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Abstract

The goal of statistical mechanics is to understand the macroscopic behavior of large

bodies of interacting particles, starting from microscopic descriptions. As the energy of

the system changes these models often undergo a phase transition where the qualitative

macroscopic behavior suddenly changes. Both mathematicians and physicists are inter-

ested in understanding the behavior at and near the critical point. In this work, we will

focus on two aspects of the theory: understanding the graphs on which the models live

on the one hand, and continuous spin models on the other hand. It turns out that the

geometry of the space and some properties of the models are connected; an instance of

universality.

Mathematically perhaps the most tractable model is the Uniform Spanning Tree

(UST), which is intrinsically related to the loop erased random walk. In the first part

of the thesis, we will show a connection between the geometry of certain (random)

graphs and this UST. In particular, we prove that for recurrent, reversible graphs,

the following conditions are equivalent: (a) existence and uniqueness of the potential

kernel, (b) existence and uniqueness of the harmonic measure from infinity, (c) a new

anchored Harnack inequality, and (d) one-endedness of the uniform spanning tree. These

results are obtained from combinatorial properties of the graph, and most hold in wide

generality.

It was conjectured by Aldous and Lyons that, for unimodular random graphs, the

wired uniform spanning tree is always one-ended, unless the graph is trivial (is itself

two-ended). This was proved in the transient case by Hutchcroft. However, the trivial

graphs are always recurrent and the techniques for the transient case do not generalize to

the recurrent case. Using the connection to potential kernels and the harmonic measure

from infinity, we continue the thesis by showing that the conjecture of Aldous and Lyons

holds.

In the second part of the thesis, we focus on continuous abelian spin models and

their dual height functions. We will summarize in a relatively elementary and general

formalism a result of Sheffield which states that all ergodic Gibbs measures for height

functions are extremal. We will then introduce a special loop representation for the XY

model, which is reminiscent of the random current representation of the Ising model.
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The loop representation connects the planar height function model and the dual spin

model together. Using recent results on the so-called delocalization of integer-valued

height functions on trivalent planar lattices and the loop representation, we give a new

proof of the famous Berezinskii-Kosterlitz-Thouless transition in the XY model.

Finally, we revisit the classical Fourier duality between integer-valued height func-

tions and their dual abelian spin systems. We introduce some new methods to derive

general results, including: a universal upper bound on the variance of the height func-

tion in terms of the Green’s function (a GFF bound), monotonicity of this variance with

respect to a natural temperature parameter, delocalization for planar graphs, and the

occurrence of a BKT transition in planar spin models.
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Zusammenfassung

Das Ziel der statistischen Mechaniks ist es, ausgehend von mikroskopischen Beschreibun-

gen das makroskopische Verhalten großer, aus wechselwirkenden Teilchen bestehenden

Körper zu verstehen. Wenn sich die Energie des Systems ändert, durchlaufen diese Mod-

elle oft einen Phasenübergang, bei dem sich das qualitative makroskopische Verhalten

plötzlich ändert. Sowohl Mathematiker als auch Physiker sind daran interessiert, das

Verhalten am und in der Nähe des kritischen Punktes zu verstehen. In dieser Arbeit wer-

den wir uns auf zwei Aspekte der Theorie konzentrieren: einerseits auf das Verständnis

der Graphen, auf denen die Modelle leben, und andererseits auf kontinuierliche Spin-

modelle. Es stellt sich heraus, dass die Geometrie des Raums und einige Eigenschaften

der Modelle miteinander verbunden sind; ein Beispiel für Universalität.

Das mathematisch vielleicht am besten nachvollziehbare Modell ist der Uniform

Spanning Tree (UST), der eng mit dem Gaußschen freien Feld verbunden ist. Im er-

sten Teil der Arbeit zeigen wir eine Verbindung zwischen der Geometrie bestimmter

(zufälliger) Graphen und diesem UST. Insbesondere beweisen wir, dass für rekurrente,

reversible Graphen die folgenden Bedingungen äquivalent sind: (a) Existenz und Einzi-

gartigkeit des Potentialkerns, (b) Existenz und Einzigartigkeit des harmonischen Maßes

aus dem Unendlichen, (c) eine neue verankerte Harnack-Ungleichung, und (d) Ein-

seitigkeit des einheitlichen Spannbaums. Diese Ergebnisse ergeben sich aus kombina-

torischen Eigenschaften des Graphen, und die meisten gelten in großer Allgemeinheit.

Aldous und Lyons stellten die Vermutung auf, dass für unimodulare Zufallsgraphen

der verdrahtete einheitliche Spannbaum immer einseitig ist, es sei denn, der Graph ist

trivial (d. h. er hat zwei Enden). Dies wurde für den transienten Fall von Hutchcroft

bewiesen. Die trivialen Graphen sind jedoch immer rekurrent und die Techniken für den

transienten Fall lassen sich nicht auf den rekurrenten Fall verallgemeinern. Mit Hilfe der

Verbindung zu potentiellen Kernen und dem harmonischen Maß aus dem Unendlichen

setzen wir die Arbeit fort, indem wir zeigen, dass die Vermutung von Aldous und Lyons

zutrifft.

Im zweiten Teil der Arbeit konzentrieren wir uns auf kontinuierliche abelsche Spin-

modelle und ihre dualen Höhenfunktionen. Wir werden in einem relativ elementaren

und allgemeinen Formalismus ein Ergebnis von Sheffield zusammenfassen, das besagt,
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dass alle ergodischen Gibbsmaße für Höhenfunktionen extremal sind. Wir werden dann

eine spezielle Schleifendarstellung für das XY-Modell einführen, die an die Zufallsstrom-

darstellung des Ising-Modells erinnert. Die Schleifendarstellung verbindet das planare

Höhenfunktionsmodell und das duale Spinmodell miteinander. Unter Verwendung neuerer

Ergebnisse über die so genannte Delokalisierung von ganzzahligen Höhenfunktionen auf

dreiwertigen planaren Gittern und der Schleifendarstellung geben wir einen neuen Be-

weis für den berühmten Berezinskii-Kosterlitz-Thouless-Übergang im XY-Modell.

Schließlich greifen wir die klassische Fourier-Dualität zwischen ganzzahligen Höhen-

funktionen und ihren dualen abelschen Spinsystemen wieder auf. Wir führen einige neue

Methoden ein, um neue Ergebnisse in hoher Allgemeinheit abzuleiten, darunter: eine

universelle obere Schranke für die Varianz der Höhenfunktion in Bezug auf die Greensche

Funktion (eine GFF-Schranke), Monotonie dieser Varianz in Bezug auf einen natürlichen

Temperaturparameter, Delokalisierung für planare Graphen, und das Auftreten des

BKT-Übergangs in planaren Spinmodellen.
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Natuur is voor tevredenen of legen.

En dan: wat is natuur nog in dit land?

Een stukje bos, ter grootte van een krant,

Een heuvel met wat villaatjes ertegen.

Geef mij de grauwe, stedelijke wegen,

De’ in kaden vastgeklonken waterkant,

De wolken, nooit zo schoon dan als ze, omrand

Door zolderramen, langs de lucht bewegen.

Alles is veel voor wie niet veel verwacht.

Het leven houdt zijn wonderen verborgen

Tot het ze, opeens, toont in hun hogen staat.

Dit heb ik bij mijzelven overdacht,

Verregend, op een miezerigen morgen,

Domweg gelukkig, in de Dapperstraat.

J.C. Bloem
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CHAPTER 1

Introduction

A major problem in physics is to describe the large-scale behavior of a system of particles,

starting from a purely local description. Suppose we want to describe the transition

from a liquid to a gas, which occurs suddenly when the temperature passes through

a critical point. There are two immediate problems. First, there are many particles,

so an enormous amount of observables would be needed (for each particle, position

and momentum in Newtonian mechanics). Second, there is apparent chaos: even tiny

differences between the observations now can lead to huge differences in the future.

The field of thermodynamics was developed for this very purpose: to understand the

macroscopic behavior of models, based on physically measurable observables. Instead of

tracking each microscopic state and trying to describe the whole system, it is postulated

that only a much smaller number of parameters is needed to describe a macroscopic

state. We will only be concerned with models that are in equilibrium, meaning that the

macroscopic observables (of interest) do not change over time.

A special branch of thermodynamics to do this is statistical mechanics, which came

to life here in Vienna due to Boltzmann [39], and was later formalized by Gibbs [79].

The idea is to consider a probability distribution over all possible (microscopic) states

in which a given system can be. For example, in a pure gas, there are essentially three

quantities that are determined at macroscopic level: the volume of the vessel, the number

of particles and the (internal) energy. Given these quantities, the goal would be to find

a suitable probability distribution over all microscopic states, so that the frequencies in

real observations correspond to the distribution. Thus, the chosen probabilities describe

the microscopic behavior and provide the desired connection to the large-scale behavior.

Moreover, such probabilities can only depend on the macroscopic observables.

In general, we will only work with models where the particles have a fixed position

on a crystal in space, but their value can change. A typical example is the ferromagnet:

this is a crystal in which every atom has a magnetic charge. The Ising model, a famous

simplified model of magnetism introduced by Lenz [98, 124], assigns a positive (+1) or

negative (−1) charge to each “atom” of the cristal. Often, it is assumed that only

1



CHAPTER 1. INTRODUCTION

neighboring atoms interact. In particular, we assign to each microstate σ (which assigns

a value of +1,−1 to each atom of the cristal) an energy cost H(σ), depending only on

the the underlying lattice. The fact that only neighbors interact is formalized by the

assumption that the potential H has the form

H(σ) =
∑

x neighbor y

F (σx, σy).

Each microstate σ is drawn with probability proportional to the Gibbs weight e−
1
T
H(σ),

where T is a fixed temperature.1

Such a probability measure thus depends on the underlying crystal (which we will

often take to be a lattice), the total number of microstates and the temperature. Thus,

we have found a suitable framework for studying transitions, at least of magnets. Clearly,

the probability weights change continuously with time, but on a large scale a phase

transition must occur (if our model describes magnets): at high temperature, the weights

for each microstate are essentially equal, so there is no magnetism. However, when the

temperature is set to 0, only those microstates that minimize the energy cost H will

have any weight, in which case either each atom has positive or each atom has negative

charge.

In this thesis, we will be interested not only in the question: how do small changes

in the Gibbs weights affect the macroscopic observables? But also in the question: how

does the geometry of the underlying graph (crystal) relate to the geometry of the models

on top of it?

In the first part of this thesis, we will present a model in which this questions

can be answered at least to some extent. Here, we will be interested in the so-called

“uniform spanning tree”, which is defined in a way where the potential is highly non-

local2. In this case, the temperature is completely irrelevant, and there is no phase

transition. Rather, the model turns out to be “critical by definition”, at least in some

sense. The relationships between random walks, potential theory and spanning trees

briefly introduced below, allow to find deep relations between the geometry of the graph

and the model.

In the second part, we focus on a completely different model, namely a spin model

where each site of a lattice (regular graph, crystal) has with an angle in [0, 2π] (think

of a compass at every site), with a potential H that penalizes for large angle differ-

ences between neighboring sites. Here, the temperature is relevant. We will again see

1In statistical mechanics, this is called the canonical ensemble: in this case the energy of the system

is not actually constant, but rather the system interacts with a “heat bath” with which it can exchange

energy so that the temperature remains constant.
2Alternatively, it is the exception in which we study the so-called “microcanonical ensemble” (which

is defined as the uniform measure over energy-minimizing microscopic states, in the setting where the

energy is constant).
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1.1. GEOMETRY OF UNIFORM SPANNING TREES

interesting relationships between the underlying geometry of the lattice, and of certain

macroscopic observables. It will come as no surprise to the experienced reader that the

two models considered here are related, at least to some extent.

1.1. Geometry of uniform spanning trees

Given a finite graph G = (V,E), a spanning tree is defined as a connected subgraph T of

G with the same vertex set, but without any cycles. The uniform spanning tree is then

readily defined as the uniform measure on spanning trees. A first natural question, from

a combinatorial perspective, is: how many spanning trees does a given graph have? In

other words: what is the partition function of the model? Kirchhoff observed already

in the nineteenth century that this question is related to a seemingly totally different

problem: the eigenvalues of the Laplacian.

Theorem 1.1 (Matrix–tree theorem [105]). The number of spanning trees of G equals
1
n

∏n
i=2 λi, where the product is taken over the non-zero eigenvalues of the graph Lapla-

cian ∆.

This work is the starting point of the fascinating theory connecting spanning trees

and potential theory on finite graphs. In this work, we will not focus on these questions,

but instead move on to infinite graphs.

For infinite graphs, the notion of uniform spanning tree is not as easily defined. To

define the “uniform” spanning forest on an infinite graph G, Pemantle [143] proposed to

exhaust G by finite subgraphs and take weak limits for appropriately chosen boundary

conditions. For two natural choices of such boundary conditions, the free and wired

boundary conditions, he proved that these limits are well-defined and do not depend on

the choice of exhaustion. They do depend on the choice of boundary condition. The

free and wired boundary conditions turn out to be the (only) extremal ones.

It is worth noting that the limiting measure will always be supported on spanning

subgraphs of G which contain no cycles. However, connectivity is not a local condition

and hence it is not at all clear if the limit is supported on trees. For this reason, we

generally call the limits free and wired uniform spanning forest (FUSF, WUSF). Given

this observation, two questions instantly present themselves:

(1) When do the free and wired uniform spanning forest agree?

(2) When is the (wired) spanning forest connected (and thus a tree)?

In the setting of the hypercubic lattice Zd, Pemantle [143] provided an answer to both

questions: he showed that the free and wired limits agree and that the spanning forest

is connected if and only if d ≤ 4. By now, the answers to both questions are understood

in quite wide generality as we will explain below.

3



CHAPTER 1. INTRODUCTION

Figure 1.1: Left: depiction of the topology of some manifold. Right: a finite piece of

the manifold is cut out, leaving 4 infinite, connected components.

There is also a slightly different perspective on the uniform spanning forest. It can

be seen as a critical model from statistical mechanics, with at least two justifications for

this viewpoint. The first is that certain observables of the spanning forests behave much

like critical models and the second is through the relation with the (discrete) Gaussian

free field.

From this perspective, there is a third natural question related to the spanning

forests. Given a vertex x, there is always one path to infinity from x in the tree of the

forest containing x, which never comes back to x, but does the removal of x split the

tree into multiple infinite components? See also Figure 1.1.

This question is the analogue of the existence of an infinite cluster for percolation

at the critical point and as such is interesting to understand. Of course, the question is

also natural if the goal is to understand the topology of the spanning forests.

In general, we will say that an infinite graph G = (V,E) has at least k ends, if there

exists finite set of vertices B ⊂ V , such that after the removal of B, there are k disjoint

infinite components in G. In this light, we say that G is k-ended if it is at least k ended,

but not k + 1 ended, see again Figure 1.1. Using this terminology, the question above

can be rephrased to: how many ends does a component of the uniform spanning tree

have?

It turns out that answering this problem is harder than understanding the connec-

tivity of the forest. From a statistical mechanics perspective, this is also what we can

expect: there are few cases where absence of percolation at the critical point is known.

In case of the wired spanning forest, the direct connection to random walks on the

one hand, and to potential theory and the Gaussian free field on the other, provide a

relatively deep understanding of the model.
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Before we turn to the partial answers of the question about ends, let us briefly explain

these connections.

1.1.1 Potential theory and random walks

It is well known that harmonic functions and random walks are related, in particular

to potential functions. Here, by “potential” we mean a function which is harmonic on

all of the graph, outside of two points where it has value 0 and 1, corresponding to the

classical interpretation of an electric current flowing from 0 to 1. The latter connection

to currents on graphs and networks was developed first by Kirchoff [105].

To highlight a few details: a unit flow from a vertex x to a vertexy on a graph is

an anti-symmetric function on the directed edged θ : ~E → R, which satisfies that the

in- and outgoing flow at any vertex not x or y must be zero (hence it defines a kind

of “transport map”). At x and y the flow will have a source and sink respectively; net

outgoing at x the value is 1, net outgoing at y is −1. As such, we can define the effective

resistance between x and y in terms of a variational formula:

Reff(x↔ y) := inf{E(θ) : θ a unit flow from x to y},

where E denotes the l2( ~E)-energy. The flow minimizing the right-hand side is obtained

by taking the gradient of the potential, scaled by the effective resistance. This variational

notion is known as Thompson’s principle. The fact that the potential is the explicit

minimizer, implies that the effective resistance has a purely probabilistic interpretation

too:

Reff(x↔ y) =
Gy(x, x)

deg(x)
,

where Gy(·, ·) denotes the Green function of the random walk killed at y and deg(x) is

the degree of x in the graph.

As with spanning trees, we can define the effective resistance for infinite graphs using

finite exhaustions, but again, care must be taken in the choice of boundary conditions.

As before, there are two natural boundaries, the free and wired, giving rise to different

effective resistances in general. This time, the relation with potentials and harmonic

functions helps to answer the question: when are the resistances the same?

The question can be answered using relatively basic Hodge decompositions in the l2-

case, as explained in [32] and [131, Chapter 9]. A 1-form on a graph is an anti-symmetric

function on the oriented edges. It is called exact if it is the gradient of a function on

the vertices, and co-closed if it is divergence free. The Hodge decomposition tells that

the l2( ~E) space of 1-forms has the following orthogonal decomposition:

l2( ~E) = {exact} ⊕ {co-closed} ⊕ {dh : h harmonic and E(dh) <∞},

where dh denotes the gradient of h.
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For an oriented edge xy, write χxy := 1xy − 1yx for the most basic 1-form (which

is also a flow from x to y). On the one hand, it is known that the wired effective

resistance between the endpoints of two vertices equals the projection of χ onto the

space of co-closed forms. On the other hand, the free effective resistance equals the

projection of χ on the complement of the exact forms. From this, it follows that the

free and wired effective resistance are different precisely when there are non-constant

harmonic functions with finite Dirichlet energy.

At this point, it is worth mentioning another well known relation between the uniform

spanning tree and potential theory due to Kirchoff [105]. He showed that the probability

a given edge e is in the uniform spanning tree, is equal to the effective resistance between

the endpoints of the edge. We deduce that if the free and wired effective resistance agree

on an infinite graph, then the probability that a given edge is in the spanning forest

does not depend on the boundary chosen. Using the extension of Kirchoff’s formula to

multiple edges by Burton and Pemantle [44], we can answer the question about equality

of the free and wired spanning forests:

Theorem 1.2 ([32]). The free and wired uniform spanning tree are equal if and only if

there are no non-constant harmonic functions with finite Dirichlet energy.

A consequence of this result is that the free and wired spanning forests are the same

for all amenable graphs, and hence for all groups of polynomial growth.

Since potential theory is related to random walks on the one hand, and to the

uniform spanning tree on the other, it seems reasonable to ask if there is a more direct

relation between random walks and spanning trees. It was noted by Aldous and Broder

separately [10,41] that there is an exact way to sample the spanning tree using random

walks. An even more insightful sampling algorithm was later discovered by Wilson [171].

Let us describe the latter algorithm for finite graphs G = (V,E). Fix some enumer-

ation of the vertex set (v0, . . . , v|V |−1) and define inductively a sequence of subgraphs

(Ei)i≥0 as follows. Set E0 = {v0}. Given Ei−1, run a simple random walk started from

vi, stop it when it hits Ei−1 (which could be instantaneous), and erase chronologically

the loops on the random walk path from vi to Ei−1. Define Ei to be the union of Ei−1

and this loop-erased path. Call T = En.

Theorem 1.3 (Wilson [171]). The tree T is a uniform spanning tree of G.

It is easy to see that the algorithm generates a spanning tree of G, but that it is

distributed as the uniform spanning tree is quite miraculous. In fact, it is a priori even

far from obvious that this definition does not depend on the chosen enumeration of V .

Wilson’s algorithm extends to recurrent graphs without problem, but was extended

to transient graphs in [32]. In this case, the algorithm works more or less the same, the

only essential difference is that we take E0 the chronological loop erasure of a random

6
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walk started from v0. This is possible because the random walk is transient. Moreover,

there may be positive probability that started from vi, the random walk never hits Ei−1.

In this case, the loop erasure of the whole path from vi towards infinity is added to Ei

and the final forest automatically has two disjoint components.

Of course, since uniform spanning forests on transient graphs may depend on the

boundary conditions, there is no hope that Wilson’s algorithm can be used to generate

both the free and the wired forests. However, it is not too hard to see that the algorithm

described above corresponds to the wired uniform spanning forest. This is essentially

due to the following fact: if we use x as a root for Wilson’s algorithm and start a

random walk from y far away from x, then the random walk will typically hit the

boundary vertex before touching x and the branch from y to x typically goes through

the boundary vertex.

Using this extension of Wilson’s algorithm, Benjamini, Lyons, Peres and Schramm

[32] managed to resolve the question concerning connectivity:

Theorem 1.4 ([32], [130]). The wired uniform spanning forest of a graph is connected if

and only if the traces of two independent random walks have infinitely many intersections

with probability one.

1.1.2 Vertex-transitive graphs

In the remainder of this thesis, vertex-transitive graphs and extensions thereof play

a central role. A graph G is said to be vertex-transitive its automorphism group acts

transitively on its vertices. In other words, the graph “looks the same” from every vertex.

Examples include complete graphs, the tori (Z/NZ)d and the hypercubic lattices Zd.
Another important class of examples are Cayley graphs: for a finitely generated group

G with (symmetric) and finite generating set S, the corresponding Cayley graph has as

its vertex set V = G, with edges between x, y ∈ V if there is some s ∈ S with xs = y.

A finitely generated group is said to have weakly polynomial growth if any of its

Cayley graphs satisfy that there is some d for which

lim inf
R→∞

|Bx(R)|
Rd

= 0

where Bx(R) is the R-ball in the Cayley graph. Notice that this fact is independent of

the choice of generating set, which justifies the definition in terms of groups.

It turns out that (infinite) groups with weakly polynomial growth can be character-

ized quite generally. This was part of Gromov’s famous program on the classification of

finitely generated groups. A powerful result in this context is the following.

Theorem 1.5 (Gromov [84]). Let G be a finitely generated group of weakly polynomial

growth. Then G is virtually nilpotent.
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We will not explain exactly what virtual nilpotence means, but it strongly restricts

the coarse geometry of a group. An elegant and somewhat probabilistic proof of Gro-

mov’s theorem is due to Kleiner [106] (see also [156] for a finitary version and [174]

for nice lecture notes). A particularly striking consequence is that a group of weak

polynomial growth has polynomial growth with an integer exponent:

|Bx(R)| ∼ Rd

for some d ∈ N. Another consequence is that any group of weakly polynomial growth is

either roughly isometric to Z, or contains Z2 as a subgroup.

Of course, the theorem applies only to Cayley graphs, so what about vertex-transitive

graphs? There is a nice result by Trofimov [165] which says that every vertex-transitive

graph of polynomial growth is “roughly” equal to a Cayley graph. Thus, many re-

sults from Cayley graphs extend to the vertex-transitive case. It is worth mentioning

that Trofimov’s theorem does not hold for general vertex-transitive graphs: Diestel and

Leader [50] provided an example of a vertex-transitive graph and conjectured it was not

“roughly” a Cayley graph. Their conjecture was confirmed by [66].

1.1.3 Coarse geometry

Since effective resistance has a geometric interpretation on the one hand, and a proba-

bilistic interpretation in terms of random walks on the other, it is natural to ask how the

geometry of the underlying graph relates to the geometry of the uniform spanning forest.

The two results above about equality of the free and wired forest, and the connectivity

of the latter are examples of such relations.

A general strategy to prove a property or model depends only on the coarse geometry

of a graph, is to use rough isometries. Without including a precise definition, two metric

spaces (X1, d1) and (X2, d2) are roughly isometric if there is a map between the two

spaces which is “coarsely Lipschitz” and “coarsely surjective”, see e.g. [131, Chapter

2]. This can be applied in the context of groups to say that a property of the group

defined in terms of its Cayley graph, does not depend on the choice of generating set. In

general, rough isometries can provide a strategy for proving that a graph G1 has some

property by finding a better understood graph (or metric space) G2 roughly isometric

to G1 and by proving G2 must have the desired property.

Percolation. Let us make a small detour to percolation to give an example of a

somewhat related model for which some properties depend only on the coarse geometry

of the graph.

Fix a graph G = (V,E) and a parameter p ∈ [0, 1]. Take x ∈ V fixed. Generate

the random subgraph ω ⊂ G by including each edge of G in ω with probability p,

8



1.1. GEOMETRY OF UNIFORM SPANNING TREES

independently for each edge. Write θ(p) for the probability that the component of x in

ω is infinite. It is relatively straightforward to convince oneself that θ(p) is increasing

in p. The critical value pc is defined as the supremum over all p for which θ(p) = 0.

Without going into the beautiful background on percolation, let us mention only two

questions concerning the model: when is 0 < pc < 1 and what is θ(pc)?

As mentioned before, the latter question is similar in spirit to the question: how

many ends does a component of the WUSF have? Notice also that θ(pc) = 0 implies

that pc < 1, simply because for p = 1, the random graph satisfies ω = G a.s. As we will

soon see, for the WUSF, the question on the number of ends can be solved at least in

some generality. However, the question of θ(pc) = 0 is one of the main open problems

in probability theory, even in the case where the underlying graph is Z3 with nearest

neighbor interactions. For the hypercubic lattices Zd in the special case of d = 2, it

was proved by Kesten that θ(pc) = 0 ([103]), and for d ≥ 11 it was proved in [67, 89].

However, both these cases rely on methods that cannot work in three dimensions: d = 2

relies on planarity, whereas d ≥ 11 relies on the “lace expansion”.

The question whether or not pc < 1, on the other hand, is by now better understood.

Not only is it known that pc < 1 for all Cayley graphs that are not trivial, it is even

understood that there is a gap for the possible values of pc:

Theorem 1.6 ([139]). There exists some ε > 0 such that for all Cayley graphs of

superlinear growth, pc ≤ 1− ε.

The proof of this, and many earlier results relies on a version of Gromov’s theorem

1.5 above. We mention only the strategy to show that pc < 1 for all Cayley graphs

of polynomial growth (not roughly Z). By Gromov’s theorem, any Cayley graph with

polynomial growth is either is roughly isometric to Z or has a subgroup isomorphic to

Z2. Moreover, it is known that pc < 1 is stable under rough isometries (at least when the

graphs involved have bounded degrees) [131]. Thus, to show that pc < 1 for any Cayley

graph which has at most polynomial growth, it suffices to proof that pc(Z2) < 1. Using

planar duality, a counting argument (in the spirit of Peierls’ [141]) gives the desired

bound.

This approach at least sheds some hope on answering the question of ends in the

wired uniform spanning forest: perhaps it is invariant under rough isometries? Sadly,

the answer is no: Hutchcroft [92] recently provided a counter example. However, we will

see later that there are other properties which are rough isometry invariant, and which

do provide a method to solve the ends question for certain Cayley graphs.

9
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1.1.4 Ends in the spanning forest: vertex-transitive graphs

Let us go back to the question: how many ends does a component of the wired uniform

spanning have? It may be tempting to guess that this depends only on the coarse

geometry, but as mentioned above, this intuition is false. Nonetheless, to understand

what happens for general vertex-transitive graphs, it is worthwhile to first consider the

hypercubic lattices Zd, d ≥ 1.

Pemantle [143] showed in this case that the components of the uniform spanning

forest are almost surely one-ended if d ≥ 2. The case d = 1 is trivial: the spanning

tree equals the whole graph, which is itself two-ended. Thus, the transition between one

and two-endedness of the graph happens between dimension 1 and 2, as in the setting of

percolation. Heuristically, we could expect that also for general vertex-transitive graphs,

the transition happens between dimension 1 and 2. Here, by dimension we mean volume

growth exponent.

This heuristic was made rigorous in the fundamental work of Benjamini, Lyons,

Peres and Schramm [32] on uniform spanning forests in the context of vertex-transitive

graphs. We break the result into two parts: the transient and the recurrent case.

Theorem 1.7 (Benjamini et al. [32]). Let G be a transient, vertex transitive graph.

Each component of the wired uniform spanning forest is one-ended almost surely.

Note here that the results by Pemantle do not provide an intuition for graphs which

do not have polynomial growth, and the result of [32] holds for the wired forest. Indeed,

it is quite easy to see that it cannot be true for the free forest. Consider a 4-regular

tree. The free spanning forest must equal the whole tree almost surely, hence is a single

connected component which has infinitely many ends.

Let us roughly outline how to obtain Theorem 1.7. A proof due to Hutchcroft [91]

(which works in a more general setting) splits into two parts. His biggest contribution

is to rule out that the wired spanning forest has more than one two-ended component,

which uses a so called “cycle breaking algorithm”. Without providing the details, this

is a local update algorithm which allows to say that if there would be two (or more)

components with two ends, then there would be one component with three ends, but

the latter is impossible for vertex-transitive graphs ([9, Theorems 6.3 and 7.1]). We will

outline the second step, which consists in ruling out that there is exactly one component

with two ends. A similar argument was already present in [32, Theorem 10.3].

Proof sketch. The second step is to rule out a single component with two ends, which will

be done by contradiction. Recall that if a tree has two ends, there exists a (unique) bi-

infinite simple path on the tree. We call such a bi-infinite path the spine of the tree, see

also Figure 1.2. Since there is only one component with two ends, there is a unique spine
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Figure 1.2: Left: the spine of a two-ended three is depicted in thick red. Right: the

first part of Wilson’s algorithm: the loop erased walk from x to infinity (E0) is in thick

black. The random walk started at y (dashed green) hits E0 not at x. As such, it is

impossible that both x and y are in the spine.

in the wired spanning forest. Note that by vertex-transitivity, P(x in the spine) ≥ δ > 0

for any x, which shows that

P(x and y in the spine) ≥ δ

2

whenever the distance between x and y is large (this follows by extremality of the

spanning forest measure). We will contradict this statement.

Wilson’s algorithm implies that we can do the following: run a random walk started

from x (to infinity) and loop erase it, call this E0. If x is in the spine, E0 will be part of

the spine. There are two possibilities for y to also be on the spine: either it is already

on this path E0, or it isn’t. With high probability, E0 will not contain y when x and y

are far apart: indeed, y needs to be touched by a simple random walk started from x,

but the graph is transient. If y is not yet in E0, then x and y can only be (both) on

the spine if a random walk started from y hits x before it either wanders off towards

infinity or touches E0 \ {x}. This event is depicted in Figure1.2 But again, a random

walk started from y has very high probability never to hit x at all if x and y are far

apart. This readily implies the contradiction.

The argument above clearly does not work in the recurrent case. Here, Gromov’s

theorem provides some helpful intuition. Indeed, the latter implies that a Cayley graph

which is two-ended must be roughly isometric to Z, although this fact can be proved

more directly as was originally done in [168]. In this case, the uniform spanning tree

clearly has two ends. For the converse: is it possible deduce that G is two-ended if the
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uniform spanning tree is? If the answer would be negative, this would imply that even

on graphs which look roughly like Z2 at large scale, the uniform spanning tree would

behave like a “trivial” critical model. Again, Benjamini, Lyons, Peres and Schramm

provided the answer for vertex-transitive graphs:

Theorem 1.8 (Benjamini et al. [32]). The spanning tree of a recurrent, vertex-transitive

graph G is one-ended unless G is roughly isometric to Z.

The hard part of the proof is to show that the graph is two-ended if the uniform

spanning tree is and this is more difficult than in the transient setting.

Theorem 1.8 does provide a link between the geometry of the group and the statistical

mechanics model on top of it, but it does not do so using rough isometries. In Chapter

2, we show that if a recurrent, vertex-transitive graph satisfies a type of rooted Harnack

inequality, then the uniform spanning tree must be one-ended. Vertex-transitive graphs

are either roughly isometric to Z or Z2 as mentioned above. The graph Z2 satisfies a type

of parabolic Harnack inequality and this is stable under rough isometries3, two classical

results [83, 118, 152]. This Harnack inequality is not quite rooted, but it is relatively

easy to see that any graph roughly isometric to Z2, must also satisfy a rooted version.

Hence, the uniform spanning tree on any vertex-transitive graph roughly isometric to

Z2 is one-ended almost surely.

1.1.5 Unimodular random rooted graphs

A generalization of vertex transitive graphs can be realized by requiring only that the

law of the graph is invariant as we move through the graph. To that end, it is convenient

to look at rooted graphs: (G, o) where o is a marked vertex, from which we view the

graph. A natural topology to work with, is the local topology, also known as Benjamini–

Schramm topology, first introduced in [33]. A graph isomorphism G 7→ G′ which maps

the root o to o′ is an isomorphism of rooted graphs (G, o) and (G′, o′). The local topology

is then induced by the space of rooted isomorphism classes G• equipped with the distance

d((G, o), (G′, o′)) := e−R,

where R is the largest radius so that the graph balls of radius R centered at the respective

roots are isomorphic as rooted graphs. Similarly defined is the space G•• of (isomorphism

classes of) doubly rooted graphs .

A probability measure P on G• is said to be unimodular whenever it satisfies the

mass transport principle: for every measurable F : G•,• → [0,∞],

E

[∑
x∈V

F (G, o, x)

]
= E

[∑
x∈V

F (G, x, o)

]
.

3It is worth mentioning that also the usual Harnack inequality is stable under rough isometries [19],

but this result is much harder to prove. The parabolic Harnack inequality always implies the usual one.
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For a concise background on this beautiful topic, and many examples, we refer to [9].

Perhaps a canonical example of a unimodular rooted graph, is when the graph itself

is finite and fixed, and the root is a uniformly chosen vertex. This basic example captures

the intuition behind unimodular graphs rather well: every vertex is equally likely to be

the root. With this in mind, unimodularity generalizes vertex transitivity, and is also

linked to stationarity under shifts induced by random walk (and thus ergodic theory)

using “degree biasing”, see for example [27].

Other important examples which fall in this framework are uniform planar maps,

such as UIPT [14], UIPQ [111] (and perhaps tessellations of Rd) and many perturba-

tions of Cayley graphs, like infinite clusters of certain supercritical statistical mechanics

models.

Essentially all questions raised above for vertex-transitive graphs can also be asked

in this more general setting. Results relying solely on ergodic arguments extend to the

setting of unimodular random graphs almost immediately. For example, the Burton–

Keane theorem [43] about the number of infinite components of a percolation model can

be extended [9], although some care must be taken in defining amenability. Of course,

characterizations such as those by Gromov for Cayley graphs are not available in this

setting.

Let us focus our attention for now just on the uniform spanning forests. In their sem-

inal work, Aldous and Lyons conjectured that the behavior known for vertex-transitive

graphs should also hold for unimodular random rooted graphs:

Conjecture 1.9 (Aldous–Lyons [9]). Let (G, o) be a unimodular random rooted graph.

The wired uniform spanning tree on (G, o) is one-ended, unless G is two-ended, almost

surely.

The argument by Hutchcroft [91] as sketched above works for transient graph in this

setting too (in fact, it was developed for it). The only further requirement needed in his

argument, is that the expected degree of the root is finite. Later, Hutchcroft managed

to remove this assumption [92]. Of course, the argument does not work for recurrent

graphs.

Some interesting recurrent graphs, such as the uniform plane triangulation, are ac-

tually planar and hence come with additional structure and toolbox. Planar maps are

planar graphs, together with an embedding in S2. In the theory explained above for uni-

modular random rooted graphs, the isomorphisms between rooted graphs are restricted

to homeomorphisms of the rooted planar maps.

The latter, too, was introduced by Benjamini and Schramm [33], who provided a

beautiful proof of the fact that “local limits” of planar maps are recurrent under the

condition of (uniformly) bounded degrees. Using this setting Angel, Hutchcroft, Nach-

mias and Ray [13] showed that the uniform spanning tree of any unimodular random
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rooted planar map is one-ended, unless in the trivial case where the underlying graph

is not (and proved other beautiful insights to unimodular planar maps).

Of course, it is not easy to bootstrap these results beyond planar maps, unless

perhaps in some relatively explicit cases (such as taking a planar map, but allowing for

non nearest neighbor edges). Moreover, even for planar graphs (not planar maps), it is

not clear how to apply the framework of [13]. Thus, the conjecture of Aldous and Lyons

remained open for recurrent graphs in general. One of the main results of this thesis is

the resolution of this conjecture.

1.1.6 Further relations between uniform spanning trees and geometry

Focus for now on fixed recurrent, rooted graphs. Given a random walk on (G, o), we

wonder if it makes sense to talk about a random walk conditioned to never return to its

starting point. Since the graph is recurrent, it is not clear if this is always well defined.

Define Tz and T+
z the first hitting respectively return time of z for the simple random

walk. Let (zn)n be a sequence of vertices going to infinity. Does

azn(x) :=
Px(Tzn < T+

o )

deg(o)Po(Tzn < T+
o )

converge as n → ∞, independent of the choice of sequence? Does it depend on the

choice of the origin?

Let us first mention how such random walks would be related to the uniform spanning

tree. For transient graphs, Wilson’s algorithm allowed to sample first a path towards

infinity. This was instrumental in proving the conjecture of Aldous and Lyons 1.9. For

recurrent graphs, it is not clear if there is a simple way to sample such a path towards

infinity. However, Wilson’s algorithm depends only on the loop erasure of a random

walk path, and in particular the loop erasure of the path from o to zn does not see any

of the loops from o to itself. Thus, the loop erasure of this random walk path, is the

same as the loop erasure of a random walk path conditioned to first touch zn. Therefore,

if there is an unambiguously defined random walk conditioned to never return to o, then

we could potentially use this to sample a path from o to infinity in the spanning tree.

If the underlying graph is a unimodular random rooted graph, this can be used to

show that if there is an unambiguously defined random walk conditioned to never return

to o, then the uniform spanning tree must be one-ended. We do this in Chapter 2. This

thus provides another link between potentials on the graph and the uniform spanning

tree.

Chapter 2 provides properties of the potentials above and the corresponding random

walk conditioned to never return to o. For general recurrent graphs, it turns out that

the limit points a of azn above, are related to the “harmonic measure from infinity”,

defined for a finite set B of vertices as follows. Take µn the hitting distribution on B of a
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random walk started from zn. Define the “harmonic measure from infinity” as the limit

of µn, provided that it exists. This limit is well defined (for all finite sets B) precisely

when the limit of azn exists.

Moreover, a certain type of “rooted” Harnack inequality holds if and only if the limit

of azn exists and does not depend on the choice zn. We do not prove that this particular

Harnack inequality is rough isometry invariant (although that would be interesting to

know). It is known that a stronger, classical Harnack inequality is rough isometry

invariant [83, 152]. For vertex-transitive graphs, this can be used to show that the

uniform spanning tree is one-ended unless the graph is roughly isometric to Z.

In Chapter 3 we continue on this track and use it to finally resolve the conjecture

by Aldous and Lyons (Conjecture 1.9).

1.2. Phase transitions in spin systems

We switch to a (seemingly) totally different model from statistical mechanics. The

previous model described the large scale behavior of uniform spanning trees – perhaps

intrinsically mostly a mathematical object. This section presents models with which

have a physical motivation to describe ferromagnets. Although there are few immediate

correspondences between the two models, some (if not many) of the techniques and

objects involved will be the same.

Let G = (V,E) be a finite graph and G a topological group; most of the time we will

take G = Sn−1 for integer n. We will call a function H : GV → R a Hamiltonian and

define the spin measure µSpin to be

dµSpin(σ) =
1

Z
e−βH(σ)dσ, (1)

where Z is the normalizing constant, often also called the partition function, and β > 0 is

the inverse temperature. The Hamiltonian H(σ) corresponds to the “energy cost” of the

configuration σ ∈ GV , and thus configurations with low energy cost are favored by µSpin.

If the temperature is high, β is small and the energy difference between configurations

plays little role. When the temperature is low, β is large and the energy difference may

become influential.

In general we will assume that the Hamiltonian is of the form

H(σ) :=
∑
xy∈E

Uxy(σx − σy),

where we use additive notation for the groups. Often, the functions Uxy will be the same

on each edge, or differ only by positive scaling. An important example of a Hamiltonian

for the group G = Sn−1 ⊂ Rn is

H(σ) := −
∑
xy∈E

Jxyσx · σy
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where Jxy ≥ 0 and σ · σ′ denotes the standard inner product on Rn . This model is

called the classical spin O(n) model, with special cases n = 1 and n = 2 bearing the

names Ising- and XY-model respectively. In this case, the energy H favors spins that

are aligned, and is minimized for configurations that are constant.

Note that the group G acts naturally on the state space: g.σ = g + σ and that the

Hamiltonian is invariant under the action of g. Since we are interested in understanding

the occurrence of a phase transition, it is natural to ask: how does the function

β 7→ 〈σx〉gβ

behave when β changes and g ∈ G \ {0} is some fixed boundary condition? We will call

βc := inf{β ≥ 0 : 〈σx〉gβ 6= 0}

the critical temperature and will say that a (non-trivial) phase transition occurs if the

critical temperature does not equal 0 or ∞.

In the case when H is ferromagnetic, it is often not hard to show that when β is

small, 〈σx〉gβ = 0. In particular, in this case the symmetry under the group action is

preserved: 〈g′σx〉gβ = 〈σx〉gβ for any g′ ∈ G.

When the group is finite (for example when G = Z2
∼= {−1, 1}) and Γ = Zd with

nearest neighbor interactions, Peierls’ argument [141] guarantees that for β large enough

〈σx〉gβ 6= 0, in which case we say that there is spontaneous magnetization or that the

symmetry is broken. The intuition behind Peierls’ argument is that g 7→ U(g) − U(0)

taken over G \ {0} has a strict positive minimum because the group is finite. Thus,

the energy cost of two neighboring spins that disagree can be made arbitrary high.

Therefore, the cost of a large interface of disalignments is high and if the underlying

graph is of the form Γ = Zd, d > 1, does not occur at each scale.

However, the argument breaks down when the group G is continuous. This leaves

the immediate question: does a phase transition occur at all? It turns out that this

depends on the global geometry of the underlying graph Γ. Part of the answer is in the

negative, as was rigorously established by Mermin and Wagner in the late sixties:

Theorem 1.10 ([134]). For the planar square lattice and Hamiltonians invariant un-

der the rotation group O(n) for some n ≥ 2, there is no symmetry breaking at any

temperature.

In fact, this results holds for all recurrent (locally finite) graphs, an elegant proof of

which is due to McBryan and Spencer [133]. Their argument also provides power-law

upper bounds on the two-point function on the square lattice. The proof is, in both

cases, based on the so called spin wave theories from physics. Essentially, if we believe

that the two dimensional spins behave roughly like

eiθ ≈ eihGFF ,
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for some hGFF a Gaussian free field, then the result easily follows. Establishing an upper

bound in terms of a spin wave turns out to be relatively elementary.

Given the Mermin–Wagner theorem, two immediate questions arise:

(1) To what extend does this depend on the recurrence of the graph?

(2) Is there something else that happens in two dimensions, or is the behavior

trivial?

The first question will not be studied in this thesis, but was solved in the special

case that the graph Γ = Zd using reflection positivity by Fröhlich, Simon and Spencer

in the eighties:

Theorem 1.11 ([70]). For d ≥ 3, for all β large enough, the symmetry in the model is

broken: there exists a translation invariant Gibbs measure µβ for which µβ(σ0) 6= 0.

For a nice proof of this fact, and introduction to reflection positivity, we refer to the

lecture notes by Biskup [38] and to [69]. Reflection positivity has the drawback that it

can only be applied to Zd (in fact, all the symmetries of the discrete tori (Z/LZ)d are

needed, and they converge locally to Zd). The upshot is that it is quite robust under

changing coupling constants and allowing for long(er) range interactions. Altogether,

it leaves open the general connection to the geometry of the underlying graph. As for

percolation, we think the following is true:

Conjecture 1.12. The spin O(n) model on any Cayley graph which is not roughly Z
or Z2 admits a phase where the symmetry is broken.

1.2.1 Topological phase transition

For now, we will leave the higher dimensional case and focus only on planar graphs

and the question: what happens when the graphs are recurrent? In fact, let us just fix

Γ = Z2 with nearest neighbor edges for simplicity. Again, it turns out that the answer

to the question depends on the model at hand. Let Sn−1 be the spin space for some

n ≥ 2 and take the potential U(σx − σy) = −βσx · σy, corresponding to the classical

O(n) spin model described above with inverse temperature β = 1
T .

It turns out that still, the behavior depends on n, at least conjectural. Let us start

with the case n = 2, in which case the group S is Abelian. Physicists Berezinskii,

Kosterlitz and Thouless [36, 37, 108] predicted that a subtle, topological, type of phase

transition occurs. The latter two received a Nobel prize for this discovery.

Let d denote the gradient of a function in the group G, which we will take to be either

S or R with addition. In other words, we view d : GV → GE . Each spin configuration

thus defines a map J : E → S, which satisfies that there is a σ : V → S such that
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dσ = J in S. We can next identify S with [0, 2π). However, the induced map J : E → R
generally does not satisfy that there is a function f : V → R such that df = J in R. A

problem occurs when there are faces on the graph around which the sum of J is larger

than 2π. A face where this sum of J is larger than 2π will be called a vortex or anti

vortex depending on the orientation of the face. These discrepancies will be the core

of our heuristic explanation of a subtle phase transition which does occur in the XY

model.

Let us do a back of the envelope calculation. Suppose that the (anti)-vortices do

not play an important role and we could actually find a function f : V → R such that

df = J in R. In this case, the function f must be a Gaussian free field (GFF). In other

words,

θ = eihGFF

with hGFF a real-valued GFF with variance β−1. Such an object is also known as a

“spin-wave”.

But what would be the implication of an identity of this form? It follows using

standard properties of the GFF that

〈σxσ̄y〉 ∼ |x− y|−γ

for some power γ > 0 which depends on the variance β and (a priori) the lattice.

Obviously, this computation is far from rigorous and the effects of the vortices should

be taken into account. In fact, it is not true that the vortices do not play an important

role in the large scale: renormalization group computations suggest that in the low

temperature regime, the spins do behave like eihGFF , but the effective temperature of

the Gaussian field hGFF is believed to be affected by the vortices and may be model

dependent [100,107].

Moreover, in the high temperature regime, the vortices destroy the correlation. The

idea is that vortices are energy costly, and therefore, if the temperature is low, the

above heuristics works and vortex anti-vortex pairs appear relatively sparsely. The

renormalization group argument of [100, 107] suggest that in the “scaling limit”, the

spin-wave behavior above is recovered, at least at the level of power-law behavior of the

two-point functions. However, if the temperature is high, vortices appear all over the

place and induce exponential decay of correlations.

To heuristically verify that vortices are indeed the driving factor of the phase tran-

sition, we may wonder what happens if we change the potentials U in such a way that

there are no vortices by construction. Is there is no phase transition at all? For example,

if we restrict the potential so that two neighboring spins cannot have an angle difference

which is larger than π
2 , then vortices do not appear by definition. Does such a system

not have a phase transition? In general, it was conjectured by Patrascioiu and Seiler
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[140] that something like this is true. Their conjecture was proved in a very nice way

by Aizenman[5], under a stronger restriction on the angle differences than necessary to

prevent vortices.

Going back to the XY model, part of the heuristic argument above was made rigorous

in a massive breakthrough by Fröhlich and Spencer [71], who provided a power-law lower

bound for the two-point function. For a recent review paper of their proof, we refer to

[104]. Two new approaches to this result will be provided in this thesis.

Theorem 1.13 (Fröhlich and Spencer [71]). There exists a β1 < ∞ such that for all

β ≥ β1, there exists a c(β) ∈ (0,∞) such that

〈σxσ̄y〉 ≥ |x− y|−c(β)

for all x 6= y. Moreover, c(β)→ 0 as β →∞.

Most computations to establish the transition (also by Fröhlich and Spencer [71])

rely on an expansion of the spins in terms of a so called spin wave and a Coulomb gas. In

order for this to make formal sense, we need to endow the underlying lattice with more

topological structure: in general we need to consider a chain of complexes of highest

dimension at least 2.

The decomposition amounts to writing the 1-form of spins, viewed as taking value

in R, in their orthogonal decomposition (also known as Hodge decomposition as in this

setting, the “harmonic” part vanishes)

dθ := dϕ+ d∗q,

where ϕ is a function on the underlying lattice and q a 2-form. The operators d and

d∗ refer to the discrete (exterior) derivative and its formal adjoint. The field ϕ is called

the spin-wave, q describes the charges. The latter is often a related to a Coulomb gas.

This decomposition is analogous to the Hodge decomposition of white noise: in this

case, the two fields ϕ and q are Gaussian free fields, see for example [51] for the lattice

and [16] for the continuum case.

Of course, the fields ϕ and q are generally not independent, but in the setting of

Villain interactions they are. In this case, the spin wave is exactly equal to a Gaussian

free field [21,74,77]. The remaining task to prove Theorem 1.13 is to show that the in-

teractions of the Coulomb gas are relatively small, and this can be done rigorously using

a multi-scale analysis as in [71]. To apply the (now non-rigorous) renormalization group

arguments of [100], a more exact understanding of the contributions of the Coulomb gas

would be needed.

Let us also remark that the O(n) models with n ≥ 3 are believed to undergo no

phase transition at all in two dimensions, a conjecture attributed to Polyakov [147]. It
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must be pointed out that this conjecture has not (even) been settled by physicist, and

the only results known to the author are in the “n → ∞” setting by Kupiainen [113]:

for each β, there exists an n large so that the O(n) model has exponential decay at this

value of β.

1.3. Fourier–Pontryagin transform and duality

A different way to approach phase transitions in spin models, is to use duality directly.

Here, by duality, we mean duality through Fourier transformations of partition and

correlation functions. In general, this method turned out to be extremely useful in

statistical mechanics, particularly in two dimensions. For the Ising model, at least

on the level of partition function, this is known as Kramers–Wannier [110] duality,

although nowadays, it is not often explained using Fourier transforms explicitly since

their computations lead to stronger results.

In this special case, the primal Ising model maps to dual Ising model on the dual

graph, up to a temperature inversion given by

β 7→ log

(
eβ − 1

eβ + 1

)
=: β∗.

The point at which the primal and dual Ising model share the same temperature is

called the self dual point, and is given by βsd := log(
√

2 − 1). In the case where the

underlying lattice is also self dual, the self dual is also the critical point [23, 138], an

extremely useful property that lies at the heart of many breakthroughs [46,55,90,159].

A heuristic argument for the latter fact can be seen through the free energy of the

model, which is defined as

f Ising(β) = lim
n→∞

1

|Λn|
log(ZIsing

Λn,β
),

where Λn is the 2n×2n box on the square lattice and ZIsing
Λn,β

the partition function. The

free energy is well defined by sub-multiplicative arguments and does not depend on the

boundary conditions due to amenability. An important fact about the free energy is that

phase transitions of the model are visible as a singularities of the free energy, and the

type of singularity determines the type of transition, see [69] for a better explanation.

By identifying the partition function of the primal and dual model (up to an explicit

global factor), it follows that

f(β) = f(β∗) + C(β),

where C(β) is explicit and analytic. In conclusion, if the Ising model on the square

lattice undergoes a single phase transition and if this is visible as a singularity in the
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free energy, then it must occur at the self dual point. Of course, the assumptions would

need mathematical justification.

Beyond the level of partition functions, extensions of Fourier duality to order–

disorder variables were studied by Kadanoff and Ceva [101]. These type of observables

were used to apply renormalization group arguments in physics, and later rigorously

by Smirnov in his breakthrough works, showing the (two-dimensional) Ising model is

conformally invariant [46,90,159].

More recent related applications are in terms of the Fortuin–Kasteleyn (FK) perco-

lation model [68]. For two parameters q ∈ (0,∞) and p ∈ [0, 1], this is a spin model

on the edges of a graph, taking value in the group Z2
∼= {0, 1}, and with Gibbs weights

proportional to

φFK
q,p (ω) ∝

∏
e∈E

pωe(1− p)1−ωeq#{clusters in ω}.

If q = 2 this is a graphical representation of the Ising model: sampling independently

for each cluster of ω a uniform element of {−1,+1} gives the Ising model [62].

As the emergent symmetry in the definition of φFK
p,q may suggest, each ω is dual to

ω∗ := 1 − ω (living on the dual graph) and it turns out that the weight φFK
p,q (ω) equals

exactly φFK
p′,q(ω

∗) with appropriately changed temperature p′ = p′(p, q) [56]. Such type of

exact duality was instrumental already in Smirnov’s work [46, 55, 90, 159]. This duality

is much stronger than the Fourier one, as it establishes a bijection between the models,

not just equality of partition functions.

These examples are special. On the square lattice, it can be used to show that the

phase transition for both models occurs at the point where the model is self dual [23]

if q ≥ 1. The biggest difficulty in establishing this heuristically believable fact is that

duality may behave weirdly for non-standard boundary conditions.

However, as we will see next, self duality nor exact combinatorial duality is present

for continuous spin models (as far as we know).

The circle group

If an Abelian group G is finite, its irreducible representations are equal to the characters

of the group and the group of characters can be identified with the Pontryagin dual Ĝ :=

Hom(G,S). In the special cases of G = Z/qZ, the groups are self-dual. Furthermore, as

we have mentioned before, for the Ising and Potts model, the Fourier transform is again

an Ising or Potts model with a different temperature.

When the group G is locally compact and Abelian, the Fourier transform can still

be expressed in terms of the Pontryagin dual Ĝ. In general, it is no longer true that

the groups are self-dual: an Abelian group is compact if and only if its dual is discrete.

The case of particular interest to us is when G = S and in this case, it is classical that
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Ĝ = Z.4

The Fourier pairing of two functions f̂ : Z→ C and f : S→ C is then described by

f̂(k) =

∫ 1

0
f(t)e−2πiktdt f(t) =

∑
k∈Z

f̂(k)eikt,

when this makes sense. We will mostly restrict to functions taking value in R, in which

case its Fourier transform is an even function and vise-versa. We say that a function

is positive definite if its Fourier transform is non negative, so it defines a probability

measure on the dual space. In particular, if f : S → R is itself positive and, moreover,

positive definite, its Fourier transform is too.

This is extremely helpful in the context of the O(2) spin models. If U : S → R is a

symmetric potential and e−U is positive definite, then the spin model defined by

H(σ) =
∑
e∈E
U(dσe) and dµ(σ) ∼ e−H(σ)dσ

has a well defined, probabilistic Fourier transform, which we will call the dual model.

The latter is described by taking V = − log ê−U and defining the Gibbs measure

ν(h) ∝ e−
∑
e∈E V(dhe)

with respect to an appropriate counting measure. Some care has to be taken as to where

the height function h lives, the details are in Chapter 7. However, when the graph Γ is

planar, the dual model will be a proper height function on the dual graph Γ∗.

1.3.1 BKT-transition through duality

Let us go back to the existence of a phase transition. The basic heuristic is that the

transition should be visible in the primal and the dual model, and at the same temper-

ature. Again, it may be tempting to look at the free energy, as it is the same for the

spin model and its dual height function, however it is a priori not obvious at all how

the subtle BKT transition would manifest itself at this level. In fact, for the planar XY

model it is believed that the free energy β 7→ fSpin(β) is smooth at the critical point,

but not analytic (which it should be away from the critical point). This shows, at least

on a heuristic level, that the two models must have a single phase transition at the same

temperature.

Applying Fourier–Pontryagin duality, we can calculate exactly the characteristic

function of the spin model,

〈ei(dσ,η)2〉β =
ZHeight
β (η)

ZHeight
β

(2)

4The reason is as follows: any irreducible (complex) representation of an Abelian group is one-

dimensional by Schur’s lemma. Moreover, S is compact so that any irreducible representation ρ : S →
GLC(1) takes values in S again, hence the characters of S are isomorphic to the automorphisms of S.
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for η : ~E → Z a 1-form, where we define the twisted partition function

ZHeight
β (η) :=

∑
h:F→Z

exp(−Vβ(dhe + dηe)),

and where Vβ is the dual height function potential as above. In light of (2), it seems

plausible that we can indeed transfer information from one model to the other. However,

there are two potential issues. First: is it easier to establish a phase transition in the

dual model? Second: the ratio of partition functions on the height function side does

not easily transfer into an observable in a height function model. Indeed, the twisted

partition ZHeight
β (η) essentially is a sum over 1-forms which are not gradients of height

functions.

Delocalization

We will assume here that the height function model comes with a natural temperature

parameter β > 0. If the potential Vβ is obtained as the dual potential of the spin O(2)

model at inverse temperature β, then it has such a parameterization. Another option is

to take the rescaled potential Vβ := βV.

Write νHeight
β for the height function measure corresponding to the potential Vβ. In

two dimensions, it turns out that it is not always possible to define a height function

in a translation invariant way (although translation-invariant measures supported on

gradients can always be properly defined). For example, the Gaussian free field on

the graph does not allow for a translation invariant, pointwise definition since the two

dimensional green function blows up. Of course, this field takes value in R rather than Z,

so we may wonder if the latter affects such properties. In Chapter 7, we will see that all

height function models which are dual to a probabilistic spin model are upper bounded

by the Gaussian free field in terms of variances. On the other hand, relatively simple

considerations show that for low enough β, we can make sense of such measures and,

moreover, the variance is finite: νβ(h2
x) < ∞. In this case, we call the height function

localized. When there is too much fluctuation and the variance of (ho − hx) (which is

always well defined) blows up as x→∞, we will call the model delocalized.

Establishing such a phase transition was considered a major problem, and only a few

cases were known up to a few years ago. Fröhlich and Spencer [71] proved a delocalized

phase for a few models using delicate multiscale techniques for related Coulomb gasses.

Recently, Lammers [114] provided an argument for general potentials based on relatively

elementary percolation arguments, under the condition that the potentials are convex

functions over the integers. We will present a slight variation of his proof in Chapter 4,

to keep the exposition more or less self-contained.

Theorem 1.14 (Lammers [114]). Let V be convex and symmetric with V(1) ≤ V(0) +
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log(2). Suppose Γ is planar, bi-periodic and has degrees bounded above by three. The

height function delocalizes.

Thus, the height function undergoes a phase transition on trivalent graphs. In certain

cases, a generalization of this theorem to bi-periodic planar graphs was given in [8]. This

thesis provides a second approach which works under different conditions, see Chapter 7.

Although this extension is interesting in its own right, to prove a BKT phase transition

it is not relevant, as is explained at the end of Chapter 5. Still, for integer-valued height

functions, it remained open whether or not such a transition actually happens at a single

point:

Question 1.15. Is there a βc ∈ (0,∞) such that below βc, the height function is

localized, while above βc, it is delocalized?

In full generality, this question is still open, but in some cases the answer is known.

One way to provide a positive answer to the question, is to prove that the map

β 7→ µHeight
β (h2

x)

is monotone in β and we do so in Chapter 7.

At roughly the same time, a different approach to tackle the existence of a critical

point was proposed and proved by Lammers [116]. We will postpone the explanation of

his approach, as it fits better with the discussion about “loop representations” below.

Loop representation and random currents

The second step to proving the BKT-transition is to transfer delocalization of the height

function into properties of the spin model. The apparent problem in equation (2) is

also present for the high temperature expansion of van der Waerden [167] for the Ising

model: expressing correlation functions gives ratio’s of partition functions which sum

over different objects.

There is a slight variation of the high temperature expansion for the Ising model, as

proposed in [82], which is now known as the random current representation. A current

for the Ising model is a function n : E → {0, 1, . . .} on a graph Γ = (V,E). A vertex

x ∈ V is sources of a current whenever d∗nx is odd, and denote by ∂n the set of sources

of n. The random current representation asserts that for sets A ⊂ V〈 ∏
x∈A

σx

〉
β

=

∑
n:∂n=Awβ(n)∑
n:∂n=∅wβ(n)

, where wβ(n) =
∏
e∈E

βne

ne!
.

At first sight, this expression does not help at all: the ratio on the right still involves

summations over different objects.
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However, it turns out that products of correlation functions are handled more easily.

This is a consequence of the so-called “switching lemma” [82] (see also [53, 56] for an

introduction). In particular, the square of a two-point function can be expressed as

the probability of some (percolation) event for random currents; and the problem of

equation (2) is solved:

〈 ∏
x∈A

σx

〉2

β
=

∑
n1:∂n1=∅
n2:∂n2=∅

wβ(n1)wβ(n2)1FA∑
n1:∂n1=∅
n2:∂n2=∅

wβ(n1)wβ(n2)

for some appropriate event FA depending on n1 +n2. There are also other consequences

of the switching lemma; it paves a way to provide unified proofs of many correlation

inequalities such as Simon’s inequality [158] and the Mermin–Wagner inequality [134].

This random current representation has been instrumental in the understanding of

the Ising model, perhaps mostly in dimensions d > 2 [53]. In the eighties, Aizenman

and others used the representation to prove triviality and continuity of the Ising model

in d > 4 respectively d ≥ 4 [1, 3]. A different approach to triviality was proposed

by Fröhlich [72], although it is now understood that the different representations are

(roughly) the same. Recently, the current representation was used to provide a new

proof of sharpness for the Ising model [60], continuity of the phase transition at the

critical point [6], and away from the critical point [150]. It was also instrumental in the

breakthrough by Aizenman and Duminil-Copin, showing that the Ising model at the

critical dimension d = 4 is trivial [2]. This list is, of course, by no means exhaustive.

A minor downside to the representation, perhaps, is that it is rather specific to the

Ising model, although it does allow to extend some results to the ϕ4 model [1, 2, 72].

There is also a very recent extension to a more direct “tangled” current representation

for the ϕ4 model [85]. But still, for continuous spin systems, we have not seen how

to get around the problem of equation (2). Still, the classical XY model was known

to have random walk representations somewhat in the spirit of the random current

representation, going back to Symanzik [161] and Fröhlich, Simon and Spencer [70], but

the representation did not provide a link between the height function (i.e. dual model)

and the spin model.

In Chapter 5, we will provide a version of the random walks / loop representation

mentioned, which does provide this link. The idea is to do the same high temperature

expansion as for the Ising model (using the Abelian nature of the spins), in order to

find a random current representation of the height function model. A current now is a

function on the oriented edges n : ~E → Z which we think of as a collection of arrows

and which can be coupled with the height function by taking ∇hxy = nxy − nyx. A

loop representation ω can be obtained by connecting at every vertex the incoming and

outgoing edges of the current.
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Doing the combinatorics, it turns out that this loop representation does satisfy a

switching lemma, and the two-point function of the XY model can be expressed as a

expectation in the loop model. Finally, this allows to remove the excitations in (2) (for

well chosen correlation functions) and this can be used to say that if the height function

delocalizes, the spin model must have algebraic decay of correlations.

This proves the fact that if the height function undergoes a phase transition, then

so does its dual spin model, but it does not prove that the converse is also true, nor

that the transition happens at the same point. The reason is that there are certain

topological events for the loops, which could, theoretically, imply there are large loops,

but the height function is still localized. Recently, Lammers provided an answer to this

problem by confirming that such topological events do not occur [116]. In essence, his

methods rely on exploring the loops described above “one by one” (and hence really

as a random walk), in a way that allows to glue together different “crossing” events.

A particular consequence of these works, together with correlation inequalities on the

spin side, is that the spin model and height function must undergo a phase transition

at exactly the same temperature.

1.3.2 The BKT transition revisited

As was explain after (2), calculating the spin-spin correlations using the duality trans-

form is not straightforward. However, if we change our perspective from the spin model

to the height function, we can compute the characteristic functions related to the height

function. This results in ratios of (excited) partition functions on the spin side. Because

the Pontryagin dual of Z is isomorphic to S, it turns out that the excitations can be

differentiated away, and an exact duality relation becomes visible on the level of co-

variances (see Lemma 7.3). In case of the 2-dimensional torus, it states that for any

ω : ~E → R a 1-form,

E[(dh, ω)] + E[(U ′(dθ), ω)] = C(ω, ω)

for some explicit constant C depending on U . Here, we view dh as the gradient of the

height function on the dual graph, while we view dθ as the gradient on the primal graph.

Although stated here for the planar case, versions of this duality formula hold for

all graphs. Our perspective follows closely the lines of [131] where similar (and more

advanced) techniques are used to study random walks, the uniform spanning tree and

harmonic functions. Higher dimensional analogues of the planar duality often impose

further topological constraints on the objects studied: for example, the hypercubic lat-

tice can be viewed as a (CW-)complex and comes with the related algebraic tools, see

e.g. [21, 74, 77]. But, a graph itself is only a 1-dimensional complex and it is therefore

interesting to ask what happens when no further topological properties exist.
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1.4. ARTICLES AND PREPRINTS APPEARING IN THIS THESIS

The covariance duality immediately yields that the covariance function of gradient

of a height function and U ′ of the spin model is exactly the same (up to a sign). This

highlights a direct link between a possible phase transition occurring in the two models

and it seems a natural flow of information can be established. The latter is exactly

the content of Chapter 7. One of our conclusions is a form of equivalence of phase

transition in the spin model and height function, as in Theorem 7.7. This equivalence

is presented in terms of susceptibility of a non-classical correlation function. In case of

the XY model, this implies the existence of a BKT phase transition in the sense that

the two-point function 〈σxσ̄y〉β decays algebraically above the critical point.

1.4. Articles and preprints appearing in this thesis

• Chapter 2 is based on a preprint [34] with Nathanaël Berestycki (submitted).

• Chapter 3 is based on the preprint [63] with Tom Hutchcroft (submitted).

• Chapter 4 has not appeared anywhere and contains a review of some material for

height functions. It is partially based on work with Marcin Lis, which is yet to

appear.

• Chapter 5 is based on an article together with Marcin Lis [64],

• Chapter 6 appeared in the original preprint of [64], but before publication we found

a slight modification which did not need the theory presented in this chapter. We

think it may present an useful tool for future use.

• Chapter 7 is based on a recent preprint with Marcin Lis [65] (submitted).
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CHAPTER 2

Harnack inequality and one-endedness of UST

on reversible random graphs

2.1. Introduction

Let (G, o) be a random unimodular rooted graph, which is almost surely recurrent (with

E(deg(o)) <∞). The wired Uniform Spanning Tree (UST for short) on G is defined

to be the unique weak limit of the uniform spanning tree on any finite exhaustion of

the graph, with wired boundary conditions. The existence of this limit is well known,

see e.g. [131]. (In fact, since the graph is assumed to be recurrent, the wired or free

boundary conditions give the same weak limit). The UST is a priori a spanning forest of

the graph G, but since G is recurrent this spanning forest consists in fact a.s. of a single

spanning tree which we denote by T (see e.g. [143]). We say that T is one-ended if the

removal of any finite set of vertices A does not disconnect T into at least two infinite

connected components. Intuitively, a one-ended tree consists of a unique semi-infinite

path (the spine) to which finite bushes are attached.

The question of the one-endedness of the UST (or the components of the UST,

when the graph is not assumed to be recurrent) has been the focus of intense research

ever since the seminal work of Benjamini, Lyons, Peres and Schramm [32]. Among

many other results, these authors proved (in Theorem 10.1) that on every unimodular

vertex-transitive graph, and more generally on a network with a transitive unimodu-

lar automorphism group, every component is a.s. one-ended unless the graph is itself

roughly isometric to Z (in which case it and the UST are both two-ended). (This was

extended by Lyons, Morris and Schramm [130] to graphs that are neither transitive nor

unimodular but satisfy a certain isoperimetric condition slightly stronger than uniform

transience). More generally, a conjecture attributed to Aldous and Lyons is that every

unimodular one-ended graph is such that every component of the UST is a.s. one-ended.

This has been proved in the planar case in the remarkable paper of Angel, Hutchcroft,

Nachmias and Ray [13] (Theorem 5.16) and in the transient case by results of Hutchcroft

[91,92]. The conjecture therefore remains open in the recurrent case, which is the focus
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of this chapter.

Let us motivate further the question of the one-enededness of the UST. It can in

some sense be seen as the analogue1 of the question of percolation at the critical value.

To see this, note that when the UST is one-ended, every edge can be oriented towards

the unique end, so that following the edges forward from any given vertex w, we have

a unique semi-infinite path starting from w obtained by following the edges forward

successively. Observe that this forward path necessarily eventually arrives at the spine

and moves to infinity along it. Given a vertex v, we may define the past Past(v) of v to

be the set of vertices w for which the forward path from w contains v; it is natural to

view Past(v) as the analogue of a connected component in percolation. From this point

of view, the a.s. one-endedness of the tree is equivalent to the finiteness of the past (i.e.,

connected component in this analogy) of every vertex, as anticipated. We further note

that on a unimodular graph, the expected value of the size of the past is however always

infinite, as shown by a simple application of the mass transport principle. This confirms

the view that the past displays properties expected from a critical percolation model.

In fact, Hutchcroft proved in [93] that the two models have same critical exponents in

sufficiently high dimension.

In this paper we give necessary and sufficient conditions for the one-endedness of

the UST on a recurrent, unimodular graph. These are, respectively: (a) existence of

the potential kernel, (b) existence of the harmonic measure from infinity, and finally

(c) an anchored Harnack inequality. We illustrate our results by showing that they

give straightforward proofs of the aforementioned result of Benjamini, Lyons, Peres and

Schramm [32] in the recurrent case (which is one of the most difficult aspects of the

proof of the whole theorem, and is in fact stated as Theorem 10.6). We also apply

our results to some unimodular random graphs of interest such as the Uniform Infinite

Planar Triangulation (UIPT) and related models of infinite planar maps, for which we

deduce the Harnack inequality.

To state these results, we first recall the following definitions. Our results can be

stated for reversible environments or reversible random graphs, i.e., random rooted

graphs such that if X0 is the root and X1 the first step of the random walk conditionally

given G and X0 then (G,X0, X1) and (G,X1, X0) have the same law. As noted by

Benjamini and Curien in [27], any unimodular graph (G, o) with E(deg(o)) <∞ satisfies

this reversibility condition after biasing by the degree of o. Conversely, any reversible

random graph gives rise to a unimodular rooted random graph after unbiasing by the

degree of the root. This biasing/unbiasing does not affect any of the results below

since they are almost sure properties of the graph. Note also that again by results in

1We thank Tom Hutchcroft for this wonderful analogy.
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[27], a recurrent rooted random graph whose law is stationary for random walk is in

fact necessarily reversible. See also Hutchcroft and Peres [96] for a nice discussion and

Aldous and Lyons [9] for a systematic treatment.

For a nonempty set A ⊂ v(G) we define the Green function by setting for x ∈
v(G) \A and y ∈ v(G):

GA(x, y) = Ex

[
TA−1∑
n=0

1{Xn=y}

]
, (1)

where TA denotes the hitting time of A, and GA(x, y) = 0 for x ∈ A. Let

gA(x, y) :=
GA(x, y)

deg(y)

denote the normalised Green function. (Note that due to reversibility, gA(x, y) =

gA(y, x).)

Let An be any (sequence) of finite sets of vertices such that d(An, o)→∞ as n→∞.

Here, by d(An, o), we just mean the minimal distance of any vertex in An to o. It is

natural to construct the potential kernel of the infinite graph G by an approximation

procedure; we set

aAn(x, y) := gAn(y, y)− gAn(x, y) (2)

In this manner, the potential kernel compares the number of visits to y, starting from x

versus y, until hitting the far away set An. We are interested in existence and uniqueness

of limits for aAn as n → ∞. In this case we call the unique limit the potential kernel

of the graph G. We will see that the existence and uniqueness of this potential kernel

turns out to be equivalent to a number of very different looking properties of the graph.

This definition of the potential kernel differs slightly from the one appearing in [118]

for Z2, because we work with a more convenient normalization for graphs that are not

transitive.

We move on to harmonic measure from infinity. Let A be a fixed finite, nonempty

set of vertices. Let µn(·) denote the harmonic measure on A, started from An if we wire

all the vertices in An. The harmonic measure from infinity, if it exists, is the limit

of µn (necessarily a probability measure on A).

Now let us turn to Harnack inequality. We say that (G, o) satisfies an (anchored)

Harnack inequality (AHI) if there exists an exhaustion (VR)R≥1 of the graph (i.e.

VR is a finite subset of vertices and ∪R≥1VR = v(G)), and there exists a nonrandom

constant C > 0, such that the following holds. For every function h : v(G)→ R+ which

is harmonic except possibly at 0, and such that h(0) = 0:

max
x∈∂VR

h(x) ≤ C min
x∈∂VR

h(x). (3)
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The word anchored in this definition refers to the fact that the exhaustion is allowed

to depend on the choice of root o, and the functions are not required to be harmonic

there. (As we show in Remark 2.10, a consequence of our results is that an anchored

Harnack inequality automatically implies the Elliptic Harnack inequality (EHI) on a

suitably defined sequence of growing sets.)

We now state the main theorem.

Theorem 2.1. Suppose (G, o) is a recurrent reversible random graph (or equivalently

after unbiasing by the degree of the root, (G, o) is recurrent unimodular random graph

with E(deg(o)) <∞). The following properties are equivalent.

(a) Almost surely, the pointwise limit of the truncated potential kernel aAn(x, y) exists

and does not depend on the choice of An.

(b) Almost surely, the weak limit of the harmonic measure µn from An exists and does

not depend on An.

(c) Almost surely, (G, o) satisfies an anchored Harnack inequality.

(d) The uniform spanning tree T is a.s. one-ended.

Furthermore, if any of these conditions hold, a suitable exhaustion for the anchored

Harnack inequality is provided by the sublevel sets of the potential kernel, see Sections

2.5 and 2.6.

2.1.1 Some applications

Strengthening of [32]. Before showing some applications of this result, let us point

out that Theorem 2.1 complements and strengthens some of the results of Benjamini,

Lyons, Peres and Schramm [32]. In that paper, the (easy) implication (d) implies (b)

was noted. We therefore in particular obtain a converse in the reversible case. One

can furthermore easily see using their results that on any recurrent planar graph with

bounded face degrees (e.g., any recurrent triangulation) (d) holds, i.e., the uniform

spanning tree is a.s. one-ended: indeed, for such a graph, there is a rough embedding

from the planar dual to the primal, which is assumed to be recurrent, and therefore the

planar dual must be recurrent too by Theorem 2.17 in [131]. By Theorem 12.4 in [32]

this implies that the uniform spanning tree (on the primal) is a.s. one-ended, and so (d)

holds. (In fact, Theorem 5.16 in [13] shows that the bounded face degree assumption is

not needed).

Applications to planar maps. Therefore, in combination with [32], Theorem 2.1

above applies in particular to unimodular, recurrent triangulations such as the UIPT,
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or similar maps such as the UIPQ. This therefore implies that these maps have a well-

defined potential kernel, harmonic measure from infinity, and satisfy the anchored Har-

nack inequality. As shown in Remark 2.10, this also implies the elliptic Harnack

inequality (for sublevel sets of the potential kernel, see Theorem 2.24 for a precise

statement). We point out that the elliptic Harnack inequality should not be expected to

hold on usual metric balls, but can only be expected on growing sequences of sets which

take into account the “natural conformal embedding” of these maps. This is exactly

what the potential kernel and its sublevel sets allows us to do.

More general implications. We already mention that the equivalence between (a)

and (b) is valid more generally, for instance for any locally finite, recurrent graph. The

implication (a) =⇒ (c) to the Harnack inequality (c) is then valid under the additional

assumption that the potential kernel grows to infinity (something which we can prove

assuming unimodularity). We recall that (d) implies (b) is also true for deterministic

graphs, as proved in [32].

Remark 2.1. Many of the arguments in this chapter are true for deterministic graphs.

The unimodularity (or reversibility) of the graph with respect to random walk is only

used in Lemma 2.20, whose main use is to show that the potential kernel, if it exists,

diverges to infinity along any sequence going to infinity (see Lemma 2.21). This property

is used for instance in both directions of the relations between (c) and (d), since both

go via (a). The unimodularity (or stationarity) is also used to prove that the walks

conditioned not to return to the origin satisfy the infinite intersection property, a key

aspect of the proof one-endedness. Finally this is also proved to show that if there is a

bi-infinite path in the UST then it must essentially be almost space-filling, which is the

other main argument of the proof of one-endedness.

Deterministic case of the Aldous–Lyons conjecture. As previously mentioned,

Theorem 2.1 can be applied to give a direct proof of the one-endedness of the UST

for recurrent vertex-transitive graphs not roughly equivalent to Z, which is essentially

Theorem 10.6 in [32].

Corollary 2.2. Suppose G is a fixed recurrent, vertex-transitive graph. If G is one-

ended then the UST is also a.s. one-ended. Otherwise G is roughly isometric to Z.

Proof. Note that G must be unimodular, otherwise G is nonamenable and so cannot

be recurrent (see [160]). Note also that the volume growth of the graph is at most

polynomial (as otherwise the walk cannot be recurrent). By results of Trofimov [165],

the graph is therefore roughly isometric to a Cayley graph Γ. Since it is recurrent (as

recurrence is preserved under rough isometries, see Theorem 2.17 and Proposition 2.18
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of [131]), we deduce by a classical theorem of Varopoulos (see e.g. Theorem 1 and its

corollary in [168]) that Γ is a finite extension of Z or Z2 and is therefore (as is relatively

easily checked) roughly isometric to either of these lattices. Since either of these lattices

enjoy the Parabolic Harnack Inequality (PHI), which is, by a consequence of a result

proved by Grigoryan [83] and Saloff-Coste [152] independently, preserved under rough

isometries (see also [48]), we see that G itself satisfies PHI and therefore also the Elliptic

Harnack Inequality (EHI): for any R > 1, if h is harmonic in the metric ball B(2R) of

radius 2R around the origin, then supB(R) h(x) ≤ C infB(R) h(x). (In fact, by a deep

recent result of Barlow and Murugan, EHI is now known directly to be stable under

rough isometries [19], but here we can appeal to the much simpler stability of PHI.

We recommend the following textbooks for related expository material: [112], [17] and

[169].)

Suppose that G is not roughly isometric to Z, therefore it is roughly isometric to Z2.

Let us show that G satisfies the anchored Harnack inequality (3), with the exhaustion

sequence simply obtained by considering metric balls VR = B(R). Let h be nonnegative

harmonic on G except at 0. Since G is rough isometric to Z2, we can cover ∂VR with

a fixed number (say K) of balls of radius R/10, such that the union of these balls

is connected (here we used two-dimensionality). Let x, y ∈ ∂VR, we can find x =

x0, . . . , xK = y with d(xi, xi+1) ≤ R/10, and d(xi, o) > 2R/10. Exploiting the EHI in

each of the K balls B(xi, 2R/10) inductively (since h is harmonic in each of these balls),

we find that h(x) ≤ CKh(y). Since x, y are arbitrary in ∂VR, this proves the anchored

Harnack inequality (3).

We also show that the one-endedness of the UST holds for unimodular recurrent

random graphs if we in addition assume that they are strictly subdiffusive; that is, we

settle the Aldous–Lyons conjecture in that case. (This encompasses many models of

random planar maps, but can of course hold on more general graphs, see in particular

[121], recalled also in Remark 2.5, for sufficient conditions guaranteeing this).

Theorem 2.3. Suppose (G, o) is reversible, almost surely recurrent and strictly subdif-

fusive (i.e., satisfies (SD) below). Then (G, o) satisfies (a)–(d).

This applies e.g. for high-dimensional incipient infinite percolation cluster, as ex-

plained after Remark 2.5. The proof of Theorem 2.3 takes as an input the results of

Benjamini, Duminil–Copin, Kozma and Yadin [30] which shows that for strictly subdif-

fusive unimodular graphs there are no nonconstant harmonic functions of linear growth,

and the trivial observation that the effective resistance between points is at most lin-

ear in the distance between these points. We believe it should be possible to use the

same idea to prove the result assuming only diffusivity: to do this, it would suffice to
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prove that the effective resistance grows strictly sublinearly, except on graphs roughly

isometric to Z.

Random walk conditioned to avoid the origin. The existence of the potential

kernel allows us to define (by h-transform) a random walk conditioned to never touch a

given point (even though this is of course a degenerate conditioning on recurrent graphs).

We study some properties of the conditioned walk and show among other things that

two independent conditioned walks must intersect infinitely often, a fact which plays an

important role in the proof of Theorem 2.1 for the equivalence between (a) and (d). We

conclude the chapter with a finer study of this conditioned walk on CRT-mated random

planar maps. In this case we are able to show that the hitting probability of a point

far away from the origin by the conditioned walk remains bounded away from 1 in the

limit as the point diverges to infinity (and is bounded away from 0 for “almost all”

such points). See Theorem 2.49 for a precise statement. We also discuss a conjecture

(see (49)) which, if true, would show a significant difference of behaviors with respect

to the more standard case of Z2 (where these hitting probabilities converge to 1/2, as

surprisingly shown in [148]).

2.2. Background and notation

Before we begin with the proofs of our theorems, we need to introduce the main notations

that we will use throughout this text.

A graph G consists of a countable collection of vertices v(G) and edges e(G) ⊂
{{x, y} : x, y ∈ v(G)} and we will always assume that the vertex degrees are finite. We

will work with undirected graphs, but will sometimes take the directed edges ~e(G) =

{(x, y) : {x, y} ∈ e(G)}.
The graph G comes with a natural metric d(x, y), which is the graph distance, i.e.

the minimal length of a path between two vertices x and y. For n ∈ N, we will denote

by

B(y, n) = {x ∈ v(G) : d(x, y) ≤ n},

the metric ball of radius n. For a set A ⊂ v(G), we will write ∂A for its outer boundary

in v(G), that is

∂A = {x ∈ v(G) \A : there exists a y ∈ A with x ∼ y}.

We will make extensive use of the graph Laplacian which we normalise as follows:

∆f(x) =
∑
y∼x

c(x, y)(f(y)− f(x)), (4)
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for functions f : v(G) → R (here c(x, y) is the conductance of the edge (x, y), which is

typically equal to one in this paper, except in Section 2.7 where we consider random walk

conditioned to avoid the origin forever). A function h : v(G) → R is called harmonic

at x if (∆h)(x) = 0.

Let X = (Xn)n≥0 denote the simple random walk on G, with its law written as

P and Px to mean P(· | X0 = x). For a set A ⊂ v(G), we define the hitting time

TA = inf{n ≥ 0 : Xn ∈ A} and Tx := T{x} whenever A = {x} consists of just one

element. We will write T+
A for the first return time to a set A. Suppose that G is a

connected graph. The effective resistance is defined through

Reff(x↔ y) :=
Gx(y, y)

deg(y)
.

Recall the useful identity

Reff(x↔ y) =
1

deg(y)Py(Tx < T+
y )

(5)

The proof is obvious from the definition of effective resistance when we use the obvious

identity

Gx(y, y) =
1

Py(Tx < T+
y )
,

which can be seen by considering the number of excursions from y to y, which is a

geometric random variable by the Markov property.

For infinite graphs G, we will say that a sequence of subgraphs (Gn)n≥1 of G is an

exhaustion of G whenever Gn is finite for each n and v(Gn)→ G as n→∞. Fix some

exhaustion (Gn)n≥1 of an infinite graph G and define the graph G∗n as Gn, together with

the identification of Gcn, where we have deleted all self-loops created in the process. For

two vertices x, y ∈ v(G) we recall that

Reff(x↔ y) = lim
n→∞

Reff(x↔ y;G∗n),

see for instance [131, Section 9.1]. As is well known, the effective resistance defines a

metric (see for instance exercise 2.67 in [131]).

Later, we will often work with the metricReff(· ↔ ·) on v(G), instead of the standard

graph distance. We introduce the notation

Beff(x,R) = {y ∈ v(G) : Reff(x↔ y) ≤ R} (6)

for the closed ball with respect to the effective resistance metric. Notice that, in general,

this metric space is not a length space - making it somewhat inconvenient.

Another result that we will need to use a few times is the ‘last exit decomposition’,

or rather two versions thereof which can be proved similarly to [118, Proposition 4.6.4].
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Lemma 2.4 (Last Exit Decomposition). Let G be a graph and A ⊂ B ⊂ v(G) finite.

Then for all x ∈ A and b ∈ ∂B we have

Px(XTBc = b) =
∑
z∈A

GBc(x, z)Pz(TBc < T+
A , XTBc = b).

Moreover, for x ∈ B we have

Px(TA < TBc) =
∑
z∈A

GBc(x, z)Pz(TBc < T+
A ).

2.3. Equivalence between (a) and (b)

2.3.1 Base case of equivalence

We will say that a sequence of finite sets of vertices (An)n≥1 ‘goes to infinity’ whenever

d(An, o)→∞ as n→∞. Here, by d(An, o), we just mean the minimal distance of any

vertex in An to o. Recall the definition of aAn , which also satisfies

aAn(x, y) = gAn(y, y)− gAn(x, y) =
1

deg(y)

Px(TAn < Ty)

Py(TAn < T+
y )
. (7)

Clearly, both the numerator and the denominator tend to 0 as n tends to infinity by

recurrence of the underlying graph G. When a sequence of subsets An has been chosen

we will write an instead of aAn with a small abuse of notations.

The goal of this section is to prove the equivalence between (a) and (b) in Theorem

2.1 (in the base case where the set A consists of two points; this will be extended to

arbitrary finite sets in Section 2.3.3). First, we show that subsequential limits of an

always exist.

Lemma 2.5. Let (An)n≥1 be some sequence of finite sets of vertices going to infinity.

There exists a subsequence (nk)k≥1 going to infinity such that for all x, y ∈ v(G) the

limit

a(x, y) := lim
k→∞

ank(x, y)

exists in [0,∞). Moreover, a(x, y) > 0 precisely when the removal of y from G does not

disconnect x from Ank for all k large enough.

Proof. Fix y ∈ v(G) and suppose first that for all u ∼ y we have Pu(TAn < Ty) > 0 for

all n large enough (i.e., y does not disconnect a portion of the graph from infinity).

Let x ∈ v(G) and fix n so large that An does not contain y, x or any of the neighbors

of y. For each u ∼ y, we can force the random walk started from x to go through u

before touching An or y to get

Px(TAn < Ty) ≥ Px(Tu < TAn ∧ Ty)Pu(TAn < Ty). (8)
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Upon taking u ∼ y such that it maximizes Pu(TAn < Ty) and by recurrence of G we get

the existence of c(x, y) > 0 for which

an(x, y) =
Px(TAn < Ty)∑
u∼y Pu(TAn < Ty)

≥ Px(Tu < TAn ∧ Ty)
deg(y)

≥ c(x, y) > 0.

The same reasoning as in (8) but in the other direction gives

Px(TAn < Ty) ≤
Pu(TAn < Ty)

Pu(Tx < TAn ∧ Ty)
.

Hence, using again recurrence of G we get that there is some C(x, y) < ∞ such that

(upon taking the right u)

an(x, y) ≤ Pu(TAn < Ty)

Pu(Tx < TAn ∧ Ty)
∑

u∼y Pu(TAn < Ty)
≤ C(x, y) <∞.

We deduce that for fixed x, y, subsequential limits of an(x, y) exist and the existence of

subsequential limits for all x, y simultaneously follows from diagonal extraction.

The existence of subsequential limits in the general case is the same as we can always

lower bound an(x, y) by 0 and the upper bound does not change.

Now, if x ∈ v(G) is such that the removal of y disconnects x from Ank , then

ank(x, y) = 0. Suppose thus that x is such that the removal of y does not discon-

nect x from Ank for all k large enough. In this case, we can restrict ourselves to just

the component of G with y removed, in which both Ank and x are as the hitting prob-

abilities are the same in this case. Hence, we are back in the situation above and

ank(x, y) ≥ c(x, y) > 0.

We next present a result, which shows that any subsequential limit appearing in

Lemma 2.5 must satisfy a certain number of properties.

Proposition 2.6. Let a(x, y) be any subsequential limit as in Lemma 2.5. Then a :

v(G)→ R+ satisfies

(i) for each y ∈ v(G)

∆a(·, y) = δy(·) and a(y, y) = 0,

where we recall that ∆ is defined in (4) and is normalised so that ∆f(x) =∑
y(f(y)− f(x)).

(ii) for all x, y ∈ v(G) we have

a(x, y) = lim
k→∞

PAnk (Tx < Ty)Reff(x↔ y),

where PA refers to the law of a random walk starting from A, when all of the

vertices in A have been wired together.
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The equivalence between (a) and (b) of Theorem 2.1 (in the base case where the

finite set B on which we need to define harmonic measure consists of two points) is then

obvious, and we collect it here:

Corollary 2.7. Let G be a recurrent graph. Then

hmx,y(x) := lim
n→∞

PAn(Tx < Ty)

exists for all x, y ∈ v(G) and is independent of the sequence (An)n if and only if the

potential kernel is uniquely defined. Furthermore, in this case,

a(x, y) = hmx,y(x)Reff(x↔ y).

Proof of Proposition 2.6. The proof of item (i) is rather elementary. Fix y ∈ v(G) and

n ≥ 1. Since x 7→ Px(TAn < Ty) is a harmonic function outside of y and An by the

simple Markov property, we get that x 7→ an(x, y) is harmonic outside y and An, see

(7). It follows that x 7→ a(x, y) is harmonic at least away from y. Furthermore, note

that an(y, y) = 0 by definition and

∑
u∼y

an(u, y) =

∑
u∼y Pu(TAn < Ty)∑
u∼y Pu(TAn < Ty)

= 1

so ∆an(·, y)|·=y = 1. This finishes the proof of (i).

For part (ii), we notice first that by properties of the electrical resistance,∑
u∼y

Pu(TAn < Ty) = deg(y)Py(TAn < T+
y ) =

1

Reff(y ↔ An)
,

which allows us to write

an(x, y) = Reff(y ↔ An)Px(TAn < Ty). (9)

Identify the vertices in An and delete possible self-loops created in the process. The

resulting graph G′n is then still recurrent. Let Gy(·, ·) denote the Green function on this

graph when the walk is killed at y. We can also express the effective resistance in terms

of the normalised Green function: that is,

Reff(y ↔ An) =
Gy(An, An)

deg(An)

Using the Markov property and since G′n is reversible,

an(x, y) = Px(TAn < Ty)
Gy(An, An)

deg(An)
=

Gy(x,An)

deg(An)
(10)

=
Gy(An, x)

deg(x)
= PAn(Tx < Ty)Reff(x↔ y;G′n)
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by using the same argument in the other direction, and where the effective resistance in

the last line is calculated in G′n.

Since the graph G is recurrent, it follows that Reff(x↔ y;G′n) converges to Reff(x↔
y;G) as n→∞ (as the free and wired effective resistances agree). We deduce that

a(x, y) = lim
k→∞

PAnk (Tx < Ty)Reff(x↔ y),

which finishes part (ii).

Remark 2.2. We wish to point out that, in general, the potential kernels are not sym-

metric (even if they are uniquely defined).

2.3.2 Triangle inequality for the potential kernel

Before we start of the proof of the remaining implications, we need some preliminary

estimates on the potential kernel, showing that it satisfies a form of triangle inequality.

This plays a crucial role throughout the rest of this paper. We also need a decomposition

of the potential kernel in order to prove that for reversible graphs, the potential kernel

(if it is well defined) satisfies the growth condition.

We start with a simple and well known application of the optional stopping theorem:

Lemma 2.8. Let A be some finite set and suppose that x, y ∈ A. Then

GAc(x, y)

deg(y)
= Ex[a(XTAc , y)]− a(x, y).

Proof. This is Proposition 4.6.2 in [118], but we include for completeness since its proof

if simple. Let x, y ∈ A and notice that

Mn := a(Xn, y)−
n−1∑
j=0

δy(Xj)

deg(y)

is a martingale. Applying the optional stopping theorem at TAc ∧ n, we obtain

a(x, y) = Ex[M0] = Ex[a(Xn∧TAc , y)]− 1

deg(y)
Ex

(n∧TAc )−1∑
j=0

δy(Xj)

 ,
Taking n → ∞, since A is finite, we deduce from dominated (resp. monotone) conver-

gence that

Ex[a(Xn∧TAc , y)]→ Ex[a(XTAc , y)],
1

deg(y)
Ex

(n∧TAc )−1∑
j=0

δy(Xj)

→ GAc(x, y)

deg(y)
,

showing the result.
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Proposition 2.9. Let x, y, z ∈ v(G) be three vertices. We have the identity

Gz(x, y)

deg(y)
= a(x, z)− a(x, y) + a(z, y).

Proof. Fix x, y, z ∈ v(G) and let (An)n≥1 be some sequence of finite sets of vertices

going to infinity2. Glue together An on the one hand, and the vertices of B(o,m)c on

the other hand. Delete all self-loops created in the process and write ∂m for the vertex

corresponding to B(o,m)c. Let X̃k be the simple random walk on the graph obtained

from gluing An and ∂m. We define for w,w′ ∈ B(o,m) ∪ {∂m} the function

am,n(w,w′) := Reff({∂m, w′} ↔ An)Pw(TAn < Tw′ ∧ T∂m).

By recurrence and (9), we have that am,n(w,w′)→ an(w,w′) as m→∞, for all w,w′.

Fix n so large that x, y and z are not in An. Let m be so large that x, y, z and An

are in B(o,m). Define En,m = {An, z, ∂m}. Then, as in Lemma 2.8,

am,n(x, y) = Ex[am,n(X̃TEm,n
, y)]−

GEm,n(x, y)

deg(y)
(11)

On the other hand, by definition of Em,n we have

Ex[am,n(XTEm,n
, y)] = Px(Tz < TAn ∧ T∂m)am,n(z, y)

+ Px(TAn < Tz ∧ T∂m)am,n(An, y)

+ Px(T∂m < TAn ∧ Tz)am,n(∂m, y),

where a priori the hitting probabilities are calculated on the graph where An and ∂m

are glued. However, as we are only interested in the first hitting time of either of these

sets, it does not matter and we can calculate the probabilities also for the random walk

on the graph G. Notice that, by definition, am,n(∂m, y) = 0. Plugging this back into

(11) we obtain

am,n(x, y) = Px(Tz < TAn ∧ T∂m)am,n(z, y)

+ Px(TAn < Tz ∧ T∂m)am,n(An, y)−
GEm,n(x, y)

deg(y)
.

We have already observed that am,n(w, y)→ an(w, y) for each w as m→∞. Then, by

recurrence of G and monotone convergence, we get

an(x, y) = Px(Tz < TAn)an(z, y) + Px(TAn < Tz)an(An, y)−
G{An,z}(x, y)

deg(y)
. (12)

2Although the proof here relies on the assumption that the limit of aAn does not depend on the

choice An, we note for future reference that it also applied if we replace a by any subsequential limit of

aAn . See also Remark 2.4.
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Next, we wish to take n → ∞. The left-hand side converges to a(x, y) as n → ∞,

by definition of the potential kernel. The first term on the right-hand side converges to

a(z, y) by the same argument and recurrence of the graph G. Using once more monotone

convergence, we find
G{An,z}(x, y)

deg(y)
→ Gz(x, y)

deg(y)
(13)

as n goes to infinity. We are left to deal with the term Px(TAn < Tz)an(An, y), which

we claim converges to a(x, z).

From the definition of an, together with the representation in (9), we find

an(An, y) = Reff(y ↔ An)PAn(TAn < Ty) = Reff(y ↔ An).

Thus, using again the same representation of an(x, z), we see that

an(An, y)Px(TAn < Tz) = Reff(y ↔ An)Px(TAn < Tz)

= an(x, z)
Reff(y ↔ An)

Reff(z ↔ An)
.

Using the triangle inequality for the effective resistance, we notice that

Reff(y ↔ An)

Reff(z ↔ y) +Reff(y ↔ An)
≤ Reff(y ↔ An)

Reff(z ↔ An)
≤ Reff(y ↔ z) +Reff(z ↔ An)

Reff(z ↔ An)
.

By recurrence of G, the left and right hand side converge to 1 as n→∞. In particular,

we deduce that

an(An, y)Px(TAn < Tz)→ a(x, z)

as n→∞. Plugging this, together with (13) back into (12) we conclude:

a(x, y) = a(x, z) + a(z, y)− Gz(x, y)

deg(y)

as desired.

Remark 2.3. Proposition 2.9 is an extensions of results known for the lattice Z2, see

Proposition 4.6.3 in [118] and the discussion thereafter. As far as we know, these proofs

are based on precise asymptotic behavior of the potential kernel, a tool we do not seem

to have.

Remark 2.4. The statement of Proposition 2.9 is also valid for an arbitrary subsequential

limit a(·, ·) of an(·, ·), even when a proper limit is not known to exist. In particular, it

shows that given such a subsequential limit a(·, y) there is a unique way to coherently

define a(·, z). For this reason, if limn→∞ an(x, y) is shown to exist for a fixed y and all

x ∈ v(G), it follows that this limit exists for all x, y ∈ v(G) simultaneously. This will

be used in Theorem 2.12.
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Corollary 2.10. For each x, z ∈ v(G) and all ε > 0 there exists an N = N(ε, x, z) such

that for all y with d(x, y) ≥ N we have

|a(x, y)− a(z, y)| ≤ ε

and in particular limn→∞ a(x, yn) − a(z, yn) = 0 for any sequence (yn)n≥1 going to

infinity.

Notice that Corollary 2.10 does not say that a(yn, x) − a(yn, z) → 0 as n → ∞ in

general! Indeed, a similar argument shows that a(yn, x) − a(yn, z) → a(z, x) − a(x, z),

which is nonzero in general.

Proof. Fix x, z ∈ v(G) and suppose by contradiction that there is some ε > 0, such that

for infinitely many n ≥ 1 (but in fact we can with a small abuse of notation assume for

all n ≥ 1 after taking a subsequence), there is some yn with d(x, yn) ≥ n for which

|a(z, yn)− a(x, yn)| > ε.

By Proposition 2.9 and deg(·)-reversibility of the Simple Random Walk we have

a(x, yn)− a(z, yn) = a(x, z)− Gz(x, yn)

deg(yn)
= a(x, z)− Gz(yn, x)

deg(x)
.

Take An = {yn} and recall (see e.g. (10)) that

an(x, z) =
Gz(yn, x)

deg(x)
.

Therefore

a(x, yn)− a(z, yn) = a(x, z)− an(x, z).

Since this converges to zero as n→∞, we get the desired contradiction.

We immediately deduce that the harmonic measures from infinity of {x, y} and {z, y}
are very similar if y is far away from x and z.

Corollary 2.11. Fix x, z ∈ v(G). For every ε > 0, there exists an N = N(x, z, ε) such

that for all y with d(x, y) ≥ N we have

| hmx,y(x)− hmz,y(z)| ≤
ε+Reff(z ↔ x)

Reff(x↔ y)
.

Proof. Fix x, z ∈ v(G) and ε > 0. Let N0 be so large that Corollary 2.10 holds, i.e. so

that for every y with d(x, y) ≥ N0,

|a(x, y)− a(x, z)| ≤ ε.
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Recall from Corollary 2.7 the expression

a(x, y) = hmx,y(x)Reff(x↔ y).

so that

hmx,y(x)− hmz,y(z) =
a(x, y)− a(z, y)

Reff(x↔ y)
+

hmz,y(z)(Reff(x↔ y)−Reff(z ↔ y))

Reff(x↔ y)
.

Last, using the triangle inequality for the effective resistance twice (and symmetry

Reff(x↔ y) = Reff(y ↔ x)), we find

|Reff(x↔ y)−Reff(z ↔ y)| ≤ Reff(x↔ z).

Plugging this all together and definingN ≥ N0 so large thatReff(x↔ y) ≥ 1
εReff(x↔ z)

for all y with d(x, y) ≥ N , gives that

| hmx,y(x)− hmz,y(z)| ≤ ε+ ε,

which is the desired result.

2.3.3 Gluing and harmonic measure

We suppose throughout this section that the potential kernel is well defined in the sense

that the subsequential limits appearing in Lemma 2.5 are all equal. By Corollary 2.7,

this implies that the harmonic measure from infinity is well defined for two-point sets.

Let B ⊂ v(G) be a set. Glue together all vertices in B and delete all self-loops that

were created in the process. We denote the graph induced by the gluing GB. Note that

GB need not be a simple graph, even when G was.

We will prove in this section that, if the potential kernel is well defined on G, it

is also well defined on GB, whenever B is a finite set. Furthermore, we will prove an

explicit expression of the potential kernel on the graph GB in the case where B is a

finite set. These results are an extension of results on the lattice Z2, see for instance

[118, Chapter 6], but we will use different arguments, following from the expression for

the potential kernel in terms of harmonic measure from infinity as in Corollary 2.7.

Theorem 2.12 (Gluing Theorem). Suppose a(x, y) = limn→∞ an(x, y) exists for all

x, y ∈ v(G) and does not depend on the choice of the sequence of sets An going to

infinity. Let B ⊂ v(G) be a finite set, whose removal does not disconnect G, and

suppose x ∈ B. Then

qB(w) := lim
n→∞

Reff(B ↔ An)Pw(TAn < TB) (14)

exists and is given by

qB(w) = a(w, x)− Ew[a(XTB , x)]; w ∈ v(GB) \ {B}; qB(B) = 0. (15)
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Extending qB to v(G) in the natural way (i.e., using (15) with w ∈ v(G)), we have

(∆qB)(w) = hmB(w) := lim
z→∞

Pz(XTB = w); w ∈ B (16)

where the Laplacian ∆ is calculated on G via (4).

Note in particular, that in the expression (15) for qB, any choice of x ∈ B gives

the same value and so is irrelevant. We will prove this theorem in the two subsequent

subsections, proving first (14) and (15) in Section 2.3.3, and then (16) in Section 2.3.3.

Before we give the proof, we first state some corollaries. The first one is that the

harmonic measure from infinity is well defined for the arbitrary finite set B (subject to

the assumption that the removal of B does not disconnect G).

Corollary 2.13. Fix a finite set B ⊂ v(G) as in Theorem 2.12. Let An be a set of

vertices tending to infinity. Then for any x ∈ B,

hmB(x) = lim
n→∞

PAn(XTB = x) (17)

exists and is positive for all x ∈ B such that the removal of B \ {x} does not disconnect

x from infinity.

Proof. Fix w /∈ B, then arguing as in (9) and (10) we get

PAn(Tw < TB) =
Reff(An ↔ B)Pw(TAn < TB)

Reff(w ↔ B;GAn)
→ qB(w)

Reff(w ↔ B)

as n→∞. This limit is by definition the desired value of hmB∪{w}(w). Note furthermore

that qB(w) is strictly positive by Lemma 2.5.

Applying the same reasoning but with B changed into B′ = B \ {x} (with x ∈ B)

and w = x, shows that the limit in (17) exists. Furthermore, if the removal of B′ does

not disconnect x from ∞, we see that qB′(w) > 0 again, and so hmB(x) > 0.

Next, we show that the potential kernel can only be well defined if the graph G is

one-ended.

Corollary 2.14. If the potential kernel is well defined, G is one-ended.

Proof. Intuitively, on multiple-ended graphs there isn’t a single harmonic measure from

infinity since there are several ways of converging to infinity. Suppose G has more than

one end. Let x1, x2, . . . , xM be some finite number of vertices, such that removing them

from v(G) and looking at the induced graph, we have (at least) two infinite components.

Write Bn = B(o, n) and choose n large enough that x1, . . . , xM ∈ Bn. Consider the

graph GBn resulting from gluing Bn together as in the theorem. Clearly, the removal of

Bn creates at least two infinite components. Pick a vertex z of Bc
n and suppose it is in
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one infinite component. Let ({wi})i≥1 be any sequence of vertices going to infinity in

an infinite component that does not contain z. Then Pwi(Tz < TBn) = 0 (for each i),

yet this converges by Corollary 2.13 to hmBn∪z(z) > 0 since the removal of Bn does not

disconnect z from infinity. This is the desired contradiction.

Theorem 2.12 a priori only shows that the potential kernel with ‘pole’ B is well

defined when B does not disconnect G. We can, however, extend it to arbitrary finite

sets B and to an arbitrary second variable y.

Corollary 2.15. Let B ⊂ v(G) be any finite set. The potential kernel aB : v(GB)2 →
R+ is well defined in the sense that the limit

aGB (w, y) = lim
n→∞

Pw(TAn < Ty;GB)Reff(w ↔ y;GB),

exist for all w, y ∈ v(GB) and does not depend on the choice of sequence of sets An.

Here, the probability and effective resistance are calculated on the graph GB.

Proof. We start with taking B̄ as the hull (in the sense of complex analysis, meaning

we “fill it in” with respect to the point at infinity) of B, defined by adding to B all the

points in v(GB) that belong to finite connected components of v(GB) \ B. Since G is

one-ended by Corollary 2.14, B̄ does not disconnect G. By Theorem 2.12, we have that

for any sequence of sets (An)n≥1 going to infinity, the limit

aGB̄ (w, B̄) := qB̄(w) = lim
n→∞

Pw(TAn < TB̄)Reff(B̄ ↔ An)

exists for each w ∈ v(GB̄) and does not depend on the choice of sequence of vertices An

going to infinity. Moreover, this limit also trivially exists (and is zero) if w is in one of

the finite components of v(G) \B.

Hence we deduce that actually for all w ∈ v(GB) we have that the limit

aGB (w,B) = lim
n→∞

Pw(TAn < TB)Reff(An ↔ B)

exists and does not depend on the choice of sequence of sets going to infinity An. Now,

by Proposition 2.9 (see Remark 2.4) we get that for all w, y ∈ v(GB) the limit

aGB (w, y) = lim
n→∞

Pw(TAn < Ty;GB)Reff(An ↔ y;GB)

exists and does not depend on the choice of the sequence An. This is the desired

result.

Proof of (14) and (15)

Proof. Fix (An)n≥1 a sequence of finite sets of vertices going to infinity. For a finite set

B ⊂ v(G) and x ∈ B, we will define the function qB : v(GB)→ R+ through

qB(w) = a(w, x)− Ew[a(XTB , x)],
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and qB(B) = 0, whenever the potential kernel on G is well defined. We will prove (14)

using induction on the number of vertices m in B. To be more precise, we will show

that for any recurrent graph G for which the potential kernel is well defined (in other

words, limn→∞ aAn(x, y) = a(x, y) and does not depend on the sequence An) for any

set B ⊂ v(G) with |B| = m and v(G) \B connected, we have that (14) holds. The base

case m = 1 holds trivially.

Let m ∈ N and suppose that for any recurrent graph G on which the potential kernel

is well defined and for any subset B ⊂ v(G) with |B| = m and v(G) \ B connected we

have that (14) and (15) are satisfied for each x ∈ B.

In this case,

qB(w) = lim
n→∞

Pw(TAn < TB)Reff(B ↔ An)

by assumption exists and does not depend on the sequence (An)n≥1, so we also have

that aGB (·, B) = qB(·) by (9). Remark 2.4 then shows us that aGB (·, y) is well defined

for any y ∈ v(GB) and hence we know that the potential kernel is well defined on GB

too.

Induction. Let G be a recurrent graph for which the potential kernel is well defined

and let B ⊂ v(G) be a finite set such that |B| = m+ 1 and v(G) \B is connected. Fix

x ∈ B. We split into two cases, depending on x:

(i) the removal of x from G disconnects all components of B \ {x} from infinity in G

or

(ii) it does not.

We begin with the easy case. Suppose we are in situation (i). We have that for all

w /∈ B (for n large enough)

PAn(Tw < Tx) = PAn(Tw < TB) and Reff(w ↔ B) = Reff(w ↔ x).

The limit on the left-hand side exists as the potential kernel is well defined, see Corollary

2.7, and hence limn→∞ PAn(Tw < TB)Reff(w ↔ B) exists and equals a(w, x). Moreover,

we also have

qB(w) = a(w, x)− Ew[a(XTB , x)] = a(w, x)− a(x, x) = a(w, x)

which proves the result for this choice of x.

We move on to the more interesting case (ii). Since we are not in case (i), we can find

a set B′ ⊂ B with |B′| = m and v(G) \ B′ connected (indeed, since we are not in case

(i), there is at least a path going from some vertex in B to infinity, without touching x,

and removing from B the last vertex in B visited by this path provides such a set B′).

Take y to be the vertex such that {y} = B \B′.
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Since |B′| = m, we have by the induction hypothesis that the potential kernel

aGB′ (·, ·) is well defined. Pick w ∈ v(G) such that w /∈ B, which we can view also

as a vertex in GB and GB′ . Fix n so large that both B and w are not in An. Using (9)

we have that

a
GB′
An

(w,B′) = Reff(B′ ↔ An)Pw(TAn < TB′).

We focus on the probability appearing on the right-hand side. By the law of total

probability and the strong Markov property of the simple random walk, we have

Pw(TAn < TB′) = Pw(Ty < TAn < TB′) + Pw(TAn < Ty ∧ TB′)

= Pw(Ty < TAn ∧ TB′)Py(TAn < TB′) + Pw(TAn < TB′ ∧ Ty).

Since G (and hence GB′) is recurrent, we have that Reff(B′ ↔ An) ∼ Reff(x ↔ An) ∼
Reff(B ↔ An) where an ∼ bn means an/bn → 1 as n→∞. Taking n→∞ in the above

identity after multiplying by Reff(B′ ↔ An) and using once more recurrence, we deduce

that

aGB′ (w,B′) = Pw(Ty < TB′)a
GB′ (y,B′) + lim

n→∞
Pw(TAn < TB)Reff(An ↔ B),

because the potential kernel on GB′ is well defined by assumption. This implies in

particular that

lim
n→∞

Pw(TAn < TB)Reff(B ↔ An) = aGB′ (w,B′)− Pw(Ty < TB′)a
GB′ (y,B′)

exists and does not depend on the sequence An and, thus, we deduce that aGB (w,B) is

well defined and satisfies

aGB (w,B) = aGB′ (w,B′)− Pw(XTB = y)aGB′ (y,B′). (18)

We are left to prove that qB(w) = aGB (w,B). By the induction hypothesis (because

x ∈ B′) we know that

aGB′ (w,B′) = qB′(w) = a(w, x)− Ew[a(XTB′ , x)].

Using this in (18) we get

aGB (w,B) = a(w, x)− Ew[a(XTB′ , x)]− Pw(XTB = y)
(
a(y, x)− Ey[a(XTB′ , x)]

)
= a(w, x)− Pw(XTB = y)a(y, x)−

∑
z∈B′

Pw(XTB′ = z)a(z, x)

+
∑
z∈B′

Pw(XTB = y)Py(XTB′ = z)a(z, x)

= a(w, x)−
∑
z∈B

Pw(XTB = z)a(z, x),
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where in the last line we used for z ∈ B′ the equality

Pw(XTB = z) = Pw(XTB′ = z)− Pw(XTB = y)Py(XTB′ = z),

which holds due to the strong Markov property for the random walk. But of course,

this is the same as

aGB (w,B) = a(w, x)− Ew[a(XTB , x)],

so indeed we have that aGB (w,B) = qB(w), which finishes the induction argument.

Proof of (16)

Let B ⊂ v(G) be a finite set, such that its removal does not disconnect G. So far, we

have shown that the potential kernel is well defined on the graph GB and hence that

the harmonic measure from infinity is well defined, see Corollary 2.13. In this section,

we will prove (16); the third statement of Theorem 2.12. First, let us introduce some

notation that will only be used here. If G is a graph and B ⊂ v(G) a (finite) set, then

we will write ∆ for the Laplacian on G and ∆GB for the Laplacian on GB.

Proof of (16). Let G be a recurrent graph on which the potential kernel is well defined,

and suppose that B ⊂ v(G) is a finite set such that v(G) \ B is connected. Fix x ∈ B.

We split into two cases:

(i) the removal of x disconnects B \ {x} from infinity in G or

(ii) is does not.

In the first case, we have that hmB(x) = 1 and also that qB(w) = a(w, x) for all w ∈ B
(indeed, for w /∈ B this follows immediately from (15) and for w ∈ B \ {x} we have that

qB(w) = 0 = a(w, x) in this case). Hence, we deduce

δx(·) = ∆(a(·, x)) = ∆(qB(·)),

which shows the result in case (i).

In case (ii), take B′ = B \ {x}. We will show that

∆
GB′
w

(
aGB′ (w,B′)− Pw(Tx < TB′)a

GB′ (x,B′)
)
|w=x= hmB(x), (19)

where ∆
GB′
u is the Laplacian acting on the function with variable u. Let us first explain

how this shows the final result. As in (18) and (15) we know that (when qB is viewed

as a function on v(GB′))

qB(w) = aGB′ (w,B′)− Pw(Tx < TB′)a
GB′ (x,B′).
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Moreover, when w ∈ B, we have

qB(w) = a(w, x)− Ew[a(XTB , x)] = a(w, x)− a(w, x) = 0.

Hence, actually,

(∆GB′ qB)(x) =
∑
w∼x

w∈v(GB′ )

qB(w) =
∑
w∼x

w∈v(G)

qB(w) = (∆qB)(x),

so that (19) implies the final result.

To prove (19), recall from (5) that3

∑
u∼x

u∈v(GB′ )

Pu(Tx < TB′) =
1

Reff(x↔ B′)
,

and that ∆GB′ (aGB′ (·, B′)) = δB′(·) by Proposition 2.6. Using these two facts, we get

∆
GB′
w (aGB′ (w, x2)− Pw(Tx < TB′)a

GB′ (x,B′))
∣∣∣
w=x1

= −aGB′ (x,B′)
∑
u∼x

u∈v(GB′ )

(Pu(Tx < TB′)− 1)

= aGB′ (x,B′)
∑
u∼x

u∈v(GB′ )

Pu(TB′ < Tx)

=
aGB′ (x,B′)

Reff(x↔ B′)
= hmB′,x(x).

The last equality follows from Corollary 2.7, which allows us to write

aGB′ (x,B′) = hmx,B′(x)Reff(x↔ B′).

This shows (16) and therefore concludes the proof of Theorem 2.12. In turn this finishes

the proof that (a) is equivalent to (b) in Theorem 2.1 (see e.g. Corollary 2.13).

2.4. Proof of Theorem 2.3

Before proceeding with the remaining equivalences we give a proof that (a) holds un-

der the assumption of Theorem 2.3. Recall that a random graph (G, o) is strictly

subdiffusive whenever there exits a β > 2 such that

E[d(o,Xn)β] ≤ Cn. (SD)

We collect the following theorem of [30]. The main theorem from that paper shows

that, assuming subdiffusivity, strictly sublinear harmonic functions must be constant.

3Of course, to be precise we would need to calculate the probabilities and effective resistances on the

graph GB′ , but since this makes no difference in the current setting, we skip the extra notation.
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In fact, as already mentioned in that paper (see Example 2.10), the arguments in that

paper also show that assuming strict subdiffusivity, even harmonic functions of at most

linear growth must be constant. It is this extension which we use here, and which we

quote below.

Theorem 2.16 (Theorem 3 in [30]). Let (G, o,X1) be a strictly subdiffusive (SD),

recurrent, stationary environment. A.s., every harmonic function on G that is of at

most linear growth is constant.

We now give the proof of Theorem 2.3 using this result.

Proof of Theorem 2.3 assuming Theorem 2.1. Let (G, o) be a unimodular graph that

is almost surely strictly subdiffusive (SD) and recurrent, satisfying E[deg(o)] < ∞.

Then degree biasing (G, o) gives a reversible environment and hence, almost surely, all

harmonic functions on (G, o,X1) that are at most linear are constant due to Theorem

2.16. After degree unbiasing, the same statement is true for (G, o).

We will prove that this implies that statement (a) of Theorem 2.1 holds, which (by

assumption) implies (a)–(d) must be satisfied.

Let a1, a2 : v(G)2 → R+ be two potential kernels arising as subsequential limits in

the sense of Lemma 2.5. Fix y ∈ v(G). By Proposition 2.6 we have that ai(·, y) is of the

form

ai(x, y) = Reff(x↔ y)Hi(x),

with 0 ≤ Hi(x) ≤ 1 for each x and i = 1, 2. Define next the map h : v(G)→ R through

h(x) = a1(x, y)− a2(x, y).

Clearly, h is harmonic everywhere outside y by choice of the ai’s and linearity of the

Laplacian. Since ∆a1(·, y) = ∆a2(·, y) by Proposition 2.6, we also get that ∆h(y) = 0

and we deduce that h is harmonic everywhere.

Next, we notice

|h(x)| ≤ |H1(x)−H2(x)|Reff(y ↔ x) ≤ 2d(y, x),

implying that h is (at most) linear. Thus h must be constant. Since h(y) = a1(y, y) −
a2(y, y) = 0, it follows that h(x) = 0 and hence we finally obtain a1(x, y) = a2(x, y) for

all x ∈ v(G). Since y ∈ v(G) was arbitrary, we deduce the desired result.

Remark 2.5. Strict subdiffusivity on the UIPQ was obtained by Benajmini and Curien

in the beautiful paper [28]. A result of Lee [121, Theorem 1.10] gives a more general

condition which guarantees strict subdiffusivity (essentially, the graph needs to be planar

with at least cubic volume growth).
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As an example of application of Theorem 2.3 consider the Incipient Infinite perco-

lation Cluster (IIC) of Zd for sufficiently large d. By a combination of Theorem 1.2

in [109] and Theorem 1.1 in [122], one can check that the strict subdiffusivity (SD) is

satisfied in all sufficiently high dimensions. The recurrence is easier to check. (Note

that a weaker form of subdiffusivity can be deduced by combining [109] with [18]). In

fact, it was already checked earlier that in high dimensions the backbone of the IIC is

one-ended ([166]), implying also the UST is one-ended in this case.

We point out that the result should apply in dimension two (even for non-nearest

neighbor walk), or for the IIC of spread-out percolation, although we do not know if

strict subdiffusivity has been checked in that case.

2.5. The sublevel set of the potential kernel

Let (G, o) be some recurrent, rooted, graph for which the potential kernel is well defined

in the sense that an(x, y) obtains a limit and this does not depend on the choice of the

sequence (An)n≥1 of finite sets of vertices going to infinity.

Fix z ∈ v(G) and R ∈ R+. Recall the notation in (6) for the ball with respect to the

effective resistance metric:

Beff(z,R) = {x ∈ v(G) : Reff(z ↔ x) ≤ R}

We also introduce the notation for the sublevel set of a(·, z) through

Λa(z,R) = {x ∈ v(G) : a(x, z) ≤ R}.

In case z = o, we will drop the notation for z and write Beff(R), Λa(R) for Beff(o,R),

Λa(o,R) respectively. Although a(·, ·) fails to be a distance as it lacks to be symmetric,

it is what we call a quasi-distance as it does satisfy the triangle inequality due to

Proposition 2.9. On 2-connected graphs (where the removal of any single vertex does

not disconnect the graph), we have that a(x, y) = 0 precisely when x = y. In particular,

this is true for triangulations.

Let us first explain why we care about the sublevel sets of the potential kernel and

why we will prefer it over the effective resistance balls. We will call a set A ⊂ v(G)

simply connected whenever it is connected (that is, for any two vertices x, y in A,

there exists a path connecting x and y, using only vertices inside A) and when removing

A from the graph does not disconnect a part of the graph from infinity. We make the

following observation, which holds because x 7→ a(x, o) is harmonic outside of o.

Observation. The set Λa(R) is simply connected.

This is not true, in general, for Beff(R). Introduce the hull Beff(z,R) of Beff(z,R) as

the set Beff(z,R) together with the finite components of v(G) \ Beff(z,R). Even though
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Beff(z,R) does not have any more “holes”, we notice that still, it is not evident (or true

in general) that Beff(z,R) is connected. See Figure 2.1a for an example.

We do notice that Beff(z,R) ⊂ Λa(z,R) as

a(x, z) = hmx,z(x)Reff(x↔ z) ≤ Reff(x↔ z),

by Corollary 2.7. See also Figure 2.1b for a schematic picture.

(a) Example of a graph where Beff(z,R)

is not connected for each R: the effec-

tive resistance between x and y equals 1/2,

whereas the resistance between x and vi

equals 5/8.

(b) A schematic drawing. In dark gray,

we see the set Beff(R). The blue parts are

Beff(R) \ Beff(R). The red area (and every-

thing inside) is then the sublevel set Λa(R).

We thus get that the sets Λa(R) are more regular than the sets Beff(R) and if G is

planar, they correspond to Euclidean simply connected sets.

In this section, we are interested in some properties of Λa(R), that we will need

to prove our Harnack inequalities. We now state the main result, which shows that

limz→∞ a(z, x) =∞, under the additional assumption that the underlying rooted graph

is random and (stationary) reversible.

Proposition 2.17. Suppose (G, o) is a reversible random graph, that is a.s. recurrent

and for which the potential kernel is a.s. well defined. Almost surely, the sets Λa(z,R)

are finite for each R ≥ 1 and all z ∈ v(G), and hence (Λa(z,R))R≥1 defines an exhaus-

tion of G.

Although we expect this proposition to hold for all graphs where the potential kernel

is well defined, we do not manage to prove the general case. In addition, the proof actu-

ally yields something slightly stronger which may not necessarily hold in full generality.
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Note also that for all R ≥ 0 we have v(G) \Λa(R) is non-empty because x 7→ a(x, o)

is unbounded (to see this, assume it is bounded and use recurrence and the optional

stopping theorem to deduce that a(x, o) would be identically zero, which is not possible

since the Laplacian is nonzero at o). We introduce the following definition, that we will

use throughout the remaining document.

Definition 2.18. Let δ ∈ [0, 1] and x ∈ v(G).

• We call x (δ, o)-good if hmo,x(x) ≥ δ. We will omit the notation for the root if it

is clear from the context.

• We call the rooted graph (G, o) δ-good if for all ε > 0, there exist infinitely many

(δ − ε, o)-good vertices.

• We call the rooted graph (G, o) uniformly δ-good if all vertices are (δ, o)-good.

Note that if the graph (G, o) is uniformly δ-good for some δ > 0, then actually

Λa(δR) ⊂ Beff(R), so that the sets Λa(δR) are finite for each R. It turns out that the

graph (G, o) being δ-good is also enough, which is the content of Lemma 2.21 below.

Although the definition of δ-goodness is given in terms of rooted graphs (G, o), the

next (deterministic) lemma shows that the definition is actually invariant under the

choice of the root, and hence we can can omit the root and say “G is δ-good” instead.

Lemma 2.19. Suppose δ > 0 is such that (G, o) is δ-good, then also (G, z) is δ-good for

each z ∈ v(G).

Proof. Fix z ∈ v(G) and let δ > 0 be such that (G, o) is δ-good. Fix 0 < ε < δ and

denote by Gα,o the set of (α, o)-good vertices. Take ε1, ε2 > 0 such that ε1 + ε2 = ε.

Then Gδ−ε1,o has infinitely many points by assumption.

By Corollary 2.11, we can take R0 := R0(z, o, ε2) so large that for all x /∈ B(o,R0)

we have

|hmx,z(x)− hmx,o(x)| < ε2.

This implies that any vertex x ∈ Gδ−ε1,o∩B(o,R0)c must in fact be (δ− ε, z)-good since

ε = ε1 + ε2. This shows the desired result as ε was arbitrary.

The next lemma shows the somewhat interesting result that reversible environments

are always δ-good, with δ arbitrary close to 1
2 .

Lemma 2.20. Suppose that (G, o,X1) is a recurrent reversible random rooted graph

(that is a.s. infinite) on which the potential kernel is a.s. well defined. Then a.s. (G, o)

is 1
2 -good.
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Proof. In this proof we will write P,E to denote probability respectively expectation

with respect to the law of the random rooted graph (G, o). In compliance with the rest

of the document, we will write P,E to denote the probability respectively expectation

w.r.t. the law of the simple random walk, conditional on (G, o).

By Lemma 2.19, we note that (G, o) being δ-good is independent of the root and

hence for each δ > 0, the event

Aδ = {(G, o) is δ-good}

is invariant under re-rooting, that is

(G, o) ∈ Aδ ⇐⇒ (G, x) ∈ Aδ for all x ∈ v(G).

A natural approach to go forward would be to use that any unimodular law is a mixture

of ergodic laws [9, Theorem 4.7]. We will not use this, as there is an even simpler

argument in this case.

We will use the invariance under re-rooting to prove that Aδ has probability one.

Suppose, to the contrary, that the event Aδ does not occur with probability one, so that

P(Aδ) ∈ [0, 1). Then we can condition the law P on Acδ to obtain again a reversible law

P(· | Acδ) (it is here that we use the invariance under re-rooting of Aδ, see for example

[49, Exercise 15] or [9]), under which Aδ has probability zero. However, we will show

that P(Aδ) > 0 always holds when δ < 1
2 , independent of what the exact underlying

reversible law P is - as long as the potential kernel is a.s. well defined and the graph is

a.s. recurrent. Now, this implies that we actually need to have P(Aδ) = 1, which is the

desired result.

Fix δ < 1
2 . We thus still need to prove that P(Aδ) > 0, which we do by contradiction.

Assume henceforth that P(Aδ) = 0. By reversibility, we get for each n ∈ N the equality

E[hmo,Xn(Xn)] = E[hmXn,o(o)] =
1

2
,

due to the fact that (G, o,Xn) has the same law as (G,Xn, o), which is reversibility

(here, the expectation is both with respect to the environment and the walk).

As P(Aδ) = 0, we can assume that a.s. there exists a (random) N = N(G, o) ∈ N,

such that for all x 6∈ B(o,N) we have

hmx,o(x) ≤ δ

Also, note that the environment is a.s. null-recurrent (as is the case for any connected,

infinite recurrent graph, which follows e.g. by uniqueness of invariant of measures for

recurrent graphs, Theorem 1.7.6 in [137], in conjunction with Theorem 1.7.7 of [137]).

Hence we have that, (G, o)-a.s.

P(Xn in B(o,N))→ 0,
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whenever n→∞. Moreover, notice that for each n we have

E[hmo,Xn(Xn)] ≤ P(Xn not in B(o,N))δ + P(Xn in B(o,N)).

Since hmo,Xn(Xn) ∈ [0, 1], we can apply Fatou’s lemma (applied to just the expectation

with respect to the law of (G, o), so that we can use the just found inequality) from

which we deduce that
1

2
= lim sup

n→∞
E[hmo,Xn(Xn)] ≤ δ,

which is a contradiction as δ < 1
2 .

We next show that for any δ-good (rooted) graph, the set Λa(R) is finite for each

R ≥ 1. Combined with Lemma 2.20, this implies Proposition 2.17 in case of reversible

environments. However, Lemma 2.20 shows more than just this fact. Indeed, Λa(R)

being finite need not imply that (G, o) is δ-good for some δ > 0.

Lemma 2.21. If (G, o) is δ-good for some δ > 0, then Λa(o,R) is finite for each R ≥ 1.

Proof. Let δ > 0 and suppose that G is δ-good. We will show that for each R ≥ 1, there

exists an M ≥ 1 such that for all x /∈ B(o,M) we have

a(x, o) ≥ δ2R

8
.

This implies the final result.

By assumption on δ-goodness, for each R ≥ 1 there exists a vertex xR /∈ Beff(o,R)

such that

hmxR,o(xR) ≥ δ

2

This implies by Corollary 2.7 that a(xR, o) ≥ δ
2Reff(o↔ xR) ≥ δR

2 .

Fix R ≥ 1 and define the set BR = {o, xR}. By Theorem 2.12, we get for all x the

decomposition

a(x, o) = qBR(x) + Ex[a(XTBR
, o)],

where qBR(·) is the potential kernel on the graph GBR , which we recall is the graph

G, with BR glued together. Since potential kernels are non-negative, we can focus our

attention to the right-most term.

Take M = M(o, xR, δ) so large that for all x /∈ B(o,M)

| hmBR(xR)− Px(XTBR
= xR)| ≤ δ

4
,

which is possible as the potential kernel is well defined, see Proposition 2.6 and Corollary

2.7. We deduce that for all x /∈ B(o,M)

a(x, o) ≥ Ex[a(XTBR
, o)] ≥ δ2R

8
,

as desired.
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2.6. Two Harnack inequalities

We are now ready to prove the equivalence between (c) and (a). The first part of this

section deals with a classical Harnack inequality, whereas the second part of this section

provides a variation thereof, where the functions might have a single pole. The first

Harnack inequality (Theorem 2.24 below) does not involve Theorem 2.1.

Recall that Λa(z,R) is the sublevel set {x ∈ v(G) : a(x, z) ≤ R} (for R not necessarily

integer valued) and that a(z, x) defines a quasi distance on G. Also recall the notation

Beff(z,R) = {x : Reff(z ↔ x) ≤ R}, for the (closed) ball with respect to the effective

resistance distance.

2.6.1 The standing assumptions

Throughout this section we will work with deterministic graphsG, which satisfy a certain

number of assumptions.

Definition 2.22 (Standing assumptions). We will say that G satisfies the standing

assumptions whenever it is infinite, recurrent, the potential kernel is well defined and

the level sets (Λa(z,R))R≥1 are finite for some (hence all by Proposition 2.9) z ∈ v(G).

We will not use that (G, o) is random reversible in this section, other than to verify

that is satisfies the standing assumptions 2.22. The remainder of this section works for

all (deterministic) graphs that satisfy the standing assumptions.

Lemma 2.23. Let (G, o) be a random unimodular graph graph with E[deg(o)] < ∞,

for which a.s. the potential kernel is uniquely defined. Then (G, o) a.s. satisfies the

standing assumptions.

Proof. Proposition 2.17 implies that any unimodular random graph with E[deg(o)] <∞
that is a.s. recurrent and for which the potential kernel is a.s. well defined, the level

sets Λa(z,R) are finite for all R and z ∈ v(G).

Remark 2.6. Note for instance that this implies that the UIPT therefore satisfies the

standing assumptions.

2.6.2 Elliptic Harnack Inequality

We first show that under the standing assumptions (Definition 2.22), a version of the

elliptic Harnack inequality holds, where the constants are uniform over all graphs that

satisfy the standing assumptions. Recall the definition of the “hull” Beff(z,R) introduced

in Section 2.5.
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Theorem 2.24 (Harnack Inequality). There exist M,C > 1 such that the following

holds. Let G be a graph satisfying the Standing Assumptions 2.22. For all z ∈ v(G), all

R ≥ 1 and all h : Λa(z,MR) ∪ ∂Λa(z,MR)→ R+ that are harmonic on Λa(z,MR) we

have

max
x∈Beff(z,R)

h(x) ≤ C min
x∈Beff(z,R)

h(x) (H)

Remark 2.7. In case the rooted graph (G, o) is in addition uniformly δ-good for some δ

(that is, hmx,o(x) ≥ δ for each x, see Definition 2.18), then we have that

Λa(δR) ⊂ Beff(R) ⊂ Λa(R),

and hence the Harnack inequality above becomes a standard “elliptic Harnack inequal-

ity” for the graph equipped with the effective resistance distance. (As will be discussed

below, we conjecture that many infinite models of random planar maps, including the

UIPT, satisfy the property of being δ-good for some nonrandom δ > 0.)

The harmonic exit measure.

In the proof, we fix the root o ∈ v(G), but it plays no special role. Define for k ∈ N,

x ∈ Λa(k) and b ∈ ∂Λa(k) the “harmonic exit measure”

µk(x, b) = Px(XTk = b),

where Tk is the first hitting time of ∂Λa(k). We will write

Gk(x, y) := GΛa(k)c(x, y) (20)

where we recall the definition of the Green function in (1). The following proposition

shows that changing the starting points x, y ∈ Beff(R), does not significantly change the

exit measure µk(·, b). The Harnack inequality will follow easily from this proposition (in

fact, it is equivalent).

Proposition 2.25. There exist constants C̃,M > 1 such that for all G satisfying the

Standing Assumptions 2.22, all R ≥ 1 and all x, y ∈ ∂Beff(R) we have

1

C̃
µMR(y, b) ≤ µMR(x, b) ≤ C̃µMR(y, b)

for each b ∈ ∂Λa(MR).

We first prove the following lemma, giving an estimate on the number of times the

simple random walk started from x visits y, before exiting the set Λa(MR).
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Lemma 2.26. For all M0 > 1 and all M ≥ M0 + 3 there exists C = C(M,M0) > 1

such that for all G satisfying the Standing Assumptions 2.22 and for all R ≥ 1 we have

R

C
≤ GMR(x, y)

deg(y)
≤ CR

for all x ∈ ∂Λa(M0R) and y ∈ ∂Beff(R).

Proof. Fix M0 > 1 and let M ≥ M0 + 3. Let G be any graph satisfying the standing

assumptions 2.22. Let R ≥ 1, take x ∈ ∂Λa(M0R) and y ∈ ∂Beff(R). Notice that, by

Lemma 2.8, we can write

GMR(x, y)

deg(y)
= Ex[a(XTMR

, y)]− a(x, y). (21)

Let z ∈ Λa(MR). Recalling that a(·, ·) is a quasi metric that satisfies the triangle

inequality due to Proposition 2.9, we have, by assumption on x and y and the expression

for the potential kernel in terms of harmonic measure and effective resistance (Corollary

2.7), that

a(z, y) ≤ a(z, o) + a(o, y) ≤MR+Reff(o↔ y) = (M + 1)R. (22)

Going back to (21) and upper-bounding −a(x, y) ≤ 0, we find the desired upper bound:

GMR(x, y)

deg(y)
≤ (M + 1)R.

For the lower bound, fix again z ∈ ∂Λa(MR). From Theorem 2.12 (and the fact

that Beff(R) ⊂ Λa(R)) we obtain the equality

a(z, y)− Ez[a(XTR , y)] = a(z, o)− Ez[a(XTR , o)].

It follows that

a(z, y) ≥ a(z, o)− Ez[a(XTR , o)] = (M − 1)R. (23)

On the other hand, invoking the triangle inequality (as in (22)), we have

a(x, y) ≤ a(x, o) + a(o, y) ≤ (M0 + 1)R.

The lower-bound now follows from (21) and (23) as

GMR(x, y)

deg(y)
≥ (M − 1)R− (M0 + 1)R = (M −M0 − 2)R.

Since M ≥M0 + 3, we can take C = C(M,M0) depending only on M,M0 such that we

get the result.
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Proof of Proposition 2.25. Take M0 > 1,M = M(M0) and C > 1 as in Lemma 2.26. Let

G be a graph satisfying the standing assumptions 2.22. FixR ≥ 1 and let x, y ∈ ∂Beff(R).

For b ∈ Λa(MR) we use the last-exit decomposition (Lemma 2.4) to see

µMR(x, b) =
∑

z∈∂Λa(M0R)

GMR(x, z)

deg(z)
deg(z)Pz(XTMR

= b;TMR < T+
M0R

).

By Lemma 2.26, we have for each z ∈ ∂Λa(M0R)

GMR(z, x)

deg(x)
≤ CR ≤ C2 GMR(z, y)

deg(y)
.

We thus get, defining C̃ = C2, and using deg(·)-reversibility of the simple random walk

that

µMR(x, b) ≤ C̃
∑

z∈∂Λa(M0R)

GMR(y, z)

deg(z)
deg(z)Pz(XTMR

= b;TMR < T+
M0R

)

= C̃µMR(y, b),

showing the final result.

Proof of Theorem 2.24. The proof of Theorem 2.24 is easy now. Indeed, let C,M > 1

large enough, as in Proposition 2.25 and take any graph G satisfying the standing

assumptions and R ≥ 1. Take h : Λa(MR) ∪ ∂Λa(MR) → R+ a function harmonic on

Λa(MR). Using the maximum principle for harmonic functions, we deduce that it is

enough to prove

max
x∈∂Beff(R)

h(x) ≤ C min
x∈∂Beff(R)

h(x).

Take x, y ∈ ∂Beff(R). By optional stopping and Proposition 2.25 we have

h(x) = Ex[h(XTMR
)] =

∑
b∈∂Λa(MR)

h(b)µMR(x, b)

≤ C̃
∑

b∈∂Λa(MR)

h(b)µMR(y, b) = C̃h(y),

showing the result.

2.6.3 (a) implies (c): anchored Harnack inequality

Sometimes, one wants to apply a version of the Harnack inequality to functions that are

harmonic on a big ball, but not in some vertex inside this ball (the pole). Clearly, we

can only hope to compare the value of harmonic function in points that are “far away”

from the pole, say on the boundary of a ball centered at the pole.
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This “anchored” inequality does not always follow from the Harnack inequality as

stated in Theorem 2.24. As an example, think of the graph Z with nearest neighbor

connections. Pick any two positive real numbers α, β satisfying α + β = 1. Then the

function h that maps x to α(−x) when x is negative and to βx when x is positive,

is harmonic everywhere outside of 0, with ∆h(0) = 1. This implies that no form of

“anchored Harnack inequality” can hold.

We next present a reformulation of (a) implies (c) in Theorem 2.1. We will use it to

prove results for the “conditioned random walk” as introduced in Section 2.7.

Theorem 2.27 (Anchored Harnack Inequality). There exists a C < ∞ such that the

following holds. Let G be a graph satisfying the Standing Assumptions 2.22. For z ∈
v(G), R ≥ 1 and all h : v(G)→ R+ that are harmonic outside of z and satisfy h(z) = 0,

we have

max
x∈∂Λa(z,R)

h(x) ≤ C min
x∈∂Λa(z,R)

h(x). (aH)

Remark 2.8. Actually, we will prove that for each z ∈ v(G) and R ≥ 1, there exists

Ψz(R) ≥ R such that for all harmonic functions h : Λa(z,Ψz(R))∪∂Λa(z,Ψz(R))→ R+

that are harmonic on Λa(z,Ψz(R)) \ {z} and h(z) = 0, we have

max
x∈∂Λa(z,R)

h(x) ≤ C min
x∈∂Λa(z,R)

h(x).

As before, if the graph is uniformly δ-good for some δ > 0, we can actually take Ψz(R) =

MR for some M = M(δ) depending only on δ.

Proof of Theorem 2.27

The proof will be somewhat similar to the proof of Theorem 2.24. Again, we will prove

it for a given root vertex o to simplify our writing, but it will not matter which vertex

we choose. For k ∈ N, we will write again Tk = TΛa(k)c for the first time the random

walk exists the sublevel-set Λa(k). Fix k ∈ N and x ∈ Λa(k). Define, given a graph G

satisfying the standing assumptions 2.22 and a root vertex o the exit measure

νk(x, b) = Px(XTk = b, Tk < To),

for b ∈ ∂Λa(k). We begin by showing that, taking x, y in Λa(R), the exit measures

νk(x, ·) and νk(y, ·) are similar up to division by a(x, o), a(y, o) respectively, when k

is large enough. Although it might seem at first slightly counterintuitive that that

we need to divide by a(x, o), this actually means that the conditional exit measures

Pw(XTk = b | Tk < To) for w = x, y are comparable.
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Proposition 2.28. There exists a C < ∞ such that for all graphs G satisfying the

Standing Assumptions 2.22 with root o, for each R ≥ 1, there exists a constant Ψ(R) ≥ R
such that for all x, y ∈ Λa(R) \ Λa(1) and all b ∈ ∂Λa(Ψ(R)) we have

νΨ(R)(x, b)

a(x, o)
≤ C

νΨ(R)(y, b)

a(y, o)
.

In order to prove this proposition, we will first prove a few preliminary lemmas.

We assume here that the underlying graphs satisfy the standing assumptions 2.22. The

next result offers bounds on the probability that the random walk goes “far away” before

hitting o in terms of the potential kernel.

Lemma 2.29. For each z ∈ v(G) \ Λa(1) and all M > a(z, o), we have

a(z, o)

M + 1
≤ Pz(TM < To) ≤

a(z, o)

M
.

Proof. This is a straightforward consequence of the optional stopping theorem. Indeed,

since (a(Xn∧TM∧To , o))n≥0 is an a.s. bounded martingale,

a(z, o) = Ez[a(TM ∧ To, o)]

and because M ≤ a(w, o) ≤M + 1 for each w ∈ ∂Λa(M) and a(o, o) = 0, we find

a(z, o)

M + 1
≤ Pz(TM < To) ≤

a(z, o)

M
,

which are the desired bounds.

Lemma 2.30. For each R ≥ 1, there exist M > M0 > R such that for all x ∈ Λa(R)

and z ∈ Λa(M0),
1

10
≤ GBM (z, x)

deg(x)a(x, o)
≤ 2,

where BM = {o} ∪ Λa(M)c.

Proof. Fix R ≥ 1 and x, y ∈ Λa(R) \Λa(0). Take M0 = M0(R) at least so large that for

all w /∈ Λa(M0) and all z ∈ Λa(R) \ Λa(0) we have

1

2
≤ Pw(Tz < To)

hmz,o(z)
≤ 2. (24)

This is possible because Pw(Tz < To) converges to hmz,o(z) for all z, Λa(R) is finite,

and uniformity in w outside Λa(M0) follows just as in Corollary 2.10 (otherwise, we can

construct a sequence wM of vertices going to infinity such that PwM (Tz < To) does not

converge to hmz,o(z)). Fix next M = 5M0 and BM = {o} ∪ Λa(M)c.

Take z ∈ Λa(M0). By choice of M and Lemma 2.29, we have

Pz(TM < To) ≤
M0

M
≤ 1

5
. (25)
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Using the strong Markov property of the walk we get

GBM (z, x) = Go(z, x)− Pz(TM < To)
∑

b∈∂Λa(M)

Pz(XTM = b | TM < To) Go(b, x).

(26)

The definition of the Green function and Corollary 2.7 allow us to write

Go(z, x)

deg(x)
= Pz(Tx < To)Reff(x↔ o) and a(x, o) = hmx,o(x)Reff(x↔ o),

which implies that

Go(z, x)

deg(x)a(x, o)
=

Pz(Tx < To)

hmx,o(x)
and

Go(b, x)

deg(x)a(x, o)
=

Pb(Tx < To)

hmx,o(x)
,

for each b ∈ Λa(M). Thus (26) is equivalent to

GBM (z, x)

deg(x)a(x, o)
=

Pz(Tx < To)

hmx,o(x)

− Pz(TM < To)
∑

b∈∂Λa(M)

Pz(XTM = b | TM < To)
Pb(Tx < To)

hmo,x(x)
.

(27)

Hence, by (25) and using (24) twice with w = z and w = b respectively in (27) we get

1

2
− 2

5
≤

Go,∂M (z, x)

deg(x)a(x, o)
≤ 2,

which is the desired result.

Proof of Proposition 2.28. Just as in the proof of Proposition 2.25, we use the last-exit

decomposition to see

νM (x, b)

a(x, o)
=

∑
z∈∂Λa(k)

Go,∂M (x, z)

a(x, o) deg(z)
deg(z)Pz(XTM = b;TM < T+

k ).

This implies that
νM (x, b)

a(x, o)
≤ 20

νM (y, b)

a(y, o)
.

We are left to define Ψ(R) = M and C = 20 (which thus does not depend on the graph)

to obtain the desired result.

Finishing the proof of Theorem 2.27 is now straightforward. Indeed, fix C > 1 as in

Proposition 2.28. Given a (rooted) graph G satisfying the standing assumptions 2.22,

take Ψ also as in Proposition 2.28. Let R ≥ 1 and h : Λa(Ψ(R))→ R+ harmonic outside

o; with h(o) = 0. Fix x, y ∈ Λa(R). By optional stopping, which holds as Λa(Ψ(R)) is

finite,

h(x) =

∫
∂Λa(Ψ(R))

h(b)νΨ(R)(x, b)

≤ Ca(x, o)

a(y, o)

∫
∂Λa(Ψ(R))

h(b)νΨ(R)(y, b) = C
a(x, o)

a(y, o)
h(y).

This shows the desired result when x, y ∈ ∂Λa(R).
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2.6.4 (c) implies (a)

Let (VR)R be any sequence of connected subsets of v(G) satisfying o ∈ VR ⊂ VR+1,

|VR| <∞ for all R and ∪R≥1VR = v(G).

Proposition 2.31. Suppose that the (rooted) graph (G, o) satisfies the anchored Harnack

inequality with respect to the sequence (VR)R≥1 and some (non-random) constant C: for

all h : v(G)→ R+ harmonic outside possibly o and such that h(o) = 0,

max
x∈∂VR

h(x) ≤ C min
x∈∂VR

h(x).

In this case, the potential kernel a(x, o) is well defined.

We take some inspiration from [153], although the strategy goes back in fact to a

paper of Ancona [11]. Pick some sequence e = (eR)R≥1 on v(G) satisfying eR ∈ ∂VR.

Lemma 2.32. Suppose G satisfies the anchored Harnack inequality. Let R ≥ 1 and

suppose that h, g are two positive, harmonic functions on Λa(Ψ(R)) \ {o} vanishing at

o. We have

max
x∈VR\{o}

h(x)

g(x)
≤ C2h(eR)

g(eR)
.

Proof. Fix R ≥ 1 and let h, g be as above. Write TR = T∂VR . By optional stopping,

h(o) = 0 and the Harnack inequality, we get

h(x) = Px(TR < To)Ex[h(XTR) | TR < To] ≤ Ch(eR)Px(TR < To)

for all x ∈ VR \ {o}. Similarly, we obtain

g(x) ≥ 1

C
g(eR)Px(TR < To)

for x ∈ VR \ {o}. Combining this, we find

1

C

h(x)

h(eR)
≤ Px(TR < To) ≤ C

g(x)

g(eR)
,

showing the final result.

Proof of Proposition 2.31. We follow closely Section 3.2 in [153]. We will show that

whenever h1, h2 : v(G) → [0,∞) are harmonic functions on v(G) \ {o}, vanishing at o,

such that h1(e1) = h2(e1), we have h1 = h2. The result then follows as we can pick h1(·)
and h2(·) to be two subsequential limits of aAn(·, o) (for possibly different sequences

(An) going to infinity), and rescaling so that they are equal at e1.

Consider h1, h2 : v(G) → [0,∞) harmonic functions on v(G) \ {o}, vanishing at o.

Assume without loss of generality that h1(e1) = h2(e1) = 1. By Lemma 2.32 we get

that there is some appropriate (large) M which does not depend on h1, h2, for which

1

M

h1(x)

h1(eR)
≤ h2(x)

h2(eR)
≤M h1(x)

h1(eR)
, (28)
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for all x ∈ VR and R ≥ 1. It follows that (setting x = e1)

1

M
h1(eR) ≤ h2(eR) ≤Mh1(eR).

Using this in (28) and letting R→∞, we obtain

1

M2
≤ h2(x)

h1(x)
≤M2, (29)

for all x ∈ v(G) \ {o}. Define recursively, for i ≥ 3,

hi(x) = hi−1(x) +
1

M2 − 1
(hi−1(x)− h1(x)). (30)

It is straightforward to check that hi is non-negative (as follows from an iterated version

of (29)) and harmonic outside o. Since M did not depend on h1, h2, and because

hi(e1) = 1 also, we obtain that

1

M2
≤ hi(x)

h1(x)
≤M2. (31)

On the other hand, it is straightforward to check that the recursion (30) can be solved

explicitly to get:

hi(x) =

(
M2

M2 − 1

)i−2

(h2(x)− h1(x)) + h1(x).

Unless h1(x) = h2(x), this grows exponentially, which is incompatible with (31). There-

fore h1(x) = h2(x).

Remark 2.9. The proof above makes it clear that if the potential kernel is uniquely

defined (i.e. if (a) holds), then any function h : v(G)→ R+ satisfying ∆h(x) = 0 for all

x ∈ v(G) \ {o} and for which h(o) = 0, is of the form αa(x, o) for some α ≥ 0.

Remark 2.10. If G is reversible, and satisfies the anchored Harnack inequality, then it

satisfies (a) as a consequence of the above. It therefore satisfies the standing assump-

tions: in particular, by Theorem 2.24 holds so it also satisfies the Elliptic Harnack

Inequality (EHI). We have therefore proved that anchored Harnack inequality (AHI)

=⇒ (EHI) at least for reversible random graphs, which is not a priori obvious.

2.7. Random Walk conditioned to not hit the root

Let (G, o) be a rooted graph. We will assume throughout this section that it satisfies

the standing assumptions of Definition 2.22, i.e., it is recurrent, the potential kernel is

well defined and the potential kernel tends to infinity. In this section, we will define

what we call the conditioned random walk (CRW), which is the simple random walk on
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G, conditioned to never hit the root o (or any other vertex). Of course, a priori this

does not make sense as the event that the simple random walk X will never hit o has

probability zero. However, we can take the Doob a(·, o)-transform and use this to define

the CRW. We make this precise below.

We apply some of the results derived earlier to answer some basic questions about

CRW. For example: is there a connection between the harmonic measure from infinity

and the hitting probability of points (and sets)? What is the probability that the CRW

will ever hit a given vertex? Do the traces of two independent random walks intersection

infinitely often? Does the random walk satisfy a Harnack inequality? Does it satisfy

the Liouville property? The answers will turn out to be yes for all of the above, and the

majority of this section is devoted to proving such statements. These properties play a

crucial role in our proof of one-endedness in the next section.

In a series of papers studying the conditioned random walk ([47, 75, 149], see also

the lecture notes by Popov [148]), the following remarkable observation about the CRW

(X̂t, t ≥ 0) on Z2 was made. Let

q̂(y) = P(X̂t = y for some t ≥ 0) = P(T̂y <∞),

then limy→∞ q̂(y) = 1/2, even though asymptotically the conditioned walk X̂ looks very

similar to the unconditioned walk.

One may wonder if such a fact holds in the generality of stationary random graphs

for which the potential kernel is well defined. This question was in fact an inspiration

for the rest of the paper. Unfortunately, we are not able to answer this question in

generality, but believe it should not be true in general. In fact, on random planar maps

in the universality class of Liouville quantum gravity with parameter γ ∈ (0, 2) (which

includes the CRT-mated maps discussed below), we expect

0 < lim inf
y→∞

q̂(y) < 1/2 < lim sup
y→∞

q̂(y) < 1, (32)

with every possible value in the interval between lim infy→∞ q̂(y) and lim supy→∞ q̂(y) a

possible subsequential limit. See also Conjecture 2.50. We will prove the upper-bound

of (32) and a form of the lower bound on CRT-mated maps in Theorem 2.49. The

fact that every possibly value between lim infy→∞ q̂(y) and lim supy→∞ q̂(y) will have a

subsequential limit converging to it, holds in general and will be proved in Proposition

2.38.

2.7.1 Definition and first estimates

Instead of the graph distance or effective resistance distance, we will work with the

quasi distance a(x, y). Recall the definition Λa(y,R) := {x ∈ v(G) : a(x, y) ≤ R} and

Λa(R) = Λa(o,R). We will fix y = o, but we note that in the random setting, it is of no
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importance that we perform our actions on the root (in that setting, everything here is

conditional on some realization (G, o)).

We can thus define the conditioned random walk (CRW), denoted by X̂, as the

so called Doob h-transform of the simple random walk, with h(x) = a(x, o). To avoid

unnecessarily loaded notations, we will in fact denote a(x) = a(x, o) in the rest of this

section.

To be precise, let p(x, y) denote the transition kernel of the simple random walk on

G. Then the transition kernel of the CRW is defined as

p̂(x, y) =


a(y)
a(x)p(x, y), x 6= 0

0, else
.

It is a standard exercise to show that p̂ indeed defines a transition kernel. To include

the root o as a possible starting point for the CRW, we will let X̂1 have the law Po(X̂1 =

x) = a(x), and then take the law of the CRW afterwards. In this case, we can think of

the CRW as the walk conditioned to never return to o.

We now collect some preliminary results, starting with transience, and showing that

the walk conditioned to hit a far away region before returning to the origin converges

to the conditioned walk, as expected.

We will write T̂A for the first hitting time of a set A ⊂ v(G) by the conditioned

random walk, and T̂x when A = {x}. We will also denote T̂R = T̂v(G)\Λa(R). We recall

that a(·, ·) satisfies a triangle inequality (see Proposition 2.9) and hence we have the

growth condition

a(x) ≤ a(y) + 1 (33)

for two neighboring sites x, y since a(x, y) ≤ 1 in this case.

Proposition 2.33. Let x ∈ v(G) \ {o} and X̂ the CRW starting from x. Then

(i) The walk X̂ is transient.

(ii) The process n 7→ 1/a(X̂
n∧T̂N ) is a martingale, where N = {y : y ∼ o}

Proof. The proof of (ii) is straightforward since 1/a(X̂
n∧T̂N ) is the Radon–Nikdoym

derivative of the usual simple random walk with respect to the conditioned walk. (i)

then follows from the fact that a(y)→∞ along at least a sequence of vertices. Indeed,

fix 2 < r < R large and y ∈ v(G) \ Λa(r + 1). By optional stopping (since 1/a(y) is

bounded)

1

a(y)
= Ey

[
1

a(X̂
T̂R∧T̂r)

]
≥ 1

r + 1
Py(T̂r < T̂R) +

1

R+ 1
Py(T̂R ≤ T̂r).
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Rearranging gives

Py(T̂r < T̂R) ≤
1

a(y) −
1

R+1

1
r+1 −

1
R+1

. (34)

Taking R → ∞, we see that Py(T̂r < ∞) ≤ (r + 1)/(a(y)) < 1, showing that the chain

is transient.

We now check (as claimed earlier) that the conditioned walk X̂ can be viewed as

a limit of simple random walk conditioned on an appropriate event of positive (but

vanishingly small) probability.

Lemma 2.34. Uniformly over all choices of m ≥ 1 and paths ϕ = (ϕ0, . . . , ϕm) ⊂
Λa(R), as R→∞,

Px((X0, . . . , Xm) = (ϕ0, . . . , ϕm) | TR < T+
o )

= Px((X̂0, . . . , X̂m) = (ϕ0, . . . , ϕm))(1 + o(1)).

Proof. The proof is similar to [148, Lemma 4.4]. Assume here that x 6= o for simplicity.

The proof for x = o follows after splitting into first taking one step and, comparing

this, and then do the remainder. Let us first assume that the end point ϕm of ϕ lies in

∂Λa(R). Then

Px((X̂0, . . . , X̂m) = ϕ) =
a(ϕm)

a(ϕ0)
Px((X0, . . . , Xm) = ϕ).

Since ϕm ∈ ∂Λa(R), we know that a(ϕm) ∈ (R,R+1] due to (33). By optional stopping,

we see

a(x) = Px(TR < To)Ex[a(XTR) | TR < To],

and also a(XTR) ∈ (R,R+ 1]. We thus find that

Px(TR < To) =
a(x)

R
(1 + oR(1)). (35)

Combining this, we get

Px((X0, . . . , Xm) = ϕ | TR < To) =
Px((X0, . . . , Xm) = ϕ)

a(x)
R(1 + o(1)).

Now let ϕ be an arbitrary path in Λa(R) starting from x, then by the Markov property,

Px((X0, . . . , Xm) = ϕ | TR < To) = Px((X0, . . . , Xm) = ϕ)Pϕm(TR < To)/Px(TR < To)

= Px((X0, . . . , Xm) = ϕ)a(ϕm)/a(x)(1 + o(1))

= Px((X̂0, . . . , X̂m) = ϕ)(1 + o(1)),

as desired.
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The Green Function

We can find an explicit expression for the Green function associated to X̂. To that end,

we define for x, y ∈ v(G) \ {o}

Ĝ(x, y) = Ex

[ ∞∑
n=0

1
X̂n=y

]
,

which is well defined as X̂ is transient (also, the well-definition would follow from the

proof below, which provides yet another way to see that the CRW is transient).

Proposition 2.35. Let x, y ∈ v(G) \ {o}. Then

Ĝ(x, y)

deg(y)
=
a(y, o)

a(x, o)

Go(x, y)

deg(y)
=
a(y, o)

a(x, o)

(
a(x, o)− a(x, y) + a(o, y)

)
.

Proof. Fix x, y ∈ v(G) \ {o}. For definiteness we take the exhaustion Λa(R) of G here,

but we need not to, any exhaustion would work. Define for R ≥ 1 the truncated Green

function:

ĜR(x, y) := Ex

T̂R−1∑
n=0

1
X̂n=y

 .
We denote AR = (Λa(R))c ∪ {o} and will show that

ĜR(x, y) =
a(y)

a(x)
GAR(x, y), (36)

from which the result follows when R goes to infinity. Fix R ≥ 1 and notice the following

standard equality, which follows from the Markov property of the CRW:

ĜR(x, y) =
Px(T̂y < T̂R)

Py(T̂+
y < T̂R)

We first deal with the numerator. From the definition of the CRW we get

Px(T̂y < T̂R) =
a(y)

a(x)
Px(Ty < TR ∧ To). (37)

Indeed, just sum over all paths ϕ taking x to y, and which stay inside Λa(R)\{o}. Then

each path has as endpoint y, and the probability that the simple random walk will take

any of these paths is nothing but Px(Ty < TR ∧ To).
We can deal with the denominator in a similar fashion, only this time we note that

the beginning and end point are the same. Hence, the a(y)-terms cancel and we get

ĜR(x, y) =
a(y)

a(x)

Px(Ty < To ∧ TR)

Py(T+
y < To ∧ TR)

=
a(y)

a(x)
GAR(x, y).

This shows the first equality appearing in Proposition 2.35 upon taking R → ∞. The

second statement follows from Proposition 2.9.
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2.7.2 Hitting probabilities for conditioned walk

Suppose X̂ and Ŷ are two independent CRW’s. We will begin by describing hitting

probabilities of points and sets and use this to prove that the traces of X̂ and Ŷ intersect

infinitely often a.s.

We begin giving a description of the hitting probability of a vertex y by the CRW

started from x. Although it is a rather straightforward consequence of the expression

for the Green function of the CRW, it is still remarkably clean.

Lemma 2.36. Let x, y ∈ v(G) \ {o}, then

Px(T̂y <∞) =
hmy,o(y)Py(Tx < To)

hmx,o(x)
.

Proof. Note that for x 6= y we have

Ĝ(x, y) = Px(T̂y <∞)Ĝ(y, y),

so that by Proposition 2.35 and Corollary 2.7 we find

Px(T̂y <∞) =
Ĝ(x, y)

Ĝ(y, y)
=
a(y, o)

a(x, o)

Go(x,y)
deg(y)

a(y, o) + a(o, y)

=
hmy,o(y)Reff(o↔ y)Go(x,y)

deg(y)

hmx,o(x)Reff(o↔ x)Reff(o↔ y)

=
hmy,o(y)Py(Tx < To)

hmx,o(x)
,

as desired.

Since the potential kernel is assumed to be well defined, we also have that Py(Tx <
To) → hmo,x(x) as y → ∞ due to Corollary 2.7, and hence we deduce immediately the

next result.

Corollary 2.37. Write q̂(y) = Po(T̂y <∞). We have that

lim inf
y→∞

q̂(y) = lim inf
y→∞

hmo,y(y)

and the same with ‘limsup’ instead of ‘liminf’.

In particular, it is true that on transitive graphs that are recurrent and for which

the potential kernel is well defined, by symmetry one always has q̂(y) → 1
2 . This gives

another proof to a result of [148] on the square lattice once it has been established that

the potential kernel is uniquely defined. There are multiple ways to show the latter, in-

cluding using the tools from this paper, e.g., by proving an anchored Harnack inequality
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as in Corollary 2.2, or by showing that sublinear harmonic functions are constant, and

showing that the effective resistance grows sublinearly (in fact logarithmically).

We can now prove that the subsequential limits of the hitting probabilities q̂(y)

define an interval, as promised before. Note that this proposition is fairly general: it

does not require the underlying graphs to be unimodular, only for the graph to satisfy

the standing assumption (Definition 2.22, i.e. recurrence, existence of potential kernel

and convergence to infinity of the potential kernel).

Proposition 2.38. Let o ∈ V be fixed and q̂(y) = Po(T̂y <∞).

For each q ∈ [lim infy→∞ q̂(y), lim supy→∞ q̂(y)], there exists a sequence of vertices

(yn)n≥1 going to infinity such that

lim
n→∞

q̂(yn) = q.

Proof. Assume that there exist q1 < q2 such that there are sequences (y1
n)n≥1 and

(y2
n)n≥1 going to infinity for which limn→∞ q̂(y

i
n) = qi, but there does not exists a

sequence yn going to infinity for which q1 < limn→∞ q̂(yn) < q2. We will derive a

contradiction. We do so via the following claim.

Claim. For each ε > 0, there exists an N = N(G, o, ε) such that for each neighboring

vertices x, y /∈ B(o,N), we have

|q̂(x)− q̂(y)| < ε.

To see this claim is true, we use Lemma 2.36 and Corollary 2.11 to get the existence

of N1 such that

|q̂(z)− hmo,z(z)| <
ε

4
(38)

for all z /∈ B(o,N1). Next, pick N2 such that all z /∈ B(o,N2) have Reff(o ↔ z) > 4
ε .

Let x, y /∈ B(o,N1 ∨N2) be neighbors. Due to (33) we have a(x)− a(y) ≤ 1 and by the

triangle inequality for effective resistance also Reff(o ↔ y) ≤ Reff(o ↔ x) + 1. Hence,

using the expression a(x) = hmx,o(x)Reff(o↔ x) of Corollary 2.7, we deduce that

hmx,o(x)
Reff(o↔ y)− 1

Reff(o↔ y)
− hmy,o(y) ≤ a(x)− a(y)

Reff(y ↔ o)
≤ 1

Reff(o↔ y)
,

which implies by choice of N2 that in fact

hmx,o(x)− hmo,y(y) <
ε

2
. (39)

Thus, taking together equations (38) and (39) we obtain

q̂(x)− q̂(y) ≤ ε.

Since x, y are arbitrary neighbors, this implies the claim when taking N = N1 ∨N2.
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By Corollary 2.14, we know that the graph G is one-ended as the potential kernel is

assumed to be well defined. Take ε > 0 so small that q2 > q1 + 3ε. By assumption on

q1, q2, we thus have that for each n large enough, there exist two neighboring vertices

x, y /∈ B(o, n) satisfying

q̂(y) > q2 − ε > q1 + 2ε > q̂(x) + ε,

so that q̂(y) > q̂(x) + ε, a contradiction.

2.7.3 Harnack inequality for conditioned walk

Notice that the conditioned random walk viewed as a Doob h-transform may be viewed

as a random walk on the original graph G but with new conductances by

ĉ(x, y) = a(x)a(y)

for each edge {x, y} ∈ e(G). Indeed the symmetry of this function is obvious, as is

non-negativity, and since a is harmonic for the original graph Laplacian ∆,

π(x) :=
∑
y∼x

ĉ(x, y) =
∑
y∼x

a(y)a(x) = deg(x)a(x)2,

we get that the random walk associated with these conductances coincides indeed with

our Doob h-transform description of the conditioned walk.

We can thus consider the network (G, ĉ ), which is transient by Proposition 2.33. It

will be useful to consider the graph Laplacian ∆̂, associated with these conductances,

defined by setting

(∆̂h)(x) =
∑
y∼x

ĉ(x, y)(h(y)− h(x)).

for a function h defined on the vertices of G, although h does not need to be defined

at o. We will say that a function h : v(G) \ {o} → R is harmonic (w.r.t. the network

(G, ĉ )) whenever ∆̂h ≡ 0. This is of course equivalent to

h(x) = Ex[h(X̂1)]

for each x ∈ v(G) \ {o}.
It might be of little surprise that the anchored Harnack inequality (Theorem 2.27)

implies (in fact, it is equivalent but this will not be needed) to an elliptic Harnack

inequality on the graph G with conductance function ĉ, at least when viewed from the

root (i.e., for exhaustion sequences centered on the root o).

Proposition 2.39. There exists a C > 1 such that the following holds. Suppose the

graph G satisfies the standing assumptions. Let ĥ : v(G) \ {o} → R+ be harmonic with

respect to (G, ĉ ). Then for each R ≥ 1,

max
x∈∂Λa(R)

ĥ(x) ≤ C min
x∈∂Λa(R)

ĥ(x).
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Alternatively, the max and the min could be taken over Λa(R) instead of ∂Λa(R).

Proof. Since the graph follows the standing assumptions it satisfies the anchored Har-

nack inequality of Theorem 2.27. Furthermore, ĥ(x) is ∆̂-harmonic if and only if

h(x) =

a(x)ĥ(x) if x 6= o

0 if x = o

is harmonic for ∆ away from o. Thus we can apply Theorem 2.27 to it at z = o.

Since also |a(x)−R| ≤ 1 for x ∈ ∂Λa(R), this anchored Harnack inequality implies the

anchored Harnack inequality for ĥ immediately. To obtain the corresponding inequality

where the extrema are taken on Λa(R), we use the maximum principle (see Section 2.1 in

[131]) with respect to the ĉ conductances; note that these extrema may not be attained

at o.

As a corollary we obtain the Liouville property for X̂: (G, ĉ) does not carry any non-

constant, bounded harmonic functions. This implies in turn that the invariant σ-algebra

I of the CRW is trivial.

Corollary 2.40. The network (G, ĉ ) satisfies the Liouville property, that is: any func-

tion h : v(G) \ {o} → R that is harmonic and bounded must be constant.

Proof. Let h be a bounded, harmonic function with respect to (G, ĉ). Define the function

ĥ = h− inf
x∈v(G)

h(x),

which is non-negative and harmonic. Moreover, for each ε > 0, there exists an xε

such that ĥ(xε) ≤ ε. Take Rε so large that xε ∈ Λa(Rε). By the Harnack inequality

(Proposition 2.39) we deduce that for all x ∈ Λa(Rε),

0 ≤ ĥ(x) ≤ Cĥ(xε) ≤ Cε.

Since ε is arbitrary, and C does not depend on Rε nor ε, this shows the desired result.

2.7.4 Recurrence of sets

We will say that a set A ⊂ v(G) is recurrent for the chain X̂ whenever there exist

x ∈ v(G) such that

Px(X̂n ∈ A i.o.) = 1,

where i.o. is short-hand for ‘infinitely often’. Since (G, ĉ) satisfies the Liouville property,

such probabilities are 0 or 1, hence the definition of A being recurrent is independent of

the choice of x. If a set is not recurrent, it is called transient. Since X̂ is transient, any
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finite set A is transient too. Notice, by the way, that the definition above is equivalent

to saying that A is recurrent whenever Px(T̂A <∞) = 1 for all x ∈ v(G).

We capture next some results, relating recurrence and transience of sets to the har-

monic measure from infinity. Recall Definition 2.18 of δ-good points: x is δ-good when-

ever hmx,o(x) ≥ δ.

Lemma 2.41. If A has infinitely many δ-good points for some δ > 0, then A is recurrent

for X̂.

Proof. This follows from a Borel-Cantelli argument. Indeed, fix x ∈ v(G). Let δ be as

in the assumption. Take (gi)
∞
i=1 a sequence of δ-good points in A, with a(gi) > i (which

we can clearly find as Λa(i) is finite whereas A has infinitely many good points).

We will define two sequences (Ri)i≥1 and (Mi)i≥1. Set M0 = 0 and R0 = 0. Suppose

we have defined Ri,Mi−1 already. Set ai = a(gRi) and Λi = Λa(ai), and note that by

definition gRi ∈ Λi. Take Mi so large (and greater than Ri) that

Pz(X̂ ever hits Λi) ≤
δ

4
, uniformly over z ∈ Λa(Mi)

c (40)

This is possible since Λi is finite and X̂ is transient by Proposition 2.33 and more

precisely the hitting probabilities of a finite set converge to zero (see (34)). Next, let

Ri+1 be so large (and greater than Mi) that

Py(Tx < To)

hmo,x(x)
≥ 1/2, (41)

for y = gRi+1 and all x ∈ Λa(Mi). This is possible because Λa(Mi) is finite and hitting

probabilities converge to harmonic measure from infinity, by Corollary 2.7. We can also

require without loss of generality that gRi+1 ∈ Λa(Mi)
c.

Suppose that x ∈ Λa(Mi−1) is arbitrary. We first claim that from x it is reasonably

likely that the conditioned walk X̂ will hit y = gRi . Indeed, note that by Lemma 2.36,

and since y is δ-good and (41) holds,

Px(T̂y <∞) = hmy,o(y)
Py(Tx < To)

hmx,o(x)
≥ δ/2

On the other hand, conditionally on hitting y = gRi , the conditioned walk X̂ is very

likely to do so before exiting Λa(Mi) (let us call τi this time). Indeed, by the strong

Markov property at τi and (40),

Px(T̂y > τi, T̂y <∞) ≤ sup
z∈Λa(Mi)c

Pz(X̂ ever hits Λi) ≤ δ/4.

Therefore,

Px(T̂y < τi) ≥
δ

2
− δ

4
=
δ

4
.
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Let Ei be the above event, i.e., Ei = {T̂gRi < τi}. Since x ∈ Λa(Mi−1) in the above

lower bound is arbitrary, it follows from the strong Markov property at time τi−1 that

P(Ei|Fτi−1) ≥ δ/4, where (Fn)n≥0 is the filtration of the conditional walk. By Borel–

Cantelli we conclude immediately that Ei occurs infinitely often a.s. (for the conditioned

walk), which concludes the proof.

2.7.5 Infinite intersection of two conditioned walks

We finish this section by showing that two independent conditioned random walks have

traces that intersect infinitely often (for simplicity here the CRW’s are conditioned to

not hit the same root o). We manage to prove this under two (different) additional

assumptions. We start by adding the assumption that (G, o) is random and reversible.

Proposition 2.42. Suppose that (G, o) is a reversible random graph, such that a.s. it

is recurrent and a.s. the potential kernel is well defined. Let X̂, Ŷ be two independent

CRW’s started from x, y ∈ v(G) respectively, avoiding o. Then a.s.

P(|{X̂n : n ∈ N} ∩ {Ŷn : n ∈ N}| =∞) = 1.

Proof. Suppose that (G, o) has infinitely many 1
3 -good vertices, and call the set of such

vertices A := A(G, o). Since there are various sources of randomness here, it is useful to

recall that P the underlying probability measure P is always conditional on the rooted

graph (G, o). Then by Lemma 2.41, we know that

P(|{X̂n : n ∈ N} ∩A| =∞) = 1.

Now, consider the set B = {X̂n : n ∈ N} ∩A. By definition, every point in B is 1
3 -good.

Since Ŷ is independent of X̂ (when conditioned on (G, o)), we can use Lemma 2.41 again

to see that on an event of P-probability 1,

P(|{Ŷn : n ∈ N} ∩B| =∞ | X̂) = 1

Taking expectation w.r.t. X̂ we deduce that the traces of X̂ and Ŷ intersect infinitely

often P-almost surely, conditioned on (G, o) having infinitely many 1
3 -good vertices.

However, Lemma 2.20 implies that, under our assumptions on (G, o), this happens with

P-probability one, showing the desired result.

A consequence of the infinite intersection property is that the (random) network

(G, ĉ ) is a.s. Liouville. Therefore we get a new proof of the already obtained (in

Corollary 2.40) Liouville property for the conditioned walk, but this time without using

the Harnack inequality. On the other hand, [29] proved that for planar graphs, the

Liouville property is in fact equivalent to the infinite intersection property and this

results extends without any additional arguments to the case of planar networks.
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By Proposition 2.39 and Corollary 2.40 we thus also obtain as a corollary of [29] the

infinite intersection property for planar networks such that the potential kernel tends to

infinity.

Proposition 2.43. Suppose G is a (not necessarily random reversible) planar graph

satisfying the standing assumptions. Let X̂ and Ŷ be two independent CRW’s avoiding

o, started from x, y ∈ v(G) respectively. Then

P(|{X̂n : n ∈ N} ∩ {Ŷn : n ∈ N}| =∞) = 1.

Remark 2.11. It will be useful for us to recall that the infinite intersection property

implies that one walk intersects the loop-erasure of the other:

P(|{LE(X̂)n : n ∈ N} ∩ {Ŷn : n ∈ N}| =∞) = 1,

where LE(X̂) is the Loop Erasure of X̂ and X̂, Ŷ are two independent CRW’s that don’t

hit the root o, started from x, y respectively. See [132] for this result.

2.8. (a) implies (d): One-endedness of the uniform spanning tree

In this section we show that the uniform spanning tree is one ended, provided that the

underlying graph is unimodular. In particular, we prove that (a) implies (d) in Theorem

2.1.

Theorem 2.44. Suppose that (G, o) is a reversible, recurrent graph for which the po-

tential kernel is a.s. well defined and such that a(x) → ∞ along any sequence x → ∞.

Then the uniform spanning tree is one-ended almost surely.

Before proving this theorem, we start with a few preparatory lemmas. We will

write T to denote the uniform spanning tree and begin by recalling the following “path

reversal” for the simple random walk, a standard result. In what follows, fix the vertex

o ∈ v(G), but it plays no particular role other than to simplify the notation.

Lemma 2.45 (Path reversal). Let o, u ∈ v(G). For any subset of paths P

Pu((Xn : n ≤ To) ∈ P | To < T+
u ) = Po((Xn : n ≤ Tu) ∈ P ′ | Tu < T+

o ),

where a path ϕ ∈ P ′ if and only if the reversal of the path is in P.

See Exercise (2.1d) in [131]. The next result says that the random walk started from

o and stopped when hitting u, conditioned to hit u before returning to o looks locally

like a conditioned random walk when u is far away. This is an extension of Lemma 2.34

and its proof is similar.
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Lemma 2.46. For each M ∈ N and ε > 0, there exists an L such that for all u /∈ Λa(L)

and uniformly over all paths ϕ going from o to ∂Λa(M),

Po((X0, . . . , XTM ) = ϕ | Tu < T+
o ) = Po((X̂0, . . . , X̂TM ) = ϕ)± ε.

Proof. Fix M ∈ N and ε > 0. Let ϕ be some path o to Λa(M) not returning to o.

Denote by ϕend ∈ ∂Λa(M) the endpoint of such a path. By the Markov property for

the simple walk

Po((Xo, . . . , XTM ) = ϕ, Tu < T+
o ) = Po((Xo, . . . , XTM ) = ϕ)Pϕend(Tu < To).

Now, take L so large that uniformly over x ∈ Λa(M) with x 6= o,

Px(Tu < To)

deg(o)Po(Tu < T+
o )

= a(x)± ε

By definition, we have that

Po(X1 = ϕ1) =
1

deg(o)
,

yet Po(X̂1 = ϕ1) = a(ϕ1). Therefore, and by definition of the h-transform,

Po((Xo, . . . , XTM ) = ϕ, Tu < T+
o ) = Po((X̂o, . . . , X̂TM ))

1

deg(o)a(ϕend)
Pϕend(Tu < To),

so that after dividing both sides through Po(Tu < T+
o ), we have

Po((Xo, . . . , XTM ) = ϕ | Tu < T+
o ) = Po((X̂o, . . . , X̂TM ) = ϕ)± ε

as desired.

We will say that the graph satisfies an infinite intersection property for the CRW

whenever

P(|{X̂n : n ∈ N} ∩ {LE(Ŷ )n : n ∈ N}| =∞) = 1 (cIP)

where X̂ and Ŷ are independent.

Next, under the assumption (cIP) it holds that as u → ∞, a simple random walk

started at u is very unlikely to hit LE(Ŷ ) in o. This is the key property which gives

one-endedness of the UST.

Lemma 2.47. Suppose (cIP) holds, then

lim sup
M→∞

sup
u/∈Λa(M)

Pu(XT
LE(Ŷ )

= o) = 0,

where X is a simple random walk started at u and Ŷ an independent conditioned walk

started at o.
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Proof. Let A be any simple path from o to infinity in G. Then

Pu(XTA = o) ≤ Pu({Xn : n ≤ To} ∩A = {o} | To < T+
u ). (42)

To see this, it is useful to recall that the successive excursions (or loops) from u to u

forms a sequence (Z1, Z2, . . .) of i.i.d. paths (with a.s. finite length). Let N be the index

of the first excursion which touches o. Then the law of ZN , up to its hitting time of o,

is that of Pu(·|To < T+
u ). Furthermore, on the event {XTA = o} it is necessarily the case

that:

• Z1, . . . , ZN−1 avoid A.

• ZN touches A for the first time in o.

When we ignore the first point above, we therefore obtain the upper-bound (42).

By Lemma 2.45, the right hand side is equal to

Po({Xn : n ≤ Tu} ∩A = {o} | Tu < T+
o ).

Therefore, it suffices to show that this converges uniformly to zero over u ∈ Λa(M)c, as

M →∞.

Let X̂ be a CRW, started at o. Fix ε > 0 and let M be some integer to be fixed

later. Take L = L(M, ε) large enough so that

Po({Xn : n ≤ TM} ∩A = {o} | Tu < T+
o ) ≤ Po({X̂n : n ≤ TM} ∩A = {o}) +

ε

2
, (43)

for all u /∈ Λa(L), which is possible by Lemma 2.46 (note that L depends only on ε and

M , in particular does not depend on the choice of A). Next, take M so large that

P({X̂n : n ≤ TM} ∩ {LE(Ŷ )n : n ∈ N} 6= {o}) ≥ 1− ε

2
, (44)

where Ŷ is an independent CRW. This is possible by the intersection property (cIP) as

the expression in (44) is increasing in M . Hence for u /∈ Λa(L), combining (43) and

(44), conditioning on LE(Ŷ ),

Pu(XT
LE(Ŷ )

= o) ≤ ε

As ε was arbitrary, this shows the result.

Wilson’s algorithm rooted at infinity

Recall Wilson’s algorithm for recurrent graphs: let I = (v0, v1, . . .) be any enumeration

of the vertices v(G). Fix E0 = {v0} and define inductively Ei+1 given Ei, to be Ei

together with the loop erasure of an (independent) simple random walk started at vi+1
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and stopped when hitting Ei. Set E = E(I) = ∪i≥0Ei. Then Wilson’s algorithm tells us

that the spanning tree E is in fact a uniform spanning tree (i.e., its law is the weak limit

of uniform spanning trees on exhaustions) and in particular, its law does not depend on

I, see Wilson [171] for finite graphs and e.g. [131] for infinite recurrent graphs.

Since the conditioned random walk is well defined, we can also start differently:

namely take again some enumeration I = (v0, . . .) of v(G). Define F0 = LE(X̂), started

at v0 say and let Fi+1 be Fi together with the loop erasure of a simple random walk

started at vi+1 and stopped when hitting Fi. Define F = F (I) = ∪i≥0Fi. It is not hard

to see that again, F is a spanning tree of G (the idea is that the loops formed by the

walk coming back to the origin are erased anyway, so one might as well consider the

conditioned walk). This is called “Wilson’s algorithm rooted at infinity”. A similar idea

was first introduced for transient graphs in [32] and later defined for Z2.

Lemma 2.48 (Wilson’s algorithm rooted at infinity). The spanning tree F is a uniform

spanning tree.

Proof. Begin with o and let (zn)n≥0 be some sequence of vertices going to infinity in G.

Apply Wilson’s algorithm with the orderings In := (o, zn, v2, . . .) ≡ v(G), then the law

of the first branch E1 equals LE(Xzn→o) by construction, where Xzn→o is (the trace of)

a random walk started at zn and stopped when hitting o. This law converges to LE(X̂)

as i → ∞ due to first the path-reversal (Lemma 2.45) and them Lemma 2.46. Since

Wilson’s algorithm is independent of the ordering of v(G), the result follows.

Orienting the UST. When the UST is one-ended, it is always possible to unambigu-

ously assign a consistent orientation to the edges (from each vertex there is a unique

forward edge) such that the edges are oriented towards the unique end of the tree.

Although we do not of course know a priori that the UST is one-ended, it will be im-

portant for us to show that the tree inherits such a consistent orientation from Wilson’s

algorithm rooted at infinity. Furthermore, we need to show this orientation does not

depend on the ordering used in the algorithm. To see this, consider an exhaustion Gn

of the graph. Perform Wilson’s algorithm (with initial boundary given by the boundary

of Gn) and some given sequence of vertices. When adding the branch containing the

vertex x to the tree by performing a loop-erased walk starting from x, orient these edges

uniquely from x to the boundary.

We point out that it is not entirely clear a priori that this orientation converges,

or that the limit of the orientation does not depend on the exhaustion (indeed on Z
the oriented tree converges but the orientation depends on the exhaustion, though the

UST itself doesn’t), nor is it immediately clear that the law of the oriented tree doesn’t

depend on the sequence of vertices. But this follows readily from the fact that the loops

at x from a random walk starting from x are all erased, so that the branch containing
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x is obtained by loop-erasing a random walk conditioned to hit the boundary before

returning to x, a process which has a limit as n→∞, is transient, and does not depend

on the exhaustion used when we assume that the potential kernel is well defined. Thus

the law of this oriented tree, call it ~Tn, has a limit ~T as n → ∞. Obviously, ~T can

be described directly in the infinite graph by adding to the construction of Lemma

2.48 the orientation we get from Wilson’s algorithm. When seen like this, it might not

be immediately clear that the law of ~T doesn’t depend on the ordering of vertices for

Wilson’s algorithm. To see this, observe that the orientation of ~Tn is identical to the

one where all edges of Tn are oriented towards ∂Gn, and the law of Tn itself does not

depend on the ordering, as discussed before. Hence ~Tn does not depend on the ordering

of vertices, and taking limits, neither does ~T .

Note that if x, y are two vertices on a bi-infinite path of ~T , then it makes sense to

ask if y is in the past of x or vice-versa: exactly one of these alternatives must hold.

We are now ready to start with the proof of Theorem 2.44.

Proof of Theorem 2.44. Notice that if G is a graph satisfying the standing assumptions

(Definition 2.22) and is moreover planar or random and unimodular then (almost surely),

G satisfies the intersection property for CRW (cIP) due to Propositions 2.43 and 2.42

respectively.

Suppose (G, o) is reversible, and satisfies the standing assumptions a.s. For a vertex

x of G, consider the event A2(x) that there are two disjoint and simple paths from x to

infinity in the UST T , in other words there is a bi-infinite path going through x. Note

that it is sufficient to prove

P(A2(x)) = 0

for each x ∈ v(G) a.s., where we remind the reader that here P is conditional given the

graph (i.e., it is an average over the spanning tree T ). Indeed, for the tree T to be more

than one-ended, there must at least be some simple path in T which goes to infinity in

both directions. By biaising and unbiaising by the degree of the root to get a unimodular

graph, it is sufficient to prove that P(A2(o)) = 0 a.s. Therefore it is sufficient to prove

P(A2(o)) = 0, where we remind the reader that P is averaged also over the graph. We

first outline the rough idea before giving the details. Suppose for contradiction that

P(A2(o)) ≥ ε > 0. If this is the case then it is possible for both A2(o) and A2(x) to hold

simultaneously, for many other vertices – including vertices far away from o. However,

T is connected (since G is recurrent) and by Theorem 6.2 and Proposition 7.1 in [9],

T is at most two-ended. Therefore the bi-infinite paths going through x and o must

coincide: essentially, the bi-infinite path containing o must be almost space-filling.

Suppose x is in the past of o (which we can assume without loss of generality by

reversibility). Using Wilson’s algorithm rooted at infinity to sample first the path from
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o and then that from x, the event A2(o) ∩ A2(x) requires a very unlikely behavior:

namely, a random walk starting from x must hit the loop-erasure of the conditioned

walk starting from o exactly at o. This is precisely what Lemma 2.47 shows is unlikely,

because of the infinite intersection properties.

Let us now give the details. Given G, we sample k independent random walks

(X1, . . . , Xk) from o, independently of T , where k = k(ε) will be chosen below. Observe

that by stationarity of (G, o), we have for every n ≥ 0,

P(A2(Xi
n)) = P(A2(o)) ≥ ε.

First we show that we can choose k such that for every n, there is i and j such that

A2(Xi
n) ∩ A2(Xj

n) holds with P- probability at least ε/2. Indeed fix n ≥ 0 arbitrarily

for now, write Ei = A2(Xi
n). Then by the Bonferroni inequalities,

P(

k⋃
i=1

Ei) ≥
k∑
i=1

P(Ei)−
∑

1≤i 6=j≤k
P(Ei ∩ Ej)

so that ∑
1≤i 6=j≤k

P(Ei ∩ Ej) ≥ kε−P(
k⋃
i=1

Ei) ≥ kε− 1.

Choose k = d2/εe, then we deduce that for some 1 ≤ i < j ≤ k,

P(Ei ∩ Ej) ≥
(
k

2

)−1

.

By stationarity (rerooting at the endpoint of the ith walk), and the Markov property of

the walk, this implies

P(A2(o) ∩ A2(X2n)) ≥
(
k

2

)−1

. (45)

When A2(o) ∩ A2(X2n) occurs, both o and X2n are on some bi-infinite path, the two

paths must coincide. By symmetry (i.e., reversibility) and invariance of the oriented

tree ~T with respect to the ordering of vertices,

P(A2(o) ∩ A2(X2n);X2n ∈ Past(o)) ≥ δ := (1/2)

(
k

2

)−1

. (46)

Let Ŷ denote a conditioned walk starting from o and let LE(Ŷ ) denote its loop-erasure,

and let Z be a random walk starting from a different vertex x. Now, pick M large

enough that for any x ∈ Λa(M)c

Px(ZT
LE(Ŷ )

= o) ≤ δ/3, (47)
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which we may by Lemma 2.47. Even though M is random (depending only on the

graph), observe that as n→∞,

P(X2n ∈ Λa(M))→ 1

since G is a.s. null recurrent (as is any recurrent infinite graph). Therefore by dominated

convergence,

P(X2n ∈ Λa(M))→ 1.

It follows using (46) that we may choose n large enough that

P(A2(o) ∩ A2(X2n) ∩ {X2n ∈ Past(o)} ∩ {X2n /∈ Λa(M)}) ≥ 2δ/3. (48)

To conclude, we pick n as above, and use Wilson’s algorithm rooted at infinity (Lemma

2.48) by first sampling the path from o (which is nothing else by LE(Ŷ ) and then

sampling the path in ~T from x = X2n, by loop-erasing a random walk Z from this

point, stopped at the time T where it hits LE(Ŷ ). As mentioned above, When A2(x)

and A2(o) occur and x is in the past of o, since T is at most two-ended (by [9]), it must

be that ZT = o. (If we do not specify that x ∈ Past(o) there might otherwise also be

the possibility that x itself was directly on the loop-erasure of the conditioned walk).

Hence, using (48) and (47),

2δ/3 ≤ P(A2(o) ∩ A2(X2n) ∩ {X2n ∈ Past(o)} ∩ {X2n /∈ Λa(M)})

≤ E(1{ZT=o}1{X2n /∈Λa(M)})

≤ E(PX2n(ZT = o)1X2n /∈Λa(M)) ≤ δ/3,

after conditioning on X2n. This is a contradiction, and concludes the proof of Theorem

2.44 (and hence also that (a) implies (d) in Theorem 2.1).

Furthermore, (d) is already known by [32, Theorem 14.2] to imply (b), which we

have already shown is equivalent to (a). This finishes the proof of Theorem 2.1.

2.9. Harmonic measure from infinity on mated-CRT maps

Let P denote the law of the whole plane mated-CRT map G = G1 with parameter

γ ∈ (0, 2) and with root o. We will not give a precise definition of these maps here and

instead refer the reader for instance to [88] or [35]. Since E[deg(o)] <∞, the potential

kernel is well defined (either because it is planar, or because it is strictly subdiffusive).

We now discuss a more quantitative statement concerning the harmonic measure from

infinity which underlines substantial differences with the usual square lattice.

We will write Beuc(x, n) for the ball of vertices z ∈ v(G) such that the Euclidean

distance between z and x (w.r.t. the natural embedding) is at most n.
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Theorem 2.49. There exists a δ = δ(γ) > 0 such that the following holds. Almost

surely, there exits an N ≥ 1 such that for all x /∈ Beuc(N) we have that

hmo,x(x) ≤ 1− δ.

In particular,

P

(
1

2
≤ lim sup

y→∞
q̂(y) ≤ 1− δ

)
= 1.

In fact, we expect the following stronger result to hold:

Conjecture 2.50. For some (nonrandom) a, b > 0, almost surely

a = lim inf
y→∞

q̂(y) ≤ lim sup
y→∞

q̂(y) = 1− b. (49)

In fact, sharp values for a, b can be conjectured by considering the minimal and max-

imal exponents for the LQG volume of a Euclidean ball of radius ε in a γ-quantum cone,

which all decay polynomially as ε→ 0 (see Lemma A.1 in [35]). We also conjecture that

this holds for other random planar maps in the universality class of Liouville quantum

gravity with parameter γ ∈ (0, 2), such as the UIPT.

Based on this we conjecture that max(a, b) < 1/2. This would show a stark contrast

with the square lattice Z2 where we recall that a = b = 1/2 (see e.g. [148]). The upper

bound in (49) is of course stated in Theorem 2.49 so that the lower bound in (49) is what

we are asking about. While we are not able to prove this, we may use the unimodularity

of the law P is unimodular, to prove a slightly weaker lower bound:

Corollary 2.51. Let δ > 0 as in the previous theorem. Then, almost surely, the asymp-

totic fraction of δ-good points equals one or in other words, a.s.,

lim inf
n→∞

1

|B(n)|
|{x ∈ B(n) : hmo,x(x) < δ}| = 0.

Proof. Let P̃ denote the law P after degree biasing. We write (G̃, õ) for the random

graph with law P̃.

On the one hand, by reversibility of P̃, we know that

P̃(hmõ,Xn(Xn) > 1− δ) = P̃(hmõ,Xn(o) > 1− δ) = P̃(hmõ,Xn(Xn) < δ).

On the other hand, by Theorem 2.49 and the reversed Fatou’s lemma, we have

lim sup
n→∞

P̃(hmõ,Xn(Xn) > 1− δ) = 0,

thus

lim
n→∞

P̃(hmõ,Xn(Xn) < δ) = 0.

The result now follows by contradiction: indeed, suppose that with positive probability,

there is a positive asymptotic fraction of vertices x ∈ B(n) which have hmõ,x(x) < δ,

then the random walk will spend a positive fraction of time in these points, giving a

contradiction.
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2.9.1 Preliminaries and known results.

We collect some known results about mated-CRT maps which are needed for the proof

of Theorem 2.49.

Lemma 2.52. There exist C = C(γ) <∞ and α = α(γ) > 0, such that for all n ∈ N,

P

(
1

C
log(n) ≤ Reff(o↔ ∂Beuc(o, n)) ≤ C log(n)

)
≥ 1− 1

log(n)α
.

Proof. This is Proposition 3.1 in [87].

Lemma 2.53. There exists a C = C(γ) < ∞ and α = α(γ) > 0 such that with P-

probability at least 1− n−α, for all x ∈ Beuc(3n) and all s ∈ [1/3, 1]

max
z∈∂Beuc(x,sn)

h(z) ≤ C min
x∈Beuc(x,sn)

h(z)

whenever h : Beuc(x, 3n) ∪ ∂Beuc(x, 3n) → R+ is harmonic outside of possibly x and

∂Beuc(x, 3n).

Proof. This is the content of Proposition 3.8 [35].

Lemma 2.54. There exist C = C(γ) < ∞ and α = α(γ) such that with P-probability

at least 1− n−α, for all x ∈ Beuc(3n),

Reff(x↔ ∂Beuc(x, n)) ≥ 1

C
log(n).

Proof. This follows from Lemma 4.2 in [35].

Proposition 2.55. Let (G, o) have the law of the mated-CRT map with parameter γ.

There exist constants C = C(γ) and α = α(γ) > 0 such that

P
( 1

C
log(n) ≤ a(x, o) ≤ C log(n) for all x ∈ Beuc(o, 2n) \Beuc(o, n)

)
≥ 1− 1

log(n)α
.

Proof of Proposition 2.55. By Lemma 2.8 we know that for each n ∈ N

Reff(o↔ ∂Beuc(o, 2n)) = Eo[a(XT2n , o)]

(where we recall that Eo is the expectation solely on the random walk). Now, fix n and

let En be the intersection of both events in Lemmas 2.52 and 2.53, which are properties

of the graph only. Note that En holds with high probability over the mated-CRT maps

(possibly by suitably changing the values of the constants).

Then, as x 7→ a(x, o) is harmonic outside o, conditional on E2n, we know that

whenever x ∈ Beuc(o, 2n) \Beuc(o, n) ,

1

C
a(XT2n , o) ≤ a(x, o) ≤ Ca(XT2n , o),
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so that taking (random walk) expectations,

1

C2
log(n) ≤ a(x, o) ≤ C2 log(n).

This is the desired result.

2.9.2 Proof of Theorem 2.49.

Take throughout the proof the constants C,α such that Lemmas 2.54, 2.53 and 2.52 and

Proposition 2.55 hold simultaneously with the same constants.

Proof. The second statement follows immediately from the first statement, from the

identity

lim sup
y→∞

q̂(y) = lim sup
y→∞

hmy,o(y),

in Corollary 2.37, and from the fact that for each ε > 0, there are infinitely many

(1
2 − ε)-good vertices by Lemma 2.20. We are thus left to prove the first statement.

To that end, fix N0 so large that for all n ≥ N0,

n2/α

(n− 1)2/α
≤ 3.

Define next for m ≥ 1 the event

Em the event that a(x, o) ≤ C log(m) for all x ∈ Beuc(m). (50)

By Proposition 2.55, we know that P(Ecm) ≤ log(m)−α and therefore,

∞∑
n=1

P(Ec
en

2/α ) <∞.

By Borel-Cantelli, this implies that there is some (random) N1 = N1(G, o) < ∞ such

that E
en

2/α occurs for all n ≥ N1. Suppose without loss of generality that N1 ≥ N0

almost surely. In this case, it follows that

a(x, o) ≤ C log |x| for all x /∈ Beuc(o,N1). (51)

Next, define the events

Hm the event that for all x ∈ Beuc(3m) \Beuc(m) and for all

h : v(G)→ R+ harmonic outside of x,

max
z∈∂Beuc(x,|x|)

h(z) ≤ C min
z∈∂Beuc(x,|x|)

h(z)

and

Rm the event that for all x ∈ Beuc(3m),Reff(x↔ ∂Beuc(x,m)) ≥ 1

C
log(m).
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By Lemmas 2.53 and 2.54 respectively, it holds that P(Hc
m) ≤ m−α and P(Rm) ≤ m−α.

Therefore, using again a Borel-Cantelli argument, there exists some (random) N2 ≥
N1 ≥ N0 such that almost surely, for all n ≥ N2 the events Hn2/α and Rn2/α occur. In

particular, we know that almost surely,

Reff(x↔ ∂Beuc(x, |x|)) ≥
1

C
log |x| for all x /∈ Beuc(o,N2) (52)

and almost surely

For all x /∈ Beuc(o,N2), for all h : v(G)→ R+ harmonic outside of x

max
z∈∂Beuc(x,|x|)

h(z) ≤ C min
z∈∂Beuc(x,|x|)

h(z).
(53)

Take x /∈ Beuc(o,N2). Assume without loss of generality that hmo,x(x) ≤ 1
2 , as

otherwise we are done. Then

Reff(o↔ x) ≤ 2 hmo,x(x)Reff(o↔ x) = 2a(x, o) ≤ 2C log |x|, (54)

where we used Corollary 2.7 in the equality and (51) in the last inequality.

Furthermore, as z 7→ a(z, x) is harmonic outside of x, applying (53) first and then

(52) gives

a(o, x) ≥ 1

C
Ex[a(XTBeuc(x,|x|) , x)] =

1

C
Reff(x↔ ∂Beuc(x, |x|)) ≥

1

C2
log |x|.

Combining the last equation with (54), we find

hmo,x(o) =
a(o, x)

Reff(o↔ x)
≥ 1

2C3
,

which shows the final result.
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CHAPTER 3

Resolving the conjecture of Aldous and Lyons

3.1. Introduction

The uniform spanning tree of a finite connected graph G is defined by picking uni-

formly at random a connected subgraph of G containing all vertices but no cycles. To

go from finite to infinite graphs, it is possible to exhaust G by finite subgraphs and

take weak limits with appropriate boundary conditions. For two natural such choices

of boundary conditions, known as free and wired boundary conditions, Pemantle [143]

proved that these infinite-volume limits are always well-defined independently of the

choice of exhaustion, and that the choice of boundary conditions also does not affect

the limit obtained when G = Zd. Since connectivity of a subgraph is not a closed con-

dition, these weak limits might be supported on configurations that are forests rather

than trees, and indeed Pemantle proved for Zd that the limit is connected if and only

if d ≤ 4. For a general infinite, connected, locally finite graph the infinite-volume limit

of the UST with free boundary conditions is called the free uniform spanning for-

est (FUSF) and the infinite volume limit with wired boundary conditions is called the

wired uniform spanning forest (WUSF); when the two limits are the same we re-

fer to them simply as the uniform spanning forest (USF). In their highly influential

work [32], Benjamini, Lyons, Peres and Schramm resolved the connectivity question for

the WUSF in large generality: the wired uniform spanning tree is a single tree if and

only if two random walks intersect infinitely often. The connectivity of the FUSF ap-

pears to be a much more subtle question and, outside of the case that the two forests are

the same, is understood only in a few examples [13, 95, 144, 162]. For recurrent graphs,

which are the main topic of this chapter, the infinite-volume limit of the UST is always

defined independently of boundary conditions and a.s. connected [32, Proposition 5.6],

so that we can unambiguously refer to the uniform spanning tree (UST) of an infinite,

connected, locally finite, recurrent graph G.

After connectivity, the next most basic topological property of the USF is the number

of ends its components have. Here, we say that a graph has at least m ends whenever
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there exists some finite set of vertices W such that G\W has at least m infinite connected

components. The graph is said to be m-ended if at has at least m but not m+ 1 ends.

Understanding the number of ends of the USF turns out to be rather more difficult

than connectivity, with a significant literature now devoted to the problem. For Cayley

graphs, it follows from abstract principles [13, Section 3.4] that every component has

1, 2, or infinitely many ends almost surely, and for amenable Cayley graphs such as

Zd (for which the WUSF and FUSF always coincide) is follows by a Burton-Keane [43]

type argument that every component has either one or two ends almost surely; see

[131, Chapter 10] for detailed background. For the wired uniform spanning forest on

transitive graphs, a complete solution to the problem was given by Benjamini, Lyons,

Peres, and Schramm [32] and Lyons, Morris, and Schramm [130], who proved that every

component of the WUSF of an infinite transitive graph is one-ended almost surely unless

the graph in question is rough-isometric to Z. Before going forward, let us emphasize

that the recurrent case of this result [32, Theorem 10.6] is established using a completely

different argument to the transient case, with the tools available for handling the two

cases being largely disjoint.

Beyond the transitive setting, various works have established mild conditions under

which every component of the WUSF is one-ended almost surely, applying in particu-

lar to planar graphs with bounded face degrees [95] and graphs satisfying isoperimetric

conditions only very slightly stronger than transience [92, 130]. These proofs are quan-

titative, and recent works studying critical exponents for the USF of Zd with d ≥ 3

[12, 93, 97] and Galton-Watson trees [99] can be thought of as a direct continuation of

the same line of research.

In parallel to this deterministic theory, Aldous and Lyons [9] observed that the

methods of [32] also apply to prove that the WUSF has one-ended components on any

transient unimodular random rooted graph of bounded degree, and the second author

of the present chapter later gave new proofs of this result with different methods that

removed the bounded degree assumption [91, 93]. It is also proven in [94, 164] that

every component of the free uniform spanning forest of a unimodular random rooted

graph is infinitely ended a.s. whenever the free and wired forests are different. Here,

unimodular random rooted graphs comprise a very large class of random graph models

including Benjamini-Schramm limits of finite graphs [33], Cayley graphs, and (suitable

versions of) Galton-Watson trees, as well as e.g. percolation clusters on such graphs; See

Section 3.3.1 for definitions and e.g. [9, 49] for detailed background.

The aforementioned works [9, 91, 92, 94, 164] completely resolved the problem of the

number of ends of the WUSF and FUSF for transient unimodular random rooted graphs,

but the recurrent case remained open. Besides the fact that the transient methods do

not apply, a further complication of the recurrent case is that it is possible for the UST
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to be either one-ended or two-ended according to the geometry of the graph: indeed,

the UST of Z2 is one-ended while the UST of Z is two-ended.

Aldous and Lyons conjectured [9, p. 1485] that the dependence of the number of ends

of the UST on the geometry of the graph is as simple as possible: The UST of a recurrent

unimodular random rooted graph is one-ended if and only if the graph is. The fact that

two-ended unimodular random rooted graphs have two-ended USTs is trivial; the content

of the conjecture is that one-ended unimodular random rooted graphs have one-ended

USTs. Previously, the conjecture was resolved under the assumption of planarity in

[13], while in [32, 34] it was proved (without using the planarity assumption) that the

UST of a recurrent unimodular random rooted graph is one-ended precisely when the

“harmonic measure from infinity” is uniquely defined. In this chapter we resolve the

conjecture.

Theorem 3.1. Let (G, o) be a recurrent unimodular random rooted graph and let T be

the uniform spanning tree of G. Then T has the same number of ends as G a.s.

To see that the theorem is not true without unimodularity, consider taking the line

graph Z and adding a path of length 2n connecting −n connecting to n for each n,

making the graph one-ended. Kirchoff’s effective resistance formula implies that the

probability that the additional path connecting −n to n is included in the UST is at

most n/(2n+n), and a simple Borel-Cantelli argument implies that the UST is two-ended

almost surely. Similar examples show that Theorem 3.1 does not apply to unimodular

random rooted networks, since we can use edges of very low conductance to make the

network one-ended while having very little effect on the geometry of the UST.

About the proof. We stress again that the tools used in the transient case do not

apply at all to the recurrent case, and we are forced to use completely different methods

that are specific to the recurrent case. We build on [34] which proved that the “harmonic

measures from infinity” are uniquely defined if and only if the uniform spanning tree is

one-ended; A self-contained treatment of (a slight generalization of) the results of [34]

that we will need is given in Appendix A. The set of harmonic measures from infinity

can be thought of as a “boundary at infinity” for the graph, analogously to the way the

Martin boundary is used in transient graphs. It is implicit in [34] that these measures

correspond to the ways in which a random walk “conditioned to never return to the

root” can escape to infinity. We develop these ideas further in Section 3.2, in which

we make this connection precise. We then apply these ideas inside an ergodic-theoretic

framework to prove that if the UST has two ends, then the effective resistance must

grow linearly along the unique bi-infinite path in the tree, which implies in particular

that graph distances must also grow linearly. To conclude, we argue that this can only

happen when the graph has linear volume growth, which is known to be equivalent to

two-endedness for unimodular random rooted graphs [31,40].
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3.2. Boundary theory of recurrent graphs

In this section we develop the theory of harmonic measures from infinity on recurrent

graphs, their associated potential kernels and Doob transforms, and how this relates to

the spanning tree. Much of the theory we develop here is a direct analogue for recurrent

graphs of the theory of Martin boundaries of transient graphs [61,172]. Some results on

recurrent boundary theory can be found in [102]. This theory is interesting in its own

right, and we were surprised to find how little attention has been paid to these notions

outside of some key motivating examples such as Z2 [75, 149].

All of the results in this section will concern deterministic infinite, connected, re-

current, locally finite graphs and can be extended to general locally finite networks;

applications of the theory to unimodular random rooted graphs will be given in Sec-

tion 3.3.

3.2.1 Harmonic measures from infinity

Let G = (V,E) be an infinite, connected, locally finite, recurrent graph. For each v ∈ V
we write Pv for the law of the simple random walk on G started at v, and for each set

A ⊆ V write TA and T+
A for the first visit time of the random walk to A and first positive

visit time of the random walk to A respectively. Given a probability measure µ on V ,

we also write Pµ for the law of the random walk started at a µ-distributed vertex.

A harmonic measure from infinity h = (hB : B ⊂ V finite) on G is a collection

of probability measures on V indexed by the finite subsets B of V with the following

properties:

1. hB is supported on ∂B for each B ⊂ V , where ∂B is the set of elements of B that

are adjacent to an element of V \B.

2. For each pair of finite sets B ⊆ B′, hB and hB′ satisfy the consistency condition

hB(u) =
∑
v∈B′

hB′(v)Pv(XTB = u) (1)

for every u ∈ B.

We denote the space of harmonic measures from infinity by H, which (identifying the

measures hB with their probability mass functions) is a compact convex subset of the

space of functions {finite subsets of V } → RV when equipped with the product topology.

As mentioned above, the space H plays a role for recurrent graphs analogous to that

played by the Martin boundary for transient graphs; the analogy will become clearer

once we introduce potential kernels in the next subsection. We say that the harmonic

measure from infinity is uniquely defined when H is a singleton.
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If µn is a sequence of probability measures on V converging vaguely to the zero

measure in the sense that µn(v) → 0 as n → ∞ for each fixed v ∈ V then any sub-

sequential limit of the collections (Pµn(XTB = ·) : B ⊂ V finite) belongs to H, with

these collections themselves satisfying every property of a harmonic measure from in-

finity other than the condition that hB is supported on ∂B for every finite B. (Indeed,

the consistency condition (1) follows from the strong Markov property of the random

walk.) In fact every harmonic measure from infinity can be written as such a limit.

Lemma 3.2. If h ∈ H is a harmonic measure from infinity then there exists a sequence

of finitely supported probability measures (µn)n≥1 on V such that µn(v) → 0 for every

v ∈ V and

hB(·) = lim
n→∞

Pµn(XTB = · ) for every B ⊂ V finite. (2)

Proof. Fix h ∈ H. Let V1 ⊂ V2 ⊂ V3 · · · be an increasing sequence of finite subsets of

V with
⋃
i Vi = V , and for each n ≥ 1 let µn = hVn . It follows from the consistency

condition (1) that

hB(·) = Pµn(XTB = · ) for every B ⊂ Vn,

and the claim follows since every finite set is eventually contained in Vn.

Since H is a weakly compact subspace of the set of functions from finite subsets of V

to RV , which is a locally convex topological vector space, it is a Choquet-simplex: Every

element can be written as a convex combination of the extremal points. In particular, if

H has more than one point then it must have more than one extremal point. This will be

useful to us because extremal points of H are always limits of harmonic measures from

sequences of single vertices. Indeed, identifying each vertex v ∈ V with the collection

of harmonic measures (Pv(XTB = ·) : B ⊂ V finite) allows us to think of V ∪ H as a

compact Polish space containing V (in which V might not be dense), and we say that a

sequence of vertices (vn)n≥0 converges to a point h ∈ H if hB(·) = limn→∞Pvn(XTB = · )
for every B ⊂ V finite.

Lemma 3.3. If h ∈ H is extremal, there exists a sequence of vertices (vn)n≥0 such that

vn converges to h as n→∞.

Proof. Let I be the set of functions h : {B ⊂ V finite} → RV of the form

hB(·) = Pµ(XTB = ·) for every B ⊂ V finite

for some finitely supported measure µ on V . Lemma 3.2 implies that I = I ∪ H is

a compact convex subset of the space of all functions {B ⊂ V finite} → RV equipped

with the product topology, which is a locally convex topological vector space. By the
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Krein-Milman theorem, a subset W of I ∪H has closure containing the set of extremal

points of I ∪ H if and only if I ∪ H is contained in the closed convex hull of W . Thus,

if we define Iext to be the set of functions h : {B ⊂ V finite} → RV of the form

hB(·) = Pz(XTB = ·) for every B ⊂ V finite

for some z ∈ V then I is clearly contained in the convex hull of Iext, so that I ∪ H is

contained in the closed convex hull of Iext and, by the Krein-Milman theorem, the set

of extremal points of I ∪ H is contained in the closure of Iext.

Now, observe that for any non-trivial convex combination of an element of I and an

element of H, there must exist a finite set of vertices B and a point z in the interior of B

(i.e., in B and not adjacent to any element of V \B) such that hB(z) 6= 0; indeed, if the

element of I corresponds to some finitely supported measure µ, then any B containing

the support of µ in its interior and any z in the support of µ will do. Since no element

of H can have this property, it follows that non-trivial convex combinations of elements

of I and H cannot belong to H and hence that extremal points of H are also extremal

in I ∪ H. It follows that the set of extremal points of H is contained in the closure of

Iext, which is equivalent to the claim.

Remark 3.1. The converse to this lemma is not true: A limit of a sequence of Dirac

measures need not be extremal. For example, if we construct a graph from Z by attaching

a very long path between −n and n for each n ≥ 1 and take zn to be a point in the

middle of this path for each n, the sequence (zn)n≥1 will converge to a non-extremal

element of H that is the convex combination of the limits of (n)n≥1 and (−n)n≥1.

3.2.2 Potential kernels and Doob transforms

The arguments in [34] heavily rely on a correspondence between the harmonic measure

from infinity and its potential kernel. One important feature of the potential kernel

is that, given a vertex o ∈ V and a point h ∈ H, it provides a sensible way to “condition

the random walk to converge to h before returning to o”. We begin by discussing how

conditioning the random walk to hit a particular vertex before returning to o can be

described in terms of Doob transforms before developing the analogous limit theory.

Doob transforms and non-singular conditioning. Suppose that we are given

two distinct vertices o and z in an infinite, connected, locally finite recurrent graph G.

Letting Gz(x, y) be the expected number of times a random walk started at x visits y

before hitting z, we can compute that the function

a(x) =
Gz(o, o)

deg(o)
− Gz(x, o)

deg(o)
=

Px(To > Tz)Gz(o, o)

deg(o)
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is harmonic at every vertex other than o and z, and has

∆a(o) = 0− deg(o)Eo[a(X1)] = −Po(T
+
o > Tz)Gz(o, o) = −1,

where ∆ denotes the graph Laplacian

∆f(x) = deg(x)f(x)−
∑
y∼x

f(y) = deg(x)Ex[f(X0)− f(X1)]

(terms in this sum are counted with appropriate multiplicity if there is more than one

edge between x and y). Moreover, the quantity a(x) is strictly positive at every vertex

x that is neither equal to o nor disconnected from z by o in the sense that every path

from x to z must pass through o. Observe that the trivial identity

Po((X0, . . . , Xn) = (x0, . . . , xn)) =

n∏
i=1

p(xi−1, xi)

=
1

a(xn)
a(x1)p(o, x1)

n∏
i=2

a(xi)

a(xi−1)
p(xi−1, xi) (3)

holds for every sequence of vertices x0, . . . , xn with x0 = o and a(xi) > 0 for every i > 0.

Since a(z) = Gz(o, o) = Po(Tz < T+
o )−1 it follows that

Po((X0, . . . , Xn) = (x0, . . . , xn) | Tz < T+
o ) = a(x1)p(o, x1)

n∏
i=2

a(xi)

a(xi−1)
p(xi−1, xi) (4)

for every sequence of vertices x0, . . . , xn with x0 = o, xn = z, and xi /∈ {o, z} for every

0 < i < n (which implies that a(xi) > 0 for every 1 ≤ i ≤ n). Now, the fact that a

is harmonic off of {o, z} and has ∆a(o) = −1 implies that we can define a stochastic

matrix with state space {x ∈ V : x = o or a(x) > 0} by

p̂a(x, y) =


a(y)
a(x)p(x, y) x /∈ {o, z}

a(y) x = 0

1(y = z) x = z,

and if we define the Doob transformed walk X̂a to be the Markov chain with this

transition matrix started from o then it follows from (4) that (X̂a
n)Tzn=0 has law equal to

the conditional law of the simple random walk (Xn)Tzn=0 started at o and conditioned to

hit z before returning to o. Moreover, letting P̂a
o denote the law of X̂a, it follows from

the definition of X̂a that

P̂a
o

(
(X̂a

0 , . . . , X̂
a
n) = (x0, . . . , xn)

)
=

n∏
i=1

p̂a(xi−1, xi) = a(x1)
n∏
i=2

a(xi)

a(xi−1)
p(xi−1, xi)

= a(xn)

n∏
i=2

p(xi−1, xi) = deg(o)a(xn)Po ((X0, . . . , Xn) = (x0, . . . , xn)) (5)

for every sequence x0, . . . , xn with x0 = o and xi /∈ {o, z} for every 0 < i < n.
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Defining the potential kernel. Let Reff(x ↔ y) := deg(x)Px(Ty < T+
x ) be the

effective resistance between two vertices x, y. We now define the potential kernel ah

associated to a point h ∈ H via the formula

ah(x, y) = hx,y(x)Reff(x↔ y) (6)

where we write hx,y = h{x,y}, so that ah(x, x) = 0 for each x ∈ V . The fact that this is

a sensible definition owes largely to the following lemma.

Lemma 3.4. For each h ∈ H, the potential kernel ah(x, y) = hx,y(x)Reff(x ↔ y)

satisfies

∆ah( · , y) = −1( · = y), (7)

so that the potential kernel ah(·, y) is harmonic away from y and subharmonic at y.

Proof. Since the map h 7→ ah is affine and the equality (7) is linear, it suffices to prove

the lemma in the case that h is extremal. By Lemma 3.3, there exists a sequence of

vertices (vn)n≥1 such that vn converges to h. For each n ≥ 1 we define

an(x, y) =
Gvn(y, y)

deg(y)
− Gvn(x, y)

deg(y)
.

and claim that

ah(x, y) = lim
n→∞

an(x, y) (8)

for every x, y ∈ V . (Note that this limit formula is often taken as the definition of the

potential kernel.) We will prove (8) with the aid of three standard identities for the

Greens function:

1. By the strong Markov property, Gz(x, y) is equal to Px(Ty < Tz) Gz(y, y) for

every three distinct vertices x, y, and z.

2. By the strong Markov property, Gx(y, y) is equal to Px(Ty < T+
x )−1 for every

pair of distinct vertices x and y. It follows in particular that deg(y)−1 Gx(y, y) =

Reff(x ↔ y) and, since the effective resistance is symmetric in x and y, that

deg(y)−1 Gx(y, y) = deg(x)−1 Gy(x, x).

3. By time-reversal, deg(x) Gz(x, y) is equal to deg(y) Gz(y, x) for every three dis-

tinct vertices x, y, and z.

Applying these three identities in order yields that

an(x, y) =
Gvn(y, y)

deg(y)
Px(Ty > Tvn)

=
Gy(vn, vn)

deg(vn)
Px(Ty > Tvn) =

Gy(x, vn)

deg(vn)
=

Gy(vn, x)

deg(x)
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whenever x, y, and vn are distinct. Applying the first and second identities a second

time then yields that

an(x, y) = Pvn(Tx < Ty)
Gy(x, x)

deg(x)
= Pvn(Tx < Ty)Reff(x↔ y) (9)

whenever x, y, and vn are distinct. This is easily seen to imply the claimed limit formula

(8).

In light of this lemma, we define Po to be the space of non-negative functions a :

V → [0,∞) with a(o) = 0 and ∆a(x) = −1(x = o), so that ah( · , o) belongs to Po for

each o ∈ V and h ∈ H by Lemma 3.4. We will later show that the map h 7→ ah is an

affine isopmorphism between the two convex spaces H and Po. We first describe how

elements of Po can be used to define Doob transformed walks.

Doob transforms and singular conditioning. We now define the Doob transform

associated to an element of the space Po. Given a ∈ Po, we define X̂a to be the Doob a-

transform of the simple random walk X on G, so that X̂a has state space {x ∈ V : x = o

or a(x) > 0} and transition probabilities given by

p̂ a(x, y) :=


a(y)
a(x)p(x, y) if x 6= o

a(y) if x = o, y ∼ o

where p is the transition kernel for the simple random walk. Similarly, given h ∈ H, we

write X̂h = X̂ah(·,o) where ah is the potential kernel associated to h. Informally, we think

of X̂h as the walk that is “conditioned to go to h before returning to o”. (In particular,

when the harmonic measure from infinity is unique and H and Po are singleton sets, we

think of the associated Doob transform as the random walk conditioned to never return

to o.) We write P̂a
o or P̂h

o for the law of X̂a or X̂h as appropriate.

As before, it follows from this definition that if a ∈ Po and we write X[0,m] for the

initial segment consisting of the first m steps of the random walk X then

P̂a
o(X̂

a[0,m] = γ) =
m∏
i=1

p̂ a(γi−1, γi) = a(γ1)
m∏
i=2

a(γi)

a(γi−1)
p(γi−1, γi)

= a(γm)

m∏
i=2

p(γi−1, γi) = deg(o)a(γm)Po(X[0,m] = γ) (10)

for every finite path γ = (γ0, . . . , γm) with γ0 = o and γi 6= o for every i > 0. Summing

over all paths γ that begin at o, end at some point x 6= o, and do not visit o or x at any

intermediate point yields in particular that if h ∈ H then

P̂h
o (X̂ hits x) = deg(o)ah(x, o)Po(Tx < T+

o ) = ho,x(x), (11)
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where the last equality follows from (6) and the definition of the effective resistance.

Lemma 3.5. Let G = (V,E) be a recurrent graph and let a ∈ Po. Then the associated

Doob-transformed walk X̂a is transient.

Proof. One can easily verify from the definitions that the sequence of reciprocals

(a(X̂a
n)−1)n≥1 is a non-negative martingale with respect to its natural filtration, and

hence converges almost surely to some limiting random variable, which it suffices to

prove is zero almost surely. It follows from the identity (10) that

P̂a
o(a(X̂a

n) ≤M)

=
∑
v

1(a(v) ≤M) deg(o)a(v)Po(Xn = v, T+
o > n) ≤M deg(o)Po(T

+
o > n),

for every n,M ≥ 1. Since G is recurrent, the right hand side tends to zero as n → ∞
for each fixed M . It follows that lim supn→∞ a(X̂a

n) =∞ almost surely, and hence that

limn→∞ a(X̂a
n) = ∞ almost surely since the limit is well-defined almost surely. This

implies that X̂a is transient.

3.2.3 An affine isomorphism

Let G = (V,E) be recurrent, fix o ∈ V , and let Po denote the set of positive functions

a : V → [0,∞) with a(o) = 0 that satisfy ∆a(·) = −1( · = o). As we have seen,

for each h ∈ H the potential kernel ah(·, o) defines an element of Po. Moreover, the

map sending h 7→ ah( · , o) is affine in the sense that if h = θh1 + (1 − θ)h2 then

ah( · , o) = θah1( · , o) + (1− θ)ah2( · , o). We wish to show that this map defines an affine

isomorphism between H and Po in the sense that it is bijective (in which case its inverse

is automatically affine). We begin by constructing the inverse map from Po to H.

Lemma 3.6. Let G = (V,E) be a infinite, connected, locally finite recurrent graph and

let o ∈ V . For each a ∈ Po there exists a unique h ∈ H satisfying

hB(u) = P̂a
o(X̂

a visits B for the last time at u)

for every finite set B containing o. Moreover, this h satisfies ah(x, o) = a(x) for every

x ∈ V .

Proof of Lemma 3.6. Fix a ∈ Po. We define a the family of probability measures h =

(hB : B ⊂ V finite) by

hB(u) = P̂a
o(X̂

a visits B for the last time at u)

for every u ∈ B if o ∈ B and
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hB(u) = P̂a
o(X̂

a visits B ∪ {o} for the last time at u)

+ P̂a
o(X̂

a visits B ∪ {o} for the last time at o)Po(XTB = u)

for every u ∈ B if o /∈ B, so that if o /∈ B then

hB(u) =
∑

v∈B∪{o}

hB∪{o}(v)Pv(XTB = u)

for every u ∈ V . We claim that this defines an element of H. It is clear that hB is

a probability measure that is supported on ∂B for each finite set B ⊂ V ; we need to

verify that it satisfies the consistency property (1). Once it is verified that h ∈ H, the

fact that a = ah(·, o) follows easily from the definition of ah together with the identity

(10), which together yield that

ah(v, o) = hv,o(v)Reff(v ↔ o) =
P̂a
o(X̂

a visits {o, v} for the last time at v)

deg(o)Po(Tv < T+
o )

=
P̂a
o(X̂

a hits v)

deg(o)Po(Tv < T+
o )

=
deg(o)a(v)Po(Tv < T+

o )

deg(o)Po(Tv < T+
o )

= a(v)

for each v ∈ V .

We now prove that h satisfies the consistency property (1). We will prove the required

identity in the case o ∈ B, the remaining case o /∈ B following from this case and the

definition. Let B ⊆ B′ be finite sets with o ∈ B and let (Vn)n≥1 be an exhaustion of V

by finite sets such that B′ ⊆ Vn for every n ≥ 1. Writing V c
n = V \ Vn for each n ≥ 1

and τn for the first time the walk visits V c
n , we have that

hB(u) = lim
n→∞

P̂a
o(X̂[0, τn] last visits B at u)

= lim
n→∞

∑
b∈V cn

P̂a
o(X̂[0, τn] last visits B at u, X̂τn = b)

and hence by (10) and time-reversal that

hB(u) = lim
n→∞

∑
b∈V cn

deg(o)a(b)Po(X[0, τn] last visits B at u, Xτn = b)

= lim
n→∞

∑
b∈V cn

deg(b)a(b)Pb(XTB = u, To < T+
V cn

). (12)

It follows from this together with the strong Markov property that

hB(u) = lim
n→∞

∑
v∈B′

∑
b∈V cn

deg(b)a(b)Pb(XT ′B
= v,XTB = u, To < T+

V cn
)

= lim
n→∞

∑
v∈B′

∑
b∈V cn

deg(b)a(b)Pb(XT ′B
= v, TB′ < T+

V cn
)Pv(XTB = u, To < T+

V cn
).
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Now, we have by the strong Markov property that for each b ∈ V c
n and v ∈ B′

Pb(XTB′ = v, To < T+
V cn

) = Pb(XTB′ = v, TB′ < T+
V cn

)Pv(TV cn > To).

and by recurrence that limn→∞Pv(To < T+
V cn

) = 1, so that

hB(u) = lim
n→∞

∑
v∈B′

∑
b∈V cn

deg(b)a(b)Pb(XT ′B
= v, To < T+

V cn
)Pv(XTB = u).

The claimed identity (1) follows from this together with the identity (12) applied to the

larger set B′.

Theorem 3.7. Let G be an infinite, recurrent, locally finite graph, and let o ∈ V . The

map h 7→ ah(·, o) is an affine isomorphism H → Po. In particular, this map identifies

extremal elements of H with extremal elements of Po.

Proof. It remains only to prove that h 7→ ah is injective. To prove this it suffices by

definition of ah to prove that hB is determined by (hx,o(x) : x ∈ ∂B) for each finite set

B ⊂ V containing the vertex o. Fix one such set B. We have by definition of H that

hx,o(x) =
∑
y∈∂B

hB(y)Py(Tx < To) =
∑
y∈∂B

A(x, y)hB(y)

for each x ∈ ∂B where A(x, y) := Py(Tx < To) for each x, y ∈ ∂B, so that it suffices

to prove that the matrix A (which is indexed by ∂B) is invertible. Define a matrix Q

indexed by ∂B by

Q(x, y) = Py(T
+
∂B < To, XT+

∂B
= x).

Then we have by the strong Markov property that

A(x, y)− 1(x = y)Px(T+
x ≥ To) = Py(T

+
x < To)

=
∑
z∈∂B

Pz(Tx < To)Q(z, y) = Px(T+
x ≥ To)Q(x, y) +

∑
z∈∂B

Pz(T
+
x < To)Q(z, y)

and hence inductively that

Py(T
+
x < To) = Px(T+

x ≥ To)
n∑
i=1

Qn(x, y) +
∑
z∈∂B

Pz(T
+
x < To)Q

n(z, y)

for every n ≥ 1. Since Q is irreducible and substochastic, we can take the limit as

n→∞ to obtain that

A(x, y) = 1(x = y)Px(T+
x ≥ To) + Py(T

+
x < To) = Px(T+

x ≥ To)
∞∑
i=0

Qn(x, y)

for every x, y ∈ ∂B. It follows by a standard argument that the matrix A is invertible

with inverse A−1 = Px(T+
x ≥ To)−1(1−Q) as required.
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3.2.4 The Liouville property for extremal Doob transforms

In this section we prove a kind of tail-triviality property of the Doob-transformed walk

corresponding to an extremal point h ∈ H. Letting G = (V,E) be a graph, we recall that

an event A ⊆ V N is said to be invariant if (x0, x1, . . .) ∈ A implies that (x1, x2, . . .) ∈ A
for every (x0, x1, . . .) ∈ V N.

Theorem 3.8. Let G = (V,E) be an infinite, connected, recurrent, locally finite graph

and let o ∈ V . If h ∈ H is extremal then the Doob transformed random walk X̂h

does not have any non-trivial invariant events: If A ⊆ V N is an invariant event then

P̂h
o (A) ∈ {0, 1}.

Proof. It suffices to prove the corresponding statement for X̂a when a is an extremal

element of Po. Suppose not, so that A is a non-trivial invariant event. We have by

Levy’s 0-1 law that

Po(X̂
a ∈ A | X̂a

1 , . . . , X̂
a
n)→ 1(X̂a ∈ A) almost surely as n→∞. (13)

Moreover, we also have by invariance that

P̂a
x(X̂a ∈ A) =

∑
y∈V

a(y)

a(x)
p(x, y)P̂a

y(X̂
a ∈ A)

and that

P̂a
o(X̂

a ∈ A) =
∑
y∈V

a(y)P̂a
y(X̂

a ∈ A).

Since similar inequalities hold when we replace A by Ac it follows that we can write a

as a non-trivial convex combination of two elements of Po

a(x) = P̂a
o(X̂

a ∈ A) · a(x)P̂a
x(X̂a ∈ A)

P̂a
o(X̂

a ∈ A)
+ P̂a

o(X̂
a /∈ A) · a(x)P̂a

x(X̂a /∈ A)

P̂a
o(X̂

a /∈ A)
,

these two factors being different by (13), contradicting extremality of a.

Remark 3.2. Underlying this proposition is the fact that once we fix a ∈ Po, we can

identify Po with the Martin boundary of the conditioned walk X̂a. Theorem 3.8 is the

recurrent version of the fact that Doob transforming by an extremal element of the

Martin boundary yields a process with trivial invariant sigma-algebra.

For our purposes, the most important output of the Liouville property is the fol-

lowing proposition, which lets us easily tell apart the trajectories of two different Doob

transformed walks X̂h and X̂h′ by looking at any infinite subset of their traces (and, in

particular, from their loop-erasures).

101



CHAPTER 3. RESOLVING THE CONJECTURE OF ALDOUS AND LYONS

Proposition 3.9. Let h, h′ be distinct extremal elements of H and let X̂h be the Doob-

transformed simple random walk corresponding to h. Then

ah
′
(X̂h

n , o)

ah(X̂h
n , o)

→ 0

almost surely as n→∞.

Proof. We prove the corresponding statement in which a, a′ are distinct extremal ele-

ments of Po. Let X̂ and X̂ ′ have laws P̂a
o and P̂a′

o respectively. One can easily verify

from the definitions that

(Zn)n≥1 =

(
a′(X̂n)

a(X̂n)

)
n≥1

and (Z ′n)n≥1 =

(
a(X̂ ′n)

a′(X̂ ′n)

)
n≥1

are both non-negative martingales with respect to their natural filtrations, and hence

converge almost surely to some limiting random variables Z and Z ′. Since Z and Z ′

are measurable with respect to the invariant σ-algebras of X̂ and X̂ ′ respectively and

a and a′ are both extremal, there must exist constants α and α′ such that Z = α and

Z ′ = α′ almost surely. We also have that EZn = EZ ′n = 1 for every n ≥ 1 and hence

that α, α′ ≤ 1. We wish to prove that α = 0.

It follows from (10) that the conditional distributions of the initial segments X̂[0,m]

and X̂ ′[0,m] are the same if we condition on X̂m = X̂ ′m = v for any v ∈ V for any v ∈ V
and m ≥ 1 and that

Pa
o(X̂m = v)

Pa′
o (X̂a′

m = v)
=
a(v)

a′(v)

for every m ≥ 1 and v ∈ V . If α > 0 then for every ε > 0 there exists M such that the

distribution of X̂m puts mass at least 1−ε on the set of vertices with a′(v)/a(v) ≥ (1−ε)α
for every m ≥ M , and it follows that for each m ≥ M there is a coupling of the two

walks X̂ ′ and X̂ so that their initial segments of length m coincide with probability at

least (1− ε)2α. Taking a weak limit as m → ∞ and ε → 0, it follows that there exists

a coupling of the two walks X̂ ′ and X̂ such that the two walks coincide forever with

probabilty at least α > 0. If we couple the walks in this way then on this event we must

have that Z ′ = 1/Z, which can occur with positive probability only if α′ = 1/α. Since

α, α′ ≤ 1 we must have that α = α′ = 1 and that we can couple the two walks to be

exactly the same almost surely. This is clearly only possible if a = a′, and since a 6= a′

by assumption we must have that α = 0.

3.2.5 Potential kernels and the uniform spanning tree

We now use Lemma 3.11 to show that the UST of a recurrent graph can always be

sampled using a variant of Wilson’s algorithm [32, 171] in which we ‘root at a point in
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H’, where again we are thinking intuitively of H as a kind of boundary at infinity of the

graph. Fix h ∈ ex(H) and let X̂h be the conditioned walk of the previous section. Fix

some enumeration V = {v1, v2, . . .} of V with v1 = o. Set E0 = LE(X̂h[0,∞)) (which is

well defined because X̂h is transient) and for each i ≥ 1 define Ei given Ei−1 recursively

as follows:

• if vi ∈ Ei−1, set Ei = Ei−1

• otherwise, set Ei = Ei−1∪LE(Y [0, τ)) where Y is the simple random walk started

at vi and stopped at τ , the hitting time of Ei−1.

Last, define T =
⋃∞
i=0Ei. We refer to this procedure as Wilson’s algorithm rooted

at h. The random tree T generated by Wilson’s algorithm rooted at h is clearly a

spanning tree of G; the next lemma shows that it is distributed as the UST of G.

Lemma 3.10 (Wilson meets Doob). Let G = (V,E) be an infinite, connected, locally

finite, recurrent graph and let h ∈ ext(H). The tree T generated by Wilson’s algorithm

rooted at h is distributed as the uniform spanning tree of G. In particular, the law of T

is independent of the chosen enumeration of V and the choice of h ∈ ext(H).

Remark 3.3. It follows by taking convex combinations that the same statement also

holds when h is not extremal.

We will deduce Lemma 3.10 from the following lemma, which allows us to think of

the Doob-transformed walk X̂h as a limit of conditioned simple random walks on G. For

the purposes of this lemma we think of our walks as belonging to the space of sequences

in V equipped with the product topology.

Lemma 3.11 (Local convergence). Let G = (V,E) be an infinite, connected, locally

finite, recurrent graph and suppose that zn is a sequence of vertices of G such that zn

converges to h ∈ H. If X denotes the random walk on G started at o and X̂h denotes

the Doob-transformation of X as above, then the conditional law of X given that it hits

zn before first returning to o converges weakly to the law of X̂h.

Proof of Lemma 3.11. This is a classical result concerning Doob transforms, and can

also be deduced from the limit formula (8). We give a brief proof. Let Tzn be the

first time the walk hits zn, let T+
o be the first positive time the walk hits o, and let

ϕ = (o, ϕ1, . . . , ϕm) be a path of length m for some m ≥ 1 with ϕi 6= o for every i > 0.

By the Markov property for the simple random walk,

Po(X[0,m] = ϕ, Tzn < T+
o ) = Po(X[0,m] = ϕ)Pϕm(Tzn < To),

and it follows from (10) that

Po(X[0,m] = ϕ, Tzn < T+
o ) =

1

deg(o)ah(ϕm, o)
Po(X̂

h[0,m] = ϕ)Pϕm(Tzn < To).
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The result follows once multiplying both sides by the effective resistance between o and

zn and using the representation (6) for the potential kernel.

Proof of Lemma 3.10. The standard implementation of Wilson’s algorithm rooted at

zn allows us to sample the uniform spanning tree of G in a manner exactly analogous

to above, except that we start with a walk run from o until it first hits zn. Now, it

is a combinatorial fact that the loop erasure of the walk run from o until it first hits

zn does not change its distribution if we condition the walk to hit zn before returning

to o: Indeed, the loop-erasure of the entire unconditioned walk is equal to the loop-

erasure of the final segment of the walk between its last visit to o and its first visit to

zn, and this final segment is distributed as the conditioned walk. Thus, in the standard

implementation of Wilson’s algorithm, we do not change the distribution of the obtained

tree if we condition the first walk to hit zn before returning to o. The claim then follows

by taking the limit as zn →∞ and using Lemma 3.11.

This leads to the following connection between the ends of the UST and the extremal

points of the set of harmonic measures from infinity H.

Proposition 3.12. Let G = (V,E) be an infinite, connected, locally finite, recurrent

graph, let T be the uniform spanning tree of T , and let H be a countable subset of ext(H).

Almost surely, for each h ∈ H there exists an infinite simple path Γ = (Γ1,Γ2, . . .) in T

such that
ah
′
(Γi, x)

ah(Γi, x)
→ 0 as i→∞ for each h′ ∈ H \ {h}.

In particular, T almost surely has at least as many ends as there are extremal points of

H.

(In the last sentence of this proposition we are not distinguishing between different

infinite cardinalities, but merely claiming that if H has infinitely many extremal points

then T has infinitely many ends almost surely.)

Proof. This is an immediate consequence of Proposition 3.9 and Lemma 3.10.

Orientations. Let G = (V,E) be an infinite, connected, locally finite, recurrent graph

and let h ∈ ext(H). When we generate the UST T of G using Wilson’s algorithm rooted

at h, the algorithm also provides a natural orientation of T , where each edge is oriented

in the direction that it is crossed by the loop-erased random walk that contributed that

edge to the tree. When T almost surely has the same number of ends as there are

extremal points in H, and both numbers are finite (which will always be the case in

the unimodular setting by the results of [34]), it follows from Proposition 3.12 that this
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orientation is a.s. determined by the (unoriented tree): Almost surely, for each h ∈ H
and v ∈ V there is a unique infinite ray (Γ1,Γ2, . . .) starting from v such that

ah
′
(Γi, v)

ah(Γi, v)
→ 0 as i→∞ for each h′ ∈ ext(H) \ {h},

and if we orient the tree in the direction of this ray we must recover the same orientation

as if we had generated the oriented tree using Wilson’s algorithm rooted at h. This fact

will play a key role in the proof of our main theorem.

3.3. Proof of the main theorem

3.3.1 Reversible and unimodular graphs

We now give a very brief introduction to unimodular random rooted graphs, referring

the reader to [9,49] for detailed introductions. Let us just recall that G•,• is the separable

metric space of doubly rooted graphs (G, x, y) (modulo graph isomorphisms), equipped

with the local topology, also known as Benjamini-Schramm topology. Similarly defined

is the space G• of rooted graphs (G, o). A mass transport is a measurable function

f : G•,• → [0,∞]. A measure P on G• is called unimodular whenever the mass transport

principle

Ê

[∑
x∈V

f(G, o, x)

]
= Ê

[∑
x∈V

f(G, x, o)

]
holds for all mass transports f . A probability measure P on G• is called reversible if

(G, o,X1)
d
= (G,X1, o) where X1 is the first step of the simple random walk. The law

P is called stationary if (G, o)
d
= (G,X1) and clearly any reversible graph is stationary.

For recurrent graphs, stationarity and reversibility are equivalent [27].

If P is the law of a unimodular random graph, with finite expected degree, then

biasing it by deg(o) gives a reversible random graph and whenever P is the law of a

reversible random graph, then biasing by deg(o)−1 gives a unimodular random graph;

see for example [27].

A set A ⊆ G• is said to be rerooting invariant if ((g, v) ∈ A) ⇒ ((g, u) ∈ A) for

every rooted graph (g, v) ∈ G• and every u in the vertex set of g. A unimodular random

rooted graph (G, o) is said to be ergodic if it has probability 0 or 1 to belong to any given

re-rooting invariant event in G•. As explain in [9, Section 4], this is equivalent to the law

of (G, o) being extremal in the weakly compact convex set of unimodular probability

measures on G•. As such, it follows by Choquet theory that every unimodular measure

on G• may be written as a mixture of ergodic unimodular measures. For our purposes,

the upshot of this is that we may assume without loss of generality that (G, o) is ergodic

when proving Theorem 3.1.

105



CHAPTER 3. RESOLVING THE CONJECTURE OF ALDOUS AND LYONS

We will also rely on the following characterization of two-ended unimodular random

rooted graphs due to Bowen, Kun, and Sabok [40], which builds on work of Benjamini

and the second author [31]. Here, a graph G is said to have linear volume growth

if for each vertex v of G there exists a constant Cv such that |B(v, r)| ≤ Cvr for every

r ≥ 1, where B(v, r) denotes the graph distance ball of radius r around v.

Proposition 3.13 ([40], Proposition 2.1). Let (G, o) be an infinite unimodular random

rooted graph. Then G is two-ended almost surely if and only if it has linear volume

growth almost surely.

To prove Thorem 3.1, it will therefore suffice to prove that if (G, o) is a recurrent

unimodular random rooted graph whose UST is two-ended almost surely then G has

linear volume growth almost surely.

3.3.2 The effective resistance is linear on the spine

Let P be the joint law of an ergodic recurrent unimodular random rooted graph (G, o)

and its uniform spanning tree T , which we think of as a triple (G, o, T ). It follows by

tail triviality of the UST [32, Theorem 8.3] that the number of ends of T is deterministic

conditional on (G, o), and since (G, o) is ergodic that T has some constant number of

ends almost surely. Moreover, it follows from [9, Theorem 6.2 and Proposition 7.1] that

this number of ends is either 1 or 2 almost surely, so that T is either one-ended almost

surely or two-ended almost surely.

We wish to prove that if T is two-ended almost surely then G is two-ended almost

surely also. We will rely on the following theorem of Berestycki and the first author.

Theorem 3.14 ([34], Theorem 1). Let (G, o) be a recurrent unimodular random rooted

graph with Edeg(o) < ∞. Almost surely, the uniform spanning tree of G is one-ended

if and only if the harmonic measure from infinity is uniquely defined.

To avoid the unnecessary assumption that Edeg(o) < ∞, we will use the following

mild generalization of this theorem, whose proof is given in Appendix A.

Theorem 3.15. Let (G, o) be a recurrent unimodular random rooted graph. Almost

surely, the uniform spanning tree of G is one-ended if and only if the harmonic measure

from infinity is uniquely defined.

It follows from this theorem together with Proposition 3.12 that if T is two-ended

almost surely then |ext(H)| = 2 almost surely.

Suppose that T is two-ended almost surely and let S be the spine of T , i.e., the

unique double-infinite simple path contained in T . We give T an orientation by choosing

uniformly at random one of the two ends of S and directing every edge towards that
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end, letting the resulting oriented tree be denoted T→ with oriented spine S→. Since the

law of T→ is a rerooting-equivariant function of the graph (G, o), the triple (G,T→, o)

is unimodular. Since “everything that can happen somewhere can happen at the root”

[9, Lemma 2.3] we also have that the origin belongs to S with positive probability and

hence that we can define a law PS on triplets (G,T→, o) (which we can view as a rooted

network) by conditioning o to belong to S. The law PS has the very useful property

that it is stationary under shifts along the spine, which we now define. Each vertex

v ∈ S has a unique oriented edge emanating from it in S→, and we will write σ(v) for

the vertex on the other end of this edge. The map v 7→ σ(v) can be thought of as a shift,

following the orientation along the spine, and there is also a well-defined backwards shift

σ−1 mapping each x ∈ S to the unique vertex v ∈ S with σ(v) = x.

Lemma 3.16. The law PS is invariant under the shift σ.

Proof. Let A be any Borel set of triples (g, t→, v) where (g, v) is a rooted graph and t→

is an oriented spanning tree of g, and define the mass transport

f(g, t→, v, w)

:= 1 (t→ is two-ended, w is in the spine of t→, v = σ(w), and (g, t→, w) ∈ A) .

Note that there only exists one vertex v such that v = σ(w) and, vice-versa, for each v

in the spine of t→ there is only one v in the spine of t→ such that σ(v) = o and v ∈ S.

Therefore,∑
v∈V

f(G,T→, v, o)

= 1 (T→ is two-ended, o is in the spine of T→, and (G,T→, o) ∈ A)

and ∑
v∈V

f(G,T→, v, o)

= 1 (T→ is two-ended, o is in the spine of T→, and (G,T→, σ(o)) ∈ A)

Using the mass-transport principle we thus have that

P (T→ is two-ended, o is in the spine of T→, and (G,T→, o) ∈ A)

= P (T→ is two-ended, o is in the spine of T→, and (G,T→, σ(o)) ∈ A)

which shows the result because P(o ∈ S) > 0 and T is two-ended a.s. by assumption.

The main goal of this section is to show that along the spine of the UST, the effective

resistances on the original graph must grow linearly under the assumption that the UST
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has two ends (and thus a well-defined spine). Heuristically, this tells us that if a graph

is unimodular and the uniform spanning tree is two-ended, then the actual graph should

in some sense be “close” to the line Z.

Proposition 3.17. The limit limn→∞
1
nReff(o↔ σn(o)) = limn→∞

1
nReff(o↔ σ−n(o))

exists and is positive PS-a.s.

Note that the existence part of this proposition is an immediate consequence of the

subadditive ergodic theorem; the content of the proposition is that the limit is positive.

As discussed above, it follows from Proposition 3.12 and Theorem 3.14 that, PS-

almost surely, there are exactly two extremal elements of H, which we call “`” and “r”,

which satisfy

ar(σn(o), v)

a`(σn(o), v)
→

∞ as n→ +∞

0 as n→ −∞
(14)

for every v ∈ V . (In particular, the random choice of orientation of T we made when

defining PS is equivalent to randomly choosing which of the two extremal elements of

H to call “r”.) Consider the function V → R defined by

Mo(x) := ar(x, o)− a`(x, o).

We will show that Mo(σ
n(o)) grows linearly in n and deduce from this that the effective

resistance does too. The latter fact can be seen using (6), from which it follows that

Mo(x) = (rx,o(x)− `x,o(x))Reff(o↔ x).

In the remainder we will slightly abuse notation to write Mm(n) := Mσm(o)(σ
n(o)) for

n,m ∈ Z. The first main ingredient is that Mo(n) is an additive cocyle.

Lemma 3.18. Mo(n+m) = Mo(n) +Mn(n+m) for every n,m ∈ Z.

Proof. This is a direct consequence of Proposition 3.5 in [34], stating that

a#(x, o)− a#(y, o) = a#(x, y)− Gy(x, o)

deg(o)

for each # ∈ {`, r} and all x, y ∈ V . Indeed, it follows from this identity that

Mo(n+m)−Mo(n)

= ar(σn+m(o), o)− a`(σn+m(o), o)− ar(σn(o), o) + a`(σn(o), o)

=

[
ar(σn+m(o), σn(o))−

Gσn(o)(σ
n+m(o), o)

deg(o)

]
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−
[
a`(σn+m(o), σn(o))−

Gσn(o)(σ
n+m(o), o)

deg(o)

]
= ar(σn+m(o), σn(o))− a`(σn+m(o), σn(o)) = Mn(n+m)

for every n,m ∈ Z as claimed.

Let us also make note of the following key property of this additive cocycle.

Lemma 3.19. PS-almost surely, Mo(n) is positive for all sufficiently large positive n

and negative for all sufficiently large negative n. Moreover,

Mo(n) ∼ ar(σn(o), o) = rσn(o),o(σ
n(o))Reff(o↔ σn(o))

PS-almost surely as n→∞.

Proof. This follows immediately from (14) and the definition of Mo(n).

We will deduce Proposition 3.17 from Lemma 3.19 together with the following general

fact about stationary sequences.

Proposition 3.20. Let (Zi)i∈Z be a stationary sequence of real-valued random vari-

ables and suppose that
∑n

i=0 Z−i > 0 for all sufficiently large n almost surely. Then

lim supn→∞
1
n

∑n
i=0 Zi > 0 almost surely.

Proof. For each n ∈ Z let Rn = inf{m ≥ 0 :
∑n+m

i=n Zi > 0}, so that Rn = 0 whenever

Zn > 0 and (Rn)n∈Z is a stationary sequence of {0, 1, . . .}-valued random variables. It

follows from the definitions that if n ≤ m then either n+Rn < m or n+Rn ≥ m+Rm, so

that the intervals [n, n+Rn] and [m,m+Rm] are either disjoint or ordered by inclusion.

On the other hand, we have by stationarity and the hypotheses of the Proposition that

for each n ∈ Z there almost surely exists Nn < ∞ such that
∑n−1

i=n−m Zi > 0 for every

m ≥ Nn and hence that Rn−m + (n −m) < n for every m ≥ Nn, so that each n ∈ Z
is contained in at most finitely many of the intervals [m,m+Rm] almost surely. Using

the fact that these intervals are either disjoint or ordered by inclusion, it follows that

there is a unique decomposition of Z into maximal intervals of this form

Z =
⋃{

[k, k +Rk] : k ∈ Z, [k, k +Rk] * [m,m+Rm] for every m ∈ Z \ {k}
}
.

Thus, if we define Yn by

Yn =


∑n

i=k Zi n = k +Rk for some k ∈ Z such that [k, k +Rk] maximal

0 otherwise

then (Yn)n∈Z is a stationary sequence of non-negative random variables such that Yn is

positive whenever n is the right endpoint of a maximal interval. Since Yn is non-negative
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and the set of n such that Yn 6= 0 is almost surely non-empty, it follows from the ergodic

theorem applied to (min{Yn, 1})n∈Z that

lim inf
n→∞

1

n

n∑
i=0

Yn > 0

almost surely. The claim follows since if −m is the left endpoint of the maximal interval

containing 0 then
n∑
i=0

Yn =

n∑
i=−m

Zi

for every n that is the right endpoint of some maximal interval.

Proof. It follows from Lemma 3.16 that (Mn(n+ 1))n∈Z is a stationary sequence under

PS and from Lemma 3.18 that Mo(n) =
∑n−1

i=0 Mi(i+ 1) for every n ≥ 0 and Mo(−n) =∑−1
i=−nMi(i+1) for every n ≤ 0. Thus, Lemma 3.19 implies that the stationary sequence

(Mn(n+ 1))n∈Z satisfies the hypotheses of Proposition 3.20 and hence that

lim sup
n→∞

Mo(n)

n
> 0

almost surely. On the other hand, the subadditive ergodic theorem implies that the

limit limn→∞
1
nReff(o↔ σn(o)) exists PS-a.s., and since

Mo(n) =
(
rσn(o),o(σ

n(o))− `σn(o),o(σ
n(o))

)
Reff(o↔ σn(o)) ≤ Reff(o↔ σn(o))

we must have that

lim
n→∞

1

n
Reff(o↔ σn(o)) > 0

PS-a.s. as claimed. The fact that the negative-n limit limn→∞
1
nReff(o ↔ σ−n(o)) also

exists and is equal to the positive-n limit a.s. follows from the subadditive ergodic

theorem.

3.3.3 Completing the proof

We now complete the proof of the main theorem.

Proof of Theorem 3.1. It suffices by Proposition 3.13 to prove that if (G, o) is a recurrent

unimodular random rooted graph whose UST is two-ended almost surely then G has

linear volume growth almost surely. As before, we write S for the spine of the oriented

UST T→, write PS for the conditional law of (G,T→, o) given that o ∈ S, and write σ

for the shift along the spine as in Lemma 3.16.

For each x ∈ V let S(x) be an element of S of minimal graph distance to x, choosing

one of the finitely many possibilities uniformly and independently at random for each x
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where this point is not unique. Letting S−1(v) = {x ∈ V : S(x) = v} for each v ∈ S, we

have by the mass-transport principle that

ES |S−1(o)| = E
[
|S−1(o)| | o ∈ S

]
= P(o ∈ S)−1E

[∑
x∈V

1(o = S(x))

]

= P(o ∈ S)−1E

[∑
x∈V

1(x = S(o))

]
= P(o ∈ S)−1 <∞.

We thus have a stationary sequence of random variables (|S−1(σi(o))|)i∈Z with uniformly

finite mean, and the ergodic theorem implies that

lim
i→∞

1

2n

n∑
i=−n

|S−1(σi(o))| <∞ (15)

almost surely. On the other hand, letting B(o, r) be the graph distance ball of radius r

around o for each r ≥ 1, we have by definition of S−1 that

B(o, r) ⊆
⋃{

S−1 (σn(o)) : n ∈ Z, d(o, σn(o)) ≤ 2r
}

(16)

for each r ≥ 1. Proposition 3.17 together with the trivial inequality Reff(x ↔ y) ≤
d(x, y) imply that there exists a positive constant c > 0 such that d(o, σn(o)) ≥ c|n|
for all sufficiently large (positive or negative) n almost surely, and together with (15)

and (16) this implies that lim supr→∞
1
r |B(o, r)| <∞ almost surely. This completes the

proof.
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Continuous spin models and dual height

functions
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CHAPTER 4

Review of height function models

The purpose of this chapter is to review some relatively recent results that will be used

in the remaining three chapters. We focus on integer–valued height functions and aim

to explain fundamental results due to Sheffield [157], which state that (translation in-

variant) ergodic Gibbs measures are extremal. (The precise definitions are given below).

We will proceed by presenting a slightly different proof of the beautiful result of delocal-

ization for integer-valued height functions due to Lammers [114]. The basic ideas are the

same, although the proof we present is perhaps slightly less magical. The presentation

of Section 4.2 is partially based on a forthcoming paper of the author with Marcin Lis.

In that paper, the results are formalized and explained in a more general and unified

approach.

4.1. Integer-valued height functions

Fix G = (V,E) any finite graph. We wish to describe random, nearest neighbor height

functions h : V → Z, penalized for having large gradients. To that end, let V : Z → R
be a symmetric potential function, which we will assume here to be convex over the

integers:

V(2)(k) := V(k + 1)− 2V(k) + V(k − 1) ≥ 0.

The weight of a height configuration h : V → Z is given by

ν(h) ∝
∏
e∈E

e−V(dhe), (1)

where dhxy = h(x)−h(y) is the discrete gradient along the edge xy. Since V is symmetric,

we can indeed just take the product over the unoriented edges.

The fact that V is convex corresponds to the heuristic: the larger gradients gets

penalized more and more. It also implies that the partition function

ZG :=
∑

h:V→Z

∏
e∈E

e−V(dhe)

is finite, so the above probability measure ν is well-defined.
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Extension to infinite graphs. As usual, we extend the definition to infinity graphs

using the DLR formalism. Let Γ = (V,E) a locally finite, infinite graph. Let ϕ : Λc → Z
be a function and define the probability measure µϕΛ supported on h : V → Z satisfying

h |Λc= ϕ by

νϕΛ(h) ∝ exp
(
−
∑
e∈E
V(dhe)

)
.

If µ is a probability measure on functions h : V → Z which satisfies

νΛ(·) =

∫
ZV
νϕΛ(·)dν(ϕ),

for all finite subset Λ, we call it a Gibbs measure. Here, µΛ denotes the restriction of µ

to Λ. As such, we can view ν as an extension of the measures defined in (1).

If Γ is a vertex-transitive graph and the measure ν is invariant under shifts, it is

called translation invariant.

4.2. Ergodicity and extremality

Let Γ = (V,E) be an infinite graph invariant under some lattice action and fix a symmet-

ric, convex potential V. Denote by G the collection of all Gibbs measure corresponding

to this potential.

Extremal measures. The set G is convex and its extreme points are called extremal

measures. These measures are also characterized by being “tail trivial” with respect to

the tail σ-algebra generated by

I :=
⋂

Λ↑V
FΛc ,

where the intersection is taken over all finite subsets Λ of V and FA is the σ-algebra

generated by {hx : x ∈ A}.
An extremely useful consequence of this definition is that the backward martingale

convergence theorem can be applied. For any local observable F : V → R,

µ[F | FΛcn ]

is a martingale for any sequence Λn ↑ V and any (Gibbs) measure µ. If µ is extremal,

backwards martingale convergence implies µ[F | FΛcn ]→ µ[F ] almost surely.

It turns out that any Gibbs measure can be written as a convex combination of

extremal Gibbs measures, see for example [78, Proposition 7.22]. The proofs are general,

quite standard and based on some Choquet-like theory.
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Ergodic measures. Since Γ is assumed to be invariant under some lattice action, it

is natural to consider the subset of Gibbs measures which are invariant under the same

lattice action, denoted here by GT . We will call such measures translation invariant

Gibbs measures.

Again, GT is a convex set and its extremal points are called ergodic measures. These

measures are also linked to some tail σ-algebra, but this time the one induced by trans-

lations. Denote thus by T the σ-algebra of events which are invariant under the trans-

lations. A measure µ ∈ GT is ergodic precisely when it is trivial on T .

Using again relatively general machinery it follows that each translation invariant

Gibbs measure is a convex combination of ergodic measures [78]. Of course, translation

invariant measures are useful more or less because of this reason: they allow to apply

ergodic theory.

4.2.1 The main result: ergodic measures are extremal

Any translation invariant extremal measure is also ergodic. Indeed, there are multiple

ways to show this, the most standard perhaps is via the “mixing property”, but we will

not recall such notions here. But what about ergodic Gibbs measures? Are they also

extremal?

The answer turns out to be: yes (in the context of integer-valued height functions

as described here). This fact is instrumental in the proof of delocalization below.

Theorem 4.1. Fix Γ an infinite amenable graph, invariant under some translation, and

V a convex, symmetric potential. If µ is an ergodic Gibbs measure, then µ is extremal.

This result was proved by Sheffield [157]. The goal of the remainder of this section

is to briefly sketch a simplified version of his proof, a full version will appear later.

4.2.2 In case of the Gaussian free field

Imagine for a moment that we are looking at the Gaussian free field (GFF) on a graph

Γ, and assume that there exists some ergodic Gibbs measure µ corresponding to the

potential V(x) = |x|2, now defined on R. Is µ extremal?

Although the method described here does not extend to the general setup, it nonethe-

less provides many of the heuristics needed. It is well known that the GFF can be

extended to the cable graph1, an idea first coined by Lupu [129].

Let (h, h̃) be sampled from the product measure µ×ν (extended to the cable graph),

where both µ and ν are some translation invariant Gibbs measures. Define η : E → {0, 1}
1This is the 1-dimensional CW-complex associated to Γ, i.e. each edge e ∈ E is replaced by a line

segment [0, 1] and the segments are glued together at the vertices.
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Figure 4.1: Depicted is the extension of h−h̃ to a single edge. Left: the signs of h−h̃ are

different on both end-points, forcing the bridge to touch zero. Middle: bridge doesn’t

touch zero. Right: endpoints have the same sign, yet bridge still touches zero.

a percolation process as follows: ηe is closed if and only if h− h̃ touches zero somewhere

on the edge.

If x is not connected to infinity in the percolation η, then any path from x to infinity

much cross through a point where h = h̃. By the domain Markov property, this implies

that exchanging h and h̃ on the finite open clusters of η, does not change the marginals.

“Switching h and h̃” corresponds to reflecting h− h̃ through 0. Therefore, if all clusters

of η are finite, then µ = ν.

How can we use this to say something about the extremality of µ? We follow the

argument in [45]. If we can say that µ × µ, there is no infinite cluster almost surely,

then we can conclude that µ is extremal. Indeed, write µ as some convex combination

λ1µ1 + λ2µ2, for Gibbs measures µ1, µ2. But then η would also not have any infinite

cluster almost surely under µ1 × µ2, so that µ1 = µ2, implying µ is extremal.

Thus, to prove Theorem 4.1 it suffices to rule out that η percolates if µ = ν and µ

is ergodic. For the GFF, this can be achieved using relatively elementary tools, because

h− h̃ is again a GFF.

4.2.3 A percolation of sign clusters

The first question is thus: how to generalize the percolation of the GFF to general height

functions. Of course, not every model allows for an extension to the cable graph, so it

may seem hopeless. But the clusters η for the Gaussian free field can also be sampled

without the cable graph representation. To that end, sample h and h̃ under µ × ν on

V as usual. Define η : E → {0, 1} by declaring it closed on the edge e = (x, y) if

(hx − h̃x)(hy − h̃y) < 0, and otherwise close it with probability

exp(−β(hx − h̃x)(hy − h̃y)).
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Since the latter is exactly the probability that a Brownian bridge between hx − h̃x and

hy − h̃y touches 0, the percolation process η defined here is the same as the one above,

see again Figure 4.1. The upshot is that this definition does not rely on the cable graph

extension, and therefore may look more promising.

General definition. We go back to the setting we set out to describe at the beginning

of this chapter. Let V : Z→ R a convex, symmetric potential. We will compare for any

edge e = (x, y) the two weights

e−V(hx−hy)−V(h̃x−h̃y) and e−V(h̃x−hy)−V(hx−h̃y), (2)

in other words: we compare the energy cost obtained from “switching the roles of h and

h̃ at x at the edge”. The question is: can we reduce the energy cost on the edge by

applying this switch (and thus increase the weight). Note that the above definition is

symmetric in exchanging the roles of x and y.

With this in mind, we will define a general percolation η in the same spirit as the

one for the GFF. Again conditional on (h, h̃), let (me)e and (Me)e be the minimal

respectively maximal values of (2). For all edges e = (x, y), do the following. If the

actual weight along an edge is the minimal one:

e−V(hx−hy)−V(h̃x−h̃y) = mx,y,

then we can reduce the energy by switching hx and h̃x (or hy and h̃y). Such an edge

will be called excited. For the percolation, we set ηx,y = 0 on excited edges.

If the actual weight equals the maximum in (2), then we set ηx,y = 0 with probability

mx,y

Mx,y
,

which corresponds to the residual energy on the edge. An easy exercise for the reader

is to check that this definition of η agrees with the one for the Gaussian free field given

above.

We write Pµ,ν for the probability measures on the triplets (h, h̃, η) defined here,

although sometimes we will abuse notation and only write µ× ν.

4.2.4 Switching the clusters

Just like in the Gaussian case, this definition is chosen precisely so that the law Pµ,ν
is invariant under switching h and h̃ on any finite cluster of η. In other words, Pµ,ν is

invariant under reflecting h− h̃ in 0 on the clusters of η.

To see this, we can restrict to the setting of finite graphs. Consider two configurations

(h, h̃, η) and (g, g̃, η) (so with the same η), with |h− h̃| = |g − g̃| everywhere, and such
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that the signs of h− h̃ and g − g̃ are different on some finite clusters of η. The claim is

that (h, h̃, η) has the same weight as (g, g̃, η). This can be seen directly once we rewrite

the weights in terms of excited and not excited edges:

Pµ,ν(h, h̃, η) ∝
∏

e is excited

Me

(
me

Me

)1−ηe (
1− me

Me

)ηe ∏
e not excited

me.

In other words, we deduce:

Lemma 4.2. The measure Pµ,ν is invariant under switching h and h̃ on any collection

of finite clusters of η.

Convexity and sign clusters. The explanation above works in a large generality, as

will be explained in the forthcoming paper with Lis. In particular, so far, we have not

used the convexity of the potential V. At this point, a word of warning may be needed:

if V is not convex, then it is generally not true that the sign of h − h̃ is fixed on the

clusters of η.

When the potential is convex, it turns out that the construction above percolation

η correspond to a type of FK representation for the sign clusters of h − h̃. This is

highlighted in the following result.

Lemma 4.3. If x is connected to y in η, then (hx − h̃x)(hy − h̃y) > 0.

Proof. It is enough to prove the result for e = (x, y) neighbors in the graph. If ηe = 1,

then we need in particular that

e−V(hx−hy)−V(h̃x−h̃y) > e−V(h̃x−hy)−V(hx−h̃y). (3)

Write k = h̃x − hx. It is easy to see that if h = h̃ at either endpoint x, y, then the

above cannot hold, so we can assume without loss of generality that k > 0 and prove

this implies implies h̃y − hy > 0. Equation (3) is equivalent to

V(dh̃e)− V(dh̃e − k) < V(dhe + k)− V(dhe).

Convexity of V implies therefore that dh̃e < dhe+k, showing that indeed h̃y−hy > 0.

Thus, on the clusters of η the sign of h − h̃ stays constant. Moreover, on the finite

clusters of η, switching the sign of h − h̃ leaves the law Pµ,ν constant. In other words,

conditional on |h − h̃| and η, the signs of the (finite) clusters are independent uniform

random variables on {−1,+1}.
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4.2.5 Finalizing the proof of Theorem 4.1

Let Γ some amenable, infinite graph that is invariant under a lattice action. Suppose

that µ ∈ GT is a translation-invariant Gibbs measure corresponding to the potential V.

The aim is to show that µ is extremal. As explained for the Gaussian case, it is enough

to prove that Pµ,µ-almost surely, η does not percolate. This is done in three steps, which

we will only sketch here.

First, note that η splits naturally into two clusters: η+ and η−, corresponding to the

signs of h− h̃ on them. This helps to rule out that η has more than 2 infinite connected

components because both η+ and η− satisfy a version of the finite energy property.

The second and most difficult step is ruling out that η has two infinite clusters; one

of each sign. This can be achieved using entropy arguments, which we will not explain

here (but uses the fact that η has at most two infinite clusters).

The two points above thus imply

Pµ,µ(η has 2 or more infinite clusters) = 0.

In the third and final step, it still needs to be ruled out that η percolates at all. But

since we know that there is at most one infinite cluster, this can be achieved in the same

way as was done in [45].

The idea is that we can couple µ with itself in such a way that (h, h̃) is ordered on

the finite clusters:

hx ≤ h̃x, if x in a finite cluster of η.

This can be achieved by starting with an independent coupling (g, g̃) sampled from µ×µ,

and switching g, g̃ on the finite clusters precisely when g > g̃.

Now suppose that Pµ,µ(η percolates) > 0. In particular we may assume that with

positive probability, h < h̃ on the infinite clusters of η. In particular, on this event

g ≤ g̃ everywhere. But since the marginals of g and g̃ are the same, this readily implies

a contradiction: using translation invariance of the coupled measure (g, g̃), the infinite

cluster of η has strict positive frequency, so g ≤ g̃− 1 has strict positive frequency. The

latter is impossible. We conclude that Pµ,µ-almost surely, η does not percolate.

4.3. Delocalization of height functions

In this section, we will sketch a slight variation of Lammers’ beautiful proof of delocal-

ization [114]. Let us begin by stating the main result.

Theorem 4.4 (Delocalization, [114]). Let Γ be a bi-periodic planar lattice with degrees

bounded by three. Suppose V : Z→ R be a convex and symmetric potential. If

V(0) ≤ V(1) + log(2),
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there does not exist a translation invariant Gibbs measure for the height function.

About the proof. Our variation of Lammer’s proof uses essentially the same ideas

proposed by Lammers, but differs in one way. We do not use an extension of the height

function to middle of the edges, but rather, we will introduce a percolation process which

corresponds to kind of sub level-set percolation, extended to the whole cable graph. We

think this describes the intuition behind delocalization quite well, although it could well

be a semantics discussion.

4.3.1 Extremal measures

To proof Theorem 4.4, we will argue by contradiction and suppose that an ergodic

translation invariant Gibbs measure µ does exist. By Theorem 4.1 we can assume that

µ is extremal and translation invariant.

This is important because it implies that the FKG property holds for the height

function: for any A,B increasing events, we know that

µ(1A∩B | FΛcn) ≥ µ(1A | FΛc)µ(1A | FΛcn)

because V is convex. Taking n→∞ and using backwards martingale convergence, this

implies µ(A ∩B) ≥ µ(A)µ(B).

The FKG property can be used to show that the expectation of h0 is an integer, so

that we can assume without loss of generality that it equals 0. This implies, essentially,

that all the extremal Gibbs measures are coming from the infinite volume limits (if we

would know they existed) of wired boundary conditions, with some prescribed boundary

value in Z.

Lemma 4.5 (Integer-valued expectation). Let µ be an extremal, translation invariant

Gibbs measure for the potential V. Then µ(h0) ∈ Z.

Proof. We begin by observing that the site percolations ξ− := {x : hx ≤ 0} and ξ+ :=

{x : hx ≥ 1} are FKG, because the height function satisfies the FKG property and µ is

extremal. The fact that the height function is FKG is a consequence of convexity.

Since the underlying lattice is bi-periodic and planar, it is impossible for both ξ−

and ξ+ to percolate by [59, 157]. If ξ− does not percolate, this implies that there must

be a circuit of ξ+ which is blocking. Therefore, and by the FKG property, this implies

that µ(h0) ≥ 1. On the other hand, if ξ+ does not percolate, the same argument implies

that µ(h0) ≤ 0, so that µ(h0) /∈ (0, 1). However, we can always shift h0 by an integer,

so we must have that µ(h0) ∈ Z.

Supposing that µ(h0) = 0, the proof of the last lemma tells us essentially that

(1{hx < 1})x inV must percolate: if it would not, then there would be blocking circuits
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of h ≥ 1 and hence µ(h0) ≥ 1. Thus, if we could show that also there must always be

a circuit where the height function is larger than 1, then this implies that the expected

value is actually be larger than one, which is a contradiction.

The idea to break this barrier is similar to the switching percolation described above:

to use the residual energy. If there is an edge where h equals zero on both endpoints,

then there may be enough energy in the system, to say that the height function will

“touch” a prescribed value somewhere on the edge (which doesn’t make sense). Let us

make a small detour to a setting where it does make sense: the integer-valued GFF.

4.3.2 The integer-valued Gaussian free field

Take the potential V(k) = β|k|2. This model is often called the integer-valued GFF.

One way to view it is as a regular GFF on the graph, conditioned to have integer values

on the vertices. As such, it allows for an extension to the cable graph, which is again

given by Brownian bridges connecting the endpoints. This is similar to the discussion

in Section 4.2.2 concerning the real-valued Gaussian free field.

In general, this defines a family of percolation processes ωc indexed by c ∈ R corre-

sponding to the “sub level-set percolation”: set ωce = 0 precisely when the cable graph

extension of h passes through c on the edge e. If c ∈ Z, then as above we can exchange

the value of h with 2c − h on all finite clusters of ωc, without changing the law of h.

This corresponds to reflecting h around the “level line” where h = c.

However, if c ∈ R, such as reflection is not possible because 2c − h is not integer

valued. Thus, we must restrict to c in the half-integers and as such, the minimal c > 0

we can look for is c = 1
2 .

Assume that µ is an extremal, translation invariant Gibbs measure and µ(h0) = 0. If

we can show that there is almost surely no path from 0 to infinity (on the cable system)

where h < 1
2 , then we know that µ(h0) is at least 1

2 , contradiction the assumption that

µ(h0) = 0.

On an edge where the endpoints are 0, the Brownian bridge has probability e−β to

touch 1
2 . Thus, the conditions of Theorem 4.4 imply β ≤ log(2), so that e−β ≥ 1

2 .

Lammers’ idea. We will soon finally use the assumption that the underlying Γ is

planar and has degrees bounded by 3.

Sample an i.i.d. family (σe)e∈E of uniform random variables on {−1, 1}. Define,

using only the height function h sampled from µ on the vertices, two bond percolation

processes ξ+ and ξ− as follows.

For each edge e = (x, y), set ξ+
e equal to 1 whenever either hx or hy is greater than

or equal to 1. If both endpoints are 0, set ξ+
e to one if σe = 1. Similarly, defined is ξ−e .

Note that ξ+ (and ξ−) are translation-invariant, FKG percolation processes because h
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satisfies the FKG property. Also note that since µ is ergodic2, we get that the event

“ξ+ percolates” is trivial. The same holds for ξ−.

Lemma 4.6. Almost surely, either 1− ξ− or 1− ξ+ does not percolate.

Proof. Because Γ has degrees bounded by three and ξ+ satisfies the FKG property, we

know that almost surely it is impossible that both ξ+ and 1− ξ+ percolate 3. Suppose

thus without loss of generality that 1− ξ+ percolates a.s. (otherwise we are done). By

construction, 1−ξ+ viewed as a random subgraph of Γ is contained in ξ−, so this implies

ξ− percolates almost surely. By the same argument as for ξ+, this implies 1− ξ− does

not percolate, so we are done.

Assume, without loss of generality, that 1− ξ+ does not percolate almost surely.

So how to go back to the level-set percolation? Recall that for β ≤ log(2) the proba-

bility that the cable graph extension of h on an edge hits 1
2 , with two zero endpoints, is

larger than 1/2. Since the Brownian bridges are independent for each edge, conditional

on (hx)x∈V , we can couple the sub level-set percolation h < 1
2 and 1− ξ+ in such a way

that h touching 1
2 on the edge, implies that ξ+ is open for edges with zero end-points.

For all other edges, the coupling is guaranteed by construction. We make such a cou-

pling precise below. Since 1− ξ+ does not percolate a.s., we deduce that h < 1
2 does not

percolate (on the cable graph), and hence µ(h0) ≥ 1
2 , a contradiction.

4.3.3 Extension to general height functions

We will now finalize the proof of Theorem 4.4. Assume as Γ is some infinite, trivalent

planar graph which is invariant under some lattice action.

The generalization to other models with a convex potential is similar as the one

appearing in the proof of Theorem 4.1. Let V be a convex, symmetric potential and

take µ and ergodic Gibbs measure corresponding to the potential. Fix also X = (Xe)e∈E

a family of independent uniform random variables on [0, 1], which will be useful to obtain

explicit couplings. Write Pµ for the product of µ and the law of X.

For c ∈ 1
2Z, we want to study the impact of a reflection around c on an edge. Sample

h from µ and for an edge e = (x, y), consider the two energies:

e−V(hx−hy) and e−V(2c−hx−hy). (4)

2Purely technically, we would also need to deal with the extra randomness needed to sample σ, but

this is just i.i.d. percolation.
3This is because a planar graph of degrees bounded above by three can be mapped to a planar graph

which has the edges of the original graph as its vertices, and connectivity is preserved. But we know

that for any FKG site percolation ξ, it is impossible that both ξ and 1− ξ percolate [59,157].
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which correspond to the actual energy and the energy after switching hx with 2c− hx.

Write mx,y and Mx,y for the minimum respectively maximum values of (4). Notice that

mx,y and Mx,y depend on h.

Define the percolation process ωc as follows. For any edge e = (x, y), set ωce = 0 if

the actual weight equals the minimal weight: e−V(hx−hy) = mx,y. In this case, we call

the edge excited. Next, also set ωce = 0 if

Xe ≤
me

Me
.

Otherwise, set ωce = 1

As in Section 4.2, the percolation process ωc can be thought of as a FK representation

of the sign clusters of h + c. Indeed, the following two important facts about the

percolation and the height function establish this analogue.

Lemma 4.7. For any c ∈ 1
2Z and any two vertices x, y ∈ V , we have

(i) Pµ is invariant under switching h and 2c− h on any of the finite clusters of ωc.

(ii) If x is connected to y in ωc, then (hx + c)(hy + c) > 0.

Proof. The first fact follows immediately from rewriting the (local) Gibbs factor in terms

of excited and not excited edges. The second fact is a consequence of convexity of V.

At this point, we have achieved the generalization of “sub level-set percolation”

from the integer-valued Gaussian free field to general convex, symmetric potentials.

The remainder of the proof is almost the same, although this time we will make the

coupling precise. Thus, fix c = 1
2 (although it does not really play a special role, we

could have picked any half-integer c > 0, making the result slightly weaker).

The percolation process ωc splits naturally into two parts: ωc,+ and ωc,− depending

on the sign of h+c on the cluster of ωc. The clusters ωc,− and ωc,+ correspond to the sub

respectively super level-set percolation of the height function (extended to the edges).

As for the integer-valued GFF, it is thus enough to rule out that ω
1
2
,− percolates:

Lemma 4.8. If ω−1
2

almost surely does not percolate, then µ(h0) ≥ 1
2 .

Proof. Suppose that ω
1
2
,− does not percolate almost surely. When the cluster of 0 is

finite in ω 1
2
, we can flip the sign of h+ 1

2 on that cluster and hence

Eµ(h01{cluster of 0 finite in ω
1
2 }) = Eµ((1− h0)1{cluster of 0 finite in ω

1
2 }),

which implies that

Eµ(h01{0 in finite cluster of ω
1
2 }) = 1

2Pµ(cluster of 0 finite in ω
1
2 ).
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Moreover, if the cluster of 0 is infinite in ω
1
2 , then h0 >

1
2 by assumption. This shows

µ(h0) = Eµ(h01{cluster of 0 finite in ω
1
2 }) + Eµ(h01{cluster of 0 infinite in ω

1
2 })

≥ 1

2
,

as desired.

The auxiliary percolation. Thus, we are left to rule out that ω
1
2
,− percolates. To

show this, we will again use a variation of Lammers’ argument and introduce auxiliary

bond percolation processes ξ+ and ξ− as follows. Sample h from µ and let (σe)e∈E be a

collection of independent random variables, each uniform on {−1, 1}.
Set ξ+

e = 0 for the edge e = (x, y) if either hx or hy is greater than 1
2 , or if hx = hy = 0

and σe > 0. ξ− is defined similarly, with the signs flipped. Since µ is extremal, the

product measure of µ and the spins is ergodic, and hence µ(ξ± percolates) is zero or

one. Also note that ξ+ and ξ− satisfy the FKG property, because h does.

Lemma 4.9. Let Γ be a trivalent planar graph, invariant under some lattice action.

Either µ(1− ξ+ percolates) = 0 or µ(1− ξ− percolates = 0).

Proof. The proof is exactly the same as for integer-valued GFF.

Implications on sub level-set percolation. Of course, having that 1−ξ+ or 1−ξ−

does not percolate, is not quite what we want. But we will couple the one which does

not percolate to the corresponding “sub level-set percolation” h < 1
2 or h > −1

2 .

Lemma 4.10. If V(1) ≤ V(0) + log(2), either ω
1
2
,− does not percolate almost surely, or

ω−
1
2
,+ does not percolate almost surely.

Proof. We will show that

µ(1− ξ+ percolates) = 0

implies that ω
1
2
,− does not percolate almost surely. The result then follows from sym-

metry. Assume thus that 1− ξ+ does not percolate almost surely.

First, we calculate the probability that an edge e = (x, y) is closed in ω
1
2
,− given

that the two endpoints satisfy hx = hy = 0. By definition, this is given by

Pµ(ω
1
2
e is closed | hx = hy = 0) = e−V(1)+V(0) ≥ 1

2
,

where the inequality follows by assumption on V. In particular, in this case ω
1
2
e is open

implies Xe >
1
2 .

Second, we define the coupling. Set σe = 1 precisely when

Xe <
1

2
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and σe = −1 otherwise. Of course, since (Xe)e,E is a family of independent random

variables, uniform on [0, 1], σe is a family of independent, uniform spins on −1, 1. This

defines a coupling of ξ+, ξ− and ω
1
2 , and we claim that ω

1
2
,− is less than 1− ξ+.

To prove the claim, we need to show that ω
1
2
,− = 1 implies ξ+ = 0. Let e = (x, y) be

any edge. For ω
1
2
,−

e to be open, we need that both endpoints are less than 1
2 : hx, hy <

1
2 .

On the one hand, if either of then endpoints does not equal 0, then ξ+
e = 0 and we are

done. On the other hand, if hx = hy = 0, ω
1
2
,−

e is open only only when Xe >
1
2 , so

ξ+
e = 0 by the coupling (σe = −1).

Finally, recall that 1 − ξ+ does not percolate almost surely, so also ω
1
2
,− does not

percolate, finalizing this proof.

The proof of Theorem 4.4 is essentially finished:

Proof of Theorem 4.4. Consider the setting of Theorem 4.4. Assume translation invari-

ant Gibbs measures exist. Let µ be an ergodic Gibbs measure. Take 0 some distinguished

vertex. By Lemma 4.5, we can assume that µ(h0) = 0.

On the other hand, by Lemma 4.10 we know that either ω
1
2
,− or ω

1
2
,+ does not

percolate. This implies that µ(h0) /∈ (−1/2, 1/2), a contradiction.
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CHAPTER 5

The BKT–transition in the XY model

5.1. Introduction and main result

Let G = (V,E) be a finite graph. Given a collection of nonnegative coupling constants

J = (Je)e∈E , and an inverse temperature β > 0, the XY model (with free boundary

conditions) is a random spin configuration σ ∈ SV , where S = {z ∈ C : |z| = 1} is the

complex unit circle, sampled according to the Gibbs distribution

dµG,β(σ) ∝ exp
(

1
2β

∑
vv′∈E

Jvv′(σvσ̄v′ + σ̄vσv′)
) ∏
v∈V

dσv, (1)

where vv′ denotes the edge {v, v′}, and dσv is the uniform probability measure on S.

For simplicity of notation, unless stated otherwise, we will assume that Je = 1 for all e.

However, our results extend naturally to nonhomogeneous coupling constants. We will

write 〈·〉G,β for the expectation with respect to µG,β. The observable of main interest

for us will be the two-point function 〈σaσ̄b〉G,β, a, b ∈ V , and its infinite volume limit

(which is well defined by the Ginibre inequalities [80])

〈σaσ̄b〉Γ,β = lim
G↗Γ
〈σaσ̄b〉G,β,

where Γ is an infinite planar lattice.

Note that if σv = eiθv , θv ∈ (−π, π], then σvσ̄v′ + σ̄vσv′ = 2 cos(θv − θv′). This

means that the model is ferromagnetic, i.e., pairs of neighboring spins that are (almost)

aligned have smaller energy and hence are statistically favoured. A natural question is

whether varying β leads to a ferromagnetic order–disorder phase transition in the model.

The classical theorem of Mermin and Wagner [134] excludes this possibility when the

underlying lattice Γ is two-dimensional. Moreover, McBryan and Spencer showed that

at any finite temperature 〈σaσ̄b〉Z2,β decays to zero at least as fast as a power of the

distance between a and b. On the other hand, it is known by the work of Fröhlich,

Simon and Spencer [70] that in higher dimensions the model exhibits long-range order

at low temperatures and the two-point function does not decay to zero.
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Even though there is no spontaneous symmetry breaking, Berezinskii [36, 37], and

Kosterlitz and Thouless [108] predicted that a different type of phase transition takes

place in two dimensions. It should be understood in terms of interacting topologi-

cal excitations of the model, the so called vortices and antivortices. They are those

faces of the graph where the XY configuration makes a full clockwise or anticlockwise

turn respectively when one traverses the edges of the face in a clockwise manner. Vor-

tices and antivortices interact through a Coulomb-like interaction, and are energetically

favoured to form short-distance pairs of vortex-antivortex. The Berezinskii–Kosterlitz–

Thouless (BKT) phase transition happens when, while decreasing the temperature, the

freely spaced vortices and antivortices (high-temperature plasma) bind together into

such vortex-antivortex pairs. This regime should exhibit power-law decay of the two-

point functions (in contrast to exponential decay at high temperatures). A rigorous

lower bound of this type for low temperatures, and therefore a proof of the BKT phase

transition was first obtained in the celebrated work of Fröhlich and Spencer [71] who

also derived analogous results for the Villain spin model. Their proof uses a multi-scale

analysis of the Coulomb gas, and the main purpose of the present chapter is to present an

alternative and less technically involved argument for the existence of phase transition

in two dimensions.

To be more precise, we introduce a new loop representation for the two-point function

in the XY model that can be used to transfer probabilistic information from the dual

integer-valued height function model to the XY model. Along the way we also show that

the height function possesses the crucial absolute-value-FKG property. This, together

with a recent elementary delocalization result for general height functions obtained by

Lammers [114], is used to prove existence of the BKT phase transition.

Theorem 5.1 (Berezinskii–Kosterlitz–Thouless phase transition). There exists βc ∈
(0,∞) such that

(i) for all β < βc, there exists c = c(β) > 0 such that for all v, v′ ∈ Z2,

〈σvσv′〉Z2,β ≤ e−c|v−v
′|,

(ii) for all β ≥ βc and all distinct v, v′ ∈ Z2,

〈σvσv′〉Z2,β ≥
1

8|v − v′|
.

We note that unlike in the original proof of Fröhlich and Spencer, we do not show that

the rate of decay approaches zero when so does the temperature. However, we establish a

type of sharpness which says that there is no other behavior than exponential and power-

law decay. The short proof of sharpness is independent of the rest of the argument. In the
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first step we classically use the Lieb–Rivasseau inequality [125,151] to establish a sharp

transition between exponential decay and nonsummability of correlations (similarly to

the proof for the Ising model [60]). To conclude a uniform power-law lower bound as

in (ii) whenever the correlations are not summable we use the Messager–Miracle-Sole

inequality [135] on monotonicity of correlations with respect to the position of the vertex

on the lattice.

We also note that our proof works (with minor modifications and a different, implicit

multiplicative constant in (ii)) for other infinite planar graphs that in addition to being

translation invariant possess reflection and rotation symmetries, and whose dual graph

has bounded degree.

At the same time when the original article presented here appeared, an analogous

result for the Villain model (without sharpness and explicit polynomial decay in the

BKT phase) was given by Aizenman et al. [8]. It was later extended to also cover the

XY model (including sharpness). For a more detailed overview of the XY model, we

refer the reader to [69,142], and for expositions of the argument of Fröhlich and Spencer,

we refer to [76,104].

This chapter is organized as follows.

• In Section 5.2 we introduce the dual of the planar XY model in form of an integer-

valued height function defined on the faces of the graph. We also establish positive

association of its absolute value (the absolute-value-FKG property), and recall the

delocalization result of Lammers [114].

• In Section 5.3 we define a random collection of loops on the graph that carries

probabilistic information about both the XY spins and the dual height function.

Although this is a well known object that goes back to the works of Symanzik [161],

and Brydges, Fröhlich and Spencer [42], the formula that relates the two-point

function to the probability of two points being connected by a loop (Lemma 5.10)

is new and crucial to our argument.

• In Section 5.4 we give an elementary argument which states that if the height

function delocalizes at some temperature, then the spin two-point function does

not decay exponentially.

• In Section 5.5 we use the above ingredients to show that on any translation invari-

ant graph, there exists a finite temperature at which the two-point function does

not decay exponentially. This is not immediate as the result of Lammers [114]

applies only to trivalent graphs. However, a simple graph-modification argument

together with the Ginibre inequality allows to change the setup from a general

graph to a triangulation (a graph whose dual is trivalent).
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• In Section 5.6 we finish the proof of the main theorem. We use the Lieb–Rivasseau

inequality [125, 151] and the Messager–Miracle-Sole inequality [135] to show that

the absence of exponential decay implies a power-law lower bound on the two-point

function.

5.2. The dual height function

To define the dual model we assume that G is planar and finite, and we introduce the

notion of currents. To this end, let ~E = {(v, v′) : {v, v′} ∈ E} be the set of directed

edges of G, and let N = {0, 1, . . .}. A function n : ~E → N is called a current on G. For

a current n, we define δn : V → Z by

δnv =
∑
v′∼v

n(v,v′) − n(v′,v).

Hence if δnv is positive, then the amount of outgoing current is larger than the incoming

current, an we think of v as a source. Likewise if δnv is negative, there is more incoming

current and v is a sink. A current is sourceless if δnv = 0 for all v ∈ V .

We define Ω0 to be the set of all (sourceless) currents. Sourceless currents naturally

define a height function h on the set of faces of G, denoted by U , where the height of

the outer face is set to zero, and the increment of the height between two faces u and

u′ is equal to

h(u)− h(u′) = n(v,v′) − n(v′,v),

where the primal directed edge (v, v′) crosses the dual directed edge (u, u′) from right

to left. That this yields a well defined function on the faces of G follows from the fact

that δn = 0. We define the XY weight of a current by

wβ(n) =
∏

(v,v′)∈ ~E

1

n(v,v′)!

(βJvv′
2

)n(v,v′)
, (2)

These weights appear naturally in the expansion of the partition function of the XY

model into a sum over sourceless currents after one expands the exponentials in (1) into

a power series in the variables 1
2βJvv′σvσ̄v′ for each directed edge (v, v′) ∈ ~E, and then

integrates out the σ variables. They will also appear in the analogous classical expansion

for spin correlations (11).

We note that using currents to define a model on the dual graph is an instance

of planar duality of abelian spin systems [52], and the fact that the function is is a

consequence of Z being the dual group of the unit circle.

Clearly, the weight (2) defines a probability measure PG,β on currents and hence also

on height functions. In terms of the height function it is a Gibbs measure given by

PG,β(h) ∝ exp
(
−

∑
uu′∈E†

Vβe (h(u)− h(u′))
)
, (3)
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where E† is the set of dual edges of G, and where the symmetric potentials Vβe : Z→ R
are given by

Vβe (k) = − log
( ∞∑
i=0

1

i!(i+ |k|)!

(βJe
2

)2i+|k|)
= − log Ik(βJe) (4)

with Ik being the modified Bessel function. We again note that we will usually set all

Je = 1 to simplify the notation.

A well known Turán-type inequality for modified Bessel functions [163] states that

for any k ≥ 0 and β > 0,

I2
k(β) ≥ Ik−1(β)Ik+1(β) (5)

which means that Vβe is convex on the integers. This puts the model in the well-studied

framework of height functions with a convex potential (see e.g. [157]).

5.2.1 Gibbs measures and delocalization

To state the delocalization result of Lammers we will need the notion of a Gibbs measure

for height functions on infinite graphs (though we will not directly work with it in the

remainder of the chapter). Let Γ = (V,E) be an infinite planar graph and Γ† = (U,E†)

its planar dual. If ν is a measure on height functions ϕ : ZU → Z and Λ ⊂ U a finite

subset, write νΛ for the measure restricted to Λ. Let V = (Ve)e∈E† be a family of convex

symmetric potentials. We call ν a Gibbs measure for the potential V if for every such

Λ, it satisfies the Dobrushin–Lanford–Ruelle relation

νΛ(·) =

∫
ZU
νϕΛ(·)dν(ϕ),

where νϕΛ is the Gibbs measure on height functions h ∈ ZU given as in (3) (but with Vβ

replaced by V) and conditioned on h being equal to ϕ on the boundary of Λ.

In what follows we will always assume that Γ is locally finite and invariant under the

action of a Z2-isomorphic lattice. We say that ν is translation invariant if it is invariant

under the same action.

In a recent beautiful work [114] Lammers gave a condition on the potential that

guarantees that there are no translation invariant Gibbs measures on graphs of degree

three (trivalent graphs).

Theorem 5.2 (Lammers [114]). Let Γ† = (U,E†) be as above and moreover trivalent.

If for every e ∈ E†,
Ve(±1) ≤ Ve(0) + log(2), (6)

then there are no translation invariant Gibbs measures for V.

This together with the dichotomy stated in Theorem 5.4 will be one of the key

ingredients of the proof of the main theorem.
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5.2.2 Absolute-value-FKG and dichotomy

In this section, we prove that the height function satisfies the absolute-value-FKG prop-

erty, which is known to imply the dichotomy in Theorem 5.4 below [45, 117]. Here we

will only work with the potential Vβ as defined in (4).

Proposition 5.3 (Absolute-value-FKG). Let G = (V,E) be a finite graph and U the

set of its faces. Then for all β > 0, and all Ψ,Φ : NU → R+ increasing functions,

EG,β[Ψ(|h|)Φ(|h|)] ≥ EG,β[Ψ(|h|)]EG,β[Φ(|h|)].

We first explain briefly the dichotomy. Let Γ = (V,E) be a translation invariant

graph, and let 0 be a chosen face of Γ. Define Bn to be the subgraph of Γ induced by

the vertices in V that lie on at least one face of Γ that is contained in the graph ball

of radius n on Γ†. We introduce this slightly convoluted definition to guarantee the

following three properties: 0 belongs to all Bn, also Bn ↗ Γ as n→∞, and finally, the

weak dual graph of Bn (the dual graph with the vertex corresponding to the external

face of Bn removed) is a subgraph of Γ†.

Theorem 5.4. Consider the setup as above. Then for every β > 0, exactly one of the

following two occurs:

(i) (localization) There exists a C <∞ such that uniformly over all n,

EBn,β[|h(0)|] ≤ C.

(ii) (delocalization) There are no translation invariant Gibbs measures for the poten-

tial (4).

Proof. This is a consequence of the absolute-value-FKG property (Proposition 5.3) and

standard arguments using monotonicity in boundary conditions. See [117, Theorem

2.7].

We turn to the proof of Proposition 5.3. The first step (Lemma 5.5) consists in

showing that, for β small enough, the potential satisfies an inequality known to imply

the absolute-value-FKG property [117]. In the second step we use this to conclude the

absolute-value-FKG property for general β.

Lemma 5.5. The absolute-value-FKG property holds true for all β ≤ 1.

Proof. We rely on a result of Lammers and Ott [117, Theorem 2.8], stating that if

Vβe (k − 1)− 2Vβe (k) + Vβe (k + 1) = − log
(Ik−1(β)Ik+1(β)

Ik(β)2

)
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is a nonincreasing function of k on {0, 1, . . .}, then PG,β is absolute-value-FKG. We

define rk = 1
β

Ik(β)
Ik−1(β) , and need to show that r2

k ≤ rk−1rk+1 for all k ≥ 0. The well

known recurrence relation

Ik−1(β) = 2k
β Ik(β) + Ik+1(β) yields rk = (2k + β2rk+1)−1.

Hence it is enough to prove that

(2k + εk+1)(2(k + 2) + εk+3) ≤ (2(k + 1) + εk+2)2,

where εk = β2rk. Using the Turán inequality (5), it follows that 0 ≤ rk+1 ≤ rk, and

therefore it is sufficient to establish that

Rk := (2k + εk+1)(2k + 4 + εk+1)− (2k + 2)2 = 4(k + 1)εk+1 + ε2k+1 − 4 ≤ 0.

At the same time, simply using the definition of rk+1 and comparing the Taylor expan-

sions (4) of Ik+1 and Ik term by term gives εk+1 ≤ β2/(2k+ 2). Therefore, when β ≤ 1,

we have Rk ≤ ε2k+1 − 2 ≤ 0 for all k ≥ 0, which concludes the proof.

To treat general values of β, we will use a trick which consists in replacing each

edge of G by s = dβe consecutive edges, and reducing the parameter β by the factor s,

together with the following convolution property of the modified Bessel functions.

Lemma 5.6. For all k, l ∈ Z and all β, β′ ≥ 0,∑
m∈Z

Ik−m(β)Im−l(β
′) = Ik−l(β + β′).

Proof. This is a classical identity which follows from the fact that Ik(β)/eβ = P(Z−Z ′ =
k), where Z,Z ′ are independent Poisson random variables with mean β/2, and the fact

that a sum of independent Poisson random variables is Poisson.

With this we can prove Proposition 5.3.

Proof of Proposition 5.3. Let Gs = (Vs, Es) be G with each edge replaced by s con-

secutive edges, and let hs be the height function on Gs with law µGs,β/s. By Lemma

5.6 (and an induction argument) the restriction of hs to V has the same law as h1.

Moreover, β/s ≤ 1 by definition of s, which by Lemma 5.5 implies that µs satisfies

the absolute-value-FKG property. To finish the proof it is enough to notice that any

increasing function on NV is also increasing on NVs .

Remark 5.1. An interesting consequence of the idea above (that we will not use in this

chapter) is the following. Consider the case when s from above is independent of β

and diverges to infinity. In this limit, the height function becomes well defined at every
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point of every dual edge. Here we think of the dual graph as the so called cable graph,

i.e., every dual edge e is identified with a continuum interval of length Jeβ. Then the

distribution of the height on an edge, when conditioned on the values at the endpoints, is

one of the difference of two Poisson processes with intensity Jeβ/2 each, and conditioned

on the value at the endpoints. One can check that the model exhibits a spatial Markov

property on the full cable graph and not only on the vertices. This is in direct analogy

with the cable graph representation of the discrete Gaussian free field, where the vertex-

field can be extended to the edges via Brownian bridges (see e.g. [129] and the references

therein).

5.3. Loop representation of currents and path reversal

The purpose of this section is mainly to develop a loop representation for the two-

point function of the XY model. The important aspect of our approach is that the

correlations are represented as probabilities for loop connectivities in random ensembles

of closed loops. This is in contrast with most of the classical representations that write

correlation functions as ratios of partition functions of loops, where in the numerator, in

addition to loops, one also sums over open paths between the points of insertion in the

correlator [42, 161]. We note that a similar idea to ours appears in the work of Benassi

and Ueltschi [26], but due to technical differences in the framework (see Remark 5.4),

the formula for the two-point function obtained in [26] is not as transparent as ours.

Let G = (V,E) be a finite, not necessarily planar graph. We say that a multigraph

M on V is a submultigraph of G if after identifying the multiple copies of the same edge

in M it is a subgraph of G.

Definition 5.7 (Loop configurations outside S). Let M be a submultigraph of G, and

let S ⊆ V . A loop configuration (on M) outside S is a collection of

• unrooted directed loops on M avoiding S, and

• directed open paths on M starting and ending in S (and not visiting S except at

their start and end vertex),

such that every edge of M is traversed exactly once by a loop or a path.

We write LS for the set of all loop configurations outside S, and define a weight for

ω ∈ LS by

λSβ (ω) =
∏

v∈V \S

1

(degM(v)/2)!

∏
e∈E

1

Me!

(β
2

)Me

, (7)

where M is the underlying multigraph, and Me is the number of copies of e in M.

When S = ∅, a configuration is composed only of loops that can visit every vertex in V ,

and we simply call it a loop configuration.
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An important feature of the weight (7) is that it depends on ω only through M.

Also note, that if S′ ⊆ S, then there is a natural map ρ : LS′ → LS that consists in

forgetting (or cutting) the loop connections at the vertices in S \ S′. Under this map,

each configuration in LS has
∏
v∈S\S′ (degM(v)/2)! preimages, each of them having the

same weight, and hence ∑
ω̃∈ρ−1[ω]

λS
′

β (ω̃) = λSβ (ω). (8)

This consistency property will be useful later on.

For now, let |n| : E → N be the amplitude of a current n, i.e.

|n|vv′ := n(v,v′) + n(v′,v).

Definition 5.8 (Multigraph of a current and consistent configurations). For a current n,

let Mn be the submultigraph of G where each edge e ∈ E is replaced by |n|e (possibly

zero) parallel copies of e. A loop configuration on Mn is called consistent with n if

for every edge (v, v′) ∈ ~E, the number of times the loops traverse a copy of vv′ in the

direction of (v, v′) is equal to n(v,v′). We define LSn to be the set of all loop configurations

on Mn outside S that are consistent with n.

For ϕ : V → Z, let Ωϕ = {n : δn = ϕ},

ZϕG,β =
∑
n∈Ωϕ

wβ(n),

and S(ϕ) = {v ∈ V : ϕv 6= 0}. For a current n, with a slight abuse of notation, we

also write S(n) = S(δn). Note that LSn can be nonempty only if S(n) ⊆ S. Indeed,

each path and loop that enters a vertex in V \ S must also leave it, and hence the total

number of incoming and outgoing arrows at each such vertex must be the same. For

ϕ : V → Z, we also define

LSϕ =
⋃

n∈Ωϕ

LSn.

Again, this is nonempty only if S(ϕ) ⊆ S. We will write LS0 , where 0 denotes the zero

function on V .

We now relate the weights of loops to those of currents. To this end, note that for

each edge vv′ ∈ E, there are exactly

|n|vv′ !
n(v,v′)!n(v′,v)!

ways of assigning orientations to it so that the result is consistent with n. Moreover,

independently of the choices of orientations, there are exactly (degMn
(v)/2)! possible
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pairings of the incoming and outgoing edges at each vertex v ∈ V \ S. Combining all

this we arrive at a crucial loop representation for current weights: if S(n) ⊆ S, then

wβ(n) =
∑
ω∈LSn

λSβ (ω). (9)

An important observation here is that the left-hand side is independent of S, and hence

so is the right-hand side.

5.3.1 Coupling with the height function

We now apply this framework to the case of two sourceless currents and a coupling with

the corresponding height function. From (9) we have

Z0
G,β =

∑
ω∈L∅0

λ∅β(ω) (10)

where 0 denotes the zero function on V .

Remark 5.2. This loop representation of the partition function, though obtained via a

different procedure, goes back to the work of Symanzik [161], and Brydges, Fröhlich and

Spencer [42].

Moreover, in the case when G is planar we immediately get the following distribu-

tional identity. Define PG,β to be the probability measure on L0 := L∅0 induced by the

weights λβ := λ∅β. For each face u ∈ U of G, and ω ∈ L0, define Wω(u) to be the total

net winding of all the loops in ω around u.

Proposition 5.9. The law of (W (u))u∈U under PG,β is the same as the law of the

height function (h(u))u∈U under PG,β.

5.3.2 The two point-function and path reversal

We now turn to the loop representation of the two-point function. For reasons that will

become apparent soon, we need to consider the two-point function of the squares, i.e.,

〈σ2
aσ̄

2
b 〉.

Since the resulting currents will have sources, we will need to consider nonempty

S in the construction above. To this end, fix two vertices a, b ∈ V , and and define

ϕ = 2(δa − δb), where δa(v) = 1{a = v}. To lighten the notation, will write a, b instead

of {a, b} for the set S. As for the partition function, expanding the exponential in

the Gibbs–Boltzmann weights (1) into a power series in 1
2βJvv′σvσ̄v′ for each directed

(v, v′) ∈ ~E, and integrating out the σ variables, we get

〈σ2
aσ̄

2
b 〉G,β =

ZϕG,β
Z0
G,β

=

∑
ω∈La,bϕ

λa,bβ (ω)

Z0
G,β

, (11)
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where the first equality classically follows from the high-temperature expansion of cor-

relation functions and the second one is a consequence of (9).

We will write Pa,b(ω) for the set of paths in ω that start at a and end at b, and

define

ma,b(ω) = |Pa,b(ω)|.

We now want to “erase the sources” at a and b from the currents underlying La,bϕ , and

hence rewrite the numerator as a sum over La,b0 . We will then ultimately connect the

open paths at a and b in all possible ways, and hence get a sum over L∅0 (see Figure

5.1 for an example). To this end note that in each ω ∈ La,bϕ there are exactly two more

paths going from a to b, than those going from b to a, i.e., ma,b(ω) = mb,a(ω) + 2.

The elementary operation that we will perform on the former paths is reversal. To this

end, denote by r(γ) the path γ with the orientation of all the visited edges reversed.

Obviously this does not change the underlying multigraph, and hence also the weight

of the loop configuration. The crucial observation now is that it maps ω ∈ La,bϕ to a

configuration ω′ ∈ La,b0 , and hence erases the sources of the underlying currents. Indeed

one can easily check that after reversing a path, the number of incoming minus the

number of outgoing edges at every vertex v /∈ {a, b} in ω′ is the same as in ω, whereas

at a (resp. b) this number is decreased (resp. increased) by two. More precisely, our

transformation maps bijectively a pair (ω, γ) where ω ∈ La,bϕ and γ ∈ Pa,b(ω) to the pair

(ω′, r(γ)) where ω′ ∈ La,b0 and r(γ) ∈ Pb,a(ω′). Moreover, mb,a(ω
′) = mb,a(ω) + 1, which

in particular means that m(ω′) > 0. Since path reversal does not change the weight of

a loop configuration, we obtain∑
ω∈La,bϕ

λa,bβ (ω) =
∑

ω∈La,bϕ ,γ∈Pa,b(ω)

1

mb,a(ω) + 2
λa,bβ (ω)

=
∑

ω′∈La,b0 ,γ′∈Pb,a(ω′)

1

mb,a(ω′) + 1
λa,bβ (ω′)1{ma,b(ω

′) > 0}

=
∑

ω′∈La,b0

mb,a(ω
′)

mb,a(ω′) + 1
λa,bβ (ω′)1{mb,a(ω

′) > 0}

=
∑
ω′′∈L∅0

mb,a(ω
′′)

mb,a(ω′′) + 1
λ∅β(ω′′)1{mb,a(ω

′′) > 0},

where in the second equality we used path reversal, the last equality follows from (8)

with S′ = ∅, and where, with a slight abuse of notation, for ω′′ ∈ L∅0, mb,a(ω
′′) is the

number of pieces of loops going from b to a and not visiting b nor a except for the

start and end vertex. Recall that PG,β is the probability measure on L∅0 induced by the

weights λ∅β, and note that mb,a has the same distribution as ma,b under PG,β (the law

on loops is invariant under a global orientation reversal). We therefore obtain from (10)
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Figure 5.1: Left to right: an Eulerian multigraphM; a loop configuration ω ∈ La,b2(δa−δb)
on M (a is the top left and b the bottom right vertex) together with a path from a

to b marked red; a loop configuration ω′ ∈ La,b0 with the path reversed; and one of the

final loop configurations ω′′ ∈ L∅0 corresponding to ω′, i.e., such that ρ(ω′′) = ω′. Here

ma,b(ω) = 3, mb,a(ω) = 1, and ma,b(ω
′) = mb,a(ω

′) = 2

and (11) the following loop representation of the two-point function.

Lemma 5.10. Let a, b ∈ V be distinct. Then

〈σ2
aσ̄

2
b 〉G,β = EG,β

[ ma,b

ma,b + 1

]
,

and in particular

1

2
PG,β(ma,b > 0) ≤ 〈σ2

aσ̄
2
b 〉G,β ≤ PG,β(ma,b > 0).

Let us finish with a number of remarks.

Remark 5.3. We stress again that the crucial property of this loop representation is

that the measure PG,β is supported on collections of closed loops, and is independent

of the choice of a and b. A similar idea was used by Lees and Taggi [123] to study

spin O(n) models with an external magnetic field. Moreover, by Proposition 5.9 and

Lemma 5.10, the random loops under PG,β carry probabilistic information about both

the spin XY model (in terms of correlation functions) and its dual height function

(as an exact coupling). An analogous role for the Ising and Ashkin–Teller model is

played by the (double) random current measure that encodes both an integer-valued

height function and the spin correlations [54, 126, 127]. The difference is that for the

XY model, the correlations are determined by loop connectivities instead of percolation

connectivities. This comparison offers an alternative explanation for the different types

of phase transition in discrete and continuous spin systems.

Remark 5.4. The approach above is different from [26, 42, 123, 161] in that in the loop

configurations, we never make connections at vertices with sources. This leads to dif-

ferent combinatorics than in [26], and in particular a more transparent formula for the

two-point function.
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Remark 5.5. We call a multigraphM Eulerian if its degree is even at every vertex. An-

other way to sample the loop configuration that easily follows from the above definitions

is the following procedure:

• First sample an Eulerian submultigraph M of G with probability proportional to

E(M)
∏
e∈E

1

Me!

(β
2

)Me

,

where E(M) is the number of Eulerian orientations of M, i.e., assignments of

orientations to every edge of M with an equal number of incoming and outgoing

edges at every vertex.

• Then choose uniformly at random an Eulerian orientation of M.

• Finally, at each vertex, independently of other vertices, connect the incoming edges

with the outgoing edges uniformly at random.

Remark 5.6. Using the same argument as above one obtains the following formula for

higher power two-point functions. For k ≥ 1, we have

〈σ2k
a σ̄

2k
b 〉G,β = EG,β

[ (ma,b)k
(ma,b + k)k

]
,

where (m)k = m(m − 1) · · · (m − k + 1) is the falling factorial. One can also consider

multi-point functions and get more complicated loop representation formulas.

Remark 5.7. The isomorphism theorem of Le Jan [119] says that the discrete complex

Gaussian free field can be coupled with a Poissonian collection of random walk loops,

the so called random walk loop soup, in such a way that one half of the square of the

absolute value of the field is equal to the total occupation time of the random walk loops.

On the other hand, it is immediate that conditioned on the absolute value of the field,

its complex phase is distributed like the XY model with coupling constants depending

on this absolute value. With some work, e.g. using [120], one can show that under this

conditioning the random walk loops have the same distribution as the loops described

above.

5.4. Delocalization implies no exponential decay

In this section we prove that if the height function delocalizes, then the spin correlations

are not summable along certain sets of vertices. In the next section, we will show how

to apply this together with the delocalization results of Lammers [114] to deduce a

BKT-type phase transition in a wide range of periodic planar graphs.
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Suppose Γ = (V,E) is a translation invariant planar graph, and write

〈σaσ̄b〉Γ,β = lim
G↗Γ
〈σaσ̄b〉G,β (12)

for the infinite volume two-point function, where the limit is taken along any increasing

sequence of subgraphs G exhausting Γ. That this is well defined is guaranteed by the

fact that the sequence is nondecreasing, i.e., 〈σaσ̄b〉G,β ≤ 〈σaσ̄b〉G′,β if G is a subgraph

of G′, which in turn is a classical consequence of the Ginibre inequality [80].

Definition 5.11. Let 0 be a distinguished face of Γ. A bi-infinite self-avoiding path in

Γ that goes through at least one edge incident to 0 is called a cut (at 0). Note that a

cut L naturally splits into two connected infinite sets of vertices L+ and L− with the

property that any cycle in Γ that surrounds 0 must intersect both L+ and L−.

The main quantity of interest for us will be the sum of correlations along cuts. To

be more precise for ε > 0, let

χεΓ,β(L) =
∑

a∈L+,b∈L−

(〈σaσb〉Γ,β)2−ε. (13)

Proposition 5.12. For every ε > 0, there exists C = C(ε, β,Γ) < ∞ such that for all

finite subgraphs G of Γ containing 0, we have

EG,β[|h(0)|] ≤ C inf
L
χεΓ,β(L),

where the infimum is over all cuts at 0.

Before presenting the proof, let us mention that a direct corollary of this proposition

is the following. A natural example of a cut is any path that stays at a constant distance

from a straight line going through 0. In this case it is easy to see that χεΓ,β(L) is finite

whenever there is exponential decay of spin correlations. We can now state the main

conclusion of this section.

Corollary 5.13. If the height function delocalizes in the sense of Theorem 5.4, then

χεΓ,β(L) =∞

for all ε > 0 and all cuts L at 0. In particular the two-point function does not decay

exponentially fast with the distance between the vertices.

Proof. We know that situation (i) from Theorem 5.4 does not happen. This means that

supn EBn,β[|h(0)|] =∞, and the claim follows directly from Proposition 5.12.
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Remark 5.8. One naturally expects that the localization-delocalization phase transition

for the height function happens at the same temperature as the BKT transition for the

XY model. The remaining part of this prediction is therefore to show that if the spin

correlations do not decay exponentially, then the height function delocalizes. We do not

do this in this chapter.

Recall that ma,b is the number of paths (pieces of loops) in a loop configuration that

go from a to b. We will need the following lemma.

Lemma 5.14. For all β > 0 and p > 1, there exists a Cp < ∞ such that for all finite

graphs G = (V,E) and all a, b ∈ V ,

EG,β[ma,b] ≤ Cp degG(a)
(
PG,β(ma,b > 0)

) 1
p .

Proof. Fix β > 0, G = (V,E) and a, b ∈ V , and let ω ∈ L0 be a loop configuration on

G. Denote by ωe, the number of visits of all loops in ω to an undirected edge e ∈ E. If

there are m ≥ 1 paths going from a to b in ω, then in particular
∑

c∼a ω{a,c} ≥ m. This

implies that

EG,β[ma,b] ≤ EG,β

[∑
c∼a

ω{a,c}1{ma,b > 0}
]
≤ degG(a) max

c∼a
EG,β[ω{a,c}1{ma,b > 0}].

Applying Hölder’s inequality gives

EG,β[ω{a,c}1{ma,b > 0}] ≤
(
EG,β[ωq{a,c}]

)1/q
PG,β(ma,b > 0)1/p,

where 1/p + 1/q = 1. We now notice that by definition, ωe under PG,β has the same

distribution as the amplitude |n|e under PG,β. Therefore, to finish the proof it is enough

to show that for all q > 1, there exists Cq < ∞ depending on β but independent of G

such that

EG,β[|n|qe] ≤ Cq. (14)

We postpone the proof of this bound to Lemma 5.16 and Lemma 5.17.

The last ingredient that we will need is the following inequality

Lemma 5.15. For any a, b ∈ V , we have

〈σ2
aσ̄

2
b 〉G,β ≤ 2〈σaσ̄b〉2G,β.

Proof. A version of the Ginibre inequality (see e.g. [25]) says that〈
=(σa)=(σb)<(σa)<(σb)

〉
G,β
≤
〈
=(σa)=(σb)

〉
G,β

〈
<(σa)<(σb)

〉
G,β

,

which after rearrangement gives the desired inequality.
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We are now ready to prove the main theorem.

Proof of Proposition 5.12. Fix a finite subgraph G and a cut L. By Proposition 5.9 the

height function h(0) under PG,β has the sam law as W (0) – the total net winding around

0 of all loops in a loop configuration – drawn according to PG,β. Moreover, any piece

of a loop that adds to the winding (in any orientation) must intersect both L+ and L−

by definition of a cut. Therefore, taking p = 2/(2− ε), we have

EG,β[|h(0)|] = EG,β[|W (0)|] ≤
∑

a∈L+,b∈L−

EG,β[ma,b]

≤ C̃
∑

a∈L+,b∈L−

(PG,β(ma,b > 0))1/p

≤ 2C̃
∑

a∈L+,b∈L−

(〈σ2
aσ̄

2
b 〉G,β)1−ε/2

≤ 4C̃
∑

a∈L+,b∈L−

(〈σaσ̄b〉G,β)2−ε ≤ CχεΓ,β(L).

where the third line follows from Lemma 5.14, the forth one from Lemma 5.10, the fifth

one from Lemma 5.15, and the last one from (12). This completes the proof.

It therefore remains to show (14), which will directly follow from Lemma 5.16 and

Lemma 5.17 below. To that end, define for k ∈ N and β > 0, a random variable Yk by

Pβ(Yk = i) ∝ 1

i!(i+ k)!

(β
2

)2i+k
,

so that the normalizing constant is Ik(β). For e = vv′, let

|∇h|e = |n(v,v′) − n(v′,v)|

be the absolute value of the gradient of the height function across the dual edge e†. Note

that the random variables (Xe = Xe(n))e∈E defined through

Xe =
|n|e − |∇h|e

2

have the same distribution as Y|∇h|e . Moreover, conditionally on |∇h|, they are an

independent family. To show (14) it is enough to bound the moments of |∇h|e and Xe

separately, which we will now do.

Lemma 5.16. For all β > 0 and all r ∈ N, there exists a Cr < ∞ such that for all

finite planar graphs G = (V,E) and all e ∈ E,

EG,β[|∇h|re] ≤ Cr.
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Proof. Fix a finite planar graph G, and let e = vv′ ∈ E. Write Pe,β for the law of the

height function on the graph consisting of just one edge e, say with h(v) = 0. We claim

first that there exists some absolute constant C not depending on G, e or r such that

EG,β|∇h|re ≤ CEe,β|∇h|re. (15)

This implies the result because (as Vβ is convex and symmetric) the law of ∇he is

log-concave and symmetric under Pe,β so that it has all moments.

Let G \ e be the graph without the edge e. For l ∈ Z, we define Ωl(G) = {n on G :

δn = l(δv − δv′)}, and

Z lG =
∑

n∈Ωl(G)

wβ(n),

and analogously Z lG\e. Similarly to (11), we get from the high-temperature expansion

of correlation functions that

〈σlvσ̄lv′〉G\e,β =
Z lG\e

Z0
G\e

.

By the definition of the height function and currents, we therefore have

PG,β(|∇h|e = l) = Il(β)
(Z lG\e + Z−lG\e)

Z0
G

= 2Il(β)
Z lG\e

Z0
G\e

Z0
G\e

Z0
G

≤ 2Il(β) = Pe,β(|∇h|e = l)Z0
e ,

where we used the obvious bounds 〈σlvσ̄lv′〉G\e,β ≤ 1, and Z0
G\e/Z

0
G ≤ 1. Setting C = Z0

e

we establish (15).

Lemma 5.17. For all β > 0 and all r ∈ N, there exists a C̃r < ∞ such that for all

finite planar graphs G = (V,E) and e ∈ E,

EG,β[|Xe|r] ≤ C̃r.

Proof. For two nonnegative integers i, r, let (i)r = i(i − 1) · · · (i − r + 1) be the falling

factorial with the convention that (i)0 = 1. Note that (i)r = 0 whenever i < r. It will

be convenient to look at the falling factorial moments. First note that by definition of

Yk,

Eβ[(Yk)r] =
1

Ik(β)

∑
i≥0

(i)r
i!(i+ k)!

(β
2

)2i+k
=

(β
2

)r
Ik(β)

∑
i≥0

1

i!(i+ k + r)!

(β
2

)2i+k+r
= (β2

)r Ik+r(β)

Ik(β)
.
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By the Turán inequality (5), the map k 7→ Ik+1(β)/Ik(β) is decreasing and hence

Eβ[(Yk)r] =
(β

2

)r Ik+r(β)

Ik(β)
≤
(β

2

)r Ir(β)

I0(β)
=: C.

Now note that (i)r ≥ |i−r|r when i ≥ r, and hence ir ≤ 2r−1(|i−r|r+rr) ≤ 2r((i)r+rr).

Finally

Eβ[|Xe|r | |∇h|e = k] = Eβ[|Yk|r] ≤ 2r(C + rr) := C̃r,

where the last bound does not depend on k. Integrating over the possible values of |∇h|e
concludes the proof.

5.5. Existence of phase transition in the XY model

In this section, we prove that for all translation invariant planar graphs Γ = (V,E), the

XY model undergoes a non-trivial phase transition in terms of the quantity χεβ(L). As

before, let 0 denote an arbitrary distinguished face of Γ. We define

β0 = inf{β > 0 : for all ε > 0 and all cuts L at 0, χεβ(L) =∞}.

Theorem 5.18. Let Γ be as above. Then β0 <∞.

By Corollary 5.13 it is enough to show that for any such Γ, there exists a finite

β0 > 0 such that the associated height function delocalizes in the sense that there are no

translation invariant Gibbs measures on the dual Γ†. We first implement this strategy

for triangulations, where delocalization can be shown directly using the general result

of Lammers [114] (Theorem 5.2).

Proof of Theorem 5.18 for triangulations. Let Γ be a translation invariant triangula-

tion. Note that condition (6) in our case is equivalent to I1(β)/I0(β) ≥ 1
2 . It is known

that this fraction converges to 1 as β → ∞ (see for example [155]), and therefore in

light of Theorem 5.2, there are no translation invariant Gibbs measures for β large

enough.

To extend beyond triangulations, we will use a different approach. We stress that in

particular, we will not show delocalization of the height function on graphs that are not

triangulations. Instead, we exploit monotonicity in coupling constants to bound from

below the spin correlations on an arbitrary translation invariant graph by correlations

on a modified graph that is a triangulation. We explain this procedure in detail for the

square lattice, and briefly mention the extension to other lattices at the end.

In what follows, we will need the following well known monotonicity of spin correla-

tions that is a classical consequence of the Ginibre inequality [80].
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Figure 5.2: The transformation to a triangulation. The red edge on the right is the edge

with different potential.

Lemma 5.19. For each (infinite or finite) graph G = (V,E), β > 0, e ∈ E, and

a, b ∈ V , the function

Je 7→ 〈σaσ̄b〉G,β

is nondecreasing.

Proof of Theorem 5.18 for the square lattice. Let Γ = (V,E) denote the square lattice.

In order to use (6), we need to transform Γ into a triangulation. See Figure 5.2 for

guidance. Fix a square and double the bottom and left edge and put coupling constants

β/2 on the doubled edges instead of β. Next, double the common vertex of the left and

bottom edge and add an additional edge e, on which we set the coupling constant to

infinity. This does not change the distribution of the spins. Finally, set the coupling

constant on the edge e to 0, which is equivalent to removing the edge from the square,

and repeat the procedure for all other squares. In this way, we obtain a new lattice Γ′,

which consists of squares with a diagonal on which there is an additional vertex. Note

that all coupling constants are now equal to β/2. By Lemma 5.19,

〈σaσ̄b〉Γ,β ≥ 〈σaσ̄b〉Γ′,β/2 (16)

for all pairs of vertices a, b in Γ, using the natural embedding of Γ on Γ′.

Since Γ′ is a translation invariant graph, the dichotomy statement of Theorem 5.4

holds. To show that there are no translation invariant Gibbs measures for the associated

height function, notice that the dual (Γ′)† of Γ′ (after collapsing the doubled edges to a

single edge) is trivalent. Moreover, the height function on any finite subgraph of (Γ′)† has

a potential given by V ′e = Vβ/2e for the nondiagonal edges and V ′e = 2Vβ/2e otherwise, and

the potential V ′ satisfies Lammers’ condition (6) precisely when (I1(β/2)/I0(β/2))2 ≥ 1
2 .

Since the fraction on the left-hand side tends to 1 as β → ∞, we can choose β large

enough so that there are no translation invariant Gibbs measures for the height function

on (Γ′)†.
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Figure 5.3: The transformation of a general graph to a triangulation (after identifying

the resulting multiple edges). The dashed edges are such that the coupling constant is

set to infinity first, and then to zero (which is equivalent to removing the edges) and

hence the spin correlations in the final graph are smaller than in the original graph.

Note that every cut on Γ embeds naturally as a cut on Γ′. Therefore, by Proposi-

tion 5.12 together with (16), we have that for each cut L on Γ and each ε > 0,

χεΓ,β(L) ≥ χεΓ′,β/2(L) =∞.

This finishes the proof.

To extend this proof to general graphs, we make each face into a triangulation by

“zig-zagging” (see Figure 5.3).

5.6. No exponential decay implies a power-law lower bound

In this section we finish the proof of the main theorem by showing that the absence

of exponential decay implies a power-law lower bound on the two-point function when

Γ = Z2. Similar arguments can be applied to other graphs that in addition to being

translation invariant possess reflection and rotation symmetries.

We will use the following two classical inequalities.

Lemma 5.20 (Lieb–Rivasseau inequality [125,151]). Let G = (V,E) be any graph. Let

a, b ∈ V be distinct, and let H be a finite subgraph of G containing a and not containing

b, and let ∂H be the set of vertices of H adjacent to at least one vertex outside H. Then

〈σaσ̄b〉G,β ≤
∑
c∈∂H
〈σaσ̄c〉H,β〈σcσ̄b〉G,β.

Lemma 5.21 (Messager–Miracle-Sole inequality [135]). For any n ∈ Z, the two se-

quences 〈σ0σ̄(n,k)〉Z2,β and 〈σ0σ̄(n+k,n−k)〉Z2,β are nonincreasing in k for k ≥ 0.

Proof of Theorem 5.1. Let 0 denote the vertex at the origin. For a finite subgraph G of

Z2 containing 0, let

ϕG,β =
∑
w∈∂G

〈σ0σ̄w〉G,β,
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Figure 5.4: The [−n, n]2 box Λn shaded in grey and the L1 ball Λ′n of radius 2n.

where ∂G is the set of vertices of G adjacent to at least one vertex outside G. Define

βc = sup{β : there exists finite G with ϕG,β < 1}. (17)

We will show that βc satisfies the properties listed in Theorem 5.1. To this end first fix

β < βc. By Lemma 5.19, there exists a finite graph G with ϕG,β < 1. Take m such that

G ⊂ Λm and let x ∈ V . Fix n so that (n + 1)m ≥ |x|1 ≥ nm. Iteratively applying the

Lieb–Rivasseau inequality [125,151] to translates of G gives

〈σ0σ̄x〉Z2,β ≤
∑
w∈∂G

〈σ0σ̄w〉G,β
∑

w′∈∂(G+w)

〈σwσ̄w′〉G+w,β〈σw′ σ̄x〉Z2,β ≤ · · · ≤ (ϕG,β(0))n,

hence (i) holds true if β < βc.

To conclude (ii), note that for each finite G, ϕG,β is a continuous function of β, and

hence the set in (17) is open. This means that for every β ≥ βc, we have ϕG,β ≥ 1 for

all finite subgraphs G.

Now let Λn be the box [−n, n]2, and let Λ′n be the ball in L1 of radius 2n (see Figure

5.4). We write xn := (n, n) ∈ ∂Λn ∩ ∂Λ′n and an = 〈σ0σ̄xn〉Z2,β. By rotation symmetry

and the Messager–Miracle-Sole [135] inequality, we have

an = min
v∈∂Λn

〈σ0σ̄v〉Z2,β = max
v∈∂Λ′n

〈σ0σ̄v〉Z2,β.

For β ≥ βc, we moreover have∑
w∈∂Λ′n

〈σ0σw〉Z2,β ≥ ϕΛ′n,β ≥ 1.

These two observations together imply that for any v ∈ ∂Λn,

〈σ0σ̄v〉Z2,β ≥ an ≥
1

|∂Λ′n|
=

1

8n
≥ 1

8|v|
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which implies (ii).

Finally by Theorem 5.18 we know that there exists a finite β at which there is no

exponential decay, and by classical expansions there exists a nonzero β at which there

is exponential decay (see e.g. [4]). We conclude that 0 < βc <∞.
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CHAPTER 6

Correlation Inequalities

The main purpose of this chapter is to present a new technique that may be applied to

a further study of the XY model (possibly in higher dimensions). We develop a loop

representation for squares and products of correlation functions. This is a generalization

of the construction from Section 5.3, and to the best of our knowledge has not yet

been described in the literature. It is also analogous to the double random current

representation of the Ising model [1, 6, 82] but is more subtle as one has to deal with

path switching rather than connection switching in a percolation model. We stress the

fact that we do not use any of the results from this chapter in the remainder of this

thesis, except for the well known inequalities of Lieb and Rivasseau, and Messager and

Miracle-Sole.

There will be two major differences in the definition of a loop configuration compared

to Section 5.3: the edges will come in two colors, red and blue, corresponding to two

currents r and b respectively, and we will allow the paths to enter vertices v at which

the number of incoming and outgoing edges is not the same, i.e., δ(r + b)v 6= 0. To be

more precise, consider the following definition.

Definition 6.1 (Colored loop configurations outside S with sources ϕ). Let M be a

multigraph on V , let S ⊆ V , and ϕ : V → Z with
∑

v∈V ϕv = 0. A colored loop

configuration (on M) outside S with sources ϕ is

• an assignment of a red or blue color to each edge of M, together with

• a collection of

– unrooted directed loops on M avoiding S, and

– directed open paths on M not visiting S except possibly at their start and

end vertex,

such that

– every edge of M is traversed exactly once by a loop or a path, and
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– at each vertex v ∈ V \ S, there are exactly ϕv1{ϕv > 0} outgoing and

−ϕv1{ϕv < 0} incoming paths.

We write L̃Sϕ for the set of all colored loop configurations outside S with sources ϕ, and

define a weight on L̃Sϕ by

λ̃Sβ (ω) =
∏

v∈V \S

|ϕv|!
((degM(v) + |ϕv|)/2)!

∏
e∈E

1

Me!

(β
2

)Me

, (1)

where M is the underlying multigraph, and Me is the number of copies of e in M.

Note that this weight no longer only depends on the multigraph M and on S, but

also on |ϕ(ω)|, where ϕ(ω) are the sources of ω. Also note that in the above definition

S and ϕ can be chosen independently. S denotes the set of vertices where we do not

resolve any connections between paths and loops, and ϕ prescribes where the sources

and sinks are (vertices with nonzero value of ϕ). At any such vertex v, we resolve as

many connections as possible leaving only |ϕv| incoming or outgoing arrows unmatched,

depending on the sign of ϕv. This is the reason why ϕ appears in the above weight,

which was not the case in Section 5.3.

As before if S′ ⊆ S, then there is a natural map ρ : LS′ → LS that consists in

forgetting (or cutting) the loop and path connections at the vertices in S \ S′, and∑
ω̃∈ρ−1[ω]

λ̃S
′

β (ω̃) = λ̃Sβ (ω). (2)

Definition 6.2 (Colored currents and consistent configurations). We will consider a

pair of currents r,b that we think of as red and blue respectively. A colored loop

configuration ω on Mr+b is called consistent with r and b if for every edge vv′ ∈ E,

the number of times the loops and paths traverse a red (resp. blue) copy of vv′ in the

direction of (v, v′) is equal to r(v,v′) (resp. b(v,v′)). In particular ω has sources δ(r + b).

We define L̃Sr,b to be the set of all colored loop configurations on Mr+b outside S that

are consistent with r and b.

For ϕ,ψ : V → Z, we also define

L̃Sϕ,ψ =
⋃

r∈Ωϕ,b∈Ωψ

L̃Sr,b ⊆ L̃Sϕ+ψ.

where the union is clearly disjoint. For brevity, we will write L̃S0 instead of L̃S0,0, where

0 denotes the zero function on V .

We now relate the weights of loops to those of pairs of currents. To this end, note

that for each edge vv′ ∈ E, there are exactly

|r + b|vv′ !
r(v,v′)!r(v′,v)!b(v,v′)!b(v′,v)!
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Figure 6.1: Path switching behavior at a vertex v that is (resp. is not) the start or

end-point of the switched path. Left: the values of both δrv and δbv are increased by

one after switching. Right: the values are not changed.

ways of assigning color to the copies of vv′ in Mr+b, and to orient them in the two

possible ways so that the result is consistent with r and b. Moreover, independently of

the choices of colors and orientations, there are exactly

((degMr+b
(v) + |ϕv|)/2)!

|ϕv|!

possible pairings of the incoming and outgoing edges at each vertex v ∈ V \S such that

there are exactly ϕv1{ϕv > 0} outgoing and −ϕv1{ϕv < 0} incoming edges unpaired.

This is equivalent to choosing the possible steps that all the loops and paths in the

configuration make at v. Combining all this, we get the following identity:

∑
ω∈L̃Sr,b

λ̃Sβ (ω) = wβ(r)wβ(b). (3)

An important observation again is that the right-hand side is independent of S, and

hence so is the left-hand side.

In particular, for two sourceless currents, we have

∑
ω∈L̃∅0

λ̃∅β(ω) =
( ∑

n∈Ω0

wβ(n)
)2

= (Z0
G,β)2. (4)

Again, in the case when G is planar we get the following distributional identity. Let

P̃G,β to be the probability measure on L̃0 := L̃∅0 induced by the weights λ̃β := λ̃∅β. For

each face u ∈ U of G, and ω ∈ L̃0, define Wω(u) to be the total net winding of all the

loops in ω around u.

Proposition 6.3. The law of (W (u))u∈U under P̃G,β is the same as the law of the sum

of two independent height functions (h(u) + h′(u))u∈U under PG,β.
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6.1. The two point-function and path switching

We now turn to the loop representation of the square of the two-point function. To this

end, write ϕ = δa − δb. Similar to (11), we get

〈σaσ̄b〉2G,β =

(∑
n∈Ωϕ

wβ(n)

Z0
G,β

)2

=

∑
r,b∈Ωϕ

wβ(r)wβ(b)

(Z0
G,β)2

=

∑
ω∈La,bϕ,ϕ

λ̃a,bβ (ω)

(Z0
G,β)2

, (5)

where the last equality follows from (3).

As before, we now want to reverse some of the paths. However, this time we also need

to take care of the colors of the edges visited by a path. This motivates the following

definition.

Definition 6.4 (Path switching). For a path γ in a colored loop configuration ω, we

define s(γ) to be the path obtained from γ by

• reversing the orientation of γ, and

• swapping the colors of the edges visited by γ.

We also define ω′ to be the configuration where γ is replaced by s(γ). This operation

does not change the underlying multigraph. Moreover if γ starts at a and ends at b,

then for any ϕ,ψ : V → Z, path switching maps

ω ∈ L̃Sϕ,ψ to ω′ ∈ L̃Sϕ−δa+δb,ψ−δa+δb

(see Figure 6.1).

We note that there are two important cases in which path switching does not change

the weight λ̃Sβ . The first one is when {a, b} ⊂ S, and the second one is when ϕa+ψa = 1,

and ϕb +ψb = −1, since then the absolute value of the sources of the configuration does

not change.

Again the crucial observation now is that switching a path going from a to b maps

ω ∈ L̃a,bϕ,ϕ to ω′ ∈ L̃a,b0 , and hence erases the sources and sinks of the underlying currents.

Indeed one can easily check (see Figure 6.1) that after reversing a path and swapping

the colors, the number of incoming minus the number of outgoing red and blue edges

at every vertex v /∈ {a, b} in ω′ is the same as in ω, whereas at a and b this number is

decreased by one. Since we did not change the sources outside {a, b}, we do not change

the weight of a loop configuration, and hence obtain in the same way as in Section 5.3.2

that ∑
ω∈L̃a,bϕ,ϕ

λ̃a,bβ (ω) =
∑
ω∈L̃∅0

mb,a(ω)

mb,a(ω) + 1
λ̃∅β(ω)1{mb,a(ω) > 0}.

Together with (5) this implies the following loop representation of the square of the

two-point function.
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Proposition 6.5. Let a, b ∈ V be distinct. Then

〈σaσ̄b〉2G,β = ẼG,β

[ ma,b

ma,b + 1

]
,

and in particular

1

2
P̃G,β(ma,b > 0) ≤ 〈σaσ̄b〉2G,β ≤ P̃G,β(ma,b > 0).

Remark 6.1. The constant in the inequality of Lemma 5.15 can be improved to 1 using

the same method as above but starting from colored loop configurations in L̃a,b0,2ϕ instead

of L̃a,bϕ,ϕ.

6.2. Application to some inequalities

As a further application we now prove an inequality that is related to but independent

of the Ginibre inequality.

Lemma 6.6. Let a, b, c ∈ V . Then

〈σaσ̄b〉G,β ≥ 〈σaσ̄c〉G,β〈σcσ̄b〉G,β ≥ 〈σaσbσ̄2
c 〉G,β.

Proof. The two inequalities have, maybe quite surprisingly, almost the same proof. We

only prove the first and leave the second to the reader. We set S = {c} and will write c

instead of {c} in our notation. We also define ϕ = δa − δc, ψ = δb − δc, and note that

ψ − ϕ = δb − δa. Also note that for each ω ∈ L̃cϕ,ψ, the unique path starting at a must

end at c. Consider the map ω 7→ ω′ that switches this path. Clearly this is a bijection

between L̃cϕ,ψ and

{ω ∈ L̃c0,ψ−ϕ : the unique path ending at a starts at c}.

Moreover, we have |ϕv(ω)| = |ϕv(ω′)| for all v 6= c, and hence the weights λ̃cβ are

preserved. This means that

〈σ̄aσc〉G,β〈σ̄bσc〉G,β(Z0
G,β)2 =

∑
ω∈L̃cϕ,ψ

λ̃cβ(ω)

=
∑

ω∈L̃c0,ψ−ϕ

1{c→ a in ω}λ̃cβ(ω) ≤ 〈σaσ̄b〉G,β(Z0
G,β)2,

where we used (3) twice. This finishes the proof.

Remark 6.2. Note that the Ginibre inequality in e.g. [142, Theorem 2.3] is equivalent to

a relation between increments given by

〈σaσ̄b〉G,β − 〈σaσ̄c〉G,β〈σcσ̄b〉G,β ≥ 〈σaσ̄c〉G,β〈σcσ̄b〉G,β − 〈σaσbσ̄2
c 〉G,β.

Comparing this with the statement of Lemma 6.6, the latter proves nonnegativity of the

increments. Hence, the Ginibre inequality and Lemma 6.6 do not imply one another.
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The purpose of the remainder of this section is to give more applications of the

representation introduced above. We start with two new bijective proofs of the classical

inequalities that we used in the proof of our main theorem.

Lemma 6.7 (Lieb–Rivasseau inequality [125, 151]). Let G = (V,E) be any graph. Let

a, b ∈ V be distinct, and let H be a finite subgraph of G containing a and not containing

b, and let ∂H be the set of vertices of H adjacent to at least one vertex outside H. Then

〈σaσ̄b〉G,β ≤
∑
c∈∂H
〈σaσ̄c〉H,β〈σcσ̄b〉G,β.

Proof. It is enough to assume that G is finite, and then approximate an infinite graph by

finite subgraphs. The proof is similar to the previous one. Assume a /∈ ∂H. Otherwise,

there is nothing to prove. Fix c ∈ ∂H and S = {c}. We will write c instead of {c} in

our notation. Let ϕ = δc − δa, ψ = δc − δb, and note that ψ − ϕ = δa − δb.
Write L̃c for the collection of colored loop configurations ω ∈ L̃c0,ψ−ϕ with the prop-

erty that the unique path starting at a exits H \ ∂H at c, and ω has no red edges

outside of H. For ω ∈ L̃c consider a colored loop configuration where this path is

switched. Clearly this is a bijection between L̃c and the set of configurations ω′ ∈ L̃cϕ,ψ
that have no red edges outside H, and for which the unique path ending at a stays

within H \ ∂H until it hits c. Denote this collection of configurations by L̃′c. Moreover,

we have |ϕv(ω)| = |ϕv(ω′)| for all v 6= c, and hence the weights λ̃cβ are preserved.

Let Ẽc be the collection of ω ∈ L̃0,ψ−ϕ with the property that the unique path from

a to b exits H \ ∂H in c, and ω does not have red edges outside of H. Clearly, the

subset of L̃0,ψ−ϕ consisting of configurations with no red edges outside of H equals the

disjoint union ∪c∈∂H Ẽc and cutting ω ∈ Ẽc at c gives an element of L̃c. In light of (2),

we therefore have

〈σaσ̄b〉G,βZ0
G,βZ

0
H,β =

∑
c∈∂H

∑
ω∈L̃c

λ̃cβ(ω)

=
∑
c∈∂H

∑
ω′∈L̃′c

λ̃cβ(ω′) ≤
∑
c∈∂H
〈σcσ̄a〉H,β〈σcσ̄b〉G,βZ0

G,βZ
0
H,β,

which completes the proof.

We are also able to use the colored loop representation to prove the Messager–

Miracle-Sole inequality.

Lemma 6.8 (Messager–Miracle-Sole inequality [135]). For any n ∈ Z, the two sequences

〈σ0σ̄(n,k)〉Z2,β and 〈σ0σ̄(n+k,n−k)〉Z2,β are nonincreasing in k for k ≥ 0.

Geometrically, this in particular implies that the largest correlation with the spin at

0 on any vertical, horizontal or diagonal straight line is attained by the vertex closest to
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0. This will follow from the following lemma after taking G↗ Z2. The proof is inspired

by the one from [7] for the Ising model. The idea is to fold a graph across a line and

think of the parts of the current coming from both sides of the line as the red and blue

current in the colored loop representation.

Lemma 6.9. Let G = (V,E) be a subgraph of Z2 symmetric under reflection across a

line L. Let a, b ∈ V lie on the same side of L, and let L(b) ∈ V be the reflection of b.

Then

〈σaσ̄b〉G,β ≥ 〈σaσ̄L(b)〉G,β.

Proof. We only consider the easier case when L passes through vertices. This means

that it is either a diagonal, or a horizontal (vertical) line at integer height. The more

involved case when L passes only through the edges (this case implies Lemma 5.21 for

horizontal and vertical lines) we leave to the interested reader.

If L is horizontal or vertical, then split the edges that lie on L into two parallel edges

with coupling constants β/2, and think of the resulting graph as a new graph G. Write

Z for the set of vertices on L, and G− = (V−, E−) and G+ = (V+, E+) for the two

isomorphic parts of G separated by L where G− contains a and b (each of them also

containing Z).

We can decompose a current n on G into two parts: r and b on G− and G+. In what

follows, we identify G− with G+ under the obvious isomorphism, and all currents are

considered on G− unless stated otherwise. Let Ck, for k = 0, 1, be the set of functions

ϕ : V− → Z such that ϕv = 0 for v ∈ V− \ Z, and
∑

v∈Z ϕv = k. Since every current in

Ωδa−δL(b)
(G) must have a total flux of +1 across L, we can write

〈σaσ̄L(b)〉G,βZ0
G,β =

∑
ϕ∈C1

∑
r∈Ωδa−ϕ,b∈Ω−δb+ϕ

wβ(r)wβ(b)

=
∑
ϕ∈C1

∑
r∈Ωδa−ϕ,b∈Ωδb−ϕ

wβ(r)wβ(b)

=
∑
ϕ∈C1

∑
ω∈L̃Zδa−ϕ,δb−ϕ

λ̃Zβ (ω),

where the second inequality holds true as a the weight wβ is invariant under reversal of

the current, and the last equality is a consequence of (3). Now, for each ω ∈ L̃Zδ0−ϕ,δb−ϕ
switch the unique path γ starting at b. This transformation preserves weights and results

in a configuration ω′ ∈ L̃Zδ0−δb−ϕ′,−ϕ′ , where ϕ′ = ϕ− δz ∈ C0 and z ∈ Z is the vertex at

which γ ends. Reversing the order of the steps above we therefore get

〈σaσ̄L(b)〉G,βZ0
G,β =

∑
ϕ∈C1

∑
z∈Z

∑
ω′∈L̃Z

δa−δb−ϕ′,−ϕ′

λ̃Zβ (ω′)1{the path ending at b starts at z}
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=
∑
ϕ′∈C0

∑
ω′∈L̃Z

δa−δb−ϕ′,−ϕ′

λ̃Zβ (ω′)1{the path ending at b starts in Z}

≤
∑
ϕ′∈C0

∑
r∈Ωδa−δb−ϕ′

,b∈Ωϕ′

wβ(r)wβ(b)

= 〈σaσ̄b〉G,βZ0
G,β,

where the last equality follows since the total flux of a current in Ωδa−δb(G) across L is

zero.

6.3. Limitations of the colored loop representation

A natural idea is to try to prove the Ginibre inequality in form of Lemma 5.19 using our

representation. One would like to show that the derivative of the two-point function with

respect to one coupling constant Je is nonnegative. Using colored loop configurations

we can write

(Z0
G,β)2 ∂

∂Je
〈σaσ̄b〉G,β = Z0

G,β

∂

∂Je
Zδa−δbG,β − Zδa−δbG,β

∂

∂Je
Z0
G,β

= J−1
e

∑
ω∈L̃∅δa−δb,0

λ̃∅β(ω)(Re(ω)−Be(ω)),

where Re(ω) and Be(ω) is respectively the number of red and blue copies of e in the

multigraph visited by the unique path from a to b in ω. Without going into too many

details, to justify the second equality we make the following observations. First, taking

the derivative with respect to Je is equivalent to dividing by Je and marking one of

the copies of e of the right color (here the currents in Ωδa−δb are red and those in Ω0

are blue). Then, if the marked edge is not on the path from a to b, we switch the

corresponding loop (reverse it and swap the colors). This does not change the weight of

the configuration. Such terms hence cancel out from the expression above as the loops

going trough a marked blue copy of e are counted with a minus sign. The remaining

terms are those whose marked edge lies on the distinguished path. This gives the final

formula.

Clearly, the final result is not evidently nonnegative and we would need additional

arguments to conclude the Ginibre inequality. On the other hand, the Ginibre inequality

implies the distinguished path visits red edges more often than blue edges on average.
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CHAPTER 7

Duality between height functions and spin

models

7.1. Introduction

The phenomenon of duality in statistical mechanics goes back to the famous work of

Kramers and Wannier who discovered an exact idenitity between the partition func-

tions of the Ising model on a finite planar graph and an Ising model (at a different

temperature) on its dual graph [110]. They used it to identify the self-dual temperature

(that stays invariant under the duality transfomation) as the point of phase transition

in the model on the square lattice (that is itself a self-dual graph). In an extended

version of this correspondence, spin correlation functions are mapped to correlators of

dual disorder variables introduced by Kadanoff and Ceva [101]. This construction has

been very fruitful in the study of the Ising model. A notable example are the works

of Smirnov [159], and Chelkak and Smirnov [46], who derived scaling limits of certain

variants of order-disorder correlations (the so called fermionic observables), providing

the first proofs of conformal invariance of the critical Ising model.

It is by now classical that analogous duality transformations exist for more general

spin models whose state space is a locally compact abelian group [71, 154, 173] (we

refer to [52] for an introductory account). In such a setting Fourier transforms can be

used to map one model with values in a group G to another model with values in the

Pontryagin-dual group Ĝ. For example, for G = Z/qZ, q ∈ N, duality was a crucial tool

in the study of the planar q-state Potts model, the associated random cluster model, and

the Ashkin–Teller model (see e.g. [15, 23, 81, 126, 128, 146]). These groups and models

are self-dual in the sense that G ∼= Ĝ, and moreover dual to the same model on the dual

graph, but with possibly different coupling constants. Another famous self-dual example

is G = R together with the discrete Gaussian free field, where duality exchanges electric

and magnetic operators of the field (see e.g. [52]).

In this chapter we go beyond the self-dual domain and consider the mutually dual but

distinct groups of the integers Z and the circle S. This results in two very different objects
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facing each other on the opposite sides of the duality relation: one is a discrete random

height function with an unbounded set of values, and the other is a continuous spin model

with spins in the circle. Duality can be then used to transfer probabilistic information

from one side to the other. A landmark application of this relation appeared in the

work of Fröhlich and Spencer [71] who rigorously established the Berezinskii–Kosterlitz–

Thouless (BKT) phase transition in the classical XY model on the square lattice (see

Section 7.4 for more background). They first showed delocalization of the associated

height function, and then used duality to conclude that spin correlations decay at most

polynomially fast. New proofs of the latter implication appeared recently in [8, 64]

which together with a novel approach to delocalization introduced by Lammers [114]

yields alternative proofs of the BKT transition. All three proofs of [8,64,71] use duality

“in the same direction” in that they study spin correlations via disorder correlations in

the dual height function. This leads to technical complications as disorders are non-local

functions of the height field. In [8, 64] these issues were taken care of by considering

different graphical representations of the models. Here we argue that following duality

“in the opposite direction” leads to an even more concise proof (that only uses duality

itself) of the implication that delocalization of the height function implies the BKT

transition in the spin model. Indeed, when the disorders appear on the spin model side,

one can “localize” them by simply using the Taylor expansion to the second order, which

is clearly impossible when disorders come as discrete excitations of the heights.

Duality is an exact correspondence, and hence one expects that the critical point of

the localization-delocalization phase transition is dual to the BKT critical point. This

was recently proved for the XY and the Villain model by Lammers [116]. Here we also

provide a result in the same direction for a larger class of models that includes the XY

model. To be more precise, we establish an equivalence between the delocalization of

the height function and the divergence of a certain series (a type of susceptibility) of

correlation functions in the spin model.

Another contribution of this chapter is a universal upper bound on the variance of

the height function in terms of the variance of the discrete GFF. This holds true for

all height function models with positive definite potentials, and moreover irrespective of

the graph being planar or not. There are two main applications. In the planar case, e.g.,

on Z2, this leads to a conjecturally optimal (up to a constant) logarithmic in the size

of the system upper bound when the height function is delocalized. On the other hand,

it shows that on transient graphs, e.g. on Zd, d ≥ 3, the variance is always uniformly

bounded and the height function is localized.

For a special class of potentials, we also establish monotonicity of the variance of

the height function in a natural temperature parameter. To the best of our knowledge,

this is the first results of this type. We achieve this by transporting, through duality,
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the (appropriately generalized) Ginibre inequalities. One consequence is a direct proof

of the fact that for the XY height function there is only one point of phase transition

from a localized to a delocalized regime. A (more involved) proof of this fact was first

given in [116]. Together with the dichotomy of Lammers [115], this also shows that for

the XY height function on Z2, the transition is sharp. Another application is that for

two-dimensional Euclidean lattices with non nearest neighbor interactions, the height

function undergoes a localization-delocalization phase transition.

We note that we only consider height functions with positive definite potentials, i.e.,

those that have well defined dual spin models, and vice versa. The chapter is organized

as follows:

• In Section 7.2 we recall the notion of duality, and state in Lemma 7.3 its conse-

quence for the covariances of the gradient of the height function and and gradient

of the spin model. This is the stepping stone to the remaining results in this

chapter.

• In Section 7.3 we establish an upper bound on the variance of the height function

in terms of the Green’s function of the underlying simple random walk. The bound

is valid on any, not necessarily planar graph, and in particular implies localization

of the height function on graphs on which simple random walk is transient.

• In Section 7.4 in Theorem 7.7 we give a direct proof of the fact that in two

dimensions, delocalization of the height function implies a BKT phase transition

in the spin model in the sense that certain spin correlation functions are not

summable. In Corollary 7.8 using classical correlation inequalities we translate

this to an analogous statement for the standard two-point functions, recovering

the main result of [64]. Finally, for a subclass of spin models (that includes the

classical XY model) we show that the above mentioned implication is actually an

equivalence.

• In Section 7.5 in Theorem 7.10 we show that for a certain class of height functions,

the variance is increasing in the inverse temperature. We use this to prove that

a phase transition occurs for these random height functions, when the underlying

graph is planar or “almost planar”.

• In Section 7.6, using only duality, we show that a certain (non-local) observable

of a classical spin model has, up to multiplicative constants, the covariance of the

discrete Gaussian free field. Remarkably, this holds for all graphs and does not

depend on the temperature.

• In Section 7.7 we show a central limit theorem in the planar spin model that holds

irrespectively of the temperature.
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• In Appendix B we recall and give concise proofs of the main results needed for

duality.

• In Appendix B.1 we extend the Ginibre inequalities to the setting that we need in

Section 7.5.

• In Appendix B.2 we review the notion of reflection positivity that we use in Sec-

tion 7.4.

7.2. General duality

7.2.1 Discrete calculus

We first give a basic background on discrete calculus on graphs, staying close to the

language of [131]. Let G = (V,E) be a locally finite graph and let G be a group (we will

consider G = R,Z with addition and G = S := {z ∈ C : |z| = 1} with multiplication).

To keep the exposition homogenous, we will use the additive notation for all considered

groups.

A 1-form ω taking values in G is an antisymmetric function defined on the directed

edges ~E of G, i.e., such that ωvv′ = −ωv′v, where vv′ denotes the directed edge (v, v′).

The set of 1-forms will be denoted by Ω1(G) = Ω1(G,G), and the set GV by Ω0(G) =

Ω0(G,G). We will identify the space of 1-forms with GE by fixing, once and for all, one

of the two orientations for each edge in E. Define the boundary operator d∗ : Ω1(G)→
Ω0(G) by

d∗ωx =
∑
y∼x

ωyx,

where y ∼ x indicates that y and x are adjacent in G, and the co-boundary operator

d : Ω0(G)→ Ω1(G) by

dfxy = fy − fx.

Note that d∗ and d are homomorphisms between groups GE and GV , and hence we can

define groups

H?(G) = H?(G,G) := Im(d) ∼= GV / ker(d) and H♦(G) = H♦(G,G) := ker(d∗).

For G = S, we will write dJ to be the Haar probability measure on the induced (compact)

groups H?(S) and H♦(S). If G is only locally compact, the Haar measure is defined up to

a multiplicative constant and we fix some normalisation. For a more concrete definition,

we refer to Appendix B. We make the convention that the space over which we integrate

determines the measure.
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Notation. In what follows we will use the letters ε, ω (resp. f, g, τ) to denote deter-

ministic elements of Ω1(G) (resp. Ω0(G)) when G = R or when G is not specified. We

will write n and h for (mostly random) elements of Ω1(Z) and Ω0(Z) respectively, and

J and θ for (mostly random) elements of Ω1(S) and Ω0(S) respectively.

We will also often abuse notation in the following sense: through the identification

exp(iθ) ↔ θ, we have S ∼= (−π, π], and we will view J ∈ Ω1(S) as belonging to Ω1(R).

On the other hand, by considering real numbers modulo 2π, we will map Ω1(R) to

Ω1(S1). One has to be careful when going from one space to the other: the embedding

does not map H#(S) to H#(R), because for example a 1-form ω ∈ Ω1(S) which satisfies

d∗ω = 0 in S, only satisfies d∗ω = 0 modulo 2π when viewed as a 1-form in Ω1(R). We

will also think of H#(Z) as a subset of H#(R) in the obvious way.

7.2.2 Spin models and random height functions

In this section we consider a finite graph G = (V,E). We will study random spin and

height 1-forms taking values in the spaces H#(S) and H#(Z) respectively for # ∈ {♦, ?}.

Definition 7.1 (Height function and spin potentials). Let V : Z → R ∪ {+∞} be

symmetric, i.e., V(n) = V(−n), such that∑
n∈Z

n2 exp(−V(n)) <∞, (1)

and moreover such that exp(−V) is positive definite: for all α ∈ R,

w(α) := exp(−V(0)) +
∞∑
n=1

exp(−V(n))2 cos(nα) > 0. (2)

We call V the height function potential, and U(α) := − logw(α) the spin potential.

We will always assume that the considered potentials satisfy the conditions of Defi-

nition 7.1. Note that condition (1) implies that the series in (2) is absolutely summable,

and moreover that ω, as well as U , is twice continuously differentiable in α. Also note

that even though this is not the classical definition of positive definiteness, it is equivalent

to it by Bochner’s theorem.

Example 7.1. The following potentials satisfy the conditions of Definition 7.1:

• V(n) = − log(In(β)), where In(β) is the modified Bessel function of the first kind,

and U(t) = −β cos(t) for all β > 0 is the potential of the classical XY model,

• V(n) = βn2 for all β > 0 is the potential of the integer-valued Gaussian free field

and the corresponding U defined through the series in (2) is the potential of the

Villain spin model,
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• V(n) = β1{n = ±1} +∞1{|n| > 1} for exp(−β) < 1/2 is a model of random

(nonuniform) Lipschitz functions.

• Any annealed Gaussian potential V meaning that there exists a finite Borel mea-

sure λ on [0,∞) such that

e−V(n) =

∫
[0,∞)

e−
γ
2
n2
λ(dγ)

for all n. It satisfies Definition 7.1 because the function n 7→ γ
2n

2 does and because

by dominated convergence, we can exchange the integral and the summation in

(2). This class includes the potentials V(n) = β|n|a for any a ∈ (0, 2] (see [8]).

Let ω be as in Definition 7.1. Fix # ∈ {♦, ?}, and consider a probability measure

on spin 1-forms J ∈ H#(S) defined by

dµ#(J) = dµG,#(J) =
1

Z#

(∏
e∈E

w(Je)
)
dJ, (3)

where Z# is the partition function, and dJ denotes the Haar probability measure on the

group H#(S). For a 1-form ε ∈ Ω1(R), we define the twisted partition function

Z#(ε) =

∫
H#(S)

∏
e∈E

w(Je + εe)dJ,

and note that Z#(0) = Z#. We also define a probability measure on height 1-forms

n ∈ H#(Z) by

ν#(n) = νG,#(n) ∝ exp
(
−
∑
vv′∈E

V(nvv′)
)
. (4)

Note that this is well defined as the normalisation constant is finite by assumption (1).

For f, g ∈ Ω1(R) and ε, ω ∈ Ω1(R), we will write

(f, g)Ω0 =
∑
v∈V

fvgv, and (ε, ω)Ω1 =
1

2

∑
~e∈ ~E

ε~e ω~e =
∑
e∈E

εe ωe

for the standard inner products. We will usually drop the subscripts and simply write

(·, ·) in case the space is clear from the context.

The central result that we will use is the following duality formula. Even though it

is classical (see e.g. Appendix A in [71]), we will provide its derivation in Appendix B.

Lemma 7.2 (Fourier–Pontryagin duality). Let # ∈ {♦, ?} and let −# denote the other

element of {♦, ?}. Then for any ε ∈ Ω1(R), we have

ν−#[exp(i(n, ε))] =
Z#(ε)

Z#
= µ#

[ ∏
e∈E

w(Je + εe)

w(Je)

]
.
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Clearly there are two intertwined random objects in the statement of Lemma 7.2:

the height and spin 1-forms n and J respectively. We will mostly apply the duality to

analyse one of these two models whose values are the exact 1-forms H?(G), since then

for each ω ∈ H?(G), there exists a unique τ ∈ GV such that

dτ = ω and τ∂ = 0,

where ∂ ∈ V is a fixed boundary vertex of G, and 0 is the identity element of G. The

random configuration τ is then distributed as a classical spin system with spins assigned

to vertices with 0 boundary conditions at ∂, and that interact through edges.

Remark 7.1. In two dimensions there is a special form of duality where H♦ on the planar

graph G can be seen as H? on the planar dual graph G∗ by simply rotating all directed

edges by π/2 to the left. Therefore if ω is a 1-form such that d∗ω = 0, there exists a

function τ on the vertices of the dual graph G∗ (faces of G) which has ω as its gradient,

i.e.

ωvv′ = τu − τu′ = dτuu′ ,

where u, u′ are the two faces adjacent to vv′ from the right and left respectively. In

this case, both models in Lemma 7.2 can be seen as classical spin and height function

models.

Remark 7.2. As mentioned in the introduction, the Fourier–Pontryagin duality is usu-

ally applied in the opposite direction to Lemma 7.2, i.e., to compute the characteristic

function of the spin model rather than the height function. On the height function

side this results in expectations of nonlocal observables (disorders) which are in general

difficult to analyse. In our case however the disorder appears on the spin model side,

and can be removed from the picture by taking derivatives at zero of the characteristic

function. This is the main point of view which allows to obtain most of the results in

this article using comparatively elementary arguments.

One of the main tools in this article is the following identity. Even though it is

a rather direct consequence of duality, we were unable to find this formulation in the

literature.

Lemma 7.3 (Covariance duality). Let # ∈ {♦, ?} and let −# be the other element of

{♦, ?}. For any ε, ω ∈ Ω1(R), we have

ν#

[
(n, ε)(n, ω)

]
+ µ−#

[
(U ′(J), ε)(U ′(J), ω)

]
=
∑
e∈E

µ−#[U ′′(Je)]εeωe.

Proof. It is enough to compute

∂

∂s

∂

∂t

(
ν#[exp(i(h, sε+ tω))]

)∣∣∣
s=t=0
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by differentiating under the sign of integration on the right-hand side of the formula

from Lemma 7.2.

Remark 7.3. In the case of measures ν? on true height functions h, the quantity

ν?[(n, ε)(n, ω)] = ν?[(h,d
∗ε)(h,d∗ω)]

explicitly depends only on d∗ε and d∗ω, and hence the rest of the equation above does

so implicitly.

Choosing ε = 1xy − 1yx for some edge xy and τ = 1uv − 1vu for another edge uv, as

a corollary we immediately get the following identities:

ν#[n2
xy] = µ−#[U ′′(Jxy)− U ′(Jxy)2] (5)

and

ν#[nxynuv] = −µ−#[U ′(Jxy)U ′(Juv)]. (6)

Remark 7.4. Note that Lemma 7.3 implies that the sum of the covariance matrices of

two mutually dual edge fields is diagonal, i.e., equals the covariance matrix of (possibly

inhomogeneous) white noise. This was known for the discrete Gaussian Free Field

(G = R), see e.g. [52] and Remark 7.5, in which case the independent sum of the

mutually dual edge fields is a collection of independent normal random variables.

Having established the covariance duality formula in Lemma 7.3, we will now discuss

several of its rather direct consequences. Unless stated otherwise, we study the models

on a finite graph G = (V,E) with a prescribed boundary vertex ∂ ∈ V . We will write

Ω0
0(G) for the set of functions f ∈ Ω0(G) with f∂ = 0.

7.3. Upper bound on the variance of the height function

In this section we consider random exact 1-forms n ∈ H?(Z) distributed according to ν?.

As mentioned before, for each such 1-form n ∈ H?(Z), there exists exactly one height

function h ∈ Ω0
0(Z) such that dh = n. Note that in the case of G = R, d and d∗ are

adjoint as linear operators, i.e., for all f ∈ Ω0(R) and ω ∈ Ω1(R), we have

(f, d∗ω)Ω0 = (df, ω)Ω1 . (7)

Also note that the operator

∆ := d∗d : Ω0(R)→ Ω0(R)

is the graph Laplacian on G, and it has a well defined inverse ∆−1 on Ω0
0(R). Moreover,

as matrices,

∆−1 = GD−1,
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where D = Diag(deg(v))v∈V \{∂} and G is the Green’s function of simple random walk

on G killed upon hitting ∂.

Let f ∈ Ω0
0(R) and ε := d∆−1f so that d∗ε = f . Discarding the explicitly nonnega-

tive term µ♦[(U ′(J), ε)2] in Lemma 7.3 applied to ε = ω, and using (7) we get

ν?[(h, f)2
Ω0 ] = ν?[(n, ε)

2
Ω1 ] ≤

∑
e∈E

ε2e
∣∣µ♦[U ′′(Je)]

∣∣ ≤ C(ε, ε)Ω1 , (8)

where

C = sup
e∈E
|µ♦[U ′′(Je)]| ≤ sup

J∈S
|U ′′(J)| <∞.

On the other hand, by (7) again (ε, ε)Ω1 = (d∆−1f, d∆−1f)Ω1 = (∆−1f, f)Ω0 .

Corollary 7.4 (GFF upper bound on variance). For any f ∈ Ω0
0(R),

ν?[(h, f)2] ≤ C(∆−1f, f)Ω0 = C
∑
v,v′∈V

fvfv′
G(v, v′)

deg(v′)
,

where C is as above.

Remark 7.5. One can also apply duality to the discrete Gaussian free field (GFF) (in

this case both the primal and dual fields are real-valued as R is self-dual as a locally

compact abelian group). The GFF is defined similarly to the integer-valued GFF with

potential V(t) = t2 with the difference that the reference measure in (4) is the Lebesgue

measure on R and not the counting measure on Z. The model is self dual in that

U(t) = V(t) = t2, and in the analog of the corollary above actually get an equality since

(ε,U ′(Je)) = 0 since U ′(Je) = 2Je ∈ H♦, and d∗ε ∈ H? by definition. This agrees with

the fact that the covariance of the GFF is given exactly by the inverse Laplacian.

Remark 7.6. Consider an infinite countable graph Γ = (V ,E ) and a sequence of in-

creasing finite subgraphs exhausting Γ, i.e., GN ↗ Γ as N → ∞. If f : V → R has

bounded support and mean zero, i.e.,
∑

v∈V fv = 0, where this sum is actually taken

over a finite set of vertices, then we can find a 1-form ε on E with bounded suppert such

that d∗ε = f , and hence ∏
e∈E

w(Je + εe)

w(Je)
=

∏
e∈supp(ε)

w(Je + εe)

w(Je)
(9)

is a local bounded continuous function of J (in the product topology on SE ) whenever

V and w are as in Definition 7.1. Moreover, since S is compact metrizable so is SE with

the product topology by Tychonoff’s theorem, and hence the edge spin models µGN ,#

always form a tight sequence of measures on SE as N →∞. This in particular implies

that µGN ,♦ converges weakly along a subsequence. Therefore Lemma 7.2 together with

(9) and the fact that

νGN ,?[exp(i(n, ε))] = νGN ,?[exp(i(f, h))]
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for N large enough so that GN contains supp(ε), imply that the random height 1-forms n

under νGN ,?, and hence also the differences of the associated height function h, converge

weakly along the same subsequence.

One has to be careful as this is in general no longer true if f does not have zero

mean, e.g., f = δv. Then ε with d∗ε = f cannot be taken with bounded support (there

always has to be an infinite path with nonzero values of ε). In this case tightness may fail

when delocalization of the height function arises, i.e., νGN ,?[(h, f)2] = νGN ,?[h
2
v]→∞ as

N →∞ (e.g. if Γ is planar, see Section 7.4).

We also immediately deduce that delocalization of the height function does not

happen on transient graphs for potentials as in Definition 7.1. We note that our result,

despite its simple proof, seems new in this generality, and that such behavior is expected

for a larger class of potentials. We also note that the special case of the integer valued

GFF follows from a stronger estimate proved by Fröhlich and Park [73] (see also [104]).

To state the result, we briefly recall the notion of Gibbs measures and gradient Gibbs

measures (we do it for height functions only, and the definition for spin models used later

in the chapter is completely analogous). From now on we assume that Γ = (V ,E ) is

a locally finite, infinite graph. For a finite set Λ ⊂ V write E(Λ) for the set of edges

with at least one vertex in Λ. Let ϕ : Λc → Z be a function and define the probability

measure µϕΛ supported on h : V → Z satisfying h |Λc= ϕ by

νϕΛ(h) ∝ exp
(
−

∑
e∈E(Λ)

V(dhe)
)
.

In other words, νϕΛ is the measure ν? from (4) with ϕ-boundary conditions outside Λ.

A probability measure ν supported on height functions h : V → Z is called a Gibbs

measure (on Γ with respect to the potential V) if it satisfies the Dobrushin–Lanford–

Ruelle (DLR) relations: for all finite sets Λ ⊂ V ,

νΛ(·) =

∫
ZV

νϕΛ(·)dν(ϕ),

where νΛ denotes the restriction of ν to Λ. If Γ is a Cayley graph and the measure ν

is invariant under shifts, it is called translation invariant. In terms of Gibbs measures,

delocalization corresponds to non-existence of translation invariant Gibbs measures.

A gradient Gibbs measure is a slight variation of the above, where we consider

measures supported only on gradients. Fix this time a finite set of edges Λ ⊂ E . Let ω

be an exact 1-form (thus taking value in H?(E ,Z)). Define the probability measure µωΛ
supported on 1-forms n ∈ H?(E ,Z) satisfying h |Λc= ω |Λc as

µωΛ(n) ∝ exp
(
−
∑
e∈Λ

V(ne)
)
.

A probability measure supported on 1-forms n ∈ H?(E ,Z) will be called a gradient

Gibbs measure if it satisfies the analog of the DLR equation above in this setup.
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Theorem 7.5. Let Γ = (V ,E ) be a transient graph and V a height function potential as

in Definition 7.1. Then, there exists an infinite volume Gibbs measure on Γ with respect

to V. If Γ is moreover an amenable Cayley graph, there exist translation invariant Gibbs

measures.

Proof. Let now GN ↗ Γ, as N → ∞ be an exhaustion of Γ by finite subgraphs GN .

Define the boundary ∂N := ∂GN to be the set of vertices in GN adjacent to a vertex

from outside of GN . Let νGN ,?[·] be the expectation associated with the height function

on GN with 0-boundary conditions. Fix any Λ ⊂ V finite and let f : Λ → R be any

function. It follows from Corollary 7.4 that

νGN ,?[(h, f)2] ≤ C max
v∈Λ

GN (v, v)

deg(v)
(f, f)Λ.

where C < ∞, and GN is the Green’s function of simple random walk on GN killed

on hitting ∂N . Since Γ is transient, the right-hand side is uniformly bounded in N .

Therefore, the sequence νGN ,?(h|Λ) is tight and subsequential limits exist by Prokhorov’s

theorem. By a diagonal argument, we can extract a further sub-sequence NK so that

νGNK ,?(h|Λ) converges for each Λ finite. Any such subsequential limit is a Gibbs measure

as it satisfies the DLR relations. This proves the first part of the theorem.

For the second part, suppose that Γ is an amenable Cayley graph, so that νGN ,?[h
2
v] ≤

C ′, for some C ′ < ∞ which is independent of v and the exhaustion (GN )N≥1. Let µ

be a subsequential limit (which exists by the argument above, and is a Gibbs mea-

sure). Let o ∈ V . Since Γ is amenable, there is some Følner sequence (also called Van

Hove sequence) (FN )N≥1 of sets of vertices containing o. This means FN ↗ V and

|∂FN |/|FN | → 0 as N →∞. Let

νN :=
1

|FN |
∑
x∈FN

µ ◦ θx,

where θx is the shift towards x (since Γ is a Cayley graph, this is the same as left

multiplication in the group). This is a Gibbs measure because the set of Gibbs measures

is closed under translations and convex combinations. Moreover, νN [h2
v] ≤ C ′ for each

N and v ∈ V . Therefore, (νN )N≥1 is tight. Let ν be any subsequential limit, which is

again a Gibbs measure. By construction and since |∂FN |/|FN | → 0, we have ν ◦ θx = ν

for each x, and hence ν is translation invariant.

7.4. Delocalization implies the BKT phase transition

7.4.1 Background

In this section we consider the spin and height function models on the square lattice Z2

and we show that delocalization of the height function (defined below) is equivalent to
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the divergence of a certain series of two-point functions in the dual spin model. One of

the conclusions is that delocalization implies the Berezinskii–Kosterlitz–Thouless (BKT)

phase transition in the dual spin model [36,108].

This implication for the classical XY and the Villain spin models, together with a

proof of delocalization of the associated height functions, was first obtained by Fröhlich

and Spencer in their seminal work establishing the BKT transition [71] (also see [104]

for an exhaustive account). Recently alternative proofs were provided by Aizenman et

al. [8] (first for the Villain and later also for the XY model) and by the authors [64] for

the XY model. Together with the new conceptual approach to delocalization introduced

by Lammers [114], these works improve our mathematical understanding of the BKT

transition. These results can be thought of as an inequality between the critical points

of the mutually dual spin and height function models. A natural conjecture is that

these critical points always coincide. In the case of the XY and Villain model this was

confirmed in a recent work Lammers [116].

In this section we provide yet another, and arguably the simplest so far, proof of

the fact that delocalization of the height function implies that correlations functions of

certain observables in the spin model do not decay exponentially fast in the distance.

For reflection positive models (which is the case when −U is itself positive definite,

i.e., has nonnegative coefficients in the Fourier series), we moreover obtain an equiva-

lence between delocalization and nonsummability of spin correlations. Our approach,

unlike the previous ones, is based solely on duality, and does not invoke any additional

(e.g. graphical) representations of the models at hand.

7.4.2 Notions of delocalization

It is now well established that integer-valued height functions on Z2 (or in general on

periodic planar lattices) undergo a phase transition between a localized (smooth) and

a delocalized (rough) regime [45, 57, 58, 71, 114–117, 128]. We say that a potential V is

localized (on Z2) if it admits a translation-invariant Gibbs measure on height functions

h : Z2 → Z. Otherwise we say that V delocalizes. It is known that if V is convex on

the integers, and moreover its second discrete derivative is nonincreasing, i.e., V is a so-

called supergaussian potential [115, 117], then delocalization in this sense is equivalent

to the fact that

sup
N≥1

νΛN ,?[h
2
0] =∞, (10)

where 0 is the origin of Z2, and ΛN = [−N,N ]2∩Z2 where we identify all vertices in ΛN

that are adjacent to ΛcN := Z2 \ΛN as one boundary vertex ∂ (wired boundary) and set

h∂ = 0. Moreover for such potentials, the sequence in (10) is nondecreasing in N [117],

and it grows up to a multiplicative constant at least like logN [115] (which is consistent
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with the general conjecture stating that delocalized height functions should behave like

the GFF at large scales).

Yet another approach to delocalization is to work with infinite volume gradient mea-

sures and study the variance of the increment of the height between two distant points.

This was e.g. studied in [126, 128] in the context of the six-vertex model and it will be

convenient for us to follow the same route here, as we already know by Remark 7.6

that translation invariant gradient Gibbs measures always exist for potentials as in

Definition 7.1. We say that a potential V is ∇-delocalized (on Z2) if for any translation-

invariant gradient Gibbs measure ν (with expectation ν), we have

sup
v∈Z2

ν[(hv − h0)2] =∞. (11)

Lemma 7.6. If a potential V is delocalized, then it is also ∇-delocalized.

Proof. Suppose otherwise that there exists a translation-invariant gradient Gibbs mea-

sure ν for which the supremum in (11) is finite. Then, as in Theorem 7.5, by considering

convex combinations of translations of ν thought of as a measure on height functions h̃

given by h̃v = hv−h0 we can construct a translation invariant Gibbs measure on height

functions which is a contradiction. We leave the details to the reader.

We note that the opposite implication is also true e.g. for potentials V that are

convex on the integers. Indeed, in this case it is know from the foundational work of

Sheffield [157] that each Gibbs measure for height functions has a finite second moment

(since the height at every point has a log-concave distribution).

7.4.3 Setup

Let us fix mutually dual potentials V and U as in Definition 7.1. It will be convenient

to consider the spin and height function models on finite, exponentially growing tori

TN = (Z/2NZ)2. This way we achieve three properties by construction:

• we work with measures that are translation invariant and invariant under π/2-

rotations,

• we can apply the duality of Lemma 7.2 first in the finite volume TN , and then

take simultaneous (subsequential) infinite-volume limits, TN → Z2 as N →∞, on

both sides of the duality relation,

• we get an explicit monotonicity in N for the Green’s function of the random walk

on TN (see below).

Let µ = µZ2,♦ be any subsequential limit of µTN ,♦, and let ν = νZ2,? denote the limit

of νTN ,? taken along the same subsequence (it exists by Remark 7.6). One can think of
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ν as a probability measure on height functions h : Z2 → Z satisfying h(0) = 0. By weak

convergence, the duality of Lemma 7.2 holds also for µ and ν whenever ε ∈ Ω1(Z2,R)

is of bounded support. The same is true for Corollary 7.3 and Corollary 7.4, where we

choose ∂ = 0 and consider the Green’s function of a random walk on Z2 killed at 0.

Note that by planar duality, we haveH♦(Z2, S) ∼= H?((Z2)∗, S), where (Z2)∗ ∼= 0∗+Z2

with 0∗ := (1/2, 1/2), is the dual square lattice. Since H?((Z2)∗, S) ∼= S(Z2)∗\{0∗}, we

can think of µ as a Gibbs measure on spin configurations θ on (Z2)∗ where the spin at

0∗ is fixed to be the identity element of S.

Finally, let vn = (n, 0) ∈ Z2, and let pn = (e0, e1, . . . , en−1) be the directed horizontal

path from v0 to vn. We identify pn with the 1-form that assigns 1 to each directed edge

in pn, and 0 to the directed edges of Z2 that are not in pn. For compactness of notation,

we write Ji = Jei and hi = hui .

7.4.4 The implication

Applying Lemma 7.3 and Corollary 7.4 in finite volume, and then taking the subsequen-

tial limit as in Section 7.4.3, we have

0 ≤
n−1∑
i=0

µ[U ′′(Ji)]− µ
[( n−1∑

i=0

U ′(Ji)
)2]

≤ lim sup
N→∞

νTN ,?[(h0 − hn)2] ≤ lim sup
N→∞

GN (vn, vn),

(12)

where GN is the Green’s function of simple random walk on TN killed at 0. This is

equivalent to a random walk on Z2 killed at all points in 2NZ2. Hence, GN ↗ G as

N →∞, where G is the Green’s function of a random walk on Z2 killed at 0. Classically

we have G(vn, vn) ≤ const×log n (see e.g. [131]). Plugging this bound into (12), dividing

both sides by n, letting n→∞, and finally using translation invariance of µ, we get

lim
n→∞

1

n

n−1∑
k=1

uk =
1

2
µ[U ′′(J0)− U ′(J0)2], where uk =

k∑
i=1

µ[U ′(J0)U ′(Ji)]. (13)

In particular uk converges in the Cesàro sense as k →∞.

Theorem 7.7 (Delocalization implies the BKT phase transition). Consider the setup

from Section 7.4.3. If the height function delocalizes in the sense that (11) holds true

for ν, then

∞∑
i=1

i|µ[U ′(J0)U ′(Ji)]| =∞.

In particular, there is no exponential decay of the two-point function µ[U ′(J0)U ′(Ji)] as

i→∞.
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Proof. We can assume that
∑∞

i=1 |µ[U ′(J0)U ′(Ji)]| < ∞ since otherwise we are done.

This means that uk converges in the classical sense to its Cesàro limit from (13). Hence,

µ[U ′′(J0)− U ′(J0)2] = lim
k→∞

2uk = 2
∞∑
i=1

µ[U ′(J0)U ′(Ji)]. (14)

By Lemma 7.3 applied in the infinite volume (pn has bounded support) and translation

invariance of µ, we have

ν[(hn − h0)2] =
n−1∑
i=0

µ[U ′′(Ji)− U ′(Ji)2]− 2
n−1∑
i=1

(n− i)µ[U ′(J0)U ′(Ji)]

= 2n

∞∑
i=1

µ[U ′(J0)U ′(Ji)]− 2

n−1∑
i=1

(n− i)µ[U ′(J0)U ′(Ji)]

= 2

n−1∑
i=1

iµ[U ′(J0)U ′(Ji)] + 2n

∞∑
i=n

µ[U ′(J0)U ′(Ji)]

≤ 2

∞∑
i=1

i|µ[U ′(J0)U ′(Ji)]|.

By the assumption, and translation and π/2-rotation invariance of ν, we have

∞ = sup
v∈Z2

ν[(hv − h0)2] ≤ 2 sup
n≥1

ν[(hn − h0)2],

which together with the inequality above finishes the proof.

It is classical that spin correlation functions decay exponentially fast at high temper-

atures (here the temperature is incorporated in the definition of U). This in particular

implies that
∑∞

i=1 i|µ[U ′(J0)U ′(Ji)]| < ∞. From this point of view Theorem 7.7 says

that if the height function delocalises, then the associated spin model undergoes a BKT

phase transition from a regime with exponential decay to a regime with slow decay of

correlations.

7.4.5 The case of the XY-model

The change of behavior of the two-point functions µ[U ′(J0)U ′(Ji)] as i → ∞ clearly

indicates a phase transition in the spin model. However it is more common to look

at correlations of the type µ[F(θu − θu′)] when u and u′ are far apart, where θ is the

underlying spin field on (Z2)∗ (the faces of Z2), and where F is some chosen function,

e.g. F = U .

For general spin models, it is not clear how to compare these two types of correlation

functions. Here we present an approach based on correlation inequalities in the case

of the classical XY model, i.e., when U(t) = −β cos(t), where β > 0 is the inverse

temperature in the spin model.
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To this end, consider the setup as in Theorem 7.7. If {ui, u′i} is the dual edge of ei,

writing θi = θui and θ′i = θ′ui , we have

2

β2
µ[U ′(e0)U ′(ei)] = 2µ[sin(θ0 − θ′0) sin(θi − θ′i)] (15)

= µ[cos(θ0 − θ′0 − θi + θ′i)]− µ[cos(θ0 − θ′0 + θi − θ′i)]

A version of the classical Ginibre inequality for the XY model [80] (see also [25]) says

that

µ[sin(θ0) cos(θ′0) sin(θi) cos(θ′i)] ≤ µ[sin(θ0) sin(θi)]µ[cos(θ′0) cos(θ′i)],

which after expanding into cosines of sums of angles and disregarding terms that are

not invariant under global rotation (shift of angles mod 2π) whose expectations vanish,

we obtain

µ[cos(θ0 + θ′0 − θi − θ′i)] + µ[cos(θ0 − θ′0 − θi + θ′i)]− µ[cos(θ0 − θ′0 + θi − θ′i)]

≤ 2µ[cos(θ0 − θi)]µ[cos(θ′0 − θ′i)]

= 2µ[cos(θ0 − θi)]2,

where the last identity follows by reflection invariance of µ across the real line. Analogous

inequality follows by exchanging the roles of θi and θ′i, which results in swapping the

signs of the second and third term in the first line. Using that the first term is positive

by the first Griffiths inequality, and combining with (15), we get that

1
2µ[cos(θ0 + θ′0 − θi − θ′i)] + |µ[U ′(e0)U ′(ei)]| ≤ max{µ[cos(θ0 − θi)]2, µ[cos(θ0 − θ′i)]2}

= µ[cos(θ0 − θi)]2, (16)

where the last identity follows from the Messager–Miracle-Sole inequality [135] by ap-

plying the reflection across the real line.

These considerations, together with Lemma 7.6, lead us to the following corollary

that recovers the main result of [64].

Corollary 7.8. If the height function associated with the XY model on Z2 delocalizes,

then

∞∑
i=1

iµ[cos(θ0 − θi)]2 ≥
∞∑
i=1

i(µ[cos(θ0 − θi)]2 − 1
2µ[cos(θ0 + θ′0 − θi − θ′i)]) =∞.

Remark 7.7. For the XY model it is known that there exists only one translation-

invariant Gibbs measure µ on Z2 [145], and hence regular, instead of subsequential,

limits may be taken Section 7.4.3.
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7.4.6 An equivalence

When −U is itself positive definite, i.e., all its Fourier coefficients are nonnegative, we

can actually conclude more than in the above discussion. Indeed, in this case µ is

reflection positive (see Appendix B.2). This implies that

µ[U ′(J0)U ′(Ji)] ≥ 0

as this holds true on TN for every N ≥ i by reflection positivity. Therefore the Cesàro

convergence from (13) implies classical convergence, and (14) always holds true. The

same argument as in the proof of Theorem 7.7 yields the following corollary.

Corollary 7.9. Consider the setup from Section 7.4.3, and moreover assume that −U
is positive definite. Then (11) holds true for ν if and only if

∞∑
i=1

iµ[U ′(J0)U ′(Ji)] =∞. (17)

Remark 7.8. The identity from (14) can be rewritten in a more symmetric form as∑
i∈Z

µ[U ′(J0)U ′(Ji)] = µ[U ′′(J0)], (18)

where now the sum is over a bi-infinite path of edges. Curiously, this is an exact

(but nonlocal) identity for correlation functions that is independent of the (hidden in

the definition of U) temperature parameter. In particular the series in (18) is always

convergent, independently of the temperature. This is in contrast with the behavior of

the series in (17) that does undergo a phase transition. This, together with the relation

to the gradient of the height function (6), is consistent with the conjecture that in

delocalized regime the discrete GFF describes the large-scale fluctuations of the height

function. Indeed, the two-point function of the gradient of the discrete GFF is known

to decay like the inverse square of the distance (see e.g. [22]).

7.5. Monotonicity of variance of the height function

In this section we will show that the variance of the height function is monotone in a

natural temperature parameter under some further assumptions on the potential. To

the best of our knowledge the result is new, even in the case of planar graphs. Together

with the dichotomy of Lammers [115], this directly implies that the height function of

the XY model undergoes a sharp phase transition on the square lattice.

7.5.1 Setup

Let G = (V,E) be a finite graph. To each edge e ∈ E, associate
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• a twice continuously differentiable spin potential Ue : S → R such that −Ue is

positive definite,

• a non-negative real βe (thought of as the inverse temperature in the spin model),

• the dual potential Vβe := Vβe,e of βeUe as in Definition 7.1.

We will consider the family of measures νβ,? for height functions and their dual measures

µβ,♦, indexed by β = (βe)e∈E .

We wish to point out that the above requirements on the spin potential U can also

be described purely in terms of the height function potential: if V satisfies the conditions

of Definition 7.1 and e−V is infinitely divisible (in the sense that each division satisfies

Definition 7.1), then the corresponding spin potential satisfies the above conditions, see

Appendix B.3. This equivalence is not important in the remainder of this section.

7.5.2 Increasing variance

The main result of this section is the following fact.

Theorem 7.10. Consider the setup as in Section 7.5.1. For each x, y ∈ V and e ∈ E
the function

βe 7→ νβ,?[(hx − hy)2]

is non-decreasing.

To prove the theorem, let us begin by slightly extending Ginibre’s inequalities [80]

to spin models on H♦(S) (the original inequality deals with H?(S)).

Lemma 7.11 (Ginibre). Consider the setup as in Section 7.5.1. For all positive definite

functions F : S→ R and all e, f ∈ E, we have

∂

∂βe
µβ,♦[F (Jf )] ≥ 0.

Proof. This is proved in Appendix B.1.

Proof of Theorem 7.10. We first add an additional edge g connecting x and y (even if

there was already such an edge present). On this edge, we put the potential −Ug(t) =

cos(t) and parameter βg = λ ≥ 0. Thus, we remain in the setup of Section 7.5.1. We

write µβ,λ,♦ and νβ,λ,? for the corresponding spin and height-function measure respec-

tively, and note that µβ,λ,♦ → µβ,♦ as λ→∞.

Let ε be any 1-form vanishing on g and such that d∗ε = δx − δy, and let ε′ be the

1-form vanishing outside of g and such that d∗ε′ = δx − δy. By Lemma 7.3 applied first

to ε′ and then to ε, we have that

νβ,λ,?[(hx − hy)2] = βgµβ,λ,♦[cos(Jg)] + β2
gµβ,λ,♦[cos(Jg)

2]− β2
g
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=
∑
e∈E

(
µβ,λ,♦[U ′′e (Je)]ε

2
e − µβ,λ,♦

[
(U ′e(J), ε)2

])
. (19)

Since 2 cos2 t = 1 + cos 2t is positive definite we can apply Lemma 7.11 to the first line

above and conclude that (19) is nondecreasing in βe for any e 6= g. By weak convergence,

the same holds for∑
e∈E

(
µβ,♦[U ′′e (Je)]ε

2
e − µβ,♦

[
(U ′e(J), ε)2

])
= νβ,?[(hx − hy)2],

where the last equality again follows from Lemma 7.3. This ends the proof.

7.5.3 Delocalization of roughly planar height function models

In this section, we will use Theorem 7.10 to deduce that on many planar graphs, the

height function delocalizes. Consider here an infinite lattice Γ = (V ,E ) embedded in

the plane, but not necessarily planar. We will assume throughout that Γ (under this

embedding) invariant under a bi-periodic lattice action, and that it has finite degrees.

An example of such Γ is Z2 where all vertices are connected if they are within distance

M < ∞ from each other. Given Γ, recall that (GN )N≥1 is an exhaustion of Γ if GN is

a finite subgraph of Γ for each N , GN ⊂ GN+1 and GN ↗ Γ. We will also consider the

wiring of GN by identifying GcN in Γ to a single vertex ∂ and removing all the self-loops

created in this process. The obtained graph will be denoted by G∗N . On such graphs,

we will take the measures νN,β,? as in Section 7.5.1, and we identify the space of 1-forms

n in H?(Z) with functions h in Ω0
0(Z).

Theorem 7.12 (Delocalization). Let Γ be as above and consider the setup as in Sec-

tion 7.5.1 where we assume that Ue is the same for all edges. There exists a βc < ∞
such that for all β ≥ βc and all wired exhaustions G∗N ↗ Γ,

νN,β,?[h
2
o]→∞.

To prove this theorem, we rely on a beautiful result of Lammers [114]:

Theorem 7.13 (Theorem 2.7 [114]). Let Γ′ = (V,E) be an infinite graph with degree

at most three, that is invariant under some lattice action. If V is a convex potential for

the height function with

V(±1) ≤ V(0) + log(2),

then the height function delocalizes in the sense that there are no translation invariant

Gibbs measures.

In general, the potentials V as in the setup of Section 7.5.1 need not be convex.

However, in some special cases they are, as we will show next. This will be crucial for

what follows: in Section 7.5.3 it will be shown that we can always reduce to this case.
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Lemma 7.14. If −U(J) = cos(iJ) for some i ∈ N, then Vβ is convex over iZ for all β.

Moreover, translation invariant Gibbs measures exist if and only if νN,β,?[h
2
o] is bounded

uniformly in N .

Proof. In the case −U(J) = cos(J), convexity of Vβ over the integers is an easy conse-

quence of the Turán inequality, see e.g. [64]. The extension to −U(J) = cos(iJ) follows

from a change of variables. The second statement of the lemma was proved in the case

of the XY model in [64, Theorem 4]. It follows from a standard dichotomy (see e.g.

[117]) in the case where the height function satisfies the so called “absolute value FKG”

property, meaning that |h| is FKG, see also (10).

Remark 7.9. We wish to point out that the result of Lammers does not depend on

the potential V being the same on each edge, just that it satisfies the condition of

Theorem 7.13 for all edges, and that the potentials are invariant under some lattice

action.

We will first modify the potentials −U so they will fit the framework of Theorem

7.13 and Lemma 7.14. Next, we modify the graph Γ to obtain a graph Γ′ to which we

can apply Theorem 7.13 in such a way that Γ′ embeds into Γ and the variance of the

height function in Γ′ is smaller.

Reduction to convex potentials

We will apply here a simplification that allows us to only consider potentials of the form

−U(J) = αi cos(iJ). Since −U is positive definite, it can be written as

−U(J) = α0 +
∞∑
i=1

αi cos(iJ),

with αi ≥ 0. Now let i ≥ 1 be the first mode where αi > 0. Write −U ′ = αi cos(iJ) and

ν ′G,β,? for the corresponding height function measure.

Lemma 7.15. For any finite graph G = (V,E) with boundary ∂ and any x ∈ V \ {∂},
we have

ν ′G,β,?[h
2
x] ≤ νG,β,?[h2

x].

Proof. Take −U ′′ = −U + U ′ which is positive definite. Write for any α ≥ 0

Uα(J) = U ′(J) + αU ′′(J),

so that U1 = U , U0 = U ′ and −Uα is positive definite for each α. Let νG,β,α,? be the

corresponding height function measure. Theorem 7.10 implies that for any x ∈ V
∂

∂α
νG,β,α,?[h

2
x] ≥ 0,

so that the variance is minimized at α = 0. This shows the result.
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Graph Modifications.

Fix Γ an infinite graph and GN ↗ Γ an exhaustion as above. We wish to perform two

operations:

(a) splitting edges into multiple sub-edges and

(b) gluing vertices together,

in such a way that the variance of the height function does not increase.

Operation (a) is the easiest: to add k−1 “evenly spaced” vertices to an edge without

changing the height function on the original graph, we wish to find a potential V(k)
β such

that

e−Vβ = (e−V
(k)
β )∗k,

where by ∗k we mean k-fold convolution.

Using basic properties of the Fourier transform, we can take the potential V(k)
β = Vβ/k

which is dual to −(β/k)U . This offers the following lemma.

Lemma 7.16 (Splitting edges). Suppose V corresponds to a spin potential U , such that

−U is positive definite. For each k ∈ N, we have

e−Vβ = (e−Vβ/k)∗k.

Operation (b) will make use of Theorem 7.10. Let v1, v2 be two vertices in the graph,

with or without an edge between them and add to the graph the edge g = {v1, v2}
with the XY potential Vλ(k) = − log(Ik(λ)) with parameter λ. Write νN,β,λ,? for the

corresponding height function measure on G∗N . We will show now that gluing the vertices

v1, v2 corresponds to sending λ to 0 in this setting. Indeed, as λ→ 0, we have

e−Vλ(k) = Ik(λ)→

1, if k = 0

0, else

which means that the height function measure νN,β,0,? is supported on height functions

with hv1 = hv2 . Moreover, Theorem 7.10 implies that for any vertex x of G∗N ,

∂

∂λ
νN,β,λ,?(h

2
x) ≥ 0,

so that we find the following result.

Lemma 7.17 (Gluing vertices). Let x, v1, v2 ∈ V and H∗N be obtained from G∗N by

gluing together v1 and v2. Then νHN ,β,?[h
2
x] ≤ νGN ,β,?[h2

x].

To summarize, we have established that gluing two vertices together reduces the

variance of the height function, and splitting edges as in Lemma 7.16 does not change

the model. These two facts together imply that we can modify Γ to obtain a planar

graph Γ′ of degree at most three as we will explain now. We first show how to go from

any planar graph to a planar graph of degree at most three.
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Star-tree transform

There are many ways to transform a planar graph into a planar graph with degree at

most three. We follow here the elegant idea presented in [86], where it was (implicitly)

stated for the Gaussian free field. Suppose that G = (V,E) is a planar graph with

boundary ∂ ∈ V and take the setup of Section 7.5.1. Fix a vertex v0 ∈ V . It will

be slightly more convenient to make a distinction between the number of neighboring

vertices of v0 and its degree in multigraphs.

Degree reduction algorithm at v0.

1. If the the number of neighbors of v0 is strictly less than 4, do nothing.

2. Label all neighbors of v0 by v1, . . . , v2d by starting somewhere and going clockwise

around v0, where we do not include the last vertex if the number of neighbors is

odd.

3. Add to each edge v0vi an intermediate vertex xi (note that if there are multiple

edges between v0 and vi, then we have created many new vertices).

4. put the potential Vβv0vi/2 on the edges v0xi and xivi, for each i.

5. Glue together each pair x2i−1 and x2i (this includes gluing together multiple ver-

tices xi if they exist).

Note that this algorithm reduces the number of neighbors of v0 by a factor 2 if this

number is even. Also note that it creates a multigraph. From the splitting and gluing

lemmas, we obtain the next result.

Lemma 7.18. Applying the degree reduction algorithm at v0 does not increase the vari-

ance of hx for any x ∈ V .

Thus, to reduce the number of neighbors of v0 to 3 or less, we are left to apply the

reduction algorithm inductively, and to get a graph of degree three we apply it to all

vertices in G other than the boundary vertex.

To finalize the star-tree transform, we still need to transform the multi-graph into a

simple graph. Of course, we need to do so without changing the height function model.

If e1, e2 are two edges with the same end-points x and y then

νN,β,?(hx − hy = k) ∝ e−Vβ(k)e−Vβ(k) = e−(Vβ+Vβ)(k). (20)

This observation implies that applying inductively the reduction algorithm and then

applying the above observation does result in a graph where:
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Figure 7.1: Left: original graph with v0 in the center. Middle two: first step of the

degree-reduction algorithm, dotted lines correspond to vertices to be glued together.

Right: Final graph after “star–tree” transform, with vertices glued together and all

vertices have three or less neighbors.

(i) the number of neighbors of each vertex is less than or equal to 3,

(ii) the variance of the height function is not increased,

(iii) the potentials are of the form DVβ/k for some D and k that can depend on the

edges.

Proof of Theorem 7.12

Before we finish the proof of Theorem 7.12, let us briefly mention how to go from a

“roughly planar” graph to a planar graph, see also Figure 7.2. We will do so for Z2

where x ∼ y if |x− y|2 ≤ 2. Add to an edge connecting two vertices x and y that are at

distance 2 from each other a new vertex. Glue it to the unique vertex between x and y

that is at distance 1 of each. Apply this algorithm to all edges. The obtained graph is

planar and the variance of the height function is not increased by Lemma 7.17.

Proof of Theorem 7.10. Consider the setup of Section 7.5.1. By Lemma 7.15, we can

assume without loss of generality that −U(J) = cos(iJ). Write Vβ for the corresponding

height function potential.

Let Γ′ be the planar graph obtained from Γ as in Section 7.5.3, with the corresponding

potentials DeVβ/ke , De ∈ (0,∞) and ke ∈ N. Although De, ke may be different on

distinct edges, they are uniformly bounded because Γ (and hence Γ′) is invariant a

bi-periodic lattice action.

Let (GN )N≥1 be any exhaustion of Γ and let (G′N )N≥1 be the induced exhaustion

of Γ′, obtained from applying the degree reduction algorithm to all of GN (but not

the boundary vertex). Write ν ′N,β,? for the corresponding height function measure on
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Figure 7.2: Left: an example of Z2 with long-range interactions; only the edges of the

(red) origin are drawn. Middle: gluing. The square (gray) vertices are added, together

with the green edges where the gluing will happen. Right: the final (planar) graph.

G′N . It follows from Section 7.5.3 that it suffices to prove that for all β large enough,

ν ′N,β,?[h
2
o]→∞. Indeed, in this case we also have νN,β,?[h

2
o]→∞.

Note that since Vβ/k is convex, so is any multiple. Moreover, for each D ∈ (0,∞)

and k ∈ N we have that for all β large enough,

DVβ/k(0) ≤ DVβ/k(1) + log(2).

Indeed, this follows from the fact that the modified Bessel function satisfies the ratio

Im(β)/Im′(β) tends to 1 as β → ∞ (see e.g. [64]). Therefore, we can apply Theorem

7.13 and Lemma 7.14 to deduce that for β large enough,

ν ′N,β,?[h
2
o]→∞

as N →∞. This proves the theorem.

7.6. GFF covariance for a projection of the spin model

Let G = (V,E) be a finite graph. Recall that Ω1(R) equipped with the l2-inner product

(ε, ω)Ω1 is a Hilbert space. In this setting, the linear operators d and d∗ are mutually

adjoint, and hence the spaces H?(R) and H♦(R) are orthogonal in Ω1(R) and span the

whole space, i.e.,

Ω1(R) = H?(R)⊕H♦(R).

We denote by P♦ and P? the orthogonal projection onto H♦(R) and H?(R) respectively.

We focus on finite graphs G = (V,E) with boundary vertex ∂ ∈ V and take mutually

dual potentials V and U as in Definition 7.1.

Since U is symmetric around 0 by assumption, the derivative U ′ of U is odd and hence

U ′(J) is a 1-form in Ω1(R). It thus makes sense to look at the orthogonal decomposition
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of U ′(J) in the space H?(R)⊕H♦(R). Define τ to be the unique element of Ω0
0(R) such

that

dτ = P?U ′(J).

We will next obtain the – in our eyes somewhat remarkable – result that τ has the

covariance of a Gaussian free field irrespective of U .

Proposition 7.19 (GFF covariance). Let τ be as above and f, g ∈ Ω0
0(R). Then

inf
e∈E

µG,?[U ′′(Je)](f,Gg) ≤ µG,?[(τ, f)(τ, g)] ≤ sup
e∈E

µG,?[U ′′(Je)](f,Gg).

We begin with an easy consequence of the duality lemma for covariance 7.3.

Lemma 7.20. For any f, g ∈ Ω0
0(R), we have

µG,?[(U ′(J), dg)(U ′(J),df)] =
∑
e∈E

µG,?[U ′′(Je)]dfedge

Proof. Let f, g be as in the statement so that df, dg ∈ H?. Lemma 7.3 implies

µG,?[(U ′(J),df)(U ′(J),dg)] =
∑
e∈E

µG,?[U ′′(Je)]dfedge − νG,♦[(n,df)(n,dg)]

Since H? and H♦ are orthogonal, and the dual height 1-form n takes value in H♦, the

right-most term vanishes and the result follows.

Proof of Proposition 7.19. For any g ∈ Ω0(R), we have

(U ′(J),dg) = (P?U ′(J),dg) = (τ,∆g)

where the first equality holds because dg ∈ H? and the second by definition of τ , the

duality of d and d∗ and because ∆ = d∗d. As before, G denotes the inverse of ∆ (so

defined that functions take value 0 at the boundary) and take now g = Gm, h = Gf .

It follows from this and the previous lemma that

µG,?[(τ,m)(τ, f)] =
∑
e∈E

µG,?[U ′′(Je)]dfedge,

implying the desired result.

7.7. A central limit theorem

Here we consider the same setup as in Section 7.4.3, and we establish a central limit

theorem for U ′(J) summed over the path pn. The main conclusion of this section is

that even though the decay of the correlations of U ′(J) changes if the height function

delocalizes, U ′(J) always satisfies a central limit theorem as shown below.
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Let (Nk)k≥1 be a sequence along which µTN ,♦ converges weakly to a measure µ =

µTN . As usual, by duality, µ can be thought of as a Gibbs measure on H?(Z2, S). By

Remark 7.6, for any fixed n, the difference hv0 − hvn converges weakly under νTN ,?, as

N →∞ (as long as v0, vn ∈ TN ). Moreover by Corollary 7.4,

lim
n→∞

lim sup
k→∞

νTNk ,?[(hv0 − hvn)2]/n ≤ lim
n→∞

c
log n

n
= 0.

and hence by Lemma 7.2, for all t ∈ R,

1 = lim
n→∞

lim
k→∞

νTNk ,?
[

exp
(
i t√

n
(hv0 − hvn)

)]
= lim

n→∞
lim
k→∞

ZTNk ,♦
(
t√
n
pn
)
/ZTNk ,♦(0),

(21)

where again we identify the path pn with the associated 1-form. Using that

U(J + ε)− U(J) = U ′(J)ε+ 1
2U
′′(J)ε2 + o(ε2)

we can write

ZTNk ,♦
(
t√
n
pn
)
/ZTNk ,♦(0)

= µTNk ,♦

[
exp

(
− t 1√

n

n∑
i=1

U ′(Ji)− t2
1

2n

n∑
i=1

U ′′(Ji) + o(t2)
)]
,

where the error is uniform in k. We first note that by weak convergence, as k → ∞,

the right-hand side approaches to the same expectation but with respect to µ (the

infinite volume limit of µTN ,?). Moreover, the error therm vanishes in the limit n→∞.

Assuming that the spin measure µ is ergodic, we also have that

1

n

n∑
i=1

U ′′(Ji)→ µ[U ′′(J0)] µ-a.s. as n→∞

by Birkhoff’s pointwise ergodic theorem (since J is invariant under the shift along the

path, and U ′′ is bounded). Note that in the case of the XY model, there is only one

translation invariant Gibbs measure in two dimensions [136] which must therefore be

ergodic. By the dominated convergence theorem and (21), we conclude the following

central limit theorem.

Theorem 7.21. If µ is ergodic, then for any t ∈ R,

lim
n→∞

µ
[

exp
(
− t√

n

n∑
i=1

U ′(Ji)
)]

= exp
( t2

2
µ[U ′′(J0)]

)
.

In particular,

1√
n

n∑
i=1

U ′(Ji)→ N (0, µ[U ′′(J0)])

in distribution as n→∞.
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APPENDIX A

Uniqueness of the potential kernel implies

one-endedness of the UST, without finite

expected degree

In this appendix we prove Theorem 3.15, which generalizes the theorem of Berestycki and

the first author concerning the equivalence of the UST being one-ended and uniqueness

of the harmonic measure from infinity to the case that the unimodular random rooted

graph does not necessarily have finite expected degree. A secondary purpose of this

appendix is to give a brief and self-contained account of those results of [34] that are

needed for our main results. Since recurrent graphs whose USTs are one-ended always

have unique harmonic measure from infinity [32, Theorem 14.2], it suffices to prove

that the converse holds under the additional assumption of unimodularity. Moreover, it

suffices as usual to consider the case that (G, o) is ergodic.

Suppose that (G, o) is an ergodic recurrent unimodular random rooted graph for

which H is a singleton almost surely. We write h for the unique element of H and

a for the corresponding potential kernel. For each c > 0 consider the event Ac =

{lim supx→∞ hx,o(x) ≥ c} = {for each ε > 0 there exist infinitely many vertices x with

hx,o(x) ≥ c−ε}. As explained in detail in [34, Lemma 5.3] (which concerns deterministic

recurrent graphs), we have that

hx,o(x) ∼ hx,w(x) as x→∞ for each fixed w ∈ V , (1)

which implies that Ac is re-rooting invariant. Since (G, o) was assumed to be ergodic

we deduce the following.

Lemma A.1. Let (G, o) be an ergodic unimodular random rooted graph. If G is almost

surely recurrent with a uniquely defined harmonic measure from infinity then the event

Ac has probability 0 or 1 for each c ∈ (0, 1).

The next lemma is proven in [34] using an argument that relies on reversibility (and

hence on the assumption Edeg(o) < ∞). We give an alternative proof using Følner

sequences that works without this assumption.
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Lemma A.2. Let (G, o) be an ergodic unimodular random rooted graph. If G is almost

surely recurrent with a uniquely defined harmonic measure from infinity then the event

A1/2 holds almost surely.

Proof. It suffices to prove that Ac holds with positive probability for every c < 1/2.

Since (G, o) is recurrent, it follows from the results of [9, §8] that (G, o) is hyperfinite,

meaning that there exists a sequence of random subsets (ωn)n≥1 of E such that

1. Every component of the subgraph spanned by ωn is finite almost surely for each

n ≥ 1.

2. ωn ⊆ ωn+1 for each n ≥ 1 and
⋃
n≥1 ωn = E.

3. The random rooted edge-labelled graph (G, o, (ωn)n≥1) is unimodular.

Let n ≥ 1 and let Kn be the component of o in ωn. Then we have by the mass-transport

principle that

E

[
1

|Kn|
∑
x∈Kn

1

(
hx,o(x) ≥ 1

2

)]
= E

[
1

|Kn|
∑
x∈Kn

1

(
hx,o(o) ≥

1

2

)]
,

and since the sum of the two sides is at least 1 it follows that

E

[
1

|Kn|
∑
x∈Kn

1

(
hx,o(x) ≥ 1

2

)]
≥ 1

2

and hence by Markov’s inequality that

P
(∣∣{x ∈ Kn : hx,o(x) ≥ 1

2}
∣∣ ≥ 1

4 |Kn|
)
≥ 1− 4

3
E

[
1

|Kn|
∑
x∈Kn

1

(
hx,o(x) <

1

2

)]
≥ 1

3
.

Since |Kn| → ∞ almost surely as n→∞, it follows from this and Fatou’s lemma that

P(A1/2) ≥ P
(∣∣{x ∈ Kn : hx,o(x) ≥ 1

2}
∣∣ ≥ 1

4 |Kn| for infinitely many n
)
≥ 1

3

and hence by ergodicity that P(A1/2) = 1 as claimed.

Lemma A.3. Let G = (V,E) be an infinite, connected, locally finite recurrent graph

with uniquely defined harmonic measure from infinity h, let o ∈ V and let a be the

associated potential kernel. If A is any infinite set of vertices with infx∈A hx,o(x) > 0,

the Doob-transformed walk X̂ visits A infinitely often almost surely.

Proof. We have by (11) that P̂o(X̂ hits x) = ho,x(x) for every x ∈ V , and it follows by

Fatou’s lemma that P̂(hit A infinitely often) ≥ infx∈A hx,o(x) > 0. On the other hand,

we have by Theorem 3.8 and the assumption that h is unique that X̂ has trivial tail

σ-algebra, so that P̂(hit A infinitely often) = 1 as claimed.
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Proposition A.4. Let G = (V,E) be an infinite, connected, locally finite recurrent

graph with uniquely defined harmonic measure from infinity h, let o ∈ V , let a be the

associated potential kernel, and suppose that lim infx→∞ hx,o(x) > 0. If X̂ and Ŷ are

independent copies of the Doob-transformed walk started at some vertices x and y, then

{X̂n : n ≥ 0} ∩ {Ŷn : n ≥ 0} is infinite almost surely.

Proof. Let δ > 0 be such that A = {x ∈ V : hx,o(x) ≥ δ} is infinite. Applying

Lemma A.3 yields that X̂ ∩ A is infinite almost surely, and applying Lemma A.3 a

second time yields that Ŷ ∩ X̂ ∩A is infinite almost surely.

Applying this proposition together with the results of [132], which imply that an

independent Markov process and loop-erased Markov process intersect infinitely almost

surely whenever the corresponding two independent Markov processes do, we deduce

the following immediate corollary.

Corollary A.5. Let G = (V,E) be an infinite, connected, locally finite recurrent graph

with uniquely defined harmonic measure from infinity h, let o ∈ V , let a be the associated

potential kernel, and suppose that lim infx→∞ hx,o(x) > 0. If X̂ and Ŷ are independent

copies of the Doob-transformed walk started at some vertices x and y, then {X̂n : n ≥
0} ∩ {LE(Ŷ )n : n ≥ 0} is infinite almost surely.

Proposition A.6. Let G = (V,E) be an infinite, connected, locally finite recurrent

graph with uniquely defined harmonic measure from infinity h, let o ∈ V , let a be the

associated potential kernel, and suppose that lim infx→∞ hx,o(x) > 0. For each x ∈ V ,

let X be a random walk started at x and let Ŷ be a Doob-transformed walk started at o.

Then

lim
x→∞

P
(
{Xn : 0 ≤ n ≤ To} ∩ {LE(Ŷ )m : m ≥ 0} = {o}

)
= 0.

Proof. As x → ∞, the law of the time-reversed final segment (XTo , XTo−1, . . . , XTo−k)

converges to that of (X̂0, . . . , X̂k) for each k ≥ 1, and the claim follows from Corol-

lary A.5.

Proof of Theorem 3.15. The fact that G has a unique harmonic measure from infinity

means that we can endow the uniform spanning tree of G with an orientation in a

canonical way: Suppose that we exhuast V by finite sets V =
⋃
Vn and let G∗n be

defined by contracting V \ Vn into a single boundary vertex ∂n, so that the UST of G

can be expressed as the weak limit of the USTs of the graphs G∗n. If for each n ≥ 1

we orient the UST of G∗n towards the boundary vertex ∂n to obtain an oriented tree

T→n , then the uniqueness of the harmonic measure from infinity on G implies that the

law of T→n converges weakly to the law of an oriented spanning tree T→ of G, which

can be thought of as a canonical (but potentially random) orientation of the UST of G.
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Indeed, if we fix an enumeration v1, v2, . . . of V with v1 = o we can sample T→n using

Wilson’s algorithm rooted at ∂n, starting with the vertices in the order they appear

in the enumeration of V , and orienting the edges of the tree in the direction they are

crossed by the loop-erased walk that contributed them to the tree. In the infinite-volume

limit (since only the part of the first walk after its final visit to o contributes to its loop

erasure), this corresponds to doing Wilson’s algorithm where the first walk started at o

is Doob-transformed and the remaining walks are ordinary simply random walks.

An important consequence of this discussion is that if we sample the oriented uniform

spanning tree using Wilson’s algorithm rooted at infinity, where the first random walk

is a Doob-transformed walk started at o and the remaining walks are ordinary simple

random walks, the distribution of the resulting oriented tree T→ does not depend on

the choice of the root vertex o, since it is given by the limit of the USTs of G∗n oriented

towards ∂n independently of the choice of exhaustion. Given the oriented tree T→, we

say that a vertex u is in the future of a vertex v if the unique infinite oriented path

emanating from v passes through v, and say that u is in the past of v if v is in the

future of u.

Let (ωn)n≥1 be a sequence witnessing the fact that (G, o) is hyperfinite as in the

proof of Lemma A.2 and let Kn be the cluster of o in ωn for each n ≥ 1. We have by

the mass-transport principle that

E

[
1

|Kn|
∑
x∈Kn

1 (x in past of o)

]
= E

[
1

|Kn|
∑
x∈Kn

1 (x in future of o)

]
.

On the other hand, letting S be the set of vertices belonging to a doubly infinite path

in T , we also have that

E

[
1

|Kn|
∑
x∈Kn

1 (x in past or future of o)

]
≥ E

[
1

|Kn|
∑
x∈Kn

1(o, x ∈ S)

]
and we can use the mass-transport principle again to bound

E

[
1

|Kn|
∑
x∈Kn

1(o, x ∈ S)

]
= E

 1

|Kn|2
∑

x,y∈Kn

1(o, x ∈ S)


= E

 1

|Kn|2
∑

x,y∈Kn

1(x, y ∈ S)


= E

[(
|Kn ∩ S|
|Kn|

)2
]
≥ E

[
|Kn ∩ S|
|Kn|

]2

= P(o ∈ S)2.

Putting these two estimates together, it follows that

E

[
1

|Kn|
∑
x∈Kn

1 (x in past of o)

]
≥ 1

2
P(o ∈ S)2. (2)
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On the other hand, if we sample T→ using Wilson’s algorithm rooted at infinity, starting

with a Doob-transformed Ŷ started at o followed by an ordinary random walk X started

at x, the vertex x belongs to the past of o if and only if the walk X first hits the loop-

erasure of Ŷ at the vertex o. Proposition A.6 implies that this probability tends to zero

as x→∞,and it follows by bounded convergence that

E

[
1

|Kn|
∑
x∈Kn

1 (x in past of o)

]
→ 0 (3)

as n → ∞. Putting together (2) and (3) yields that P(o ∈ S) = 0. Since “everything

that can happen somewhere can happen at the root” [9, Lemma 2.3], it follows that

S = ∅ almost surely and hence that T is one-ended almost surely as claimed.
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Duality between height functions and spin

models

Let G = (V,E) be a finite graph and write ~E for its oriented edges. Here and in what

follows, we will always fix an implicit embedding E ↪→ ~E, which fixes for each edge a

prescribed orientation. The particular embedding chosen is of no importance.

Recall that the two Hilbert spaces Ω0(R),Ω1(R) are equipped with the natural inner

products:

(f, g)Ω0 :=
∑
x∈V

fxgx and (ε, ω)Ω1 :=
1

2

∑
~e∈ ~E

ε~e ω~e

respectively, and it is standard to see that d and d∗ are adjoints: for all f ∈ Ω0(R) and

ω ∈ Ω1(R)

(df, ω)Ω1 = (f,d∗ω)Ω0 .

We will use the embedding S ↪→ R uniquely defined by identifying eiθ ↔ θ in such a

way that θ ∈ (−π, π].

Recall the definition for any 1-form ε ∈ Ω1(R) of the twisted partition function

Z#(ε) =

∫
H#(G,S)

∏
e∈E

w(Je + εe)dJ.

We wish to emphasize again that when # = ♦, unlike in the case of planar graphs, this

does not generally correspond to a spin model on vertices, but rather to a measure on

1-forms taking value in the group S and satisfying d∗J = 0.

We will need an appropriate description of the Haar measure on H#(G, S). Let us

start with the case # = ?.

Lemma B.1. For any function F : Ω1(G, S)→ R∫
H?(G,S)

F (J)dJ =

∫
SV
F (dθ)dθ

where dθ is the product uniform measure on SV .
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Proof. We first note that the measure ν on H?(E,S) defined via

ν(A) :=

∫
SV
1A(dθ)dθ

is a Radon probability measure. We are left to argue that it is invariant under the group

action, since then it is the unique Haar measure. To that end, let J ′ ∈ H? and recall

that we use additive notation for abelian groups. Note that J ′ = dθ′ for some θ′ ∈ SV ,

so that J ′ + dθ = dθ′ + dθ = d(θ′ + θ). In particular,

ν(A− J ′) =

∫
SV
1A−J ′(dθ)dθ =

∫
SV
1A(d(θ′ + θ))dθ = ν(A),

where the last equality follows as dθ is the product Lebesgue measure and hence invariant

under rotations (translations) of each of the coordinates.

For the case # = ♦, we will need a different argument. An element J ∈ H♦(S)

satisfies d∗J ≡ 0 by definition. Therefore, knowing the value of J at all edges containing

a vertex x but one, uniquely determines the value of J on the last edge. Let T ⊂ E be

a spanning tree of G = (V,E) (the exact choice does not matter). Let GT = (V,E \ T ).

If ∂ ∈ V is a chosen root, then T can be oriented towards the root and as such, each

vertex in V \ {∂} satisfies that there is exactly one edge in the oriented tree pointing

out of x. Therefore, for each J ∈ Ω1(GT , S), there is a unique way to extend J to E in

such a way that J ∈ H♦(G, S), and we will write J̄ for this extension.

Lemma B.2. For any function F : Ω1(G, S)→ R, we have∫
H♦(S)

F (J)dJ =

∫
SE\T

F (J̄)dJ,

where the measure on the right-hand side is the product uniform measure on SE\T . In

particular, the right-hand side does not depend on T .

Proof. Define the measure ν on H♦(G,S) = ker(d∗) through ν(A) :=
∫
SE\T 1A(J̄)dJ . It

is enough to show that ν is invariant under the group action. Indeed, for any τ ∈ SE\T ,

we have

ν(A− τ̄) =

∫
SE\T

1A(J + τ)dJ =

∫
SE\T

1A(J̄)dJ = ν(A),

since the product uniform measure is invariant under the group action. This ends the

proof.

We will also need the following classical results from Fourier series theory. For proofs,

see e.g. [20] or [170, Theorem IV.2.9] (in German).
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Lemma B.3. Let f : S→ R be continuously differentiable. Then f(θ) = limK→∞ fK(θ),

with

fK(θ) = a0 +
K∑
k=1

(ake
ikθ + a−ke

−ikθ), where ak =

∫
S
e−ikθf(θ)dθ.

Moreover, the convergence is uniform on S. Finally

fK(θ) =

∫
S

( K∑
k=−K

eik(θ′−θ)
)
f(θ′)dθ′.

Proof of Lemma 7.2. Case I: ν♦. It follows from condition 1 and from the dominated

convergence theorem that for any ε ∈ Ω1(R), we have

Z?(ε) =

∫
H?(S)

∏
e∈E

w(Je + εe)dJ

=

∫
H?(S)

∑
n:E→Z

∏
e∈E

eine(Je+εe) exp(−V(ne))dJ

=
∑

n:E→Z
ei(n,ε)

∏
e∈E

exp(−V(ne))

∫
H?(S)

ei(n,J)dJ.

Moreover, by Lemma B.1 we have∫
H?(S)

ei(n,J)dJ =

∫
SV
ei(n,dθ)dθ =

∫
SV
ei(d

∗n,θ)dθ

=
∏
x∈V

∫
S
eid
∗nxθxdθx = 1{n ∈ H♦(Z)},

which ends the proof of case I.

Case II: ν?. We will show equality of partition functions with ε = 0, and the general

case follows the same steps. By Lemma B.3 we have∏
e∈E

exp(−V(dhe)) =
∏
e∈E

∫
S
eidheθew(θe)dθe

=

∫
SE
ei(dh,θ)Ω1

∏
e∈E

w(θe)
∏
e∈E

dθe

=

∫
SE
ei(h,d

∗θ)Ω0

∏
e∈E

w(θe)
∏
e∈E

dθe,

and hence∑
h:V→Z
h∂=0

∏
e∈E

exp(−V(dhe)) = lim
Kvn→∞

· · · lim
Kv1→∞

∑
hvn∈IKvn

· · ·
∑

hv1∈IKv1

∏
e∈E

exp(−V(dhe))

= lim
Kvn→∞

· · · lim
Kv1→∞

∑
hvn∈IKvn

· · ·
∑

hv1∈IKv1

∫
SE
ei(h,d

∗θ)Ω0

∏
e∈E

w(θe)
∏
e∈E

dθe, (1)
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where IK = {−K, . . . ,K}, and v1, v2, . . . , vn is any ordering of V \{∂} that explores the

tree T from the leaves towards the root ∂.

We will now evaluate the expression above with the use of Lemma B.3 by iteratively

(over i) exchanging the order of summation of hvi with the integration over θevi , and

then takin the Kvi → ∞ limit. To this end, we orient each edge in T towards the root

vertex ∂, and to each vertex v 6= ∂ we assign the unique outgoing edge ev from v.

In the first step we choose the leaf vertex v = v1, and write

d∗θv =
∑
w∼v

θwv = −θev + θe1 + . . .+ θel ,

where l+ 1 is the degree of v in G, and e1, . . . , el are the remaining edges in E incident

to v and pointing at v. Let x be the other endpoint of the edge ev, so that ev = (v, x).

Given hx ∈ IKx and (θe)e∈E\{ev} apply Lemma B.3 (separately to the imaginary and

real part) with f(θev) := w(θev)e
ihxd∗θx to get∫

S

( ∑
hv∈IKv

eihvd∗θv
)
w(θev)e

ihxd∗θxdθev = fKv(θe1 + . . .+ θel)→ f(θe1 + . . .+ θel),

as Kv → ∞ uniformly in θe1 + . . . + θel . This means that we can take Kv → ∞ inside

the integral over SE\{ev}. All in all this removes the variables hv, Kv from (1), and θev is

replaced it by θe1 +. . .+θel . Define now θ
(1)
e = θe for e ∈ E\{ev} and θ

(1)
ev = θe1 +. . .+θel .

In other words, after step one, (1) becomes

lim
Kvn→∞

· · · lim
Kv2→∞

∑
hvn∈IKvn

· · ·
∑

hv2∈IKv2

∫
SE\{ev1}

∏
w∈V \{v1}

eihw(d∗θ1)w
∏
e∈E

w(θ1
e)

∏
e∈E\{ev1}

dθe.

We continue this procedure for edge ev2 where we take the corresponding f (x is

replaced by the other endpoint of ev2). In this step we remove the variables hv2 ,Kv2

and θ
(1)
ev2

, and replace the latter by θ
(1)
e1 + . . .+ θ

(1)
el (where l depends on v2 now). Define

then (θ2
e)e∈E through θ

(2)
e = θ

(1)
e on e ∈ E \ {ev2} and θ

(2)
ev2

= θ
(1)
e1 + . . .+ θ

(1)
el . We iterate

the procedure until we have done so for all vertices of V \ {∂} and arrive at θ(n). It is

clear that (d∗θ(n))x = 0 for all x ∈ V \ {∂}, and therefore

(d∗θ(n))∂ = (d∗θ(n), 1)Ω0 = (θ(n),d1)Ω1 = 0,

so that d∗θ(n) vanishes on all of V .

Now let (Je)e∈E\T = (θe)e∈E\T and define J̄ the unique extension to H♦(G,S) as

before. It is easy to check that J̄ equals θ(n). Therefore, at the end of the iterative

procedure, we have that (1) becomes∫
SE\T

∏
e∈E

w(J̄e)
∏

e∈E\T

dJe = Z♦(0),

where the equality follows from Lemma B.2. This ends the proof of case II.
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B.1. Proof of the Ginibre inequality

We focus here only on the case where J takes values in H♦, as the other case is just the

classical Ginibre inequality [80]. To be precise, we will prove the following fact, from

which Lemma 7.11 follows immediately.

Lemma B.4. Consider the setup as in Section 7.5.1. Let F, F ′ : S→ R be two positive

definite functions. Then

µβ,♦(FF ′)− µβ,♦(F )µβ,♦(F ′) ≥ 0.

As in the classical proof by Ginibre [80], we will rely on the following result.

Lemma B.5. For any n ∈ N and (mi)
n
i=1 ∈ Zn, we have∫

H♦(S)2

n∏
i=1

(cos(miJei))± cos(miJ
′
ei))dJdJ

′ ≥ 0,

where the signs ± might be different for each i.

Proof. We begin by noticing that for any linear M : RE → R

cos(MJ) + cos(MJ ′) = 2 cos

(
M
J − J ′

2

)
cos

(
M
J + J ′

2

)
and

cos(MJ)− cos(MJ ′) = 2 sin

(
M
J − J ′

2

)
sin

(
M
J + J ′

2

)
.

Let T ⊂ E be a spanning tree of G = (V,E) and recall for J ∈ Ω1(GT ,S) the definition

of J̄ as in Lemma B.2. By Lemma B.2 we have∫
H♦(S)2

n∏
i=1

(cos(miJei))±cos(miJ
′
ei))dJdJ

′ =

∫
(SE\T )2

n∏
i=1

(cos(miJ̄ei))±cos(miJ̄
′
ei))dJdJ

′.

Now consider J in Ω1(GT ,R) (via the usual identification of S with (−π, π]) and define

by ATJ the unique extension of J to Ω1(G,R) so that J ∈ H♦(G,R), i.e. so that

d∗(ATJ) = 0 in R. Notice that ATJ and J̄ (seen in R) are equal on all edges in E \ T ,

while on an edge ei ∈ T , the difference is of the form 2πki for some integer ki. Since the

cosine is 2π-periodic, we notice that each factor where the edge ei is in T is of the form

cos(mi(ATJ)ei)± cos(mi(ATJ
′)ei). All together, we can thus write∫

H♦(S)2

n∏
i=1

(cos(miJei))± cos(miJ
′
ei))dJdJ

′ =

∫
(SE\T )2

F

(
J + J ′

2

)
F

(
J − J ′

2

)
dJdJ ′

for some function F : SE\T → R. Next, make the change of variables via τe := Je−J ′e
2

and τ ′e = Je+J ′e
2 , so that∫
(SE\T )2

F

(
J + J ′

2

)
F

(
J − J ′

2

)
dJdJ ′ =

∫
(SE\T )2

F (τ)F (τ ′)dτdτ ′
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=
(∫

(SE\T )2

F (τ)dτ
)2
≥ 0.

This ends the proof.

Since the collection of functions t 7→ cos(mt), m ∈ Z, generates the positive cone of

positive definite functions, for any collection {Fi} of positive definite functions S → R,

we have ∫
H♦(S)2

n∏
i=1

(Fi(Jei)± Fi(J ′ei))dJdJ
′ ≥ 0.

From this, Lemma B.4 can be proved in exactly the same way as in [80].

B.2. Reflection positivity.

We recall briefly a condition for potentials to be reflection positive. For further reference,

see e.g. [38] and [69]. Fix the torus Tn = (Z/nZ)d and let Θ be any reflection (either

through edges or through vertices). This naturally splits the torus into two parts T+
n

and T−n . Let U ± be the set of real-valued functions on Tn depending only on T±n . Then

Θ induces a map Θ : U ± → U ∓. We will say that a probability measure µ on STn is

reflection positive with respect to Θ if

(a) µ(gΘf) = µ(fΘg) for all f, g ∈ U +,

(b) µ(gΘg) ≥ 0.

Although the property (a) is not important for us, it is also the easier part and it holds

precisely for all measures that are invariant under the reflection Θ. It is not hard to

see that all measures we consider in this text thus satisfy (a). We recall the following

lemma.

Lemma B.6. Let Hn : STn → R be the Hamiltonian of a spin-system on the torus

satisfying

−Hn = A+ ΘA+
∑
i

CiΘCi

for some functions A,Ci ∈ U +. Then µn ∝ e−Hn is reflection positive w.r.t. Θ.

For a proof we refer to e.g. [38] or [69, Lemma 10.8]. We point out already that

for reflections going through vertices, the decomposition of Lemma B.6 is trivial as we

consider only nearest-neighbor interactions.

For reflection through edges, we need that we can decompose

−U(tx − ty) =
∑
i

Fi(tx)Fi(ty),
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for some collection of functions {Fi}. By classical trigonometric identities, this can be

easily deduced whenever −U is positive definite and regular enough so that

−U(tx − ty) =
∞∑
i=0

αi cos(i(tx − ty)) =
∞∑
i=0

αi(cos(itx) cos(ity) + sin(itx) sin(ity)),

with αi ≥ 0.

B.3. Positive definite functions

We will call an even function F : S→ R conditionally positive definite if for any vector

ξ = (ξ1, . . . , ξn) ∈ Rn with mean 0 and all t1, . . . , tn ∈ S it holds that∑
i,j

ξiξjF (ti − tj) ≥ 0

Lemma B.7. A function F is conditionally positive definite if and only if ecF is positive

definite for each c > 0.

Proof. Assume that ecF is p.d. for each c > 0. Then

1

c

∑
i,j

ξiξj(e
cF (ti−tj) − 1) =

1

c

∑
i,j

ξiξje
cF (ti−tj) ≥ 0,

and taking c → 0 shows one implication, since the derivative at zero of ecF is F .

The other implication follows from expanding the exponential and using that the space

of conditional positive definite functions is closed under addition, multiplication by

nonnegative reals and multiplication.

Without proof, we will also state the following result.

Lemma B.8. If F : S→ R is conditionally positive definite, then there exists a positive

definite function ϕ : S→ R and a constant c such that F = ϕ+ c.

Proof. See e.g. Corollary 2.10.3 in [24].

Since Gibbs measures are invariant under adding constants to the potential, this

lemma implies that taking −U positive definite is the same as requiring e−V to be

infinitely divisible in a way so that Definition 7.1 remains satisfied for each division.
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[152] L Saloff-Coste, A note on Poincaré, Sobolev and Harnack inequalities, Inter. Math. Res. Notices

2 (1992), 27–38.

[153] M. Sami, A. Bouaziz, and M. Sifi, Discrete harmonic functions on an orthant in Zd, Electron.

Commun. Probab. 20 (2015), 13 pp.

[154] R. Savit, Duality transformations for general abelian systems, Nuclear Physics B 200 (1982), no. 2,

233–248.

[155] J. Segura, Bounds for ratios of modified Bessel functions and associated Turán-type inequalities,

Journal of Mathematical Analysis and Applications 374 (2011), no. 2, 516–528.

[156] Y. Shalom and T. Tao, A finitary version of Gromov’s polynomial growth theorem, Geom. Funct.

Anal. 20 (2010), no. 6, 1502–1547. MR2739001

[157] S. Sheffield, Random surfaces, Astérisque, Société mathématique de France, 2005 (en). MR2251117

[158] B. Simon, Correlation inequalities and the decay of correlations in ferromagnets, Comm. Math.

Phys. 77 (1980), no. 2, 111–126.

[159] S. Smirnov, Conformal invariance in random cluster models. I. Holomorphic fermions in the Ising

model, Ann. of Math. (2) 172 (2010), no. 2, 1435–1467. MR2680496 (2011m:60302)

[160] P. M. Soardi and W. Woess, Amenability, unimodularity, and the spectral radius of random walks

on infinite graphs, Dipartimento di Matematica” F. Enriques”, 1988.

[161] K. Symanzik, Euclidean quantum field theory, New York Univ., NY, 1969.

[162] P. Tang, Weights of uniform spanning forests on nonunimodular transitive graphs, Electronic Jour-

nal of Probability 26 (2021), 1–62.

[163] V. R. Thiruvenkatachar and T. S. Nanjundiah, Inequalities concerning Bessel functions and or-

thogonal polynomials, Proceedings of the indian academy of sciences-section a, 1951, pp. 373.
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