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Abstract
Industry and logistics currently experience a significant shift towards novel
technologies such as cooperative robots (cobots). These cobots can share
a workspace with a human worker without needing a safe zone and cooperate
with humans in different activities. Additionally, these cobots have short setup
times which lead to more flexible production than ever before.
Existing scheduling problems do not consider these flexible resources. There-
fore, the first aim of this thesis is to extend existing scheduling problems with a
cobot to workstation assignment which can be done before a planning period
starts.
The second aim of this work is to create an algorithm that can solve the newly
introduced problems. Therefore, after introducing this extended cobot assign-
ment and scheduling problems, existing metaheuristics, like a genetic algo-
rithm, can be used to generate solutions. To rate the quality of the results
generated by the metaheuristic, the problems are solved with a constraint pro-
gramming formulation, and the results are compared.
The rapid development described before affects not only the production envi-
ronments in the industry but also algorithms used in different practical applica-
tions and research areas. Over the last few years process mining has found
a large number of applications. Process mining describes a large set of algo-
rithms which create a process model from a process event log.
This work’s final aim is to combine metaheuristics and process mining algo-
rithms. It is shown that a memetic algorithms performance can be boosted
through a novel combination with a process mining algorithm.
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Zusammenfassung
Industrie und Logistik erleben derzeit einen deutlichen Wandel hin zu neuar-
tigen Technologien wie kooperativen Robotern. Diese kooperativen Roboter
können sich einen Arbeitsbereich mit einem menschlichen Arbeiter teilen und
mit diesem in verschiedenen Aktivitäten zusammenarbeiten, ohne dass ein
Sicherheitsabstand benötigt wird. Durch kurze Setupzeiten führt dies zu einer
flexibleren Produktion als je zuvor.
Bestehende Scheduling-Probleme berücksichtigen diese flexiblen Ressourcen
nicht. Daher ist das erste Ziel dieser Arbeit, bestehende Scheduling-Probleme
so zu erweitern, dass vor einem neuen Planugszeitraum kooperative Roboter
auf die Arbeitsstationen zugewiesen werden.
Das zweite Ziel dieser Arbeit ist es, einen Algorithmus zu erstellen, der die neu
erstellten Probleme lösen kann. Um die neu erstellten Scheduling-Probleme
mit Zuweisung von kooperativen Robotern zu Arbeitsstation zu lösen, können
bestehende Metaheuristiken wie ein genetischer Algorithmus eingesetzt wer-
den. Um die Qualität der Ergebnisse des genetischen Algorithmus zu bew-
erten, wird eine Constraint-Programmierung Formulierung durchgeführt und
die Ergebnisse werden verglichen.
Die zuvor beschriebene rasante Entwicklung betrifft nicht nur die Produktion-
sumgebungen in der Industrie, sondern auch Algorithmen, die in verschiede-
nen praktischen Anwendungen und Forschungsgebieten verwendet werden.
In den letzten Jahren wurde eine große Anzahl an Anwendungen für Process-
Mining gefunden. Process-Mining beschreibt eine große Menge an Algorith-
men, welche ein Prozessmodell aus einem Prozessprotokoll erstellen.
Das finale Ziel der Arbeit ist es, Metaheuristiken mit Process-Mining-Algorithmen
zu kombinieren. Es wird hier gezeigt, dass die Leistung eines memetischen Al-
gorithmus durch eine neuartige Kombination mit Process-Mining-Algorithmen
gesteigert werden kann.
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1 Motivation

1.1 Introduction

In [1], it is described that the traditional industry is experiencing a large shift
towards Industry 4.0. Novel technologies are available due to developments in
information and communication areas. Connecting many devices and process-
ing a large amount of real-time data is now possible.
In [2], it is stated that technology that arises from this foundation is allowing
the industry to grow exponentially. Therefore, these technologies are called
disruptive technologies, as they disrupt constant linear growth. These tech-
nologies include the Internet of Things, big data, 3D printing, cloud computing,
and robots.
In [3], it is explained that the disruptive technologies are the main drivers for In-
dustry 4.0: (1) the astonishing rise in data volumes, computational power, and
connectivity; (2) the emergence of analytics and business-intelligence capa-
bilities; (3) new human–machine interaction; and (4) the transferring of digital
instructions to the physical world.

1.2 Collaborative robots (cobots)

This work focuses on the possibilities and challenges that come with new
human-machine interactions in the form of cobots.
Robots, especially cobots, have improved significantly over the last decades.
These cobots can share a workspace with a human workforce without needing
a safety zone. While sharing the workspace with the human, these cobots can
be viewed as colleagues who can do tasks independently or in collaboration
with the worker. Additionally, these cobots are designed in a way that they can
be easily reprogrammed, even by workers without a programming background.
[4]
A significant number of research papers regarding cobots focus on the safety
and ergonomics of workers when interacting with cobots. Examples are [5],
[6], and [7]. Ensuring and improving the ergonomics and safety of workers is
important. However, it might not be the only reason companies buy cobots for
production environments.
Improving the productivity of a given production environment might be another
major reason for companies to invest in cobots. To quantify the impact of a
set number of cobots on existing scheduling problems, these problems must
be extended with a cobot-to-workstation assignment. Only a minor amount of
research has been done on extended cobot assignment and scheduling prob-
lems.
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1.3 Extended cobot assignment and scheduling problems

An example of an extended cobot assignment and scheduling problem is [8],
where an assembly line balancing problem is extended with a cobot to work-
station assignment. When a cobot is assigned to a workstation, the scheduling
algorithm can decide if the workload should be done by the human, by the
cobot, or in collaboration. A large computational study demonstrates in this
paper quantifies the impact of different numbers of cobots.
Another example of a scheduling problem that has been extended with cobots
is shown in [9]. In this paper, cobots are added to a flow shop scheduling prob-
lem. This problem aims to keep a continuous flow of jobs over a given set of
machines. A cobot is then used to assist at least one production machine.
A problem that has not yet been extended with a cobot to workstation assign-
ment is the job shop scheduling problem (JSSP). This work extends a JSSP
with a cobot assignment problem.
A simple JSSP problem formulation states jobs, tasks, and machines. Each job
consists of a set of tasks that have to be processed on one specific machine.
A task can start once the preceding task has finished and the specified ma-
chine is free. To complete the task, the workstation is allocated for the whole
processing time specified by the task. In this problem, the time required to
complete all jobs should be minimized. This time is called makespan. While
the problem formulation is pretty simple, this is one of the most challenging np-
hard problems, and a 10 x 10 (jobs x machines) instance has been unsolved
for 20 years. [10]
Figure 1 shows an example solution for a 3 x 3 problem. Each of the jobs

Figure 1: Solution for a job shop scheduling problem

consists of three tasks. Machine two has a break from time units 14 to 15, as
task one of job two has not yet finished. It can be seen that the objective value,
the makespan (time to complete all jobs) of this solution, is 30.
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In [8], it is assumed that a cobot speeds up a workstation by 30%. It might be
clear where to place a cobot in a simple problem like the one solved in Figure
1. However, once the objective function and the problem formulation get more
complex, the decision of where to place cobots is not clear anymore. It ex-
tends the base problem with another decision variable that makes the already
hard-to-solve base problem even harder to solve.

1.3.1 Metaheuristics

The complexity of real-world problems is increasing, so it is often impossible to
solve them with traditional mathematical methods. Obtaining optimal or nearly-
optimal solutions is a challenging task. Metaheuristic algorithms are a set of
algorithms that are inspired by nature. These algorithms have been applied
successfully to problems of many different domains and have drawn the atten-
tion of many researchers. [11]
Well-known examples of these metaheuristics are genetic algorithms [12], evo-
lution strategies [13], and simulated annealing [14].
Genetic algorithms are based on natural selection and reproduction. The al-
gorithm starts with an initial population of individuals (chromosomes). The first
step is that fitness is assigned to all individuals. Based on a selection method (a
high fitness often improves the chance of being selected), parents for the next
generation are selected. A crossover method creates children out of these par-
ents, and a fraction of these children is changed by a mutation method. These
children replace the current generation. The idea is that good parent solutions
can produce an even better child solution. This means that the average fitness
improves over multiple generations, and the algorithm stops once a stopping
criterium is reached. [15]
The population aspect of the algorithm allows the exploration of different areas
of the search space. [16]
A memetic algorithm (MA) can use this exploration ability of the genetic algo-
rithm and combine it with the exploitation ability of a local search method. In
the exploitation, a local search is performed on promising solutions to check if
these solutions can be further improved. MAs have been successfully applied
to many complex real-world problems and are one example of state-of-the-art
metaheuristics. [17]

1.3.2 Process mining

Another research area that gained importance over the last years and has prof-
ited a lot from the developments in Industry 4.0 is process mining. Process
mining will play an important role in managing business processes and boost-
ing their performance. [18]
Process mining techniques are a set of techniques that allow us to extract
knowledge from event log files. These event log files are common in Indus-
try 4.0 processes. The goal of process mining is that real processes should
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be discovered, monitored, and improved. Process mining, therefore, combines
data mining, business process modelling, and analysis. [19]
Process mining is typically divided into three major categories. The first cat-
egory is process discovery, where a process model is mined from an event
log file. The second category is conformance checking, checking if a log com-
plies with a given process model. In the third category, existing real-world
processes should be improved based on given event log files. As process
mining techniques focus on the process view, they are way better suited for
bottleneck analysis or compliance checking when compared to traditional data
mining methods. [20]
Process mining aims to improve operational processes through the systematic
use of event data. The key to process mining is the combination of event data
and process models. Through this combination, process mining techniques
can analyze already happened event logs to find the source of a bottleneck
in production or predict the remaining time a process needs to finish. These
can be found in all organizations and industries, including production, logistics,
finance, sales, procurement, education, consulting, healthcare, maintenance,
and government. [21] In [22], an example application of process mining is the
internal transaction fraud mitigation described. In this application, a process is
discovered out of the internal transaction logs of a company. This mined pro-
cess model can be compared with a given process model to analyze flaws and
non-compliant transactions.
In [23], another application of process mining, the analysis of production plan-
ning in a global manufacturing company, is demonstrated. Therefore, event
logs are extracted from an ERP database, and a process model is discovered
and analyzed. The study shows how changes in the production plan can lead
to a mismatch between available materials and production needs. With this
insight, the production company can better decide between flexibility and effi-
ciency.
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1.4 Research aims

Currently, a large number of companies invest in industrial robots. Over the
last years, the annual growth was around 11%. This will drastically transform
traditional production.[24]
Many of these robots are cobots which are way more flexible than traditional
resources. These cobots can be reallocated to bottleneck workstations in pro-
duction if this bottleneck is known before the next planning period starts. How-
ever, most existing scheduling problems do not consider flexible resources, as
traditional resources like workstations and new workers need long setup times
and training times, respectively. With this background knowledge, we can look
at this work’s aim.

In Figure 2, an overview of the research aims of this thesis is given. The

Figure 2: Aim of the thesis

thesis first focuses on extending existing scheduling problems with a cobot-to-
workstation assignment. In the second step, state-of-the-art algorithms are ad-
justed to solve the extended cobot assignment and scheduling problem. Solv-
ing different data sets (real-world and literature) gives insight into how much
improvement can be expected from a certain amount of cobots in production.
Process mining methods are applied to the best solutions in the third step.
These methods generate knowledge, like bottleneck workstations and critical
workstations. The final aim of this work is to demonstrate the combination of
process mining and metaheuristics and show its potential for complex optimiza-
tion problems. Knowledge extracted with process mining methods is used to
improve the results of a state-of-the-art metaheuristic on different data sets of
the combined cobot assignment and scheduling problem.
This thesis focuses on the combination of process mining and metaheuristics
for combined cobot assignment and scheduling problems. Process mining and
metaheuristics have been applied in a large number of applications. Therefore,
this combined method should be transferable to other problems. This general-
izability is demonstrated at the end of the work.

1.5 Research questions

It is unclear how flexible resources such as cobots can be utilized in scheduling
problems. Therefore, existing problem encodings need to be adjusted in a
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way that allows the utilization of flexible resources. There are nearly unlimited
possibilities for how this encoding/decoding can work. This leads to the first
major research question (RQ) with sub-questions:

A) What is the best way to plan resources such as cooperative robots
in deterministic manufacturing processes?

A1) How can cobots be assigned to workstations to maximize the objec-
tive function?

A2) How much improvement can be reached with a certain amount of
cobots?

A3) What is the best number of cobots for a specific system?

Cobots are flexible and can assist nearly every workstation in production. If
a company buys new cobots, the first cobot can be placed on the workstation
where the objective function is most improved. This means a second cobot
already has diminishing returns and adds less value to an existing production
environment than the first cobot. Therefore, the goal is to determine the best
amount of cobots for a given production system and how much improvement
can be reached with a given set of cobots.
When an algorithm optimizes a cobot assignment and scheduling problem, an
event log file of specific solutions can be created. This event log file is the basis
for many different process mining algorithms. This leads to the second major
research question:

B) Can process mining methods generate additional insights into man-
ufacturing processes?

B1) Can the cobot location be predicted based on process mining results
(e.g. bottleneck workstations)?

B2) How to visualize metaheuristic solutions with process mining algo-
rithms?

Visualizing metaheuristic results might help to understand the results and learn
from them. The question is now if and how good process mining can be used to
visualize the solutions generated by a metaheuristic. Additionally, the question
arises if the results generated by these process mining algorithms can be used
to predict bottlenecks and allow intelligent placement of cobots.
The final research question is:

C) Can process mining algorithms improve the performance of meta-
heuristics?

C1) Can the knowledge extraction be automated during the run of the
metaheuristic?

C2) What is the best way to incorporate knowledge in the metaheuristic?
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Since process mining methods are good at finding bottlenecks and critical
workstations, mined information might benefit metaheuristics. The question
is now, can this information improve metaheuristics, and what is the best way
to do so? If it is beneficial for the solution quality, it might be a good idea to
run the process mining on different solutions over the run of the metaheuristic.
Does this overhead pay off?

1.6 List of contributions

Figure 3: Contributions of the thesis

Figure 3 gives an overview of the main contribution done in this thesis.
The first main contribution, Contribution A, seen at the left top of Figure 3,
is how an algorithm can load and optimize an optimization problem extended
with a cobot to workstation assignment. At the left bottom of Figure 3, the
second main contribution of this work, Contribution B, can be seen. This
contribution shows how process mining algorithms can generate knowledge
about solutions generated by a genetic algorithm. It is also explored how these
process mining methods can visualize generated knowledge. The third main
contribution is visualised on the right side of Figure 3, Contribution C. It shows
process mining algorithms and knowledge generated with these algorithms can
interact with a memetic algorithm to boost its performance.
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1.6.1 Contribution A

It is not clear how existing scheduling problems can be extended with a cobot
to workstation assignment. In this part of the work, the extended cobot as-
signment and job shop scheduling problem is introduced. Two encodings are
developed, which allow the optimization of this problem with metaheuristics like
a genetic algorithm. Additionally, a constraint programming formulation is done
for the problem. Through a numerical study, the performance of the genetic
algorithm and the impact of a certain number of cobots on a given production
environment is analyzed. This is in detail described in Chapter 3 and Chapter
4. Both chapters try to answer the research questions RQ A, A1, A2, A3 and
the contribution is the following:

1. This thesis introduces the combined cobot assignment and job shop schedul-
ing problem and solves the combined cobot assignment and assembly
line balancing problem from the literature. (sections 3.2 and 4.2)

2. Two encodings are developed, a biased random key and an integer en-
coding that can be used to optimize the problem. These can be used to
encode and decode one solution of a combined cobot assignment and
scheduling problem.(sections 3.4.2 and 4.4.2)

3. Developed a genetic algorithm to solve the combined cobot assignment
and job shop scheduling problem (section 3.4). Developed a hybrid ge-
netic algorithm to solve both problems (section 4.4).

4. In this thesis, a constraint programming formulation is created for the
combined cobot assignment and job shop scheduling problem. (section
4.3)

5. In this thesis, a numerical study has been done on a real-world data set.
It is shown that the hybrid genetic algorithm outperforms the constraint
programming on the complex real-world problem. Additionally, the impact
of a specified number of cobots on the production environment is shown.
(section 4.5.3)

6. A numerical study is done on the literature data set. It is shown that
the hybrid genetic algorithm can compete with state-of-the-art algorithms
from the literature. (section 4.5.4)

1.6.2 Contribution B

When a metaheuristic, like a genetic algorithm, generates a solution for a
scheduling problem, it is unclear what it looks like. Process mining algorithms
are built to visualize and analyze existing business processes. Therefore, an
event log file of the process is generated, and a process mining algorithm is
applied to this event log file. Since this has not been done before, a connection
between metaheuristics and process mining algorithms is developed. A tool
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has been built to analyze metaheuristic solutions and find bottlenecks where a
cobot can be deployed. This is described in detail in Chapter 5. The focus of
this chapter is to answer research question RQ B, B1, B2 and the contribution
is the following:

1. Section 5.2 combines metaheuristics with process mining. Metaheuristic
solutions are stored as event log files. Process mining algorithms are
applied to these event log files in the next step to generate a process
visualization. These visualizations are manually analyzed.

2. A set of scenarios is created to analyze the impact of various problem-
specific parameters on the cobot placement. It is shown how variable
sizes and different colour patterns can be used for the solution analysis.
Additionally, the problem-specific parameters are analyzed by the influ-
ence on the cobot placement. (Section 5.3)

1.6.3 Contribution C

In the final contribution of this work, a metaheuristic, specifically a memetic
algorithm, is combined with process mining algorithms. During the run of the
memetic algorithm, a subset of solutions is stored as an event log file and
passed to the process mining algorithm. This algorithm reveals knowledge
implicitly given in the solutions and passes this knowledge back to the memetic
algorithm to boost its performance. A numerical study on different problems
and datasets analyzes the algorithm’s strengths and weaknesses. The problem
files and algorithms code is published to allow the reproducibility of the results.
Details regarding this algorithm can be found in Chapter 6. The focus of this
chapter is to answer research question RQ C, C1, C2, C3 and the contribution
is the following:

1. A memetic algorithm is combined with a process mining algorithm. The
memetic algorithm generates solutions, and the process mining algo-
rithm learns from them and passes the extracted knowledge back to the
memetic algorithm. (Section 6.2)

2. All problem files and the code to solve these problems has been pub-
lished. This can be found in Section 6.3.1.

3. In a numerical study, problem instances from three data sets are solved
with the combined algorithm and a constraint programming formulation.
This shows how much the solution quality can be increased through a
novel combination of metaheuristics and process mining. (Section 6.3)

1.7 Thesis structure

An overview regarding the state of research and related work of this thesis is
given in Chapter 2. Section 2.1 focuses on scheduling problems and why they
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are still relevant for modern industry. Section 2.2 discusses state-of-the-art al-
gorithms used to solve a large set of problems. Section 2.3 shows related work
in the process mining area. Section 2.4 highlights where and how metaheuris-
tics are already combined with process mining algorithms.
Chapters 3 to 6 present the main part of this thesis. Each chapter stands for
one paper and is prefaced with an evaluation of each author’s contributions and
further information regarding the publication. A preview of this publications is:

Alexander Kinast, Karl F. Doerner, Stefanie Rinderle-Ma. ”Biased random-
key genetic algorithm for cobot assignment in an assembly/disassembly
job shop scheduling problem.” Procedia Computer Science 180 (2021)
328–337

Alexander Kinast, Roland Braune, Karl F. Doerner, Stefanie Rinderle-
Ma, Christian Weckenborg. ”A hybrid metaheuristic solution approach
for the cobot assignment and job shop scheduling problem.” Journal of
Industrial Information Integration 28 (2022) 100350

Alexander Kinast, Karl F. Doerner, Stefanie Rinderle-Ma. ”Combin-
ing metaheuristics and process mining: Improving cobot placement in a
combined cobot assignment and job shop scheduling problem” Procedia
Computer Science 200 (2022) 1836–1845

Alexander Kinast, Roland Braune, Karl F. Doerner, Stefanie Rinderle-
Ma. ”Optimizing the Solution Quality of Metaheuristics through Process
Mining based on Selected Problems from Operations Research.” BPM
Forum (2023).

In Chapter 7, an overview of the results generated in the individual papers of
this work is given. After discussing these results, this thesis concludes with an
outlook and future possibilities.
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2 Methodology and state of research

This chapter gives an overview of the current state of research regarding the
background of all research questions. Since this work aims to combine pro-
cess mining and metaheuristics, it is an interdisciplinary field of research. The
methodological contribution of this thesis is, on the one hand, the newly devel-
oped encodings and, on the other hand, the improved algorithms. These are
validated through large computational studies.
To explain the current state of research, an overview of state-of-the-art schedul-
ing problems, metaheuristics, and process mining algorithms is given. This
chapter concludes with a section that focuses on existing interactions between
process mining algorithms and metaheuristics and a section regarding the visu-
alization possibilities of process mining algorithms. While the previous chapter
gave an overview of the aims and research questions of the work, this chapter
focuses on the state-of-the-art and how this work extends the state-of-the-art
in particular areas.

2.1 Scheduling problems

A simple optimization problem could be a two-dimensional field (10m x 10m)
with a food source. One can imagine that birds will circle towards this food
source in a cornfield. However, these simple ideas often do not work for
higher dimensional spaces. Adding a third dimension with 10m will increase
the search space from 100 square meters to 1000 cubic meters. Due to the
”curse of dimensionality”, the search space of a function grows exponentially
regarding the dimension of the problem. [25]
Due to rapid technological advancement, more data than ever is available. This
comes with new large-scale problems. Examples are logistic problems for the
first kilometer-tall building or neural networks with a billion variables.[26]
To stay competitive, efficient production scheduling is essential for many com-
panies. However, most scheduling problems are np hard, making them impos-
sible to solve exactly. [27]
In production scheduling, tasks must be assigned to production resources so
that all constraints are met and the objective function is optimized. A well-
known problem in this field with a large number of real-world applications is the
job shop scheduling problem (JSSP). Another problem in this field is the flexible
job shop scheduling problem (FJSSP), which is even harder to solve than the
JSSP due to its flexibility. [28]
Real-world problems are very diverse. Examples are the lighting industry [29],
automotive industry [30], aerospace industry [31], or the registration for a uni-
versity [32].
Industry 4.0 will shift production to online demands, real-time and reactive
methods. To overcome problems introduced with this shift, developments in
the scheduling area are critical to success. [33]
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2.2 Metaheuristics

In [34], metaheuristics are described as high-level problem-independent tech-
niques that can be applied to a broad range of problems. Additionally, the
number of publications in the research area of metaheuristics over the last 30
years is analyzed in this article. The research area is rapidly growing each
year, which has led to over 50% of the analyzed articles being published in the
last four years.
Due to the ”no free lunch theorem”, there can not be one algorithm that out-
performs other algorithms on all problems. Therefore, it is important to ana-
lyze how well a specific algorithm works for a specific optimization problem.
Additionally, problem knowledge must be exploited to improve algorithms’ per-
formance on a specific problem. [35] In [36], it is described that biological,
physical, or chemical processes inspire the most basic metaheuristics. In [37],
the following examples for metaheuristics are given:

• Ant colony optimization

• Evolutionary computing

• Iterated local search

• Genetic algorithms

• Simulated annealing

• Tabu search

An example of this biological inspiration is a genetic algorithm. This algorithm
tries to mimic biological evolution. [38]
An example of a physical inspiration is simulated annealing. This algorithm
emulates the physical process of cooling down a solid. [14]
An algorithm based on a chemical process is ant colony optimization. Real
ants search the neighbourhood of the nest for food. If they find food, they eval-
uate it and place chemical pheromones on the ground on the way back to the
nest. This guides other ants and allows the swarm to find the shortest path to
the food source. [39]
In scheduling problems, metaheuristics compete with fuzzy logic, expert sys-
tems, machine learning and constraint programming. [40] To improve the per-
formance of the classical metaheuristics, these basic algorithms are combined
with local search methods. A genetic algorithm, for example, excels at explor-
ing the search space. However, it is not the best algorithm to exploit a cer-
tain area of the search space. Local search methods are then used to exploit
promising regions in the search space. These combined algorithms are called
memetic algorithms (MAs) and can be considered state-of-the-art algorithms
for scheduling problems.
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2.3 Process mining

Process mining techniques are based on data mining, computational intelli-
gence, process modelling and analysis. The basis for these techniques is a
so-called event log file. This file contains various information regarding a pro-
cess, such as time stamps, used resources or organizational information. The
techniques applied to this event log file are grouped into process discovery,
conformance checking, and process enhancement.[19]
Process discovery techniques focus on knowledge extraction. Therefore, most
of these methods mine a process model (Petri net, workflow net, ...) from a
given event log. Conformance-checking methods start with a model and an
event log file. These methods try to detect deviations, locate and explain these
deviations, and measure the severity of these deviations. [41] All techniques
that improve a given process based on information recorded in an event log file
are called process enhancement. [42]
This thesis focuses on knowledge extraction through process discovery. Cur-
rent state-of-the-art process discovery techniques are the inductive miner [43],
the alpha miner (different variants) [44], the heuristic miner [45], the genetic
miner [46], or the mining for local process models [47].
Most of these algorithms focus on creating start-to-end models which describe
the whole process. In contrast, a rather new approach, the local process model
miner, focuses on capturing frequent patterns that describe key parts of the
process. [47]

2.4 Metaheuristics and process mining

Since a large number of process mining techniques have problems with noise
in the data, a more robust algorithm can be helpful for noisy data. As stated in
Section 2.2, metaheuristics, like a genetic algorithm, can be applied to a large
number of problems without large adaptations, and genetic algorithms are ro-
bust and can resist errors. In [46], a genetic algorithm is used to mine process
models for instances that could not be mined with traditional process mining
approaches. The challenge for this algorithm is that mined models must be
able to reproduce all behaviour captured in the log while not allowing too much
additional behaviour.
In [48], simulated annealing is used to create a workflow net out of an event
log file. In [49], a genetic algorithm is used to create a process tree out of an
event log file. In [50], a genetic algorithm is used to generate a Pareto front of
medical process models.
What can be seen is that quite some research has been done to apply meta-
heuristics to process mining problems. However, it has not been researched if
and how process mining algorithms can be used to improve the performance
of a genetic algorithm.
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2.5 Process mining as visualization tool

Since process mining has drawn a lot of attention in previous years, many soft-
ware tools are available. Process mining allows the visualization of processes
where only log files exist. Open-source software such as ProM and PM4Py can
create a process model from an event log file. Additionally, many commercial
process mining tools exist, e.g. Celonis, Disco, or Signavio. [51]
An example of such a process visualization of a real-world process is described
in [52]. In this paper, the emergency medical service system of a large area in
Turkey is visualized with process mining. This area had 187248 emergency
calls in 2016, and the process is visualized with the open-source software
ProM.
In [53], process mining is used to build a predictive model for the establishment
of maintenance inspection intervals.
In [54], process mining is used to analyze COVID-19 management for cancer
patients.
Process discovery is a state-of-the-art method to visualize different real-world
processes where an event log file exists. However, it is not researched yet
whether process discovery can be used to visualise evaluations of metaheuris-
tic algorithms.
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1. Introduction 

In modern industry, fully automated robots are already frequently in use. Robots can repeat the same static task 
with high speed and precision, but they are not suitable for highly flexible productions. In such productions, human 
skills are used to get the desired flexibility. 

In medium-sized companies the deployment of robots is often too expensive and repetitive tasks are done manually. 
A cheaper alternative to fully automated robots and pure manual work is human-robot collaborations. Collaborative 
robots (abbreviation: cobots) differ from traditional robots in the way that no safety distance is necessary. Since they 
are in direct contact with humans, they move more slowly compared to typical robots (around 0.5 - 1m/s in comparison 
to the 1.6m/s of a human actor). They can do some tasks on their own or in cooperation with a human actor, however 
since they move more slowly compared to a human, it is assumed that they are slower in executing tasks on their own 
as well. According to their manufacturers they can do jobs like pick and place, screw driving, injection molding and 
many more. A typical cooperative task would be, that a human actor places screws on a work piece and the cobot 
screws them in [1]. 

This innovative form of human-robot interaction is used to increase productivity and/or reduce the number of 
stressful tasks a human has to carry out. In these human-robot collaborations a human worker acts closely together, 
often on one workspace on the same workpiece/task, with a cooperative robot (cobot). 

An example for a raising field of cobot applications is the end-of-life disassembly of electric vehicle batteries. They 
must be disassembled for recycling and have a high negative impact on the environment if they are disposed wrong. 
Disassembly is not that easy, since the battery contains substances that are hazardous to humans and it is necessary 
that the cells of the battery is not damaged in the disassembling process.  

Additionally, these end-of-life disassembly tasks have unpredictable volumes and high variation due to the 
difference in car models. Robots are not applicable for the disassembling since there is so much variance in the battery 
types. Disassembling contains many steps that can be done by a cobot. Batteries are held together by many screws and 
unscrewing is a repetitive and uninteresting task for a human. In Fig. 1 it can be seen, that the cobot is placed in a way 
that it can interact with the human worker during the disassembly process. By working closely together with a human 
actor, cobots can reduce the costs and risks in this process [2]. 
 

 

Fig. 1. Human-cobot interaction 

Typically, in those production systems the tasks need to be assigned to specific workstations. This is an operative 
problem that needs to be solved to handle all incoming orders. In those workstations all resources that are necessary 
for production are required, however there is the additional tactical problem of the cobot assignment to speed up 
bottleneck workstations. 

2. Problem description 

A typical job shop scheduling problem consists of jobs, tasks and workstations. A job consists of a chain of tasks 
that must be processed in a given order on specific workstations or on any workstation (simplified job shop scheduling 
problem). A task is one production step that is necessary for the completion of one job, like mounting of a mechanical 
part or screwing in screws. Typically, a standard production time for such a task exists. An example for an optimization 
goal is, that the makespan (total production time until all jobs are finished) is minimized. However, lots of other metrics 
can be used for single objective optimization or as combination in a multiple objective optimization. In this paper, an 
idealized environment with no uncertainties and no stochastic influences is assumed. This means, the production of a 
task with an average duration x will always take x time units. 

16



 Alexander Kinast  et al. / Procedia Computer Science 180 (2021) 328–337 329 

Available online at www.sciencedirect.com 

ScienceDirect 

Procedia Computer Science 00 (2019) 000–000  
www.elsevier.com/locate/procedia 

 

1877-0509 © 2021 The Authors. Published by ELSEVIER B.V.  
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) 
Peer-review under responsibility of the scientific committee of the International Conference on Industry 4.0 and Smart Manufacturing 

International Conference on Industry 4.0 and Smart Manufacturing 

Biased random-key genetic algorithm for cobot assignment in an 
assembly/disassembly job shop scheduling problem 

Alexander Kinasta,*, Karl F. Doernerb, Stefanie Rinderle-Mac 
aResearch Platform Data Science @ Uni Vienna,  

Währinger Straße 29, 1090 Vienna, Austria 
bUniversity of Vienna, Department of Business Decisions and Analytics,  

Oskar-Morgenstern-Platz 1,1090 Wien 
cWorkflow Systems and Technology, University of Vienna,  

Währinger Straße 29, 1090 Vienna, Austria  

Abstract 

Nowadays many manufacturing companies try to improve the performance of their processes by including innovative available 
technologies such as collaborative robots. Collaborative robots are robots where no safety distance is necessary, through 
cooperation with human workers they can increase production speed. In this paper we consider the collaborative robot 
assignment combined with the job shop scheduling problem. To solve this problem, we propose a genetic algorithm with a biased 
random-key encoding. The objective function for the optimization is a weighted function that factors in production cost and 
makespan that should be minimized. We propose a special encoding of the solution: the assignment of cobots to workstations, the 
assignment of tasks to different workstations and the priority of tasks. The results show how much the weighted objective 
function can be decreased by the deployment of additional collaborative robots in a real-world production line. Additionally, the 
biased random-key encoded results are compared to typical integer encoded solution. With the biased random-key encoding, we 
were able to find better results than with the standard integer encoding. 
 
© 2021 The Authors. Published by ELSEVIER B.V.  
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) 
Peer-review under responsibility of the scientific committee of the International Conference on Industry 4.0 and Smart 
Manufacturing 
Keywords: Genetic algorithm; Job shop scheduling; Biased random-key encoding; Collaborative robots 

 

 
* Corresponding author. 

E-mail address: alexander.kinast@univie.ac.at 

 

Available online at www.sciencedirect.com 

ScienceDirect 

Procedia Computer Science 00 (2019) 000–000  
www.elsevier.com/locate/procedia 

 

1877-0509 © 2021 The Authors. Published by ELSEVIER B.V.  
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) 
Peer-review under responsibility of the scientific committee of the International Conference on Industry 4.0 and Smart Manufacturing 

International Conference on Industry 4.0 and Smart Manufacturing 

Biased random-key genetic algorithm for cobot assignment in an 
assembly/disassembly job shop scheduling problem 

Alexander Kinasta,*, Karl F. Doernerb, Stefanie Rinderle-Mac 
aResearch Platform Data Science @ Uni Vienna,  

Währinger Straße 29, 1090 Vienna, Austria 
bUniversity of Vienna, Department of Business Decisions and Analytics,  

Oskar-Morgenstern-Platz 1,1090 Wien 
cWorkflow Systems and Technology, University of Vienna,  

Währinger Straße 29, 1090 Vienna, Austria  

Abstract 

Nowadays many manufacturing companies try to improve the performance of their processes by including innovative available 
technologies such as collaborative robots. Collaborative robots are robots where no safety distance is necessary, through 
cooperation with human workers they can increase production speed. In this paper we consider the collaborative robot 
assignment combined with the job shop scheduling problem. To solve this problem, we propose a genetic algorithm with a biased 
random-key encoding. The objective function for the optimization is a weighted function that factors in production cost and 
makespan that should be minimized. We propose a special encoding of the solution: the assignment of cobots to workstations, the 
assignment of tasks to different workstations and the priority of tasks. The results show how much the weighted objective 
function can be decreased by the deployment of additional collaborative robots in a real-world production line. Additionally, the 
biased random-key encoded results are compared to typical integer encoded solution. With the biased random-key encoding, we 
were able to find better results than with the standard integer encoding. 
 
© 2021 The Authors. Published by ELSEVIER B.V.  
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) 
Peer-review under responsibility of the scientific committee of the International Conference on Industry 4.0 and Smart 
Manufacturing 
Keywords: Genetic algorithm; Job shop scheduling; Biased random-key encoding; Collaborative robots 

 

 
* Corresponding author. 

E-mail address: alexander.kinast@univie.ac.at 

2 Alexander Kinast/ Procedia Computer Science 00 (2019) 000–000 

1. Introduction 

In modern industry, fully automated robots are already frequently in use. Robots can repeat the same static task 
with high speed and precision, but they are not suitable for highly flexible productions. In such productions, human 
skills are used to get the desired flexibility. 

In medium-sized companies the deployment of robots is often too expensive and repetitive tasks are done manually. 
A cheaper alternative to fully automated robots and pure manual work is human-robot collaborations. Collaborative 
robots (abbreviation: cobots) differ from traditional robots in the way that no safety distance is necessary. Since they 
are in direct contact with humans, they move more slowly compared to typical robots (around 0.5 - 1m/s in comparison 
to the 1.6m/s of a human actor). They can do some tasks on their own or in cooperation with a human actor, however 
since they move more slowly compared to a human, it is assumed that they are slower in executing tasks on their own 
as well. According to their manufacturers they can do jobs like pick and place, screw driving, injection molding and 
many more. A typical cooperative task would be, that a human actor places screws on a work piece and the cobot 
screws them in [1]. 

This innovative form of human-robot interaction is used to increase productivity and/or reduce the number of 
stressful tasks a human has to carry out. In these human-robot collaborations a human worker acts closely together, 
often on one workspace on the same workpiece/task, with a cooperative robot (cobot). 

An example for a raising field of cobot applications is the end-of-life disassembly of electric vehicle batteries. They 
must be disassembled for recycling and have a high negative impact on the environment if they are disposed wrong. 
Disassembly is not that easy, since the battery contains substances that are hazardous to humans and it is necessary 
that the cells of the battery is not damaged in the disassembling process.  

Additionally, these end-of-life disassembly tasks have unpredictable volumes and high variation due to the 
difference in car models. Robots are not applicable for the disassembling since there is so much variance in the battery 
types. Disassembling contains many steps that can be done by a cobot. Batteries are held together by many screws and 
unscrewing is a repetitive and uninteresting task for a human. In Fig. 1 it can be seen, that the cobot is placed in a way 
that it can interact with the human worker during the disassembly process. By working closely together with a human 
actor, cobots can reduce the costs and risks in this process [2]. 
 

 

Fig. 1. Human-cobot interaction 

Typically, in those production systems the tasks need to be assigned to specific workstations. This is an operative 
problem that needs to be solved to handle all incoming orders. In those workstations all resources that are necessary 
for production are required, however there is the additional tactical problem of the cobot assignment to speed up 
bottleneck workstations. 

2. Problem description 

A typical job shop scheduling problem consists of jobs, tasks and workstations. A job consists of a chain of tasks 
that must be processed in a given order on specific workstations or on any workstation (simplified job shop scheduling 
problem). A task is one production step that is necessary for the completion of one job, like mounting of a mechanical 
part or screwing in screws. Typically, a standard production time for such a task exists. An example for an optimization 
goal is, that the makespan (total production time until all jobs are finished) is minimized. However, lots of other metrics 
can be used for single objective optimization or as combination in a multiple objective optimization. In this paper, an 
idealized environment with no uncertainties and no stochastic influences is assumed. This means, the production of a 
task with an average duration x will always take x time units. 
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If a company wants to invest in cobots, it is likely that due to budget constraints cobots are only installed at those 
workstations where a high improvement can be reached. In those companies, the orders that should be produced over 
the next weeks/months are frequently already known. For these orders, the tasks should be scheduled and the cobots 
should be assigned to workstations where a high improvement can be reached. If a cobot is assigned to a workstation, 
it is not likely that the cobot will be redeployed. Typically, it is not easy to identify workstations, that are a bottleneck 
in the current planning period. The problem consists of an assignment problem of cobots to workstations and a job 
shop scheduling problem. 

In scheduling problems, it is often the case, that a company has multiple similar workstations, that can do the same 
production task. A workstation can be either a machine or a station with human actors. Depending on the type of the 
machine or the number of workers, the speed and production cost of such a workstation can vary a lot.  Workstations 
that can do the same tasks are grouped as workstation groups. To find the best suiting workstation in a workstation 
group for a task with a specific optimization goal, the classical job shop scheduling problem is therefore extended with 
a task to workstation assignment. [3] 

 

 
 
 
 
In Fig. 2 it can be seen that tasks might have precedence tasks that have to be executed before the task can be done. 

In this paper, it is assumed that required tasks have to be finished before a subsequent task can start producing. Fig. 2 
shows, that Task 4 on workstation 1 has to be finished before Task 5 on workstation 2 can start. It is not necessary to 
produce all tasks of a job at one time, without tasks of other jobs in between. If multiple tasks can be produced at the 
same time on a workstation, they have to be arranged depending on their urgency. It might be preferable to produce a 
task with ten follow up tasks before a task that has no follow up tasks. Therefore, the classical job shop scheduling 
problem is extended with a priority assignment for each task in a job. 

We extend the job shop scheduling problem with a cobot assignment and review a combined problem. Mixing this 
operative problem with a tactical cobot assignment makes sense, because in the literature it is often described, that a 
cobot can be redeployed to a new workstation within half a day. The combined problem should solve the following 
decisions: 

 
• Since only a limited amount of cobots can be bought, on which workstation should these cobots be installed? 
• If tasks can be produced on multiple workstations, on which workstation should a task be produced? 
• If multiple tasks can be produced at the same time on a workstation, which task should be prioritized? 

 
Different objective functions can be used, optimizing this combined cobot assignment and job shop scheduling 

problem. An example would be to minimize the production cost and opt for the highest profit. This will not be 
applicable for a real-world production, since only the cheapest workstation in a group will have more tasks assigned 
and all other workstations will be neglected. In real productions, a late delivery will often have various different 
negative consequences. To prevent those consequences, a second objective function would be to minimize the 
makespan. However, this will lead to high production costs, since regardless of the production costs all workstations 
should produce in parallel. To find a good compromise solution, the objective function will be somewhere in the 

Fig. 2 Precedence graph 
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middle. A weighted average of the production cost and the makespan. There might be solutions where the reduced 
production cost outweighs an increased makespan. 

Depending on the objective function, it might be better to produce either on a faster workstation or on a workstation 
with less production costs. This means the choice of the objective function will influence on what workstations 
products are produced and where cobots are installed.  Our general weighted objective function can be described as 
follows: 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑎𝑎 ∗  𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐹𝐹𝐹𝐹𝑝𝑝𝐹𝐹 𝑝𝑝𝑝𝑝𝐹𝐹𝐹𝐹 +  𝑏𝑏𝐹𝐹𝐹𝐹𝑎𝑎 ∗ 𝑚𝑚𝑎𝑎𝑚𝑚𝐹𝐹𝐹𝐹𝑎𝑎𝑎𝑎𝐹𝐹 

3. Related work and research contribution 

A lot of research has been done in the field of job shop scheduling since the late 1950s. Researchers tried to optimize 
the problem with different well know performance measures like makespan, mean flow time (average time a single 
job spends in the shop) or lateness of the jobs (how well due dates are respected). Various heuristics like tabu search, 
genetic algorithms and variable neighborhood search have been used to solve the problem with a single or with 
multiple objectives. Most of these papers are research papers that focus on method development and only around 8% 
address real-world industrial applications. [4] 

Another research direction focuses on the influence of disruptions and rescheduling of processes. This is due to the 
fact, that real-world environments are never as deterministic as it is assumed in method development. Examples for 
such disruptions are machine breakdowns, operator illness, new priority jobs, cancelled jobs or changes of job 
deadlines. There are various methods, how to react to such disruptions.  

One option would be full-reactive scheduling with priority rules. This means, that the decision which task is 
produced next is done locally on the machine. Each task gets a priority assigned based on machine and job attributes. 
Another option would be to schedule jobs in a more robust way, that even with machine breakdowns the objective 
function is influenced to the smallest extent possible. [5] 

A different way to deal with uncertainties in production is the application of fuzzy sets for uncertain process such 
as processing time. Based on this fuzzy set a satisfaction grade for different objective values can be calculated. A 
metaheuristic like a genetic algorithm can then be applied for the optimization of the satisfaction grade. [6] 

Some researchers even propose to apply deep reinforced learning for job shop scheduling problems. Therefore, an 
agent-based learning approach could be used. This agent-based learning approach has a state that describes the current 
situation of the environment and has actions it can take. When an action is taken, a positive or negative reward is 
received. This is called short term reward. It is also possible to add a so-called Q-value that considers the long-term 
rewards of an action. Results that can currently be achieved with these deep reinforced learning approaches are 
nowhere near what can be achieved with metaheuristics. [7] 

The research contribution of this paper can be divided into three parts. The first part is, that the job shop scheduling 
problem is extended with a tactical cobot assignment problem. The second part is, that we developed a solution 
approach for this combined problem. In this solution approach we adapt a biased random key encoding developed by 
Ribeiro to solve the combined job shop scheduling and cobot assignment problem. In the third part, a numerical study 
on a real-world data set shows that this new encoding works better than an existing encoding. Since the real-world 
data set is way bigger than many problems considered in the literature, runtime is already a huge limiting factor. 
Therefore, in the current version the evaluation of one solution is always deterministic. In future research, it could be 
interesting to see how the flexibility of cobots can be used to prevent bottlenecks on breakdowns or in a stochastic 
environment. 

4. Solution method 

4.1. Overview 

The job-shop scheduling problem is an NP-hard problem. This means that larger instances cannot be solved exactly 
in reasonable time. In the literature various metaheuristics like genetic algorithms have been applied successfully on 
large instances. These metaheuristics are used to receive approximations to the global optimum of the problem specific 
objective function [8]. 
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If a company wants to invest in cobots, it is likely that due to budget constraints cobots are only installed at those 
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applicable for a real-world production, since only the cheapest workstation in a group will have more tasks assigned 
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middle. A weighted average of the production cost and the makespan. There might be solutions where the reduced 
production cost outweighs an increased makespan. 

Depending on the objective function, it might be better to produce either on a faster workstation or on a workstation 
with less production costs. This means the choice of the objective function will influence on what workstations 
products are produced and where cobots are installed.  Our general weighted objective function can be described as 
follows: 
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A lot of research has been done in the field of job shop scheduling since the late 1950s. Researchers tried to optimize 
the problem with different well know performance measures like makespan, mean flow time (average time a single 
job spends in the shop) or lateness of the jobs (how well due dates are respected). Various heuristics like tabu search, 
genetic algorithms and variable neighborhood search have been used to solve the problem with a single or with 
multiple objectives. Most of these papers are research papers that focus on method development and only around 8% 
address real-world industrial applications. [4] 

Another research direction focuses on the influence of disruptions and rescheduling of processes. This is due to the 
fact, that real-world environments are never as deterministic as it is assumed in method development. Examples for 
such disruptions are machine breakdowns, operator illness, new priority jobs, cancelled jobs or changes of job 
deadlines. There are various methods, how to react to such disruptions.  

One option would be full-reactive scheduling with priority rules. This means, that the decision which task is 
produced next is done locally on the machine. Each task gets a priority assigned based on machine and job attributes. 
Another option would be to schedule jobs in a more robust way, that even with machine breakdowns the objective 
function is influenced to the smallest extent possible. [5] 

A different way to deal with uncertainties in production is the application of fuzzy sets for uncertain process such 
as processing time. Based on this fuzzy set a satisfaction grade for different objective values can be calculated. A 
metaheuristic like a genetic algorithm can then be applied for the optimization of the satisfaction grade. [6] 

Some researchers even propose to apply deep reinforced learning for job shop scheduling problems. Therefore, an 
agent-based learning approach could be used. This agent-based learning approach has a state that describes the current 
situation of the environment and has actions it can take. When an action is taken, a positive or negative reward is 
received. This is called short term reward. It is also possible to add a so-called Q-value that considers the long-term 
rewards of an action. Results that can currently be achieved with these deep reinforced learning approaches are 
nowhere near what can be achieved with metaheuristics. [7] 

The research contribution of this paper can be divided into three parts. The first part is, that the job shop scheduling 
problem is extended with a tactical cobot assignment problem. The second part is, that we developed a solution 
approach for this combined problem. In this solution approach we adapt a biased random key encoding developed by 
Ribeiro to solve the combined job shop scheduling and cobot assignment problem. In the third part, a numerical study 
on a real-world data set shows that this new encoding works better than an existing encoding. Since the real-world 
data set is way bigger than many problems considered in the literature, runtime is already a huge limiting factor. 
Therefore, in the current version the evaluation of one solution is always deterministic. In future research, it could be 
interesting to see how the flexibility of cobots can be used to prevent bottlenecks on breakdowns or in a stochastic 
environment. 

4. Solution method 

4.1. Overview 

The job-shop scheduling problem is an NP-hard problem. This means that larger instances cannot be solved exactly 
in reasonable time. In the literature various metaheuristics like genetic algorithms have been applied successfully on 
large instances. These metaheuristics are used to receive approximations to the global optimum of the problem specific 
objective function [8]. 
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To solve the problem described in the previous chapter, hence, we decided to implement a genetic algorithm. This 
genetic algorithm starts by creating a randomly initialized population that is improved over the duration of the 
algorithm. To generate new solution, the algorithm uses the following steps until a stopping criterium is reached: 
 
• Evaluation: Assigns a fitness value to every individual of the current solution. The fitness describes how good a 

solution is regarding the selected objective function. 
• Selection: Selects individuals from the initial solution that act as parents for the next generation. Fitter 

individuals should have a higher chance of being selected as parent. 
• Crossover: Takes two parents to create one or two new solutions for the next generation. Different crossover 

variations exist. 
• Mutation: Changes a solution in a way, that new points in the solution space are discovered. This should prevent 

premature convergence of the algorithm. 
The solution needs to be encoded in a way, that the operators can work with the representation. This means the 

operators have to be implemented for each representation. 
The algorithm will stop once a termination criterium is reached. Examples are a maximum number of generations 

or the finding of an acceptable solution [9]. 

4.2. Encoding 

To encode a solution, a biased random-key approach is used in the programming language C#. In this approach a 
solution representation is a vector of double values with the lower bound zero and the upper bound one.  

 This simple representation allows metaheuristics like a genetic algorithm to easily create new solutions. This 
solution encoding has already  been used with success on several classical optimization problems (including job shop 
scheduling problems) as well as on real-world applications [10]. 

Each task can be produced on a group of workstations. For all tasks with a workstation group with more than one 
workstation, the workstation is encoded as double value. This double value is decoded during the evaluation. This can 
be seen in the grey fields in Fig. 3. 

The second value that is encoded for each task is a priority parameter. If multiple tasks can be produced at a specific 
workstation, the task with the highest priority is produced first. The priority can be seen in the red fields in  Fig. 3. 

The last part that has to be encoded is the cobot assignment. This is similar to the workstation encoding of the tasks. 
In the encoding a double value is used. This value will be decoded, based on all available workstations, that have no 
cobot assigned yet. This can be seen in the yellow field in Fig. 3.  

For each field in Fig. 3, a C# double data type is used. This double represents a real number with 8 bytes memory. 
This means it has a precision of 15-17 digits. [11]. 

The biased random-key encoding is compared to a normal job shop scheduling encoding where the tasks 
workstation is encoded as integer number with bounds depending on the number of available workstations in the 
workstation group. If task 1 can be produced on the workstation 1 to 5, only integer numbers in this range are generated. 
Additionally, the priority and the cobot location are encoded as integer values. This means all selection, mutation and 
crossover operators that can handle an integer array can be used to generated new values for this encoding. 

Fig. 3. Biased random-key encoding 
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4.3. Design Decisions 

The framework that was used to implement the encoding and to run the genetic algorithm was HeuristicLab. 
HeuristicLab is a framework for heuristic and evolutionary algorithms that can be extended easily using a plugin-based 
architecture [12]. 

To get comparable results for the different encodings of one individual, the operators that are used in the genetic 
algorithm should be comparable between the two encodings.  

 
Following operators can be implemented for integer and real value encoding: 

• Fitness proportional selection:  
The chance of an individuum to become a parent in the next generation is proportional to its fitness. This means 
fitter individuals have a higher chance of mating. 

• Uniform some positions arithmetic crossover: 
Based on a probability each position of the solution is crossed between the two parents. A parameter alpha 
defines how close the solution is either to parent one or to parent two. For the integer encoded solution the 
rounded version is used. 

• All positions manipulator: 
All positions of the vector are manipulated with a given strength that is defined by a parameter alpha. For the 
integer encoded solution a rounded version is used. 
During the development of the genetic algorithm, other operators like a one position manipulator and a single point 

crossover were tested. However, by using these operators the genetic diversity got lost after some generations and the 
results were significantly worse than with the operators described above. 

4.4. Evaluation 

To evaluate one solution, the real-world problem is modelled with all real-world constraints in a evaluation 
framework. Every time the genetic algorithm creates a new encoded solution (initialization and for every individual 
that is created using genetic operators) the evaluation method in the evaluation framework is used to create a fitness 
value. In Fig. 4 we can see that the encoded solution gets decoded and passed to the evaluation method. The evaluation 
method is deterministic and returns a fitness value to the optimization. 

 
The objective function that is used to receive a fitness is currently a weighted combination of the production cost 

and the makespan. Therefore, the general fitness function from chapter 2 is used with alpha = 1 and beta = 5. 

5. Real world data set 

The real-world data contains many typical elements of a job shop scheduling problem. The data contains orders 
that group together tasks. Tasks in that order have a fixed sequence of production, however it is possible to produce 
tasks of other orders in between. Each task can be produced on a group of workstations. The data contains the standard 
production time for each task and each workstation modifies this production time by a fixed factor. However, this 
means that the current version of the evaluation is fully deterministic. Additional environmental uncertainties can be 
included in later versions.  

Fig. 4. Decoding and evaluation 
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To solve the problem described in the previous chapter, hence, we decided to implement a genetic algorithm. This 
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Fig. 3. Biased random-key encoding 
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To evaluate one solution, the real-world problem is modelled with all real-world constraints in a evaluation 
framework. Every time the genetic algorithm creates a new encoded solution (initialization and for every individual 
that is created using genetic operators) the evaluation method in the evaluation framework is used to create a fitness 
value. In Fig. 4 we can see that the encoded solution gets decoded and passed to the evaluation method. The evaluation 
method is deterministic and returns a fitness value to the optimization. 

 
The objective function that is used to receive a fitness is currently a weighted combination of the production cost 

and the makespan. Therefore, the general fitness function from chapter 2 is used with alpha = 1 and beta = 5. 

5. Real world data set 

The real-world data contains many typical elements of a job shop scheduling problem. The data contains orders 
that group together tasks. Tasks in that order have a fixed sequence of production, however it is possible to produce 
tasks of other orders in between. Each task can be produced on a group of workstations. The data contains the standard 
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The dataset has the following metrics: 
 

• 54 workstations 
• 210 orders 
• 1265 tasks 
 

The data set is from the production of mechanical parts like engines, pumps and housings. The workstations are in 
the following areas: 

 
• Heat treatment furnaces 
• Prefabrication 
• Assembly 
 

In those production areas, workstations are grouped in workstation groups. Each workstation in such a group has 
individual production costs and production speed. Based on the number of produced products that a workstation is in 
use, there will be setup, de-setup and production costs/times. The costs and the production speed can vary across 
several workstations in one workstation group. For this paper it is assumed, that cobots can be installed on all 
workstations.  In the real data set, some tasks have a workstation given. To increase the complexity of the data set, it 
is assumed, that a task can be produced on all workstations of that specific workstations group. 

6. Preliminary results 

The biased random-key and the integer encoding are both tested on the real-world data set. To increase the amount 
of different test cases, three different versions of the large real-world data are calculated. The first version is the full 
data set, the second and third version are each half and each quarter of the data evaluated independently. The data is 
split by splitting the jobs. In all versions five cobots are assigned to workstations by the genetic algorithm. Based on 
[1], it is assumed, that a cobot will increase the production speed of a workstation by 30% which will also lead to a 
cost reduction of 30%. The data sets in Table 1 and Table 2 are named based on the following schema:  

 
• “Item set identifier”_”Minimum job”-“Maximum job” 
 

An example for this naming is “I2_1-632” which means, the unique identifier for the data set is I2 and the jobs 1 to 
632 are used. 

This leads to a total of 7 different test sets. For each test set, the biased random-key and the integer encoding were 
run ten times with 100, 200 and 500 generations. Due to runtime limitations, it was not possible to perform more test 
runs, but more test runs would have increased the quality of the solution. For the following results the integer-based 
encoding has the abbreviation Int and the biased random-key encoding has the abbreviation Real. By running a simple 
rule-based solution, we found out that the production costs are around 5 times as high as the makespan. To weight 
production costs and makespan in a way, that they influence the solution equally, the general objective function 
described in chapter 2 was used with the following parameters: 

 
• alpha = 1 
• beta = 5 

 
The genetic algorithm had the following other properties: 
 

• Mutation rate: 5% 
• Elite Solutions: 1 
• Individual per generation: 100 
• Minimization: true 
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The value that is received from the objective function is the fitness value that is assigned to a specific solution. 
Since we want to minimize the objective function, fitter individuals have a lower value assigned. 

Table 1. Computational results, with cobots assigned (I1 = full data, I2-I3 = two halves, I4 … I7 = four quarters)   

Encoding – generations  Int – 100  Real – 100 Int – 200  Real – 200 Int – 500  Real – 500  

I1_1-1265 59629580 62130983 59863431 59474958 59399037 55755062 

I2_1-632 18813579 17629346 18858999 17349055 18809609 16829534 

I3_633-1265 41346574 42832277 41503659 40100420 40111042 37362107 

I4_1-316 8574542 7479014 8402628 7042577 8399473 6820375 

I5_317-632 10669668 9987885 10602398 9881887 10544902 9423611 

I6_633-948 14710704 14020393 14749659 13349247 14715838 12871322 

I7_949-1265 25528767 26414212 24867220 25632205 25174964 22255353 

Average 25610488 25784873 25549713 24690050 25307838 23045338 

In Table 1 the average results of the test runs can be seen. What we can see on the values is, that using one 
half/quarter of the tasks does not mean that the fitness gets halved/quartered. The values for the halves/quarters are 
summed up, this means the “I2, I3” is equal to the full data with one cobot relocation after 50% of the tasks have been 
produced. The four quarters are similar to the full data set with three cobot relocations after 25%, 50% and 75% of the 
tasks have been produced. In Fig. 5 the value ranges of the individual runs of Table 1 with standard deviation is 
reported. 
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Fig. 6. Aggregated results 
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The dataset has the following metrics: 
 

• 54 workstations 
• 210 orders 
• 1265 tasks 
 

The data set is from the production of mechanical parts like engines, pumps and housings. The workstations are in 
the following areas: 
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• Prefabrication 
• Assembly 
 

In those production areas, workstations are grouped in workstation groups. Each workstation in such a group has 
individual production costs and production speed. Based on the number of produced products that a workstation is in 
use, there will be setup, de-setup and production costs/times. The costs and the production speed can vary across 
several workstations in one workstation group. For this paper it is assumed, that cobots can be installed on all 
workstations.  In the real data set, some tasks have a workstation given. To increase the complexity of the data set, it 
is assumed, that a task can be produced on all workstations of that specific workstations group. 

6. Preliminary results 

The biased random-key and the integer encoding are both tested on the real-world data set. To increase the amount 
of different test cases, three different versions of the large real-world data are calculated. The first version is the full 
data set, the second and third version are each half and each quarter of the data evaluated independently. The data is 
split by splitting the jobs. In all versions five cobots are assigned to workstations by the genetic algorithm. Based on 
[1], it is assumed, that a cobot will increase the production speed of a workstation by 30% which will also lead to a 
cost reduction of 30%. The data sets in Table 1 and Table 2 are named based on the following schema:  

 
• “Item set identifier”_”Minimum job”-“Maximum job” 
 

An example for this naming is “I2_1-632” which means, the unique identifier for the data set is I2 and the jobs 1 to 
632 are used. 

This leads to a total of 7 different test sets. For each test set, the biased random-key and the integer encoding were 
run ten times with 100, 200 and 500 generations. Due to runtime limitations, it was not possible to perform more test 
runs, but more test runs would have increased the quality of the solution. For the following results the integer-based 
encoding has the abbreviation Int and the biased random-key encoding has the abbreviation Real. By running a simple 
rule-based solution, we found out that the production costs are around 5 times as high as the makespan. To weight 
production costs and makespan in a way, that they influence the solution equally, the general objective function 
described in chapter 2 was used with the following parameters: 

 
• alpha = 1 
• beta = 5 

 
The genetic algorithm had the following other properties: 
 

• Mutation rate: 5% 
• Elite Solutions: 1 
• Individual per generation: 100 
• Minimization: true 
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The value that is received from the objective function is the fitness value that is assigned to a specific solution. 
Since we want to minimize the objective function, fitter individuals have a lower value assigned. 

Table 1. Computational results, with cobots assigned (I1 = full data, I2-I3 = two halves, I4 … I7 = four quarters)   

Encoding – generations  Int – 100  Real – 100 Int – 200  Real – 200 Int – 500  Real – 500  

I1_1-1265 59629580 62130983 59863431 59474958 59399037 55755062 

I2_1-632 18813579 17629346 18858999 17349055 18809609 16829534 

I3_633-1265 41346574 42832277 41503659 40100420 40111042 37362107 

I4_1-316 8574542 7479014 8402628 7042577 8399473 6820375 

I5_317-632 10669668 9987885 10602398 9881887 10544902 9423611 

I6_633-948 14710704 14020393 14749659 13349247 14715838 12871322 

I7_949-1265 25528767 26414212 24867220 25632205 25174964 22255353 

Average 25610488 25784873 25549713 24690050 25307838 23045338 

In Table 1 the average results of the test runs can be seen. What we can see on the values is, that using one 
half/quarter of the tasks does not mean that the fitness gets halved/quartered. The values for the halves/quarters are 
summed up, this means the “I2, I3” is equal to the full data with one cobot relocation after 50% of the tasks have been 
produced. The four quarters are similar to the full data set with three cobot relocations after 25%, 50% and 75% of the 
tasks have been produced. In Fig. 5 the value ranges of the individual runs of Table 1 with standard deviation is 
reported. 

 

 

40000000

60000000

80000000

I1 I2, I3 I4 … I7

Fitness

Int  - 100 Real - 100 Int - 200

Real - 200 Int - 500 Real - 500

Fig. 6. Aggregated results 

Fig. 5. Computational results with standard deviation 

23



336 Alexander Kinast  et al. / Procedia Computer Science 180 (2021) 328–337
 Alexander Kinast/Procedia Computer Science 00 (2019) 000–000  9 

In Fig. 6 the data from Table 1 is visualized. For a better overview over the data, the split data I2-I3 and I4-I7 is 
aggregated.  It can be seen, that by using the biased random-key encoding, the genetic algorithm was able to find better 
results in nearly all cases.  

This biased random-key encoding is now used to compare the solutions with solutions where no cobot is assigned. 
This should give an idea, how much improvement can be reached by deploying the cobots to this real-world production 
environment. Therefore, the genetic algorithm is run for 100, 200, 500 generations for all data sets with no cobots 
being assigned to workstations. 

 

Table 2 Computational results, real encoding, five cobots vs. no cobots assigned (I1 = full data, I2-I3 = two halves, I4 … I7 = four quarters)   

Encoding – generations  No cobot – 100  Cobot – 100 No cobot – 200  Cobot – 200 No cobot – 500  Cobot – 500  

I1_1-1265 71750212 62130983 70220400 59474958 68565491 55755062 

I2_1-632 20185858 17629346 19928594 17349055 19344987 16829534 

I3_633-1265 48172910 42832277 47290606 40100420 46063695 37362107 

I4_1-316 8210794 7479014 8028540 7042577 7749723 6820375 

I5_317-632 11647751 9987885 11513617 9881887 11231855 9423611 

I6_633-948 16434327 14020393 16185096 13349247 15852957 12871322 

I7_949-1265 30737913 26414212 29742436 25632205 29011880 22255353 

Average 29591395 25784873 28987041 24690050 28260084 23045338 

 
In Table 2 we see the computational results of the runs with and without cobots assigned to workstations. In the 

results with cobots, the genetic algorithm selects the workstations, where the five cobots should be deployed. The 
amount of generations run, changes the improvement that can be reached by deploying the cobots: 

 
• 100 Generations: 13% 
• 200 Generations: 15% 
• 500 Generations: 18.5% 
 

The more generations are evaluated, the better the solution is. After 500 generations an improvement of 18.5% is 
reached over the version without cobots. This means, the genetic algorithm makes better use of the cobots after more 
generations. The average improvement that can be reached over all three generation values is 15.4%.  

When these results have to be applied to a real-world scenario, they have to be discussed with experts. Since there 
might be more limitations, that are not considered yet in the evaluation.  

7. Conclusions and outlook 

The real-world data set that was used is a representative data set for medium sized job shop scheduling problems. 
The only real limitation is, that the real-world production system allows the deployment of cobots. It should be possible 
to achieve similar results with other real-world data sets.  

When applied to other real-world problems, the objective function might not be clear. Therefore, algorithms like 
the NSGA-II could be used to optimize multiple objective values and generate a Pareto optimal front (solutions that 
are not dominated by other solutions) that are presented to a domain expert.   

Both encodings that were used in this paper should be able to solve large real-world data sets. However, both offer 
the possibility to implement various additional encoding specific genetic operators. In future research, the effect of 
these different operators on the solution quality should be reviewed. Therefore, numerous evaluations have to be 
executed. 

Additionally, it would be interesting to investigate, how much improvement can be reached by deploying different 
amounts of cobots in multiple real-world scenarios. The scenario could be tested with an increasing amount of cobots, 
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starting with one cobot. Adding cobots to a scenario has diminishing returns, since the first cobot can be deployed at 
the workstation where the biggest target function improvement can be reached. Further cobots are than deployed to 
workstations with decreasing amounts of impact on the objective function. This would make it possible to determine 
the ideal amount of cobots that should be deployed in each production system. 
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In Fig. 6 the data from Table 1 is visualized. For a better overview over the data, the split data I2-I3 and I4-I7 is 
aggregated.  It can be seen, that by using the biased random-key encoding, the genetic algorithm was able to find better 
results in nearly all cases.  

This biased random-key encoding is now used to compare the solutions with solutions where no cobot is assigned. 
This should give an idea, how much improvement can be reached by deploying the cobots to this real-world production 
environment. Therefore, the genetic algorithm is run for 100, 200, 500 generations for all data sets with no cobots 
being assigned to workstations. 
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When these results have to be applied to a real-world scenario, they have to be discussed with experts. Since there 
might be more limitations, that are not considered yet in the evaluation.  

7. Conclusions and outlook 

The real-world data set that was used is a representative data set for medium sized job shop scheduling problems. 
The only real limitation is, that the real-world production system allows the deployment of cobots. It should be possible 
to achieve similar results with other real-world data sets.  

When applied to other real-world problems, the objective function might not be clear. Therefore, algorithms like 
the NSGA-II could be used to optimize multiple objective values and generate a Pareto optimal front (solutions that 
are not dominated by other solutions) that are presented to a domain expert.   

Both encodings that were used in this paper should be able to solve large real-world data sets. However, both offer 
the possibility to implement various additional encoding specific genetic operators. In future research, the effect of 
these different operators on the solution quality should be reviewed. Therefore, numerous evaluations have to be 
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Additionally, it would be interesting to investigate, how much improvement can be reached by deploying different 
amounts of cobots in multiple real-world scenarios. The scenario could be tested with an increasing amount of cobots, 
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starting with one cobot. Adding cobots to a scenario has diminishing returns, since the first cobot can be deployed at 
the workstation where the biggest target function improvement can be reached. Further cobots are than deployed to 
workstations with decreasing amounts of impact on the objective function. This would make it possible to determine 
the ideal amount of cobots that should be deployed in each production system. 
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A B S T R A C T

Nowadays, many manufacturing companies are trying to improve the performance of their processes using
available innovative technologies such as collaborative robots (cobots). Cobots are robots with whom no
safety distance is necessary. Through cooperation with human workers, they can help increase the production
speed of existing workstations. The well-known job shop scheduling problem is, therefore, extended with the
addition of a cobot to the workstation assignment. The considered objective is to maximize the normalized
sum of production costs and makespan. To solve this problem, we propose a hybrid genetic algorithm with a
biased random-key encoding and a variable neighborhood search. The hybrid method combines the exploration
aspects of a genetic algorithm with the exploitation abilities of a variable neighborhood search. The developed
algorithm is applied to real-world data and artificially generated data. To demonstrate the performance of
this algorithm, a constraint programming model is implemented and the results are compared. Additionally,
benchmark instances from a related problem from the cobot assignment and assembly line balancing, have
been solved. The results from the real-world data show how much the objective function can be improved by
the deployment of additional robots. The normalized objective function could be improved by up to 54%
when using five additional cobots. As a methodological contribution, the biased random-key encoding is
compared with a typical integer-based encoding. A comparison with a dataset from the literature shows that
the developed algorithm can compete with state-of-the-art methods on benchmark instances.

1. Introduction

1.1. Overview

In modern industry, fully automated robots are already being fre-
quently used. Robots are able to repeatedly carry out the same static
task at a high speed and precision, although they are not suitable for
highly flexible production environments. In such production environ-
ments, human skills are used to get the desired flexibility.

However, in medium-sized companies, the deployment of robots
might be often too expensive, and thus, repetitive tasks are done man-
ually. A cheaper alternative to fully automated robots and pure manual
work is human–robot collaborations. Collaborative robots (cobots) dif-
fer from traditional robots in the sense that no safety distance is
necessary for cobots. In [1], it has been mentioned that if cobots are
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E-mail addresses: alexander.kinast@univie.ac.at (A. Kinast), roland.braune@univie.ac.at (R. Braune), karl.doerner@univie.ac.at (K.F. Doerner),
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in direct contact with humans, they move slower than typical robots
(around 0.5–1 m/s in comparison to the 1.6 m/s of a human actor).
Cobots can do some tasks on their own or in cooperation with a human
actor; however, since they move slower than a human, it is assumed
that they are also slow in executing tasks on their own as well. How-
ever, with its assistance to a human worker, the cooperative production
speed is greater than a human worker acting alone. According to their
manufacturers, they can do jobs like pick and place, screw driving,
injection molding, and many more [1].

An example of a typical cooperative task would be a human actor
placing a screw on a workpiece and the cobot screws it in. A cobot
is flexible in terms of production and can assist different types of
workstations. Since cobots are also mobile, it is assumed that the
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Fig. 1. Human-cobot interaction.

deployment and programming of a cobot can be done within half a
day. As the assignment of cobots to workstations is not very time-
consuming, the combined problem of cobot assignment and scheduling
can be considered an operational problem. A similar kind of motivation
can be found in [1].

This innovative form of human–robot interaction is used to increase
productivity and/or reduce the number of stressful tasks a human has
to carry out. In these human–robot collaborations, a human worker
acts closely together with a cobot, often on a single workspace on
the same workpiece/task. An example of a raising field in cobot ap-
plications is the end-of-life disassembly of electric vehicle batteries.
They must be disassembled for recycling purposes and have a high
negative impact on the environment if disposed in a wrong way. The
disassembly is not easy, since the battery contains substances that are
hazardous to humans, and it is important that the cells of the battery
are not damaged in the disassembling process. Additionally, these end-
of-life disassembling tasks might be of unpredictable volume and high
variations due to the difference in car models. Robots are not applicable
in such a disassembling process as there is much variation in the
types of battery. However, the processes of production and assembly
contain many steps that can be done by a cobot. Batteries are held
together by many screws, and screwing/unscrewing is a repetitive and
uninteresting task for a human. More details on battery disassembly can
be found in [2].

However, other examples also exist; in [3], two other electronic
devices, a camcorder and a PC have been described. Both products
consist of valuable materials, and a cobot could be used to assist a
human in different processing steps.

In Fig. 1, it can be seen that the cobot is placed in such a way that it
can interact with the human worker in different production processes.
By working closely together with a human actor, cobots can reduce the
costs and risks involved in this process.

Typically, in these production systems, the tasks need to be assigned
to specific workstations. As the assignment of cobots is not very time-
consuming, the assignment of cobots to workstations is considered an
operative problem. These cobots can be used to speed up bottleneck
workstations in a production process. Cobots could also be beneficial in
classical manufacturing processes. In the numerical study, a real-world
problem where engines, casings, and other machine parts are produced
is considered.

1.2. Related work and research contribution

A lot of research has been done in the field of job shop scheduling
since the late 1950s. Researchers have tried to optimize the problem

with different well-known performance measures or objective functions
such as makespan, mean flow time (the average time a single job
spends in the shop), or lateness of the jobs (how well due dates are
met). Various heuristics such as tabu search, genetic algorithms, and
variable neighborhood search have been used to solve the problem with
single or multiple objectives. In [4], an in-depth review of job shop
scheduling solution strategies has been done. A total of 62 papers have
been reviewed, and most of these papers are research papers that focus
on method development. Only around 8% address real-world industrial
applications.

In [5], an overview of the state-of-the-art research in the field of
genetic algorithms for the flexible job shop scheduling problem is given.
In this paper, 190 publications from the year 2001 to 2017 have been
reviewed. The two major research areas are genetic algorithms (with
79 publications) and hybrid genetic algorithms (with 75 publications).

In [6], a genetic algorithm is combined with a variable neighbor-
hood search to solve different deterministic benchmark instances for
the flexible job shop scheduling problem. The results show that the
hybrid genetic algorithm is a state-of-the-art algorithm that performs
remarkably on benchmark instances.

Another research direction focuses on the influence of disruptions
and rescheduling of processes. Examples of such disruptions are ma-
chine breakdowns, operator illness, new priority jobs, canceled jobs,
or changes in job deadlines. There are various methods of how to
react to such disruptions. One option would be full-reactive scheduling
with priority rules. This means that the decision of which task is to be
performed next is done locally on the machine. Each task gets assigned
a priority based on machine and job attributes. Another option would
be to schedule jobs in a more robust way so that even with machine
breakdowns, the objective function is influenced to the smallest extent
possible [7].

A different way to deal with uncertainties in production is the
application of fuzzy sets. They can be used to model the uncertainties
in a process such as uncertain processing time and uncertain due dates.
Based on these fuzzy sets, a satisfaction grade for different objective
values can be calculated. Meta-heuristics such as a genetic algorithm
can then be applied for the optimization of the satisfaction grade [8].

Some researchers even propose to apply deep reinforcement learn-
ing for job shop scheduling problems. Therefore, an agent-based learn-
ing approach could be used. This approach has a state that describes the
current situation of the environment and has actions that it can take.
When an action is taken, a positive or negative reward is received. This
is known as a short-term reward. It is also possible to add a so-called
Q-value that considers the long-term rewards of an action. Results that
can be achieved with these deep reinforcement learning approaches are
nowhere near what can be achieved with metaheuristics [9].

This paper is an extended version of [10] and the research contri-
bution of this paper is threefold. Based on the original paper, a new
method, the hybrid genetic algorithm has been developed here and the
numerical study has been expanded.

In Table 1, a comparison with the most related paper in the litera-
ture [1] is given. In this paper, the combined cobot assignment and
assembly line balancing problem was first introduced. The research
contribution of this paper is summarized in Table 1 and is:

• In the first entry of Table 1, it can be seen that the first research
contribution of this paper is the job shop scheduling problem
being extended with a cobot assignment problem.

• In Table 1 in the second and third entry, the second research
contribution can be seen. To solve the newly introduced problem,
we combine the exploratory strength of a genetic algorithm with
the exploitative aspects of a variable neighborhood search. A new
and alternative biased random-key encoding, developed in [11] is
used and a performance improvement compared to the standard
integer encoding is shown. The efficiency of the algorithm is also
shown by comparing it to a developed constraint programming
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Table 1
Literature comparison.

No. Category Weckenborg et al. Kinast et al.

1. Solved Problem ‘‘Combined cobot assignment and assembly line
balancing problem’’

‘‘Combined cobot assignment and assembly line
balancing problem’’ and ‘‘Combined cobot assignment
and job shop scheduling problem’’

2 Algorithms Mixed integer programming and genetic algorithm Constraint programming and genetic algorithm with
variable neighborhood search

3 Genetic algorithm encoding Integer-based encoding Integer-based and biased random-key encoded
4 Data set Generated data sets for the simple assembly line

balancing problem with cobot assignment with 20, 50,
and 100 tasks.

Real-world based job shop scheduling problem with
cobot assignment with up to 1265 tasks that have to
be scheduled to 54 workstations. Generated data sets
with up to 1200 tasks.

(CP) model and by solving benchmark instances from the litera-
ture for the related cobot assignment and assembly line balancing
problem.

• In Table 1 in the fourth entry, the size of the solved instances
is shown. The third contribution is the managerial insights of
the savings when different numbers of cobots are used for the
combined cobot assignment and job shop scheduling problem for
real-world instances.

2. Problem description

2.1. Cobot assignment and job shop scheduling

Many companies nowadays already know what orders have to be
produced over the next weeks or even months. Preparing sufficient
resources in order to handle all incoming orders is a tactical problem
as traditional resources such as workstations or employees need long
preparation times. Workstations need to be produced and installed,
while workers need to be employed and trained. Typically, these re-
sources do not change after a planning period ends. In one planning
period, all existing orders need to be assigned to the given resources in
a way that a given objective function is minimized.

This traditional resource planning problem cannot be applied if a
company has invested in innovative technology such as cobots. Since
cobots have short setup times, they can be deployed to a bottleneck
workstation before a new planning period starts. To fully utilize the
possibilities that such technologies can offer, the classical job shop
scheduling problem has to be combined with a cobot to workstation
assignment. This combined approach of cobot assignment and job shop
scheduling problem was first introduced in [10].

A typical job shop scheduling problem consists of jobs, tasks, and
workstations. A job consists of a chain of tasks that must be processed
in a given order on specific workstations or on any workstation (sim-
plified job shop scheduling problem). This given order is modeled in
a precedence graph. A task is a production step that is necessary for
the completion of a whole job, for example, mounting of a mechanical
part or screwing in screws. A precedence relationship could be that a
raw material needs to be formed in a melting furnace before it can
be further processed. For each task, a measured standard production
time exists. In a deterministic version, it is assumed that this standard
production time is the time that a task needs to be completed.

In scheduling problems, it is often the case that a company has
multiple similar workstations that can do the same production task. A
workstation can be either a machine or a station with human actors.
Depending on the type of the machine or the number of workers, the
speed and production cost of such a workstation can vary. Worksta-
tions that can do the same tasks are grouped together as workstation
groups. We consider the workstations within a workstation group as
heterogeneous. In particular, when a cobot is assigned to a workstation
within a workstation group, the processing times of tasks on this
specific workstation decreases. To find the best suiting workstation
in a workstation group for a task in order to improve the objective
function, the classical job shop scheduling problem is extended with
the workstation assignment task, as already introduced in [12].

In our combined cobot assignment and scheduling problem, the
following decisions have to be made:

• As only a limited number of cobots can be bought at a time, at
which workstations should they be installed in a given planning
period?

• If tasks can be produced on multiple workstations, on which
workstation should a task be produced?

• If multiple tasks can be produced at the same time on a worksta-
tion, which task should be prioritized?

Different objective functions, which optimize this combined cobot as-
signment and job shop scheduling problem, can be used. An example
would be to minimize the production costs, which would result in
the highest profit for a predetermined set of orders. Only considering
profits or costs will not be applicable for a real-world production, since
the cheapest workstation in a group will then have more tasks assigned,
while the rest will be neglected. In real productions, a delayed delivery
of the ordered jobs will often have various different negative conse-
quences. To prevent such consequences, a second objective function
would be to minimize the makespan. However, this will lead to high
production costs since, regardless of the production costs, all worksta-
tions should keep producing in parallel. To find a good compromise,
the appropriate objective function will be a combination of these two
objective functions. Therefore, we normalize the production cost and
the makespan and factor them equally in the objective function. There
might be solutions where the reduced production cost outweighs an
increased makespan.

In [13], it is described how multiple objective values can be nor-
malized to have the same influence on the objective function. For each
objective function, a minimum Fmin and maximum Fmax value has to
be found. Based on this maximum and minimum, a range for the valid
values is calculated. With the following formula, the normalized value
is closer to 1 if the value is closer to the maximum:

𝑁 =
𝑣𝑎𝑙𝑢𝑒 − 𝐹min
𝐹max − 𝐹min

With this formula, the normalized value is closer to 1 if the value is
closer to the minimum:

𝑁 =
𝐹max − 𝑣𝑎𝑙𝑢𝑒
𝐹max − 𝐹min

Depending on the objective function, it might be better to produce
either on a faster workstation or on a workstation with less production
costs. This means the choice of the objective function will influence
on what workstations products are produced and where cobots are
installed. The fitness F of our general weighted objective function,
that is a combination of the normalized production cost ncost and the
normalized makespan nmakespan, can be described as follows:

𝐹 = 𝑛cost + 𝑛makespan

A detailed problem description is given based on the simple example
provided in Fig. 2. The main interest of this paper is to solve a combined
cobot assignment and scheduling problem motivated by a real-world
problem introduced by our industry partner. An example order from
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Fig. 2. Real-world problem overview.

the real-world dataset is the production of housing. Multiple tasks have
to be executed on base materials such as deburring, drilling, milling,
cutting a thread, checking the drilling, and packing. On the right-hand
side of Fig. 2, it is illustrated that the data contains orders (O1, O2,
O3) that group tasks (T1, . . . , T9) together. Tasks in that order have
a fixed sequence of production. The arrows indicate the precedence
relation. However, it is possible to produce tasks of other orders in
between two tasks of another order, as tasks preemption is not allowed
and tasks have a standard production time and costs (base duration
and base costs, respectively). For each task, the preceding tasks are
known and the required workstation group for the specific tasks are
given. Each workstation has a specific cost and speed factor. With these
factors and the standard production time and speed factor, the real
production time and real costs are calculated for each task assigned to
a workstation. Workstations that can process similar tasks are grouped
into workstation groups. These workstation groups can be seen on
the left-hand side of Fig. 2. Each workstation in such a group (G1,
G2, G3, G4) has individual production costs and production speed,
given by speed and cost factor, respectively. Based on the number of
produced products for a workstation in use, there will be setup, de-
setup, and production costs and times. The production costs and speed
can vary across several workstations in one workstation group. We
assume that cobots can be installed on all workstations. Furthermore,
we also assume that the tasks can be produced on all workstations of
that specific workstations group. In some real-world problem settings, it
can be the case that some specific tasks have a fixed workstation given.
For the workstations, the following different capacity modes exist:

• One product at a time (typical assembly workstation)
• Space capacity (e.g., an oven)
• Unlimited (assumed if the task is done externally)

2.2. Cobot assignment and assembly line balancing

In order to evaluate the performance of our developed algorithm,
we adapted our method such that it can be applicable to a related
problem already existing in the literature [1]. This related problem is an
assembly line balancing problem that has been extended with the help
of a cobot to a workstation assignment. In this problem, tasks can be
executed by the human worker, in collaboration of worker and cobot,
or by an individual cobot without human assistance.

In [1], a problem formulation of generalized assembly line balanc-
ing is proposed, which extends existing literature regarding the cobot
to workstation assignment. Benchmark instances provided by [14] are
adapted to cover for the extended scope of the problem. In Fig. 3,
a typical example of one instance of a problem in the literature has
been shown. On the left-hand side, general settings such as the number
of workstations or robots can be seen. In the middle, all tasks and
the production times of the tasks can be seen (task number and task
execution time for human, robot, or the collaborative execution). The
robot flexibility (RF) and cooperative flexibility (CF) in a general setting

Table 2
Indices used in the CP formulation.
𝑜 Order
𝑖 Task
𝑗 Task slice (relative to task)
𝑤 Workstation
𝑘 Machine (relative to workstation)

Table 3
Parameters used in the CP formulation.
𝑛𝑖 Number of slices for task 𝑖.
𝑚𝑤 Number of machines on workstation 𝑤.
𝑏 Number of available cobots.
𝛾𝑤 Speed factor of workstation 𝑤.
𝛿𝑤 Cost factor of workstation 𝑤.
𝜑 Cobot acceleration factor.
 Set of all orders.
 Set of all task indices.
𝑜 Set of task indices included in order 𝑜.
 Set of all workstations.
 𝑖 Set of all workstations on which task 𝑖 can be

produced.
 𝑤 Set of pairs (𝑖, 𝑗) (task 𝑖, slice 𝑗) that can be assigned

to workstation 𝑤.
𝜃(𝑖) Function yielding the order index of task 𝑖.
𝑝𝑖 Production/processing time of task 𝑖.
𝛶𝑤(𝑜, 𝑜′) Sequence-dependent setup time when changing from

order ID 𝑜 to 𝑜′ on workstation 𝑤.

describe the share of tasks that can be done by the cobot or collabora-
tively. In this simple example, 40% (8) of the tasks can be produced by
the cobot, 40% (8) of the tasks can be produced collaboratively, and all
tasks can be executed by a human alone. It is not necessary that a task
that can be produced collaboratively should be able to be produced by
a robot and vice versa. On the right-hand side, the precedence graph is
shown. To start a task, all preceding tasks have to be completed either
on the current workstation or a previous workstation.

3. A constraint programming formulation of the job shop schedul-
ing problem with cobot assignment

In this section, we present a Constraint Programming formulation
for the scheduling problem stated in Section 2.1. From a structural
point of view, the model aims at scheduling separate slices of tasks. Each
slice constitutes a piece of work in the given production context and all
pieces within a task are of the same (material) type. Let  denote the set
of all orders and  the set of all tasks. It is assumed that the tasks are
numbered consecutively across orders. The processing or production
time of a task 𝑖 ∈  is denoted by 𝑝𝑖 and applies to each slice 𝑗 of a
task. To simplify the notation, a slice 𝑗 of a task 𝑖 is also denoted by
the pair (𝑖, 𝑗) henceforth.

Let  be the set of all workstations. The number of (parallel)
machines on a workstation 𝑤 ∈  is denoted by 𝑚𝑤. Each task 𝑖 is

30



Journal of Industrial Information Integration 28 (2022) 100350

5

A. Kinast et al.

Fig. 3. Simple assembly line balancing problem overview.

Table 4
Interval variables used in the CP model formulation.

Symbol Optional Size Description

𝑈𝑖𝑗 no Represents the production time of slice 𝑗 of task 𝑖.

𝑉 𝑤𝑘
𝑖𝑗 yes 𝑝𝑖 ⋅ 𝛾𝑤 Optional interval for execution of task slice (𝑖, 𝑗) on machine 𝑘

of workstation 𝑤.

𝑉 𝑤𝑘
𝑖𝑗 yes 𝑝𝑖 ⋅ 𝛾𝑤 ⋅ 𝜑 Optional interval for cobot-assisted execution of task slice (𝑖, 𝑗)

on machine 𝑘 of workstation 𝑤.

𝐷′
𝑤𝑘 no 0 Dummy start interval for machine 𝑘 on workstation 𝑤.

𝐷′′
𝑤𝑘 no 0 Dummy end interval for machine 𝑘 on workstation 𝑤.

𝐵𝑤 yes Cobot master interval for workstation 𝑤.

Table 5
Sequence variable definition, one for each machine 𝑘 of workstation 𝑤.

Symbol Interval Var. Set Setup Type

𝛹𝑤𝑘

{𝑉 𝑤𝑘
𝑖𝑗 ∣ (𝑖, 𝑗) ∈  𝑤}∪

{𝑉 𝑤𝑘
𝑖𝑗 ∣ (𝑖, 𝑗) ∈  𝑤}∪

{𝐷′
𝑤𝑘 ∣ 𝑤 ∈  , 1 ≤ 𝑘 ≤ 𝑚𝑤}∪

{𝐷′′
𝑤𝑘 ∣ 𝑤 ∈  , 1 ≤ 𝑘 ≤ 𝑚𝑤}

(

∑
𝑖∈|1 | 𝑛𝑖

⏞⏞⏞
1,… , 1,

∑
𝑖∈|2 | 𝑛𝑖

⏞⏞⏞
2,… , 2,… , ||,… , ||,

|| + 1,… , || + 1
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟∑

𝑖∈|1 | 𝑛𝑖

,… ,

2 ⋅ || + 1,… , 2 ⋅ || + 1
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

2⋅
∑

𝑤 𝑚𝑤

)

assigned a set  𝑖 of eligible workstations on which it can be processed.
Each workstation has a speed factor 𝛾𝑤 and a cost factor 𝛿𝑤 both of
which are constant for all the machines on the workstation. Each slice
of a task requires exactly one machine at a time and the slices of a
task can be processed sequentially on a single machine, in parallel on
multiple machines, or in a mixed fashion.

If two slices of different orders are processed consecutively on the
same machine, the machine configuration has to be changed. First,
some work has to be done for the task that is processed earlier (the
leaving task) and after that, the machine has to be prepared for the next
(entering) task. These activities are referred to as de-setup (teardown)
and setup and covered in the CP formulation by means of sequence-
dependent setup times. In fact, the two activities, de-setup and setup,
are combined into a single one. The time required for this activity is
given by 𝛶𝑤(𝑜, 𝑜′), depending on the workstation 𝑤, and the orders 𝑜
and 𝑜′ to which the slices involved in the transition (from 𝑜 to 𝑜′) belong
to.

The CP model formulation is made up of different kinds of interval
variables as summarized in Table 4. Variables 𝑉 𝑤𝑘

𝑖𝑗 and 𝑉 𝑤𝑘
𝑖𝑗 are the core

variables, reflecting the different execution modes that are available for
a slice 𝑗 of task 𝑖. There is one optional interval for each workstation
𝑤 and machine 𝑘 on which the task can be executed, each of which
is set to a fixed size, that is, the production time 𝑝𝑖 multiplied with
the workstation’s speed factor 𝛾𝑤. The counterparts 𝑉 𝑤𝑘

𝑖𝑗 reflect the
corresponding cobot-assisted execution modes. To control the cobot
assignment itself, interval variables 𝐵𝑤 indicate the presence of a cobot
at a particular workstation 𝑤. Variables 𝑈𝑖𝑗 are for structural purposes

only, to make sure that exactly one of the optional intervals 𝑉 𝑤𝑘
𝑖𝑗 and

𝑉 𝑤𝑘
𝑖𝑗 is chosen for a particular slice (𝑖, 𝑗).

The machines on a workstation are renewable resources with unary
capacity and thus require a disjunctive scheduling approach. For this
purpose, the formulation relies on sequence variables 𝛹𝑤𝑘, with 𝑤 ∈ 
and 1 ≤ 𝑘 ≤ 𝑚𝑤. The definition of the sequence variables 𝛹 given in
Table 5 follows the scheme imposed by IBM ILOG CP Optimizer, but the
concept can be transferred to other scheduling-related CP frameworks
as well. To consider the sequence-dependent setup times, the definition
of the sequence variables requires information on the setup type of
each interval variable that can be part of the sequence. Assuming that
interval variables are sorted according to task (and thus order) indices
in ascending order, the setup type for all slices that belong to the first
order is therefore 1, and for all slices of the second order, 2, and
so on. Note that distinct setup types have to be used for variables
𝑉 , because the cobot-assisted execution also allows to speed up the
setup and de-setup activities. To achieve this, fictitious order indices
|| + 1, || + 2,… , 2 ⋅ || are assigned to the slices represented by
the 𝑉 intervals. To enforce initial setup and final teardown activities,
that is, before the first and after the last scheduled slice on a machine
respectively, two dummy interval variables of size 0 are added to each
machine’s sequence. The setup type of these dummy variables is set to
2 ⋅ ||+ 1. It must be remarked that functions 𝛶𝑤, essentially modeling
machine-specific setup matrices, are capable of taking arguments from
the extended range of order indices described above.

𝐶max = max
𝑤∈ ,1≤𝑘≤𝑚𝑤

endOf(𝐷′′
𝑤𝑘). (1)

𝑇𝐶 =
∑
𝑤∈

∑
(𝑖,𝑗)∈ 𝑤

∑
1≤𝑘≤𝑚𝑤

presenceOf(𝑉 𝑤𝑘
𝑖𝑗 ) ⋅ 𝑝𝑖 ⋅ 𝛾𝑤 ⋅ 𝛿𝑤

+
∑
𝑤∈

∑
(𝑖,𝑗)∈ 𝑤

∑
1≤𝑘≤𝑚𝑤

presenceOf(𝑉 𝑤𝑘
𝑖𝑗 ) ⋅ 𝑝𝑖 ⋅ 𝛾𝑤 ⋅ 𝜑 ⋅ 𝛿𝑤

+
∑
𝑤∈

∑
(𝑖,𝑗)∈ 𝑤

∑
1≤𝑘≤𝑚𝑤

𝛿𝑤

⋅ (𝛶𝑤(𝜃(𝑖), typeOfNext(𝛹𝑤𝑘, 𝑉
𝑤𝑘
𝑖𝑗 ))

+ 𝛶𝑤(𝜃(𝑖), typeOfNext(𝛹𝑤𝑘, 𝑉
𝑤𝑘
𝑖𝑗 )))

(2)

We can now state the formulation itself, based on indices and param-
eters summarized in Tables 2 and 3, and the interval and sequence
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variables from Tables 4 and 5. As for the notation used in the tables, it
must be remarked that the model statement also uses the nomenclature
of IBM ILOG CP Optimizer but is still general enough to be realized
within other CP frameworks with dedicated support for scheduling
problems.

Eqs. (1) and (2) formally specify the two objective functions, namely
the makespan and the total production cost, as introduced in Sec-
tion 2.1. The makespan can simply be computed from the maximum
finish times of the terminal dummy interval variables on each ma-
chine. The production cost is the sum of all actually allocated machine
times (processing/production, setup and de-setup) multiplied by the
workstation-specific cost factors 𝛿𝑤.

Maximize
𝐶max − 𝐶max

𝐶max − 𝐶max
+ 𝑇𝐶 − 𝑇𝐶

𝑇𝐶 − 𝑇𝐶
(3)

subject to

alternative(𝑈𝑖𝑗 , {𝑉 𝑤𝑘
𝑖𝑗 ∣ 𝑤 ∈  𝑖, 1 ≤ 𝑘 ≤ 𝑚𝑤}∪

{𝑉 𝑤𝑘
𝑖𝑗 ∣ 𝑤 ∈  𝑖, 1 ≤ 𝑘 ≤ 𝑚𝑤}) ∀𝑖 ∈ ,∀1 ≤ 𝑗 ≤ 𝑛𝑖, (4)

startOf(𝑈𝑖,𝑗 ) ≤ startOf(𝑈𝑖,𝑗+1) ∀𝑖 ∈ ,∀1 ≤ 𝑗 < 𝑛𝑖, (5)
endBeforeStart(𝑈𝑖,𝑛𝑖 , 𝑈𝑖+1,1) ∀𝑜 ∈ ,∀𝑖 ∈ 𝑜, 𝑖 < |𝑜|,

(6)
noOverlap(𝛹𝑤𝑘, 𝛶𝑤, 1) ∀𝑤 ∈  ,∀1 ≤ 𝑘 ≤ 𝑚𝑤,

(7)

span(𝐵𝑤, {𝑉 𝑤𝑘
𝑖𝑗 ∣ 1 ≤ 𝑘 ≤ 𝑚𝑤, (𝑖, 𝑗) ∈  𝑤}) ∀𝑤 ∈  , (8)

∑
𝑤∈

presenceOf(𝐵𝑤) = 𝑏. (9)

The actual objective function used in the formulation is then given by
the sum of the normalized makespan and cost values, as can be seen
from Eq. (3). The normalization is based on minimum and maximum
values for each component objective, that is 𝐶max and 𝐶max for the
makespan, and 𝑇𝐶 and 𝑇𝐶 for the total production cost.

Constraints (4) ensure that exactly one execution mode is chosen
for each slice (𝑖, 𝑗). To reduce the symmetry, constraints (5) impose a
partial order between slices of the same task, still allowing that two
or more slices can be scheduled in parallel. The precedence among
tasks of the same order is accomplished through constraints (6), by
simply introducing end-before-start requirements between the last and
the first slice of two subsequent tasks. The no-overlap constraints
(7) are responsible for disjunctive scheduling on the machines, also
considering the sequence-dependent setup times. The span constraints
(8) enforce the presence of a cobot master interval 𝐵𝑤 as soon as at
least one slice is scheduled in a cobot-assisted execution mode on any
machine of workstation 𝑤. Constraints (9) finally limit the cobot usage
by placing an upper bound on the number of interval variables 𝐵𝑤 that
can be present.

4. Solution method

4.1. Overview

In [15], it has been described that the job shop scheduling problem
is an NP-hard problem. As described in Section 1.2, various metaheuris-
tics such as genetic algorithms or constraint programming approaches
have been applied successfully on large instances in the literature.
Metaheuristics are used to receive approximations to the global op-
timum of the problem-specific objective function [16]. As described
in the previous chapters, in this study, we have extended the job
shop scheduling problem with a cobot to workstation assignment. This
means that the number of decisions has increased. Therefore, it is
necessary to use state-of-the-art metaheuristics to solve this problem.

In recent years, the trend has been to combine different heuristics
to so-called hybrid metaheuristics to exploit the strengths of different

Fig. 4. Overview hybrid genetic algorithm.

metaheuristic search concepts. This research direction is pushed by the
fact that hybrid metaheuristics often outperform traditional heuristic
or metaheuristic approaches on hard optimization problems. By com-
bining the strengths of the individual algorithms, they are able to
work together, resulting in a synergy that can outperform individual
methods. An example of such a well-known hybrid metaheuristic is
the combination of population-based methods with local search meth-
ods. In such combinations, the exploratory nature of population-based
methods is combined with a local search on promising regions [17].

In Fig. 4, an overview of such a hybrid genetic algorithm has been
provided. The general idea of our algorithm is that promising solutions
of the genetic algorithm are improved by local search-based methods.
These improved solutions replace the original non-local optimized so-
lutions of the genetic algorithm. In [18], it is described that hybrid
genetic algorithms are also called memetic algorithms.

These memetic algorithms have been applied successfully to many
optimization problems, including classical job shop scheduling prob-
lems. In many cases, they outperform traditional algorithms by using
key features of several algorithms [19]. The intention is to combine
the exploratory features of the genetic algorithm with the capability
of the variable neighborhood search to intensify the search within the
promising regions of the search space.
Algorithm 1
Pseudo code genetic algorithm.

0 Initialize Initialize the population with random individuals
1 Evaluation Evaluate all individuals in the current generation
2 while(!termination) While termination criteria not reached
3 Selection Select parents for the new generation
4 Crossover Create children out of the parents
5 Mutation Mutate children based on a given probability
6 Create Generation Create a new generation based on the created

children
7 Evaluation Evaluate all individuals in the new generation
8 end while

4.2. Genetic algorithm

In Algorithm 1, the pseudocode for a generic genetic algorithm is
given. In line 0, it can be seen that the genetic algorithm starts by
creating a randomly initialized population. In line 1, it can be seen that
a fitness value is assigned to each individual in the initial generation.
In Algorithm 1 in line 2, it can be seen that this randomly generated
population is improved over the duration of the algorithm until a
stopping criterion is reached. Examples are a maximum number of
generations, a time limit, or the finding of an acceptable solution.

To generate new solutions, the algorithm uses the steps from Algo-
rithm 1 in lines 3 to 7 until a stopping criterion is reached:

• Selection: Selecting individuals from the current generation that
act as parents for the next generation. Fitter individuals have a
higher chance of being selected as a parent.

• Crossover: Taking two parents to create one or two new solutions
for the next generation. Different crossover variations exist.
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• Mutation: Changing a solution such that new points in the solu-
tion space are discovered. This should prevent premature conver-
gence of the algorithm.

• Create Generation: The generated solutions are used to create
the new generation in the genetic algorithm.

• Evaluation: Assigning a fitness value to every individual of the
current generation. The fitness value describes the quality of a
solution regarding the selected objective function.

The solution needs to be encoded such that the operators can work with
the representation. This means the operators have to be implemented
for each representation [20].

To get comparable results for an encoding of an individual, the
operators that are used in the genetic algorithm should be comparable
between different encodings. The following operators can be imple-
mented for integer and real value encoding and have been used in this
contribution:

• Fitness proportional selection: The chance of an individuum
to become a parent in the next generation is proportional to its
fitness. This means fitter individuals have a higher chance of
mating.

• Uniform some positions arithmetic crossover: Based on a prob-
ability, each position of the solution is crossed between two
parents. A parameter 𝛼 defines how close the solution is to either
parent one or parent two. For the integer-encoded solution, the
rounded version is used.

• All-positions manipulator: All positions of the vector are ma-
nipulated with a given strength that is defined by a parameter 𝛼.
For the integer encoded solution, a rounded version is used.

During the development of the genetic algorithm, other operators such
as a one-position manipulator and a single point crossover were tested.
However, by using these operators, the genetic diversity got lost after
some generations, and the results were significantly worse than those
generated with the operators described above.

4.2.1. Encoding and evaluation - real-world problem
In the real-world problem, each task can be produced on a group of

workstations. For all tasks that are produced on a workstation group
with more than one workstation, the workstation is encoded by a
double value. This double value is decoded during the evaluation. This
can be seen in the gray fields in Fig. 5.

The second value encoded for each task is a priority parameter. If
multiple tasks can be produced at a specific workstation, the task with
the highest priority is produced first. The priority can be seen in the
red fields in Fig. 5.

The last part that has to be encoded is the cobot assignment. This
is similar to the workstation encoding of the tasks. In the encoding,
a double value is used. This value will be decoded based on all the
available workstations that have no cobot assigned yet. An example
would be the case where there are 10 workstations to which no cobot
has been assigned. For each workstation, a biased random-key encoded
cobot would have a value within the range of 0.1. This means that
to assign a cobot to workstation 1, the value has to be between 0
(included) and 0.1 (excluded). Thus, the first yellow-encoded value in
Fig. 5 would mean that a cobot is assigned to workstation 1.

The biased random-key encoding is compared to a normal job shop
scheduling encoding where the tasks for workstations are encoded as
integer numbers with bounds depending on the number of available
workstations in the workstation group. If task 1 can be produced
on workstations 1 to 5, only integer numbers in this range will be
generated. Additionally, the priority and the cobot location are also
encoded as integer values. This means that all selection, mutation, and
crossover operators that can handle an integer array can be used to
generate new values for this encoding.

Fig. 5. Biased random-key encoding.

Fig. 6. Decoding and evaluation.

To evaluate a solution, the first step is to assign the available cobots
to the workstations. Each workstation has a property speed factor, cost
factor, capacity, and a property that defines if a cobot is assigned. If
a cobot is assigned to a workstation, it is assumed that the production
speed is increased by 30% [1]. This value is realistic for existing cobots,
but it can be also exchanged for different values. Additionally, each
workstation has a speed and cost factor that is applied to every task
produced on a specific workstation. The number of tasks that can be
carried out in parallel depends on the capacity of the workstation.

In the second step, all tasks are assigned to the workstations based
on the encoded value. Each workstation with remaining capacity checks
whether there are tasks to execute. All producible tasks (whose preced-
ing tasks have been finished) are sorted by priority, and the task with
the highest priority is produced next. When a task starts producing, its
finishing time is calculated based on the task duration, the speed factor
of the workstation, and whether a cobot is assigned to the workstation.
The cost for producing a task is based on the production cost of the
task and the cost factor of the workstation.

Some workstations have setup and de-setup times with a workstation-
specific cost factor. Every time a new task is produced on the worksta-
tion, the resulting costs will be added to the objective function/fitness
function. If a workstation has a capacity, its costs are added only once
every time a new product of this task is generated. Since a cobot might
be able to assist a human worker in the setup process, it is assumed
that the setup speed also increases by 30%.

The objective function that is used to receive a fitness is currently
a combination of the normalized production cost and the normal-
ized makespan. The production cost is measured in cent, while the
makespan is measured in seconds.

𝐹 = 𝑛cost + 𝑛makespan

Every time the genetic algorithm creates a new encoded solution
(initialization and for every individual created using genetic operators),
the evaluation method described above is used to create a fitness value.
In Fig. 6, we can see that the encoded solution gets decoded and passed
to the evaluation method. After the decoding described above, our
tasks have all the properties from Fig. 2. Additionally, our tasks have
received a priority and a workstation where the tasks are being pro-
duced. For all workstations, the properties from Fig. 2 and an additional
property, if a cobot has been assigned, are set. In the evaluation, it is
checked whether there are any free workstations (workstations with
residual capacity) where tasks without non-produced preceding tasks
are waiting. If there are tasks waiting, they are ordered by priority
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Fig. 7. Biased random-key encoding - Literature data set.

and then assigned to the workstations. During production, the fitness
is increased by the base cost of a task multiplied by the cost factor of
the workstation. At the end of the evaluation, the fitness is increased
by the makespan multiplied by the defined factor.

Since all the steps in the evaluation are deterministic, the evaluation
method is deterministic and returns a fitness value to the optimization
algorithm.

4.2.2. Encoding and evaluation - assembly line balancing problem with
cobot assignment

To encode a solution of the literature problem, a similar approach to
the real-world problem biased random-key encoding is used. However,
the following important differences between the datasets have to be
considered:

• Each task can be produced on each workstation, not only on
workstations of a specified workstation group.

• The literature dataset is an assembly line balancing problem of
type two, which means that the fitness of one encoded solution is
equal to the cycle time.

• Instead of speeding up a workstation by 30%, there are three
different production modes. All tasks can be done by a human,
and a part of the tasks could be done by the robot (200% of the
human production time), whereas a part of the tasks can be done
cooperatively at 70% of the human production time.

The encoding used for the problem from the literature has been shown
in Fig. 7. Similar to the real-world problem, the cobot to workstation
assignment is encoded as biased random-key. Additionally, the red-
encoded values are used to assign a priority to all tasks, and tasks
with multiple production modes (human, robot, and cooperative) are
assigned a ‘‘produced by’’ value. This is the green value in the picture.
Since the makespan is used as the fitness value, one additional cycle
time value is encoded.

In Fig. 8, the evaluation of one encoded solution is shown. In the
first step, cobots are assigned to all the available workstations without
cobots based on a biased random-key. If five workstations are available,
each workstation has a range of 0.2. This means the biased random-key
0.1 would match the first workstation.

In Fig. 8, in step 2, a maximum cycle time is set for all workstations.
This cycle time limit can be estimated with the human production time
of all tasks and the number of workstations. The first important value
to be calculated is as follows:

ℎ𝑢𝑚𝑎𝑛_𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒_𝑝𝑒𝑟_𝑤𝑜𝑟𝑘𝑠𝑡𝑎𝑡𝑖𝑜𝑛

= 𝑠𝑢𝑚_𝑜𝑓 _ℎ𝑢𝑚𝑎𝑛_𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒𝑠
𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓 _𝑤𝑜𝑟𝑘𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑠

Without cobots, this corresponds to the lower bound on cycle time
assuming a perfectly smooth allocation of tasks to workstations. In prac-
tice, however, a perfectly smooth allocation of tasks to stations cannot
necessarily be achieved, as it assumes the divisibility of tasks. Please
consider an example with 100 tasks, 10 workstations, and an average
human production time of 20 time units. In this example, we would
have a human production time per workstation of 200 (100*20/10). If

one individual task, however, comprises a duration of more than 200
time units, this cycle time cannot be achieved. Therefore, the second
important value is the human production time of the longest individual
tasks. For further discussion of the bounds on the cycle time in assembly
line balancing problems, please refer to [21].

The encoded cycle time value is now decoded in the following way:

𝑚𝑎𝑥 = Max(ℎ𝑢𝑚𝑎𝑛_𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒_𝑝𝑒𝑟_𝑤𝑜𝑟𝑘𝑠𝑡𝑎𝑡𝑖𝑜𝑛,

𝑚𝑎𝑥_𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙_𝑡𝑎𝑠𝑘)
𝑐𝑦𝑐𝑙𝑒_𝑡𝑖𝑚𝑒 = 𝑚𝑎𝑥 ⋅ (0.8 + 𝑒𝑛𝑐𝑜𝑑𝑒𝑑_𝑐𝑦𝑐𝑙𝑒_𝑡𝑖𝑚𝑒 ⋅ 0.4)

The base value of this formula is the maximum of the average human
production time per workstation and the longest individual task. Based
on the encoded cycle time, the cycle time limit for all workstations is
between 80% and 120% of this value. In Fig. 8, this can be seen after
step 2.

In Fig. 8, in step 3, we can see how tasks are assigned to the
workstations. For each empty workstation, the following steps are
repeated until no more tasks can be assigned:

• Get the list of producible tasks (all preceding tasks have been
finished);

• Find the next task that can be assigned to this workstation based
on the given task priority and the assigned production mode;

In Fig. 8, after step 3, we can see what a typical solution would look
like. The different production modes are colored (human: red; robot:
yellow; cooperative: violet), and the upper and lower parts of a work-
station symbolize the time of the worker and the robot, respectively.
Additionally, it can be seen that the real fitness of this individual might
be different than the calculated cycle time limit of the workstations. If
it is not possible to assign all tasks to the workstations because the cycle
time limit is too low, a penalty value is assigned to this solution.

4.3. Variable neighborhood search

A variable neighborhood search is a metaheuristic that uses a local
search method to systematically search neighborhoods with increasing
distances [22]. Since we only use the variable neighborhood search
in the hybrid genetic algorithm and not as an individual metaheuris-
tic, the encoding of the genetic algorithm is used. This encoding is
problem-dependent and has been described in detail in the previous
two sections. The neighborhood Nk(x) can be defined as all the solu-
tions that can be reached with k changes from a starting solution x.
Typical local search heuristics usually use k = 1. Since the variable
neighborhood search is only used in combination with the genetic
algorithm, the neighborhood of a solution is described in the next
chapter in the context of the hybrid genetic algorithm. In Algorithm
2, the basic steps of a variable neighborhood search are explained. To
start the metaheuristic, kmax is considered the maximum distance to
neighboring solutions and a termination criterion for how long each
neighborhood is searched. Examples of this termination criterion are
the maximum number of evaluated solutions or a time limit. After
initializing these variables, the main loop starts. In this main loop,
neighboring solutions are searched and evaluated until the termination
criterion is reached (e.g., evaluation of 20 neighboring solutions). In
Algorithm 2, from line 4 to line 7, we can see a first improvement
strategy. This means if any of the generated solutions x’ is better than
the current best solution x, the current 𝑥 is replaced by x’ and the
variable neighborhood search starts with 𝑘 = 1 at the new solution.
If no better solution is found in the current neighborhood until the
termination criterion is reached, k is increased by one, and the next
further away neighborhood will be searched. [22]
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Fig. 8. Biased random-key encoding - Visualize steps.

Algorithm 2
Pseudo code variable neighborhood search.

0 Define k = 1, kmax, termination Initialize the necessary variables
1 while(k <= kmax) Terminate once k is larger than kmax
2 while(!termination) Do until a specific number of solutions is

evaluated or time limit is reached
3 x’ = Nk(x) Get neighboring solution with k changes
4 if(x’ is better than x) If a better solution has been found
5 x = x’ Set x to new best
6 k = 1 Start vns again from new best with k = 1
7 go to line 1 Start next iteration of the main loop
8 end if
9 end while
10 k++ Increase k by one
11 end while

4.4. Hybrid genetic algorithm

In Algorithm 3, the basic concept of the evaluation method of the
hybrid genetic algorithm is shown. The code for the genetic algorithm is
similar to the code from Algorithm 1. Whenever the evaluated method
from Algorithm 3 is called, in line 1, we see that for every solution s
that is passed to this method, a fitness value 𝑥 is generated. In line 2,
it is checked if this fitness is within a certain range of the best fitness
found so far. If this is the case, a variable neighborhood search on this
solution is initiated. Pretests have shown that the best results can be
found if the variable neighborhood search is applied to solutions that
are within 10% of the best solution found so far.

To generate neighboring solutions k, changes are applied to the
initial encoded solution. Two different variants of changes are used to
generate neighboring solutions:

• Basic change
For the biased random-key encoding, one change is one value
of the vector that is replaced by a random real value between
0 (inclusive) and 1 (exclusive).

• Intelligent change
The first step of the intelligent change is to determine if the
change affects the task to workstation assignment, the task pri-
ority, or the cobot to workstation assignment.

– Task to workstation assignment
All workstations that are available in the workstation group
where the task should be produced are ordered by a factor
that is the multiplicative of production speed and produc-
tion cost. A rank-based selection is used to favor worksta-
tions with a low factor.

– Task priority
This is the same as for the basic change.

– Cobot to workstation assignment

All workstations from the base solution get a rank assigned
based on the created costs and a second rank that is based
on the production duration. Both rankings have the same
chance to be used for the cobot to workstation assign-
ment. Workstations that created high costs and workstations
that have long production times are favored for a cobot
assignment in the intelligent change.

Pretests have shown that the best results are found with 90% intelligent
changes and 10% basic changes. The k values that are used in this
algorithm are 1, 3, and 5. In line 5 of Algorithm 3, it can be seen that 50
neighboring solutions are generated for each k value. In the lines from
8 to 12, it can be seen that a first improvement strategy is used. This
means that if any generated solution is better than the original solution,
this solution becomes the new starting solution and the algorithm is
restarted with k = 1. If no improvement can be found in any of the 50
generated solutions of one k value, k is increased by 2. In Algorithm 3
in the lines 18 to 20, it can be seen that the fitness and individual are
stored, if they are better than the best individual that has been found
so far.

5. Numerical experiments

5.1. Dataset dimensions

The first dataset used for the computational studies is the dataset
provided by an industry partner. This dataset is used for the com-
bined cobot assignment and job shop scheduling problem and has the
following metrics:

• 54 workstations
• 210 orders
• 1265 tasks

It contains many typical elements of a job shop scheduling problem.
The dataset pertains to the production of mechanical parts such as
engines, pumps, and housings. The workstations are in the following
areas:

• Heat treatment furnaces
• Prefabrication
• Assembly

The current version of the evaluation is assumed to be fully determin-
istic.

Based on the real-world data set, 50 artificial data sets have been
added to compare the CP model with the hybrid genetic algorithm.
These artificial data sets have the following metrics:

• 30/50 workstations
• 50/100 orders

35



Journal of Industrial Information Integration 28 (2022) 100350

10

A. Kinast et al.

Algorithm 3
Pseudo code - hybrid genetic algorithm evaluation.

Parameters: Parameters at the start of the program

BestSolution Best solution found so far
BestFitness Best fitness found so far
EvaluateSolution() Method to get the quality of

a passed individual
(depending on the problem)

VnsThreshhold Threshhold to check if the variable
neighborhood shearch should be applied

0 Evaluate(solution s)
1 x = EvaluateSolution(s)
2 if(x ≤ BestFitness * VnsThreshhold)
3 k = 1, kmax = 5
4 while(k ≤ kmax)
5 for(i = 0, i ≤ 50, i++)
6 s’ = Nk(x)
7 x’ = EvaluateSolution(s’)
8 if(x’ < x)
9 x = x’
10 s = s’
11 k = 1
12 goto line 3
13 end if
14 end for
15 k += 2
16 end while
17 end if
18 if(x ≤ BestFitness)
19 BestFitness = x
20 BestSolution = s’
21 end if
22 return x

• 300/600/1200 tasks

The amount of workstations is varied and it depends on the number
of different workstations used in the real-world data set. The data sets
with 1200 tasks are similar to the real-world data set and additionally,
there are two smaller versions with 600 and 300 tasks. The amount of
orders has been reduced to 50 and 100 for the task amount of 300/600
and 1200, respectively. This has been done to increase the number of
precedence relations. A full description of the generation of these data
sets can be found in Appendix A.

The second dataset used for the computational studies is the as-
sembly line balancing problem with cobot assignment used in [1]. The
dataset contains the following metrics:

• 3 problem sizes (small: 20 tasks; medium: 50 tasks; large: 100
tasks)

• 50 problems with 10 different parameter settings per problem

The following additional parameters were introduced to create the 10
different parameter settings:

• Robot flexibility (RF): The percentage of all tasks that can be
done by a robot

• Collaboration flexibility (CF): The percentage of all tasks that
can be done by the human in collaboration with the robot

• West ratio (WR): The average number of tasks per workstation
• Robot density (RD): The percentage of workstations that have a

cobot assigned

In Appendix B, the 10 different parameter settings for each problem can
be seen. To compare the developed algorithm with the existing results
in the literature, we used the first 30 instances of each size.

5.2. Overview

The first computational study is used to find a good solution for the
real-world problem provided by our industry partner. Therefore, the
following variations are compared on the combined cobot assignment
and job shop scheduling problem:

Table 6
Variations in the first computational study.

Algorithm Encoding Cobots

Genetic algorithm Integer encoding 0
Genetic algorithm Biased random-key encoding 0
Genetic algorithm Integer encoding 5
Genetic algorithm Biased random-key encoding 5

• No cobots assigned, 5 cobots assigned
• Biased random-key encoding, integer encoding

For each instance of the dataset, this results in four variations. These
can be seen in Table 6.

The goal of these calculations is to find out which algorithm/encoding
works best on the real-world problem and how much improvement can
be made with five cobots. The best algorithm/encoding combination
is then used to show how much improvement can be made with
the first cobot and how much this decreases with the deployment of
an additional cobot, i.e., we evaluate the marginal utility of cobots.
After analyzing the real-world problem, the best working algorithm
is compared to a CP solver running the model presented in Section 3
on the artificial data set. This comparison demonstrates the strengths
and weaknesses of the genetic algorithm in comparison to the CP
formulation.

In the final analysis, the developed algorithm is applied to a similar
problem (combined cobot assignment and assembly line balancing
problem) from the literature. Solving this problem should show that
our developed algorithm can compete with state-of-the-art algorithms
used on benchmark problems in the literature.

The algorithms/encodings were implemented using the program-
ming language C#. The integer-based encoding is represented by an
array of integer values. For each position of the vector, a lower and
upper bound is encoded as an integer value. In the biased random-key
encoding, a solution representation is a vector of double values with
the lower bound being 0 and the upper bound being 1 (excluded). This
double represents a real number with 8 bytes of memory. This means
it has a precision of 15–17 digits [23].
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This simple representation allows metaheuristics such as a genetic
algorithms to easily create new solutions. This solution encoding has
already been successfully used for several classical optimization prob-
lems (including job shop scheduling problems), as well as real-world
applications [11].

The framework used to implement the encoding and run the genetic
algorithm was HeuristicLab. HeuristicLab is a framework for heuristic
and evolutionary algorithms that can be easily extended using a plugin-
based architecture [24]. The CP model described in Section 3 was
implemented and run using IBM ILOG CP Optimizer 12.10 as a com-
mercial solver. For all calculations, a computer with an Intel i7-8700
3.20 GHz CPU is used.

5.3. Combined cobot assignment and job shop scheduling problem

5.3.1. Real-world data
To increase the number of different test cases, three different ver-

sions of the large real-world dataset are calculated:

• Full dataset
• First and second half of the dataset
• Four quarters of the dataset

The full dataset, the halves, and the quarters of the data were evaluated
independently, respectively. The data is divided by adding orders until
e.g., half of the tasks are in the data set half one. In all the versions,
the deployment of five cobots is compared to the deployment of no
cobots. Based on [1], it can be assumed that a cobot will increase the
production speed of a workstation by 30%, which will, in turn, lead
to a cost reduction of 30%. The datasets in Tables 1 and 2 are named
based on the following schema:

• ‘‘Item set identifier’’_‘‘Minimum job’’-‘‘Maximum job’’

An example for this naming is ‘‘I2_1-637,’’ which means that the unique
identifier for the dataset is I2 and the jobs 1 to 637 have to be produced
in this data set.

This leads to a total of seven different test sets. For each test
set, with and without cobots, the biased random-key and the integer
encoding was run 10 times.

The value received from the objective function is the fitness value
assigned to a specific solution. Makespan and production costs are
normalized in a way, that the normalized value is closer to 1 if it is
closer to the minimum. If these two values are summed up, the fitness
ranges from zero (worst possible solution) to two (minimal cost and
makespan).

For the following results, the integer-based encoding has the abbre-
viation ‘‘Int’’ and the biased random-key encoding has the abbreviation
‘‘Real’’. The hybrid genetic algorithm and the genetic algorithm have
the following parameters set:

• Mutation rate: 5%
• Elite Solution: 1
• Individuals per generation: 100
• Maximization of the normalized value

In the first computational study, the integer-based encoding of the
genetic algorithm is compared to the biased random-key encoding. To
make a fair comparison between the two algorithms, both stop after a
set time limit. These time limits change for different instance sizes and
can be seen in Table 7.

The lower bounds of one instance of the real-world data set have
been calculated by letting the hybrid genetic algorithm minimize both
the makespan and the cost separately with five cobots (three runs with
a time limit of 300 min). The upper bounds have been calculated by
maximizing the makespan and the cost three times (for 300 min each)
with no cobots present.

Table 7
Time limits for the real-world data set (in minutes).

Duration Full Halves Quarters

Short 100 30 10
Medium 200 60 20
Long 300 90 30

In Fig. 9, the average solution quality over all runs of the genetic
algorithm with zero and five cobots have been reported. The real-
encoded version yielded better results over all data sets and is on an
average 9.7% better than the integer encoded version. The full data
can be found in Appendix C.

Since the biased random-key encoding delivered better results over
all data sets, it is used as a base for the hybrid genetic algorithm and
is additionally compared to the results of the CP model.

Based on the findings of the first experiment, a hybrid genetic al-
gorithm has been started with the parameters described for the genetic
algorithm and with the following additional parameters that are neces-
sary for the variable neighborhood search. Based on experiments, the
variable neighborhood search is applied only when a newly generated
solution is within 10% of the best solution found so far. To generate
neighboring solutions, 90% of the changes are intelligent changes and
10% are basic changes. The distance to the neighborhood solutions
started with 𝑘 = 1 change and was increased by 2 if no better solution
could be found within the first 50 generated individuals. The variable
neighborhood search stopped once k became larger than 5. This means
that if a solution is within 10% of the best-found solution, at least 150
individuals in the neighborhood are generated and evaluated.

In Fig. 10, the average solution quality from the hybrid genetic
algorithm with five cobots with standard deviation is reported. The
time limits from Table 7 were also used for these experiments. By using
the hybrid genetic algorithm, the results from the genetic algorithm
with biased random-key encoding could be improved by another 2%.

The values in Fig. 10 for the halves and quarters are the average
values over both halves and all four quarters, respectively. The full data
can be found in Appendix D.

In Fig. 11, the average solution quality of the hybrid genetic al-
gorithm without cobot over ten runs can be seen. Upon comparison
of these results with those from Fig. 10, where the genetic algorithm
selects the workstations and five cobots should be deployed, it can be
seen that the solution quality drastically increases with the usage of
these cobots. Without cobots, the average solution quality is at 1.218
while the solution quality with five cobots averages at 1.737. This
means an average improvement of 42.6% can be reached in these
scenarios. The full data can be found in Appendix D.

To better understand the influence of cobots on the solution quality,
one instance was selected to evaluate an increasing number of cobots.
Therefore, the first half of the data set I2_1-637 was selected. For each
cobot, the instance was computed ten times.

In Fig. 12, the fitness value for different numbers of cobots can be
seen. It can be seen that the first deployed cobot has the highest impact
on the solution quality. The full data can be found in Appendix E.

In Fig. 13, the percentage improvement resulting from different
cobot numbers can be seen. The first cobot increases the fitness by
34.9%. The second cobot still improves the objective function by
15.9%. This decreases to 1.7% for the third, 1.7% for the fourth,
and 0.02% for the fifth cobot. These effects correspond to the law of
decreasing marginal returns.

The hybrid genetic algorithm with biased random-key encoding
performs well on the real-world data set in comparison to the genetic
algorithm. To prove its capability to solve the combined cobot assign-
ment and job shop scheduling problem, the hybrid genetic algorithm is
compared to the CP solver running the formulation stated in Section 3
on the real-world instance. For all real-world instances, the CP solver is
granted the same amount of time as the long run of the hybrid genetic
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Fig. 9. Average solution quality - GA.

Fig. 10. Average results with standard deviation - Hybrid genetic algorithm - 5 Cobots.

Fig. 11. Average results with standard deviation - Hybrid genetic algorithm - 0 Cobots.

Fig. 12. I2_1-637 - Normalized fitness per cobot.
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Fig. 13. I2_1-637 - Percentage improvement per cobot.

Fig. 14. Comparison CP/Hybrid GA - 0 cobots.

Fig. 15. Comparison CP/Hybrid GA - 5 cobots.

algorithm from Table 7 (second column). If the CP solver calculates
the fitness for zero cobots of a specific data set, it is compared to the
average solution quality of the hybrid genetic algorithm of this specific
data set with zero cobots.

In Fig. 14, the hybrid genetic algorithm is compared to the CP
formulation with 0 cobots to assign. In this basic version, the CP solver
is able to find better solutions than the hybrid genetic algorithm in
three of seven instances. When looking at all data sets, the CP model
performs on average 15.6% worse than the hybrid genetic algorithm.
If the outlier in data set I4 is neglected, the solution quality is only
decreased by 4% compared to the average solution quality reported by
the hybrid genetic algorithm.

In Fig. 15, the solution quality of the hybrid genetic algorithm is
compared to the solution quality obtained from the CP model with
five cobots to assign. Due to the increased complexity of the cobot to
workstation assignment in the model, the CP solver is not able to find
solutions that can compete with the solutions from the hybrid genetic
algorithm. It is also worth noting that the best results found with the

CP model are for the four quarters I4 to I7 and hence the smallest data
sets, whereas the worst result is achieved for the full data set.

To allow for an even more thorough assessment of the solution
quality achieved by the hybrid genetic algorithm, we conducted addi-
tional CP solver runs involving considerably increased computational
resources and time limits. The idea was to specifically account for
the cobot-assisted scenario, in which the CP solver fails to deliver
objective function values greater than zero for the full and the two
halved data sets. The results of these experiments, as shown in Fig. 20
of Appendix G, indicate that the CP solution quality could be notably
improved but is still not sufficient to beat the hybrid GA in the cobot-
assisted scenario. Only for the 0 cobots case, the CP solutions are
consistently better than those provided by the hybrid GA.

5.3.2. Artificial data sets
To prove that the hybrid genetic algorithm is able to solve the

combined cobot assignment and job shop scheduling problem, an ad-
ditional 50 artificial data sets in five categories have been created.
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Fig. 16. Comparison - Artificial instances - CP model.

Fig. 17. Comparison - Artificial instances - No CP solution found (number of occurrences).

The data sets are named based on the amount of included tasks and
workstations according to the scheme ‘‘Tasks’’_‘‘Workstations’’. These
sets are grouped into three sizes:

• Small: 300_30
• Medium: 600_30, 600_50
• Large: 1200_30, 1200_50

The run time for the small, medium, and large data set is 60, 180,
and 300 min, respectively. The data sets are explained in detail in
Appendix A. If the CP model calculates the fitness for zero cobots of
a specific data set, it is compared to the average solution quality of the
hybrid genetic algorithm of this specific data set with zero cobots.

For each artificial data set, the bounds for the normalized ob-
jective function were computed in the following way: Upper bounds
on makespan and cost were taken from short runs of the CP solver,
stopping immediately as soon as the first feasible solution was found.
The lower bound on the makespan was derived from a parallel ma-
chine relaxation of the problem, using the mixed-integer programming
formulation of [25] as a basis. The lower bound on the cost was again
retrieved from the CP solver, in the form of the initial lower bound on
the cost objective.

In Fig. 16, the average solution quality achieved by the CP model
is shown. What can be seen here is that due to the complexity increase
when allowing the CP model to place cobots, it is unable to find better
solutions. The main factors are the amount of tasks and the amount of
workstations

In Fig. 17, it can be seen that the increased model complexity due
to an increasing amount of tasks and workstations will decrease the
ability of the CP solver to find solutions. It can be seen that the 600_30
instance is way easier to solve than the 600_50 instance, since the
average solution quality is way better and the CP solver is unable to
find a solution in two cases for the 600_50 instance. This increases to
9 instances for the 1200_50 instance. In Fig. 18, the average solution
quality of the hybrid genetic algorithm is shown. It can be observed
that the hybrid genetic algorithm generates good results for all cases
and is able to effectively utilize the additional cobots to improve the

solution quality. The average solution quality for the individual runs of
the CP model and the hybrid genetic algorithm with zero, five, and ten
cobots can be found in Appendix F.

Similar to the real-world instances, we also performed a comparison
between the hybrid GA’s results and those obtained from extended CP
runs. The details of these experiments and the associated comparison
can be found in Appendix G (Fig. 21). Despite the markedly increased
computational effort, the CP solutions are only slightly better than
those delivered by the hybrid GA with the original, restricted time
limits.

5.4. Combined cobot assignment and assembly line balancing problem

The second computational analysis should compare the developed
algorithm with the existing methods in the literature. Therefore, the
algorithm is compared to the genetic algorithm and the mixed integer
programming developed for [1]. Most of the small instances have been
solved optimally by the mixed integer programming. Therefore, the
goal is to reach the optimal solution or to come as close to it as possible.
This is different for the large instances, as the complexity increases, it
is not possible anymore to solve them optimally within a reasonable
amount of time. For the large instances, the results have to be compared
to those from the genetic algorithm developed in [1].

As stated above, the first 30 instances of each size are used for the
comparison. In the literature dataset, the genetic algorithm was run
until no improvement could be reached within 1000 generations. For
these runs, an average run time over all instances has been reported.

For easy instances of one size, the average run time will be too long
and the algorithm might find the best solution very fast. However, for
hard instances, the algorithm might have less time than the genetic
algorithm used in [1]. The average run time used in the literature is
as follows:

• Small instances: 114 s
• Medium instances: 666 s
• Large instances: 2994 s
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Fig. 18. Comparison - Artificial instances - hybrid genetic algorithm.

The mixed integer programming has the following run time limitations:

• Small instances: 7200 s
• Medium instances: 7200 s
• Large instances: 28800 s

For our computational experiments, we use a similar, however, fixed
time limitation. This should make our results easier to reproduce and
better comparable for other researchers’ study purposes. Based on the
results from the first computational experiment, we know that the
additional cobots will greatly increase the complexity of the problem.
The used time limits were as follows:

• Small instances: 150 s
• Medium instances: 1000 s
• Large instances: 3600 s

The following results were created using the hybrid genetic algorithm
with the biased random-key encoding on the literature dataset. In the
literature dataset, each instance was calculated 10 times and the best
result was reported. Therefore, in this computational study, the same
rules apply–each calculation is carried out 10 times and the best result
is reported. For the following results, the hybrid genetic algorithm is
the algorithm that was developed in this paper. The genetic algorithm
is the algorithm that was used in [1].

The performance value that is used to compare the hybrid genetic
algorithm with the genetic algorithm or the mixed integer program-
ming from the literature is calculated by dividing the hybrid genetic
algorithms solution through the solution of the genetic algorithm or
mixed integer programming. A comparison, for example is that all small
instances are generated by averaging this value over all calculated
instances.

In the small dataset, we can assume that in all cases where we
found the result from the mixed integer programming, we identified
the best possible result. Upon comparison with the genetic algorithm,
it was discovered that the reported genetic algorithm results could be
improved 4 times, our hybrid genetic algorithm tied with the genetic
algorithm 22 times, and 4 times, no solution as good as the reported
genetic algorithm solution could be found.

When we look at the quality over all the 30 instances, the hybrid
genetic algorithm can be found within 0.2% of the genetic algorithm
and within 0.7% of the mixed integer programming.

The robot density is the main factor that increases computational
complexity for this dataset. With a robot density of 0, no cobot can
be assigned to workstations. This means that these instances should
be easier to solve than those with a high robot density, where the
algorithm has to decide where to place cobots and how tasks are
produced on workstations with cobots.

In Table 8, the results of the hybrid genetic algorithm are grouped
by the three different robot densities that have been used in this study.
With the average computational time, the less complex instances with
a robot density of 0 could be easily found and even improved. For

Table 8
Comparison to the small dataset based on robot density.

Robot density 0 0.2 0.4
GA 99.73% 100.08% 100.56%
MIP 100.00% 100.57% 101.30%

Table 9
Comparison to the medium dataset based on robot density.

Robot density 0 0.2 0.4
GA 99.93% 100.78% 101.93%
MIP 100.20% 100.44% 101.53%

Table 10
Comparison to the large dataset based on robot density.

Robot density 0 0.2 0.4
GA 98.88% 100.87% 102.65%
MIP 100.75% 98.92% 103.28%

complex instances with a robot density of 0.4, just the average time
is not enough; therefore, the results are worse than those found in the
literature. All computed data values can be found in Appendix H.

In the medium dataset, only three instances could be improved.
However, even if the best results are not found as often as in the
literature dataset, the algorithm is only 1% worse than the results of
the genetic algorithm and 0.8% worse than the results of mixed integer
programming.

In Table 9, the results are grouped again by robot density. Similar
to the results from the small dataset, the algorithm can find better or
comparable results for instances with a robot density of 0 or 0.2 but
does not find as good results for a robot density of 0.4. The full data
can be found in Appendix I.

In the seven cases, the reported results from the large instances of
the genetic algorithm could be improved. The overall solution quality is
1.2% worse than the solution quality of the genetic algorithm and 1.3%
worse than the solution quality of the mixed integer programming.
Please note that the mixed integer programming only found solutions
for 17 out of the 30 instances.

In Table 10, the results of the large dataset are grouped by robot
density. The results are quite similar to the results of the small and
medium datasets. For instances with a robot density of 0 and 0.2,
the algorithm delivers even better results than the genetic algorithm
and the mixed integer programming from the literature. For instances
with a robot density of 0.4, the run time is not long enough to find
comparable results. The full data can be found in Appendix J.

To allow a fairer comparison of our hybrid genetic algorithm with
the algorithm from the literature on instances with a robot density of
0.4, all such instances are calculated again with doubled time limits
(small: 300 s; medium: 2000s; large: 7200s). The reported quality
develops as follows: Small instances:
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Fig. 19. Comparison GA/HGA/CP - 5 cobots.

• GA: 100.56% ⇒ 99.53%
• MIP: 101.30% ⇒ 100.24%

Medium instances:

• GA: 101.93% ⇒ 101.38%
• MIP: 101.53% ⇒ 100.99%

Large instances:

• GA: 102.65% ⇒ 102.02%
• MIP: 103.28% ⇒ 102.78%

It can be seen that with a fairer time limit, the results come quite
close to those reported in the literature dataset. This means even if our
hybrid genetic algorithm was developed for a real-world dataset, it can
compete with state-of-the-art algorithms from the literature. The full
computational results can be found in Appendices K–M.

6. Main findings

In this paper, a new combined cobot assignment and job shop
scheduling problem was introduced that should be solved based on data
from a real-world company. The optimization goal was to minimize the
makespan and the production costs simultaneously. For this purpose,
we employed a combined objective function based on a normalization
scheme.

In the first computational experiments, where a genetic algorithm
was used to solve this problem, an integer based encoding was com-
pared to a biased random-key encoding. In these experiments, the
results from the biased random-key encoding were 9.7% better than
the results from the integer encoding.

Based on these findings, a hybrid genetic algorithm with biased
random-key encoding was proposed. This hybrid genetic algorithm
combines the exploratory strengths of a genetic algorithm with the
exploitatory strengths of a variable neighborhood search. To further
improve the strengths of the variable neighborhood search, changes
to the current solution are based on properties of the base solution.
This means, when generating a neighboring solution, it is more likely
that a cobot is assigned to a workstation that had high costs or a long
makespan in the original solution.

In Fig. 19, it can be seen that the genetic algorithm and the hybrid
genetic algorithm manage to produce good solutions for the real-
world problem with 5 cobots. However, with the improvements, the
hybrid genetic algorithm is able to improve the solutions of the genetic
algorithm by another 2%. The implemented CP model is able to solve
the problem to a certain degree. Especially small instances without

cobots to assign can be solved in a way that they can compete with
the solutions from the hybrid genetic algorithm.

An additional important finding of this paper is that the first de-
ployed cobot in a production environment has the highest impact on
the objective function. In the investigated real-world data set, the
objective function could be improved by 35% by the first cobot. This
value quickly decreases, with additional cobots that are deployed to the
production environment.

To have an additional comparison between the hybrid genetic algo-
rithm and the CP formulation, 50 artificial data sets have been created.
The results on these data sets look similar to the results from the real-
world instances. Small instances without cobots to assign can be solved
pretty well with the CP model. However, this changes drastically when
the problem setting allows more cobots to be assigned.

The best working algorithm from the first computational experi-
ment, the hybrid genetic algorithm with biased random-key encoding,
is changed in a way that it is able to solve a similar problem, namely
the cobot assignment and assembly line balancing problem from the
literature. A major problem in this comparison is that the complexity of
the instances fluctuates greatly. The focus of our comparison was on the
complex instances with cobots to be assigned and therefore we admit-
ted longer but fixed computation times. With these considerations, the
developed hybrid genetic algorithm is able to compete with the results
reported in the literature.

7. Outlook

The real-world problem and data set used is a representative data
set for medium- to large-sized job shop scheduling problems. It should
be possible to achieve similar results with other real-world data sets.

When applied to other real-world problems, the objective function
might not be clear. Therefore, hybrid multi-objective algorithms such as
the NSGA-II in [26] could be used to optimize multiple objective values
and generate a Pareto optimal front (solutions that are not dominated
by other solutions) that could be presented to a domain expert.

The developed hybrid genetic algorithm with the biased random-
key encoding delivered very good results for both the combined cobot
assignment and job shop scheduling and the combined cobot and
assembly line balancing problems. Additionally, environmental uncer-
tainties can be included in further research. It might be interesting
to see how the flexibility of cobots can be used to assist bottleneck
workstations in case of machine breakdown.
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Appendix A. Artificial data sets

To have additional data sets for the comparison between the hybrid
genetic algorithm and the CP model, 50 artificial data sets in five
categories have been created. In the following Table, these categories
can be seen. In the paper, the categories will be named ‘‘Tasks’’_
‘‘Workstations’’. An example would be 300_30 which is the first cat-
egory in the table. For each data set, solutions with zero, five, and
ten cobots have been created. This means that the hybrid genetic
algorithm, as well as the CP model have evaluated 150 solutions for
this comparison. The run time is 60, 180, and 300 min for data sets
with 300, 600, and 1200 tasks, respectively.

Workstations Workstation groups Orders Tasks
30 10 50 300
30 10 50 600
50 10 50 600
30 10 100 1200
50 10 100 1200

The instances are created in such a way that they are not easy to
solve. In comparison to the real-world instances (where workstations
might be bottlenecks depending on the current orders), all workstation
groups have an equal amount of tasks assigned. Tasks are generated
with the following properties:

• Amount: 1–10
• Production time: 100–200
• 50% chance for setup time in the range: 30–100
• 50% chance for de-setup time in the range: 30–100

Workstations are generated with the following properties:

• Production type

– 50%: Serial workstation with capacity 1
– 50%: Parallel workstation with capacity 2–6

• Time factor: 0.75–1.25
• Cost factor: 0.75–1.25

If more than one part is produced successively on one capacity of a
workstation, the setup time is only necessary before the first amount
that is produced and the de-setup time is only necessary after the last
produced amount.

Appendix B. Parameter settings literature

In the following table, the different settings for the literature data
set can be seen. The west ratio defines the number of workstations,
based on the instance size. An example would be a west ratio (average
number of tasks per workstation) of 2 in a small instance with 20 tasks.
This would lead to 10 workstations. The robot density (percentage of
workstations that have a cobot) will define how much workstation can
get a cobot assigned. The robot flexibility (percentage of tasks that can
be done by a cobot) and the collaborative flexibility (percentage of
tasks that can be done collaborative) define the share of tasks that can
be done by the robot or in collaboration.

Scenario RF CF West ratio Robot density
1 0 0 2 0
2 0.2 0.2 2 0.2
3 0.4 0.4 2 0.2
4 0.2 0.2 2 0.4
5 0.4 0.4 2 0.4
6 0 0 4 0
7 0.2 0.2 4 0.2
8 0.4 0.4 4 0.2
9 0.2 0.2 4 0.4
10 0.4 0.4 4 0.4

Appendix C. Computational results of the genetic algorithm on the
real-world data set

The following Table C.1 shows the average solution quality of the
genetic algorithm (integer and real encoding) over ten runs for zero
and five cobots.

Appendix D. Computational results of the hybrid genetic algo-
rithm on the real-world data set

The following Table D.1 shows the average solution quality of the
hybrid genetic algorithm over ten runs for zero and five cobots.

Appendix E. Solution quality per number of cobots

In the following table, the fitness values for the data set I2_1-637
with changing numbers of cobots can be seen.

Cobots 0 1 2 3 4 5
Run 1 1.15 1.57 1.76 1.77 1.78 1.79
Run 2 1.17 1.58 1.77 1.77 1.79 1.79
Run 3 1.16 1.56 1.78 1.75 1.80 1.77
Run 4 1.17 1.57 1.76 1.75 1.79 1.80
Run 5 1.16 1.56 1.76 1.79 1.79 1.78
Run 6 1.15 1.57 1.77 1.77 1.79 1.79
Run 7 1.16 1.57 1.77 1.78 1.79 1.79
Run 8 1.16 1.57 1.77 1.77 1.77 1.79
Run 9 1.15 1.53 1.77 1.76 1.78 1.79
Run 10 1.16 1.57 1.58 1.77 1.79 1.80
Average 1.16 1.56 1.75 1.77 1.79 1.79

Appendix F. Artificial instances - GA/CP

In the following table, the average objective value for all instances
of one category of the artificial data set can be seen.

Datasets 300_30 600_30 600_50 1200_30 1200_50
GA - 0 cobots 0.75 0.73 0.41 0.61 0.48
GA - 5 cobots 0.98 0.93 0.48 0.78 0.58
GA - 10 cobots 1.12 1.08 0.57 0.95 0.67
CP - 0 cobots 0.41 0.28 0.32 0.10 0.19
CP - 5 cobots −0.61 −1.51 −4.11 −2.85 −5.31
CP - 10 cobots −0.17 −2.14 −4.49 −2.87 −5.24
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Table C.1

Data set I1_1-1261 I2_1-637 I3_638-1261 I4_1-319 I5_320-637 I6_638-958 I7_959-1261

int - 0 cobots 1.09 1.07 1.05 1.14 1.16 1.14 1.24
real - 0 cobots 1.18 1.15 1.14 1.22 1.23 1.25 1.36
int - 5 cobots 1.58 1.60 1.31 1.68 1.67 1.48 1.61
real - 5 cobots 1.79 1.78 1.50 1.81 1.81 1.69 1.73

Table D.1

Hybrid GA I1_1261 I2_1–637 I3_638–1261 I4_1–319 I5_320–637 I6_638–958 I7_959-1261

0 Cobots 1.18 1.15 1.14 1.22 1.23 1.25 1.36
5 Cobots 1.80 1.79 1.50 1.81 1.82 1.70 1.74

Fig. 20. Hybrid GA vs. CP (long run): normalized objective function values for real instances.

Appendix G. Hybrid GA vs. CP long runs - a comparison based on
normalized objective function values

In addition to the CP runs using the same time limits as for the hy-
brid GA, we also ran the CP solver with strongly boosted computational
resources and relaxed time limits. Preliminary attempts showed that it
was not possible to achieve substantial improvements when relying on
the original normalized objective function. Therefore, we adopted the
following two-stage approach: for each instance without cobots, we first
performed a pure makespan minimization run for twelve hours using
six parallel worker threads. In a second step, the CP model is run with
the objective of cost minimization but with an upper bound constraint
on the makespan. The upper bound is set to the best makespan found
during the first stage. Note that this process can be considered a
lexicographic approach as known from multi-objective optimization,
however, with the single-objective problems not solved to optimality.
The reason for the relative order of the two objectives is that when
minimizing the makespan, the production costs stay within reasonable
bounds. When minimizing just the costs (without any constraint on the
makespan), it becomes immediately clear from the model definition
that only the assignment of tasks to workstations and machines matters,
without any consideration of start and completion times. Hence, the
resulting schedule will not be usable.

To accelerate the second stage CP runs, we used the solutions from
stage one to ‘‘warm-start’’ the solver. Furthermore, we fed the first stage
solutions obtained for the zero-cobots scenario into the runs based on
five and ten cobots (again as warm-start solutions) to make sure that
the solver always finds at least one feasible solution.

Based on the stage two results, the individual objectives are finally
combined to a normalized objective value in the same fashion as
described in Sections 5.3.1 and 5.3.2 for the real-world and the artificial
data set, respectively. Figs. 20 and 21 give an overview of the obtained
average normalized values. Note that the results reported for the hybrid
GA were obtained using the original restricted time limits and thus
coincide with those presented in Figs. 14, 15 and 18.

For Appendices J–M, the computational results from the small in-
stances can be seen. The first six columns are used to identify the data
set from the literature. The last three columns show the best result that
have been found by:

• GA: Genetic algorithm from the literature

– GA Gap: Gap between the genetic algorithm and the best
found solution

• MIP: Mixed integer programming from the literature

– MIP Gap: Gap between the mixed integer programming and
the best found solution

• HGA: Hybrid genetic algorithm that has been developed in this
paper

– HGA Gap: Gap between the hybrid genetic algorithm and
the best found solution

Appendix H. Computational results small data set

See Table H.1.

Appendix I. Computational results medium data set

See Table I.1.

Appendix J. Computational results large data set

See Table J.1.

Appendix K. Robot density 0.4 - small instances

See Table K.1.
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Fig. 21. Hybrid GA vs. CP (long run) - normalized objective function values for artificial instances.

Table H.1

Id Stations Size Robots RF CF GA MIP HGA GA Gap MIP Gap HGA Gap

442 5 20 0 20 20 595 595 595 0 0 0
442 5 20 1 20 20 587 587 587 0 0 0
442 5 20 2 20 20 536 536 536 0 0 0
442 10 20 0 20 20 343 343 343 0 0 0
442 10 20 2 20 20 322 320 320 2 0 0
442 10 20 4 20 20 320 320 320 0 0 0
442 5 20 1 40 40 568 568 568 0 0 0
442 5 20 2 40 40 522 522 522 0 0 0
442 10 20 2 40 40 309 309 309 0 0 0
442 10 20 4 40 40 305 291 299 14 0 8
441 5 20 0 20 20 580 580 580 0 0 0
441 5 20 1 20 20 556 556 556 0 0 0
441 5 20 2 20 20 506 506 506 0 0 0
441 10 20 0 20 20 321 321 321 0 0 0
441 10 20 2 20 20 321 321 321 0 0 0
441 10 20 4 20 20 321 321 321 0 0 0
441 5 20 1 40 40 556 556 556 0 0 0
441 5 20 2 40 40 506 506 506 0 0 0
441 10 20 2 40 40 321 321 321 0 0 0
441 10 20 4 40 40 321 321 321 0 0 0
165 5 20 0 20 20 576 576 576 0 0 0
165 5 20 1 20 20 528 526 528 2 0 2
165 5 20 2 20 20 489 489 489 0 0 0
165 10 20 0 20 20 307 302 302 5 0 0
165 10 20 2 20 20 298 285 293 13 0 8
165 10 20 4 20 20 262 262 281 0 0 19
165 5 20 1 40 40 526 524 530 2 0 6
165 5 20 2 40 40 489 488 489 1 0 1
165 10 20 2 40 40 277 277 284 0 0 7
165 10 20 4 40 40 270 260 274 10 0 14

Table I.1

Id Stations Size Robots RF CF GA MIP HGA GA Gap MIP Gap HGA Gap

455 13 50 0 20 20 457 456 456 1 0 0
455 13 50 3 20 20 424 422 426 2 0 4
455 13 50 5 20 20 416 416 423 0 0 7
455 25 50 0 20 20 304 304 304 0 0 0
455 25 50 5 20 20 304 304 304 0 0 0
455 25 50 10 20 20 304 304 304 0 0 0
455 13 50 3 40 40 417 417 422 0 0 5
455 13 50 5 40 40 398 398 409 0 0 11
455 25 50 5 40 40 304 304 304 0 0 0
455 25 50 10 40 40 304 304 304 0 0 0
454 13 50 0 20 20 568 568 568 0 0 0
454 13 50 3 20 20 522 540 527 0 18 5
454 13 50 5 20 20 506 506 525 0 0 19
454 25 50 0 20 20 396 396 396 0 0 0
454 25 50 5 20 20 396 396 396 0 0 0

(continued on next page)
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Table I.1 (continued).
Id Stations Size Robots RF CF GA MIP HGA GA Gap MIP Gap HGA Gap

454 25 50 10 20 20 396 396 396 0 0 0
454 13 50 3 40 40 520 522 527 0 2 7
454 13 50 5 40 40 496 504 513 0 8 17
454 25 50 5 40 40 293 293 300 0 0 7
454 25 50 10 40 40 293 293 299 0 0 6
53 13 50 0 20 20 937 924 935 13 0 11
53 13 50 3 20 20 855 858 873 0 3 18
53 13 50 5 20 20 818 825 858 0 7 40
53 25 50 0 20 20 560 560 560 0 0 0
53 25 50 5 20 20 560 560 560 0 0 0
53 25 50 10 20 20 560 560 560 0 0 0
53 13 50 3 40 40 854 862 862 0 8 8
53 13 50 5 40 40 811 829 848 0 18 37
53 25 50 5 40 40 560 560 560 0 0 0
53 25 50 10 40 40 560 560 560 0 0 0

Table J.1

Id Stations Size Robots RF CF GA MIP HGA GA Gap MIP Gap HGA Gap

451 25 100 0 20 20 1046 1024 1036 22 0 12
451 25 100 5 20 20 991 1003 0 12
451 25 100 10 20 20 946 972 998 0 26 52
451 50 100 0 20 20 605 566 566 39 0 0
451 50 100 10 20 20 568 566 2 0
451 50 100 20 20 20 612 566 46 0
451 25 100 5 40 40 962 1057 995 0 95 33
451 25 100 10 40 40 908 944 972 0 36 64
451 50 100 10 40 40 595 566 29 0
451 50 100 20 40 40 570 566 4 0
328 25 100 0 20 20 576 565 575 11 0 10
328 25 100 5 20 20 525 537 545 0 12 20
328 25 100 10 20 20 501 504 530 0 3 29
328 50 100 0 20 20 322 322 322 0 0 0
328 50 100 10 20 20 322 322 0 0
328 50 100 20 20 20 322 322 0 0
328 25 100 5 40 40 526 540 541 0 14 15
328 25 100 10 40 40 486 500 520 0 14 34
328 50 100 10 40 40 322 322 0 0
328 50 100 20 40 40 322 322 0 0
19 25 100 0 20 20 912 906 920 6 0 14
19 25 100 5 20 20 848 879 878 0 31 30
19 25 100 10 20 20 813 826 857 0 13 44
19 50 100 0 20 20 548 548 548 0 0 0
19 50 100 10 20 20 548 548 0 0
19 50 100 20 20 20 548 548 0 0
19 25 100 10 40 40 791 820 838 0 29 47
19 25 100 10 40 40 791 820 838 0 29 47
19 50 100 10 40 40 548 548 0 0
19 50 100 20 40 40 548 548 0 0

Table K.1

Id Stations Size Robots RF CF GA MIP HGA GA Gap MIP Gap HGA Gap

442 5 20 2 20 20 536 536 536 0 0 0
442 10 20 4 20 20 320 320 320 0 0 0
442 5 20 2 40 40 522 522 522 0 0 0
442 10 20 4 40 40 305 291 299 14 0 8
441 5 20 2 20 20 506 506 506 0 0 0
441 10 20 4 20 20 321 321 321 0 0 0
441 5 20 2 40 40 506 506 506 0 0 0
441 10 20 4 40 40 321 321 321 0 0 0
165 5 20 2 20 20 489 489 489 0 0 0
165 10 20 4 20 20 262 262 281 0 0 19
165 5 20 2 40 40 489 488 489 1 0 1
165 10 20 4 40 40 270 260 274 10 0 14

Appendix L. Robot density 0.4 - medium instances

See Table L.1.

Appendix M. Robot density 0.4 - large instances

See Table M.1.
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Table L.1

Id Stations Size Robots RF CF GA MIP HGA GA Gap MIP Gap HGA Gap

455 13 50 5 20 20 416 416 423 0 0 7
455 25 50 10 20 20 304 304 304 0 0 0
455 13 50 5 40 40 398 398 409 0 0 11
455 25 50 10 40 40 304 304 304 0 0 0
454 13 50 5 20 20 506 506 525 0 0 19
454 25 50 10 20 20 396 396 396 0 0 0
454 13 50 5 40 40 496 504 513 0 8 17
454 25 50 10 40 40 293 293 299 0 0 6
53 13 50 5 20 20 818 825 858 0 7 40
53 25 50 10 20 20 560 560 560 0 0 0
53 13 50 5 40 40 811 829 848 0 18 37
53 25 50 10 40 40 560 560 560 0 0 0

Table M.1

Id Stations Size Robots RF CF GA MIP HGA GA Gap MIP Gap HGA Gap

451 25 100 10 20 20 946 972 998 0 26 52
451 50 100 20 20 20 612 566 46 0
451 25 100 10 40 40 908 944 972 0 36 64
451 50 100 20 40 40 570 566 4 0
328 25 100 10 20 20 501 504 530 0 3 29
328 50 100 20 20 20 322 322 0 0
328 25 100 10 40 40 486 500 520 0 14 34
328 50 100 20 40 40 322 322 0 0
19 25 100 10 20 20 813 826 857 0 13 44
19 50 100 20 20 20 548 548 0 0
19 25 100 10 40 40 791 820 838 0 29 47
19 50 100 20 40 40 548 548 0 0
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Human workers can share a workspace with modern collaborative robots (cobots). The main differences to traditional robots
are, that workers do not need a safety distance when interacting with cobots, as they move slower than typical industrial robots.
Cobots also have fast setup times compared to traditional resources. The hybridization is based on a previous work of the authors,
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instance executed across the selected work stations. Then, by generating process event log data out of selected solutions, state-
of-the-art process mining techniques can be used as visualization and scanning tools for the underlying processes. This way, for
example, bottleneck workstations in the production process can be highlighted. Based on created scenarios, this paper demonstrates
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1. Introduction

Automation has gained significant importance in the past years, see e.g. [5]. Process automation is used to improve
product quality, efficiency, and availability of the production process. For many processes in production companies,
it is important to use state-of-the-art technology in order to stay competitive in the future. In [16], it is shown, that
collaborative robots (cobots) offer new opportunities for different fields of manufacturing companies. These cobots
are designed to work with human workers and no safety distance is necessary. Through this interaction with humans,
cobots allow automatizing workstations, where it was previously not possible. Cobots can be used for activities such
as picking, welding, assembling, or inspecting products.
The different cooperation modes between a cobot and a human actor are described in [3]. The mode that is the furthest
away from cooperation is a traditional robot in a cell that acts alone. When a cobot and a human worker share a
workspace, the following modes are differentiated:

• Synchronization:
Even if the human and the cobot share a workspace in the synchronized mode, only one of both actors works
on the task at the same time.
• Cooperation:

In the cooperation mode, both actors can work simultaneously at the same shared workspace on different tasks.
• Collaboration:

The most interactive mode is the collaboration mode, where both actors can work at the same time on the same
task.

An example for that is interactive process automation based on a picking and placing station [9].
Cobots can be used if traditional robots are not flexible enough or if the workstation does not allow a degree of
automation that is typically used for industrial robots [20]. Through a combination of the humans’ strengths such
as flexibility, adaptability, or decision making and the cobots’ strengths such as speed, endurance, and accuracy the
performance of many workstations can be increased. In comparison to traditional resources, cobots have convenient
setup times (programmable within half a day) which allows companies to adapt to fast changes in production.
When deploying cobots to a real-world environment it is possible to use prescriptive analytics. In [8], it is described
that prescriptive analytics uses historical and real-time data in combination with optimization algorithms and expert
systems to predict possible outcomes of a system. This is done to predict delays or bottlenecks and present options for
how these can be avoided. However, this means that it is necessary to understand why bottlenecks or delays happened
in the past and in the case of cobots, why cobots are placed at specific workstations.

1.1. Problem description and Solution technique

Due to a budget constraint, most companies will only invest in a limited amount of cobots. These cobots should
assist workstations, where a bottleneck is expected in the next planning period. Depending on the objective function,
this can be workstations that will delay the reset of the production or workstations where the production cost can be
significantly reduced by deploying a cobot.
When knowing the orders for the next planning period, it is important to determine on which workstation tasks of
these orders should be produced and where to place cobots to have maximum impact. This impact can be measured in
various ways, examples include production cost, makespan, lead time, tardiness, or a combination of these and other
factors.
Genetic algorithms are commonly used for the optimization of complex problems. These genetic algorithms are
population-based algorithms that start with an initial random generation. With genetic operators such as selection,
crossover, and mutation, new generations get created until a stopping criterion gets reached. A big advantage of ge-
netic algorithms is that they can be applied to nearly all optimization problems and deliver high-quality solutions. The
basic concepts and properties of genetic algorithms are explained in [2].
Since traditional resources are not as flexible as cobots, most existing algorithms are not designed to reallocate re-
sources. In our previous work [6], a new encoding for a job shop scheduling problem for a genetic algorithm is
developed. This encoding is able to assign tasks to workstations, give them a priority, and assign cobots to worksta-
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1. Introduction

Automation has gained significant importance in the past years, see e.g. [5]. Process automation is used to improve
product quality, efficiency, and availability of the production process. For many processes in production companies,
it is important to use state-of-the-art technology in order to stay competitive in the future. In [16], it is shown, that
collaborative robots (cobots) offer new opportunities for different fields of manufacturing companies. These cobots
are designed to work with human workers and no safety distance is necessary. Through this interaction with humans,
cobots allow automatizing workstations, where it was previously not possible. Cobots can be used for activities such
as picking, welding, assembling, or inspecting products.
The different cooperation modes between a cobot and a human actor are described in [3]. The mode that is the furthest
away from cooperation is a traditional robot in a cell that acts alone. When a cobot and a human worker share a
workspace, the following modes are differentiated:

• Synchronization:
Even if the human and the cobot share a workspace in the synchronized mode, only one of both actors works
on the task at the same time.
• Cooperation:

In the cooperation mode, both actors can work simultaneously at the same shared workspace on different tasks.
• Collaboration:

The most interactive mode is the collaboration mode, where both actors can work at the same time on the same
task.

An example for that is interactive process automation based on a picking and placing station [9].
Cobots can be used if traditional robots are not flexible enough or if the workstation does not allow a degree of
automation that is typically used for industrial robots [20]. Through a combination of the humans’ strengths such
as flexibility, adaptability, or decision making and the cobots’ strengths such as speed, endurance, and accuracy the
performance of many workstations can be increased. In comparison to traditional resources, cobots have convenient
setup times (programmable within half a day) which allows companies to adapt to fast changes in production.
When deploying cobots to a real-world environment it is possible to use prescriptive analytics. In [8], it is described
that prescriptive analytics uses historical and real-time data in combination with optimization algorithms and expert
systems to predict possible outcomes of a system. This is done to predict delays or bottlenecks and present options for
how these can be avoided. However, this means that it is necessary to understand why bottlenecks or delays happened
in the past and in the case of cobots, why cobots are placed at specific workstations.

1.1. Problem description and Solution technique

Due to a budget constraint, most companies will only invest in a limited amount of cobots. These cobots should
assist workstations, where a bottleneck is expected in the next planning period. Depending on the objective function,
this can be workstations that will delay the reset of the production or workstations where the production cost can be
significantly reduced by deploying a cobot.
When knowing the orders for the next planning period, it is important to determine on which workstation tasks of
these orders should be produced and where to place cobots to have maximum impact. This impact can be measured in
various ways, examples include production cost, makespan, lead time, tardiness, or a combination of these and other
factors.
Genetic algorithms are commonly used for the optimization of complex problems. These genetic algorithms are
population-based algorithms that start with an initial random generation. With genetic operators such as selection,
crossover, and mutation, new generations get created until a stopping criterion gets reached. A big advantage of ge-
netic algorithms is that they can be applied to nearly all optimization problems and deliver high-quality solutions. The
basic concepts and properties of genetic algorithms are explained in [2].
Since traditional resources are not as flexible as cobots, most existing algorithms are not designed to reallocate re-
sources. In our previous work [6], a new encoding for a job shop scheduling problem for a genetic algorithm is
developed. This encoding is able to assign tasks to workstations, give them a priority, and assign cobots to worksta-
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tions. It is shown, that even a small number of cobots can lead to a high improvement of the solution quality. This
is due to the fact, that the cobots are deployed to bottleneck workstations that slow down the whole production or
workstations that create high production costs.
A genetic algorithm, as described in [6] can be used. This algorithm considers the production speed and production
cost from the different workstations in addition to the orders that should be produced on each workstation. Using this
algorithm results in a high-quality solution, however, it might not be clear what factors or problem characteristics lead
to the decisions of the algorithm.
Whenever the genetic algorithm generates an encoded solution, the evaluation framework is used to evaluate this so-
lution. During this evaluation, the production of all orders is simulated and tasks are assigned to workstations. This
task to workstation assignment with start/end timestamps and additional properties is logged to the event log file.
Process mining is a technique that can be used to mine implicit knowledge from log files. When the genetic algorithm
is executed, log files from selected solutions can be created which then can be analyzed with process mining tech-
niques and the results can be visualized.
Based on these considerations the following questions arise:

• What factors influence the cobot to workstation assignment?
• Can process mining visualize relevant factors that lead to the decision of the genetic algorithm?
• Can information gained from process mining improve the quality of results found by the genetic algorithm?

Since this is a novel optimization problem, it is not clear what factors besides the objective function are relevant
factors that influence the placement of a cobot. Examples of such factors could be the number of workstations that
can handle the same tasks, the duration of the individual tasks, or the number of tasks.
State-of-the-art process mining techniques should be used to visualize the attributes such as production cost and
production time that lead to the decisions of the genetic algorithm. If process mining techniques can be used to
visualize the decisions of the genetic algorithm, it might be possible to use this implicit knowledge to improve the
performance of the genetic algorithm.

2. Solution method

2.1. Process mining

“Process automation and process mining are regarded as key technologies for digital transformation” [11]. Process
mining has created high expectations due to the increased level of transparency [10], particularly in manufacturing
[14]. Process execution information – explicitly managed by a process engine or implicitly executed by one or several
information systems – is stored in process event logs. The main part of a log is a large number of traces. A trace is
a set of events related to one case. In a production company, this trace could be one order and the events could then
define the production steps that have been executed to produce this order. Various extensions can be used to define
attributes of traces and events. These attributes that are defined by extensions are essential for many process mining
algorithms. The ”.xes” format is commonly used for representing process event logs [1] and is also used for generated
log files in this paper.
Process mining [15] comprises techniques to a) discover the underlying process model from the process event logs
(process discovery), b) check if the process event log conforms to an expected process model (conformance check-
ing), and c) enhance process models. To discover process models out of these event logs, well-known process mining
techniques, such as the inductive miner can be used. In [13] it is shown, that the inductive miner is able to gener-
ate process models out of car manufacturing processes and identify bottlenecks in the manufacturing process. This
inductive miner is used to generate BPMN models out of log data in this paper.
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task to workstation assignment with start/end timestamps and additional properties is logged to the event log file.
Process mining is a technique that can be used to mine implicit knowledge from log files. When the genetic algorithm
is executed, log files from selected solutions can be created which then can be analyzed with process mining tech-
niques and the results can be visualized.
Based on these considerations the following questions arise:

• What factors influence the cobot to workstation assignment?
• Can process mining visualize relevant factors that lead to the decision of the genetic algorithm?
• Can information gained from process mining improve the quality of results found by the genetic algorithm?

Since this is a novel optimization problem, it is not clear what factors besides the objective function are relevant
factors that influence the placement of a cobot. Examples of such factors could be the number of workstations that
can handle the same tasks, the duration of the individual tasks, or the number of tasks.
State-of-the-art process mining techniques should be used to visualize the attributes such as production cost and
production time that lead to the decisions of the genetic algorithm. If process mining techniques can be used to
visualize the decisions of the genetic algorithm, it might be possible to use this implicit knowledge to improve the
performance of the genetic algorithm.

2. Solution method

2.1. Process mining

“Process automation and process mining are regarded as key technologies for digital transformation” [11]. Process
mining has created high expectations due to the increased level of transparency [10], particularly in manufacturing
[14]. Process execution information – explicitly managed by a process engine or implicitly executed by one or several
information systems – is stored in process event logs. The main part of a log is a large number of traces. A trace is
a set of events related to one case. In a production company, this trace could be one order and the events could then
define the production steps that have been executed to produce this order. Various extensions can be used to define
attributes of traces and events. These attributes that are defined by extensions are essential for many process mining
algorithms. The ”.xes” format is commonly used for representing process event logs [1] and is also used for generated
log files in this paper.
Process mining [15] comprises techniques to a) discover the underlying process model from the process event logs
(process discovery), b) check if the process event log conforms to an expected process model (conformance check-
ing), and c) enhance process models. To discover process models out of these event logs, well-known process mining
techniques, such as the inductive miner can be used. In [13] it is shown, that the inductive miner is able to gener-
ate process models out of car manufacturing processes and identify bottlenecks in the manufacturing process. This
inductive miner is used to generate BPMN models out of log data in this paper.
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2.2. Design Choices

In order to use process mining to find factors that influence the placement of cobots, process mining has to be
able to analyze the results generated by a metaheuristic. Process mining is based on implicit knowledge that is mined
from event log files, however, this is not the default output of a metaheuristic. The genetic algorithm with a biased
random-key encoding developed in [6], has been used to solve the extended cobot placement and job shop scheduling
problem. The objective function is the sum of production cost and makespan. The genetic algorithm is extended in
such a way, that a ”.xes” event log file is created for the best solution that has been found during the execution of the
algorithm. This can be seen in Figure 1.
The created event log file of the best solution of the genetic algorithm is used as a basis for further process mining

Fig. 1. Overall approach

steps. Potential results or typical patterns of this process mining step are visualized in this paper and explorative
analysis steps are used to generated knowledge. This can be seen in Figure 1. The idea is, that the logs of the best
solutions contain the implicit knowledge of why and based on what factors cobots are placed on workstations. In

Fig. 2. Event log file structure

Figure 2, the structure of such an event log file can be seen. The file starts with an extensions section, that defines
attributes that can be used for different process mining algorithms. Examples of such commonly used attributes are
process start and end dates. The next section is a classifier section. These classifiers are predefined sets of attributes
that are used for the nodes in the mined models. To reach the goal of displaying interesting attributes of workstations,
the classifier for the scenarios is the workstation where a process is executed. The main part of the file contains traces
and events. In this case, traces relate to orders that should be produced and events in these traces contain information
about tasks that have to be performed. An example order could be the production of a mechanical part. To produce
this mechanical part, different tasks such as cutting, drilling, welding, and assembling have to be done.
The standard representation for business processes is the Business Process Modeling and Notation (BPMN) format
(www.bpmn.org). This format has the advantage of being easily understandable for end-users. Hence, we opt for
mining process models in BPMN format from the process event logs. To mine a BPMN model out of the generated
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event log files a process discovery algorithm, an inductive miner, as described in [7], is used. This process mining
method generates a Petri net, which is converted to a BPMN model.
For analyzing the solution of the genetic algorithm mined BPMN model should be enriched with attributes that
highlight why a cobot is placed on a specific workstation. Following [4], the attribute values are displayed by
visualizations styles applied to the process tasks, i.e., the color and size of the nodes are varied in order to represent
attribute values. The attributes that are visualized are attributes that have been logged to the event log file. The goal of
this visualization is, that decision-relevant attributes for cobot placement are discovered, that can be used alongside
mined information to improve cobot placement.

2.3. Implementation

The genetic algorithm with a biased random-key encoding as described in [6] is implemented in HeuristicLab [17].
For the evaluation of one solution, the simulation framework Easy4Sim provided by the RISC Software GmbH has
been used. This framework can be easily extended and allows an efficient evaluation of individuals that have been
generated by the genetic algorithm [19].
To perform process mining tasks on the event log files that have been created during the evaluation in the evaluation
framework, the process mining framework pm4py is used [18].

3. Preliminary results

In [12], fundamental patterns that can occur when describing a business process are described. To find out which
attributes influence the placements of cobots in the extended cobot assignment and job shop scheduling problem,
scenarios are created with the following control-flow patterns:

• Sequence
An activity can be done after a preceding activity finishes.
• Exclusive choice

A branch is split into two or more branches. However, only one of these branches is active after the split.
• Simple merge

Two or more branches are joined together. If one of the incoming branches is active, the outgoing branch will
be active.
• Loop

A loop allows the representation of cycles in a process model.

In the extended cobot assignment and job shop scheduling problem described in [6], tasks are limited to one
predecessor and one successor task. This is also assumed in the generated scenarios and therefore no parallel split and
parallel merge scenarios are created. Based on these patterns, the goal was to find cobot placement relevant attributes.
In the created scenarios, each task that should be produced has a base duration that is modified by a speed factor of
a workstation. When a task with a base duration of 100 seconds is produced on a workstation with a speed factor of
0.8, the task will be finished in 80 seconds. The cost to produce a task is the total time multiplied by the cost factor.
This means if the task with a total duration of 80 is produced on a workstation with a cost factor of 1.5, a cost of
120 will be generated. The objective function for the optimization for these examples is simply the sum of costs and
makespan (total time until all tasks have been finished). It is assumed that a cobot speeds up the production by 30%
and, therefore, also reduces the costs by 30%.

3.1. Attribute visualization

In [4] it is described, how scaling, positioning, and labeling can be used to visualize multiple process attributes.
For the following scenarios we use scaling, labeling, and additionally coloring of the nodes for the visualization. The
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production cost will be visualized with the use of color in the BPMN. The color ranges from green (cheap workstation
compared to the other workstations) to red (expensive workstations). The width of the nodes in the BPMN represents
the production time of the workstations (a higher production time means a wider node). The production cost and
production time are also displayed in the label of the node. At the left top of each scenario, the base duration of the
tasks is stated. The color of the start and end node has no semantics.

3.2. Scenario 1 - exclusive choice

Fig. 3. Scenario 1 (Cost: color, Production time: width of the nodes)

In Figure 3 on the left side of the first scenario, two workstations work in parallel and both should produce 20 tasks
that have a base duration of 100. For this parallel part, the tasks are split with an exclusive choice and merged with a
simple merge after the production. On the right side, it can be seen that the mined BPMN model has been enriched
with information from the workstations. It is shown that the workstation ”Milling1” created costs of 3000 and had a
production time of 3000. The drilling workstation finished significantly faster in 2000 and had costs of 4000. When
taking a closer look at how much the objective function gets influenced due to the deployment of a cobot, the following
changes can be seen:

• Milling1
– Cost: -900
– Production time: -900

• Drilling1
– Cost: -1200
– Production time: -600 (not relevant for the makespan)

The total objective function in this example is 10000 (7000 costs + 3000 makespan). Since the production time of
the drilling workstations is not relevant for the objective function, the algorithm will place a cobot to the milling
workstation if one cobot is available, reducing the objective value to 8200.

3.3. Scenario 2 - exclusive choice and sequence

In Figure 4, a more complex version of the first scenario is shown. In comparison to Figure 3, the additional
workflow pattern sequence is used. In the scenario depicted in Fig. 4 on the left side, there is only 1 task for
milling/drilling and 1 task for assembling/turning. This task has a base duration of 2000. When running the algorithm
with no cobots, the result that is shown at the bottom is generated. When allowing the algorithm to place a cobot, this
cobot gets placed on one of the top workstations. This is due to the fact that these workstations have the highest costs
and are relevant for the makespan. Placing the cobot on one of these workstations will reduce the objective function
from 22000 (14000 costs + 8000 makespan in the top path) to 19800 (1200 cost and 1000 makespan reduction).
When considering the version of this scenario shown at the top right in Figure 4, the only change is that instead of
one task with a duration of 2000, there are now 20 tasks with a duration of 100. Since tasks can be started on the
next machine once they are finished, this will lead to a new makespan of 6100 (the top path will finish at 4200).
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event log files a process discovery algorithm, an inductive miner, as described in [7], is used. This process mining
method generates a Petri net, which is converted to a BPMN model.
For analyzing the solution of the genetic algorithm mined BPMN model should be enriched with attributes that
highlight why a cobot is placed on a specific workstation. Following [4], the attribute values are displayed by
visualizations styles applied to the process tasks, i.e., the color and size of the nodes are varied in order to represent
attribute values. The attributes that are visualized are attributes that have been logged to the event log file. The goal of
this visualization is, that decision-relevant attributes for cobot placement are discovered, that can be used alongside
mined information to improve cobot placement.

2.3. Implementation

The genetic algorithm with a biased random-key encoding as described in [6] is implemented in HeuristicLab [17].
For the evaluation of one solution, the simulation framework Easy4Sim provided by the RISC Software GmbH has
been used. This framework can be easily extended and allows an efficient evaluation of individuals that have been
generated by the genetic algorithm [19].
To perform process mining tasks on the event log files that have been created during the evaluation in the evaluation
framework, the process mining framework pm4py is used [18].

3. Preliminary results

In [12], fundamental patterns that can occur when describing a business process are described. To find out which
attributes influence the placements of cobots in the extended cobot assignment and job shop scheduling problem,
scenarios are created with the following control-flow patterns:

• Sequence
An activity can be done after a preceding activity finishes.
• Exclusive choice

A branch is split into two or more branches. However, only one of these branches is active after the split.
• Simple merge

Two or more branches are joined together. If one of the incoming branches is active, the outgoing branch will
be active.
• Loop

A loop allows the representation of cycles in a process model.

In the extended cobot assignment and job shop scheduling problem described in [6], tasks are limited to one
predecessor and one successor task. This is also assumed in the generated scenarios and therefore no parallel split and
parallel merge scenarios are created. Based on these patterns, the goal was to find cobot placement relevant attributes.
In the created scenarios, each task that should be produced has a base duration that is modified by a speed factor of
a workstation. When a task with a base duration of 100 seconds is produced on a workstation with a speed factor of
0.8, the task will be finished in 80 seconds. The cost to produce a task is the total time multiplied by the cost factor.
This means if the task with a total duration of 80 is produced on a workstation with a cost factor of 1.5, a cost of
120 will be generated. The objective function for the optimization for these examples is simply the sum of costs and
makespan (total time until all tasks have been finished). It is assumed that a cobot speeds up the production by 30%
and, therefore, also reduces the costs by 30%.

3.1. Attribute visualization

In [4] it is described, how scaling, positioning, and labeling can be used to visualize multiple process attributes.
For the following scenarios we use scaling, labeling, and additionally coloring of the nodes for the visualization. The
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production cost will be visualized with the use of color in the BPMN. The color ranges from green (cheap workstation
compared to the other workstations) to red (expensive workstations). The width of the nodes in the BPMN represents
the production time of the workstations (a higher production time means a wider node). The production cost and
production time are also displayed in the label of the node. At the left top of each scenario, the base duration of the
tasks is stated. The color of the start and end node has no semantics.

3.2. Scenario 1 - exclusive choice

Fig. 3. Scenario 1 (Cost: color, Production time: width of the nodes)

In Figure 3 on the left side of the first scenario, two workstations work in parallel and both should produce 20 tasks
that have a base duration of 100. For this parallel part, the tasks are split with an exclusive choice and merged with a
simple merge after the production. On the right side, it can be seen that the mined BPMN model has been enriched
with information from the workstations. It is shown that the workstation ”Milling1” created costs of 3000 and had a
production time of 3000. The drilling workstation finished significantly faster in 2000 and had costs of 4000. When
taking a closer look at how much the objective function gets influenced due to the deployment of a cobot, the following
changes can be seen:

• Milling1
– Cost: -900
– Production time: -900

• Drilling1
– Cost: -1200
– Production time: -600 (not relevant for the makespan)

The total objective function in this example is 10000 (7000 costs + 3000 makespan). Since the production time of
the drilling workstations is not relevant for the objective function, the algorithm will place a cobot to the milling
workstation if one cobot is available, reducing the objective value to 8200.

3.3. Scenario 2 - exclusive choice and sequence

In Figure 4, a more complex version of the first scenario is shown. In comparison to Figure 3, the additional
workflow pattern sequence is used. In the scenario depicted in Fig. 4 on the left side, there is only 1 task for
milling/drilling and 1 task for assembling/turning. This task has a base duration of 2000. When running the algorithm
with no cobots, the result that is shown at the bottom is generated. When allowing the algorithm to place a cobot, this
cobot gets placed on one of the top workstations. This is due to the fact that these workstations have the highest costs
and are relevant for the makespan. Placing the cobot on one of these workstations will reduce the objective function
from 22000 (14000 costs + 8000 makespan in the top path) to 19800 (1200 cost and 1000 makespan reduction).
When considering the version of this scenario shown at the top right in Figure 4, the only change is that instead of
one task with a duration of 2000, there are now 20 tasks with a duration of 100. Since tasks can be started on the
next machine once they are finished, this will lead to a new makespan of 6100 (the top path will finish at 4200).
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Fig. 4. Scenario 2 (Cost: color, Production time: width of the nodes)

When allowing the algorithm to place a cobot, the cobot now gets placed at the assembly workstation (high costs and
the only makespan relevant workstation). Reducing the objective function from 20100 (14000 costs and a makespan
of 6100) to 17370 (13100 costs and a makespan of 4370). This scenario demonstrates how the task duration can
influence the cobot placement.

3.4. Scenario 3 - workstation groups

Fig. 5. Scenario 3 (Cost: color, Production time: width of the nodes)

In Figure 5 on the left hand side, a scenario with workstation groups can be seen. For each workstation group, an
exclusive choice and a simple merge pattern is used. This means that for all 20 tasks a milling task has to be done
before a drilling task. A milling task can be produced on all milling workstations and a drilling task can be done on
all drilling workstations.
After running the genetic algorithm with 0 cobots, the BPMN model on the right side of Figure 5 can be mined from
the log files. What can be seen is, that the two workstations with the highest time factor are not utilized at all. The
drilling workstation with cost factor two gets only nine tasks assigned and still has the highest cost.
In Figure 6, the computed solution when the algorithm is allowed to place one cobot can be seen. Interestingly, the

Fig. 6. Scenario 3 - 1 cobot (Cost = color, Production time = width of the nodes)

best solution is to place the cobot on the cheapest drilling workstation and then produce all tasks on this workstation,
while the more expensive workstations are idle.

3.5. Scenario 4 - loop

In Figure 7, a rather simple scenario with three workstations is shown. Ten orders need a preparation, drilling, and
packaging task. When allowing the placement of one cobot, this cobot gets placed on the preparation workstation,
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Fig. 7. Scenario 4.1 (Cost: color, Production time: width of the nodes)

Fig. 8. Scenario 4.2 (Cost: color, Production time: width of the nodes)

because this workstation has the highest costs and the longest production time. When looking at Figure 8, it can be
seen that this is an extended version of scenario 4.1. In this scenario, the drilling workstation has an error and an
additional measure, repair, and drilling step is necessary two times, for each drilling task in scenario 4.1. This will
result in the workflow pattern, a loop.
In this example, the drilling workstation has the lowest sum of production speed and cost factor. However, in the
mined model on the right side of Figure 8, it is apparent that this workstation is part of the loop and is therefore highly
utilized. Through this utilization, the workstation still has high costs and a long production time. When allowing the
algorithm to place one cobot, this cobot gets deployed to the drilling in comparison to the preparation workstation of
scenario 4.1.

3.6. Findings

Based on the discussed scenarios, we group properties that influence the placement of a cobot in two categories.
The first category is properties that have a direct impact on the objective function:

• Time factor
• Cost factor
• Task amount
• Base duration of the tasks

These four properties result in production cost and production time and all four have a high impact on the placement
of cobots.
The second category is properties of the scenario that can influence the placements of cobots, even if they do not
directly influence the objective function:

• Workstation groups
• Scenario layout

Workstation groups allow the algorithm to shift tasks between workstations resulting in interesting choices as it is
demonstrated in Figure 5. The layout of the scenario can also influence the cobot deployment in a meaningful way.
An example would be the loop in Figure 8 that will favor assigning the cobot to a fast and cheap workstation.
The scenarios have been constructed to demonstrate what factors influence the placement of a cobot and show that
process mining has huge potential to visualize and analyze the results of genetic algorithms. The default output for
these algorithm runs would be a text file that shows the cobot-to-workstation assignment and the task to workstation
assignment. For small scenarios, this could manually be transformed to visualizations as shown in this paper.
However, when the scenarios increase in complexity, this is not possible any longer.
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Fig. 4. Scenario 2 (Cost: color, Production time: width of the nodes)

When allowing the algorithm to place a cobot, the cobot now gets placed at the assembly workstation (high costs and
the only makespan relevant workstation). Reducing the objective function from 20100 (14000 costs and a makespan
of 6100) to 17370 (13100 costs and a makespan of 4370). This scenario demonstrates how the task duration can
influence the cobot placement.

3.4. Scenario 3 - workstation groups

Fig. 5. Scenario 3 (Cost: color, Production time: width of the nodes)

In Figure 5 on the left hand side, a scenario with workstation groups can be seen. For each workstation group, an
exclusive choice and a simple merge pattern is used. This means that for all 20 tasks a milling task has to be done
before a drilling task. A milling task can be produced on all milling workstations and a drilling task can be done on
all drilling workstations.
After running the genetic algorithm with 0 cobots, the BPMN model on the right side of Figure 5 can be mined from
the log files. What can be seen is, that the two workstations with the highest time factor are not utilized at all. The
drilling workstation with cost factor two gets only nine tasks assigned and still has the highest cost.
In Figure 6, the computed solution when the algorithm is allowed to place one cobot can be seen. Interestingly, the

Fig. 6. Scenario 3 - 1 cobot (Cost = color, Production time = width of the nodes)

best solution is to place the cobot on the cheapest drilling workstation and then produce all tasks on this workstation,
while the more expensive workstations are idle.

3.5. Scenario 4 - loop

In Figure 7, a rather simple scenario with three workstations is shown. Ten orders need a preparation, drilling, and
packaging task. When allowing the placement of one cobot, this cobot gets placed on the preparation workstation,
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Fig. 7. Scenario 4.1 (Cost: color, Production time: width of the nodes)

Fig. 8. Scenario 4.2 (Cost: color, Production time: width of the nodes)

because this workstation has the highest costs and the longest production time. When looking at Figure 8, it can be
seen that this is an extended version of scenario 4.1. In this scenario, the drilling workstation has an error and an
additional measure, repair, and drilling step is necessary two times, for each drilling task in scenario 4.1. This will
result in the workflow pattern, a loop.
In this example, the drilling workstation has the lowest sum of production speed and cost factor. However, in the
mined model on the right side of Figure 8, it is apparent that this workstation is part of the loop and is therefore highly
utilized. Through this utilization, the workstation still has high costs and a long production time. When allowing the
algorithm to place one cobot, this cobot gets deployed to the drilling in comparison to the preparation workstation of
scenario 4.1.

3.6. Findings

Based on the discussed scenarios, we group properties that influence the placement of a cobot in two categories.
The first category is properties that have a direct impact on the objective function:

• Time factor
• Cost factor
• Task amount
• Base duration of the tasks

These four properties result in production cost and production time and all four have a high impact on the placement
of cobots.
The second category is properties of the scenario that can influence the placements of cobots, even if they do not
directly influence the objective function:

• Workstation groups
• Scenario layout

Workstation groups allow the algorithm to shift tasks between workstations resulting in interesting choices as it is
demonstrated in Figure 5. The layout of the scenario can also influence the cobot deployment in a meaningful way.
An example would be the loop in Figure 8 that will favor assigning the cobot to a fast and cheap workstation.
The scenarios have been constructed to demonstrate what factors influence the placement of a cobot and show that
process mining has huge potential to visualize and analyze the results of genetic algorithms. The default output for
these algorithm runs would be a text file that shows the cobot-to-workstation assignment and the task to workstation
assignment. For small scenarios, this could manually be transformed to visualizations as shown in this paper.
However, when the scenarios increase in complexity, this is not possible any longer.
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4. Conclusion and outlook

This paper demonstrates that process mining can interact with genetic algorithms in a way that visualizes the results
of the genetic algorithm. Based on these visualizations, important properties for the placement of a cobot in a job shop
scheduling problem are identified.
It is shown that implicit knowledge that is generated by utilizing a genetic algorithm or another heuristic solution
approach on an extended cobot assignment and job shop scheduling problem can be analyzed with modern process
mining approaches. The findings of this process mining, especially the cobot placement relevant properties, should
help to enable prescriptive analytics for cobot placement in real-world companies.
State-of-the-art process mining might be applicable to analyze the optimization results from other optimization tech-
niques and problems. This can allow companies to analyze and visualize optimization results where it was previously
not possible. These visualizations can be used to gather implicit process knowledge as demonstrated in this paper and
to improve the processes based on the generated knowledge. Process mining might be an interesting tool to better
understand the results of optimization algorithms for any kind of real-world company or researcher.
In our upcoming work, the found factors that influence the placement of a cobot should be used in addition to implicit
knowledge that is mined from event logs. This combination should be used to improve the quality of the results that
are generated by a genetic algorithm or another metaheuristic on a large real-world data set.
Additionally, scenarios with conditional decisions and parallel workflow patterns should be reviewed. Such a con-
ditional decision would be that, depending on a predecessor task, only a subgroup of successor tasks is allowed.
For instance, that only successor workstations within a specific range to a workstation are allowed. This will mean,
that orders can choose between different paths through the shop floor. In such scenarios, the physical position of a
workstation will have an impact on the placement of cobots.
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4. Conclusion and outlook
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of the genetic algorithm. Based on these visualizations, important properties for the placement of a cobot in a job shop
scheduling problem are identified.
It is shown that implicit knowledge that is generated by utilizing a genetic algorithm or another heuristic solution
approach on an extended cobot assignment and job shop scheduling problem can be analyzed with modern process
mining approaches. The findings of this process mining, especially the cobot placement relevant properties, should
help to enable prescriptive analytics for cobot placement in real-world companies.
State-of-the-art process mining might be applicable to analyze the optimization results from other optimization tech-
niques and problems. This can allow companies to analyze and visualize optimization results where it was previously
not possible. These visualizations can be used to gather implicit process knowledge as demonstrated in this paper and
to improve the processes based on the generated knowledge. Process mining might be an interesting tool to better
understand the results of optimization algorithms for any kind of real-world company or researcher.
In our upcoming work, the found factors that influence the placement of a cobot should be used in addition to implicit
knowledge that is mined from event logs. This combination should be used to improve the quality of the results that
are generated by a genetic algorithm or another metaheuristic on a large real-world data set.
Additionally, scenarios with conditional decisions and parallel workflow patterns should be reviewed. Such a con-
ditional decision would be that, depending on a predecessor task, only a subgroup of successor tasks is allowed.
For instance, that only successor workstations within a specific range to a workstation are allowed. This will mean,
that orders can choose between different paths through the shop floor. In such scenarios, the physical position of a
workstation will have an impact on the placement of cobots.
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Abstract. Methods from Operations Research (OR) are employed to
address a diverse set of Business Process Management (BPM) problems
such as determining optimum resource allocation for process tasks. How-
ever, it has not been comprehensively investigated how BPM methods
can be used for solving OR problems, although process mining, for ex-
ample, provides powerful analytical instruments. Hence, in this work, we
show how process discovery, a subclass of process mining, can generate
problem knowledge to optimize the solutions of metaheuristics to solve
a novel OR problem, i.e., the combined cobot assignment and job shop
scheduling problem. This problem is relevant as cobots can cooperate
with humans without the need for a safe zone and currently significantly
impact transitions in production environments. In detail, we propose two
process discovery based neighborhood operators, namely process discov-
ery change and process discovery dictionary change, and implement and
evaluate them in comparison with random and greedy operations based
on a real-world data set. The approach is also applied to another OR
problem for generalizability reasons. The combined OR and process dis-
covery approach shows promising results, especially for larger problem
instances.

Keywords: Process Discovery · Operations Research · Metaheuristics ·
Memetic algorithm · Industry 4.0

1 Introduction

The application of techniques from Operations Research (OR) has been identi-
fied as promising “avenue to obtain better processes” , although “OR techniques
have not been systematically applied to solve process improvement problems
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yet” [2]. One example of the application of OR techniques to BPM is the allo-
cation of resources to process tasks, e.g., [10]. Another example is the use of a
memetic algorithm (MA) to mine change propagation behavior in process collab-
orations under confidential information, i.e., details on private processes [9]. Less
attention has been paid to the reverse direction, i.e., how BPM methods such
as process discovery (PD) can contribute to solve OR problems, even though
PD provides powerful analytical instruments. [23] uses conformance checking to
improve a scheduling problem in a hospital setting. In [13], we propose to use PD
for visualization and exploration of solutions for a combined cobot assignment
and job shop scheduling problem. In this case, the solutions that are generated
by an MA are represented as process event logs. The discovered process models
are then enriched by attributes such as cost and time for visual inspection and
comparison of the solutions. In this work, we study how to exploit PD techniques
for generating knowledge to optimize metaheuristics solutions based on two se-
lected OR problems from the production domain, i.e., the cobot assignment and
job shop scheduling problem [12] and flexible job shop scheduling problem [6]
with an extended cobot assignment. As both problems are NP-hard optimization
problems [29], metaheuristics offer promising solutions that are highly relevant in
industry. MAs are one kind of metaheuristics that have proven useful for solving
the cobot assignment and job shop scheduling problem [12]: a genetic algorithm
explores the search space, and for promising solutions, a variable neighbourhood
search (VNS) is performed. To investigate the potential of PD to metaheuristics,
in this paper, we investigate i) how PD can be used in order to generate problem
knowledge to optimize the solutions of the MA and ii) how much the solution
quality can be increased. For this, we propose two PD-based neighbourhood
operators, namely process discovery change and process discovery dictionary
change. Both operators are implemented and evaluated alongside two standard
neighbourhood operations, i.e., basic change and greedy change, based on three
data sets for the two problems described above. The results underpin the po-
tential of PD-based neighbourhood operations, especially for large data sets and
many cobots.
Figure 1 depicts an overview of the overall idea and algorithm. On the left side in
the operations research part of Fig. 1, it can be seen that an optimization prob-
lem is loaded and initial solutions for the problem are generated. After loading
the problem, the main loop of the MA (detailed description in Sections 3 and 4)
starts, and all individuals are evaluated. Whenever a new best solution is found,
this solution is stored and a log file of this solution is created. In the BPM part of
the Fig. 1, a local process model (LPM) is mined out of this log file and an LPM
dictionary (described in Sections 4.3 and 4.4) is created. Knowledge generated
with these models can now be used to boost the performance of the MA. The
paper has the following outline. Section 2 discusses related work. Section 3 ex-
plains fundamental concepts for the work, such as memetic algorithm and local
process models. In Section 4, the solution for the selected OR problems, includ-
ing the PD-based neighbourhood operators, is described. Section 5 presents the
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Fig. 1. MA with process discovery knowledge

computational experiments to show the performance of the algorithm. Section 6
concludes the paper.

2 Related Work

Scheduling problems in production are one of the hardest and most studied NP-
hard optimization problems [29]. In [7], it is described that in the last decades,
a lot of research has been done on developing efficient heuristic optimization
algorithms for the (flexible) job shop scheduling problem due to its relevance for
the industry. Especially local search methods like tabu search [25] have proven
successful in this area. By combining the exploitation capabilities of local search
with the explorative power of genetic algorithms [4], so-called MAs represent a
hybrid between these two search paradigms. One of the most recent effective
applications of such an algorithm to job shop scheduling is described in [30].
For process (re-)design, different OR methods have been used, e.g., mathemat-
ical programming [15]. [17] provides an overview of questions and approaches
for automated planning in process design. OR methods are also used to deter-
mine the optimal data flow in process choreographies [14]. [5] put process model
optimization to runtime based on formulating and solving a declarative process
model plus temporal constraint as constraint satisfaction problem. Stochastic
Petri nets [21,16] can be employed to model, simulate, and analyze dynamic
process settings. PD has been mainly used to visualize and explore the results
of the OR method to a given problem, so far. [8] uses process mining to analyze
logs before scheduling in a hospital environment. In [13], we suggest using pro-
cess mining to visually explore the results of cobot assignments by translating
the schedules into logs. In [9], process mining is used to visualize and compare
the solutions of an MA to predict change propagation behaviour in distributed
process settings with and without confidentiality requirements. In [23] processes
from a real-world clinic are improved: existing logs are analyzed, and a schedule
is created with OR methods which is used to analyze the cause of deviations and
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to improve the process. However, the aforementioned approaches do not exploit
process mining techniques to optimize OR methods.

3 Fundamentals

This section presents background information on memetic algorithms and local
process model mining as the two fundamental concepts combined in the solution
method presented in this work.

3.1 Memetic Algorithms (MA)

In order to understand how MAs work, we introduce the fundamentals of ge-
netic algorithms (GA) and local search (LS) methods. GAs are an abstraction
of biological evolution. A set of solutions (population) is the basis. Selection,
crossover, and mutation operations transform this initial set of solutions to the
next generation. A selection operator selects two parents for the next genera-
tion. The idea is that fitter individuals are selected more often. The crossover
operator now combines these two individuals and therefore mimics biological re-
production. The mutation operator can slightly change the produced offspring,
similar to a natural mutation. By representing a problem as an individual of
the population and creating a fitness function, that can assign fitness to new
individuals, this basic genetic algorithm can solve a broad range of optimization
problems [18]
LS methods start with a single solution. A set of local changes are applied to the
starting solution, which will improve the starting solution until a local optimum
has been found. Basic local search methods will stop once a local optimum has
been found. However, there are algorithms that can escape local optima and
continue the search. One of these algorithms is a VNS. This algorithm explores
increasing neighbourhoods (a kth neighbouring solution can be reached with k
changes to the base solution), e.g. neighbourhoods with 1, 2, or 3 changes to
the base solution. If an improvement to the best solution has been found, the
algorithm is restarted from the newfound solution. [19]
A GA has a population and explores large parts of the search space. These GAs
can be combined with LS so that the LS is applied to promising solutions that
the GA finds. This MA combines global and local search methods and was able
to provide good results for many practical problems. [20]

3.2 Local process model mining

Process models allow to specify, describe, understand, and document processes
more effectively than they can do using text. Process models can be used to
understand processes and make decisions [11]. Due to high concurrency and
complex dependencies, simple sequence mining techniques do not work well on
modern processes. However, process discovery (PD) algorithms have proven to
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capture processes adequately based on event logs [3]. Local process model (LPM)
mining is a PD technique introduced in [24] that aims at extracting the best
LPM from an event log. LPMs are generated based on an initial set of process
trees containing only one node, i.e., one workstation. These trees are assigned
a fitness value based on five quality criteria, such as the number of traces that
can be considered an instance of the LPM (support) and the harmonic mean of
all explainable event occurrences divided by not explainable event occurrences
(confidence) [24]. All or a subset of the process trees are selected for the next
generation based on their fitness. The process trees are then expanded with
different operators and nodes. This is necessary, as one node might be no good
presentation for a large process. In the expansion step, a leaf is replaced by an
operator. The original leaf is the first child of the new operator, and a second
random node is the second child of the operator. This expansion step is done
multiple times, until a stopping criterium is reached, and the best process tree is
stored. These generated process trees can be converted into LPMs at any time.

4 Solution Method

This section describes the OR problems and the MA that has been used to solve
them (see [12]). Moreover, this section defines the novel PD-based neighbourhood
operators.

4.1 Operations Research Problems

We present the necessary details of the two OR problems based on which we
investigate the potential of employing PD in metaheuristics. [12] describes or-
ders and tasks. However, for clarity, orders and tasks will be called jobs and
operations. [6] describes machines. However, for clarity, machines will be called
workstations, as human workers can interact with machines and cobots on these
workstations.

OR Problem 1 (Cobot assignment and job shop scheduling problem [12])
In this problem, a list of jobs is given. Each job contains multiple operations that
are subject to precedence constraints. These operations should be executed on a
given set of workstations.
All workstations that can do similar operations are grouped, e.g. all drilling work-
stations. Each workstation has a speed and cost factor. An example would be a
new drilling workstation. This new workstation might have more expensive drills,
but it is also faster than an old one. Furthermore, a predefined number of cobots
can be deployed to workstations in order to speed up production as introduced in
[28]. For each operation, a base cost and duration are available. Additionally, a
workstation group (e.g. a drilling operation can be done on any drilling worksta-
tion) as well as precedence relations are given.
The objective function of this problem is a combination of normalized production
cost and normalized makespan. An extension to the classical job-shop-scheduling
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problem is that operations can be split and assigned to different workstations
for quicker processing. Additionally, operation fragments can be executed in an
arbitrary order.

OR Problem 2 (Flexible job shop scheduling [6]) In this problem, a list
of jobs is given. Each job contains multiple operations that are subject to prece-
dence relations. Each operation can be processed on one out of a set of eligible
workstations, and the processing time depends on the selected workstation.
This base problem is extended by a cobot-to-workstation assignment.
The objective function of this problem is to minimize the makespan to finish all
jobs. Therefore, operations must be assigned to the workstations, and a produc-
tion order must be defined. The main difference to the first defined problem is
the flexibility of operations (producible on many workstations instead of small
workstation groups and the objective function).

Problems 1 + 2 are NP-hard problems extended by an additional decision aspect,
i.e., a cobot-to-workstation-assignment. In [12], an MA has already been used to
solve the cobot assignment and job shop scheduling problem. In this paper, we
extend the MA with PD neighbourhood operators, i.e., if the genetic algorithm
finds a promising solution, the VNS is started from this solution.

4.2 Encoding and evaluation

In Fig. 2, the encoding for Problems 1 + 2 is shown. The first part of the encoding
is the operation to workstation assignment. If an operation can be produced on
multiple workstations, the upper bound equals the number of these workstations.
The value represents which of the possible workstations is used for production.
E.g. if workstations 0 to 4 are possible for production, the upper bound is 4, and
a value of two would mean that the second workstation is used.
In the second part of the encoding in Fig. 2, each operation’s priority is encoded.
If multiple operations can be produced simultaneously at the same workstation,
the operation with the highest priority gets produced first. Each number be-
tween zero and the largest possible integer is possible. E.g. two tasks, task 1
with priority 5 and task 2 with priority 10, should be produced on the same
workstation. The task with the highest priority, namely task 2, is produced first.
The final part of the encoding is the cobot-to-workstations-assignment that can
be seen on the right side of Fig. 2. The upper bound of this value is the number
of workstations that have no cobot assigned. The value represents which of these
workstations a cobot should be assigned. E.g. if workstations 0 to 10 have no
cobot assigned, the upper bound of the value is 10 and a value of 5 would mean
that a cobot is assigned to workstation 5.
In [28], it is described that a cobot speeds up production by 30%. This value is
used for the evaluation.

Details regarding the evaluation of the extended cobot assignment and job
shop scheduling problem can be found in [12]. During the evaluation of one
solution, two objective values (production cost and makespan) are generated.
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The objective function F that is used as fitness is a combination of normalized
cost and normalized makespan, i.e., F = ncost + nmakespan.

Instances of the extended cobot assignment and flexible job shop scheduling
problem do not define production costs. Therefore, the makespan should be
minimized in these instances.

Fig. 2. Integer-based encoding

4.3 Local process model mining

In this work, an LPM represents highly used workstations and relations between
these workstations in the currently best solution of the algorithm. More pre-
cisely, the best-rated LPM is mined whenever the MA finds a new best solution.
Section 4.4 will explain how one or multiple LPMs are used inside the MA to
improve the algorithm’s performance. However, the conceptual idea is that solu-
tions that are close to the best-found solution might improve if more operations
are assigned to those highly used workstations of the best solution.
Compared to [24], the computational effort is crucial in the context of this pa-
per. Hence, the LPM mining algorithm is adjusted to be executable in the MA.
For this, the number of operators to build the LPMs is limited to sequence and
xor operators. Regarding the described problems, this deviation from the origi-
nally proposed mining algorithm does not have disadvantages, as the problems
are defined without loops and concurrency. Additionally, generating all possible
solutions in the selection step is not feasible. Therefore, a random subset is gen-
erated before the expansion step. Figure 3 shows the process of generating an

Fig. 3. Generation and usage of local process models

LPM during the run of the MA. Green parts have been developed or adjusted
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for this paper. The basis for the LPM is the event log representing the current
best solution found by the MA.

During the evaluation of one solution, information regarding jobs, order of
operations, workstations, and cobot placement is available. The generation of
an event log in the xes format [1] is triggered every time a new best solution
is found. The xes file contains a trace for each job. The traces, in turn, contain
events for each operation. Each event defines a start and end timestamp (start
and end of the operation), a job ID, an operation ID, which workstation has been
used and the information if a cobot is currently assigned to this workstation.
Using the adjusted LPM mining algorithm, the best LPM for this given log file
is created. An example would be the sequential execution on workstations A and
B in a problem with four workstations A-D. Section 4.4 will explain how LPMs
are used in the VNS.

4.4 Memetic algorithm

To generate neighbourhood solutions in a MA as described in Section 3, a neigh-
bourhood operator applies k changes to an initial solution.
Independent of the neighbourhood operator, each part of the encoding, de-
scribed in Fig. 2, has an equal chance of being selected for change (operation-to-
workstation assignment, operation priority, cobot assignment). The first neigh-
bourhood operator is the Basic change (B). In this change, one value of the se-
lected part is randomized within its bounds. The second operator is the Greedy
change (G). Regarding operator priority and cobot assignment, this change
equals the basic change. In the operation-to-workstation assignment, all work-
stations that have a cobot assigned are calculated. Workstations with cobots have
a threefold probability of being selected during the operation-to-workstation as-
signment. The third operator is the Process discovery change (PD). Regard-
ing operator priority and cobot assignment, this change equals the basic change.
In the operation-to-workstation assignment, the latest LPM is used. This can
be seen in Fig. 3. Workstations that are part of the latest LPM have a threefold
probability of being selected compared to other workstations. The final opera-
tor is the Process discovery dictionary change (PDD). Regarding operator
priority, this change is equal to the basic change. In the operation-to-workstation
assignment and the cobot-to-workstation assignment, the weight of each work-
station is the weight of the entry in the process mining dictionary. This can be
seen in Fig. 3. This means that workstations that greatly impact the process
over multiple generations of LPMs have a higher chance of being selected.

In Algorithm 1, the evaluation of the MA (cf. [12]) with PD-based VNS is
described. In line 0, a solution and one neighbourhood operator are passed to
the evaluation method. A fitness value for this solution, called solutionFitness,
is generated. This can be seen in Algorithm 1 in line 1. In line 2, it is checked
if the VNS should be applied. It is applied to solutions within a given range of
the best solution that has been found so far. Lines 3, 4, 5, 14, and 15 indicate
the minimum number of individuals generated whenever the VNS is started. An
example would be kmax=5, where at least 50 solutions with k ∈ {1, 3, 5} changes
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Algorithm 1. Pseudo code - MA with process discovery

Parameters/Methods Description
BestSolution Best solution found so far
BestSolutionLog Log file describing the best solution found so far
BestFitness Best fitness found so far
VnsThreshhold Threshold to check if the VNS should be applied
LPM Local process model of the best solution found so far
LPMDictionary Dictionary that is updated based on mined LPMs
UpdateDictionary() Method that updated the current LPMDictionary
EvaluateSolution() Method to get the quality of a passed individual
SolutionLog() Method to get the log file of a solution
MineLocalProcessModel() Method to mine a LPM out of a process log
NeighbouringSolution() Method that generates a solution with k changes

0 Evaluate(solution, neighbourhood, kmax)
1 solutionFitness ← EvaluateSolution(solution)
2 if(solutionFitness ≤ BestFitness * VnsThreshhold)
3 k ← 1
4 while(k ≤ kmax)
5 for(i = 0, i ≤ 50, i++)
6 newSolution ← NeighbouringSolution(solution, neighbourhood, k)
7 newSolutionFitness ← EvaluateSolution(s’)
8 if(newSolutionFitness < solutionFitness)
9 solutionFitness ← newSolutionFitness
10 solution ← newSolution
11 k ← 1
12 goto line 3
13 end if
14 end for
15 k += 2
16 end while
17 end if
18 if(solutionFitness < BestFitness)
19 BestFitness = solutionFitness
20 BestSolution = solution
21 BestSolutionLog = SolutionLog(solution)
22 LPM = MineLocalProcessModel(BestSolutionLog)
23 LPMDictionary = UpdateDictionary(LocalProcessModel)
24 end if
25 return x

are generated. In line 6, k changes are made to the existing best solution based
on the passed neighbourhood operator of line 0. Four neighbourhood operators,
i.e., basic change, greedy change, PD change, and PDD change, are used in line
6 and will be explained in detail after the algorithm description. In line 7, the
fitness of the new changed solution is evaluated.
The VNS is restarted on a first-improvement basis. This can be seen in lines 8
to 13. The found improved solution replaces the current best solution for this
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variable neighbourhood.
Lines 18 to 24 show that the MA also stores the best-found solution. If a new
best solution is found and the neighbourhood operator is one of the PD oper-
ators, a solution log of this solution is generated and a LPM mining algorithm
is applied. The mined LPM replaces the LPM of the currently best solution. It
is assumed that key workstations of existing solutions are part of the LPM. Ex-
amples are workstations that are used frequently in the best existing solution.
Utilizing this information in the genetic algorithm might be good for already
promising solutions to assign operations to these workstations.
Fig. 3 shows the development of a PDD. A dictionary with all workstations
is created to utilize information extracted from multiple LPMs. Each worksta-
tion has a base weight of 1. Each time a new LPM is mined, the weight of all
workstations that are part of this LPM is increased by one.

5 Numerical experiments

5.1 Data and code

The problem files for the cobot assignment and job shop scheduling problem
can be found at https://doi.org/10.5281/zenodo.7691316 and the problem files
for the cobot assignment and flexible job shop scheduling problem at https:
//doi.org/10.5281/zenodo.7691455. Algorithm 1 is implemented in C# and em-
bedded into HeuristicLab, a framework for heuristic optimization [26]. The simu-
lation framework Easy4Sim4 was used to evaluate solutions. The code is provided
at https://zenodo.org/badge/latestdoi/614876607.
The evaluation of the approach necessitates large-scale computational experi-
ments. For this, the HPC3 cluster5 in Vienna was used. All calculations were
executed on nodes with a Xeon-G 6226R CPU 2.9 GHz. To execute the C#
code on a Linux cluster, the mono framework [27] was utilized. To evaluate the
overhead of the runtime environment, preliminary experiments were conducted.
Stretching the computation time by a factor of 1.6 allows for a similar number
of solutions to be evaluated compared to the same code running on a native
.NET platform (MS Windows). All runs of the MA have been done on the HPC.
Therefore, this factor has been used for all runs of the MA, and the original
runtime is reported in this paper.

5.2 Constraint programming formulation

A constraint programming (CP) formulation for all solved problems has been
done to measure the implemented algorithm’s performance. If the CP model
terminates, it finds the global optimum of a problem. Therefore the CP model
gives an overview of the complexity of the problem (can the optimum be found
in a reasonable time?). If no optimum is found, it gives a good base quality which
4 https://www.risc-software.at/
5 https://w3.vdc.univie.ac.at/wiki/index.php/Slurm
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can be compared to the solutions found by the developed algorithm.
The exact formulation for the first two data sets can be found in [12]. To solve
the third problem, minor adjustments have been made to the CP model. Since
the CP formulation of the problem requires a lot of space, it is not presented
here. IBM ILOG CP Optimizer has been employed for implementing the model
and for solving the example problems. The model definition can be found at
https://doi.org/10.5281/zenodo.7754794.

5.3 Data dimensions

Three different data sets were solved with all neighbourhood operators. In [12],
the first two data sets are explained. The first data set is a combined cobot
assignment and job shop scheduling problem from the industry. It has 54 work-
stations, 210 jobs, and 1265 operations. This instance is split into two halves and
four quarters to create additional smaller instances. The second data set is in-
spired by this real-world data set and has 50 artificial instances. These instances
are similar in size compared to real-world instances (full, halves, quarters). In
[6], the third data set is introduced. This data set contains large flexible job shop
scheduling instances that are extended with a cobot-to-workstation-assignment
in this paper. The instance size ranges from 30 × 10 (jobs × workstations) to
100× 20.

5.4 Real-world cobot assignment and job shop scheduling problem

The real-world problem described in [12] has been solved with the following
parameters:

– Runtime: Short (100 minutes), medium (200 minutes), and long (300 min-
utes) runtime

– Cobots: 0, 5, and 10
– neighbourhood operator: Basic change, greedy change,

PD change, PDD change
– Instances: Full, halves, quarters
– Repetitions: 10

These settings result in 2520 runs of the MA. The reported runtime is used for
the full instance and 30%, and 10% of this runtime is used for the half and
quarter instances, respectively. In [12], the CP model has been used to solve the
real-world data set with zero and five cobots.

In Table 2, the average normalized objective value of all runs of the MA is
reported and compared to the CP results. Both values of the objective function
(makespan, cost) are normalized so that a higher normalized value represents
a better value. The maximum of each normalized value is 1, which means the
closer the objective value gets to 2, the better the result is. The values in the
cells represent the average for 10, 20, and 40 runs of the algorithm for the full
instance, the half instances, and the four quarters, respectively.
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Table 2. Detailed results for the real-world problem

0 Cobots 5 Cobots 10 Cobots
NBOp Time Quarters Halves Full Quarters Halves Full Quarters Halves Full
B 1.2698 0.9654 1.0644 1.7878 1.5955 1.6491 1.7926 1.5995 1.6414
G 1.2213 0.9574 1.0423 1.7565 1.5714 1.6583 1.7884 1.6245 1.7343
PD 1.2475 0.8933 1.0262 1.7604 1.5790 1.6714 1.8168 1.6277 1.7423
PDD

Short

1.2766 0.9653 1.0722 1.6111 1.5351 1.5504 1.8176 1.6200 1.7279
B 1.2876 0.9915 1.0854 1.8227 1.6115 1.7227 1.8489 1.6563 1.7329
G 1.2886 0.9845 1.0646 1.8074 1.6018 1.7164 1.8343 1.6516 1.7457
PD 1.2838 1.0436 1.0821 1.8134 1.5967 1.7071 1.8431 1.6746 1.7511
PDD

Medium

1.2877 1.0349 1.1154 1.6463 1.6624 1.7268 1.8540 1.6776 1.7919
B 1.3004 1.0897 1.1099 1.8322 1.6244 1.7506 1.8584 1.7019 1.7617
G 1.2968 1.0587 1.0685 1.8215 1.6738 1.7394 1.8455 1.6829 1.7461
PD 1.2946 1.0322 1.0973 1.8257 1.6738 1.7237 1.8616 1.6936 1.7975
PDD

Long

1.2954 1.0520 1.0930 1.6660 1.6756 1.7814 1.8672 1.6921 1.8086
CP 0.9057 1.1493 1.0216 -2.4404 -1.0479 0.9258
NBOp: neighbourhood Operator; B: Basic; G: Greedy; PD(D): Process discovery (Dictionary)

The colored cells mark the best neighbourhood for each combination of runtime,
instances size, and the number of cobots. This highlights the advantages of the
different neighbourhood operators.
The PD operators try to identify important workstations in generated solutions.
The PDD operator even learns over a large number of generations. Since applying
PD operators comes with an overhead, the instance must be hard enough that
this generated knowledge has enough impact in the remaining time. In Table 2,
it can be seen that the PD operators, especially the PDD operator, outperform
other neighbourhood operators on complex problems (large instance, high num-
ber of cobots) if enough runtime is given.
Once the number of cobots increases, the CP model has difficulties finding a
valid solution. This can be seen in the last line of Table 2. The CP approach
delivers good zero cobot results, especially for the half instances. However, with
five cobots, the CP formulation already has trouble finding valid solutions.

5.5 Generated cobot assignment and job shop scheduling problem

The second data set solved is the artificial data set described in [12]. In this data
set, 50 instances in 3 sizes have been created:

– Small instances (10 instances)
300 operations / 30 workstations

– Medium instances (20 instances)
600 operations / 30 workstations
600 operations / 50 workstations

– Large instances (20 instances)
1200 operations / 30 workstations
1200 operations / 50 workstations

All instances have been solved with the following parameters:

– Cobots: 0, 5, and 10
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– neighbourhood operator: Basic change, greedy change,
PD change, PDD change

– Repetitions: 10

These settings result in 6000 runs of the algorithm. The runtime was 60, 180,
and 300 minutes for the small, medium, and large instances, respectively.

Table 3. Detailed results for the artificially generated instances

0 cobots 5 cobots 10 cobots
neighbourhood Small Medium Large Small Medium Large Small Medium Large
B 0.8140 0.5258 0.3657 0.9704 0.6342 0.5450 1.1592 0.7708 0.6781
G 0.8124 0.4991 0.3483 0.9463 0.6188 0.5399 1.1331 0.7570 0.6792
PD 0.8192 0.5243 0.3883 0.9767 0.6473 0.5576 1.1462 0.7799 0.6801
PDD 0.8123 0.5355 0.3897 1.0100 0.6632 0.5426 1.1903 0.7953 0.6815
CP 0.4139 0.2989 0.1240 0.4898 0.2989 -0.2926 0.5690 0.2989 -0.2926
NBOp: neighbourhood Operator; B: Basic; G: Greedy; PD(D): Process discovery (Dictionary)

Table 3 summarizes the performance of the neighbourhood operators com-
pared to the CP model on the artificial instances. The value in each cell represents
the normalized objective value (normalized cost + normalized makespan) with
an upper bound of 2. A larger value means that on average better solutions have
been found. The coloured cells represent the best neighbourhood operator with
regard to the instance size and the number of cobots.
If the CP model did not find a solution for a cobot setting, the solution with
fewer cobots is taken. It can be seen that the MA outperforms the CP model for
this problem. This is independent of the used neighbourhood.
Table 3 shows that the PD neighbourhood operators outperform the basic and
greedy neighbourhood operators over the whole data set. This is again espe-
cially true for the PDD operator. Which performs, on average, 2.4% better than
the basic neighbourhood, 4.5% better than the greedy neighbourhood, and 1.5%
better than the PD neighbourhood.
The values in the table represent the average over 100 and 200 instances for
the small and medium/large instances, respectively. Due to the larger number of
instances, results from this data set are less prone to errors than the real-world
instances.

5.6 Cobot assignment and flexible job shop scheduling problem

The third data set solved is the flexible job shop scheduling problem described
in [6], cf. Problem 2. For the previous two problems, it could be seen that the
CP results have performed better for simpler instances and worse for complex
instances. In this problem, CP delivers good results due to the simple, makespan-
only objective. To compete with the CP formulation with an equal runtime, mi-
nor adaptations had to be done in the MA.
A fraction of the initial population of the MA has been initialized with solutions
generated using priority dispatching rules. These priority rules allow the gener-
ation of acceptable initial solutions that can be further improved with the MA.
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A considerable amount of priority rules are described in [22]. The following have
been used in the operation-to-workstation assignment in this paper:

– Most work remaining
– Shortest processing time remaining
– Most operations remaining
– Operational flow slack per processing time
– Flow due date per work remaining
– Shortest processing time per work remaining
– Shortest processing time and work in next queue

Additionally, the Highest number of assignable operations and the Largest amount
of assignable work priority rules have been designed for the cobot-to-workstation
assignment. In the first cobot-to-workstation rule, workstations are sorted by the
number of operations that can be assigned and the available cobots are assigned
to the top workstations. In the second rule, the sorting is done by the duration
of all assignable operations on a specific workstation.
Additionally, generating LPMs has been stopped until the first generation is fin-
ished. Four problem files (0, 10, 20, 30) of two categories (smallest and largest)
were selected. The smallest category has 30 jobs with 10 workstations, and the
largest has 100 jobs with 20 workstations. These problems were solved with
cobots assigned to 0%, 20%, and 40% of the workstations. Each problem was
solved with all four described neighbourhood operators and 20 repetitions. This
resulted in 1920 runs of the algorithm. The CP solver and the MA had a runtime
limit of 60 minutes.

Table 4. Detailed makespan results for the cobot assignment and FJSP

B G PD PDD CP
small 0% 764 764 765 764 762
small 20% 702 703 703 702 699
small 40% 650 650 650 649 646
large 0% 3906 3906 3906 3906 3904
large 20% 3587 3587 3587 3587 3587
large 40% 3314 3314 3314 3314 3317

Table 4 reports the average solution quality for the MA and the CP model of
the flexible job shop scheduling instances. The values represent the average objec-
tive value (makespan) across each instance group. Hence, smaller values indicate
a better solution quality. The CP solver delivered good results for all numbers
of cobots for the small instances. With growing problem difficulty (increasing
number of cobots and instance size), the performance of the MA increased.
For the large instances with 40% cobots, a slight advantage of the MA over the
CP model can be observed. Even though the performance of the neighbourhood
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operators is pretty similar, the PDD operator outperforms the other neighbour-
hood operators again and delivers the best results for the most complex (largest,
highest amount of cobots) instances.

6 Summary and Outlook

This paper introduces a novel combination of an MA with a feedback loop that
utilizes LPM mining. This MA uses different neighbourhoods that utilize the
information generated with this PD algorithm, and the results are compared to
traditional neighbourhood operators and a CP model.
Two problems from OR were tackled to show the algorithm’s generalizability.
The algorithm should be easily adaptable to new problems due to the flexibility
of the base algorithm, the genetic algorithm. Additionally, it has been imple-
mented in HeuristicLab, which can, due to its plugin-based architecture, easily
be extended with new problem formulations.
Running additional code like the PD algorithms during the execution of a genetic
algorithm to generate knowledge comes with overhead. This knowledge can help
identify important parts of the process.
A series of experiments on different problems were started to quantify the im-
pact of this generated knowledge. This paper reports the results of 10440 runs
of the MA. A CP formulation was employed for all problems to have a baseline
performance measure.
For small instances and simple problems, the overhead incurred through PD
inhibits the competitiveness of our approach. However, it was shown that neigh-
bourhood operators that utilize PD algorithms to generate knowledge outper-
form other neighbourhood operators and the CP model on large and complex
instances. In further research, different metaheuristics, feedback variants, prob-
lems, and PD algorithms can be reviewed. In the current version, the order and
connections between workstations in the LPM is not utilized, however, utilizing
this information might be helpful in upcoming research.
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7 Conclusion

7.1 Results

All results that are presented in this thesis have the grand goal of combining
metaheuristics and process mining to improve the performance of metaheuris-
tics on state-of-the-art scheduling processes. The main results of this thesis
are:

1. In [55], it is described that using cobots will give many businesses a com-
petitive edge.
Scheduling operative tasks to different operational resources, such as
human workers and cobots, introduce a new problem. The complexity of
this problem increases with the number of cobots that should be consid-
ered. [56]
In Chapters 3.4, 4.4, and 6.2, encodings for a set of different extended
cobot assignment and scheduling problems are developed, which are:

• Extended cobot assignment and job shop scheduling problem

• Extended cobot assignment and assembly line balancing problem

• Extended cobot assignment and flexible job shop scheduling prob-
lem

These encodings are the foundation that can be used for a broad range
of metaheuristics to generate solutions for these problems.

2. The development of algorithms for dealing with data will be one of major
challenges in Industry 4.0 [57]
In this thesis, the current state-of-the-art algorithms additions to these
algorithms are used for large numerical studies. These studies generate
solutions for existing and newly introduced extended cobot assignment
and scheduling problems. The algorithms used are:

• A genetic algorithm (Chapter 3.4-3.6)

• A memetic algorithm (Chapter 4.4-4.5)

• A knowledge-based memetic algorithm that utilizes process mining
methods (Chapter 6.2-6.3)

To analyze the performance of the individual algorithms, the results are
compared to results that already exist in the literature (Chapter 4.5). A CP
model is created for instances where no solution existed in the literature
(Chapters 4.3 and 6.3), and the results of the algorithms are compared
to the results of the CP model. The CP model is able to find the global
optimum for simple instances and can give a baseline for other instances.

3. Process mining can extract knowledge from event logs and links data
mining, business process modelling and analysis. [58]
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In Chapter 6.2, a novel knowledge-based memetic algorithm utilizes this
knowledge extraction from event logs to generate local process models
as described in [47]. These local process models contain knowledge that
is used in the variable neighbourhood search of this knowledge-based
memetic algorithm. Extracting and utilizing this knowledge comes with
an overhead. However, it is shown in Chapter 6.3, that this algorithm out-
performs traditional approaches on complex extended cobot assignment
and scheduling problems.

4. The slowest throughput workstation sets the flow rate of assembly lines.
This bottleneck workstation might change depending on different rea-
sons. Adding a flexible resource such as a cobot to a bottleneck worksta-
tion can allow large savings. [59]
In Chapter 4.5, a numerical study on a real-world problem instance on
the impact of different numbers of cobots is done. It is shown that the first
cobot significantly impacts the objective function. However, this rapidly
declines with increasing amounts of cobots. With this algorithm, the ideal
amount of cobots for a specific production system can be calculated.

5. Genetic algorithms can be easily adapted to new problems. However, it is
often not clear how the results of the genetic algorithm can be interpreted
and if found solutions are efficient. [60]
Key features of process mining are the visualization of business pro-
cesses and the analysis of processes [61].
Chapter 5.3 in this work presents how process mining algorithms can be
used to visualize the results of a genetic algorithm and highlight different
solution attributes with colours and sizes. Various instances are created,
and solutions are analyzed to get an insight into a typical black box solu-
tion.

6. Being able to build on existing knowledge is key to scientific progress.
[62]
To allow the reproducibility of results shown in this thesis, the code and all
problem definitions used to generate the results in Chapter 6, are shared
in Chapter 6.3.

7.2 Discussion

In Chapter 1.5, the following major research questions have been defined:

A) What is the best way to plan resources such as cooperative robots in
deterministic manufacturing processes?

B) Can process mining methods generate additional insights into manufac-
turing processes?

C) Can process mining algorithms improve the performance of metaheuris-
tics?

78



All defined minor and major research questions have been answered during
this work and a detailed list of contributions is given in Chapter 1.6. In this dis-
cussion, a really short overview about the solved research questions is given,
and which areas of the work are not fully explored and might be promising for
future research.
To answer RQ A, a set of new encodings have been developed to allow the
encoding of flexible resources. To answer RQ B, process mining algorithms
have been used on metaheuristic solutions to generate additional insight into
manufacturing processes. These solutions have been visualized.
Utilizing process mining to visualize metaheuristic results has helped under-
standing the underlying process. Trying different process mining methods and
visualization techniques might be helpful for real-world black box optimizations.
Feedback possibilities have been explored in RQ C, and generated knowledge
from RQ B has been used in a feedback loop to boost the performance of a
memetic algorithm.
The feedback loop in the memetic algorithm looked promising, and it might be
worth exploring different feedback strategies and process mining methods in
the future.

7.3 Outlook

Industrial production environments currently experience a large shift towards
industry 4.0 technologies such as Internet of Things, big data, 3D printing,
cloud computing, and cobots. These changes will drastically increase the data
collected in production environments, as current technologies allow us to mea-
sure and log more data than ever.
It is important that companies can estimate the impact of such new technolo-
gies on already existing production environments. Therefore, problem formu-
lations must be adapted to reflect the current needs of the industry. This is
shown for three different problems in this thesis. For each of these problems, a
problem encoding has been developed.
Additionally, new algorithms need to be developed to benefit from these large
quantities of data. Process mining is a research area that greatly benefits from
these production environment changes. Due to strong requests from the in-
dustry, many new process mining algorithms and frameworks have been devel-
oped. These allow generating different process models for previous black box
processes. These process models can be the basis for an in-depth process
analysis that can give additional insight into the process, which was impossible
before.
Over the last decades, metaheuristics have been successfully applied to nearly
all kinds of problems that occur in industries. However, due to the black-box na-
ture of metaheuristics, it is often impossible to learn from generated solutions.
This work has shown that a combination of metaheuristics and process mining
can give additional insight into manufacturing processes, which allows to boost
the performance of traditional metaheuristics.
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Since both research areas, process mining and metaheuristics, individually
play an important role in the industrial transformation towards Industry 4.0,
it can be expected that the number of available algorithms will increase. In
this work, one specific interaction between these two research areas has been
demonstrated. Extracting knowledge from good metaheuristic solutions and
utilising that knowledge in the variable neighbourhood search of a memetic al-
gorithm. As this combination looks promising for complex industrial problems,
other combinations might help to get away from classical black-box optimisation
towards knowledge-based algorithms.
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