
SEVEN STEPS FOR RELIABLE EMULATION STRATEGIES
SOLVED PROBLEMS AND OPEN ISSUES

Dirk von Suchodoletz
Klaus Rechert

University of Freiburg
Institute of Computer Science

Jasper Schröder
IBM Netherlands

Amsterdam

Jeffrey van der Hoeven
Koninklijke Bibliotheek

The Hague

ABSTRACT

After four years of research within the PLANETS project
and two years of KEEP the jigsaw puzzle of emulation be-
comes a more complete picture. Emulation strategies are
now seen as a viable complement to migration. A con-
ceptual and theoretical groundwork has already been laid
out, e.g. proper definition and selection of suitable emu-
lators. However, integration into preservation frameworks
and additional software archiving remain open research
questions. This paper discusses several aspects of reliable
integration and proposes development steps for a more
complete emulation-based strategies in long-term preser-
vation.

Introduction
For more than fifteen years there has been a vital debate on
using emulation as a strategy to ensure long-term access
to digital records. Although emulation has always been an
essential addition for many types of digital objects, emu-
lation strategies still have little relevance in practice de-
spite many shortcomings, such as improper handling of
dynamic artifacts and authenticity problems in various mi-
gration strategies. In contrast to migration, emulation does
not require changes to the object or its structure. Hence,
the original state of the digital artifact and its authenticity
is preserved. However, emulation strategies are consid-
ered too expensive and too complex to be a viable solution
to address digital preservation challenges [1].

Research on emulation as a long-term archiving strat-
egy matured since the first reports on archiving of digital
information in 1996 [7], fundamental experiments with
emulation executed by Rothenberg [10] and the theoret-
ical and practical work within the longterm preservation
studies of IBM and the Netherlands National Library [13].
The Keeping Emulation Environments Portable project 1

aims to develop a strategy that ensures permanent access
to multimedia content, such as computer applications and
console games. The main research focus is on media trans-
fer, emulation and portability of software. The platform

1 KEEP, http://www.keep-project.eu

c© 2010 Austrian Computer Society (OCG).

will allow an organization to capture data from old physi-
cal carriers and render it accessible to users by using emu-
lation. 2 To avoid the platform itself from becoming obso-
lete, a virtual layer guarantees portability to any computer
environment [4].

Up to now there has been a strong focus on different
emulation concepts as well as strategies to preserve the
emulators themselves [14]. 3 Especially if looking at the
more general emulation approaches, the question of addi-
tional software components needs to be taken into consid-
eration (Fig. 1). Additionally, some relevant factors like
the integration into emulation frameworks and the cost-
effective application of emulation were ignored.

This paper gives an overview on the current status of
research and describes requirements and challenges for
successful emulation strategies. Therefore, we present
a number of solutions like automation of emulation ses-
sions, migration-through-emulation workflows and sug-
gestions of preservation framework integration.

Step 1: Software Instead of Hardware
Museums

An obsolete hardware collection is not a viable solution
to preserving old computer architectures. The only rea-
son for keeping hardware is to enable access to deprecated
media for digital archeology or to present old platforms in
a specific setting like a technical or computer games mu-
seum. The number of items to preserve risks becoming
too large as it is a necessity to preserve environments for
various types of digital artifacts. In addition, the space
needed for a larger number of devices together with the
energy required to educate and employ a very specialized
maintenance crew for every different system would be a

2 Requirements and design documents for services
and architecture of emulation framework http://www.keep-
project.eu/ezpub2/index.php?/eng/content/download/7918/39623/file/-
KEEP WP2 D2.2 complete.pdf Specification document for all
layers of general-purpose virtual processors, http://www.keep-
project.eu/ezpub2/index.php?/eng/content/download/7917/39619/file/-
KEEP WP4 D4.1.pdf.

3 Emulation Expert Meeting 2006 in The Hague,
http://www.kb.nl/hrd/dd/dd projecten/projecten emulatie-eem-en.html.



Figure 1. Number of emulators and amount of additional
software required depending on the layer chosen

large feat [3]. 4 Unfortunately, electronic circuits will not
run forever. They will fail at some point independent of
the usage pattern. Furthermore, the probability of finding
a spare part becomes slimmer each year a platform is out
of production. Finally, the concept is fully dependent on
the location, meaning there is no easy way to share re-
sources between different memory institutions and users
might have to travel large distances for access to a certain
system.

Emulation uses a different approach compared to other
well-established migration strategies in digital preserva-
tion. Emulation strategies usually do not operate on the
object itself, but are intended to preserve the object’s orig-
inal digital environment. Emulation helps in becoming in-
dependent of future technological developments and avoids
the modification of certain digital artifacts in a digital long-
term archive.

The concept of emulation is not new to computer sci-
ence. Emulators have existed for quite some time. There-
fore, the list of the developed emulators is astoundingly
long and covers a fairly wide range of areas. Prominent
examples in the Open Source community are projects like
ScummVM (Fig. 2), QEMU, Mess or Mame, just to men-
tion a few. Not every emulator, however, is suitable for
the needs of a long-term digital archive. Requirements of
the respective archiving organization need to be differen-
tiated, e.g. a national archive requires different computer
platforms than a computer games museum. Emulators
preserve or alternatively replicate old digital environments
in software. They bridge outdated technologies with mod-
ern computer environments. Generally, for current com-
puter platforms, three levels for the implementation of em-
ulators can be identified: Topmost the application layer,
followed by the operating system layer and on lowest level
the hardware layer (Fig. 1). The latter uses the broadest
approach, meaning no application and operating system
needs to be rewritten to be able to access thousands of
different digital object types. The function set of a hard-
ware platform is straight-forward and often much smaller
compared to operating systems or applications. Another
advantage results from the smaller number of hardware

4 Computer Museum Universiteit van Amsterdam,
http://www.science.uva.nl/museum

Figure 2. ScummVM is a popular application level emu-
lator for the Lucas Arts and similar type of games

platforms in comparison to operating systems.

Step 2: Preserving the Emulator

Emulators face the same problems as do every software
package and general digital objects. For this reason the
considerations of perpetuation of the emulator for future
use is a central component of a reliable preservation strat-
egy [15]. Hence, emulators need to be adapted to the cur-
rent hardware and operating system combinations regu-
larly. The possibility of software migration is achieved
through a suitable choice of emulators. If the emulator
is available as an Open Source package, it can be ensured
that a timely adaption to the respective new computer plat-
form appears. Common and portable programming lan-
guages such as C should allow a translation with the re-
spective current compiler. The main advantage of this ap-
proach is the use of only one emulation layer.

If there is no possibility to port the emulator on to a
new host platform, the recently outdated host platform
for which the emulator was created can be emulated [14].
This is referred to as nested emulation. This is a consid-
erable advantage to avoid the complexity of a migration
approach.

In the field of hardware emulation and virtualization
(e.g. x86 architecture), successful commercial as well as
Open Source solutions co-exist. During PLANETS we
observed that commercial solutions, like VMware, Par-
allels of VirtualPC are not suitable for long-term hori-
zons, since the vendors merely follow short-term interests,
e.g. support current operation systems and software. With
QEMU and Dioscuri two valid open alternatives exist.

QEMU is a multi platform Open Source emulator im-
plementing x86, ARM, Sparc, PPC and further architec-
tures. It supports a wide range of peripheral hardware
from every era of the different platforms. We closely ob-
served the development and advancements of the project
throughout the duration of PLANETS and recorded sig-



nificant advancements. Nevertheless, a number of prob-
lems like volatile support of major operating systems oc-
curred and needs to be taken into consideration.

Dioscuri None of the mentioned emulators have been
developed primarily for the purpose of long-term archiv-
ing of digital objects. This has changed with current re-
search. Dioscuri [11] is a modular emulator which sup-
ports both recreation of an x86 computer environment and
a durable architecture. With such a design Dioscuri is ca-
pable of running on many computer systems without any
changes to the software itself. That way, there are chances
that the emulator will sustain. At current state Dioscuri
can render all kinds of applications from the MS-DOS era.
The emulator is developed in Java which runs on top of the
Java Virtual Machine and thus is portable to any computer
platform that has a JVM running. The internal structure of
Dioscuri is very similar to that of common hardware. Each
functional entity (e.g. CPU, memory, storage, graphics)
is implemented as a software module. Configuring these
modules creates a virtual computer.

UVC In the course of research of the last few years
we investigated alternate approaches like Universal Vir-
tual Computer [6, 12]. UVC is different as it specifies a
computer which is generally available. 5 The intention is
to keep the specification of UVC stable over a long pe-
riod of time. The instruction set of the UVC is limited
and during the PLANETS project two new implementa-
tion strategies have been developed, one in C++ and one
in C. The development effort for each version consisted of
roughly four months of work. The expectation is that in
the future a new implementation of the UVC can be made
in a reasonable amount of time. Having a stable virtual
computer layer, preserving the operating system and the
applications on top of that ”hardware layer” (Fig. 1) will
not be a big issue. These layers will keep doing their jobs.
The complexity of the UVC-preserved applications has in-
creased. In the beginning just image conversion applica-
tions were available on the UVC. During PLANETS, the
logic of the SharpTools spreadsheet was ported as an ex-
ample for more complex logic. As emulation is no longer
a standalone activity and the UVC was made available as
a Web service.

Step 3: View Paths
Digital objects cannot be used by themselves, but require
a suitable context to the already mentioned working en-
vironment in order to be accessed. This context, called
working or utilization environment, must combine suit-
able hardware and software components so that its cre-
ation environment or a suitable equivalent is generated,
depending on the type of the primary object. No mat-
ter which emulator is chosen, contextual information of
the original environment of the digital artefact was cre-

5 Alphaworks, http://www.alphaworks.ibm.com/tech/uvc

Figure 3. Different view path depending on object type
and archiving strategy

ated in is always required. For example, questions such
as ”for which operating systems is Ami Pro 3.0 compati-
ble with?” are less obvious today then twenty years ago.
To overcome this gap of missing knowledge, a formal-
ization process is needed to compute the actual needs for
an authentic rendering environment. In 2002 the con-
cept of a view path [6] was proposed which we refined
during research on emulation in PLANETS [15, 16]. A
view path reproduces old computer environments or cor-
responding equivalents as ways from the object of interest
to the working environment of the archive user. In other
words, a view path is a virtual line of action starting from
the file format of a digital object and linking this infor-
mation to a description of required software and hardware
(Fig. 3). Depending on the type of object, a specific ren-
dering application may be required. This application re-
quires a certain operating system to be executed, whereas
in turn, it relies on particular hardware.

Step 4: Enabling Access to Emulation
In order to allow non-technical individuals to access dep-
recated user environments, the tasks of setting up and con-
figuring an emulator, injecting and retrieving digital ob-
jects in and from the emulated environment have to be
provided as easy-to-use services. Making these services
web-based allows for a large and virtually global user base
to access and work with emulated systems.

During the PLANETS project we developed the pro-
totype GRATE 6 which allows the wrapping of various
software environments within a single networked applica-
tion. Designed as a general purpose remote access system
to emulation services the architecture provides an abstract

6 GRATE – Global Remote Access To Emulation,
http://planets.ruf.uni-freiburg.de



Figure 4. GRATE Architecture

interface independent of the digital object’s type to users
and thus was linked to other Web services like PLATO [2].

Screen output and input via mouse or keyboard – which
until now are still the most used methods of human-com-
puter interaction – are handled using an event and trans-
portation layer. Currently events and screen output are
transferred by using the open and widely used VNC proto-
col [9]. Figure 4 shows the general architecture of GRATE
and its main building blocks. The access to digital ob-
jects does not depend on local reference workstations like
in archives and libraries. By separating the emulation
part from the archive user’s environment, GRATE avoids
a number of problems, like a sophisticated local installa-
tion of a range of software components in unpredictable
user environments of different origins. The user does not
need to be a trained specialist of ancient computer plat-
forms, but in contrast it is equipped with an user inter-
face similar to many Web 2.0 applications. Furthermore,
this approach does not need to transfer proprietary soft-
ware packages to end- user systems and thus might avoid
licensing and digital rights management issues. The man-
agement of such services could be centralized and several
institutions could share the workload or specialize on cer-
tain environments and share their expertise with others.
Institutions like computer museums could profit as well,
because they are able to present their collections in non-
traditional ways rather than simply within their own room,
consequently attracting more attention.

Another challenge arises from the transport of the re-
quested artifact from the current into its original environ-
ment. Loading of digital objects is a major part of any au-
tomated processing setup. The file sets need to be passed
into the emulated environment [15]. This is typically a
non-trivial task and depends on the feature-set of the orig-
inal environment. There are two challenges to be faced:

• Network transport from the user’s site to the emula-
tion Web service

• Local transport to the target environment

Emulators usually use special container files as virtual disk
images. Therefore, they offer an option to transport a dig-
ital object into the emulated environment by embedding it
in the container file, or by creating a secondary one, which
is then attached as an additional virtual hard-disk. How-
ever, for producing or modifying such containers, exact
knowledge of the internal format is required and usually
additional tools are necessary. Furthermore, modifying
container files usually cannot be done while the emula-
tor is running, since changes to its internal structure might
lead to a corrupt container file. In contrast, floppy and op-
tical disks like CD or DVD are typically removable and
thus offer a data exchange option while the emulator is
running. Some emulators like QEMU support virtual me-
dia loading and ejecting functionality and media changes
are noticed by the operating system. Not all hardware plat-
forms and operating systems support optical drives, but
most of them support floppy disks.

Step 5: Dealing with Interactivity
A further central problem next to the Framework integra-
tion lies in the automation of the human-computer-interac-
tion. Typical digital objects were created with interactive
applications on computer architectures with graphical user
interfaces. The user was required to point and click using
a pointer device (e.g. computer mouse) or using the key-
board to create or modify an object.

The traditional approach supporting the user to auto-
mate interactive tasks is the use of so-called macro-recor-
ders. These are specialized tools to capture sequences of
executed actions. However, this functionality is not stan-
dardized in terms of its usability and features. Not only
are special software components needed, but knowledge
on using such applications and operating systems is also
necessary.

For a generic approach, a technical and organizational
separation between the machine used for executing work-
flows and its input/output is required. Hence, emulated or
virtualized environments are particularly well suited for
recording an interactive workflow, such as installing a spe-
cific printer driver for PDF output, loading an old Word
Perfect document in its original environment and convert-
ing it by printing into a PDF file. Such a recording can
serve as the base for a deeper analysis and the generation
of a machine script for the future than completely auto-
mated repetition. By using the aforementioned method,
the authors demonstrated the feasibility of such simple mi-
gration task in an automated way [8].

An interactive workflow can be described as an ordered
list of interactive events. Interactions might be mouse
movements or keystrokes passed on to the emulated en-
vironment through a defined interface at a particular time.
By using a generic approach to describe interactive events,
there is usually no explicit feedback on executed interac-
tive events. While a traditional macro-recorder has good



knowledge about its runtime environment (e.g. is able to
communicate with the operating system), in a generic em-
ulation setup usually the screen output and the internal
state of the emulated hardware are the only things visi-
ble (e.g. CPU state, memory). Furthermore, the record-
ing/playback system has no knowledge of the system it
operates. Hence a framework replaying a complete work-
flow in a reliable way is indispensable.

A solution relying solely on the time elapsed between
recorded actions is not sufficient because executing recor-
ded actions will take different amounts of time to com-
plete depending on the load of the host-machine and the
state of the runtime environment. Therefore, we link each
interaction with a precondition and an expected outcome
which can be observed as a state of the emulated environ-
ment. Until this effect is observed, the current event ex-
ecution has not been completed successfully and the next
event cannot be processed. While in the case of human
operation the effect is observed through visual control in
an automated run, an abstract definition of expected states
and their reliable verification is necessary.

One suggested solution makes use of visual synchro-
nization points [17]. For example, a snapshot of a small
area around the mouse cursor can be captured before and
after a mouse event and then used for comparison at replay
time. Hence, replaying an interactive workflow becomes
independent of computation time and the host-machine
needs to complete a particular action execution. However,
removing time constraints still does can not guarantee a
reliable playback in general. First, if the synchronization
snapshot is done in an automated way, important aspects
of the observable feedback on executed actions might get
lost. An optional manual selection of the snapshot area
recording can improve the reliability since the user is car-
rying out the recording and is usually familiar with the
interaction model of the graphical environment he oper-
ates. Second, mouse and keyboard events are passed on
to the runtime environment through an abstract interface
(e.g. through hardware emulation of a PS/2 mouse inter-
face). Hence, sometimes the environment does not react
to input events in the expected way. This occurs for exam-
ple if the operating system is busy and unable to process
input events. For reliable playback, such failures need to
be detected and handled by the framework. Furthermore,
the operator needs support to implement specific failure
recovery strategies, e.g. resetting the machines to a stable
previous state and retry the failed subsequence. Addition-
ally, if the operator is able to attach meta data to specific
events describing its original intend and possible side ef-
fects, not only will the reliability of automated execution
be improved, but also specific knowledge on practical op-
eration will be preserved.

To support these ideas, the interactive workflow has to
be represented as a set of time-independent event tran-
sitions, relying only on valid and stable pre- and post-
conditions. For describing pre- and postconditions, the
aforementioned visual snapshot technique was used, but
extended to support users choosing the relevant snapshot

Figure 5. Planets’ Web frontend to emulation services
needs to be extended with interfaces to software archive

area. The framework accepts three types of input events:
keyboard entry, mouse events and special pseudo-events.
Pseudo-events include specific control commands of the
runtime environment (e.g. ctrl-alt-del) but might also be
used to map the progress of longer running tasks (i.e. in-
stallation procedures) through empty dummy events. Mou-
se events cover pressing or releasing mouse-buttons and
double-clicks. Especially since the abstract event pass-
ing interface provides no guarantees on action execution,
a mouse pointer placement and verification system had to
be implemented. Such a system not only makes mouse
movement independent of the original users movements,
but also allows users to jump to any previous event with
a defined mouse pointer state. State transitions are trig-
gered either through the arrival of appropriate feedback
from the runtime environment or through a time-out. Fail-
ures can happen either by mismatching the precondition
or the postcondition. If the precondition is not met within
a defined time-out, the system may try to step back until a
previous precondition matches and retry event execution
from that point. In the case of a mismatched postcondi-
tion, the system could check if the precondition still holds
and retry the last event execution. Although both recovery
strategies may cover the most common failures, the op-
erator still needs to decide which strategy is appropriate.
The described approach is based on the GRATE system
architecture using VNC for input/output abstraction.

Step 6: Preserving Necessary Software
Components

A major factor in the discussion of emulation strategies
is widely missing. The needed additional software com-
ponents are implicitly used but are not categorized and
officially archived. Thus a missing operating system or
firmware ROM of a home computer might render a digi-
tal object completely unusable, even with a perfectly run-



Figure 6. Workflows and software components involved
when accessing a digital artifact of a certain object type

ning virtual replacement of the original machine. A first
step to formalizing the access to digital objects of differ-
ent types were view paths (see Step 3). They do not only
define workflows to be implemented as mentioned in the
last section but generate lists of needed additional soft-
ware components.

Rendering digital artifacts requires, depending on the
object type, a large and complex set of software compo-
nents, not only the original software application and op-
erating system. Other dependencies such as font sets, de-
compression software, codecs for audio and video files,
and hardware drivers for video output, sound cards and
peripheral devices must be met as well (Fig. 1). Typ-
ically, the more recent the environment, the higher the
level of complexity and number of different components
required. In addition to storing and handling the digital
objects themselves, it is essential that we store and man-
age this complex set of software components (Fig. 6).
These dependencies and requirements can be formalised
using view paths (pathways) both for emulation and mi-
gration approaches to preservation [16]. Despite the con-
siderable efforts on digital preservation research, this es-
sential groundwork has until now been largely neglected.
This could lead to fatal gaps in the preservation workflows
of future generations.

Another scenario where a comprehensive and well-ma-
naged software archive is essential is when a memory in-
stitution receives the legacy of an important writer, scien-
tist or politician. Typically such archives have not been ac-
tively managed, but are nonetheless of importance for cul-
tural heritage. Depending on the age of the material, soft-
ware archeology techniques may be required to provide
access to this material. Established preservation organi-
sations such as libraries and technical museums would be
the natural providers of such a capability.

Legal Issues Alongside managing the software com-
ponents and associated documentation, a software archive
must tackle the legal and technical problems of software
licensing. A reputable institution must abide by the li-
cences associated with the software it uses. For propri-
etary software, this may severely limit the rights of the
institution to use the software to provide preservation ser-

vices. Furthermore, technical approaches to protecting in-
tellectual property, such as Digital Rights Management
(DRM), copy protection mechanisms, online update or
registration requirements all create significant problems
for a software archive. To tackle this problem will re-
quire the cooperation of software manufacturers with a
designated software archiving institution, to provide suit-
ably licensed unprotected copies of software for long-term
preservation purposes. We recommend the development
of an approach similar in concept to the legal deposit ap-
proach used by many national or copyright libraries.

Step 7: Providing Reference Environ-
ments

The emulator has to be run in the environment the archive
user is working with. The user is to be enabled to construct
a view path from the original object. The base platform for
emulation should be chosen from the most popular oper-
ating systems and computer hardware of a particular time-
span. This prevents the establishment and costly operating
of a hardware museum on one hand side and helps the user
to orient him or herself more easily in a familiar surround-
ing. Additionally, the reference environment should offer
easy access to all meta-data and required toolkits [16].

Every computer platform, historical as well as current,
has its own complexities and concepts and most of the fu-
ture computer users wont find old user interfaces as easy
to use as we might think today. The same is true for set-up
and installation routines of emulators and ancient operat-
ing systems. Another challenge arises from the transport
of the requested artifact from the current into its original
environment. Thus it would be desirable to automate the
significant parts of the process in specialized departments
of memory institutions with trained personnel and offer
the services within a framework over the internet. This
eases the complex procedures to be run on average com-
puters and reduces the functionality to the viewer, e.g. in a
web browser. The user gets the results presented via a vir-
tual screen remotely on her or her computer (Fig. 4). With
GRATE, a pilot was programmed to develop a prototype
of an emulation service. This service is based on available
open source emulators mentioned above and allows them
to run on a remote basis.

Within the PLANETS framework [5], such emulation
services can be integrated in more complex workflows of
digital preservation. Emulated systems can be used as al-
ternative endpoints of a migration workflow in order to al-
low an interactive view of the digital object in its original
creation environment. Moreover, emulation itself could be
used as a migration service in a different workflow. The
PLANETS framework offers interfaces for web services
for common tasks in digital preservation, like the charac-
terization, validation, viewing, comparing, modifying and
migrating of digital objects. Two PLANETS services are
of particular interest for emulation.

The PLANETS view web services interface (Fig. 5) is



designed to render a digital object. The service takes a
digital object and returns a URI pointing to the rendered
result. If the digital object requires a running rendering
engine, the service offers methods for querying the en-
gine’s state and allows sending commands to it. The emu-
lation viewing service offers access to already configured
and ready-made emulators and software images. The web
service accepts a list of digital objects and injects them
into the running OS. The user is able to explore the envi-
ronment, create, view or modify digital objects with their
original application and compare the result visually with
their appearance in current applications or migrated ver-
sion of them.

By using the view interface for installing applications
and their dependencies, not only can all steps of the record-
ing procedure be recorded, but also might get annotated
by the user. For each installation step this information is
kept together with the system state before and after the in-
stallation, the application files and the system setup (e.g.
which transportation option was used to provide the in-
stallation image) in the software archive. This way the
software archive is able to:

• Calculate possible dependencies and view-paths for
every known application setup;

• Ensure integrity of every view-path endpoint. This
is achieved by keeping all intermediary setups and
necessary installation files but most importantly the
carried out installation steps;

• Calculate possible migration paths, provide access
to the necessary files, the required set-up and the
recording of the actual object migration.

The Planets Migrate Web service interface offers the
ability to use various services to transform a digital ob-
ject into a selected output format. The interface expects
a digital object as input format and a designated output
format accompanied with a list of service specific param-
eters. The outcome will be either a successfully trans-
formed digital object or an error message. The migration
by emulation services retrieves at instantiating time a so
called view path-matrix from the software archive, which
describes supported format migrations and then registers
itself within the Planets framework. If the service is called
with a supported view path, a view-path vector is requested
from the software archive. This vector consists of a pointer
to a system emulation engine, an appropriate runtime en-
vironment (e.g. a container file already set up with the ap-
propriate operating system and applications) and a recorded
interactive migration workflow. The digital object passed
by the caller is injected into the runtime environment. Af-
ter running the recorded workflow, the service returns all
files (within a ZIP container) as digital object. Usually
such a service is executed without visual control. How-
ever, for debugging and in case of an unrecoverable error,
the view interface can be attached to the runtime environ-
ment.

Figure 7. Future workflows to be implemented and inte-
grated for emulation strategy

Conclusion and Future Work

Emulation is a very versatile and durable solution for re-
taining access to any kind of digital content. For some
digital objects such as games, educational software or re-
search applications, it is actually the only possible way as
these objects usually can not be migrated. Nevertheless,
emulation is not widely adapted to preservation frame-
works and solutions in operation today for a number of
reasons. There is still a trade-off between the well-establi-
shed commercial virtualization tools without any long-
term preservation focus like VMware and similar prod-
ucts, and preservation projects like Dioscuri and UVC are
still missing major features to fullfill the average needs
of memory institutions. UVC implements necessary web
service interfaces for preservation frameworks but offers
very limited support for different digital object types. Di-
oscori still lacks the support of newer Windows and other
operating systems from Windows 95 on.

Emulators like QEMU, MESS or ScummVM prove the
validity of the Open Source approach. Especially QEMU
has reached a stage rendering it suitable to be integrated
into preservation strategies utilizing emulation. However,
there is a gap in the development focus between the devel-
oper community of emulators on the one side and the pro-
fessional deployment in long-term archiving on the other.
The developers of the above-mentioned emulators have
different development goals than archiving organizations.
The present state of quality assurance is far from satis-
factory and must be extended by suitable, preferably au-
tomatic, test scenarios which verify all important aspects
of correct CPU and hardware replication. Generally, the
question remains if the development methods followed by
QEMU or Dioscuri, which originated from particular de-
velopment environments and paradigms, will be valid for
a long-term timespan.

Long-term perspective If one wants to ensure sus-
tainability, the future development should be actively sup-
ported by a suitable syndicate, such as a large archiving
organization. It shows that such a project can only be car-
ried out with wide support from personal and Open Source
Communities and needs a long-term perspective. A long-



term archiving strategy like emulation can not be achieved
by a single organization, even of the size of a national li-
brary, since the specific knowledge of particular comput-
ing architectures and digital object types will be spread
between the archive and science communities. Projects
like the Open Planets Foundation, 7 which continues the
Planets archiving framework, could serve as an example
for new approaches.

Nevertheless, one still needs to understand how to op-
erate an old computer environment. Today, many of us
still remember older environments such as MS-DOS and
early Windows, but soon even those experiences will be
lost. Thus an emulation strategy has to be supplemented
with means to preserve a more complete idea of past dig-
ital environments rather than just their hardware emula-
tors and software components. Therefore, manuals, tu-
torials and other supporting documents need to be pre-
served and kept available as well. Tacit knowledge could
be preserved e.g. in workflow recordings of those past
environments. This produces the base to offer appropiate
access environments to the future archive users. Auto-
mated workflows will play a major role for migration-by-
emulation strategies and the set-up of past digital environ-
ments for the deployment on reference workstations (Fig.
7).

Especially in regard to the preservation of a wide know-
how, a distributed approach should be chosen in which
single institutions specialize on one area but an intensive
exchange and shared access to the repositories remains
possible. Especially when it concerns the preservation of
various localized variants of software, cooperation of the
national institutions is proposed. A particular requirement
of software archiving lies in the preservation of specific
components, like hardware drivers for the network, graph-
ics or sound cards offered by the emulators. In addition
to this are codecs or fonts that are required for particular
types of videos, audio or documents.

1 REFERENCES

[1] David Bearman. Reality and chimeras in the preser-
vation of electronic records. D-Lib Magazine, 5(4),
1999.

[2] Christoph Becker, Hannes Kulovits, Michael Kraxner,
Riccardo Gottardi, Andreas Rauber, and Randolph
Welte. Adding quality-awareness to evaluate migra-
tion web-services and remote emulation for digital
preservation. In Proceedings of the 13th European
Conference on Digital Libraries (ECDL09), 2009.

[3] Max Burnet and Bob Supnik. Preserving computing’s
past: Restoration and simulation. Digital Technical
Journal, 8(3):23–38, 1996.

[4] Adam Farquhar and Helen Hockx-Yu. Planets: Inte-
grated services for digital preservation. International
Journal of Digital Curation, 2(2), 2007.

7 OPF, http://www.openplanetsfoundation.org

[5] Ross King, Rainer Schmidt, Andrew N. Jackson, Carl
Wilson, and Fabian Steeg. The planets interoperability
framework. In Proceedings of the 13th European Con-
ference on Digital Libraries (ECDL09), pages 425–
428, 2009.

[6] Raymond Lorie. The UVC: a Method for Preserving
Digital Documents - Proof of Concept. IBM Nether-
lands, Amsterdam, PO Box 90407, 2509 LK The
Hague, The Netherlands, 2002.

[7] Commission on Preservation, Access, and The Re-
search Libraries Group. Report of the taskforce on
archiving of digital information. WWW document,
http://www.clir.org/pubs/reports/pub63watersgarrett.-
pdf, 1996.

[8] Klaus Rechert and Dirk von Suchodoletz. Tackling the
problem of complex interaction processes in emula-
tion and migration strategies. ERCIM News, (80):22–
23, 2010.

[9] Tristan Richardson. The rfb protocol. WWW doc-
ument, http://www.realvnc.com/docs/rfbproto.pdf,
2009.

[10] Jeff Rothenberg. Ensuring the longevity of digital in-
formation. Scientific American, 272(1):42–47, 1995.

[11] Jeffrey van der Hoeven. Dioscuri: emulator for digital
preservation. D-Lib Magazine, 13(11/12), 2007.

[12] J.R. van der Hoeven, R.J. van Diessen, and K. van der
Meer. Development of a universal virtual computer
(uvc) for long-term preservation of digital objects.
Journal of Information Science, 31(3):196–208, 2005.

[13] Raymond van Diessen and Johan F. Steenbakkers. The
Long-Term Preservation Study of the DNEP project
- an overview of the results. IBM Netherlands, Am-
sterdam, PO Box 90407, 2509 LK The Hague, The
Netherlands, 2002.

[14] Remco Verdegem and Jeffrey van der Hoeven. Em-
ulation: To be or not to be. In IS&T Conference on
Archiving 2006, Ottawa, Canada, May 23-26, pages
55–60, 2006.

[15] Dirk von Suchodoletz. Funktionale
Langzeitarchivierung digitaler Objekte – Erfolgsbe-
dingungen für den Einsatz von Emulationsstrategien.
Cuvillier Verlag Göttingen, 2009.

[16] Dirk von Suchodoletz and Jeffrey van der Hoeven.
Emulation: From digital artefact to remotely rendered
environments. International Journal of Digital Cura-
tion, 4, 2009.

[17] Nickolai Zeldovich and Ramesh Chandra. Inter-
active performance measurement with vncplay. In
ATEC ’05: Proceedings of the annual conference on
USENIX Annual Technical Conference, pages 54–64,
Berkeley, CA, USA, 2005. USENIX Association.


