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Abstract

Das Hauptziel dieser Arbeit ist die Verifikation der Hyperbolizität oder Nicht-Hyperbolizität
bestimmter Gruppen mit Präsentationen der Form

〈
a, b | r

〉
für ein reduziertes, zyklisch

reduziertes Wort r der Form abka−1blabma−1bn oder abkabla−1bma−1bn. Die verwendeten
Methoden wurden aus Ivanov-Schupp und Buskin entnommen.

(English Version)
The main aim of this thesis is to verify hyperbolicity or non-hyperbolicity of certain
groups with presentations of the form

〈
a, b | r

〉
for a freely reduced, cyclically reduced

word r of the form abka−1blabma−1bn or abkabla−1bma−1bn. The methods used have
been taken from Ivanov-Schupp and Buskin.
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1 Introduction

The main purpose of this thesis is to discuss hyperbolicity or non-hyperbolicity of cer-
tain one-relator groups with presentations of the form G =

〈
a, b | r

〉
with r of the form

r = abkabla−1bma−1bn with l, n ̸= 0 or abka−1blabma−1bn with k, l,m, n ̸= 0. Henceforth,
we also refer to relators of this type as relators of type (1/1/−1/−1), (1/−1/1/−1), re-
spectively. Hyperbolicity is proved using the criterion for hyperbolicity of groups satisfy-
ing condition C(p)+T (q), for (p, q) ∈ {(3, 6), (6, 3), (4, 4)}, that is given in Ivanov-Schupp
[6]. The concrete method is a method that is used by Buskin [2].

We identify some cases to which the criterion from Ivanov-Schupp does not apply because
they satisfy C(p)+T (q) with 1

p +
1
q > 1

2 . Moreover, for some groups, we prove that they
satisfy C(6) + T (3), but do not discuss hyperbolicity or non-hyperbolicity.

In this thesis, while the concept of imprimitivity rank is not used in the proofs of the
main results, it is mentioned because the only possibly non-hyperbolic one-relator groups
are, because of results of B. B. Newman [12] and Linton [8], those for which the defining
relator has imprimitivity rank 2.

The cases studied are of interest because Ivanov-Schupp [6] decide the question of hy-
perbolicity or non-hyperbolicity for G, r of analogous form with at least one and at most
three occurences of a±1, and Ivanov-Schupp [6] and Buskin [2] treat many of the cases
with a±1 occurring 4 times in total and at least 3 occurrences of a.

We state the two main results (Proposition 1, Proposition 3) and two more results (Pro-
position 2, Proposition 4): The first proposition gives a family of hyperbolic one-relator
groups of type (1/−1/1/−1). The second proposition consists of some non-hyperbolic
examples of groups of type (1/−1/1/−1). The third one yields some hyperbolic examples
of type (1/1/−1/−1) as well as families of groups of type (1/1/−1/−1) for which the
sufficient direction of the hyperbolicity criterion in Ivanov-Schupp does not apply. The
fourth gives families of non-hyperbolic groups of type (1/1/−1/−1):

Proposition 1 (Type (1/−1/1/−1), hyperbolic examples). Let G =
〈
a, b | r

〉
with

r = abka−1blabma−1bn for k, l,m, n ̸= 0. If |m|
|k| ,

|l|
|n| /∈ {1, 2, 12} or k = m and l = n, then

G is hyperbolic.

Proposition 2 (Type (1/−1/1/−1), non-hyperbolic examples). Consider the case
r = abka−1blabma−1bn with k, l,m, n ̸= 0. Suppose it is not the case that (k, l) = (m,n).

If 1 ∈ { |k|
|m| ,

|n|
|l| }, then G is not hyperbolic.

In Proposition 43 in section 3.2.2, we investigate groups of type (1/ − 1/1/ − 1) that

have |k|
|m| ̸= 1 and |n|

|l| ̸= 1, but for which one or both of |k|
|m| ̸= 1 and |n|

|l| ̸= 1 are in {2, 12}.
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1 Introduction

Proposition 3 (Type (1/1/−1/−1)). Consider G =
〈
a, b | r

〉
with r of the form r =

abkabla−1bma−1bn, with l, n ̸= 0 and |k +m| /∈ {0, |l|, |n|}. If one of the following holds,
then the group is hyperbolic:

• k + 2l +m = 0 and k + n+m− l = 0

• k − 2l +m = 0 and k +m+ l − n = 0

If k +m − l − n = 0, then the group is non-hyperbolic. If k + l +m + n = 0, then the
sufficient criterion for hyperbolicity fails. The same is true if l = n. A common non-
hyperbolic subcase of these situations is l = n = −k = −m. For l = −n, the sufficient
criterion for hyperbolicity fails.

Proposition 4. Suppose G =
〈
a, b | r

〉
with r = abkabla−1bma−1bn for l, n ̸= 0. In the

following cases, G is not hyperbolic:

• k = −m

• k = m = −l = −n

• k +m = l + n ̸= 0 and one of

1. k = l

2. k = n

3. |k +m| /∈ {|n|, |l|}.

The aim for Propositions 1 and 3 is to apply the sufficient criterion for hyperbolicity
from [6] that is based on the construction of diagrams, maps, respectively, with certain
properties to the groups mentioned in these propositions, and give non-hyperbolic sub-
examples for some of the cases for which the sufficient criterion fails.
For this paper, we do not decide cases using a computer. In particular, note that we
treat some infinite families of one-relator groups.
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2 Hyperbolicity, Small Cancellation
Conditions C(p) + T (q)

In this section, we give definitions, results and ideas that are relevant for the rest of the
paper.

Definition 5. A finitely presented group G =
〈
A | R

〉
is said to be hyperbolic if and

only if it satisfies a linear isoperimetric inequality, i.e. there exists a constant L ≥ 0 such
that for every w =G 1, one has that

min{d | w can be written as a product of d conjugates of elements ofR±1} ≤ L|w|.

[6, p. 1851-1852]
Equivalently, one defines hyperbolicity as follows: A finitely generated group is said to
be hyperbolic (in the sense of Gromov) if its Cayley graph is a δ−hyperbolic metric space
for some δ > 0 [1, Definition III.Γ.2.1, p. 448]

In this thesis, small cancellation conditions of certain types will occur. We introduce
them now.

Definition 6. Let F be a free group.

1. A subset R ⊆ F is called symmetrized if every r ∈ R is cyclically reduced and for
any r ∈ R, R contains r−1 and R contains all cyclically reduced conjugates of r.
For a symmetrized subset R of F , a word b ∈ F is called a piece (with respect to
R) if there exist distinct r1, r2 ∈ R and c1, c2 ∈ F such that r1 = bc1 and r2 = bc2
and each of bc1 and bc2 is freely and cyclically reduced. [10, p. 239-240]

2. A symmetrized subset R of F is said to satisfy condition C(p) if no element
of R is a product of fewer than p pieces. It satisfies condition T (q) if and on-
ly if the following holds: if 3 ≤ h < q and r1, ...rh ∈ R such that none of
the pairs (r1, r2), ....(rh−1, rh), (rh, r1) are an inverse pair, then at least one of
r1r2, ..., rh−1rh, rhr1 is reduced without cancellation. [10, p. 240, 241]

Moreover, we define diagrams over groups.

Definition 7. 1. A map M is a finite simplicial 2-complex M that is embedded in
the plane, connected and simply connected. We call 0-cells of a map vertices, 1-cells
are called edges, 2-cells are called faces. The degree d(v) of a vertex v is defined to
be the number of edges incident with it, counting loops twice. The degree d(π) of
a face π of M is defined to be the number of vertices on the boundary of π that
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2 Hyperbolicity, Small Cancellation Conditions C(p) + T (q)

have degree at least 3. Denote by |∂π| the number of edges on ∂π, which satisfies
d(π) ≤ |∂π|. A vertex v of M is said to be interior if v /∈ ∂M , exterior otherwise.
A face π is said to be interior if ∂M and ∂π do not share a (non-oriented) edge,
exterior otherwise. A submap of a map M is a subcomplex of M which is itself a
map. [6, p. 1853-1854]

2. For a group G =
〈
A | R

〉
with set of generators A and set of cyclically reduced

relators R, a (van Kampen) diagram ∆ over the presentation G =
〈
A | R

〉
is a map

that is equipped with a labeling function Φ : {e | e oriented edge of ∆} → A∪A−1

such that

a) Φ(e−1) = Φ(e)−1

b) If Π is a face in ∆ and ∂Π = e1 · · · el is the boundary cycle of Π, then
Φ(∂Π) = Φ(e1) · · ·Φ(el) is a cyclic permutation of some r ∈ Rϵ, for ϵ ∈ {−1, 1}

The boundary of a face is equipped either with positive (counterclockwise) or
negative orientation.

A pair Π1,Π2 of cells is called a reducible pair if their boundaries share a vertex v
such that their boundary labels agree if they are read starting at v and according
to opposite orientations. If a diagram ∆ contains no reducible pairs, then it is
said to be reduced. A diagram is said to be minimal if no diagram with the same
boundary label has fewer faces.

See [6, p. 1858] and [2, p. 87].

The small cancellation conditions C(p) and T (q) have geometric consequences: In Defi-
nition 7, the number of vertices of degree at least 3 on the boundary of a face is called
the degree of the face, while in [10], the degree of a face is defined to be the number of
vertices on its boundary, in particular, vertices of degree 2 contribute to the degree. But
without loss of generality, interior vertices of a diagram can be assumed to have degree
greater or equal to 3. If v is a degree 2 interior vertex and e1, e2 are the edges incident
with v, then make e1, e2 into one edge e, making v an interior point of e. Do this for every
interior vertex of degree 2 and extend the labeling function as follows: Allow the labeling
function to take values in the nontrivial elements of F (A), set Φ(e) = Φ(e1)Φ(e2). [10,
p. 242]

Lemma 8 ([10, Lemma V.2.2., p. 242]). Let R be a symmetrized set of elements of a
free group F , and let M be a reduced diagram over G = F/N(R).

1. If R satisfies C(p), then each interior face D of M has d(D) ≥ p.

2. If R satisfies property T (q), then each interior vertex v of M has d(v) ≥ q.

Proof. The first item follows from the fact that labels of interior edges are pieces.
The latter can be proven as follows: Let e be an interior edge of M such that e
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has label c. There are faces D1, D2 of M such that e ∈ ∂D1 ∩ ∂D2. Thus, the
boundaries of D1, D2 have labels r1, r2 ∈ R of the form r1 = ca, r2 = c−1b. As R is
symmetrized, r2 ∈ R implies bc−1 ∈ R, and because M is a reduced diagram, one
has that a ̸= b−1. Thus, c is a piece. If D is an interior face, then the label of ∂D
is a product of d(D) pieces. Hence, C(p) implies that d(D) ≥ p. [10, p. 242]
For the second part, consider an interior vertex v of M with d(v) = h, and let
e1, ..., eh be the oriented edges incident at v. Then for each i (indices modulo h)
ei+1, ei are consecutive edges on the boundary of a region Di of M . There is a path
αi such that ∂Di is e−1

i αiei+1. Let fi be the label of ei, ai the label of αi, then
∂Di has label ri = f−1

i aifi+1. As M is reduced, one never has ri = r−1
i+1, and since

each fi ̸= 1 , there is cancellation in each of r1r2, ..., rh−1rh, rhr1. Thus, T (q) fails
for q > h. Thus, T (q) implies d(v) ≥ q for every interior vertex v of M . [10, p. 242]

Now, we introduce the concept of (p, q)-maps:
In Ivanov-Schupp, the following definition is given:

Definition 9 ([6, p. 1854]). For (p, q) ∈ {(3, 6), (4, 4), (6, 3)}, a map M is called a (p, q)-
map if and only if d(π) ≥ p for all interior faces of M and d(v) ≥ q for all interior vertices
v of M with d(v) > 2, and there is no interior vertex of degree one. A diagram over a
group G is called a (p, q)-diagram if the underlying map is a (p, q)-map.

One can ignore degree 2 interior vertices in this context, without performing surgery as
above. Henceforth, we will stick to the convention of Definition 9. We will usually not
apply surgery to remove degree 2 interior vertices of a diagram or map.
Accordingly, one has the following definition:

Definition 10 ([6, p. 1854]). A group is said to satisfy the small cancellation condition
C(p) + T (q) if every reduced diagram over the group is a (p, q)-diagram.

Theorem 11 ([6], p. 1852, due to Gersten, Short). A finitely presented group with a
presentation that satisfies C(p) + T (q) with 1

p + 1
q < 1

2 is hyperbolic.

A condition C(p)+T (q) for (p, q) one of (6, 3), (3, 6), (4, 4) and no further condition does
not yield hyperbolicity of the group: Consider the tesselations of the Euclidean plane E2

by equilateral triangles ((3, 6)), squares ((4, 4)) or regular hexagons ((6, 3)), respectively.
Note that E2 is not hyperbolic. The tesselations described above have arbitrarily large
submaps whose area grows quadratically with respect to the perimeter. (See [1, p. 384],
[10, p. 246] for discussion of tesselations of E2).)
One needs another definition:

Definition 12 ([6, p. 1854]). A map M is said to be a regular (p, q)-map provided that
d(π) = p for every interior face of M , d(v) = q for every interior vertex v of M with
d(v) > 2, and M has no interior vertices of degree 1.

The following theorem is used in Ivanov-Schupp to give a condition that is sufficient for
hyperbolicity of a group as in Definition 10:
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2 Hyperbolicity, Small Cancellation Conditions C(p) + T (q)

Theorem 13 ([6, Theorem 1, p. 1854]). Let M be a (p, q)-map, for (p, q) an element of
{(3, 6), (4, 4), (6, 3)}, and let the radius of every regular (p, q)-submap of M be bounded by
a constant K. Then there is a constant L = L(p, q,K) such that |number of faces of M | ≤
L|∂M |.

Idea of proof: First, one shows that without loss of generality:

• (P1) No proper subpath of the boundary ∂M of M bounds a submap of M .

• (P2) There are no vertices of degree less than or equal to 2 in M .

In the proof of the theorem, the number of vertices, edges and faces of M is deno-
ted V,E, F, respectively. The proof starts with writing 2E first in terms of degrees
of vertices, then in terms of degrees of faces: 2E =

∑
v vertex ofM d(v), but also 2E =∑

π face ofM d(π) + |∂M |. Moreover, one uses the fact that V − E + F = 1. Note also
that for (p, q) as given, 2p

q + 2 = p. These 3 observations together with (P1) and the

fact that p
q (q − 3)− 1 ≤ 1

2 if (p, q) is as in the statement yield a lower bound for 1
2 |∂M |

in terms of (sums of) degrees of exterior and interior vertices and exterior and interior
faces. Now, define a regular interior face of M to be an interior face of M that has
degree p and such that all vertices on its boundary have degree q. Call an interior face
irregular if it is not regular. The goal is to estimate the number of exterior faces, the
number of regular interior faces and the number of irregular interior faces: Consider
a regular face π and a shortest path from a vertex in ∂π to a vertex that lies on the
boundary of the map, on the boundary of an exterior face or on the boundary of an
irregular face. The number of terminal vertices of these paths is thus bounded by the
sum

∑
π exterior face of M d(π)+

∑
π irregular face of M d(π)+ |∂M |. The length of such a path

is less or equal to K. Every vertex on such a path that is not the terminal vertex has
degree q. Consider a map f that assigns π to v′ for π a regular face and v′ a terminal
vertex as above. The number of regular faces that are mapped to such a v′ is less than
or equal to qK . For exterior vertices, see that the number of exterior vertices is bounded
from above by |∂M |. Now, one estimates the number of irregular interior faces. For that,
we define angles of faces and a weight function on angles and on faces. Only angles at
vertices of degree > q on the boundary of irregular faces are given positive weight. For
other angles, the value of the weight function is zero. The weight of a face that is not
irregular is zero. The weight of an irregular face is the sum of d(π)− p and the sum over
all angles of the face. This weight function yields an estimate for the number of irregular
faces (use (P2) and the fact that M is a (p, q)-map). These three estimates together give
the desired inequality for F . See [6, Proof of Theorem 1, p. 1854-1858].
Ivanov-Schupp state a necessary and sufficient condition for hyperbolicity of a group
satisfying a small cancellation condition as in Definition 10:

Theorem 14 ([6, Theorem 2, p. 1859]). A finitely presented group G =
〈
A | R

〉
satisfying

a small cancellation condition C(p) + T (q) for (p, q) ∈ {(3, 6), (4, 4), (6, 3)} is hyperbolic
if and only if there is a constant K such that for every minimal diagram ∆ over G, the
radii of regular (p, q)-submaps of the map associated with ∆ by forgetting labels do not
exceed K.
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The fact that existence of such K is a condition sufficient for hyperbolicity is obtained
directly from Theorem 13, for all minimal diagrams are reduced, and hence regular
(p, q)-submaps of maps associated with minimal diagrams by forgetting labels are regular
reduced (p, q)-maps. See [6, Proof of Theorem 2, p. 1859].

The following property is used in Ivanov-Schupp ([6, p. 1862]): Let G =
〈
A | r

〉
, for r =

aϵ0B0a
ϵ1B1....a

ϵk−1Bk−1, where ϵi ∈ {−1, 1} and k ≥ 2, and let Bi, for i = 0, 1, ..., k − 1,
contain no a or a−1. We say G has property (P2) if the subgroup

〈
B0, B1, ..., Bk−1

〉
≤

F (A) is cyclic and
〈
B0, B1, ..., Bk−1

〉
≤

〈
B
〉
, where B is a non-empty cyclically reduced

word that is not a proper power in F (A).
Ivanov-Schupp prove the following lemma (see [6, p. 1864-1867]): Assuming r as above
has (P2), put Bi = Bli , i = 0, 1, ..., k − 1, and consider the word r̄ that one obtains
from r by replacing all Bli by bli , where b is a new letter, b /∈ A. Define Ḡ =

〈
a, b | r̄

〉
(Ivanov-Schupp:

〈
a, a−1, b, b−1 | r̄

〉
).

Lemma 15 ([6, Lemma 3.3, p. 1864]). Let G =
〈
A | r

〉
be a one-relator group such that

r = aϵ0B0a
ϵ1B1....a

ϵk−1Bk−1 as above. Let r have property (P2). If Ḡ satisfies a linear
isoperimetric inequality, then so does G.

The following results will be used to prove non-hyperbolicity of a one-relator group in
some cases. Note that a one-relator group is torsion-free if the relator is not a proper
power. See [7, p. 58], [11, p. 266], and [10, p. 108].

The following lemma is given in Ivanov-Schupp:

Lemma 16 ([6, Lemma 4.1, p. 1867], Gromov). For any non-trivial element g of a
torsion-free hyperbolic group Γ there are unique g0,m with g0 ∈ Γ, g0 not a proper power
in Γ, m > 0, such that g = gm0 .

Lemma 16 / Gromov’s result is used in Ivanov-Schupp to prove the following lemma:

Lemma 17 ([6, Lemma 4.3, p. 1867]). Let x and y be elements of a torsion-free hyperbolic
group Γ, y ̸= 1, and xykx−1 = yl for k ̸= 0. Then xyx−1 = y (and k = l).

see [6, Proof of Lemma 4.3, p. 1867-1868]. Let x = xm0
0 , y = yn0

0 the unique represen-
tations as in Lemma 16. One has (xm0

0 y0x
−m0
0 )kn0 = yln0

0 , where xm0
0 y0x

−m0
0 and y0

are not proper powers. Lemma 16 yields one of xm0
0 y0x

−m0
0 = y±1

0 . If xm0
0 y0x

−m0
0 = y0,

then another application of Lemma 16 yields that x0 and y0 commute, and k = l. If
xm0
0 y0x

−m0
0 = y−1

0 , then y0x
2y−1

0 x−2 = 1, whence x and y0 commute by Lemma 16, and
thus x0 and y0 commute by another application of the same lemma, i.e. xm0

0 y0x
−m0
0 = y0,

but in this case, y0 = y−1
0 , a contradiction to torsion-freeness of Γ.

One also has:

Lemma 18 (See [6, Proof of Theorem 3, p. 1874].). Let Γ be a torsion free hyperbolic
group, and let x, y ̸= 1 be elements of Γ such that there is k > 0 with xk = yk. Then
x = y.

7



2 Hyperbolicity, Small Cancellation Conditions C(p) + T (q)

Proof. See [6, Proof of Theorem 3, p. 1874, Lemma 4.3, p. 1867], [2, Proof of Lemma
2.7, p. 88].
One has xykx−1 = xxkx−1 = xk = yk, hence xyx−1 = y by Lemma 17. Thus,
1 = xky−k = (xy−1)k. As the group is torsion-free, this implies that x = y.

Lemma 19. A hyperbolic group has no subgroup isomorphic to Z2. ([6, p. 1852, 1867],
due to Gromov)

The ideas from Lemmas 16 and 17 put together yield the following statement:

Lemma 20. Let Γ be a torsion-free hyperbolic group. Then for every nontrivial element
y ∈ Γ, there is a unique maximal cyclic subgroup

〈
y0
〉
of Γ such that any element of

the commensurator of
〈
y0
〉
is an element of

〈
y0
〉
, i.e., xyk0x

−1 = yl0 for k, l ̸= 0 implies
x ∈

〈
y0
〉
, so that the subgroup

〈
y0
〉
equals its own commensurator.

Proof. Let y ∈ Γ, y ̸= 1. Existence of a unique maximal cyclic subgroup
〈
y0
〉
≤ Γ with

y ∈
〈
y0
〉
is Lemma 16. Let x ∈ Γ be in the commensurator of

〈
y0
〉
, i.e. xyk0x

−1 = yl0
for k, l ̸= 0. Then, by Lemma 17, k = l and x and y0 commute. Let

〈
x0

〉
be the

maximal cyclic subgroup containing x. By Lemma 17, the fact that x and y0 commute
yields commutativity of x0 and y0, hence

〈
x0, y0

〉
is an Abelian subgroup of Γ. The

only torsion-free Abelian groups that can be generated by 2 elements are Z2 and Z. By
Lemma 19, the hyperbolic group Γ has no subgroup isomorphic to Z2, so

〈
x0, y0

〉 ∼= Z.
Since

〈
y0
〉
was maximal cyclic,

〈
x0, y0

〉
is a subgroup of

〈
y0
〉
. This implies x0 ∈

〈
y0
〉
,

which yields x ∈
〈
y0
〉
. [3]
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3 Hyperbolicity or non-hyperbolicity of
certain one-relator groups

3.0.1 Imprimitivity rank, Whitehead automorphisms and non-hyperbolic
examples

In this section, we introduce the concept of imprimitivity rank.

Definition 21. Let F be a free group. A word w in F is called primitive if it belongs
to a free generating set of F . Otherwise, it is said to be imprimitive. The imprimitivity
rank π(w) is defined to be the number min{rk(H) | w ∈ H ≤ F,w not primitive in H}
if such H exists, and ∞ otherwise. See [13, p. 5], [5].

Note [13] uses the term primitivity rank. In Definition 21, we use the convention of [5],
who say imprimitivity rank.

This ocurs in the context of hyperbolicity or non-hyperbolicity of one-relator groups: A
one-relator group G =

〈
A | r

〉
cannot be non-hyperbolic unless the defining relator r

has imprimitivity rank 2:

An element w of a free group has imprimitivity rank 0 if and only if it is trivial in the
free group. The quotient of a free group by the normal closure of an element that is
trivial in it is the same free group and hence hyperbolic. [5]

An element of a free group has imprimitivity rank 1 if and only if it is a proper power.
Hence, if r has imprimitivity rank 1, then G is hyperbolic by the B. B. Newman Spelling
Theorem. See [12, p. 569], [13, p. 6] and [5].

An element of a free group has imprimitivity rank ∞ if and only if it is a primitive
element. The quotient of a free group by the normal closure of an element of some free
generating set is again a free group, of one lower rank. See [13, p. 6], [11, Theorem N3,
p. 167] and [5].

When r has imprimitivity rank ≥ 3, G is hyperbolic. See [8, p. 1] and [9, p. 549].

For imprimitivity rank 2, G can be hyperbolic or non-hyperbolic. A non-hyperbolic ex-
ample is Z2 =

〈
a, b | aba−1b−1

〉
. See [6, p. 1852].

So if one considers G =
〈
a, b | r

〉
with r nontrivial in F (a, b) and r not a proper power,

then r has imprimitivity rank 2 if it is imprimitive, ∞ otherwise.

To check a word of this form for imprimitivity, first note that for F a free group of fi-
nite rank with basis X, Aut(F ) is generated by the Whitehead automorphisms. [10, p. 42]

9



3 Hyperbolicity or non-hyperbolicity of certain one-relator groups

Definition 22. The Whitehead automorphisms of the first kind are all automorphisms
that are given by a permutation of X±1. The Whitehead automorphisms of the second
kind are defined as follows: Fix x in X±1. For any subset Z ⊆ X±1\{x, x−1}, we define
an automorphism as follows: for y ∈ X±1\{x, x−1}, y is mapped to itself if y, y−1 /∈ Z,
y is mapped to xy if y ∈ Z, y−1 /∈ Z, y is mapped to yx−1 if y /∈ Z, y−1 ∈ Z, and y is
mapped to xyx−1 if y, y−1 ∈ Z. See [14]. For this formulation of the definition, see [5].

Example 23. The set of Whitehead automorphisms of F (a, b): First kind (I.): the
Whitehead automorphisms of F (a, b) of the first kind are the eight automorphisms that
are given by a permutation of {a±1, b±1}.
Second kind (II.):

1. a 7→ bab−1, b 7→ b

2. a 7→ b−1ab, b 7→ b

3. a 7→ a, b 7→ aba−1

4. a 7→ a, b 7→ a−1ba

5. a 7→ ab, b 7→ b

6. a 7→ ab−1, b 7→ b

7. a 7→ ba, b 7→ b

8. a 7→ b−1a, b 7→ b

9. a 7→ a, b 7→ ab

10. a 7→ a, b 7→ a−1b

11. a 7→ a, b 7→ ba

12. a 7→ a, b 7→ ba−1

In order to decide whether or not w ∈ F is primitive or imprimitive, one can apply
Whitehead’s algorithm, i.e., apply the Whitehead automorphisms of the seond kind
to the word one by one (and always do cyclic reduction after applying a Whitehead
automorphism), and if some Whitehead automorphism makes the word shorter, apply
the same procedure to the resulting word, iterate until there is no word that is shortened
by application of a Whitehead automorphism and cyclic reduction. The word w ∈ F is
primitive if and only if it Whitehead reduces to length 1. Compare [5] and [14].

Lemma 24. The word r = abka−1blabma−1bn for k, l,m, n ̸= 0 and (k, l) ̸= (m,n) is
imprimitive in F (a, b).

Proof. Apply Whitehead’s algorithm to r to show that it does not Whitehead reduce
to length 1: Second kind: 1.− 8. Application of the automorphism and cyclic reduction
gives r.

10



9. Application of the automorphism yields a(ab)ka−1(ab)la(ab)ma−1(ab)n, i.e. +|k|
letters and no cancellations for k, +|l| letters and one cancellation (=the cancella-
tion of one pair) for l, +|m| letters and no cancellation for m, and |n| more letters
and one cancellation for n. Hence the total change in the number of letters is:
+|k|+ |l|+ |m|+ |n| − 4 ≥ 0

10. The automorphism gives a(a−1b)ka−1(a−1b)la(a−1b)ma−1(a−1b)n, which gives +|k|
letters and one cancellation for k, |l| more letters and no cancellation for l, |m|
more letters and one cancellation for m, and +|n| letters, but no cancellation for
n. Hence as above, the word is not shorter after application of the automorphism
and cyclic reduction.

11. This automorphism yields a(ba)ka−1(ba)la(ba)ma−1(ba)n, which gives +|k| letters
and one cancellation for k, +|l| letters and no cancellation for l, +|m| letters and
one cancellation for m, and |n| more letters and no cancellation for n. Hence as
above, the result of application of the automorphism and cyclic reduction is not
shorter than the original word.

12. This automorphism gives a(ba−1)ka−1(ba−1)la(ba−1)ma−1(ba−1)n, which yields +|k|+
|l|+ |m|+ |n| letters and two cancellations, one for l, one for n. As above, one sees
that the application of the automorphism and cyclic reduction do not make the
word shorter.

Hence r is Whitehead minimal, and it is of length > 1, hence in particular, r does
not Whitehead reduce to length 1.

Lemma 25. The word r = abkabla−1bma−1bn for k,m, l, n ̸= 0 is imprimitive in F (a, b).

Proof. First, let the exponents k,m have the same sign. Applying the Whitehead au-
tomorphism of the first kind defined by a 7→ a, b 7→ b−1 if necessary, we can assume
k > 0,m > 0. After applying II. 6. k times, r has form a2bla−1bm+ka−1bn. Automor-
phisms II. 1.-8. do not make the word shorter. It remains to show that application of
items II. 9.-12. do not make it shorter:

Automorphism II. 9. gives a2(ab)la−1(ab)m+ka−1(ab)n, which gives one cancellation for
m+ k and one for n, hence there are m+ k + |l|+ |n| − 4 ≥ 0 more elements.

Similarly, item II. 10. gives a2(a−1b)la−1(a−1b)m+ka−1(a−1b)n, which gives one cancel-
lation for l and no further cancellations, hence the new word is not shorter.

The map II. 11. yields a2(ba)la−1(ba)m+ka−1(ba)n, which gives one cancellation for l and
one for the m+k part, hence the word is not shorter after the application of 11.. Finally,
II. 12. yields a2(ba−1)la−1(ba−1)m+ka−1(ba−1)n, which yields one cancellation for n and
no cancellation for the m+ k part (as k +m > 0).

Now, suppose k,m have distinct signs. Up to application of Whitehead automorphisms,
we may supposem < 0 and k ≥ |m|, and applying II. 6 |m| times, we obtain abk+mabla−2bn.

11



3 Hyperbolicity or non-hyperbolicity of certain one-relator groups

No Whitehead automormphisms reduce the length of this word except in the cases that
satisfy k + m = |l| = |n| = 1, for which II. 10. and II. 12. yield reduction. Now let
k +m = 1, |l| = 1, |n| = 1. Item II. 10. gives b2a−3b for l = 1, n = 1 and b2a−2b−1a for
l = 1, n = −1. For l = −1, n = 1, it gives bab−1a−2b, which is the same as the latter
word up to application of Whitehead automorphisms, and for l = −1, n = −1, it yields
bab−1a−1b−1a. All these are Whitehead minimal and do not have length one. Item II.
12. yields b2a−3b for l = n = 1, ab2a−2b−1 for l = 1, n = −1, the values l = −1, n = 1
give bab−1a−2b, and l = −1, n = −1 gives abab−1a−1b−1. Again, all these are Whitehead
minimal and do not have length one.

Lemma 26. By similar arguments, we have: If r = abkabla−1bma−1bn with l, n ̸= 0,
then r is Whitehead minimal if k = m = 0.

Corollary 27. The words of Lemmas 24, 25, 26 have imprimitivity rank 2.

For the imprimitivity rank 2 examples introduced in Lemmas 24, 25, one can detect at
least one non-hyperbolic example each, using results from Ivanov-Schupp [6] (see also
Buskin [2]):

Lemma 28. Let G =
〈
a, b | r

〉
with the defining relator r having imprimitivity rank 2.

Then the one-relator group G is not cyclic. In particular, a, b ̸= 1 in G. Moreover, if G
is hyperbolic, then a, b do not commute and do not belong to the same maximal cyclic
subgroup.

Proof. As the Abelianization of G is a one-relator quotient of Z2 and thus nontrivial,
G is nontrivial. The group G does not have torsion because G has torsion if and only
if r is a proper power if and only if r has imprimitivity rank 1. See [7, p. 58], [13, p. 6].
Moreover, the group G cannot be isomorphic to Z because it is free of rank 1 if and
only if r is primitive if and only if r has imprimitivity rank ∞. See [10], [13, p. 6], [11,
Theorem N3, p. 167].
If G is hyperbolic, then, by Lemma 20, a belongs to a maximal cyclic subgroup

〈
a0
〉

that equals its own commensurator, and b belongs to a maximal cyclic subgroup
〈
b0
〉

with the same property. Suppose a, b commute, then a, b ∈
〈
a0
〉
=

〈
b0
〉
, and thus the

one-relator group G is cyclic, contradiction.

Lemma 29. Let G =
〈
a, b | r

〉
with r = abka−1blabma−1bn for k, l,m, n ̸= 0.If l = −n

or k = −m, then G is not hyperbolic.

Proof. If l = −n and k ̸= −m, then r = abka−1blabma−1b−l, which is conjugate to
bka−1blabma−1b−la. Thus, b−k = a−1blabma−1b−la. If G is hyperbolic, then, by Lemma
17, b = a−1blaba−1b−la. In particular, bk = a−1blabka−1b−la and thus 1 = bkb−k =
a−1blabk+ma−1b−la, a contradiction to torsion-freeness as k +m ̸= 0.
The case l ̸= −n and k = −m can be handled analogously, and it can be reduced to the
previous case by an automorphism of the one-relator group.
If l = −n and k = −m, then one has ab−ma−1blabma−1 = bl. If the one-relator group
is hyperbolic and b ∈

〈
b0
〉
, b = bn0

0 for the unique maximal cyclic subgroup
〈
b0
〉
as in
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Lemmas 16 and 20, we get that ab−ma−1 ∈
〈
b0
〉
. Hence ab−ma−1 ∈

〈
b0
〉
∩ a

〈
b0
〉
a−1. As

both
〈
b0
〉
and a

〈
b0
〉
a−1 were maximal cyclic subgroups, one obtains a

〈
b0
〉
a−1 =

〈
b0
〉
.

By Lemma 20, this implies a ∈
〈
b0
〉
, a contradiction to Lemma 28.

Lemma 30. (Proposition 4) Suppose G =
〈
a, b | r

〉
with r = abkabla−1bma−1bn for

l, n ̸= 0. In the following cases, G is not hyperbolic:

• k = −m

• k = m = −l = −n

• k +m = l + n ̸= 0 and one of

1. k = l

2. k = n

3. |k +m| /∈ {|n|, |l|}

The proof will be broken into separate cases.

Lemma 31. Suppose G =
〈
a, b | r

〉
for r = abkab−ka−1bka−1b−k with k ̸= 0. Then G is

not hyperbolic.

Proof. Get b−kabkab−ka−1bka−1 = 1. If G is hyperbolic and a ∈
〈
a0
〉
, a = am0

0 , b ∈
〈
b0
〉

as in Lemma 16, then one obtains, by Lemma 20, that b−kabk ∈
〈
a0
〉
, i.e. (b−ka0b

k)m0 =
an0
0 , which implies commutativity of bk and a0 by Lemma 16. Then one obtains commu-

tativity of a0 and b0 by another application of Lemma 16, and as
〈
a0
〉
equals its own

commensurator, one obtains b0 ∈
〈
a0
〉
, a contradiction to Lemma 28.

Lemma 32. Suppose G =
〈
a, b | r

〉
for r = abkabla−1bma−1bn, k = −m and l, n ̸= 0.

Then G is not hyperbolic.

Proof. By application of the automorphism given by a 7→ abm, this reduces to a2bla−2bn

for l, n ̸= 0, which gives a non-hyperbolic group: If G were hyperbolic, then a and b
would commute and belong to the same maximal cyclic subgroup of G, which is not
possible by Lemma 28.

Lemma 33. Let G =
〈
a, b | r

〉
for r = abkabla−1bma−1bn with l, n ̸= 0, k+m− l−n = 0

and k,m not both equal to 0 (The case k = −m = 0 is a subcase of Lemma 32). Assume
that one of the following is satisfied:

1. |k +m| /∈ {0, |n|, |l|}

2. k = l

3. k = n

Then G is not hyperbolic.
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3 Hyperbolicity or non-hyperbolicity of certain one-relator groups

Proof. First, consider item 1., i.e., assume k +m = l + n ̸= 0, |k +m| /∈ {|n|, |l|}. Then
up to an automorphism, r = a2(bla−1bn)2, which implies a2 = (b−nab−l)2. Assume the
group is hyperbolic. Then by Lemma 18, a = b−nab−l , and Lemma 17 yields a−1ba = b,
i.e. a and b commute. As above, this would imply, by Lemma 20, that a, b were elements
of the same maximal cyclic subgroup, a contradiction, see Lemma 28.
Now consider the subcase k = l (item 2.), which is equivalent to m = n here. This
yields (abk)2 = (b−ma−1)2. Assume the one-relator group is hyperbolic, then one obtains
abk = b−ma−1, which implies abka−1 = b−m. By Lemma 20, this yields that a and b are
elements of the same maximal cyclic subgroup of G, which is a contradiction.
Perform the analogous steps for the subcase k = n, which is equivalent to the subcase
m = l. Moreover, this can be obtained from the previous item by application of an
automorphism of the one-relator group.

3.0.2 Proof of hyperbolicity of some groups with a single defining relator
using the sufficient criterion for hyperbolicity from Ivanov-Schupp and
failure of this criterion for some one-relator groups

Ivanov-Schupp prove hyperbolicity of certain one-relator groups using their Theorem 1
(Theorem 13 in this paper). In this section, we discuss how the fact that all reduced maps
are (p, q)-maps after performance of a certain surgery is proved for certain one-relator
groups in Theorem 3 of Ivanov-Schupp and how a common bound on the radii of regular
(p, q)-submaps is established there. We also treat some of the ideas stated by Buskin, who
analyzes certain groups with presentations of the form

〈
a, b | r

〉
, r = abkablabma−1bn.

Then, we pass to the proof of Propositions 2 and 1 in this paper, in which ideas from
Ivanov-Schupp and Buskin are used. For G =

〈
a, b | r

〉
, r = abka−1blabma−1bn, r freely

and cyclically reduced, r not a proper power, we identify some cases to which the criterion
from Ivanov-Schupp does not apply because they satisfy C(p) + T (q) with 1

p + 1
q > 1

2 .

Moreover, for some groups G =
〈
a, b | r

〉
, r = abka−1blabma−1bn, with r freely and

cyclically reduced, r not a proper power, we prove that they satisfy C(6)+T (3), but do
not discuss hyperbolicity or non-hyperbolicity.

Finally, we prove Proposition 3, using ideas from Ivanov-Schupp, Buskin. Proposition 4
is Lemma 32. Moreover, for r = abkabla−1bma−1bn, r freely and cyclically reduced, we
give one example (up to symmetry) of a family of groups that have C(5)+T (3), but not
C(6).

Definition 34. [6, p. 1860-1861] For a one-relator group G =
〈
A | r

〉
with r non-

empty cyclically reduced word, a ∈ A a letter such that a and/or its inverse occurs in
r, and r ≡ aϵ0B0a

ϵ1B1...a
ϵk−1Bk−1, k ≥ 2, ϵi ∈ {−1, 1}, Bi not containing a or a−1 for

0 ≤ i ≤ k − 1, and for ∆ a diagram over the given presentation, an a-edge of ∆ is an
oriented edge of ∆ with label a or a−1.
Let e0, f

−1
0 be a-edges on the boundary ∂π0 of a face π0 of a diagram ∆ such that the

arc e0v0f
−1
0 has the property that there are no a-edges in v0. Then the a-star St(e0, f0)

defined by the a-edges e0, f0 is defined to be the following sequence of a-edges: Assume
e−1
0 belongs to ∂π1 and consider the arc e1v1e

−1
0 , v1 containing no a-edges, of ∂π1 (there
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are at least two a-edges on ∂π1 by the assumption that k ≥ 2). Assuming e−1
1 ∈ ∂π2, we

proceed analogously, and after l−1 steps, either el−1 = f0 or el−1 ∈ ∂∆. In the first case,
the a-star St(e0, f0) consisting of the oriented a-edges is said to be interior and its label
Φ(St(e0, f0)) is Φ(St(e0, f0)) = Φ(vl−1vl−2...v1v0). In the second case, the construction
is extended as follows: If f0 ∈ ∂π−1, then take the arc of ∂π−1 of the form f0v−1f

−1
−1 ,

for an a-edge f−1 and v−1 containing no a-edges, continue like that. After several steps,
one obtains f−1

−(m−1) ∈ ∂∆. Then the a-star St(e0, f0) consisting of the oriented a-edges

f−(m−1), f−(m−2), ..., f0, e0, e1..., el−1 is called exterior and its label Φ(St(e0, f0)) is the
word Φ(St(e0, f0)) = Φ(vl−1...v1v0v−1...v−(m−1)). (Remark: Note that Ivanov-Schupp
write labels from r∗, but allow only positive orientation of boundaries of faces)

Ivanov-Schupp and Buskin both use the following technique: Given a reduced diagram
∆ over G, contract all edges labelled b±1 to a point, omit labels of a-edges and treat the
resulting map ∆̄. Then |∆(2)| = |∆̄|, |∂∆| ≤ |∂∆̄|. Thus, if |∆̄(2)| ≤ L|∂∆̄|, then one
has |∆(2)| = |∆̄(2)| ≤ L|∂∆̄| ≤ L|∂∆|. See [6, p. 1871] and [2, p. 88].

In this thesis, three cases from Ivanov- Schupp, Theorem 3 ([6, Theorem 3, p. 1852-1853,
and Proof of Theorem 3, p. 1870-1879]), are mentioned: Consider the group G =

〈
A | r

〉
,

with A a finite alphabet, r a cyclically reduced word in A. We consider the following
subcases:

• Part 3, Case 5: r = aBaCaD with B,C,D having no occurrences of a±1. By
applying an automorphism of the free group on A to r, pass to a2CB−1aDB−1,
assume rank(

〈
CB−1, DB−1

〉
) = 1, CB−1 = En1 andDB−1 = En2 , where n1, n2 ̸=

0 and E is not a proper power in the free group. Without loss of generality, E can
be assumed to be cyclically reduced. Let |n1| ̸= |n2|, |n1| ̸= |2n2|, |n2| ̸= |2n1|. In
this case, the group is hyperbolic.

Now, let r = aBaCa−1D with B,C,D having no occurrences of a±1. Pass to a2Ba−1C
via an automorphism of F (A) (the new B,C are B−1CB,D, respectively), assume
rank(

〈
B,C

〉
) = 1,

〈
B,C

〉
≤

〈
E
〉
, for a nonempty, cyclically reduced word E that is

not a proper power in the free group on A, and B = En1 and C = En2 .

• Part 4, Case 4: Moreover, let n1 = 2n2 or n2 = 2n1. In this case, the group is
hyperbolic.

• Part 4, Case 5: Let |n1| ̸= |n2|, |n1| ̸= |2n2|, |n2| ̸= |2n1|. In this case, the group is
hyperbolic.

Note that in particular, E has no occurrences of a±1 in the above cases.

Ivanov Schupp, Strategy of proof for Part 3, Case 5, and Part 4, Case 5, of Theorem 3:

1. Starting with a word of (e.g) the form a2En1a−1En2 , E a word as above, reduce
to a word of the form a2bn1a−1bn2 , b a letter. This uses Lemma 16 [6, Lemma 3.3,
p. 1864].
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3 Hyperbolicity or non-hyperbolicity of certain one-relator groups

2. Consider a reduced diagram ∆ over the new group, contract all b-edges and forget
the remaining labels to get ∆̄.

3. The map after contraction is a (3, 6)-map. The 3 part is immediate, as there are 3
occurrences of a±1 in the word a2bn1a−1bn2 . For the properties of interior vertices
of ∆̄, consider a-stars in ∆ corresponding to interior vertices in ∆̄. After proving
that interior vertices of ∆̄ of degree other than 2 have degree ≥ 6, examine the
vertices of degree q = 6 in ∆̄, consider angles at them. The case of a regular
(3, 6)-submap of radius r ≥ 2 is reduced to a regular (3, 6)-submap that takes the
form of a hexagon consisting of 6r2 triangles. The analysis of the angles in this
hexagon gives a (combinatorial) estimate for the radius. One obtains a common
upper bound for the radii of regular (p, q)-maps, and thus, Theorem 13 [6, Theorem
1, p. 1854] and the (in-)equalities relating area and length of boundary of ∆ and
area and length of boundary of ∆̄ yield hyperbolicity.

([6, p. 1870-1874, 1879])
Theorem 3, Part 4, case 4 in Ivanov Schupp: This is a hyperbolic case treated similarly
to the above cases: The proof of hyperbolicity of the given group, G, is reduced (via
Lemma 16 ([6, Lemma 3.3, p. 1864]) and [6, Lemma 3.4, p. 1867], Ivanov-Schupp) to
proving hyperbolicity of a different group, G1. Then, a HNN presentation of G1 is given,
and the proof is reduced to proving hyperbolicity of a subgroup G0 of G1. Then, they
prove that any reduced diagram ∆ over G0 is a (3, 6)-diagram up to some surgery that
constitutes no loss of generality. (Angles are used in the process of proving (3, 6).) Then
consider the map M∆′ obtained from this diagram by omitting degree 2 interior vertices
and labels, and consider the angles in it. Similarly to the above, we get an estimate for
the radius of any regular submap of M∆′ , which yields the desired inequality for M∆′

and thus for ∆. ([6, p. 1875-1879])

Details for Theorem 3, Part 4, Case 5: Without loss of generality, r = a2Ba−1C with
B = En1 , C = En2 , E a nonempty, cyclically reduced word, E not being a proper power,
and E containing no a±1. By Lemma 16 ([6, Lemma 3.3, p. 1864]), it suffices to show that
Ḡ =

〈
a, b | a2bn1a−1bn2

〉
is hyperbolic. Let W be a non-empty word over the generators

of Ḡ such that W equals 1 in Ḡ, but no proper subword of W does. Take a diagram ∆
over Ḡ such that |∂∆| = W and |∆(2)| is minimal. Contraction of all b-edges yields a
map ∆̄ as above (disregard labels of remaining edges). The map ∆̄ is a (3, 6)-map: Any
face of ∆̄ has degree 3. Now take an interior vertex v in ∆̄, consider all consecutive (list
edges in positive direction) oriented edges with terminal vertex v, e0, ...el−1. Consider
the preimages in ∆, denote them e0, ...el−1 as well. The ei form an interior a-star in ∆.
Since ∆ is reduced and the label of the interior a−star equals 1 in the free group, get
l ≥ 4: l = 1 contradicts the fact that the relator is cyclically reduced; l = 2 gives a
contradiction to ∆ reduced; l = 3 yields only impossible cases because b±n1 , which lies
between a and a−1 in (a conjugate of) r or its inverse, cannot be neighbor to b±n2 , which
lies between a−1 and a in (a conjugate of) r or its inverse, bni cannot be neighbor to
b−ni (because we construct reduced maps), and ni ̸= 0, i.e. bni ̸= 1.

Consider l = 4. This implies one of n1 + n2 = 0 or n1 − n2 = 0, l = 5 would imply one
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of 2n1 + n2 = 0,−2n1 + n2 = 0, 2n2 + n1 = 0,−2n2 + n1 = 0: Analyze interior a-stars
for which l = 4 or 5. As above, note that b±n1 cannot be neighbor to b±n2 due to the
structure of the relator. Recall that we are constructing reduced maps yields that bni

cannot be neighbor to b−ni , and note that ni ̸= 0, i.e. bni ̸= 1. Hence, one can prove the
above implications by sketching a polygon with 4 or 5 sides, respectively, such that sides
carry labels in {0,±n1,±n2} (whose elements stand for {±b0 = ±1, b±n1 , b±n2}), ni,−ni

never label adjacent sides and a side labelled ±ni is never adjacent to a side labelled
−nj or nj , j ̸= i. For l = 4, such a polygon has two occurrences of 0, one occurrence of
±n1 and one occurrence of ±n2, either with both ni carrying the same sign or with the
ni carrying opposite signs. For l = 5, one has two occurrences of 0, and the polygon has
either two occurrences of ni or two occurrences of −i for one index i ∈ {1, 2}. Moreover,
there is one occurrence of ±nj , j ̸= i.

See that we have excluded the cases |n1| = |n2|, |n1| = |2n2|, |n2| = |2n1|.
So ∆̄ is a (3, 6)-map.

Now one proves, using the same ideas as above, that l = 6 gives one of n1 + 3n2, n1 −
3n2, n2 +3n1 or n2 − 3n1. Assign labels to angles (0 for ±1, i for ±ni, i = 1, 2). Use this
to estimate the radius r ≥ 2 of a regular (3, 6)-submap of M∆ as above, passing to the
hexagon, Hr, consisting of 6r2 triangles. E.g. for 3n2 = n1: At every interior vertex of
Hr, there are precisely 3 twos, 1 one and two zeros. Every triangle has one 0, one 1 and
one 2. The number of angles in the hexagon with label 1 equals the number of faces.
This, together with the fact that the number of boundary edges of the hexagon equals
the number of exterior vertices, yields the estimate given in Ivaonv-Schupp. ([6, p. 1879])

Buskin, Theorem 1.2 [2, Theorem 1.2 and 1.2’ (equivalent), p. 86]: Contraction of b-edges
is used in some hyperbolic cases (see [2, Proof of Theorem 1.2,,p. 91-102, in particular,
p. 94-102]):

Buskin shows that the results of contraction are (4, 4)-maps for reduced diagrams over
G =

〈
a, b | a−1bn0abn1abn2abn3

〉
for n0, n2, n3 ̸= 0, n1 = 0, |n2| ̸= |n0| and |n2| ̸= |n3|.

The process that constitutes the rest of the proof can be described as follows: For any
possible degree 4 interior vertex of the contracted map, draw the 4 tiles that would be
surrounding it in a regular (4, 4)-submap (note that these settings are considered up to
rotation and reflection) and analyze the equations resulting from the boundaries of these
tiles. Note that squares (tiles) result from faces of the original map and are obtained
by contraction of b-edges, so boundary edges of tiles in regular (4, 4)-maps are oriented
edges coming from oriented a-edges of the original diagram, and each of the 4 corners of
a square corresponds to the corresponding power of b.

Get equation systems describing relations between exponents on b’s. Now for any such
equation system, one wants to see whether the radii of regular (4, 4)-maps are commonly
bounded. For any such system, one can start with any of the equations in it or any of the
consequences of these equations. For any such choice, draw the vertex corresponding to
the chosen starting equation, add new tiles according to the snake rule given in Buskin:
([2, p. 94-98])

Definition 35 (snake rule, snake method, [2, p. 97-98]). Consider a one-relator group
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3 Hyperbolicity or non-hyperbolicity of certain one-relator groups

G =
〈
a, b | r

〉
with r of the form r = abkablabma−1bn, r = abkabla−1bma−1bn or

r = abka−1blabma−1bn, and r freely and cyclically reduced, r such that for every reduced
map over G, the result of contracting all b-edges to points and omitting the remaining
labels is a (4, 4)-map. We describe a way of building regular reduced (4, 4)-maps that
occur as submaps of contracted maps: Start with a vertex that can occur as a valence 4
interior vertex of a contracted map. Draw the 4 tiles surrounding it. Add tiles according
to the rule indicated by the picture below. New tiles have to be labeled in such a way that
the situation at new vertices does not lead to a contradiction together with the system
and the assumptions on the exponents. If the contrary is the case, i.e., if one arrives at
a contradiction, stop. For the contradiction means that it is not possible for the current
vertex to occur as an interior vertex of degree 4 of a regular reduced (4, 4)-submap of
a result of contraction. The rule indicated by this picture is called the snake rule. We
will call this method the snake method. If the method terminates for one of the starting
situations, we will say that the snake method terminates or the snake terminates (for
this situation).

start✲

❄✛

❄ ✲ ✲

✻

Start with the top left arrow, proceed in the way the arrows show, then analogously
(see [2, p.98]).

If, for some system, any possible starting situation yields bounded radius, then the
corresponding system describes a case where there is a common bound on the radii of
regular (4, 4)-maps, and thus G is hyperbolic. In the cases from Buskin described above,
the snake method yields hyperbolicity. See [2, p. 94-102].

The snake method is based on the sufficient criterion for hyperbolicity seen in Theorem
13 (Theorem 1 Ivanov-Schupp, [6, p. 1854]) (s.a. SUFFICIENCY direction of Theorem
14 (Theorem 2 in Ivanov-Schupp,[6, p. 1859])). See [2, p. 88].

Buskin, Theorem 1.1 ([2, Theorem 1.1 and 1.1’ (equivalent), p. 86]), hyperbolic case:
In this case, there is no contraction. Buskin shows C(6) + T (3) and then builds regular
reduced (6, 3)-diagrams, showing that this process terminates for all subcases: For any
subcase, first, partitions of the relator word into precisely 6 pieces are listed. Then, the
process of successively attaching hexagonal cells is described. [2, p. 89-91]
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The next two subsubsections will treat (4, 4)-tilings as in Buskin for new groups. For
G =

〈
a, b | r

〉
with r of the form r = abkabla−1bma−1bn or r = abka−1blabma−1bn, we use

the strategies that are used in Buskin’s paper: Analyze interior vertices of an arbitrary
reduced diagram over G. Check when the contracted map of any reduced diagram is a
(4, 4)-map and use Buskin’s method.

Next, we prove some results that say the group has C(6) + T (3) or a small cancellation
condition C(p) + T (q) with 1/p+ 1/q > 1/2 in a certain situation. As for hyperbolicity
and non-hyperbolicity, we treat groups for which the contracted map of any reduced
map is a (4, 4)-map.

Application of Buskin’s snake method to groups of type (1/− 1/1/− 1)

Example 36. Let G =
〈
A | r

〉
for r = awka−1wlawma−1wn with r freely and cyclically

reduced, r not a proper power, w a word with no occurrences of a or its inverse. This
implies |k|, |l|, |m|, |n| ≥ 1 and w freely reduced. We may exclude the case k = m and
l = n, i.e., the case where r = (abka−1bl)2, because we know that one-relator groups with
torsion are hyperbolic. Up to an automorphism of the free group on the generators, one
can assume w is cyclically reduced. Without loss of generality, w is not a proper power.
So G satisfies the conditions from Lemma 15. Consider Ḡ =

〈
a, b | abka−1blabma−1bn

〉
.

Then hyperbolicity of Ḡ implies hyperbolicity of G, see 15 ([6, Lemma 3.3]). To Ḡ, one
can apply contraction of b-edges as described above. From now on, focus on Ḡ. First, we
consider the cases k = −m and l = −n. If at least one of k = −m and l = −n holds,
then Ḡ is non-hyperbolic, see Lemma 29.

Next, we would like to see when the result of contraction obtained from a reduced
diagram is a (4, 4)-map. The contracted map has no valence 1 vertices. We see that a
degree 2 interior vertex in this contracted map requires k = ±m or l = ±n by the form
of r: A degree 2 interior vertex of the result of contraction arises from a pair of faces
sharing an interior arc with label of the form ab···a−1 or a−1b···a.

If we have a valence 3 interior vertex in the contracted setting, this vertex yields an
equation that implies |2k| = |m|, |2m| = |k|, |2n| = |l|, or |2l| = |n|. This follows from
the situation with respect to interior a-stars in reduced diagrams over the group, see
below.

Now, consider cases where the map after contraction is a (4, 4)−map. That is, we demand
|k|
|m| /∈ {1

2 , 1, 2},
|l|
|n| /∈ {1

2 , 1, 2}.
First, consider valence 4 interior vertices of the contracted map (respectively, the a-stars
corresponding to them). Note that both +k,−k can be neighbors of both +m,−m: One
cannot obtain reducible pairs that way because |k| ̸= |m|. Both l,−l can be neighbor
of both +n,−n as one has |l| ̸= |n|. k can be neighbor of itself, −k can be neighbor of
itself, analogously for l,m, n. For in an element of the symmetrization {r}∗, the exponents
±m,±k occur in the subwords ab±ka−1 and ab±ma−1, respectively, whereas ±l,±n occur
in subwords of the form a−1b±la and a−1b±na, respectively. In other words, the successor
of an a is b±k or b±m, and so is the power of b preceding an a−1. The successor of an
a−1 is b±n or b±l, and the same is true for the power of b preceding an a. Hence in the
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3 Hyperbolicity or non-hyperbolicity of certain one-relator groups

construction of an interior a-star, the possible labels for vi’s belonging to the boundaries
of neighboring faces sharing an a-edge are as described above.
Thus, we get:

• vertices/ a-stars corresponding to equations 3m ± k = 0,−3m ± k = 0, 3k ±m =
0,−3k ±m = 0, analogously for l and n

• cases that give 0 = 0 and hence no new information (k+m−k−m = 0, l−n+n−l =
0)

• cases that yield a contradiction to k = 0, to l = 0, to m = 0 or to n = 0 (cases
that yield equations of the form k +m− k +m = 0)

• Cases that yield |k| = |m| or |l| = |n|, contradiction: 2k ± 2m = 0,−2k ± 2m = 0
and the analogs for l and n

Then, apply Buskin’s starting map and snake method. Example: starting situation 3m+
k = 0: Situation before contracting all b-edges (left), situation in the result of contraction
(right):
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Figure: The faces in the above figure are assumed to be interior. Interior a-star for
the setting k = −3m, |3m| > |l|, |n|.

System 3m + k = 0 and 3l + n = 0 gives a hyperbolic group: For starting situation
3m + k = 0, the vertex with two n′s will make any snake terminate: In a regular
(4, 4)-submap of the map obtained from a reduced diagram by contracting all b-edges
and omitting the remaining labels, one cannot have an interior vertex whose equation
contains two positive n′s, since none of the equations in the system has two positive n′s.

Now, consider the situations k − m − k + m = 0 and l − n − l + n = 0: Start with

k +m− k −m = 0: ✲
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Again, n, n makes the snake terminate.

Now, consider l + n− l − n = 0: ❄
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This snake terminates at the point where one has the situation containing n, n. Fi-
nally, consider starting situation 3l + n = 0:
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3 Hyperbolicity or non-hyperbolicity of certain one-relator groups
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We first turn to the proof of Proposition 2.

Proof. (of Proposition 2, broken in parts)

Remark 37. (on the case k = m and the case l = n) Consider the case k = m, |l| ̸= |n|
and the case l = n, |k| ̸= |m|. (In either of these cases, a reduced diagram over G could
have a degree 2 interior vertex.) Note that a, b ̸= 1 in the one-relator group by Lem-
ma 28. First, consider the case k = m, l ̸= n, l ̸= −n. Then r = abma−1blabma−1bn,
which yields abma−1 = b−nab−ma−1b−l and abma−1 = b−lab−ma−1b−n. Hence, one
has b−nab−ma−1b−l = b−lab−ma−1b−n, or, equivalently, b−nab−ma−1b−lbnabma−1bl = 1,
which is equivalent to
bl−nab−ma−1b−(l−n)abma−1 = 1. Note that l − n ̸= 0 and m ̸= 0. By Lemma 17, if
the group is hyperbolic, then b and abma−1 commute. Then r gives ab2ma−1bl+n = 1,
another application of Lemma 17 yields that a and b commute. This is a contradiction
by Lemma 20. Analogously, for l = n, k ̸= m, k ̸= −m, the group is non-hyperbolic. Pass
from this case to the first case by applying the automorphism of the one-relator group
that interchanges the roles of k and m and those of l and n.

The above Remark and Example 29 prove Proposition 2.

Now, we pass to Proposition 1. In Example 36, we saw that:

Lemma 38. Let G =
〈
a, b | r

〉
with r = abka−1blabma−1bn for k, l,m, n ̸= 0 and

|k|
|m| ,

|l|
|n| /∈ {1, 2, 12}. For any reduced diagram over G, the result of contraction of b-edges

to points and removal of remaining labels is a (4, 4)-map.
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Lemma 39. For G as in Lemma 38, consider valence 4 interior vertices of the results of
contraction of all b-edges. Up to Aut(F (a, b)) and inversion of r, the roles of k and m can
be interchanged, and those of l and n can be interchanged separately. Up to interchanging
the roles of k and m or those of l and n and multiplication with −1, the possible equations
on interior vertices of degree 4 in the result of contraction are:

• 3m− k = 0

• 3m+ k = 0

• 3l + n = 0

• 3l − n = 0

• k −m− k +m = 0, l − n− l + n = 0

Now, we draw the starting maps / starting situations corresponding to the equations in
Lemma 39 one by one and analyze the boundary to find equation systems / systems of
equations and consequences. The result of this process is

Lemma 40. For a group as in Lemmas 38 and 39, one obtains the following equation
systems (k−m−k+m = 0, l−n− l+n = 0 are not listed in systems) up to Aut(F (a, b))
and inversion of r:

• 3m+ k = 0

• 3m− k = 0

• 3m+ k = 0, 3l + n = 0

• 3m+ k = 0, 3l − n = 0

• 3m− k = 0, 3l − n = 0

Moreover, one can have a group satisfying only the trivial equations.

In Example 36, we see a hyperbolic example. More generally, we have the following
result:

Lemma 41. For each of the systems given in Lemma 40, one obtains a hyperbolic group
by Buskin’s snake tiling method: For all starting situations (i.e., the ones listed in the
system AND k +m− k −m = 0, l − n+ n− l = 0) and all choices that can be made in
the snake tiling procedure, the snake method terminates. For groups satisfying only the
trivial equations, all snakes terminate.

Proof. (of Lemma 41 ) The proof is done using Buskin’s snake rule [2]. We are going to
prove hyperbolicity for

• system 3m+ k = 0, 3l + n = 0,
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3 Hyperbolicity or non-hyperbolicity of certain one-relator groups

• system 3m+ k = 0, 3l − n = 0,

• system 3m− k = 0, 3l − n = 0,

• system 3m− k = 0 and

• system 3m+ k = 0.

Moreover, we see that a group for which one has only the trivial equations is hyperbolic.

First, we look at starting situation 3m+ k = 0 (compare Example 36)
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The vertex with two n’s (note that one can move this vertex to the position of the first
new vertex by rotation) makes the snake terminate for the following systems (the trivial
equations /situations that belong to all the systems are not listed in systems)

1. 3m+ k = 0

2. 3m+ k = 0, 3l − n = 0

3. 3m+ k = 0, 3l + n = 0 (the system discussed in Example 36).

Now, consider the trivial situations k−m−k+m = 0 and l−n−l+n = 0: k+m−k−m = 0
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Again, n, n makes the snake terminate for systems 1. − 3. above. Moreover, it makes
the snake terminate for systems 3m − k = 0 and 3m − k = 0, 3l − n = 0. This snake
terminates for the system consisting only of the trivial equations.

Now, consider l + n− l − n = 0: ❄
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For items 1. − 3. above, this snake terminates at the point where one has the situa-
tion containing n, n. Moreover, this snake terminates at n, n for 3m − k = 0 as well as
for 3m− k = 0, 3l − n = 0 and the system consisting only of the trivial equations.

For systems 3m− k = 0 and 3m− k = 0, 3l − n = 0, one has the option:
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This snake terminates at the situation with k, k.

For system 3m+k = 0, 3l−n = 0, consider starting map 3l−n = 0:❄
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terminates at +m+m+?− k = 0
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terminates (moreover, this terminates for system 3m− k = 0, 3l − n = 0)

For system 3m + k = 0, 3l + n = 0, consider starting situation 3l + n = 0 (see Ex-
ample 36)

❄

✲
✻

✛

❄

✲
✻

✛ ✲

✻

✲

✛

❄

✲

✻
✛

✻

✻

✛

✻

✲❄✛❄

k

n

l

m

l

k

m

n

k

l

n

m

l

m

k

n
m

n

l

k

m

l

n

k
n

m

k

l

k

l

n

m
l

m

k

n

⟲ ⟲ ⟳

⟲ ⟲

⟲ ⟲

⟳

⟳

terminates
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The figures seen up to now prove that the following systems give hyperbolic groups:

• 3m+ k = 0

• 3m+ k = 0, 3l + n = 0 (discussed in Example 36)

• 3m+ k = 0, 3l − n = 0

For system 3m − k = 0, we have already done the trivial situations k + m − k − m =
0, l+n− l−n = 0. For starting situation 3m−k = 0, one can only have n+ l−n− l = 0
at the first new valence 4 vertex that one creates by adding tiles, at the second new
vertex, there are the possibilities 3m − k = 0 and k −m − k +m = 0, but in either of
these two cases, the snake terminates at the third potential new vertex (order of tiling
as in Buskin). Hence the system 3m− k = 0 yields a hyperbolic group as well.

Snake 3m− k = 0, n+ l − n− l = 0, 3m− k = 0 terminates:
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Snake 3m− k = 0, n+ l− n− l, k−m− k+m = 0 terminates: ✲
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Continue the discussion by considering the rest of the starting situations for 3m − k =
0, 3l − n = 0:

First, discuss starting situation 3l − n = 0:
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terminates

It remains to consider starting situation 3m− k = 0:

First option (vertex 0= starting situation, proceed as in Buskin): n − l + n + l = 0 at
vertex 1, k −m− k +m = 0 at vertex 2, snake terminates at vertex 3 (the same snake
can be found above)

Second option n− l−n+ l = 0 at vertex 1, k− 3m = 0 at vertex 2, 3l−n = 0 at vertex
3, −m− k +m+ k = 0 at vertex 4, −n− l + n+ l = 0 vertex 5, k −m+ k +m = 0 at
vertex 6, then, the snake terminates.

Third option n− l− n+ l = 0 at vertex 1, k − 3m = 0 at vertex 2, 3l− n = 0 at vertex
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3, −m− k+m+ k = 0 at vertex 4, −n− l+ n+ l = 0 vertex 5, 3m− k = 0 at vertex 6,
l+n−l−n = 0 at the next vertex, situation terminates at vertex 8 because there are 2 k’s.

Second option
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Hence, the system 3m− k = 0, 3l − n = 0, too, yields a hyperbolic group.

Proof. (of Proposition 1) Let G =
〈
a, b | r

〉
with r = abka−1blabma−1bn for k, l,m, n ̸= 0.

Firstly, if (k,m) = (l, n), then r has imprimitivity rank 1 in F (a, b), and thus, the one-

relator group G is hyperbolic. If |m|
|k| ,

|l|
|n| /∈ {1, 2, 12}, then Lemma 38 shows that the

result of contraction of b-edges and omitting the remaining labels is a (4, 4)-map for any
reduced diagram. An interior vertex of degree 4 in such a result of contraction can only
occur for a trivial equation (e.g. k + m − k − m = 0) or in the case that at least one

of |m|
|k| and |l|

|n| is an element of {3, 13}, see Lemma 39. In any of these cases, the radii

of regular reduced (4, 4)-maps are commonly bounded, this was proven in Lemma 41.
Thus, in these cases, the group is hyperbolic by Theorem 13.
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3 Hyperbolicity or non-hyperbolicity of certain one-relator groups

Examples of families of groups of type (1/− 1/1/− 1) satisfying condition
C(4) + T (3), C(5) + T (3) or C(6) + T (3)

Now, we discuss certain subcases of the cases described in Lemma 42, in which case
interior vertices of degree 3 can occur after contraction of all b-edges. We check for C(p).
We identify some groups that have C(6) + T (3), which means that in particular, the
criterion stated in Theorem 14 (Theorem 2 of Ivanov-Schupp) can be applied to them,
and some that have C(4)+T (3) or C(5)+T (3), neither of which is one of the conditions
for which Theorem 14 can be applied.

For cases which have |k| ̸= |m| and |l| ̸= |n|, but are such that the contracted map of
a reduced diagram is not (necessarily) a (4, 4)-map, we prove a lemma that describes
these cases up to automorphisms of F (a, b), inversion of r and renaming of exponents.

Lemma 42. Up to Aut(F (a, b)), inversion of r and renaming of exponents, the case
where G =

〈
a, b | r

〉
with r = abka−1blabma−1bn with k, l,m, n ̸= 0, |k| ̸= |m| and

|l| ̸= |n| and the contracted map is not (necessarily) a (4, 4)-map gives the following
(systems of) equations:

• 2m+ k = 0.

• 2m− k = 0

• 2m+ k = 0, 2l + n = 0

• 2m− k = 0, 2l − n = 0

• 2m+ k = 0, 2l − n = 0

For the first two items, assume without loss of generality that |n| ≥ |l|.

Since there is no piece with two occurrences of a, a−1 in it (total number of a, a−1’s is
4) in the cases in Lemma 42 (note that k ̸= m, k ̸= −m, l ̸= n, l ̸= −n in Lemma 42),
every partition has at least 4 pieces (one might have C(p) with p > 4).
We state some results for groups as in Lemma 42, summarizing them into one proposition.
For the proof, the proposition will be broken into lemmas.

Proposition 43. • Let G be as in the subcase ( k
m , nl ) = (2, 2) of Lemma 42. Then

G satisfies the small cancellation condition C(4).

• If G is a one-relator group as in one of the following subcases of Lemma 42, then
G satisfies condition C(5):

– |k|
|m| = 2 = |n|

|l| and ( k
m , nl ) ̸= (2, 2)

– k
m = 2, nl < −2 and |m| = |n|

– k
m = −2, nl < −2 and |2m| ̸= |n|

– k
m = −2, nl > 2 and |2m| = |n| > |l| > |m| or |2m| > |n| > |l|
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– k
m = −2, nl < −2 and |m| = |n|.

• Another non-C(6) subcase of Lemma 42 is k
m = 2, nl > 2.

• If G is as in one of the following subcases of Lemma 42, then the group satisfies
condition C(6):

– k
m = −2, |n| > |2m| > |m| = |l| and n

l < −2 or n
l > 2

– k
m = 2, nl < −2 and |n| > |2m| > |l| = |m|.

Lemma 44. The subcase |k|
|m| =

|n|
|l| = 2 from Lemma 42 has C(p)+T (q) with 1/p+1/q >

1/2.

Proof. Firstly k = 2m and n = 2l yields a C(4) group: [blabm][bma−1][blabm][a−1bl] is
a partition of a conjugate of r into 4 pieces. Hence the group has C(4) + T (3), and
1
4 + 1

3 = 7
12 > 1

2 .
Now consider the case where k = −2m and n = −2l. There is no partition of an element of
the symmetrization of the set {r} into 4 pieces, but there are partitions of r or a conjugate
into 5 pieces for all such groups: If |2m| > |2l|, then take [ab−m][b−ma−1][bla][bma−1][b−2l].
If |2l| > |2m|, then take [b−2m][a−1bl][abm][a−1b−l][b−la]. So in the case k = −2m,n =
−2l, the group is C(5) + T (3), and 1

5 + 1
3 = 8

15 > 1
2 .

Consider the case where k = −2m and n = 2l. Again, the group is T (3) and C(5):
If |2m| > |2l|, then take [ab−m][b−ma−1][bla][bma−1][b2l]. If |2l| > |2m|, consider the
partition [b−2m][a−1bl][abm][a−1bl][bla].

Lemma 45. If we are in the subcase of Lemma 42 with k
m = 2, nl > 2,then the group is

not C(6).

Proof. The partition [abm][bma−1bl][a][bma−1bl][bn−l] is a partition into pieces that pro-
ves the claim.

Lemma 46. If one is in the subcase k
m = 2, nl < −2 of Lemma 42 and moreover

|m| = |n| > |l|, then the group is C(5), but not C(6).

Proof. There exists no element of {r}∗ that admits a partition into 4 or fewer pieces.
We give a partition of r into 5 pieces. Take [abm][bma−1][bla][bma−1][bn].

Note that in Lemma 46, |m| ≥ 2.

Lemma 47. If we are in subcase k
m = −2, nl < −2 in Lemma 42 and |m| > |n| > |l|,

then the group is C(5), but not C(6).

Proof. There are no partitions of elements of {r}∗ into 4 or fewer pieces. Thus, naming
a partition of an element of the symmetrization {r}∗ of {r} into 5 pieces proves the
claim: Take [b−m][b−ma−1][bla][bma−1][bn] (for any choice of signs that agrees with the
assumptions).

In Lemma 47, one has |m| ≥ 3.
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3 Hyperbolicity or non-hyperbolicity of certain one-relator groups

Lemma 48. If one is in the subcase k
m = −2, nl < −2 of Lemma 42 and one of the

following holds, then the group has condition C(5), but it does not have C(6):

• |n| > |l| > |m|

• |n| > |2m| > |m| > |l|

• |2m| > |n| > |m| > |l|

Proof. Partitions into four or fewer pieces are not possible. If |2m| > |n| > |m| > |l|,
consider [ab−m][b−ma−1][bla][bma−1][bn].
If |n| > |l| > |m| or |n| > |2m| > |m| > |l|, take [b−2m][a−1bl][abm][a−1bl+n][b−la].

Lemma 49. Let G be a one-relator group as in subcase k
m = −2, nl > 2 of Lemma 42.

If one of the following additional conditions holds, then the group is C(5), but not C(6):

• |n| = |2m| > |l| > |m|

• |n| > |l| and |2m| > |n|

Proof. Partitions into four or fewer pieces are not possible. For the first of the two items
listed above, take [ab−m][b−ma−1][bla][bma−1][bn].
For the second item, take [ab−m][b−ma−1][bla][bma−1][bn].

Also, consider the following example:

Example 50. If we are in subcase k
m = −2 of Lemma 42, l, n,m have the same sign,

|n| > |2m| > |l| > |m| and n − l = m, then the group is C(5). There are no partitions
of elements of {r}∗ into 4 pieces, but one has [b−2m][a−1bl][abm][a−1bl][bn−la]. More
generally, this works if l,m, n > 0 and 0 < n− l ≤ m. Analogously, this partition works
if l,m, n < 0 and 0 > n− l ≥ m.

Lemma 51. If one is in the subcase k
m = −2, nl < −2 of Lemma 42 and |m| = |n|, then

the group is C(5), and it is not C(6).

Proof. The group is C(5). For proving that it is not C(6), we consider the following
partition into pieces (In each of the four subcases

• m > 0, n > 0, l < 0

• m < 0, n > 0, l < 0

• m > 0, n < 0, l > 0

• m < 0, n < 0, l > 0,

one can take the same partition): [ab−m][b−ma−1][bla][bma−1][bn].

Now, one would like to analyze cases where |m| = |n| and for which the situation
|m| = |n| = 1 is possible. (The fact that one has C(6) examples with |m| = |n| = 1, see
[4], was the motivation for checking families for which |m| = |n| = 1 is possible.)
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Lemma 52. Let G be a group with r as in subcase k
m = 2, nl < −2 of Lemma 42.

Moreover, let |n| > |2m| > |l| = |m|. Then the group has property C(6).

Proof. As above, we would like to prove that there is no partition of r, its inverse or a
conjugate of one of them into 4 or 5 pieces. A partition into 4 pieces is impossible. To
see that a partition into 5 pieces is impossible as well, consider the two subcases m = l
and m = −l.
A partition into 5 blocks would consist of 4 pieces containing one a or a−1 and some
power of b each and one block containing only a power of b. For m = −l, we have that
r = ab2ma−1b−mabma−1bn and r−1 = b−nab−ma−1bmab−2ma−1. Note that m,n have the
same sign in this case. If the process of splitting up bn or b−n between pieces involves a
single power of b piece, then the partition has at least 6 blocks. So bn or b−n must be
divided up between a and a−1. See that if one tries to split a−1bna or a−1b−na into two
pieces in the following way: [a−1b...][b...a] (∗), one gets a contradiction because the only
pieces that could occur in such a partition are [a−1bi], [a−1b−i], [bia], [b−ia], 1 ≤ i ≤ |m|,
but |n| > |2m|. For m = l, one has r = ab2ma−1bmabma−1bn. Again, in a partition of r,
r−1 or a conjugate of one of those into five pieces, the bn or b−n part would be divided
up between its neighbor a and its neighbor a−1, which would result in two blocks of
the form (∗). But again, the only pieces that could be used to form such a partition are
[a−1bi], [a−1b−i], [bia], [b−ia], 1 ≤ i ≤ |m|. Again, the process fails because |n| > |2m|.

Lemma 53. Let G be a group as in case k
m = −2, nl < −2 of Lemma 42, and let

|n| > |2m| > |m| = |l|. Then the group is C(6).

Proof. If m = l, n > 0,m, l < 0, then dividing up a−1bna between pieces would give
0 < m0 ≤ −m with n−m0 ≤ −m, hence n ≤ −2m, contradiction. In the inverse or one
of its conjugates, −n < 0,−m,−l > 0 occur. Get m0 < 0 with −n−m0 ≥ m,m0 ≥ m,
and hence a contradiction. The case m = l, n < 0,m, l > 0 is obtained from the latter
case via the map given by b 7→ b−1.

Now consider m = −l, n,m > 0, l < 0 and obtain 0 < m0 ≤ m with n − m0 ≤ m and
thus n ≤ 2m, contradiction. For the inverse, consider −m = −(−l),−n,−m < 0,−l > 0,
and get 0 > m0 ≥ −m with −n−m0 ≥ −m, hence −n ≥ −2m. The case m = −l, n,m <
0, l > 0 is obtained from m = −l, n,m > 0, l < 0 via the automorphism of the free group
given by a 7→ a, b 7→ b−1.

Lemma 54. Consider subcase k
m = −2 in Lemma 42 with n

l > 2 and |n| > |2m| >
|m| = |l|. Then the group is C(6).

Proof. First, consider the subcase m = l. In this case l,m, n have the same sign. There
exists no partition of an element of {r}∗ into 4 pieces (or fewer pieces). A partition into
5 pieces would consist of four blocks that contain one a or a−1 each, and one block that
consists of a power of b. The term bn and the term b−n are not pieces. Hence in a parti-
tion into 5 pieces, either of these is divided up between its neighbor a and its neighbor
a−1.
If l,m, n > 0, then this process of dividing bn up between pieces would look like
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3 Hyperbolicity or non-hyperbolicity of certain one-relator groups

[a−1bn−m0 ][bm0a] with m0 > 0, n − m0 ≤ m,m0 ≤ m, which yields n ≤ m0 + m ≤
2m, contradiction to the assumption. For the inverse or its conjugates, we have that
−l,−m,−n < 0, which would yield an n0 with n0 < 0,−n− n0 ≥ −m,n0 ≥ −m, which
gives −n ≥ −2m, and hence |n| ≤ |2m|, contradiction.
The case m = l, l,m, n < 0 is the same as the latter case up to application of the
automorphism of the free group given by a 7→ a, b 7→ b−1.

Hence any partition into pieces has at least 6 blocks.

Now consider m = −l. Take l, n > 0,m < 0 first. Then if we divide bn up as above, we
get m0 > 0 with m0 ≤ −m,n − m0 ≤ −m, which gives n ≤ −2m, contradiction. For
the inverse and its conjugates, consider −l,−n < 0,−m > 0. Dividing a−1b−na into two
pieces gives n0 < 0 with n0 ≥ −m and −n − n0 ≥ −m, which gives −n ≥ −2m, which
implies n ≤ 2m, contradiction.
From the case l, n < 0,m > 0 , one can pass to l, n > 0,m < 0 via a 7→ a, b 7→ b−1.

We pass to words of a different form:

Application of Buskin’s snake method to groups of type (1/1/− 1/− 1)

Consider r = abkabla−1bma−1bn, with l, n ̸= 0, k ̸= −m, and |k+m| ̸= |n|, |k+m| ̸= |l|.
Then the contracted map of any reduced diagram is a (4, 4)-map. By the form of r, a
vertex of degree two in a result of contraction requires k = −m. A degree 3 vertex in the
result of contraction can only result from an interior a-star with one of the vi labelled bk,
another one labelled bm and the third one either b±n or b±l, or from an interior a−star
with one vi labelled b−k, another one labelled b−m and the third one labelled either b±n

or b±l.

Now, describe all possible degree 4 interior vertices in results of contraction:

Lemma 55. Take r = abkabla−1bma−1bn, with k,m, l, n ̸= 0 and |k +m| /∈ {0, |n|, |l|}.
Up to exchange of (k, l) and (m,n) and the automorphism defined by a 7→ a, b 7→ b−1,
there are the following degree 4 situations (degree 4 interior vertices in contracted maps):

1. k +m+ 2l = 0

2. k +m− 2l = 0

3. k + l +m+ n = 0

4. k +m− l − n = 0

5. k +m+ l − n = 0

6. m+ l + n−m = 0 and k + l + n− k = 0, which are equivalent

7. m+ l − n−m = 0 and k + l − n− k = 0, which are equivalent
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Lemma 56. Let G =
〈
a, b | r

〉
with r = abkabla−1bma−1bn for l, n ̸= 0. Up to automor-

phism of G induced by Aut(F (a, b)) and inversion of r, one can interchange the roles
of k and m and/or those of l and n. In particular, without loss of generality, one may
assume |n| ≥ |l| > 0, k ≥ 0 and m ∈ {k, k − 1},

Note that in items 1., 2. in Lemma 55, |k + m| = |2l|. Hence one obtains, up to
Aut(F (a, b)), that r = a2bla−1b−2la−1bl, r = a2bla−1b2la−1bl, respectively. So by this
remark and Lemma 56, in item 1, one can assume without loss of generality that
k = m = −l, while in item 2, one can assume without loss of generality that k = m = l.

Lemma 57. Take r = abkabla−1bma−1bn, with l, n ̸= 0, k ̸= −m and |k +m| ̸= |l|, |k +
m| ̸= |n|. Assuming without loss of generality that |n| ≥ |l| > 0, k ≥ 0 and m ∈ {k, k−1},
one obtains the following valence 4 situations (valence 4 interior vertices in contracted
maps):
k = m

1. 2m+ 2l = 0

2. 2m− 2l = 0

3. 2m+ l + n = 0

4. 2m− l − n = 0

5. 2m+ l − n = 0

6. m+ l + n−m = 0

7. m+ l − n−m = 0

k = m+ 1

3. 2m+ 1 + l + n = 0

4. 2m+ 1− l − n = 0

5. 2m+ 1 + l − n = 0

6. m+ l + n−m = 0 and k + l + n− k = 0, which are equivalent

7. m+ l − n−m = 0 and k + l − n− k = 0, which are equivalent

The proofs of Propositions 3 and 4 consist of the proofs of several lemmas. We will see
that

Lemma 58. Let G be as in Lemma 57. If one makes one of the additional assumptions

• k = m = −l = −n

• k +m = l + n ̸= 0 and one of (k,m) = (n, l), (k,m) = (l, n)
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3 Hyperbolicity or non-hyperbolicity of certain one-relator groups

• k +m = l + n ̸= 0 and |k +m| ̸= {|l|, |n|}

then the group is non-hyperbolic.
If one has k = m = l and n = 3l or k = m = −l and n = 3l, then the group is hyperbolic.
The other subcases of Lemma 57 are not decided here.
In particular, the subcase l = −n of Lemmas 57 and 55 is not decided here. Also, note
that each of items 1., 2., 5. in Lemma 57/ Lemma 55 has a hyperbolic subcase by the
above, while each of 1., 2., 3., 7. is proved to have at least one non-hyperbolic subcase.
Moreover, if G is as in Lemma 56 with k = m = 0, then the group is non-hyperbolic.

Example 59. Consider abkabla−1bma−1bn, with k, l,m, n ̸= 0 and |k+m| /∈ {0, |n|, |l|}.
Then the contracted map obtained from any reduced diagram is a (4, 4)-map. Take the
starting situation k + 2l+m = 0. Analysis of the 4 tiles in this starting situation yields
that this starting map allows 3 possible systems of equations with consequences:

1. a) k + 2l +m = 0, b) k + l +m+ n = 0, c) −m+ n+m− l = 0, d) 2n+m+ k =
0, e)n− k − l + k = 0,

2. a), f) −m+ n+m+ l = 0, g) − 2n+ k +m = 0, h)n− k + l + k = 0,

3. a), i) k + n+m− l = 0.

Assuming without loss of generality that k +m = 2m, k ̸= 0, we get

1. k = m = −l, l = n (In this case, the group is non-hyperbolic by the subcase of
Lemma 30 that is seen in Lemma 31.),

2. k = m = n, l = −n and

3. k = m = −l, n = 3l = −3k (hyperbolic, see below)

System 1. allows an unbounded radius regular reduced (4, 4)-map. Moreover, we have
already seen that these groups are non-hyperbolic. System 2. allows an unbounded ra-
dius regular reduced (4, 4)-map as well. For System 3., the snake method terminates
for both starting situations. Hence, the group is hyperbolic by Theorem 13. The proof
of hyperbolicity for System 3. using the snake method can be found below. (Proof of
Lemma 61). An infinite radius regular reduced (4, 4)-map for each of Systems 1. and 2.
will be seen in the proof of Lemma 61.

Example 60. The case k − 2l +m = 0: This case has 3 subcases:

1. −2l+k+m = 0, l+k+n−k = 0, l+m+n−m = 0, k−l+m+n = 0, k+2n+m = 0

2. k−2l+m = 0, k− l−n+m = 0, k+ l−n−k = 0,m+ l−n−m = 0, k−2n+m = 0

3. k − 2l +m = 0,−k + n− l −m = 0.

Assuming without loss of generality that k = l = m ̸= 0 yields
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1. k = l = m, l = −n. This is the same as k = m = n, l = −n (which occurs in
Example 59) up to automorphism of the one-relator group.

2. k = l = m = n (This implies that k+m− l− n = 0, hence, in this case, the group
is non-hyperbolic by the subcase of Lemma 30 covered in Lemma 33.)

3. k = l = m,n = 3l (hyperbolic, see below).

For each of Systems 1. and 2., once can build an infinite radius regular reduced (4, 4)-
map, see proof of Lemma 61. Note that System 2. always yields a non-hyperbolic group,
as seen above. System 3. gives a hyperbolic group by Theorem 13 as Buskin’s snake
method terminates for both starting situations. See proof of Lemma 61.

Lemma 61. Items 3.,4.,6.,7. in Lemma 55 always yield groups that allow an infinite
radius regular reduced (4, 4)-map. Item 1. yields two systems that allow infinite radius
regular reduced (4, 4)-maps and one that gives hyperbolic groups, see Example 59. Item 2.
yields 2 systems that allow an infinite radius regular reduced (4, 4)-map and one system
that gives hyperbolic groups, see Example 60. Item 5. gives one system that yields an
infinite radius regular reduced (4, 4)-map and a hyperbolic one that corresponds to system
3. of Example 60.

Proof. First, we prove that a group as in item 6. or item 7. of Lemma 55 yields a
situation for which Buskin’s snake method does not terminate: Case l + n = 0: Show
this using Buskin’s snake method on the starting situation −m + n + m + l = 0. This
situation allows an infinite radius regular reduced (4, 4)-map that uses only the situations
−m+ n−m+ l = 0,−k + l − k + n = 0, up to multiplication of the equation with −1.
Analogously, for l−n = 0, the starting situation −l+k+n−k = 0 allows an infinite radius
regular reduced (4, 4)-map using only the equations −l+k+n−k = 0, l−m−n+m = 0,
up to multiplication by −1.
For item 3., one can build a regular reduced (4, 4)-map of infinite radius using only the
situation k + l +m+ n = 0.
For item 4., one can build such a map using situation k+m−l−n = 0, up to multiplication
of the equation with −1.
Analysis of the starting situation described by item 5 gives one case that allows an
infinite radius regular reduced (4, 4)-map:

k +m+ l− n = 0, k + l+ n− k = 0,m+ l+ n−m = 0, k + 2l+m = 0, k − 2n+m = 0
Moreover, we have a hyperbolic case, k+m+ l−n = 0, k− 2l+m = 0, compare system
3. in Example 60.
Item 1. is Example 59.
Item 2. is Example 60.
We now give the maps that prove the claims. We first give all valence 4 starting situations
from Lemma 55 (up to rotation/reflection), then give an infinite radius regular reduced
(4, 4)-map for those examples that allow such a map, and we prove hyperbolicity using
Buskin’s snake rule for the systems that give hyperbolic groups.
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3 Hyperbolicity or non-hyperbolicity of certain one-relator groups

Starting situation k +m+ 2l = 0: ✲

✻✻
✲

✛

✻
✛

✻ ✻

✲

✻

✛

n
m

k m
ll

n
k

nmkn

m l l k
⟲ ⟲

⟲ ⟲

Starting situation k +m− 2l = 0: ✲
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Now, consider 6./m (l + n = 0) and 7./m (l − n = 0): ✛
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The picture for 3. is: ✲
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For starting situation 3., build infinite radius regular reduced (4, 4)-map ✲
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continuing like this.

The picture for 4. is: ✲
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To obtain an infinite radius regular reduced (4, 4)-map for 4., ✲
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continue like this.
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3 Hyperbolicity or non-hyperbolicity of certain one-relator groups

The picture for 5. is: ✲
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Moreover, there is 6./k + l + n− k = 0: ✲
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Analogously, draw 7./k + l − n− k = 0: ✲
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Get infinite radius regular reduced (4, 4)-map for 7./k+l−n−k = 0 ✲
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continuing like this.
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For an infinite radius regular reduced (4, 4)-map for 6.m, ✛
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continue like this.

For the case k + 2l +m = 0, k + n +m − l = 0/ k + n − l +m = 0, the snake method
terminates:
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k + 2l + m = 0, k + n + m − l = 0/ 2l + k + m = 0 ✲
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The
snake method terminates after that.

Now apply the snake method to the system consisting of item 2. and item 5., k+m−2l =
0, k +m+ l − n = 0:
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3 Hyperbolicity or non-hyperbolicity of certain one-relator groups
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Lemma 62. If r = abkabla−1bma−1bn, with k, l, n ̸= 0,m = 0 and |k| = |k + m| ̸=
|n|, |k| = |k+m| ̸= |l|, then all valence 4 situations from Lemma 55 are possible. Passing
to Lemma 57, one has k = m+ 1 = 1.

Items k+2l+m = 0, k+ l−n− k = m+ l−n− l = 0 and k+ l+m+n = 0 in Lemma
55 share the non-hypberbolic subcase k = m, l = n = −k, Lemma 31.

Item k+m− l− n = 0 in Lemma 55 or 62 gives a non-hyperbolic group (Lemma 33), a
subcase of this is the k +m− l − n = 0, k +m− 2l = 0, l = n subcase of Lemma 55 or
62.
By the latter remark and the above remark on Lemma 31 (k = m, l = n = −k), we have
seen that items 1., 2., 3., 4., 7. in Lemma 55 have non-hyperbolic subcases, and so have
items 2., 4., 7. if one passes to Lemma 62.

Proof. (of Proposition 3) Combining Lemmas 61 and 62 and the above remarks proves
Proposition 3.

Proof. (of Proposition 4) Proposition 4 is Lemma 30.

Now, we describe a situation in which a contracted map can have valence 3 interior
vertices. This is a C(5)+T (3) case, hence a case to which Theorems 13, 14 do not apply.
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Lemma 63. Let r = abkabla−1bma−1bn, with k, l,m, n ̸= 0, k ̸= −m. First, let |k+m| =
|l|. If bn is a piece, then the group is C(5), but not C(6). Analogously /by symmetry,
consider r as in the first sentence with |k + m| = |n| and bl a piece, then the group is
C(5), but not C(6).

Proof. We prove the first sub-statement, that is, we take an r as in the first sentence
of the statement such that |k + m| = |l| and bn is a piece. As k ̸= −m, there is no
decomposition into 4 or fewer pieces. If l = k+m, then [abk][abk][bma−1][bma−1][bn] is a
decomposition into 5 pieces. If l = −k −m, then [abk][ab−m][b−ka−1][bma−1][bn] proves
that the group is not C(6).

We proved Propositions 1- 2 (on groups of type (1/−1/1/−1)) and Proposition 3 (on type
(1/1/−1/−1)). Proving Propositions 1 and 3 was the main aim of this thesis. Moreover,
for some words of type (1/−1/1/−1), we proved C(6)+T (3) or C(p)+T (q), 1p +

1
q > 1

2
without discussing hyperbolicity or non-hyperbolicity. For words of type (1/1/−1/−1),
we gave one family of groups (up to symmetry) that have C(5)+T (3), without discussing
hyperbolicity or non-hyperbolicity. Moreover, we proved Proposition 4.
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