functionalities: (a) maintains a PREMIS log
per Digital Object (residing in the PREMIS Datastream)
containing all actions and operations that take place on a
Digital Object, (b) maintains and checks the checksums
for each Datastream and (c) performs simple migrations
on binary Datastreams such as PDF documents (this
service is currently under development).

- Terminology service. The terminology service
allows for management of vocabularies, which can then
be used in metadata schemas. Information regarding this
service is stored in the terms Digital Object

(config:terms) of the config namespaceDigital Object.
The terms are represented in SKOS.

Figure 2. Mopseus architecture. This figure illustrates
the basic high-level components of Mopseus and how
they inter-operate.

Constructing a user interface in Mopseus is relatively
easy. The developer can utilize ready to use components
such as an Admin Panel which allows the user to
perform operations on Digital Objects, relations and
Datastreams. Furthermore, item short views (see Figure
3b) as well as detailed views (see Figure 3c) can be
obtained directly from corresponding ready to use XSLT
files. Binary Datastreams available for viewing and
downloading (e.g. isDocumentPDF, see Figure 3d) can
be displayed based on the RELS-INT relations. Finally
the Containers an object belongs to can be obtained by
the relevant RELS-EXT relations (see Figure 3a).

Figure 3. A screenshot of the Mopseus installation at
Panteion University.

3. PRESERVATION STRATEGY

3.1. Outline of Strategy

Mopseus preservation strategy follows a set of rules that
aim towards a long-term storage and access to the
Digital Objects, with respect to small and middle-sized
institutions, with a probable low budget. Mopseus is
inspired by the OAIS [4] model principles in the sense
that (a) the Digital Objects carry meaningful information

about their binary content and relationships and (b) this
representation information constitutes itself a Digital
Object. Thus each Digital Object contains a set of
Datastreams and relations. The Datastreams carry both
representations of an object and the object's descriptive
metadata.

Moreover, Mopseus supports ingestion, access,
storage, data management, administration and
preservation planning OAIS functionalities. In
compliance with the OAIS the Submission Information
Packages (SIPs) are transformed to Archival Information
Packages (AIPs) with the use of a set of internal Fedora-
commons mechanisms. The ingested Digital Objects are
checked for integrity, descriptive metadata are generated
semi-automatically via the mapping mechanism and
preservation metadata are generated automatically in
PREMIS. All the Digital Objects are preserved by the
Fedora-commons mechanisms, which keep versions of
the repository state and content. The versions of a
repository are stored internally. Regarding preservation
planning, Mopseus provides a migration process from
other existing repositories, facilitated through the use of
a desktop tool implemented in Java. Currently it supports
migration from DSpace repositories. The final
Dissemination Information Packages (DIPs) are
promoted to consumers through a web-front that selects
specific aspects of the Digital Objects to show to the end
user.

One of the most representative installations of
Mopseus is Pandemos, the digital library of Panteion
University, Athens, Greece
(http://library.panteion.gr/pandemos). Originally,
Pandemos was a DSpace repository, holding
approximately 2200 Digital Objects, migrated to
Mopseus without any loss of information and at least
5000-5500 new Digital Objects were ingested. For the
migration process, the migration tool mapped the
DSpace communities, collections and subcollections to
the Mopseus Containers by creating the appropriate RDF
relationships with the Containers. The original metadata
from DSpace were preserved into Mopseus while a
PREMIS event was created to indicate the preservation
action.

3.2. Mapping the data models

The generation of valid PREMIS metadata presupposes
the mapping of Mopseus and PREMIS data models.
Mopseus data model was presented in the previous
section and PREMIS data model is briefly presented as
follows [12]:

The PREMIS data model consists of five entities,
according to Figure 4: the Intellectual Entity ("a coherent
set of content that is reasonably described as a unit"),
Object ("or Digital Object, a discrete unit of information
in digital form"), Event ("an action that involves at least
one object or agent known to the preservation
repository"), Agent ("a person, organization, or software
program associated with preservation events in the life of
an object") and Rights, ("or Rights Statements, assertions

of one or more rights or permissions pertaining to an
object and/or agent"). The Objects are categorized to
three types: file ("a named and ordered sequence of bytes
that is known by an operating system"), bitstream
("contiguous or non-contiguous data within a file that
has meaningful common properties for preservation
purposes"), and representation ("the set of files,
including structural metadata, needed for a complete and
reasonable rendition of an Intellectual Entity").

Figure 4. PREMIS data model

The relationships associate the instances of entities.
PREMIS relationships associate the instances of the
Object entity as well as the instances of entities of
different types. The properties between objects are
categorized to three types: structural, which are relations
between the parts of objects, e.g. the relationships
between the files that constitute a representation of an
Intellectual Entity, derivation relationships, which result
from the replication or transformation of an Object,
when "file A of format X is migrated to create file B of
format Y, a derivation relationship exists between A and
B" and dependency relationships which "exists when one
object requires another to support its function, delivery,
or coherence of content". The relationships between
different entities are expressed by including in the
information for the first entity, a pointer to the second
entity.

The mapping of two data models is defined as a
sufficient specification to correlate each instance of the
source model with the instances of the target model with
the same meaning. The mapping of the two models is
presented in Table 2 and analyzed as follows:

The central entity in both models is the Digital
Object, though there exist semantic variations between
them. A Mopseus Datastream that carries either a binary
file or metadata is mapped to the File Category of a
PREMIS Object. Moreover a Mopseus Digital Object is
mapped to the Representation Category of an Object,
since it represents a digital artifact with its binary
representation(s) and metadata. Finally the Mopseus
entity Container, actually represents a logical
aggregation of objects and therefore is mapped to the

PREMIS Intellectual Entity, noting that the Intellectual
Entity refers to a collection of Objects of the
Representation Category.

Mopseus entities PREMIS entities
Datastream / binary Object/ file
Datastream / metadata Object / file
Digital Object Object /Representation
Container Intellectual Entity
Workflow / State Event
Datastream / metadata /
Rights

Rights

Datastream (metadata) /
Person

Agent

Mopseus relationships PREMIS relationships
Digital Object - Datastream Structural relationships
Digital Object - DC
Datastream (Fedora-
commons default metadata)

Dependency relationships

Digital Object - Digital object
(through a Workflow / State

Derivative relationships

Container - Digital Object Relationships between
different types

Workflow / State - Digital
Object

Relationships between
different types

Workflow / State - Agent Relationships between
different types

Table 2. PREMIS - Mopseus mapping

The Mopseus entity Workflow refers to a sequence of
events and thus its subclass State is mapped to the
PREMIS Event entity, which represents a particular
action in the time-line. The classes Agents and Rights
are not expressed explicitly in the Mopseus data model;
nevertheless all information that correspond to these
entities is stored and available in the Datastreams that
hold the metadata of each Mopseus Digital Object.

Concerning the relationships of the two models, it
should address the main differences of the two models.
Mopseus defines particular relationships with clear
semantics, while PREMIS defines relationship
categories. Based on this clarification, the relationships
between a Mopseus Digital Object and its Datastreams
are Structural. In particular Mopseus data model enriches
the vocabulary of PREMIS structural relationships and
this is obvious by the descriptions of the relationship
semantics presented in Table 1. The existence of at least
one Datastream that hold the main metadata of a Digital
Object expressed in Dublin Core terms is mandatory for
Fedora-commons repositories, including Mopseus,
defining thus a dependency relationship. The
modifications of the Digital Objects, generated by the
performance of a Workflow or State, define derivation
relationships between a Digital Object.

Since a Container is mapped to an Intellectual Entity,
the relationships between a Digital Object and a
Container are defined as a Relationship between
different types. This type of relationships employs the
PREMIS vocabulary, enriched by a variety of terms that
belong to the DCTERMS Relations vocabulary. Finally
the relationships between a Digital Object and a State of
a Workflow as well as the relationships between the

State of a Workflow and an Agent are categorized to the
PREMIS categories of relationships between different
types of entities. It should be noticed that these
relationships are expressed similarly by both the models:
The information of the domain entity of each
relationship includes a pointer to the identifier of the
instance of the range entity. For instance the metadata of
the State of a Workflow contain the identifier of Digital
Object which participates to the State.

Given the mapping of the two models, the next step is
the automated generation of valid PREMIS metadata.
This process is based on an XSLT document which
retrieves the metadata kept in the Datastreams of a
Mopseus Digital Object and writes them in an XML
document that follows the PREMIS syntax; this
document is stored in a new Datastream, which is
updated on each modification of the Digital Object. This
process is triggered when a new Digital Object is
ingested in Mopseus as well as at each modification of it.
This process is described in the next paragraph.

3.3. Generating PREMIS Metadata

Fedora-commons keeps a log of the operations that take
place in the repository encoded in FOXML. Mopseus
keeps a more detailed log in PREMIS. The service that
maintains the log is invoked whenever a user (or a
service) performs a write operation on the repository.
This operation mainly includes the creation of Digital
Objects (manually or from a migration service), the
creation or modification of Datastreams, the creation or
deletion of RDF relations, etc. For each Digital Object
there is a log kept in the PREMIS Datastream. A sample
of the log can be seen in Figure 5. Most information that
is required for the creation of the PREMIS log is taken
from various Digital Objects of the config namespace.
For instance, the eventIdentifierType is encoded in the
config:repository XML Datastreams whereas
information regarding different services can be found in
the config:services Digital Objects. Regarding the
relationships, each Mopseus relationship described in the
config:ontologies Digital Object, is mapped to the
corresponding PREMIS relation type.

4. DISCUSSION

Many approaches towards building a digital repository
with preservation functionalities have been implemented.
We briefly present and compare them with the key
features of Mopseus. Both CASPAR [8] and PLANETS
[9] aim at providing a set of direction on creating
practical services and tools for the purpose of long-term
access and preservation, without providing an actual
digital repository, and therefore are out of the scope of
this discussion.

One of the most widely known and used repositories
worldwide is DSpace [2] which provides an out of the
box solution for grey literature management in
institutional repositories. However, it doesn't address the
preservation of its Digital Objects as efficiently as other

repository platforms, it lacks in flexibility since it only
allows flat and relatively simple metadata schemas and it
limits the organization of Digital Objects by providing
only a few level hierarchy of Digital Objects.

<premis
xmlns:premis="http://www.loc.gov/standards/premis" >
 <premis:objectIdentifier>

<premis:objectIdentifierType>hdl</premis:objectIdentifier
Type>
<premis:objectIdentifierValue>iid:1011</premis:objectIden
tifierValue>
 </premis:objectIdentifier>
 <agent>
 <agentIdentifier>
 <agentIdentifierType>uid</agentIdentifierType>
 <agentIdentifierValue>13</agentIdentifierValue>
 </agentIdentifier>
 <agentName>Dimitris</agentName>
 <agentType>user</agentType>
 </agent>
 <agent>
 <agentIdentifier>
 <agentIdentifierType>servlet</agentIdentifierType>
<agentIdentifierValue>org.dcu.mopseus.DigitalObject</age
ntIdentifierValue>
 </agentIdentifier>
 <agentName>modifyObject</agentName>
 <agentType>service</agentType>
 </agent>
 <premisEvent:event
xmlns:premisEvent="http://www.loc.gov/standards/premis/
v1">
 <premisEvent:eventIdentifier>
<premisEvent:eventIdentifierType>MIS</premisEvent:eve
ntIdentifierType>
<premisEvent:eventIdentifierValue>modification</premisE
vent:eventIdentifierValue>
 </premisEvent:eventIdentifier>
 <premisEvent:eventType>modify digital
object</premisEvent:eventType>
 <premisEvent:eventDateTime>2010-05-
04T17:48:39</premisEvent:eventDateTime>
 <premisEvent:eventDetail>modify digital object
(dLabel=, state=A)</premisEvent:eventDetail>
 <premisEvent:linkingAgentIdentifier>
<premisEvent:linkingAgentIdentifierType>uid</premisEve
nt:linkingAgentIdentifierType>
<premisEvent:linkingAgentIdentifierValue>13</premisEve
nt:linkingAgentIdentifierValue>
<premisEvent:linkingAgentRole>user</premisEvent:linkin
gAgentRole>
 </premisEvent:linkingAgentIdentifier>
 <premisEvent:linkingAgentIdentifier>
<premisEvent:linkingAgentIdentifierType>servlet</premis
Event:linkingAgentIdentifierType>
<premisEvent:linkingAgentIdentifierValue>org.dcu.mopse
us.DigitalObject</premisEvent:linkingAgentIdentifierValue
>
<premisEvent:linkingAgentRole>servlet</premisEvent:link
ingAgentRole>
 </premisEvent:linkingAgentIdentifier>
 </premisEvent:event>
</premis>

Figure 5. Α PREMIS Datastream

eSciDoc [14] is a powerful e-Research middleware
infrastructure providing innovative services focusing on
the researchers collaboration and the management of
their resources. It is based on Fedora-commons
repository management software on which a new data

model is defined. Αn eSciDoc Object is represented by
multiple manifestations organized in Components. Each
component includes the manifestation metadata and the
content itself. A single eSciDoc Object may be a
composition of Fedora-commons Digital Objects
correlated by whole/part or parent/child relationships. To
facilitate the view of an eSciDoc Object as one entity,
eSciDoc extends the Fedora-commons versioning
mechanism by maintaining a datastream for each
eSciDoc object that keeps track of all Fedora-commons
digital objects modifications. Regarding preservation,
eSciDoc incorporates JHOVE tool. Moreover the
complexity of objects involved in e-Research, as well as
the lack of appropriate metadata standards for their
description, constitutes a barrier for the development of a
concrete preservation strategy.

DAITSS [3] is a digital preservation repository
application developed by the Florida Center for Library
Automation and is intended to be used as a back-end to
other systems, thus it has no public access interface,
though it can be used in conjunction with an access
system. The DAITSS system is a java application which
handles all DAITSS functionality, a MySQL database to
manage its archival collections and a storage back-end
where DAITSS stores the information packages.
DAITSS is designed to implement active preservation
strategies based on format transformations including bit-
level preservation, forward migration, normalization, and
localization. It implements OAIS, it uses METS [10] and
has a partial compliance with PREMIS. In short, the
DAITSS is a functional digital repository application
that is able to perform on a large scale. There is no front-
end to support the preservation functions.

The British Library's eJournal system [5] is a system
for ingest, storage and preservation of digital content
developed under the Digital Library System Programme,
with eJournals as the first content stream. It is an
implementation of OAIS, making use of the British
Library's METS, PREMIS and MODS application
profiles. The AIP is tied to the technical infrastructure of
the British Library's preservation system, that consists of
an ingest system, a metadata management component
and an archival store, and is linked with the existing
integrated library system (ILS). The eJournal data model
contains five separate metadata AIPs, journals, issues,
articles, manifestations and submissions, with each being
realised by at least one METS document. Descriptive
metadata are stored as a MODS extension to the METS
document, while provenance and technical metadata are
captured as PREMIS extensions. Events related to the
digital material are being recorded as provenance
metadata and can be associated with any object type. The
British Library's eJournal system is an example of use of
a combination of existing metadata schemas to represent
eJournal Archival Information Packages in a write-once
archival system.

RODA is an open source service-oriented digital
repository developed by the Portuguese National
Archives. RODA is based on existing standards such as
OAIS, METS, EAD and PREMIS and has the Fedora

Commons at the core of its framework. RODA specifies
workflows for each off the three top processes of the
OAIS model (ingest, administration and dissemination).
Every Digital Object being stored in RODA is subjected
to a normalization process. RODA makes use of the
Fedora main features adding to them a set of RODA
Core Services. RODA also provides a web interface to
allow the end user to browse, search, access and
administrate stored information, metadata, execute ingest
procedures, preservation and dissemination tasks. RODA
supports a set of preservation services, such as (a) file
format identification, (b) recommendation of optimal
migration options, (c) conversion of Digital Objects from
their original formats to more up-to-date encodings, (d)
quality-control assessment of the overall migration
process, (e) generation of preservation metadata in
PREMIS format. RODA is a complete digital repository
providing functionality for all the OAIS main units and a
set of preservation services developed around Fedora.

Mopseus presents most similarities and shares a
similar approach with RODA since both digital
repositories are Fedora based and implement the OAIS
model for storing and disseminating Digital Objects.
However Mopseus does not encapsulate the Datastreams
in METS documents, but correlates them semantically
utilizing the internal ontology RELS-INT, while the
Digital Objects are correlated with the Containers via the
RELS-EXT ontology. Moreover since Mopseus is
focused on small and middle sized institutions can be
easily installed under different platforms and requires
low implementation and support expertise. One of the
most powerful features of Mopseus is the flexibility in
defining and mapping of metadata schemas and
generating preservation metadata. These features along
with the collection migration functionality render
Mopseus a repository management platform adaptive to
the preservation needs of several types of small and
medium sized information organizations.

5. CONCLUSIONS

Mopseus is an easily configurable open source
repository management system, adaptive to the digital
content and needs of a variety of information
organization types. It enhances Fedora-commons
platform with a powerful data model providing a set of
semantically rich relationships between the content and
its metadata, including information concerning the
provenance of them. Moreover it provides powerful
functionalities for metadata schemas definition and
automated preservation metadata generation, while it
offers mechanisms from migrating content from other
repositories. These features enable information providers
to manage and preserve their digital holdings.

Among the plans for Mopseus further development is
the addition of workflow wizards to the workflow
engine, to guide users to define, plan and perform
content management activities using friendly and usable
interfaces. Mopseus does not provide a format migration
mechanism due to its low cost approach. Future work
includes the development of an API on which a variety

of preservation planning tools such as PLATO, and
format migration tools can be incorporated in the
Mopseus environment. After these improvements a large
scale user-based evaluation experiment will be
conducted to investigate the acceptance of MOPSEUS
functionalities by the user and stakeholder (libraries,
museums, archives and records management services)
communities.

6. REFERENCES

[1] Angelis, S., Constantopoulos, P. Gavrilis, D.,
Papatheodorou, C. "A Digital Library Service for
the Small", DigCCurr 2009: Procs of the 2nd
Digital Curation Curriculum Symposium: Digital
Curation Practice, Promise and Prospects, 2009.
http://www.ils.unc.edu/digccurr2009/

[2] Bass, M.J., Stuve, D., Tansley, R. "DSpace – a
Sustainable Solution for Institutional Digital Asset
Services – Spanning the Information Asset Value
Chain: Ingest, Manage, Preserve, Disseminate
Functionality", Internal Reference Specification.
http://www.dspace.org/technology/architecture.pdf

[3] Caplan, P. "The Florida Digital Archive and
DAITSS: A model for digital preservation",
Library Hi Tech, 28(2), 2010.

[4] CCSDS, Reference Model for an Open Archival
Information System (OAIS), CCSDS 650.0-B-1,
Blue Book (the full ISO standard), 2002.
http://public.ccsds.org/publications/archive/650x0b
1.pdf

[5] Dappert, A., Enders, M. "Using METS, PREMIS
and MODS for Archiving eJournals", D-Lib
Magazine, 14 (9/10), 2008.
http://www.dlib.org/dlib/september08/dappert/09da
ppert.html

[6] Dublin Core Metadata Initiative, "DCMI Metadata
Terms", http://dublincore.org/documents/dcmi-
terms/

[7] Fedora Object XML (FOXML), http://www.fedora-
commons.org/download/2.0/ userdocs
/digitalobjects/introFOXML.html

[8] Giaretta, D. "The CASPAR Approach to Digital
Preservation", The International Journal of Digital
Curation 2(1), 2007.
http://www.ijdc.net/ijdc/article/view/29/32

[9] King, R., Schmidt, R., Jackson, A., Wilson, C.,
Steeg, F. "The Planets Interoperability Framework -
An Infrastructure for Digital Preservation Actions",

ECDL2009: Procs of the 13th European
Conference on Digital Libraries, 425-428, 2009.

[10] Library of Congress, "METS - Metadata Encoding
& Transmission Standard".
http://www.loc.gov/standards/mets/

[11] Meghini, C., Spyratos, N. "Viewing Collections as
Abstractions" DELOS Conference 2007: Procs of
the 1st International DELOS Conference, 207-217,
2007.

[12] PREMIS Working Group, "Data dictionary for
preservation metadata: final report of the PREMIS
Working Group", OCLC Online Computer Library
Center & Research Libraries Group, Dublin, Ohio,
USA, 2005.

[13] Ramalho, J. C., Ferreira, M. "RODA: A service-
oriented repository to preserve authentic digital
objects", Open Repositories, 2009.
http://redmine.keep.pt/attachments/8/OR09-0.3.pdf

[14] Razum, M., Schwichtenberg, F.,Wagner, S.,
Hoppe, M. "eSciDoc Infrastructure: A Fedora-
Based e-Research Framework", ECDL2009: Procs
of the 13th European Conference on Digital
Libraries, 227-238, 2009.

[15] Roberts, G. "Small Libraries, Big Technology",
Computers in Libraries, 25(3), 24-26, 2005.

	INTRODUCTION
	ARCHITECTURE
	Data Model
	Functional Components

	PRESERVATION STRATEGY
	Outline of Strategy
	Mapping the data models
	Generating PREMIS Metadata

	DISCUSSION
	CONCLUSIONS
	REFERENCES

