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Abstract

Machine learning models are increasingly used in various fields for high-risk decision-
making processes. While these models often exhibit high predictive accuracy, their
complex nature often results in a lack of interpretability, creating barriers to human
understanding and raising ethical issues. In this context, confounding variables serve as
a complicating factor that can further undermine the interpretability of these models
and can affect interpretability techniques. These often latent factors can influence both
independent and dependent variables and can affect the reliability and trustworthiness of
any derived interpretations. In general, researchers frequently control for confounders but
often omit interpretive analyses of these models. When interpretive studies are conducted,
the impact on the interpretations remains largely unexplored and unquantified. Thus there
is an investigative gap in understanding how the presence of confounding variables might
influence the interpretability of the models. To narrow this gap this thesis assesses the
impact of confounding variables on the interpretation of neural networks in a supervised
setting by juxtaposing and analyzing ICE plots and SHAP value visualizations for neural
networks. Experiments show that simple feed-forward neural networks are sensitive to
hidden confounding, particularly in terms of feature importance. To compensate for these
shortcomings a model based on a variational autoencoder is introduced which provides
evidence that the interpretations from this new model are more consistent and intuitive
compared to those from other models, as verified across three different datasets. The
findings indicate that confounding variables have the most impact on the importance of
features that are highly correlated.
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Kurzfassung

Modelle des maschinellen Lernens werden zunehmend in verschiedenen Bereichen für
entscheidungsintensive Prozesse hohen Risikos eingesetzt. Obwohl diese Modelle oft eine
hohe Vorhersagegenauigkeit aufweisen, führt ihre komplexe Natur häufig zu einem Mangel
an Interpretierbarkeit, was Barrieren für das menschliche Verständnis schafft und ethische
Fragen aufwirft. In diesem Kontext wirken Störfaktoren (Confounder) als ein erschw-
erender Faktor, der die Interpretierbarkeit dieser Modelle weiter untergraben kann und
sich auf Interpretationstechniken auswirken kann. Diese oft versteckten Faktoren können
sowohl unabhängige als auch abhängige Variablen beeinflussen und die Zuverlässigkeit
und Vertrauenswürdigkeit jeder abgeleiteten Interpretation beeinträchtigen. Üblicherweise
regulieren oder berücksichtigen Forscher Störfaktoren, vernachlässigen jedoch oft inter-
pretative Analysen solcher Modelle. Wenn interpretative Studien durchgeführt werden,
bleibt die Auswirkung der Störfaktoren auf die Interpretationen weitgehend unerforscht
und nicht quantifiziert. Daher besteht eine Untersuchungslücke im Verständnis, wie
das Vorhandensein von konfundierenden Variablen die Interpretierbarkeit der Modelle
beeinflussen könnte. Um diese Lücke zu schließen, bewertet diese Arbeit den Einfluss
von konfundierenden Variablen auf die Interpretation von neuronalen Netzwerken in
einem überwachten Umfeld, indem ICE-Diagramme und SHAP-Wert-Visualisierungen
für neuronale Netzwerke gegenübergestellt und analysiert werden. Experimente zeigen,
dass einfache vorwärts gerichtete neuronale Netzwerke empfindlich auf versteckte Kon-
fundierung reagieren, insbesondere in Bezug auf die Relevanz der Variablen. Um diesen
Problemen entgegenzuwirken, wird ein Modell auf Basis eines variationalen Autoencoders
vorgestellt, das nahelegt, dass die Interpretationen aus diesem neuen Modell konsist-
enter und intuitiver sind als die aus anderen Modellen, wie anhand von verschiedenen
Datensätzen verifiziert wurde. Die Ergebnisse zeigen, dass konfundierende Variablen den
größten Einfluss auf die Bedeutsamkeit von Varaiblen haben, die stark korreliert sind.
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1. Introduction

As machine learning (ML) systems become increasingly integrated into our daily lives,
they often serve as crucial aids in decision-making processes [LZHH14]. In healthcare
for example, several computer-aided diagnosis systems utilize deep neural networks to
accurately identify medical conditions while also enhancing the efficiency of the diagnostic
process [MMOR+21], [ALPM+13]. However, assessing these systems against critical
criteria like safety, avoidance of discrimination, and provision of explanations can be
challenging. Interpretability, or the ability of a system to explain its reasoning, is often
sought after in cases, where these criteria cannot be completely quantified [TLS+22],
[BYC+17].

Consider autonomous driving, for example. A deep learning model might attempt to
learn how to detect cyclists with the intent to stop the vehicle before a potential accident
occurs. The goal would be to ensure flawless and safe operation every time. If upon
interpreting the model, it is revealed that the most important feature recognized is the
helmet of the cyclist - because every image of a cyclist in the training data featured a
helmet - it would be a good idea to check how the model responds to cyclists not wearing
helmets [DVK17].

Much like in the realm of autonomous driving, the stakes are similarly high in healthcare,
where the accurate interpretation of machine learning models can have life-altering con-
sequences. In medical settings, interpretability serves as a critical asset for understanding
diagnostic processes and as a safeguard against potential errors. However, the presence of
confounders, which arise in all sorts of areas, might further complicate the interpretability
of these systems.

A confounding variable is an often hidden factor that affects both the independent and
dependent variables, thereby complicating the interpretation of the true relationships
involved [Pea09]. In the study of the impact of smoking tobacco on human health, for
instance, variables such as alcohol consumption and diet are also lifestyle factors that are
interrelated. A risk assessment focusing solely on the effects of smoking could erroneously
overestimate the health risks attributed to smoking (Figure 1.1). This makes these
additional factors confounding variables, as they interfere with the ability to accurately
interpret the relationship between smoking and health,[KZEW04], [HMKG17].

The issue of confounding variables is a longstanding one, and researchers have developed
various methodologies to account for them or model them. For instance, in assessing
the impact of medication on a specific patient, a study introduced the Causal Effect
Variational Autoencoder, a model that incorporates confounders while simultaneously
evaluating the causal effect [LSM+18]. Strategies for mitigating the impact of confounders
are not exclusive to the medical field but extend to various other domains as well [SMS20],
[dHJL19]. However, both types of models - those that address confounding variables and
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1. Introduction

smoking health

addiction-prone personality alcohol

Figure 1.1.: An addiction-prone personality can impact both alcohol consumption and
smoking habits. If an assessment focuses solely on smoking to determine its
health risks, the evaluation may overestimate the negative effects. This is
because latent factors, such as alcohol consumption and personality traits like
an addictive personality, are not taken into account. In this context, these
obscured variables serve as confounders, complicating the true understanding
of smoking’s impact on health.

those that do not - are often insufficiently analyzed for interpretability. When attempts
at interpretation are made, the impact of confounding variables on the model’s reasoning
remains often unknown [TLS+22]. This lack of clarity is particularly problematic because
the outcomes of these models, or the importance attributed to certain features, may be
used as guidelines, potentially leading to flawed or misleading conclusions. This creates a
research gap that the present thesis aims to address. This gives rise to the first research
question.

Research Question 1:
What is the impact of confounding variables on the interpretability of a neural
network, via feature importance, and ICE plots? To what extent do we observe
differences in the interpretability results across distinct datasets?

To address the challenges identified in RQ1, we introduce a second research question
focused on the potential for enhancing model interpretability through specific modeling
techniques.

Research Question 2:
Can a model based on a Variational Autoencoder (VAE) improve the interpretability
when confounding is evident in the sense of being more intuitive or more in line
with the model that has access to a hidden confounder on distinct datasets?

This second research question stems from the desire to improve model interpretability
by employing a Variational Autoencoder-based framework, inspired by the Causal Effect
Variational Autoencoder discussed earlier [LSM+18].

Approch and contribution To address the aforementioned research gap concerning the
influence of confounding variables on interpretability we conducted a comparative analysis
between two feed-forward neural network (FFNN) models: one that includes all variables
(full model) and another that omits one variable (confounder model), thereby introducing
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a latent confounder. We will use ICE plots and SHAP values to interpret the models and
discuss differences. Subsequently, we introduce a model (VAE model) constructed on the
foundation of a variational autoencoder (VAE) which is inspired by causal inference to
better handle latent confounding with respect to interpretability. We show that latent
confounding can significantly alter the interpretations based on ICE plots and SHAP
values of neural networks. This manifests in very sensitive feature importance values
as well as overestimation of variable effects in ICE plots. The proposed model yields
interpretations that are both more intuitive, and more consistent than other analyzed
models. Specifically, the SHAP summary plots show consistent clusters of SHAP values
which indicate an isolated and more intuitive relationship of variables and targets.

Thesis structure First, we discuss relevant literature in chapter 2. After that explan-
ations of the interpretability methods and a short introduction to VAEs will be given
(Chapter 3). The methodology, outlined in chapter 4, on how we aim to answer the
research questions will follow as well as the used datasets (Chapter 5) and the experi-
mental setup (Chapter 6) containing hyperparameters of used models. The results section
(Chapter 7) extensively shows conducted experiments which are then discussed (Chapter
8) and summarized (Chapter 9).

Used tools Chat GPT [Ope23] was used to reformulate text and to generate code
snippets in Python.

3





2. Literature review

2.1. Interpreting Blackbox Models

In conducting this research on Neural Network interpretability, we will utilize a variety of
well-established methods with the objective of increasing the transparency of black-box
models. The complexity and opacity of such models present challenges in practical
applications, necessitating the development of tools that can shed light on their internal
operations.

According to Murdoch et al., 2019 [MSK+19] there are two main ways to understand
how models make decisions: Model-based interpretability and Post hoc interpretability.
Model-based interpretability is when the model itself is easy to understand. For instance,
in linear regression models, the significance of a feature can be assessed by examining
the weights attributed to it. Decision trees too are inherently interpretable, as at each
step (or node), one can clearly see the decision being made. On the other hand, post hoc
interpretability involves methods that can be used on any kind of trained model, even
those that are usually hard to interpret, like black box models. These methods aim to
explain how the model made decisions or what was learned after it had been trained.
Since this thesis focuses on Neural Networks (NNs) we will use post hoc interpretability
methods to understand the trained models.

The following interpretability methods are comprehensively discussed in "Interpretable
Machine Learning: A Guide for Making Black Box Models Explainable" by Christoph
Molnar [Mol22]. This work provides a comprehensive overview of state-of-the-art inter-
pretation methods for various machine learning models.

A very popular method for enabling post hoc interpretability is to generate individual
conditional expectation plots (ICE plots), introduced by Goldstein et al. (2014)[GKBP15].
They extend the concept of Partial Dependence Plots introduced by Friedman in 2001
[Fri01] by plotting individual instances instead of averages, thus offering a more granular
view of model behavior. In this research, ICE plots serve as an intuitive way of discovering
heterogeneous relationships in the data, especially considering the confounding variable,
and getting a good overview of the model on an instance-based level. In this context,
heterogeneous relationships refer to the potential identification of associations within the
data that are influenced by a confounding variable and a particular attribute. Utilizing
ICE plots, which permit color-coding of individual lines, can effectively reveal such
intricate relationships.

Another interpretability method is the calculation of Shapley values. Shapley values
[Sha53] are a concept from cooperative game theory, adapted to machine learning, that
offers a mathematically fair method for attributing the contribution of each feature to
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2. Literature review

the prediction of an individual instance in a model. In essence, Shapley values estimate
the contribution of a feature by comparing the model’s predictions with and without the
feature. They work by iterating through all possible combinations of features (coalitions) in
the model and averaging the difference in the prediction outcome when a particular feature
is included versus when it is not. This results in an additive feature attribution method
where each feature gets a score that represents its contribution towards the prediction for
a particular instance. These scores can then be used to interpret the model’s decisions, to
understand the relationships between features, or to validate the fairness of the model’s
predictions. Given the computational intensity of precisely calculating Shapley values,
which necessitates training a new model for all 2d subsets of features (where ’d’ represents
the dimensionality of our data points), even for relatively low dimensional data, this
approach quickly becomes impractical. To circumvent this issue, we employ an efficient
approximation technique known as KernelSHAP.

KernelSHAP (Kernel SHapley Additive exPlanations)[LL17] is an algorithm to approx-
imate Shapley values based on the coefficients of a weighted linear model. The weighting
scheme is designed to give greater emphasis to both small coalitions, comprising fewer
features, and large coalitions, encompassing many features. This is achieved using the
SHAP kernel, a specialized form of weighting function. By calculating the mean of all
SHAP values across all instances, a global metric of feature importance can also be
obtained.

Other typical methods for Post hoc interpretability are for example counterfactual
explanations or influential Instances. Counterfactual explanations [WMR17] are ex-
planations that describe the minimal change of a feature to change the prediction or
classification of the model. This enables us to create explanations of the form: „If you
would earn 300$ more per month, then this would increase your probability of getting
the loan from 25% to 50% “. Influential Instances, a concept first introduced in the field
of statistics in the 1970s by Hampel (1974) [Ham74] and Jaeckel (1972) [Jae72], refers
to particular data points in the training set that significantly impact the predictions or
parameters of a trained model. If the removal of a single instance from the training set
leads to substantial changes in the model’s outputs, this instance is labeled as ’influential’,
indicating that the model is significantly dependent on that specific data point. While the
method of identifying Influential Instances can offer useful insights and assist in model
debugging, it is important to note that it is computationally intensive, requiring the
model to be retrained multiple times. This, coupled with the fact that the gain in insights
is often limited, can make this method a less optimal choice compared to others for this
thesis.

2.2. Confounding

Confounding is a fundamental concept in research across numerous fields, especially
in medicine [BSG+10], [CHH+09], and epidemiology [Van04]. By distorting the true
relationship between an independent and dependent variable, confounding can lead to
inaccurate results and misleading conclusions about the relationship between variables.

6



2.2. Confounding

Because some variables are correlated to the confounder (to some degree), they will be
correlated to each other themselves. This creates some dependencies among them which is
known as multicollinearity. Multicollinearity can influence the stability of model training
and can result in unstable interpretations and parameter estimations (See A.4). A lot of
real-world datasets show some degree of multicollinearity.

Recently, there has been a notable increase in papers within the Machine Learning
community that address the issue of confounding in supervised learning problems. For
instance, a study conducted by John R. Zech and colleagues in 2018 [ZBL+18] revealed that
Convolutional Neural Networks (CNNs), trained on pneumonia screenings, demonstrated
significantly higher performance on internal screenings (originating from the same hospital)
compared to external ones (from different hospitals). It was observed that these CNNs
were identifying hospital systems and even specific departments within a hospital, which
acted as confounding variables, affecting the prediction accuracy of the disease.

In causality research, causal graphs are frequently employed to pinpoint confounding
variables, often utilizing algorithms such as the Fast Causal Inference (FCI) algorithm. A
2021 study [SMS20] by Numair Sani et al. used this method to understand how groups
of individual features that together represent an interpretable feature are connected in
a causal graph. Specifically, this was done by grouping pixels and pixel information in
an image together to form features such as the wing shape of a bird or belly color. The
approach also took into account unseen or unmeasured confounding variables that could
influence the outcomes based on these features. This approach holds promise in revealing
key features that essentially drive or influence the outcome generated by the neural net.

Another case where one can observe confounding was presented in a paper by Pim de
Haan et al. [dHJL19]. In this paper, they describe a scenario where the aim is to train a
Reinforcement Learning (RL) agent to operate a vehicle through the method of imitation
learning. This involves training the RL agent to predict subsequent actions based on
given state-action pairs from an expert driver. Two distinct situations were tested: in
scenario A, the RL agent was provided an image containing both the dashboard and the
windshield; in scenario B, the image was similar, but the dashboard was obscured (2.1).
Despite achieving low training losses in both scenarios, the policies learned by the RL

Figure 2.1.: Model A relies on the braking indicator to decide whether to brake. Model B
instead correctly attends to the pedestrian. Taken from [dHJL19]

agents exhibited different behaviors. In scenario A, the RL agent associated the activation
of the brake light on the dashboard with the necessity to apply the brakes, even though
the light’s illumination is a result, not a cause, of braking. In contrast, the RL agent in

7



2. Literature review

scenario B correctly learned to brake when detecting a pedestrian ahead, demonstrating
accurate causal understanding. Therefore, the agent in scenario A misattributed cause and
effect in its decision-making process. In this case, the confounding variable is the brake
light on the dashboard. They propose a novel idea to also take the already-mentioned
causal graph into account to solve this causal misidentification problem.

In certain studies such as the one by Pryzant et al. (2018) [PBS18], machine learning
models are trained and interpreted while controlling for confounding variables. In
this particular case, they utilized a Convolutional Neural Network (CNN) to analyze
advertisement text to determine optimal writing styles. A confounding variable in this
context is the presence of brand names. During the training phase, the aim was not
only to select features (n-grams) that are predictive of the outcome ’y’ but minimize
the predictive power of confounding variable ’C’, represented by the brand names. By
controlling for this confounder, they ensure that the selected n-grams signify the true
contributors towards a successful ad, rather than being influenced by the associated brand
name. Subsequent interpretation of the CNN enables a clearer understanding of which
n-grams are instrumental in producing an effective ad, providing valuable insights into
advertising strategies instead of traditional A/B testing.

Despite the extensive literature on confounding in machine learning, there seems to be
no work in which the authors try to understand and improve the interpretability of NNs in
the context of confounding. Although this is a common practice in fields such as medicine,
where features are analyzed in the context of known confounders, the outcomes of these
analyses are usually interpreted through the lens of clinical expertise. For instance, in an
article by Zeng et al. [ZGR+22], the patient’s age was identified as a confounding variable.
Age is a well-acknowledged confounder in treatment decisions and survival outcomes in
healthcare. Older patients are often more likely to receive radiation treatment rather than
surgery due to the heightened risks that surgical procedures pose to them. The difference
to this thesis is that they observe the confounder and have them in their features, which
also allows for a fairly simple interpretation, while we remove features that make the
confounder hidden.

2.3. Variational Autoencoder

Some elements of this research are closely related to Variational Autoencoders (VAE) which
were first described by Kingma and Welling [KW22]. A VAE is a type of generative model
that uses deep learning techniques to produce complex models of data distribution. It
works by encoding input data into a lower-dimensional latent space and then reconstructing
the original data from this latent representation. Unlike traditional autoencoders, which
often do not impose any structure on the latent space, a VAE imposes the condition that
the latent variables follow for example a Gaussian distribution.

Figure 2.2a visually represents this concept.
Building on the principles of VAE, another approach to managing hidden confounders

in a different setting, is presented by Louizos et al. [LSM+18]. They proposed the
Causal Effect Variational Autoencoder (CEVAE) which is designed to learn about the

8



2.3. Variational Autoencoder

(a) Solid lines denote
the generative model
pθ(z)pθ(x|z), dashed
lines denote the vari-
ational approximation
qϕ(z|x) to the intractable
posterior pθ(z|x). The
variational parameters ϕ
are learned jointly with
the generative model
parameters θ [KW22].

(b) Example of a proxy vari-
able. t is a treatment,
e.g. medication; y is an
outcome, e.g. mortal-
ity. Z is an unobserved
confounder, e.g. socio-
economic status; and X
is noisy views on the hid-
den confounder Z, say in-
come in the last year and
place of residence.(Taken
from [LSM+18] )

X Y

Z

(c) This figure shows a typ-
ical confounding variable
Z which influences both
the independent variable
X and the dependent vari-
able Y.

Figure 2.2.

posterior distribution when there is an intervention or treatment in addition to dependent
and independent variables. Figure 2.2b illustrates the setup. Their VAE also takes the
treatment and the outcome as inputs which requires them to have these values at hand
when using their models. Thus for out-of-sample predictions which are for example new
subjects, they have to predict these values beforehand.

Yet another compelling approach to the problem of confounding, particularly in the
context of biased data, emerges from causal modeling. A recent paper promotes learning
from biased data by exploring the relationship between fair classification and intervention
[MCPZ19]. The proposed model innovatively views a sensitive attribute as an observed
confounder contributing to dataset bias, extending previous methodologies like the one
employed in the CEVAE model by Louizos et al. Furthermore, to tackle the issue of
unobserved or hidden confounders, they adopt deep latent variable models, allowing for
approximate inference of these hidden elements. They described a method to learn the
parameters of this causal model purely from observational data. Their work reveals that
fairness-aware causal modeling provides superior estimates of the causal effects between
the sensitive attribute, treatment, and outcome. Furthermore, by estimating these causal
effects, they demonstrated that it is possible to derive policies that are both more accurate
and fairer when confronted with a historically biased dataset.

The methodological framework of this thesis can be considered as related to the classical
VAE as well as to the setting of having an additional treatment variable. The aim is to
utilize information from the dependent variable (y) to infer a more informative latent

9



2. Literature review

representation, thereby enhancing the interpretability of the model. Figure 2.2c shows
the already-known setup that will be used in this thesis.

From the first introduction of VAEs by Kingma and Welling, we have seen a significant
evolution of this framework with a variety of promising variants. For example, Beta-
VAEs (Higgins et al., 2017 [HMP+17]) tweak the standard VAE’s objective function
by introducing a hyperparameter β to control the balance between the reconstruction
and latent space regularization terms. This tweak enables Beta-VAEs to achieve more
disentangled representations, improving interpretability and downstream tasks. One other
extension is the Hierarchical VAE (HVAE). In HVAEs (Ranganath et al., 2016 [RTB16]),
the latent space is structured hierarchically, allowing the VAE to model more complex
data distributions. In contrast to traditional VAEs, where each latent variable operates
independently, Hierarchical VAEs (HVAEs) guide the parameters of the latent variables
with a prior distribution, facilitating the formation of complex structures. Similar to
Beta-VAEs, a TC-VAE [MGD23], or Total Correlation Variational Autoencoder, is a type
of Variational Autoencoder designed to encourage the latent variables in the model to be
statistically independent of each other and more entangled. In a standard VAE, there’s no
guarantee that the latent variables will be independent, which can limit the model’s ability
to generate diverse and realistic data. The TC-VAE introduces an additional term to the
loss function to minimize the Total Correlation (a measure of the statistical dependence
between variables) in the latent space. Remarkably, the TC-VAE demonstrates the
capability to expose out-of-distribution (OOD) generative factors, revealing consistent
and interpretable attributes absent in the original dataset.
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3.1. Interpretability

The popularity of big data and artificial intelligence has increased dramatically in the past
decade [BMR+20],[Ope23],[MKS+13],[KSH12]. Along with this great success, often based
on complex black-box models such as deep neural networks, there is also growing awareness
for improving model transparency and interpretability [ZTLT20]. This awareness is
strongly needed since these models are used in more sensitive areas such as healthcare,
autonomous driving, criminal justice, hiring people, and many more. This immediately
requires the model to have traits such as fairness, safety or trust. For instance, it is critical
that our model upholds fairness, meaning its predictions should remain uninfluenced
by sensitive attributes such as gender or race, thereby avoiding discrimination against
underrepresented groups. Employing an interpretable model aids in exposing underlying
biases that might otherwise remain unnoticed. In settings where safety is key, like in
autonomous driving, it is essential to make sure the model’s learned behavior matches
what we want. The ability to interpret the model can help with this. For example, it can
help to identify whether the model has only learned to spot a helmet in a picture, or if it
can actually recognize a cyclist. So, interpretability helps us check and understand what
the model has learned.

Before we explain the different forms of interpretability, we will provide two important
definitions related to accuracy. [MSK+19]

The first definition defines the term predictive accuracy, which is the error in the
model’s fit to the data. If we have a poor approximation of the underlying relationship,
we might get accurate information about the model when interpreting it but the true
relationship in the data might be different.

On the other hand, descriptive accuracy in the context of interpretability is the degree
to which an interpretation method objectively captures the relationships learned by
machine-learning models.

Oftentimes these two accuracies require a trade-off. Simple models are easy to un-
derstand, so they usually have good descriptive accuracy. However because they are
simple, they might miss out on some complex patterns in the data. This can make them
less accurate at making predictions. Conversely, more sophisticated models may excel
in predictive performance due to their ability to capture complex patterns within the
data. However, this increased complexity often renders them less interpretable, posing
challenges to understanding the underlying mechanisms.

Relevancy, which determines the suitability of an interpretation for a specific audience
or domain, joins predictive accuracy and descriptive accuracy to form the three essential

11



3. Background

desiderata of the PDR framework. For an interpretation to be both trustworthy and
insightful, it is essential to optimize these three dimensions.

Given the established importance of interpretability, it is essential to discuss its two
primary types: model-based interpretability and post hoc interpretability. Each of these
approaches highlights different aspects of the two forms of accuracy [MSK+19].

Model-based interpretability Model-based interpretability takes place in the modeling
phase of the data-science life cycle. We chose models that are already interpretable by
design and that provide insight into the relationship it has learned without any additional
measures. One of the most intuitive models, from an interpretability standpoint, is
the linear regression model. The innate interpretability of a linear regression model
stems from its weights, which can serve as measures of feature importance for example.
Moreover, it straightforwardly explains the effect of a variable increment, indicating the
impact it has on the outcome. Oftentimes, this comes with a reduction of predictive
accuracy since we now can only learn linear relationships, but the descriptive accuracy
is high. Another common type of model-based interpretability is to impose sparsity on
the model by restricting only a few feature weights to be non-zero. A common example
of an interpretable model that induces sparsity is LASSO regression, which is a linear
model. When dealing with biomolecular interactions, the datasets often contain features
ranging from thousands to millions. LASSO regression can help pinpoint key features
by identifying those with non-zero coefficients in the linear model, thereby enhancing
interpretability. However, this method might lead to a trade-off in terms of predictive
accuracy. By focusing on key features and not incorporating all available features, the
model might not predict outcomes as accurately as it could otherwise. Note that there
are also There are also other model-based methods that can be used such as modularity
where portions of a model can be interpreted independently or a simulatable model where
a human can reason about the entire decision process. A classic example of a simulatable
model is a decision tree. In a decision tree, each rule or step in the decision-making
process is clear and easy to understand.

Post hoc interpretability Post hoc interpretability is applied after a model has been
trained. In this methodology, the emphasis is on analyzing the already-trained model to
extract insights about the relationships it has learned, without modifying its architecture.
This stands in contrast to model-based interpretability, where the model itself may be
altered for the sake of clarity or comprehensibility. With post hoc interpretability, the
model can be of any complexity, and its predictive accuracy remains unchanged since
there’s no need to simplify the model for interpretation purposes. For problems in high
dimensions, like image classification, complex models are essential. Therefore, such
scenarios tend to rely significantly on post hoc methods for interpretability. Post hoc
methods for model interpretation primarily fall into two categories: local and global
interpretations. Local interpretations concentrate on individual instances within the
dataset and their respective predictions. On the contrary, global interpretations aim to
provide an overall understanding of the entire dataset. For instance, a local interpretation
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method could involve the use of Individual Conditional Expectation (ICE) plots, where a
line is plotted for each instance in the dataset. A global interpretation method, however,
could involve assessing feature importance across the whole dataset to gain a broader
understanding of the model’s behavior. Feature importance measures can also be used as
a local method which then shows what feature was the most important one to arrive at
this prediction or how much each feature contributed compared to a baseline to the final
outcome.

In this thesis, our primary emphasis is on deep neural networks. Accordingly, we will
exclusively use post-hoc methods, which are inherently model-agnostic. This means that
these methods are designed to decouple the model’s interpretation from the model itself.
This separation offers us significant flexibility. More specifically, we can apply any function
that accepts the features as input and provides a prediction as output, without needing
to alter the method we employ for interpretation. This approach ensures consistency and
adaptability in our analysis, regardless of the specific predictive function used. Figure 3.1
summarizes the discussed topics.

Figure 3.1.: The figure referenced is sourced directly from [MSK+19]. It illustrates the
relationship between model-based and post hoc interpretability in the context
of both predictive and descriptive accuracy.
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3.2. ICE-Plots

Individual Conditional Expectation (ICE) plots offer an intuitive way of visually rep-
resenting how a specific prediction changes as a given feature changes. Developed by
Goldstein et al. in 2017 [GKBP15], these plots are designed to counter a limitation of the
Partial Dependence Plots (PDP) [Fri01], which only show the average effect of a feature
without focusing on individual instances. An ICE plot, on the other hand, provides a
detailed view of the relationship between the prediction and the feature for each instance
separately. This is done by changing the feature of interest and holding every other
feature fixed and plotting the resulting prediction of the changed data point.

The mathematical formulation of the Individual Conditional Expectation plot can be
rigorously described as follows:

Given a dataset X of size N , where each instance is denoted as a pair (xVi , x
F
i ) for

i = 1, . . . , N . Here, xVi represents the variable of interest whose values we wish to modify,
while xFi constitutes the portion of the instance that remains constant. Let ϕ be our
predictive model. An ICE plot can be generated using the ensuing algorithm:

Algorithm 1 ICE Plot Calculation
1: procedure ICEPlot(X,ϕ,N, V ) ▷ V indicates the part which will be changed and
ϕ is our model

2: for i = 1 to N do
3: for j = 1 to N do
4: Calculate ϕ(xVj , x

F
i ) ▷ ICE line for the sample i

5: if j = i then
6: Plot dot to indicate the original value
7: end if
8: end for
9: end for

10: end procedure

Another way in which the ICE line could be computed is to calculate the range of the
feature xV as min(xVi ) and max(xVi ) for all i and split the space evenly between them
and evaluate the model on this grid points then. In this thesis, we will however use the
first approach which only uses observed values as stand-ins. An example of an ICE plot
can be seen in figure 3.2.

Interpretation Interpreting an ICE plot involves understanding the variations in the
lines and what these imply about the model’s predictions.
Trend and direction: The direction of the lines (upward, downward, horizontal) can
indicate how changes in the feature affect the prediction. For instance, an upward trend
suggests that an increase in the feature value leads to an increase in the predicted outcome
while a horizontal line indicates that there is not much interaction and the outcome does
not depend much on this variable.
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Figure 3.2.: This is a typical ICE plot for the variable humidity. The black line is the
average of all lines (PDP line). The dots represent the original value of the
instance. We also colored each lane based on another attribute (season).

Slope of the lines: The slope of the lines provides information about the rate of change
in the prediction as the feature value changes. A steep slope indicates a high sensitivity
of the prediction to changes in the feature value.
Variation across instances: Variations in the lines for different instances can hint at
interactions between the primary feature under consideration and other features. When
the lines for various instances diverge significantly, it suggests that the influence of the
feature of interest is not uniform across all instances. Such inconsistencies might arise
from interplay with other features.

Advantages One advantage of ICE plots is that they are very intuitive to understand.
They also give an insight into the behavior of individual data points compared to PDP.
ICE plots can uncover heterogeneous relationships that PDPs might obscure.

Disadvantages While ICE plots offer an intuitive and robust way to visualize the impact
of a feature on model predictions for individual instances, they do come with some
limitations. Firstly, the nature of ICE plots restricts us to examining one feature at a
time. This could be limiting when trying to understand the interplay between multiple
features in high-dimensional datasets. Secondly, when dealing with large datasets, the
visualization may become cluttered due to the sheer volume of lines plotted. This high
density of data points can make it challenging to discern clear patterns or interpret the
plot. Finally, the approach used to create the grid for model evaluation can introduce
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potential issues. By using a uniform distribution within the feature range to establish the
grid, we risk generating invalid data points that do not align with the original distribution
of the feature. This could lead to an inaccurate representation of the feature’s influence
and thus distort the interpretability of the model’s behavior.

3.3. Shapley values

The calculation of Shapley values is an idea derived from game theory, which is primarily
concerned with assigning a payout to players in a game based on their individual con-
tributions. In the context of our work, the players are represented by the features of
our model, and the game we are playing involves making the best possible prediction
of the target variable. In this scenario, the payout can be reinterpreted as a measure of
the relative importance of each feature. This allocation signifies how much each feature
contributes to the prediction of the target. Therefore, the higher the absolut Shapley
value, the more critical the feature is in the predictive process.

Because Shapley values can be calculated and applied after a model has been trained,
they fall into the category of post-hoc methods. Importantly, they are model-agnostic,
meaning they can be used with any type of predictive model. This flexibility and
adaptability make Shapley values a powerful tool for understanding and interpreting
model behavior.

Mathematically we define the shapley value θ of feature j by :

θj(val) =
∑︂

S⊆{1,...,p=|V |}\{j}

|S|!(p− |S| − 1)!

p!
(val(S ∪ {j})− val(S)) (3.1)

where S is a subset of all features (the number of available features is p) and val is a
value function that calculates the worth or significance of the included features. Note
that this value function can take different shapes and we will see one one specific choice
shortly.

This formulation satisfies 4 very desirable properties which are called Efficiency, Sym-
metry, Dummy, and Additivity. Efficiency ensures the full value is allocated without any
excess or shortfall. Symmetry maintains that variables with the same contribution receive
equivalent shares. The dummy principle states that variables who don’t contribute receive
no payout. Lastly, additivity dictates that in combined scenarios, the total payout is the
cumulative sum from individual situations. Together they are defining what a fair payout
means. Importantly shapley values are uniquely characterized by these rules.

As easily seen, the calculation of the summation in Equation 3.1 requires a total of 2d

calculations, where d represents the number of features in the dataset. This results in an
exponentially large number of subsets, even when d is relatively small. This combinatorial
explosion makes the exact calculation impractical for most real-world datasets, given
their size and complexity. For example, if the value function would be the accuracy or
the mean squared error, we would need to retrain this model 2d times (each time with a
different combination of available features) which is infeasible. Therefore, to make the
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computation manageable, it’s often necessary to resort to approximations of these values.

Advantages Shapley values are based on a well-understood theory which is always good
and the fact the payout is fairly distributed between the features makes it able to bring a
full explanation to the table.

Disadvantages As already mentioned the enormous computing time makes them almost
always infeasible to calculate exactly but they can be approximated. Additionally, the
method needs to use all features so when we have a large number of features this makes
it additionally challenging to interpret.

Interpretation: Magnitude: The magnitude of a Shapley value indicates the extent of
a feature’s contribution to the prediction outcome. A larger absolute value means the
feature has a stronger impact.

Sign: The sign of a Shapley value indicates the direction of the feature’s impact.
A positive Shapley value implies the feature increases the prediction outcome, while a
negative value means it reduces the prediction outcome.

Comparison: The Shapley values can be compared across features. The feature with
the highest absolute Shapley value is deemed to be the most important one.

3.4. SHAP

SHapley Additive exPlanations (SHAP) provide individual explanations for predictions,
drawing inspiration from Shapley values. Unlike traditional methods that necessitate
retraining the model multiple times, SHAP leverages the model itself as its value function.
When a feature for a specific instance is absent from the selected subset, also known as
the coalition, SHAP allocates it a baseline value. This approach obviates the need for
exponential retraining of the model. The overarching objective of SHAP is to interpret a
model’s prediction for a specific data point by breaking it down into contributions from
each feature. Our discussion centers on KernelSHAP, which offers an approximation of
SHAP values. It employs a weighted linear surrogate model, underpinned by a suitable
weighting kernel. The derived weights from this surrogate model stand as the approximated
SHAP values.

The implementation of KernelSHAP can be broken down into five sequential steps:

• First, we randomly select K coalitions zk ∈ Z ∀k ∈ {1, . . . ,K} where zk ∈ {0, 1}d.
If zki = 1, it indicates that the feature is included in the coalition, and if zki = 0,
it’s not included.

• Next, we utilize the function hx(zk), which maps the ’1’s to the original values of
x and ’0’s to baseline values, to derive the model’s predictions f(hx(zk)) (f is the
trained model to interpret).

• We then calculate the weight for each coalition using the SHAP kernel π.
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• The next step involves fitting a linear model where the data points hx(zk), weighted
by π, and the targets f(hx(zk)) are incorporated. Specifically, we aim to solve the
following optimization problem:

argming(L(f, g, πx)) = ming(
∑︂
z∈Z

[f(hx(z))− g(z)]2π(z)) (3.2)

Here, g(z) = θ0 +
∑︁M

j=1 θjzj represents a linear model and Z is the sampled set of
coalitions.

• Finally, the coefficients derived from this linear model are an approximation to the
Shapley values θk.

The SHAP kernel π is defined as:

π(z) =
(M − 1)(︁

M
|z|
)︁
|z|(M − |z|)

(3.3)

Here, M denotes the maximum coalition size or the number of features, and |z|
represents the 1 norm of z. This kernel gives high weight when ∥z∥1 is very small or very
high. The implication is that we gather considerable information about a feature when
it’s considered in isolation, and when we have nearly all features available, we can also
determine the total effect of a particular feature.

SHAP values obtained in this way satisfy properties similar to those inherent to the
game-theoretic concept of Shapley values. We can then proceed to estimate a global
feature importance measure using the SHAP methodology. This method is based on the
straightforward principle that features with large absolute Shapley values are considered
significant. The global importance of each feature is determined by averaging the absolute
Shapley values per feature across the entire dataset, as represented by the equation:

Ij =
1

n

n∑︂
i=1

|θj(i)| (3.4)

In this equation, Ij is the importance of the j-th feature, n is the number of data points,
and θj(i) is the Shapley value of the j-th feature for the i-th data point. By focusing on
the absolute value of the Shapley values, we assess their overall influence irrespective of
their direction (positive or negative), which provides a measure of the magnitude of each
feature’s contribution to the overall model output, thus reflecting its importance.

Interpretation This method of computing Shapley values offers an intuitive approach
to understanding a model’s predictions. Each Shapley value can be interpreted as the
amount either subtracted from or added to the prediction.

Advantages Since SHAP values are essentially shapley values they share the same
advantages. A benefit is that this method can also be used for global measures such
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as feature importance. Since we are using an approximation it is faster than the full
computation of Shapley values. This method can also explain single predictions.

Disadvantages Kernelshap can be slow especially when using it to compute shapley
values for a lot of instances as it would be needed when calculating global importance for
example but as already said much faster than the full computation. Another point to be
cautious about when interpreting the values is that it can destroy the feature dependence
of features when setting one feature to the baseline while the other feature is in the
coalition.

Visualizations One visualization that captures both local and global aspects is the SHAP
summary plot 3.3. The summary plot combines feature importance and feature effects.
Each point on the plot corresponds to a Shapley value for a particular feature-instance
pair.

The y-axis of the summary plot is determined by the feature itself, while the x-axis
represents the corresponding Shapley value. The color coding of the points provides
additional information about the actual value of the feature, with a color gradient being
used to represent values ranging from low to high. Due to overlap, points may be slightly
adjusted (or "jittered") along the y-axis. This jittering aids in visualizing the distribution
of the Shapley values for each feature, providing a sense of their spread and concentration.

Furthermore, the features are ordered in terms of their importance. This ordering
typically means that features towards the top of the plot have higher global importance
(according to the Shapley values), while those towards the bottom have less.

A typical summary plot can be seen in Figure 3.3.

Figure 3.3.: This plot shows a SHAP summary plot. The analyzed model is a NN trained
on the admission dataset.

Another frequently used visualization technique is the SHAP waterfall plot. This plot
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is a graphical representation that shows the contribution of each feature to the prediction
for a specific instance in the dataset.

This visualization resembles a waterfall: it starts with the expected prediction value
(base value), and each feature either increases or decreases this base value based on its
contribution to the overall prediction. The colors of the bars in a waterfall plot can
be used to indicate whether the contribution is positive or negative. Red bars indicate
positive contributions, while blue bars indicate negative contributions. The ordering of
the features typically starts with the one having the most significant impact, gradually
descending to those with less influence.

Through the SHAP waterfall plot, one can better understand how different features
sway the model’s decision, thereby enhancing interpretability. It is particularly beneficial
in providing a granular, instance-specific interpretation, making it an effective tool for
post-hoc interpretability.

An example of a SHAP waterfall plot is depicted in Figure 3.4. In this case, it is flipped
upside down.

Figure 3.4.: This Figure shows a SHAP waterfall plot of a NN trained on the admission
dataset.

3.5. Variational Autoencoders

A Variational Autoencoder (VAE) is a type of autoencoder that is designed to learn
probabilistic mappings between the data space and a latent space. It is a generative model,
which means it can generate new data samples that are similar to the input data. It works
by encoding input data into a lower-dimensional latent space and then reconstructing
the original data from this latent representation. Often a traditional autoencoder does
not impose any structure on the latent space, whereas a VAE imposes the condition that
the latent variables follow some distributions (a Gaussian for example). Thus we learn a
distribution p of our data over our latent space. The generative model is represented by
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pθ(z)pθ(x|z) and it simulates the process of data creation. Initially, it produces z using
pθ(z) Subsequently, it generates x based on the value of z through pθ(x|z). Nevertheless,
determining the actual distribution of z when given x, denoted as pθ(z|x) is frequently
intricate and challenging to compute. Therefore, VAE introduces a simpler, variational
approximation to this posterior, denoted as qϕ(z|x) which is modeled by a neural network
and called the probabilistic encoder or Encθ(x). Similar Decθ(z) is the parameterization
of the probabilistic decoder pθ(x|z) which is also a neural network. Figure 3.5 shows this
architecture.

Figure 3.5.

Figure 3.6.: This image is taken from [Wen18].

Since a loss function is needed to train the nets we will present how to derive the ELBO
loss which is the standard choice. The following derivation is partially from [Wen18]

Instead of mapping the input into a fixed vector like the traditional autoencoder, we
want to map it into a distribution pθ.

The relationship between the data input x and the latent encoding vector z can be fully
defined by:

• Prior: pθ(z)

• Likelihood: pθ(x|z)

• Posterior: pθ(z|x)

We could then generate new data points from this if we would know the real parameter
θ∗ for pθ by first sampling z from the prior distribution pθ(z) and then generating x from
the conditional distribution pθ(x|z).

The optimal parameter θ∗ (maximum likelihood estimation) is the one which maximises
θ∗ = argmaxθ

∏︁n
i=1 pθ(x

(i)). Taking the logarithm we get log(θ∗) = argmaxθ
∑︁n

i=1 log(pθ(x
(i))).
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For a single summand, we can derive the following lower bound.

log(pθ(x)) = log

∫︂
z
pθ(x, z)

= log

∫︂
z
pθ(x, z)

qϕ(z|x)
qϕ(z|x)

= logEqϕ(z|x)[
pθ(x, z)

qϕ(z|x)
]

≥ Eqϕ(z|x)[log(
pθ(x, z)

qϕ(z|x)
)]

= Eqϕ(z|x)[log(
pθ(x|z)pθ(z)
qϕ(z|x)

)]

= Eqϕ(z|x)[log(pθ(x|z))] + Eqϕ(z|x)[log(
pθ(z)

qϕ(z|x)
)]

= Eqϕ(z|x)[log(pθ(x|z))] +
∫︂
z
qϕ(z|x) log(

pθ(z)

qϕ(z|x)
)

= Eqϕ(z|x)[log(pθ(x|z))]−DKL[qϕ(z|x)||pθ(z)] := L(θ, ϕ, x)

(3.5)

We have introduced qϕ(z|x), which approximates the often intractable posterior pθ(z|x).
L is called the evidence lower bound (ELBO) and is our loss function for the VAE and we
want to maximize this. The term DKL[qϕ(z|x)||pθ(z)] is the Kullback-Leibler divergence
which is a measure of the similarity of distributions. Since there is a minus in front of
the KL divergence we want this to be as small as possible which means we want the
learned distribution by qϕ(z|x) to be as close as possible to pθ(z). If we assume that
pθ(z) ∼ N (0, 1) we then get a closed-form solution of the DKL (since qϕ(z|x) is also
modeled as a gaussian) which is −DKL[qϕ(z|x)||pθ(z)] = 1

2

(︂
1 + log(σ2j )− µ2j − σ2j

)︂
where

µ and σ are taken from the qϕ(z|x) [KW22]. The term log(pθ(x|z)) can be implemented
as −1

2 |x−Decθ(z)|2 which is the reconstruction loss. Implementing it like this is a design
choice.

This means we want to minimize :

−L = −Eqϕ(z|x)[log(pθ(x|z))] +DKL[qϕ(z|x)||pθ(z)]
= Reconstruction Loss − Difference of qϕ(z|x) and pθ(z)

(3.6)

To calculate the reconstruction loss we have to generate samples z from qϕ(z|x) which
is a probabilistic process where we can not use standard backpropagation. Thus we use
the reparameterization trick where we learn the mean and standard deviation and then
use the following formula to calculate z.

z = µ+ σ ∗ ϵ, where ϵ ∼ N(0, I) (3.7)

and ∗ is element-wise. This basically outsources the randomness to ϵ and thus enables us
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to use backpropagation on the remaining deterministic variables.

Beta-VAE A popular variation of an autoencoder is the Beta-VAE. The difference to the
traditional variational autoencoder is that in the ELBO loss, we add a hyperparameter β
in front of the KL-Divergence loss term.

LBETA = −Eqϕ(z|x)[log(pθ(x|z))] + βDKL[qϕ(z|x)||pθ(z)] (3.8)

It is also common to add a hyperparameter in front of the reconstruction loss which
would result in :

LBETA = −β1 Eqϕ(z|x)[log(pθ(x|z))] + β2DKL[qϕ(z|x)||pθ(z)] (3.9)

Of course, this is equivalent to the first formulation except for scaling.
An increased β2 value can promote more disentangled representations. This enhance-

ment results in a more interpretable latent space, where each dimension independently
encodes distinct and meaningful characteristics of the data.
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In this section, we outline the methodology we used to answer the research questions
presented in chapter 1. We will divide the methodology into two segments, each addressing
its respective question. It should be noted, however, that there will be areas of overlap,
particularly in relation to methods of interpretability.

4.1. Research Question 1

To address our first research question, which pertains to the impact of a confounding
variable on the interpretability of neural networks (complete question in chapter 1), we
used the following methodology.

Confounder Selection: We initially identify suitable confounders that exhibit a high
correlation with both the target variable and other features within the dataset. For the
scope of this study, only one confounder is selected for each dataset. Further details on
the chosen confounders are provided in chapter 5.

Dataset Preparation: Subsequent to confounder selection, two versions of each
dataset are prepared. The first version incorporates all variables, while the second
excludes the selected confounder, effectively rendering it hidden.

Data Partitioning: To ensure a consistent and fair comparative analysis, the same
training, validation, and testing datasets are employed for both versions of each dataset.

Optimal Model Identification: To find the most suitable models for our datasets,
we employ a multi-step methodology that incorporates a variety of techniques. See 4.1.1
for details.

Model Interpretation: Armed with these refined models, we employ several inter-
pretable methods, such as ICE plots, truth-prediction plots, and KernelSHAP. The models
are analyzed and compared using these methods to identify disparities in their behavior.
The findings are subsequently examined and clarified by the author. Comparative plots
from all models are arranged side-by-side to enable a nuanced evaluation of differences.
Special focus is given to the potential effects arising from the exclusion of a confounder.
In the case of Individual Conditional Expectation plots, lines are color-coded based on
the value of the confounder variable, adding an extra layer of interpretive depth.

4.1.1. Multi-step methodology to find best models for RQ1

1. We first establish a hyperparameter search space. The exact parameter space can
be found in chapters 6 and A.2.
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Next, we train 100 models with hyperparameters uniformly sampled from this
search space. We employ 5-fold cross-validation, only using train data of a random
80/20 train-test split, to calculate the R2 score and loss for each model. The
ASHAScheduler [LJR+18] is utilized for early stopping in cases where the R2 score
is particularly low.

2. We then select the hyperparameters corresponding to the highest R2 score and
proceed to fine-tune the learning rate, batch size, and epochs using scikit-optimize
[HKN+21] again using cross-validation. When using scikit-optimize we specifically
employ the gp_minimize function, which performs Bayesian optimization with a
Gaussian Process. We run 100 iterations for this optimization process.

3. Armed with these optimized parameters, and the consistent train, test, and validation
sets (meaning the train, validation and test sets with which we train the full models
and the confounding models are the same) at hand we train the final models and
incorporate early stopping to prevent overfitting. These resulting models are saved
as our final optimized models.

All models are implemented in PyTorch [PGM+19], and hyperparameter tuning is
facilitated by Ray [MNW+17]. The exact implementation can be found on Github
https://github.com/patrickpollek1/Masterthesis-Interpreting-Neural-Netwo
rks-Under-Latent-Confounding.

4.2. Research Question 2

The second question that the research aimed to address was whether we can find evidence
that a variational autoencoder which also takes the variable y into account improves the
interpretability in the sense of learning more intuitive relations and interpretations that
are more aligned with reality (complete question in chapter 1).

To answer this we have to adapt the VAE model described in the background chapter
(3.5) to also include y in some sense. The reason why we also want y in our model comes
naturally when we look again at the setting of our confounding variable. In Figure 4.1
we see that z, the confounder, is influencing x and y simultaneously. Thus theoretically
we want to learn z from x and y which would mean our input to the VAE would be x
and y concatenated. This approach was also taken by [LSM+18]. The idea is to acquire a
latent representation that is both more entangled and independent and potentially model
hidden confounders. This representation should make it easier for the model to predict y
and improve interpretability.

Figure 4.1 would lead us to a factorization of the distribution p(x, y, z) as p(x, y, z) =
p(z)p(x|z)p(y|x, z).

Using the same techniques as in the background section we want to derive a lower
bound on pθ(x, y) in order to maximize it. Thus we have:
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4.2. Research Question 2

X Y

Z

Figure 4.1.: This figure shows a typical confounding variable Z which influences both the
independent variable X and the dependent variable Y.

log(pθ(x, y)) = log

∫︂
z
pθ(x, y, z)

= log

∫︂
z
pθ(x, y, z)

qϕ(z|x, y)
qϕ(z|x, y)

= logEqϕ(z|x,y)[
pθ(x, z)

qϕ(z|x, y)
]

≥ Eqϕ(z|x,y)[log(
pθ(x, y, z)

qϕ(z|x, y)
)]

= Eqϕ(z|x,y)[log(
pθ(z)pθ(x|z)pθ(y|x, z)

qϕ(z|x)
)]

= Eqϕ(z|x,y)[log(pθ(x|z)pθ(y|x, z))]−DKL[qϕ(z|x, y)||pθ(z)]

(4.1)

This result mirrors the traditional loss mechanism utilized by the standard variational
autoencoder, albeit with an additional layer of complexity wherein the variable y is
incorporated as an input to our VAE and subsequently reconstructed. During the model’s
training phase, this process is easily managed due to the availability of target variables.
However, this approach becomes significantly more challenging during the testing stage
when y is not readily available.

We can either learn an additional integrated model that also predicts y to then use the
model and get the latent representation or we could incorporate the target in a different
way, without using y as an input to our model. In the context of this research, we have
chosen to adopt the latter strategy and propose a different model.

The proposed strategy involves learning a separate latent variable z′ from our existing
latent space z, which might potentially model some information about a hidden confounder.
Given that we learn z from x and z′ from z, we expect z′ to contain some information
from x. Following this, we attempt to predict y using a combination of z and z′, ensuring
z′ also encapsulates information about y. This process emulates to some degree the
structure found in the factorization of the joint distribution p(x, y, z) and the causal
setting.

To develop an appropriate loss function, we first resort to calculating a lower bound on
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the likelihood :

log(pθ(x)) = log

∫︂
z

∫︂
z′
pθ(x, z, z

′)

= log

∫︂
z

∫︂
z′
pθ(x, z, z

′)
qϕ(z, z

′|x)
qϕ(z, z′|x)

= log Eqϕ(z,z′|x)[
pθ(x, z, z

′)

qϕ(z, z′|x)
]

≥ Eqϕ(z,z′|x)[log(
pθ(x, z, z

′)

qϕ(z, z′|x)
)]

= Eqϕ(z,z′|x)[log(
pθ(z)pθ(z

′|z)pθ(x|z, z′)
qϕ(z, z′|x)

)]

= Eqϕ(z,z′|x)[log(
pθ(z)pθ(z

′|z)pθ(x|z, z′)
qϕ1(z|x)qϕ2(z′|z)

)]

= Eqϕ(z,z′|x)[log(pθ(x|z, z
′))]−DKL[qϕ1(z|x)||pθ(z)]−DKL[qϕ2(z

′|z)||pθ(z′|z)]
:= ELBOz′

(4.2)

which we want to maximize.
In the calculations above we have split the encoder (qϕ) into 2 parts. qϕ1(z|x) decodes

x into z and qϕ2(z
′|z) decodes z into z′. This way we can learn z′ from z and model

a potential confounder. (Actually, it might only learn the portion of the confounder
that is not already in some form in x already and only the part that is needed for y.)
The derived lower bound (ELBOz′) can be interpreted in the following way. The first
expectation is implemented as the reconstruction error of x using z and z′. We then also
have the KL-divergence terms which measure the similarity of distributions, which we will
assume to be both normal Gaussian’s, allowing for an explicit solution and straightforward
implementation.

But this is not enough since we also want to incorporate the loss that arises when we
predict the target variables from z and z′. Luckily this is straightforward and can be
implemented as an MSE between the prediction and the true value. This requires an
additional part to our VAE which we call ψ(z, z′), and which is a feed-forward NN.

The complete loss is then

L := β1 Eqϕ(z,z′|x)[log(pθ(x|z, z
′))]− β2DKL[qϕ1(z|x)||pθ(z)]

− β3DKL[qϕ2(z
′|z)||pθ(z′|z)] + β4[ψ(z, z

′)− y]2
(4.3)

, where y is the true target value and the β’s are hyperparameter.
The whole architecture of this model can be summarized as follows:

• Encz(x) = qϕ1(z|x) is the encoder of x into z. This means z|x is normally distributed
as N(µϕ1(x), σϕ1(x)

2).
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4.2. Research Question 2

• Encz′(z) = qϕ2(z
′|z) is the encoder of z into z′. This means z′|z is normally

distributed as N(µϕ2(z), σϕ2(z)
2).

• Dec(z, z′) is the decoder from z and z′ to x

• ψ(z, z′) is the predictor from z and z′ to y

x Encz(x) z

Encz′(z)

z′

Dec(z, z′)

ψ(z, z′)

x

y

Figure 4.2.: This figure shows the flow of a sample through our VAE

Since we employ the parameterization trick we also have 2 additional layers per decoder
which directly parameterize the mean and the logarithmic variance.

We used 2 different approaches on how to train this model. The first approach is
the standard one where all parameters are trainable all the time and the loss function
incorporates all terms. The second approach only trains the auto-encoder part first where
we leave out the loss term of the prediction of y. After Tf epochs we freeze the weights of
the encoder Encz(x). After that, our loss is simply β4[ψ(z, z′)− y]2. We then train an
additional number of epochs like this, specified in Of , and after that, we freeze now also
Encz′(z) and Dec(z, z′). Finally, we let this train for the remaining number of epochs.

For training, we first used a 5-fold CV to select the best hyperparameters. We again
used PyTorch for the implementation and used Adam as our optimizer. The exact
parameter spaces and further information can be found in the section 6.

The single best-performing model of both approaches is then trained again several
times and then one is selected based on performance and the structure of the learned
latent space. Structure means we investigate how each latent variable is correlated with
the input and target variables and look for a nonuniform structure, meaning different
variables encode different parts of the data.

Because we sample each forward pass through our model from a probability distribution,
we will have (slightly) different latent variables and outputs each time. This affects our
evaluation and interpretations of this model. For example, when reporting the R2 score
of the model this will be an average score of multiple evaluations (10 times). The same is
true for the train and test loss and also for the creation of ICE plots and shapley values.
We ran the prediction of the output multiple times which makes the plots cleaner and
more comparable. Specifically, we averaged the shapley value calculation over 100 runs
and the ICE plot calculations over 10 runs for the admission dataset and toy dataset and
20 runs for the bike rental dataset.
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5. Datasets

We are going to use 3 different Datasets to answer the research questions.

5.1. Bike Rentals

The first dataset, known as the Bike Rentals Dataset, was initially released by Capital
Bikeshare and later enriched by Fanaee-T and Gama [FTG14] with the inclusion of
weather data. The primary objective of this dataset is to predict the daily bike rental
demand, accounting for various factors such as weather conditions or if the day is a
holiday or not. Note that we do not use every feature that is present in the original data
but leave some out and use the preprocessing as in [Mol22]. The complete list of features
we use in this thesis can be found in Table 5.1. A Table of Summary Statistics can be
found in the appendix [A.1]

Feature Description
season Categorical: spring, summer, fall, or winter
yr Categorical: 2011 or 2012
holiday Binary: holiday (1) or not (0)
workingday Binary: working day (1) or weekend (0)
weathersit Categorical: weather conditions
temp Continuous: temperature in degrees Celsius
hum Continuous: relative humidity (0-100%)
windspeed Continuous: wind speed in km/h
cnt Continuous: total bike rentals (target variable)
days_since_2011 Continuous: days elapsed since 01.01.2011

Table 5.1.: Features of the Bike Rentals Dataset

We one-hot encoded weather situation into 3 separate features namely: weathersit_GOOD,
weathersit_MISTY, and weathersit_RAIN/SNOW/STORM. The same was done for
season (eg. into season_SPRING,season_SUMMER, and so on).

Figure 5.1 shows the course of the number of rented bikes over the whole period of the
dataset. We can see a strong upward trend year over year.

Because we need to select suitable confounders, we have to look at the correlation of
the features to see which are correlated with both other features and the target variable.
Table 5.2 summarizes this. It is not surprising that days_since_2011 and year are highly
correlated as well as the weather situation since it can not be both at the same time and
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5. Datasets

Figure 5.1.: This figure shows the number of rented bikes on each day.

weathersit_RAIN/SNOW/STORM happens not so often. An interesting variable are
the Season variables. For example Season Summer correlates with Temperature with a
coefficient of 0.6784 which makes sense since typically the temperature goes up in the
summer. But Season Summer also correlates with our target variable count (0.3464),
since a lot of people enjoy biking much more in Summer than in Winter. So it is plausible
that the variable Season Summer influences both the variable Temperature and the
variable Count. This means that the season might be a good candidate to be chosen as a
confounding variable in our setting and this is what we did.
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5.1. Bike Rentals

Figure 5.2.: (absolute) Correlation Coefficients
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5.2. Graduate Admissionss

This dataset, inspired by the UCLA Graduate Dataset, aims to predict graduate admissions
for Indian students by considering various factors such as test scores, research experience,
and the quality of the statement of purpose. The full list of features used in this study is
provided in Table 5.2, while a summary statistics table can be found in the appendix [A.2].
The dataset was made publicly available by Mohan S. Acharya et al. (2019) [AAA19]
and can be accessed on Kaggle at the following link: https://www.kaggle.com/dataset
s/mohansacharya/graduate-admissions.

Feature Description
GRE Score Continuous: GRE Scores (out of 340)
TOEFL Score Continuous: TOEFL Scores (out of 120)
University Rating Categorical: University Rating (out of 5)
SOP Ordinal: Statement of Purpose (out of 5 )
LOR Ordinal: Letter of Recommendation (out of 5)
CGPA Continuous: Undergraduate GPA (out of 10)
Research Binary: Research Experience (either 0 or 1)
Chance of Admit Continuous: Chance of Admit (ranging from 0 to 1)

Table 5.2.: Features of the Graduate Admissions Dataset

Figure 5.3.: This figure shows the frequency of the chance of admission feature.
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5.2. Graduate Admissionss

The GRE score is a standardized test result, which assesses a candidate’s verbal
reasoning, quantitative reasoning, and analytical writing abilities for graduate school
admissions. This test also includes a Verbal section where vocabulary usage is a part
of it. This test is taken after finishing the bachelor’s degree. On the other hand, the
TOEFL score is a standardized assessment that evaluates a candidate’s English language
proficiency in reading, listening, speaking, and writing skills. The Cumulative Grade
Point Average (CGPA) score serves as a comprehensive metric for evaluating a student’s
overall academic performance throughout their bachelor’s degree program.

Therefore, it is plausible to contend that the CGPA score may exert a significant
influence on both the GRE score, with a correlation of 0.83, and the Chance of Admit,
with a correlation of 0.88 (Figure 5.4). This suggests that strong academic performance
during a bachelor’s program is likely to positively impact the likelihood of gaining
admission to a master’s program, as well as achieving a high GRE score.

Thus we select the CGPA score as our confounder.

Figure 5.4.: (absolute) Correlation Coefficients
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5.3. Toy Dataset

This dataset is a synthetically generated dataset created to test our hypothesis and to
ensure full control over the impacts of all attributes. In contrast to the other smaller
datasets, which consist of 500 and 731 instances, we will generate a significantly larger
number (200k) of samples to create a comparatively extensive dataset.

The following list describes the generation process :

1. X0: A continuous attribute derived from X1, X0 =
X1−0.8ϵ1

2 , where ϵ1 ∼ N (2, 1).

2. X1: A continuous attribute sampled from a normal distribution X1 ∼ N (3.6, 4.64).

3. X2: A continuous attribute sampled from a normal distribution, X2 ∼ N (0, 0.8).

4. X3: A continuous attribute obtained by taking the square root of the absolute
product of the second and third attributes, X3 =

√︁
|X1X2| + 0.2ϵ2, where ϵ2 ∼

N (0, 1).

5. X4: A continuous attribute generated from a normal distribution, X4 = N (160, 4)+
X5N (5, 4).

6. X5: A binary attribute generated from a binomial distribution,X5 ∼ Binomial(1, 0.5).

The target variable Y was constructed using a linear combination of the attributes,
along with some non-linear transformations and interactions:

Y = 1400 +X0 + 30X5 + 10X1X2 + 7

(︃
X3

2
+ 5

)︃2

− 2 sin(X4 + 8) + 3X1,

The design of X0 demonstrates that X1 is an appropriate selection for a hidden
confounder. This is because X0 is directly influenced by X1 and additionally, it is
observable from Y that X1 also has an impact on the target variable.
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Figure 5.5.: This figure shows the frequency of the target variable Y .

Figure 5.6.: (absolute) Correlation Coefficients
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6. Experimental Setup

In this section, we will specify all hyperparameter spaces that we used in this thesis.

6.1. Training of FFNN

The hyperparamter space to identify the optimal FFNN’s (as in 4.1.1) were :

• Batch size: For the toy dataset, we consider values in the range [128, 256, 512,
1024, 2048]. For the remaining datasets, we use the range [8, 16, 32, 64, 128]. The
toy dataset has a different range due to its larger size.

• Learning rate: We use a loguniform distribution between 10−7 and 10−2.

• Epochs: For the toy dataset, we consider values in the range [10, 25, 50, 75]. For
the other datasets, we use the range [25, 50, 100, 150, 300, 500].

• Hidden layers: We select a random integer between 1 and 4. This integer
determines the number of hidden layers.

• Hidden units: For each layer, we consider values in the range [16, 32, 64, 128].

• Dropout: We select either True or False. This determines if we use dropout or not.

• Dropout array: If dropout is set to True, we sample a uniform value between 0.1
and 0.8 for each layer.

• BatchNorm: We select either True or False to determine whether a BatchNorm1d
layer is included at the beginning.

The parameter space for further fine-tuning (step 2 in 4.1.1) of these models using
scikit-optimize are :

Bike-Rental dataset

Hyperparameter Range Sampling Procedure
batch_size (8, 256) uniform

learning rate (lr) (10−4, 10−2) log-uniform
epochs (100, 500) uniform
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Admission dataset

Hyperparameter Range Sampling Procedure
batch_size (8, 256) uniform

learning rate (lr) (10−4, 10−2) log-uniform
epochs (30, 250) uniform

Toy dataset Note that for the toy dataset, we only used 50 iterations of the optimization
algorithm (gp_minimize) for further fine-tuning because of the long computation time.
We also subsampled the data further by a factor of 10. This left us with a train set of
16k data points.

Hyperparameter Range Sampling Procedure
batch_size (25, 100) uniform

learning rate (lr) (10−4, 10−2) log-uniform
epochs (25, 100) uniform

6.2. Training of VAE models

In this section, we detail the parameter spaces employed for training our VAE models.
Through initial tests, it became clear that predictive accuracy is greatly influenced by the
choice of betas. Specifically, when betas were of similar magnitude, the resulting latent
space consistently showed a uniform correlation structure, which was undesirable and
led to worse predictive accuracy. We discovered that elevating betas for reconstruction
errors and prediction loss led to a more varied latent space. Due to limited time and
computational resources, only a very small parameter space was chosen.

Bike rental dataset training For the bike rental dataset, we also scaled the target values
y by 1

10000 . This solved some issues during training when we encountered NAN and inf
values.

The parameters for the Bikerental Dataset can be found in table 6.1:
The settings for freezing the weights were Tf = 500 and Of = 200. For the bike rental

dataset, we took the 3rd best model based on R2 score where we froze the parameters
since we saw that the latent space of the no-freeze model was very uniform and highly
correlated with the target variable already although the performance was superior to the
freeze models.
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6.2. Training of VAE models

Parameter Name Possible Values
z_dim_values [4]
z′_dim_values [1]

Encz(x) [[12,12,12],[128,128]]
Encz′(z) [[5,5,5]]
ψ(z, z′) [[28,28,1]]
BETAS [[β1: 10000, β2: 1, β3: 1,β4: 1000], [β1: 1, β2: 1, β3: 1, β4: 1]]

learning_rate [10−3]
batch_size [16,32]

num_epochs [700,1000]

Table 6.1.: [12,12,12] means that we have 3 layers each with 12 neurons fully connected.
The decoder has always the same size as the encoder with the last layer having
the dimension of the input. ( If the encoder has [12,12,12] then the decoder
has [12,12,12,d] where d is the dimension of the input data)

Admission dataset training The hyperparameter space for the VAE model can be found
in table 6.2

Parameter Name Possible Values
z_dim_values [3,4]
z′_dim_values [1]

Encz(x) [[10,10,10],[64,64,64]]
Encz′(z) [[10,10]]
ψ(z, z′) [[12,12,1],[32,32,32,1]]
BETAS [[β1: 10000, β2: 1, β3: 1, β4: 10000]]

learning_rate [10−3]
batch_size [16,32]

num_epochs [600,800,1000]

Table 6.2.: Again the decoder has the same size as the encoder for each experiment.

The settings for freezing the weights were Tf = 400 and Of = 200. For the admission
dataset, we took the 3rd best model based on R2 score where we did not freeze the
parameters. We selected this model because we saw that the latent space had a clear
highly correlated structure between the variables.
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Toy dataset training The hyperparameter space for the VAE model can be found in
table 6.3.

Parameter Name Possible Values
z_dim_values [3,4]
z′_dim_values [1]

Encz(x) [[10,10,10],[64,64,64]]
Encz′(z) [[10,10]]
ψ(z, z′) [[12,12,1],[32,32,32,1]]
BETAS [[β1: 1, β2: 1, β3: 1, β4: 1], [β1: 10000, β2: 1, β3: 1, β4: 10000]]

learning_rate [10−3]
batch_size [512,1024]

num_epochs [300,500]

Table 6.3.: Again the decoder has the same size as the encoder for each experiment.

For the toy dataset, we took the best model based on the R2 score where we again did
not freeze the parameters. We saw that freezing the parameters did not result in very
good models. We used Tf = 400 and Of = 200.

6.3. Interpretation methods settings

Kernel SHAP settings The number of sampled collations was set to n_samples = 200
for all datasets and all calculations of SHAP values. Theoretically increasing this number
would give more accurate approximations of Shapley values but the computation time
would also increase dramatically.
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7. Results

This section presents the performance of the trained models and describes the findings of
interpreting them. We have selected 3 models for each dataset.

• The full model: This is the feed-forward neural network (FFNN) which was trained
with all available features.

• The confounder model: This is again an FFNN that was trained without the
previously selected feature which we call the confounding feature which should act
as a hidden confounder.

• The VAE model: This is the proposed model which we outlined in previous sections.
This model does not have access to the confounding feature.

After stating the architecture of each model we will use ICE plots to analyze the learned
relationship between variables and prediction. We then use Kernel SHAP to approximate
shapley values and calculate the feature importance for each model of each dataset. We
also define baselines that will allow us to analyze the prediction of single instances. Last
but on least we will show the resulting SHAP summary plots for each model.

7.1. Architecture of Models

7.1.1. Bike rental

The optimal architecture that we found for these models can be found in 7.1 for the full
model and in 7.2 for the confounder model. The architecture for the VAE model can be
found in 7.3. Further in formations regarding other hyperparameters and truth-prediction
plots are provided in the appendix (see Appendix A.2). The performance of these models
is summarized in table 7.4.
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Layer (type) Param #

Linear (in_features=14, out_features=128) 1,920
ReLU 0
Linear (in_features=128, out_features=128) 16,512
ReLU 0
Linear (in_features=128, out_features=64) 8,256
ReLU 0
Linear (in_features=64, out_features=1) 65

Total params: 26,753

Table 7.1.: Neural Network Structure of the full model.

Layer (type) Param #

Linear (in_features=10, out_features=32) 352
ReLU 0
Linear (in_features=32, out_features=32) 1,056
ReLU 0
Linear (in_features=32, out_features=128) 4,224
ReLU 0
Linear-7 (in_features=128, out_features=1) 129

Total params: 5,761

Table 7.2.: Neural Network Structure of the confounder model.
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7.1. Architecture of Models

Hierarchy Layer (type) Description Param #

Encz(x) Linear in_features=10, out_features=128 1,408
ReLU 0
Linear in_features=128, out_features=128 16,512
ReLU 0
Linear in_features=128, out_features=4 516
Linear in_features=128, out_features=4 516

Encz′(z) Linear in_features=4, out_features=5 25
ReLU 0
Linear in_features=5, out_features=5 30
ReLU 0
Linear in_features=5, out_features=5 30
ReLU 0
Linear in_features=5, out_features=1 6
Linear in_features=5, out_features=1 6

Dec(z, z′) Linear in_features=5, out_features=128 768
ReLU 0
Linear in_features=128, out_features=128 16,512
ReLU 0
Linear in_features=128, out_features=10 1,290

ψ(z, z′) Linear in_features=5, out_features=28 168
ReLU 0
Linear in_features=28, out_features=28 812
ReLU 0
Linear in_features=28, out_features=1 29

Total params: 38,628

Table 7.3.: Neural Network Structure of the VAE model.

Model Train RMSE Loss Test RMSE Loss R2 Score
Full model 581.562 729.221 0.852

Confounder model 885.610 921.290 0.764
VAE model 492.185 742.28 0.845

Table 7.4.: Train and test losses with R2 scores where the R2 score is calculated on the
test set.
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7.1.2. Admission

The optimal architecture that we found for these models can be found in 7.5 for the full
model and in 7.6 for the confounder model. The architecture for the VAE model can be
found in 7.7. Further information regarding other hyperparameters is provided in the
appendix (see Appendix A.2). The performance of these models is summarized in table
7.8.

Layer (type) Param #

BatchNorm1d 14
Linear (in_features=7, out_features=128) 1024
ReLU 0
Linear (in_features=128, out_features=16) 2064
ReLU 0
Linear (in_features=16, out_features=32) 544
ReLU 0
Linear (in_features=32, out_features=1) 33

Total params: 3,679

Table 7.5.: Neural Network Structure of the full model.

Layer (type) Param #

BatchNorm1d 12
Linear (in_features=6, out_features=128) 896
ReLU 0
Linear (in_features=128, out_features=1) 129

Total params: 1,037

Table 7.6.: Neural Network Structure of the confounding model.
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7.1. Architecture of Models

Hierarchy Layer (type) Description Param #

Encz(x) Linear in_features=6, out_features=10 70
ReLU 0
Linear in_features=10, out_features=10 110
ReLU 0
Linear in_features=10, out_features=10 110
ReLU 0
Linear in_features=10, out_features=3 33
Linear in_features=10, out_features=3 33

Encz′(z) Linear in_features=3, out_features=10 40
ReLU 0
Linear in_features=10, out_features=10 110
ReLU 0
Linear in_features=10, out_features=1 11
Linear in_features=10, out_features=1 11

Dec(z, z′) Linear in_features=4, out_features=10 50
ReLU 0
Linear in_features=10, out_features=10 110
ReLU 0
Linear in_features=10, out_features=10 110
ReLU 0
Linear in_features=10, out_features=6 66

ψ(z, z′) Linear in_features=4, out_features=12 60
ReLU 0
Linear in_features=12, out_features=12 156
ReLU 0
Linear in_features=12, out_features=1 13

Total params: 1,026

Table 7.7.: Neural Network Structure of the VAE model.

Model Train RMSE Loss Test RMSE Loss R2 Score
Full model 0.054 0.067 0.725

Confounder model 0.060 0.077 0.635
VAE model 0.062 0.072 0.681

Table 7.8.: Train and test losses with R2 scores where the R2 score is calculated on the
test set.
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7. Results

7.1.3. Toy-Data

The optimal architecture that emerged for our models can be found in 7.9 for the full
model and in 7.10 for the confounder model. The architecture for the VAE model can be
found in 7.11. Further information regarding other hyperparameters is provided in the
appendix (see Appendix A.2). The performance of these models is summarized in table
7.12.

Layer (type) Param #

Linear (in_features=6, out_features=128) 896
ReLU 0
Linear (in_features=128, out_features=64) 8256
ReLU 0
Linear (in_features=64, out_features=32) 2080
ReLU 0
Linear (in_features=32, out_features=1) 33

Total params: 11,265

Table 7.9.: Neural Network Structure of the full model.

Layer (type) Param #

BatchNorm1d 10
Linear (in_features=5, out_features=64) 384
ReLU 0
Linear (in_features=64, out_features=32) 2080
ReLU 0
Linear (in_features=32, out_features=32) 1056
ReLU 0
Linear (in_features=32, out_features=1) 33

Total params: 3,563

Table 7.10.: Neural Network Structure of the confounding model.
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7.1. Architecture of Models

Hierarchy Layer (type) Description Param #

Encz(x) Linear in_features=5, out_features=64 384
ReLU 0
Linear in_features=64, out_features=64 4160
ReLU 0
Linear in_features=64, out_features=64 4160
ReLU 0
Linear in_features=64, out_features=3 195
Linear in_features=64, out_features=3 195

Encz′(z) Linear in_features=3, out_features=10 40
ReLU 0
Linear in_features=10, out_features=10 110
ReLU 0
Linear in_features=10, out_features=1 11
Linear in_features=10, out_features=1 11

Dec(z, z′) Linear in_features=4, out_features=64 320
ReLU 0
Linear in_features=64, out_features=64 4160
ReLU 0
Linear in_features=64, out_features=64 4160
ReLU 0
Linear in_features=64, out_features=5 325

ψ(z, z′) Linear in_features=4, out_features=32 160
ReLU 0
Linear in_features=32, out_features=32 1056
ReLU 0
Linear in_features=32, out_features=32 1056
ReLU 0
Linear in_features=32, out_features=1 33

Total params: 22,355

Table 7.11.: Neural Network Structure of the VAE model.

Model Train RMSE Loss Test RMSE Loss R2 Score
Full model 2.027 2.040 0.998

Confounder model 6.924 6.857 0.982
VAE model 5.332 5.398 0.989

Table 7.12.: Train and test losses with R2 scores where the R2 score is calculated on the
test set.
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7. Results

7.2. Model interpretation

7.2.1. Bike rental

The first interpretation we will do is on the prediction-truth plot. Our observations suggest
that the full model (Figure 7.1) performs better than the confounding model (Figure 7.2),
exhibiting a more linear relationship between predicted and actual values. Specifically,
during the summer months, the full model displays accurate predictions, as evidenced by
the close alignment of the depicted trend line with the actual data points. Conversely,
the confounding model exhibits a tendency to overestimate bike rentals, particularly on
hot summer days. This overestimation, visible in the top-right quadrant of Figure 7.2,
may be attributable to the model’s inability to account for seasonal variations. The
VAE model (Figure 7.3) generally parallels the performance of the full model, especially
during the summer. However, similar to the confounding model, it shows a proclivity for
overestimation during the winter months, as observed in the bottom-left section of the
corresponding plot.

Figure 7.1.: Truth-prediction plot of the
full model.

Figure 7.2.: Truth-prediction plot of the
confounding model.

Figure 7.3.: Truth-prediction plot of the
VAE model.
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7.2. Model interpretation

ICE-Plots

In the following section, we will present a series of Individual Conditional Expectation
(ICE) plots for examination and discussion. Our analysis will start with an exploration
of one of the most significantly correlated features in our study - the temperature. The
depicted results in Figures 7.4 - 7.6 demonstrate several key insights. The full model
associates summer with a negative correlation between temperature and bike rentals,
while it finds a positive correlation for all other seasons. This also shows that the model
is invalid for data points outside of the distribution of the training data since it does
not make sense that the company would rent the most bikes on a summer day at -5
degrees. This downward trend helps the model to not overestimate very hot summer
days thus producing a better performance. These observations contrast the confounding
model, which establishes a positive correlation between temperature and rentals across
all seasons, leading to an overestimation during hot summer days. Interestingly, the VAE
model consistently shows a downward trend for each season when the temperature is high.
If we operate under the assumption that high temperatures deter customers from renting
bikes, then the VAE model’s predictions seem more realistic. For instance, during an
unusually warm spring day, one would anticipate reduced bike rentals, aligning with the
VAE model’s trend. We also immediately notice that the curves are not as smooth as in
the other picture which is due to the stochastic nature of the VAE model.

Figure 7.4.: ICE plot of the full model. Figure 7.5.: ICE plot of the confounding
model.

We see in all three plots 7.4 - 7.6 a strong incline in some parts of the average line
(black) which indicates the high importance of the variable.
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7. Results

Figure 7.6.: ICE plot of the VAE model.

The next attribute we look at is the year. Since we know that we have a quite strong
upward trend of rented bikes from 2011 to 2012 (5.1) we expect that to be seen in the ICE
plots. In this ICE plot of the full model (Figure 7.7) we see a relatively good mapping
from 2011 to 2012. Broadly speaking we map for example the winter season of 2011 to the
winter season of 2012 and so on in terms of bike rentals. The average black line indicates
that we increase the count when changing from 2011 to 2012 which aligns with what we
know to be true in reality. The ICE plot for the confounding model (Figure 7.8) on the
other hand shows a worse mapping and a very small upward trend from 2011 to 2012
compared to the full model. We observe that if we change the year from a hot summer
day in 2012 to a hot summer day in 2011 we will end up way higher than what we would
predict for a hot summer day in 2011. The ICE plot for the variable year of the VAE
model (Figure 7.9) is similar to the confounding model but we have a lot of crossing lines
there which we do not have in any other model. The black line is also not as steep as in
the full model which indicates that it is a less important feature for the prediction.

Figure 7.7.: ICE year plot of the full
model.

Figure 7.8.: ICE year plot of the con-
founding model.

The plots indicate that the full model captures the relation of the year better than
the confounding model and VAE model. But this is not the full story. A section in the
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7.2. Model interpretation

Figure 7.9.: ICE year plot of the VAE
model.

appendix A.4 shows that the importance of variables can be distributed to different highly
correlated features. The same thing happens here if we also look at the ICE plots of the
variable days_since_2011. Since we can accurately calculate the year from this variable,
all the information of the year is also available in days_since_2011. Subsequently, they
have a high correlation. The ICE plots show this importance shifting perfectly. The plot
for the full model (Figure 7.10) shows that the lines are mostly flat or sometimes show
a small incline. The average line is nearly flat. This shows that this feature is not so
important for this model when making the prediction. In contrast to the full model, we
see in the plot of the confounding model (Figure 7.11) a very strong correlation between
days_since_2011 and the prediction. Here we roughly map the summer of 2011 to the
summer of 2012. The ICE plot of the VAE model (Figure 7.12) differs strongly from
the previous two plots. Here we see lines that even went to negative predictions (Winter
bottom right) and slightly wave line shape of the lines which means they go up until
summer, then they do not rise that much until winter, and then go up again.

The ICE plots of other variables differ not significantly and thus are omitted but can
be found in the Github repo( https://github.com/patrickpollek1/Masterthesis-I
nterpreting-Neural-Networks-Under-Latent-Confounding).
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7. Results

Figure 7.10.: ICE days_since_2011 plot
of the full model.

Figure 7.11.: ICE days_since_2011 plot
of the confounding model.

Figure 7.12.: ICE days_since_2011 plot
of the VAE model.
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7.2. Model interpretation

Feature-importance / Kernel SHAP

In this section, we will discuss and present Kernel SHAP values as a tool for interpreting
individual data points to gain an understanding of the impact of different features.

SHAP waterfall plots Initially, we will focus on the day with the highest and lowest
number of rented bikes. By utilizing the SHAP waterfall plot, we will make a comparison
against the baseline, which is the mean of all data points. Of course, the confounding
models will not have access to the season variables. (Note that we only use the test set
for this analysis.)

The baseline, the mean of all instances, can be found in table 7.13. From the test
data set, the maximum number of bikes rented in a single day reached 8555, while the
minimum dropped to 506. The features of these days are also shown in table 7.13.

Feature Baseline Best Day Value Worst Day Value
yr 2011.510 2012 2011

temp 15.322 17.49 2.22
hum 60.256 54.29 86.25

windspeed 13.208 15.24 19.68
days_since_2011 361.142 637 25

season_FALL 0.210 1 0
season_SPRING 0.292 0 0

season_SUMMER 0.238 0 0
season_WINTER 0.258 0 1

holiday_HOLIDAY 0.020 0 0
workingday_WORKING DAY 0.700 0 1

weathersit_GOOD 0.639 1 0
weathersit_MISTY 0.346 0 0

weathersit_RAIN/SNOW/STORM 0.013 0 1
cnt - 8555 506

Table 7.13.: Baseline summary

The predicted count of bikes rented on this baseline instance is summarized in table
7.14.

Model Baseline Prediction

Full Model 1655.73
Confounder Model 2965.39
VAE Model 4787.01

Table 7.14.: Baseline Predictions of Models.
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To better visualize the impact of various features on these extreme days, we turn to
SHAP analysis. Figure 7.13 - 7.15 presents the SHAP waterfall plot for the day with the
highest number of bike rentals for all 3 models. These graphs allow us to see how each
feature contributes towards pushing the model’s prediction away from the baseline. In
the plot of the full model (Figure 7.13) we see that the season fall is the most important
factor for this data point as it adds 1690.6 rented bikes to the total prediction. Closely
behind we have the year which adds around 1621 bikes. This is expected since we saw a
high trend when we looked at the ICE plots of the variable year for this model. We also
observe that we have all season attributes which add a lot of bikes. The waterfall plot of
the confounding model (Figure 7.14) shows that day_since_2011 is the most important
attribute which is also expected since we saw earlier that the confounding model puts
more importance on this variable instead of the year. In the plot of the VAE model
(Figure 7.15) we again see that the variable day_since_2011 is much more important and
adds 4 times the bike to the prediction than the year. We can observe that one of the
most important factors in all of these plots is time (either year or day day_since_2011).

Figure 7.13.: SHAP Waterfall Plot of
the full model.

Figure 7.14.: SHAP Waterfall Plot of the
confounding model

Figure 7.15.: SHAP Waterfall Plot of the
VAE model
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7.2. Model interpretation

The next three figures 7.16 - 7.18 show the SHAP waterfall plot for the day with
minimum Bike rentals, one for each model. We see that in all plots the weather situation
and the temperature play a big role as well as the year respectively day_since_2011. In
the plot of the full model (Figure 7.16) we see a reduction of bikes because of the year
and the bad weather situation. Also, the near-freezing temperature further lowers the
prediction. In Figure 7.17 which shows the plot of the confounding model we see that
temperature has a much bigger impact compared to the full model. We also notice that
the baseline is higher which in turn needs a bigger reduction to arrive at a count which is
close to the true value. In the plot of the VAE model (Figure 7.18) we observe that the
weather situation rain/storm has the most impact. If we add the year and day_since_2011
we would arrive at a similar decrease as in the confounding model. Because of the higher
baseline, this reduction is not enough to arrive at a good prediction. The prediction of the
VAE model for this instance is very bad at 1771.92 (compared to 506 for the true value).

Figure 7.16.: SHAP Waterfall Plot of
the full model.

Figure 7.17.: SHAP Waterfall Plot of the
confounding model.

Figure 7.18.: SHAP Waterfall Plot of the
VAE model.
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Reflecting on the baseline data, it’s evident that temperature had a more significant
impact on the worst day with lower rentals than on the highest rental day. This is because
the baseline temperature (15.3°C) is much closer to the temperature on the highest rental
day (17.5°C). In contrast, the temperature on the lowest rental day is substantially lower,
at just 2.2°C.

Feature importance All these previous KernelSHAP values were tied to a specific
instance. We either selected the best day or the worst day and looked at how each variable
affected the outcome. If we sum up all these values for all instances and average them,
we will have a global feature importance measure as already described in the background
chapter (Chapter 3). As a baseline, we again take the average of all instances.

This results in the following feature importance plot (Figure 7.19). For the full model,
the variable year is the most important feature. On average it adds or takes about
1000 bikes based on this feature. We also observe that all season attributes have a high
importance assigned. In contrast to the full model, the confounder and the VAE model
have the temperature as the most important feature. When we also take the correlation
structure of the variables into consideration it makes sense that the temperature is now
more important since it is highly correlated with the season attributes. In the confounding
model, the temperature holds an average absolute importance exceeding 1000, while the
VAE model’s importance stands at roughly 700. Again we see that the confounding as
well as the VAE model weigh the day_since_2011 variable more.

Figure 7.19.: Feature importance of all models.
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7.2. Model interpretation

SHAP summary plots Since we have calculated each SHAP value for every instance we
can also use another visualization of these values. For each feature, we plot the SHAP
value and color code the dot based on the value of the feature. This results in the SHAP
summary plot which gives a global overview of how the SHAP values are distributed but
also allows the examination of individual instances. The SHAP summary plot of the full
model can be found in Figure 7.20. Since the year is the most important feature of this
model, it is placed at the top. We see that a high value for the year (2012) leads to a
higher positive SHAP value. In contrast, a low year (2011) leads to a (mostly) negative
SHAP value. The distribution of the SHAP values for the variable temperature reveals
that we also have instances where the feature value is high (high temperature) but the
SHAP value is not. These could be the instances where the full model learned to not
overshoot because it is too hot.

Figure 7.20.: SHAP summary plot of the full model.
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In contrast to the full model we see that the temperature is monotonically ordered
based on feature value and SHAP value for the confounding model (Figure 7.21). This
means the higher the temperature, the higher the SHAP value. We see that a higher
value in day_since_2011 leads to higher shap values. This relationship is more granular
and we see that it is not clustered as in the variable year for example where we see two
clusters. Looking at the variable humidity we see that high humidity will lead to fewer
bikes rented and low humidity to the contrary. The same is true for wind speed. The shap
summary plot of the VAE model (Figure 7.22) shows different results for the temperature
compared to the confounding model. We see that we also have high feature values which
result in a decrease in the prediction which is closer to the full model. We also have the
variable day_since_2011 with a similar structure as the confounding model. The misty
weather situation has a significantly different structure than the confounding model. Here
we have a reduction in bikes when the weather is misty and the addition of bikes when
the weather is not misty.

Figure 7.21.: SHAP summary plot of the confounding model.
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7.2. Model interpretation

Figure 7.22.: SHAP summary plot of the VAE model.
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7. Results

Conclusion

In our analysis, we have identified varying levels of importance for different features in the
models. Specifically, the full model heavily relies on the year feature, while the confounding
model and the VAE model utilize the days_since_2011 feature. This observation is
consistent across all plots and can be present due to multicollinearity, as these features
are highly correlated. In fact, one feature can be precisely calculated using the other, as
demonstrated by the equation:

year = 2011 + 1days_since_2011>356

where 1 represents the indicator function.
Furthermore, the inclusion of the season feature versus its exclusion revealed notable

distinctions in the ICE plots for temperature and the SHAP waterfall plots, particularly
regarding the summer season for the two FFNNs. We saw that the full model differentiated
between different seasons and captured a downward trend for extremely hot summer
days whereas the confounding model exhibited an ever-increasing trend across all seasons,
resulting in a structural overestimation of hot summer days. On the other hand, the
VAE model learned to decrease the count across all seasons if the temperature is very
high. The full model gives the impression that the decrease must happen because of the
summer season, which is under the hypothesis that the decrease happens because it is too
hot to bike, wrong. The VAE model successfully captures the more realistic relationship
between the temperature and the count, independent of the season. In the SHAP plot,
we also observe a more consistent distribution of SHAP values which again indicates a
more clearer and isolated relationship learned between the variables.

With respect to the interpretability methods, it is important to also have the correla-
tion structure in mind when looking at the feature importance. A grouping of several
highly correlated variables such as days_since_2011 and year could potentially make the
interpretation clearer.
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7.2. Model interpretation

7.2.2. Admission

Again we will first look at the prediction-truth plot where we colored the dots based on
the CGPA value. In Figures 7.23 - 7.25 we see the plots of all models and observe that
they all look similar. Looking at the values in the range of 0.7 to 0.9 we observe a slightly
bigger discrepancy in the confounding model than in the full model. (Figures 7.24 and
7.23). It is also obvious that a higher CGPA score leads to a better chance of admission.
This is captured by all models. Remember that the confounding model and the VAE
model (Figure 7.25) have no access to the feature CGPA. What can be seen on all plots
is that all models have better accuracy on students with high CGPA scores and high
admission values than for students with low CGPA scores and admission values (More
deviation from the black dotted line.).

Figure 7.23.: Truth-prediction plot of the
full model.

Figure 7.24.: Truth-prediction plot of the
confounder model.

Figure 7.25.: Truth-prediction plot of the
VAE model.
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7. Results

ICE-Plots

Figures 7.26 - 7.28 show three plots that present Individual Conditional Expectation
plots for the variable GRE Score. The full model only has a very slight positive trend on
average which translates to the interpretation that improving the GRE score does not
significantly increase the probability of admission. On the other hand, the confounding
model we see especially for students with a low CGPA score a massive increase in the
probability if we would increase the GRE score. This could be due to the fact the full
model relies on the CGPA score to predict the admission probability and not so much on
the GRE score. In the ICE plot of the VAE model, we see an increase in the admission
probability of low CGPA students up to some plateau. For high CGPA students, we see
a linear increase.

Figure 7.26.: ICE GRE plot of the full
model.

Figure 7.27.: ICE GRE plot of the con-
founder model.

Figure 7.28.: ICE GRE plot of the VAE
model.
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7.2. Model interpretation

In the ICE plots for the TOEFL score, we see a similar trend. The full model (Figure
7.29) has a positive trend which can be observed in all students. The confounding model
(Figure 7.30) has a slightly stronger relation than the full model. For some high CGPA
students, we see a steep decline in admission probability in the TOEFL score range
of 103-108. Interestingly the ICE plot for the VAE model (Figure 7.31) shows similar
behavior to the ICE plot of the variable GRE of the VAE model (7.28). We see a positive
trend but for most low CGPA students it seems that there is again a plateau. In contrast,
high CGPA students don’t show such a plateau.

Figure 7.29.: ICE TOEFL plot of the full
model.

Figure 7.30.: ICE TOEFL plot of the
confounder model.

Figure 7.31.: ICE TOEFL plot of the
VAE model.
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The plots for university ranking are almost constant for the full model (Figure 7.32)
and the confounding model (Figure 7.33), while the VAE model indicates a positive trend
as seen in Figure 7.34. From the ICE plot, we also see that a high CGPA score (dark red)
only exists in our training data with a university rating of 4 to 5.

Figure 7.32.: ICE University plot of the
full model.

Figure 7.33.: ICE University plot of the
confounder model.

Figure 7.34.: ICE University plot of the
VAE model.
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7.2. Model interpretation

For the variable Letter Of Recommendation (LOR), our plots once more exhibit a
positive trend, most pronounced within the confounding model (Figure 7.36). Upon
examining the ICE plot for this model, it becomes evident that students with lower CGPA
scores benefit more significantly from a strong Letter of Recommendation than those with
higher CGPA scores. This strong trend is exclusive to the confounding model. Meanwhile,
the characteristics of both the full (Figure 7.35) and VAE model (Figure 7.37) appear
largely comparable.

Figure 7.35.: ICE LOR plot of the full
model.

Figure 7.36.: ICE LOR plot of the con-
founder model.

Figure 7.37.: ICE LOR plot of the VAE
model.
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The ICE plots for the strength of the Statement Of Purpose (SOP) (Figures 7.38 -
7.40) reveal intriguing differences between the confounding model and the remaining two
models. In the full model (Figure 7.38), there is no significant increase in the chance of
admission as the SOP improves. This trend is consistent for almost every individual line
in the plot. However, the confounding model (Figure 7.39) displays a distinct pattern:
for some high CGPA students, there is a sharp decline in the chance of admission when
the SOP is not good. Conversely, low CGPA students do not experience an increase
in the chance of admission when the SOP improves. Actually, the majority of students
with low CGPA see a decrease in admission probability if they have a strong SOP. These
contrasting observations could be attributed to the fact that the evaluated data points
are out of distribution since we can see that high CGPA students do not have SOP scores
of 3 and below and low CGPA students do not have SOP scores of 3 and above. The VAE
model (Figure 7.40) has a positive trend on average and for all individual instances.

Figure 7.38.: ICE SOP plot of the full
model.

Figure 7.39.: ICE SOP plot of the con-
founder model.

Figure 7.40.: ICE SOP plot of the VAE
model.
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7.2. Model interpretation

The final ICE plots for this dataset were generated by perturbing the feature research
experience. As this feature is binary, we assessed the model exclusively with values of
either 0 or 1 for that specific feature. Across all models, as shown in Figures 7.41 -
7.43, there is a negligible average increase, suggesting that having research experience
marginally boosts a student’s chances of admission. Given the minuscule rise and nearly
flat average line, we infer that this feature does not significantly influence the outcomes
of any model.

Figure 7.41.: ICE Research plot of the
full model.

Figure 7.42.: ICE Research plot of the
confounder model.

Figure 7.43.: ICE Research plot of the
VAE model.
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Feature-importance / Kernel SHAP

In this section, we will again discuss and present Kernel SHAP values as a tool for
interpreting individual data points to gain an understanding of the impact of different
features.

This time we will look at the students with the highest and lowest admission probability
and try to understand which feature contributed to the prediction. By utilizing the SHAP
waterfall plot, we will make a comparison against the baseline, which is the mean of all
(test) data points. Of course, the confounding models will not have access to the CGPA
variable. (Note that we only use the test set for this analysis.)

The baseline, the mean of all instances, can be found in table 7.15 as well as the features
of the students with the highest and lowest admission probability.

Feature Baseline Highest admission prob. Lowest admission prob.
GRE Score 313.910 334.00 298.00

TOEFL Score 106.260 120.00 98.00
University Rating 2.840 5.00 2.00

SOP 3.210 4.00 4.00
LOR 3.280 5.00 3.00

CGPA 8.481 9.87 8.03
Research 0.480 1.00 0.00

Admission probability - 0.97 0.34

Table 7.15.: Baseline summary

The predicted admission probability of each model for the baseline can be found in
table 7.16.

Model Baseline Prediction

Full Model 0.653
Confounder Model 0.696
VAE Model 0.705

Table 7.16.: Baseline Predictions of Models

70



7.2. Model interpretation

SHAP waterfall plots The first SHAP waterfall plot will look at how the prediction of
each model comes together for the student with the highest admission probability in the
test set. We can see that in the full model (Figure 7.44), the CGPA score is the most
important factor for this prediction. Even though the ICE plot for the University rating
7.32 shows a relatively horizontal line, which would indicate no strong feature interaction
with the prediction, we see a relatively big amount of probability added because of it.
The confounding model (Figure 7.45) shows that the variable TOEFL score and the
strength of the LOR added the most to this prediction. The VAE model (Figure 7.46)
also indicates that the TOEFL score plays a huge part in the prediction. We also see
a reduction in admission probability even though this particular student has research
experience which is rather counterintuitive.

Figure 7.44.: SHAP Waterfall Plot of the
full model.

Figure 7.45.: SHAP Waterfall Plot of the
confounder model.

Figure 7.46.: SHAP Waterfall Plot of the
VAE model.
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We also look at how the prediction of the student with the lowest admission probability
is composed. We see that especially the three features which represent tests and grades
are mainly responsible for this prediction of the full model (Figure 7.47). This waterfall
plot of the confounding model (Figure 7.48) is very similar to the full model with the
twist that the importance from the variable CGPA got shifted to the GRE score. The
plot for the VAE model (Figure 7.49) is similar to the confounding model. The ordering
of the 4 most important variables is the same. One thing to point out is that we see that
for an above-average SOP the probability gets boosted by a bit which is not present in
the confounder model for example but can also be observed in the full model.

Figure 7.47.: SHAP Waterfall Plot of the
full model.

Figure 7.48.: SHAP Waterfall Plot of the
confounder model.

Figure 7.49.: SHAP Waterfall Plot of the
VAE model.
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7.2. Model interpretation

Feature importance We again calculate the SHAP values for each instance and then
average these values to arrive at a global feature importance measure. The plot of all
feature importances can be seen in figure 7.50. The most important feature of the full
model is the CGPA score. Interestingly the feature GRE Score is the penultimate variable
in the ordering of importance. This is very different from other models. For example,
the confounding model shows that the GRE score is the most important feature. This
makes sense since the variables CGPA and GRE score are highly correlated, and thus can
be seen and interpreted as some kind of proxy for the CGPA score. The same argument
holds for the feature TOEFL score. The most important feature of the VAE model is
also the GRE score. The magnitude of importance is also comparable to the magnitude
in the confounding model. One difference between the VAE model and the confounding
model is that research as well as the strength of the letter of recommendation plays a
bigger role in the confounding model.

Figure 7.50.: Feature importance plot of all models.
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SHAP summary plots Again if we plot the shapley values for each instance in a summary
plot we also get to see a more detailed view of how the importance is distributed with
respect to the feature value.

In the plot for the full model (Figure 7.51) we see that the shapley value and the
feature value have a positive linear relationship for the first variable (CGPA). Second,
we also see that having research experience adds more to the prediction than not having
research experience. The last four variables have all clusters around 0 and do not show
a meaningful structure. Especially the variable GRE score is very centered around 0.
Contrary to to this the summary plot for the confounding model (Figure 7.52) shows
that the GRE score now has a similar structure to the CGPA score. We also observe that
everything is more spread out and we don’t have any big clusters as in the full model.

The first two variables of the summary plot for the VAE model (Figure 7.53) are very
similar to the confounding model. But the big difference can be seen when we look at
the features University rating and SOP. We can see a clear and consistent clustering of
based on the values of the features. In some sense, this could be interpreted as a specific
factor for each feature value is added or removed from the prediction. Since this is a
quite consistent meaning, for example, all students with university ratings of 3 will get
0.01 admission probability added and there is not one which gets significantly more or
less, we could argue that this means that the model has a more independent view of
this variable and its impact which is good. One thing to note is that we see in the plot
that the feature Research indicates that having research experience will mostly lead to a
decrease in probability which is counterintuitive.

Figure 7.51.: SHAP summary plot of the full model.
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Figure 7.52.: SHAP summary plot of the confounding model.

Figure 7.53.: SHAP summary plot of the VAE model.
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Conclusion

In summary, the absence of information from the feature CGPA score is counterbalanced
by the increased significance of the GRE variable. This observation is logical, given the
strong correlation between these variables. This effect is evident in both the confounding
model and the VAE model. In examining the GRE ICE plot for the confounding model
(Figure 7.27), it became evident that students with lower CGPAs experienced a significant
surge in admission probability with an increase in their GRE scores. Conversely, in the
VAE model (Figure 7.28), a rise in the GRE score also increased the admission probability,
but this enhancement plateaued and remained below the admission probabilities observed
for students with the highest CGPA/GRE combinations. This pattern was mirrored in
the ICE plots for the TOEFL score (Figure 7.31). This suggests that improving a single
test score, whether it’s GRE or TOEFL, can boost admission chances. However, a single
impressive score is insufficient to guarantee a high probability of admission. Optimal
outcomes likely require strong performances across multiple test scores. We believe this
interpretation aligns more closely with real-world scenarios than the relationships we saw
that the confounding model learned. With this hypothesis in mind, we then explored
a 3-dimensional ICE plot, wherein we simultaneously adjusted the GRE and TOEFL
scores, keeping all other features constant for a single instance. The resulting visualization
can be referenced in Figure 7.54. The plot distinctly illustrates that increasing a single
feature would reproduce the aforementioned increase-to-plateau relationship. Yet, by
elevating both the GRE and TOEFL scores, it’s possible to surpass this plateau and attain
exceptionally high admission probabilities. In the SHAP summary plot, the Shapley
values for certain features, notably SOP and University rating, within the VAE models
displayed consistent clustering (Figure 7.53). This suggests that these features have
a learned relationship that is more independent. This observation resonates with our
hypothesis that specific attributes, such as a superior SOP, should enhance admission
prospects irrespective of other features.
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7.2. Model interpretation

3D ICE plot for the variables GRE score and TOEFL score of the
VAE model

Figure 7.54.: This figure shows the 3d ICE plot for a single student (low CGPA)
where we permutated both TOEFL score and GRE score and predicted the
admission prob. with the VAE model.
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7.2.3. Toy-Data

This time we use variable x1 as a confounder, hence the truth-prediction plot is color-
coded accordingly. It’s important to note that for the creation of these visualizations,
we have utilized a subset of 300 randomly selected samples from the unseen test set.
This strategy ensures clarity and avoids the over-saturation of data points that could
potentially obscure the visualization, thus providing a more interpretable and meaningful
graphical representation. In Figures 7.55 - 7.57 we see all three truth-prediction plots
and observe that both the confounding model and the VAE model show slightly worse
results than the full model over the full range of values of x1. Given that our analysis is
restricted to a sample of 300 data points, it is advisable to consult Figures A.17 and A.18
located in the appendix. These figures present the truth-prediction plots encompassing all
test data. Upon examination, it becomes evident that the predictions deviate significantly,
particularly when the predicted values are low. This is more pronounced in the confounding
model than in the VAE model.

Figure 7.55.: Truth-prediction plot of the
full model.

Figure 7.56.: Truth-prediction plot of the
confounder model.

Figure 7.57.: Truth-prediction plot of the
VAE model.
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ICE-Plots

For our toy dataset, we are in a fortunate position where we know the underlying truth.
This allows us to create ICE plots that directly relate to this truth. We start by looking
at the ICE plots for feature x0. Given that this feature follows a Gaussian distribution
with a mean of 1 and a variance of 1, and is merely added to the dependent variable
y, we anticipate observing straight lines characterized by a modest positive slope. This
expectation is confirmed by the ground truth model, as depicted in Figure 7.61. In the
case of the full model, we notice that the ICE plots (Figure 7.58) exhibit primarily linear
trends around the original values. However, where the model is evaluated at points outside
the training distribution, we observe lines that either rise or fall. This serves as a clear
reminder that when our model is extrapolating beyond the distribution of the training set,
its behavior can become unpredictable and arbitrary. The confounding model, as seen
in Figure 7.59, shows an upward trend for some instances which is also captured by the
average line. This is probably related to the fact that x0 is adjusting for x1 not available
since this pair has the highest correlation (Remember, x0 is derived from x1.). We see
a similar behavior for the VAE model as seen in Figure 7.60. The blue lines are rather
straight with some slight positive slope but some of the red lines show a strong positive
trend. This might again be due to the fact that the VAE model has no access to x1.
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Figure 7.58.: ICE x0 plot of the full
model.

Figure 7.59.: ICE x0 plot of the con-
founder model.

Figure 7.60.: ICE x0 plot of the VAE
model.

Figure 7.61.: ICE x0 plot of the true
model.
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The next variable under consideration is x2, which interacts with x1 to influence y.
This relationship is represented in the equation as a product of x1 and x2, magnified by
a factor of 10, that is, 10X1X2. The full model (Figure 7.62) is nearly identical to the
truth ICE plot in Figure 7.65. The confounding model (Figure 7.63) also presents some
variations however, it is consistent with the primary trend. Specifically, we observe that
as the values of x1 increase, the model predictions correspondingly show a rising trend.
Conversely, for lower values of x1, the model predictions either remain constant or exhibit
a declining trend. The same is true for the VAE model. Interestingly both models that
do not have access to x1 show a kink in the range of 0 to 1 of x2.

Figure 7.62.: ICE x2 plot of the full
model.

Figure 7.63.: ICE x2 plot of the con-
founder model.

Figure 7.64.: ICE x2 plot of the VAE
model.

Figure 7.65.: ICE x2 plot of the true
model.
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We now turn our attention to x3, which is defined as
√︁
|X1X2| augmented by noise. In

the dependent variable y, this feature undergoes scaling and shifting, followed by squaring.
The ICE plots for x3 exhibit a general resemblance across models (Figures 7.66 - 7.69).
However, it is noteworthy that the plots corresponding to the confounding model and the
VAE model manifest a more cone-like shape as x3 increases in value. As x3 diminishes,
the bundle of lines narrows, which may be an artifact attributable to the absence of x1.

Figure 7.66.: ICE x3 plot of the full
model.

Figure 7.67.: ICE x3 plot of the con-
founder model.

Figure 7.68.: ICE x3 plot of the VAE
model.

Figure 7.69.: ICE x3 plot of the true
model.
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7.2. Model interpretation

Given that x4 is encapsulated within the sine function in the equation for y, its influence
on the magnitude of y is relatively minimal. The ground truth ICE plot (Figure 7.71)
reveals the shallow periodicity, but the full model and the confounding model both
approximated this with just straight lines. However, the VAE model has learned at least
a slight periodic trend in areas where we have a lot of data points (Figure 7.72).

Figure 7.70.: ICE x4 plot of the full
model.

Figure 7.71.: ICE x4 plot of the con-
founder model.

Figure 7.72.: ICE x4 plot of the VAE
model.

Figure 7.73.: ICE x4 plot of the true
model.
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The last variable in this data set is x5 which resembles a binary variable. With
probability 0.5, we either add 30 or not. This can be seen in all ICE plots for the variable.
Specifically, a value of 0 for x5 results in a lower prediction, while a value of 1 leads to a
higher prediction. It should be noted that the lines connecting the values of 0 and 1 in
the graph are interpolations and not direct function evaluations.

Figure 7.74.: ICE x5 plot of the full
model.

Figure 7.75.: ICE x5 plot of the con-
founder model.

Figure 7.76.: ICE x5 plot of the VAE
model.

Figure 7.77.: ICE x5 plot of the true
model.
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7.2. Model interpretation

Feature-importance / Kernel SHAP

In this analysis, we will again focus on the instances leading to the highest and lowest
values of y. As before, will use the mean of all test set instances as our baseline, but with
one important adjustment for x5. Since x5 is a binary variable taking only values 0 or 1,
the neural network can behave in an arbitrary manner for intermediary values without
incurring any penalty. Averaging x5 yields a value of 0.5. However, evaluating the mean
instance results in a prediction even lower than the lowest instance in the test set for
some models (Full, VAE).

This situation presents a problem when calculating the SHAP values against this
baseline as it attributes an undeservedly significant influence to x5. If we plot a single ICE
line for the baseline while altering x5, we notice that the model has learned a parabolic
trajectory, instead of a straightforward linear one.

While this does not qualify as an error per se, since the model precisely predicts the
relevant values at 0 and 1, it does provide an inaccurate impression of the baseline.
Consequently, to solve this problem, we have adjusted the baseline value for x5 to 1 for all
models. It is important to note that setting it to 0 would have been equally acceptable.

The baseline has the following values for each feature :

Feature Baseline Best Worst
x0 1.00 2.663 0.021
x1 3.59 7.353 1.065
x2 0.001 1.893 0.029
x3 1.349 3.478 -0.006
x4 162.534 153.56 156.025
x5 1 0 0
y - 1883.83 1577.08

Table 7.17.: Summary of instances

Model Baseline Prediction

Full Model 1666.17
Confounder Model 1646.95
VAE Model 1670.36
True Model 1650.71

Table 7.18.: Baseline Predictions of Models
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SHAP waterfall plots We again begin with the waterfall plots (Figure 7.78 - 7.81) for
the instance with the highest y value in the samples test set. We see that the full model
produces a very similar plot as the true model. Interestingly we see that the true model
and the full model list x2 as the most important variable (Figures 7.81 and 7.78) which
adds the most to the prediction, while the other two models which do not have access to
x1 list x3 as the biggest contributor to the prediction. This could be due to the fact that
x1 and x3 are also much more correlated (0.54) than x1 and x2 (−0.00). This means the
confounder model and the VAE model make up with x3 for x1 which makes x3 more
important. This switches the feature importance in these plots. We also observe that
since the baseline for all models of the variable x5 was 1 we subtract roughly 30 from the
prediction.

Figure 7.78.: SHAP Waterfall Plot of the full
model.

Figure 7.79.: SHAP Waterfall Plot of the
confounder model.

Figure 7.80.: SHAP Waterfall Plot of the
VAE model.

Figure 7.81.: SHAP Waterfall Plot of the true
model.
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7.2. Model interpretation

The waterfall plots for the worst instance are all very similar. This time we see that
for all models the variable x3 hast the most negative impact.

Figure 7.82.: SHAP Waterfall Plot of the full
model.

Figure 7.83.: SHAP Waterfall Plot of the
confounder model.

Figure 7.84.: SHAP Waterfall Plot of the
VAE model.

Figure 7.85.: SHAP Waterfall Plot of the true
model.
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Feature importance Figure 7.86 shows the feature importance of all models. The
full model’s importance attributed to x1 appears to shift to x0 in both the VAE and
confounding models. Additionally, x2 is deemed less significant in the confounding and
VAE models compared to the full model. We also see that the full model has nearly
identical importance as the underlying true model.

Figure 7.86.: Feature importance plot of all models.
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SHAP summary plots In the concluding section of this chapter, we present the SHAP
summary plots for models constructed using the toy dataset. Since we set the baseline
of the variable x5 to 1 we see that SHAP values of instances that also have x5 = 1 are
centered around 0. In contrast, SHAP values of instances where x5 = 0 are centered
around -30. This shows that the baseline has some effect on the interpretation since in
the true underlying equation we add 30 if x5 = 1 and do not subtract 30 if x5 = 0 but of
course, the effect is equivalent. We also observe that the VAE model captured a more
isolated impact of x5 which can be seen in the compact clustering of SHAP values instead
of the more spread-out estimation of other models. Other than that we see that for both
x2 and x3 a higher value will lead to a higher SHAP value in all models. We observe that
the full model shows no clear structure for the variable x0 with respect to the relationship
of SHAP value and feature value. However, the confounder model and the VAE model
show a much clearer relationship and a higher variation which most probably is an artifact
of the absence of variable x1.

Figure 7.87.: SHAP summary plot of the full model.
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Figure 7.88.: SHAP summary plot of the confounding model.

Figure 7.89.: SHAP summary plot of the VAE model.
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Figure 7.90.: SHAP summary plot of the true model.
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Conclusion

Since all models achieve a very high R2 score and the difference between the performance
of the models is negligible we do not see big differences in our interpretation of these
models. However, a consistent pattern we identified now across various datasets was
again present which is a shift in feature importance when models lacked access to a
specific feature. In the absence of x1, both the confounding model and the VAE model
displayed increased reliance on variables x0 and x3. This shift was particularly evident
in the SHAP waterfall plot when evaluating the instance with the apex target value, as
depicted in Figures 7.78 - 7.81. Furthermore, we see that the variable x2 loses importance
which shows that hidden confounding can not only increase the importance of a highly
correlated variable but also decrease the the importance of other variables. This is an
important observation when we interpret the importance and draw conclusions based on
these values.

Furthermore, a notable observation was the VAE model’s enhanced capability to discern
the impact of variable x5. In comparison to the confounding model, the VAE exhibited a
closer alignment with the true model in terms of capturing the essence of x5 (All instances
have the same SHAP value instead of some small variations).
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8.1. Key findings

In our analysis, clear interpretational differences were evident across various models. At
a macroscopic level, we saw that the interpretations of the VAE model indicate a more
independent and isolated estimation of feature impact, meaning it has learned a more
intuitive view of each feature’s contribution to the prediction compared to the confounding
model. This makes the interpretation of the model easier.

Specifically, for the bike rental and admission datasets, the VAE model consistently
displayed more intuitive relationships between features. The ICE plot for the bike rental
dataset’s temperature (Figure 7.6) illustrated that an increase in temperature beyond
a certain point corresponds with a decrease in bike rentals. This aligns with the notion
that extreme heat reduces bike rental frequency, making this learned relationship in the
VAE model more realistic than the relationship in the confounding model and more
insightful than the full model, which primarily hinges on the season rather than the actual
temperature.

Similarly, the ICE plots for the admission dataset underscored the VAE model’s nuanced
learning. For students with very low CGPAs, it indicated that a single high test score
would not drastically elevate their admission probability. In contrast, the confounding
model over-optimistically posited that just elevating the GRE score could align a student’s
admission probability with top-tier applicants (Figure 7.27). This contrast highlights
the nuanced architecture of the VAE model, which appears to more effectively capture
the contributions of individual features, thereby enhancing the model’s interpretability
and fidelity to the data. This quality of the VAE model was further echoed in the
SHAP summary plots. The admission dataset’s SHAP summary plot for the VAE model
(Figure 7.53), for instance, presented consistent feature clusters, signifying a clearer, more
intertwined estimation of feature influence.

A broader trend observed across datasets was the heightened reliance on closely cor-
related features when a particular feature was omitted. This behavior is anticipated:
Correlated variables inherently carry overlapping information, so the model’s increased
dependency on one in the absence of another is predictable. This interplay was vividly
demonstrated with the bike rental dataset’s year and day_since_2011 (Figure 7.19). These
tightly interwoven variables, despite their high correlation, saw varied utilization across
models. The full model predominantly favored the variable year, while the VAE model
and the confounding models were more inclined towards the variable day_since_2011 for
capturing temporal nuances.

These results are in line with the current understanding that a VAE can disentangle
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complex relationships of variables and learn a better representation of the data than the
original representation [HMP+17].

These findings suggest that a simplistic examination of, for example, a model’s feature
importance could present challenges. Specifically, if one were to train a single model, the
variable year might appear to be unimportant because the model gives greater weight to
the variable day_since_2011. In reality, different models may capture the same underlying
phenomenon, such as a time-dependent factor, but use different variables to do so. This
is particularly relevant in the context of multicollinear datasets. While it may be evident
in this case that these variables are highly correlated, there could be instances where
such a relationship is not immediately obvious. To mitigate this issue, one could employ
techniques like clustering the feature importances based on correlation or other metrics.
This would allow for a more nuanced evaluation of the significance of variable groups
or underlying concepts, such as time. Either way, we would always suggest taking the
correlation matrix into consideration when interpreting models, especially when analyzing
feature importance. The correlation matrices can be found in the appendix section A.3.

8.2. Answer of research questions

Research Question 1 The first research question aimed to investigate the impact of
confounding variables on the interpretability of neural networks. The detailed formulation
can be found in chapter 1.

Answer Research Question 1: We observed that excluding a variable from the
feature set, which subsequently serves as a hidden confounding, amplifies the significance
of correlated features. In our analysis, it was evident that the importance of the GRE
score has increased substantially in the admissions dataset, as can be compared in Figure
7.50. Likewise, the ICE plot for the GRE score (Figure 7.27) reveals a much stronger
relationship with the target variable. A similar pattern was observed in the case of the
Seasons and temperature variables within the bike rental dataset, as well as the variables
x0 and x1 in the toy dataset.

Research Question 2 The second research question sought to explore whether a Vari-
ational Autoencoder, which incorporates the target variable y could enhance the inter-
pretability. The detailed formulation can be found in chapter 1.

Answer Research Question 2: An analysis of the ICE plot for the temperature
variable in the VAE model (Figure 7.6) of the bike rental dataset provided a more
grounded and intuitive interpretation compared to the confounding model. The VAE
model discerned that high temperatures lead to a reduction in bike rentals, independent
of the season, rather than implying this decrease occurs only during summer (Figure 7.4).
Similarly, in the Admission dataset, we noticed that a high score on just one test does not
substantially elevate the probability of admission for low CGPA students (Figure 7.28).
An increase in likelihood necessitates improvements across multiple test scores (GRE,
TOEFL, etc.), a relationship that arguably mirrors a more realistic scenario between the
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variables (Figure 7.54). Additionally, we observed more consistent shapley values for some
attributes compared to the confounding models ( Figures 7.52,7.53).

This implies that the VAE model was able to isolate the effect of certain variables
and thus provided a clearer insight into the underlying relationships. The consistency in
Shapley values in the VAE models as compared to the confounding models suggests that
the VAE approach could lead to more stable, and reliable interpretations.

8.3. PDR-Framework

As elaborated in the background section 3.1, the PDR framework encompasses three
core desiderata: predictive accuracy, descriptive accuracy, and the relevancy of the
interpretation. Our findings consistently revealed that the VAE model exhibited superior
predictive accuracy compared to the confounding model across all datasets. Thus we
can conclude that the improvement of the interpretability can be partially attributed to
this fact. In certain instances, the clarity of the interpretations derived from the VAE
model even surpassed those obtained from the full model. Of course, this is subjective
since descriptive accuracy is generally hard to measure. Nevertheless, this could indicate
that the VAE model learned relationships that were better or easier captured by the
interpretability methods. This suggests that since the predictive accuracy is comparable,
the model also improved a bit on descriptive accuracy. In our study, we aimed for a global
understanding of the model’s behavior. Thus, we opted out of more granular methods, like
neuron-based layer attribution, favoring broader interpretability methods. This decision
is pivotal: the choice of interpretability method can greatly influence the relevancy of
the results. A noteworthy takeaway looking through the PDR lens is the intertwined
relationship between predictive and descriptive accuracy. Murdoch et al. [MSK+19]
contend that for interpretations to be trusted, both high predictive and descriptive
accuracies are pivotal. Their assertion resonates with our findings, underscoring the
integral role these facets play in facilitating authentic, meaningful model insights.

8.4. Limitations and weaknesses

While we cannot rule out the possibility that the enhanced clarity in the VAE model’s
interpretations stems from its inherent expressiveness, it’s also important to note that an
effort was made to tune the models. Exploring a broader hyperparameter space in the
future might offer further insights. We also note that we saw notable differences between
the full and the confounding model and improvements of the VAE model only on small
datasets which makes it unclear if this scales to large datasets. Given that the models
on the larger toy dataset exhibited consistently high accuracy metrics which made the
interpretations nearly identical, it may be a good idea to evaluate the VAE architecture
on more extensive real-world datasets. Due to time constraints, we were not able to
investigate this further. It is very important to add that all interpretations are done by
the author which is not the gold standard when it comes to interpreting the results. Due
to the complexity of a comprehensive user study, coupled with the considerable amount
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of work it entails and the constraints of this thesis’s scope and timeframe, we were unable
to conduct one.
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9. Summary

In this master’s thesis, we explore the impact of confounding variables on the interpretabil-
ity of neural networks and propose an enhanced model rooted in variational autoencoding
to improve interpretability in the presence of latent confounders. Experiments on three
distinct datasets demonstrate that omitting a single variable from the dataset - acting as a
latent confounder - can drastically change the interpretation of conventional feed-forward
neural networks (FFNNs). These distorted relationships were illustrated using various
interpretability techniques, including Individual Conditional Expectation (ICE) plots and
Kernel SHAP. Our findings reveal that the confounder influences the importance of highly
correlated features and overestimates the effect of variables on the target. Furthermore,
the proposed model (VAE model) yields more intuitive and consistent interpretations
than standard FFNNs when affected by latent confounding variables. Building on this,
given additional resources, we strongly recommend conducting a user study. When paired
with an alternative modeling approach that uses the target variable y as an input to the
VAE, this suggestion opens up a promising direction for future research. Additionally,
it might be interesting to try to improve the representation of the feature importance
plot which might also take the correlation of the variables into consideration. As we saw
in the bike rental dataset the variables year and day_since_2011 are highly correlated
but the importance is very different for the full and confounding model. But both are
capturing a temporal trend which might make sense to cluster these importances together
to have a better interpretable plot.
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A. Appendix

A.1. Summary statistics of datasets

count mean std min 25% 50% 75% max
yr 731.0 2011.5 0.5 2011.0 2011.0 2012.0 2012.0 2012.0
temp 731.0 15.3 8.6 -5.2 7.8 15.4 22.8 32.5
hum 731.0 62.8 14.2 0.0 52.0 62.7 73.0 97.3
windspeed 731.0 12.8 5.2 1.5 9.0 12.1 15.6 34.0
cnt 731.0 4504.3 1937.2 22.0 3152.0 4548.0 5956.0 8714.0
days_since_2011 731.0 365.0 211.2 0.0 182.5 365.0 547.5 730.0
season_FALL 731.0 0.2 0.4 0.0 0.0 0.0 0.0 1.0
season_SPRING 731.0 0.3 0.4 0.0 0.0 0.0 1.0 1.0
season_SUMMER 731.0 0.3 0.4 0.0 0.0 0.0 1.0 1.0
season_WINTER 731.0 0.2 0.4 0.0 0.0 0.0 0.0 1.0
holiday 731.0 0.0 0.2 0.0 0.0 0.0 0.0 1.0
workingday 731.0 0.7 0.5 0.0 0.0 1.0 1.0 1.0
weathersit_GOOD 731.0 0.6 0.5 0.0 0.0 1.0 1.0 1.0
weathersit_MISTY 731.0 0.3 0.5 0.0 0.0 0.0 1.0 1.0
weathersit_RAIN
/SNOW/STORM 731.0 0.0 0.2 0.0 0.0 0.0 0.0 1.0

Table A.1.: Summary Statistics of the Bike Rental Dataset

count mean std min 25% 50% 75% max
GRE Score 500.0 316.47 11.29 290.00 308.00 317.00 325.00 340.00
TOEFL Score 500.0 107.19 6.08 92.00 103.00 107.00 112.00 120.00
University Rating 500.0 3.11 1.14 1.00 2.00 3.00 4.00 5.00
SOP 500.0 3.37 0.99 1.00 2.50 3.50 4.00 5.00
LOR 500.0 3.48 0.92 1.00 3.00 3.50 4.00 5.00
CGPA 500.0 8.57 0.60 6.80 8.12 8.56 9.04 9.92
Research 500.0 0.56 0.49 0.00 0.00 1.00 1.00 1.00
Chance of Admit 500.0 0.72 0.14 0.34 0.63 0.72 0.82 0.97

Table A.2.: Summary Statistics of the Graduate Admissions Dataset
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count mean std min 25% 50% 75% max
X0 200000.00 1.00 1.00 -3.60 0.33 1.00 1.67 5.57
X1 200000.00 3.60 2.15 -6.02 2.15 3.59 5.04 13.02
X2 200000.00 -0.00 0.80 -3.56 -0.54 -0.00 0.53 3.81
X3 200000.00 1.34 0.76 -0.62 0.77 1.27 1.84 5.49
X4 200000.00 162.48 5.48 142.17 158.66 162.05 165.94 188.98
X5 200000.00 0.50 0.50 0.00 0.00 0.00 1.00 1.00
Y 200000.00 1652.75 50.76 1554.97 1619.80 1641.44 1668.85 2133.27

Table A.3.: Summary Statistics for the Synthetic Dataset

A.2. Models

A.2.1. Bike rental: Models, plots, and parameters

Full model

Configuration Value
Hidden layers 3
Hidden units [128, 128, 64]
Dropout False
Dropout array [0.5, 0.322,

0.647]
Activation ReLU
Normalization False
Learning rate 0.005
Batch size 8
Number of epochs 400

Table A.4.: Configuration full model

Full model train/val losses

Figure A.1.
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Confounder model

Configuration Value
Batch size 8
Learning rate 0.0022
Number of epochs 400
Hidden layers 3
Hidden units [32, 32, 128]
Dropout False
Dropout array [0.382, 0.1466,

0.539]
Activation ReLU
Normalization False

Table A.5.: Configuration confounder
model

Confounder model train/val losses

Figure A.2.

VAE model

Configuration Value
x_dim 10
z_dim 4
z’_dim 1
Encz(x) [128, 128]
Encz′(z) [5, 5, 5]
Dec(z, z′) [128, 128, 10]
ψ(z, z′) [28, 28, 1]
Beta Values
b1 10000
b2 1
b3 1
b4 1000
Learning rate 0.001
Batch size 32
Number of epochs 700

Table A.6.: Configuration VAE model

VAE model train losses

Figure A.3.
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Truth-prediction plots

Full model

Figure A.4.: This image shows a truth-
prediction plot for the full
model.

Confounding model

Figure A.5.: This image shows a truth-
prediction plot for the con-
founding model.

VAE model

Figure A.6.: This image shows a truth-
prediction plot for the VAE
model.
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A.2.2. Admission: Models, plots, and parameters

Full model

Configuration Value
Batch size 8
Learning rate 5× 10−5

Number of epochs 300
Hidden layers 3
Hidden units [128, 16, 32]
Dropout False
Dropout array [0.5262, 0.1716,

0.2839]
Activation ReLU
Normalization True
Patience 20

Table A.7.: Configuration for the full model

Full model train/val losses

Figure A.7.

Confounder model

Configuration Value
Batch size 16
Learning rate 0.000157
Number of epochs 500
Hidden layers 1
Hidden units [128]
Dropout False
Dropout array [0.5262, 0.1716,

0.2839]
Activation ReLU
Normalization True
Patience 30

Table A.8.: Configuration for the confound-
ing model

Confounder model train/val losses

Figure A.8.
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VAE model

Configuration Value
x_dim 6
z_dim 3
z’_dim 1
Encz(x) [10, 10, 10]
Enczz(z) [10, 10]
Dec(z, zz) [10, 10, 10, 6]
ψ(z, zz) [12, 12, 1]
Beta Values
b1 10000
b2 1
b3 1
b4 10000
Learning rate 0.001
Batch size 32
Number of epochs 600

Table A.9.: Configuration for VAE model

VAE model train losses

Figure A.9.

110



A.2. Models

Truth-prediction plots

Full model

Figure A.10.: This image shows a truth-
prediction plot for the full
model for the admission
dataset.

Confounding model

Figure A.11.: This image shows a truth-
prediction plot for the con-
founding model for the ad-
mission dataset.

VAE model

Figure A.12.: This image shows a truth-
prediction plot for the
VAE model for the admis-
sion dataset.
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A.2.3. Toy: Models, plots, and parameters

Full model

Configuration Value
Batch size 25
Learning rate 0.0004
Number of epochs 100
Hidden layers 3
Hidden units [128, 64, 32]
Dropout False
Dropout array [0.382, 0.146,

0.539]
Activation ReLU
Normalization False
Patience 20

Table A.10.: Configuration confounder
model

Full model train losses

Figure A.13.

Confounder model

Configuration Value
Batch size 53
Learning rate 0.000384
Number of epochs 100
Hidden layers 3
Hidden units [64, 32, 32]
Dropout False
Dropout array [0.375, 0.642,

0.690]
Activation ReLU
Normalization True
Patience 20

Table A.11.: Configuration confounder
model

Confounder model train losses

Figure A.14.
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VAE model

Configuration Value
x_dim 5
z_dim 3
z’_dim 1
Encz(x) [64, 64, 64]
Enczz(z) [10, 10]
Dec(z, zz) [64, 64, 64, 5]
ψ(z, zz) [32, 32, 32, 1]
Beta Values
b1 10000
b2 1
b3 1
b4 10000
Learning rate 0.001
Batch size 1024
Number of epochs 500

Table A.12.: Configuration VAE model

VAE model train losses

Figure A.15.
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Truth-prediction plots

Full model

Figure A.16.: This image shows a truth-
prediction plot for the full
model for the toy dataset.

Confounding model

Figure A.17.: This image shows a truth-
prediction plot for the con-
founding model for the toy
dataset.

VAE model

Figure A.18.: This image shows a truth-
prediction plot for the
VAE model for the toy
dataset.
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A.3. Correlation structure

The plots in this section show the correlation matrix of the datasets. We also added
the latent variables of the VAE models to see how the latent space correlates with other
variables. We only used the test set to calculate the correlation. z1− zn are the variables
in the latent space z while zz1− zzn are the variables of the latent space z′.

Toy dataset

Figure A.19.

Admission dataset

Figure A.20.
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Bikerentals dataset

Figure A.21.
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A.4. A note on feature importance

A crucial aspect of interpreting machine learning models involves identifying critical
features that significantly contribute to model performance. Evaluating feature import-
ance becomes challenging when data features are correlated, a phenomenon known as
multicollinearity. Multicollinearity can give rise to several issues, such as inflated feature
importance and unstable feature selection. Many real-world datasets exhibit multicol-
linearity, complicating the interpretation of feature importance. We will demonstrate
that even for a simple linear model with perfect correlation (e.g., X2 = aX1 + b), feature
importances can be highly unstable, resulting in vastly different importance values for
the same features both theoretically and numerically.

Definition 1 (Linear Regression Feature Importance) Let βi represent the i-th weight
of the linear regression model. We define the importance of the input Xi as follows:

importance(Xi) = βi

Now suppose we have features X1 and X2 = aX1 + b both real-valued. Let y =
β1X1 + β2X2 + β3. This would result in a feature importance of β1 for X1 and β2 for X2.
But you can also rewrite y as :

y = β1X1 + β2X2 + β3

= β1X1 + β2aX1 + b+ β3

= (β1 + β2a)X1 + β3 + β2b

This time we would have feature importance of (β1 + β2a) for X1 and 0 for X2. It is
also possible to distribute the weights differently like this :

y = β1X1 + β2X2 + β3

= β1X1 + β2aX1 + b+ β3

= (β1 +
β2
2
a)X1 +

β2
2
X2 + β3 +

β2
2
b

This would mean we would have feature importance of (β1 + β2

2 a) for X1 and β2

2 for
X2.

In fact we could choose any importance α for X1 and γ for X2 if α + γ = β1 + β2.
This demonstrates that theoretically if we have redundant data or features which can be
calculated from one another that the magnitude of the importance can be flawed. This is
also observed in numerical experiments. For this experiment, we have trained 1000 linear
regression models where X2 = X1 and y = 3X1 + 5X2 + 15. The results are plotted in
figure A.22.
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Figure A.22.: In this boxplot, the regression coefficients of X1 and X2 are displayed. It is
evident that there is a significant variation in the coefficients for some runs,
indicating that the importance is shifting from one variable to the other.
However, the sum of the importance of both variables remains consistent
across all runs.

In real-world scenarios, we often encounter non-identical yet highly correlated data,
which leads to comparable effects. Surprisingly, when applying linear regression to
data with a high correlation of 0.9, using the same configuration as before, we obtain
accurate feature importance with minimal variation. When nonlinearity is introduced
to the construction of the response variable, y, the performance worsens, but it remains
acceptable. Nevertheless, when using a Random Forest Regressor, the same issue arises
with highly correlated data.

In this experiment, we have four variables, each with a mean of 1 and the following
correlation matrix:

correlation matrix =

⎡⎢⎢⎣
1 0.9 0.8 0.7
0.9 1 0.7 0.8
0.8 0.7 1 0.9
0.7 0.8 0.9 1

⎤⎥⎥⎦
The response variable, y, is defined as y = 3X1 + 5X2 + 2X3 + 2X4. We used 500 data

points and 100 runs for this experiment. Since we cannot use regression coefficients, we
calculate SHAP values, which also indicate feature importance. The results are illustrated
in Figure A.23.

We observe that, in some cases, the importance of X1 and X2 can be traded off, as the
SHAP value of one decreases while the other increases. The same is true for X3 and X4,
which are also highly correlated.

As the complexity of models and data increases, it is anticipated that this phenomenon
of shifting importance between highly correlated variables will persist, if not pose an even
greater challenge when calculating feature importances.
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Figure A.23.: The mean SHAP values for each variable are observed over 100 runs. It
becomes evident that when X2 has a low value, X1 tends to have a high
value. This inverse relationship betweenX1 andX2 is particularly noticeable
around the 80th run.
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