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Abstract

Interactions between light and matter define the way we can study and control small systems like atoms,
molecules and nanoparticles. For many applications involving such objects it is necessary to design tools
which utilize such interactions. Matter-wave experiments exploring the limits of quantum superposition
need such tools to realize diffraction gratings for molecules, metal clusters and proteins. There are
however many ways in which photons can interact with such composite objects. This leads to a variety
of grating mechanisms which can be applied to matter-wave interferometry. Which ones are relevant
depends on the properties of the particular system. It turns out that ultra violet (UV) light, often yields
interesting and useful interactions for the particles one would like to study. Higher photon energies
can result in photochemical processes like photocleavage, photoionization or photoisomerization. These
interactions present the possibility of realizing new grating mechanisms. On the other hand, optical
properties of the molecules themselves are usually not as well known in the deep UV region, in particular
for the gas phase. In general conventional methods for such measurements in the gas phase are met
with a number of complications when attempting to extract absolute values. Measurements in solution
on the other hand are subject to influences of the solvents.

Here we use 1W of UV light at 266 nm to form the diffracting element in a far-field matter-wave
interferometer for molecules. By testing this setup on a selection of different molecules we study the
influence of different interactions between the molecules and the light grating. We demonstrate how the
optical properties of the molecules at this wavelength, namely the mean electric dipole polarizability and
the absorption cross-section, can in principle be estimated from such a diffraction experiment. To do
this we also present a theoretical model for the experiment, which is able to give good reproductions of
the observed data. Furthermore we present diffraction measurements of a molecule functionalized with
photocleavable groups. We use our theoretical model to show a strong indication that we can realize a
photocleavage grating for molecules this way, introducing a novel grating mechanism for matter-wave
diffraction. Because of the variety of properties for the molecules we present here, we can see directly
how the different mechanisms influence diffraction measurements. Finally we will also present a molecule
which may have the necessary properties to realize a photoisomerization grating in the near future.

This thesis begins with a brief historical retrospective on the field of matter-wave interferometery. We
will then study the molecular properties, which are relevant for the measurements presented here in
more detail. The experimental setup and its components will be discussed in the following sections,
after which the theoretical model will also be analyzed. The results of the diffractions experiments will
be compared both quantitatively and qualitatively with simulations based on this model.
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Zusammenfassung

Interaktionen zwischen Licht und Materie definieren, auf welche Art kleine Systeme, wie Atome, Moleküle
und Nanoteilchen, untersucht und kontrolliert werden können. Viele der Anwendungen, die auf solche
Systeme zurückgreifen, erfordern Werkzeuge, die auf diesen Interaktionen basieren. Materiewellen-
Experimente, die die Gültigkeitsgrenzen von Quantensuperposition ausloten, brauchen solche Interak-
tionen beispielsweise, um Beugungsgitter für Moleküle, Metall Cluster und Proteine zu realisieren. Es
gibt jedoch zahlreiche Interaktionsmöglichkeiten zwischen solch komplexen Objekten und Photonen. Da-
raus ergeben sich auch viele verschiedene Gittermechanismen, die in der Materiewellen-Interferometrie
angewendet werden können. Welche davon relevant sind, hängt von den Eigenschaften des spezifischen
Systems, das im Interferometer verwendet wird, ab. Für viele Teilchen mit vielversprechenden Anwen-
dungen in diesem Bereich gibt es zahlreiche interessante Interaktionen mit ultraviolettem (UV) Licht.
Die höheren Energien der UV Photonen erlauben es, dass photochemische Prozesse, wie Photospaltung,
Photoionisation oder Photoisomerisierung, stattfinden. Solche Interaktionen können als Grundlage für
neue Gittermechanismen dienen. Weiters sind Eigenschaften der Moleküle selbst im tiefen UV Bereich
in der Regel weniger gut bekannt. Das ist insbesondere der Fall für die Gasphase, in der mit konven-
tionellen Messmethoden in der Regel nur schwer Absolutwerte bestimmt werden können. Messungen in
Lösung werden hingegen vom verwendeten Lösungsmittel beeinflusst.

Diese Arbeit präsentiert ein 1W UV Lichtgitter mit 266 nm Wellenlänge als Beugungselement in
einem Fernfeld Materiewellen-Interferometer für Moleküle. Anwendung dieses Interferometers mit einer
Auswahl an verschiedenen Molekülen demonstriert den Einfluss der verschiedenen Interaktionen zwischen
dem Lichtgitter und den Teilchen auf die Beugungsmessungen. Es wird gezeigt, dass gewisse optische
Eigenschaften der Moleküle im UV, insbesondere die mittlere elektrische Polarisierbarkeit und der Ab-
sorptionsquerschnitt, aus solchen Messungen prinzipiell extrahiert werden können. Als Grundlage dafür
dient ein theoretisches Modell, das es erlaubt, solche Beugungsmessungen vorherzusagen. Außerdem
werden Beugungsmessungen eines Moleküls gezeigt, welches mit photospaltbaren Funktionellen Grup-
pen modifiziert wurde. Das theoretische Modell gibt starke Indizien dafür, dass mit diesem Molekül
ein Photospaltgitter in diesem Experiment realisiert wird. Somit wird ein neuer Gittermechanismus für
Materiewellen-Interferometrie demonstriert. Die stark verschiedenen Eigenschaften der Moleküle, die in
dieser Arbeit untersucht werden, erlauben es auch, direkt zu sehen, auf welche Weise die verschiedenen
Gittermechanismen die Beugungsmessungen beeinflussen. Ein weiteres Molekül, dessen Eigenschaften
es in der nahen Zukunft ermöglichen könnten, ein Photoisomerisierungsgitter zu realisieren, wird als
Abschluss vorgestellt.

Diese Arbeit beginnt mit einem kompakten Rückblick auf die Geschichte der Materiewellen-Interferometrie.
Danach werden die Eigenschaften von Molekülen, die für die hier präsentierten Messungen relevant sind,
vorgestellt. Die darauffolgenden Abschnitte beschreiben den Versuchsaufbau und seine Komponenten,
im Anschluss wird auch das theoretische Modelle erklärt. Simulationen, die auf diesem Modell basieren,
werden sowohl qualitativ als auch quantitativ mit den experimentellen Ergebnissen verglichen.
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1. Introduction

1. Introduction

A central element to any kind of interferometer is a coherent beam splitting mechanism. Developing
methods which achieve this with the necessary coherence and efficiency is still one of the many challenges
in molecular matter-wave interferometry. The internal complexity of large composite systems such as
molecules means that many of the well refined beam splitting methods of atom interferometry are not
easily adapted for this application. Nevertheless there has been a continuous stream of new developments
over the past years, a recent examples being Bragg diffraction of molecules [1], nanomechanical gratings
as thin as a single layer of atoms [2] and optical ionization gratings [3]. Many of the methods, which are
currently being used, have in common that the rely on the interaction of the particles with light. Even
though these interactions are less well defined than for atoms, there are many ways in which they are
useful for diffraction experiments with composite objects. In particular compared to material gratings
their perfect periodicity, high transmission and the impossibility of e.g. clogging makes gratings made of
light very attractive [4]. Which interactions occur between the molecules and the light grating however
can vary a lot depending on the details of the systems involved. This is fascinating because it not only
allows us to study a range of different effects but also because it can result in entirely new grating
mechanisms. It turns out that it would be beneficial for several interesting application to use UV light
to form the light gratings. This is the case for current prospects for high-mass interferometry using
metal clusters [5–7], but UV light is also of interest for smaller biological molecules where it can cause
a variety of different effects. In the next section we will take a closer look at some of these mechanisms,
which can occur at a light-grating.

1.1. Optical grating effects

The effects a molecule experiences when being diffracted at an optical grating depend both on the
properties of the molecule itself and the parameters of the grating. A selection of the most important
effects at thin optical gratings is sketched in figure 1.1. Most phenomena are connected to the absorption
of photons in the grating. However, even if effectively no absorption occurs the standing light wave
can still act as a phase grating (figure 1.1a). In this case the dipole potential proportional to the mean
polarizability ᾱ of the molecule imprints a periodic phase shift onto the molecular wavefunction [8].
If the absorption cross-section σ is non-negligible the effects of absorption also become relevant. In
the simplest case the absorption effectively only raises the internal temperature of the molecule but
does not result in a change of the chemical structure (figure 1.1b). The effect of such an absorption
grating is twofold. For the class of molecules with the initial internal temperature the absorption in
the antinodes of the standing light wave results in the light grating effectively only being transmissive
in the regions of the nodes. The standing light wave thus acts similar to a material absorptive mask
for this class of molecules. Molecules which undergo absorption get heated to a higher temperature
class. They are however still mutually coherent and give contributions to the far-field diffraction in
the form of additional peaks [9]. The detectors which are currently being used are not sensitive to the
internal temperature of the molecules, thus these two contributions cannot be distinguished directly.
The two effects (figure 1.1a,b) are directly dependent on the properties ᾱ and σ of the molecules. These
properties in turn are also frequency dependent. Learning more about such molecular properties in the
UV region is particularly interesting for smaller bio molecules, many of which have strong transitions in
the UV or show other interesting photophysical behaviour in this spectral region [10]. One of the aims
of this work is to present results in which the phase grating and absorption grating effects are the main
contributors and where we can use them to estimate optical properties of the molecules.

1



1. Introduction

eiϕ(x) · phase shift (a)

absorption & heating (b)

photodepletion

photocleavage (d)

photoionization (c)
+

photoisomerization (e)

Figure 1.1: Overview of the most important optical grating mechanisms in molecular matter-wave
interferometry for thin light gratings.

Absorption of photons in a light grating can however have other effects, which result in a more drastic
change in the molecular structure. Because of their high energy UV photons can lead to photoionization
of some molecules (figure 1.1c). This process has been used with pulsed 157 nm light gratings to realize
a matter-wave interferometer in the time-domain [3]. Ionization of metal clusters using continuous
wave (cw) UV lasers is the grating mechanism used for the aforementioned current efforts in high-mass
interferometry with metal clusters [5]. A similar process is the one of photocleavage (figure 1.1d). Here
absorption of a photon leads to the removal of an entire functional group from the molecule. Such
leaving groups are often active in the UV and designing leaving groups which also absorb at longer
wavelengths remains a challenging task [11]. For matter-wave interferometry photocleavage presents
a new kind of grating mechanism which has interesting prospects for future interference experiments
with biological molecules. In this work we present first results of diffraction experiments with molecules
where we have strong indications that photocleavage occurs. Both photoionization and photocleavage
gratings act as photodepletion gratings in the sense that molecules which absorb photons are effectively
removed from the signal. In the former case this can be attributed to stray electric fields deflecting the
molecules. For photocleavage the recoil from the leaving group gives a randomly oriented momentum
kick to the remaining part of the molecule, which either prevents the molecules from reaching the
detection at all or at most gives a more or less homogeneous background. Photodepletion grating
effectively act as absorptive masks similar to material gratings. However, they do have the advantages
of having a perfect periodicity and an effective opening fraction, which can be tuned by the laser power.
Another phenomenon, which can occur after absorption, is photoisomerization (figure 1.1e). In this case
the absorption does lead to a structural change of the molecule, which in contrast to just heating the
molecule, potentially makes it distinguishable from the original one. Since the isomerization does not
lead to a loss of the molecules as is the case for photodepletion gratings, we expect a photoisomarization
grating to yield diffraction with contributions from both isomers.

2



1. Introduction

1.2. Overview of this work

This thesis presents experimental work whose goal was to diffract a variety of (organic) molecules at
266 nm UV light gratings and study the involved effects. We show how the polarizability ᾱ and the
absorption cross-section σ can be estimated from the diffraction when the mechanisms a and b in figure
1.1 are most relevant. We also highlight some of the complications involved when e.g. the influences of
fluorescence would need to be considered as well. Additionally we show a photocleavage grating with
specially tailored molecules.

Section 2 starts with an in-depth view on the history of matter-wave interferometry. On the one hand
to put the current experiments into the context of the many efforts of previous experimentalists and
theorists, on the other hand to acknowledge the one hundred year anniversary of the very idea of
matter-waves. In section 3 we will continue with a deeper look into the molecular properties, which are
relevant for the effects we discussed in section 1.1. Section 4 discusses the details of the experimental
setup, the procedures used and the challenges involved. We will describe the physical function and
details in the implementation of the individual components. Section 4.7 will also give a summary of the
molecules which are used in the experiment. In section 5 we will describe a theoretical model for the
experimental setup, which will be used to analyze the experimental results. The details of this evaluation
are summarized in section 6. Section 7 contains the experimental results, which are interpreted with the
help of the model described in the previous two section. In section 8.1 we will discuss these results in
the context of the grating mechanisms outlined in section 1.1. Finally, we present a potential candidate
for photoisomerization gratings in section 8.3.
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2. One hundred years of matter-waves - a historical perspective

2. One hundred years of matter-waves - a historical perspective

The concept of matter-waves originates from Louis de Broglies work one century ago. His aim to extend
the idea of wave-particle duality, first introduced by Einstein for light [12], led to the introduction of
the de Broglie wavelength

λdB =
h

p
(2.1)

which describes the wave nature of a massive particle with momentum p [13]. De Broglies ideas were
soon put onto a more sound theoretical footing by Erwin Schrödinger [14]. In the last 100 years the
existence of matter-waves has not only been confirmed, but they have quickly become a very useful
tool for material science, precision measurements and probing the limits of quantum theory, as we will
see in the following subsections. We will give a brief historical overview of the major experimental
developments in matter-wave interferometry to put the work covered in this thesis into context of
the many experiments that have been done before. We will review the developments from the first
experiments with electrons, neutrons and atoms to more modern setups using macromolecules.

2.1. Electrons

Davisson and Germer were the first to experimentally confirm de Broglies hypothesis. They observed
that the angular distribution of electrons reflected at a nickel crystal match the predictions of the matter-
wave model [15, 16]. In the same year Thomson and Reid published the first demonstration of electron
diffraction in transmission [17]. Electron diffraction in reflection was quickly adapted to characterize a
wide range of materials. Slow electrons in particular give insight into the potential within a material
[18–21]. A versions Youngs classic double-slit experiment [22] was only realized with electrons almost
three decades after the first diffraction experiments. Möllenstedt and Düker were able to use a tungsten
wire to create a briprism for electrons, which acted as a double slit for the electron matter-waves [23].
Jönsson took this a step further several years later and showed diffraction at a set of mechanical slits [24].
These experimental results have taken what was once considered an ”imaginary experiment” and turned
it into reality [25]. A more recent demonstration of the electron double-slit experiment uses electrons
created by photoionization of H2 molecules [26]. Electron matter-wave experiments have also been
crucial in verifying the Aharonov-Bohm effect [27], first predicted in 1959. A number of experiments in
the following years demonstrated that an electromagnetic vectorpotential enclosed in an interferometer
does indeed cause a phase shift [28–31]. Another important development, which relies on the wave
nature of electrons and is very relevant today, is electron microscopy. Its invention goes back to 1932
[32]. Excellent historical perspectives of this field can be found in [33–35].

Already in 1933, only a few years after the fist electron diffraction experiments, Kapitza and Dirac
predicted a different kind of diffraction mechanism [36]. This Kapitza-Dirac effect reverses the roles of
matter and light in comparison to the usual diffraction experiments. A standing light wave takes on the
role of the grating at which the electron wave diffracts. As we will see in the following sections, this
effect also takes on a central role in the molecular interference experiments presented here. For electrons
it took until 2001 for this effect to be experimentally observed [37]. However, the high-intensity case,
not showcasing coherent interference, was observed already in 1988 [38].

An impressive demonstration of the wave nature of electrons was given by Crommie et al. in 1993, who
confined electrons within barriers formed by iron atoms on a metal surface, which allowed a scanning
tunneling microscope (STM) to directly observe the probability densities belonging to the electronic
eigenstates within this barrier [39]. Mach-Zehnder [40] and three-grating [41] interferometers have

4



2. One hundred years of matter-waves - a historical perspective

also been built for electrons. Using graphite films as phase plate [42] and holographic masks [43, 44]
vortex beams of elecron matter-waves have been demonstrated. [45] gives an insight into many of the
developments in electron interferometry, which could not be covered in this short section.

2.2. Neutrons

It took only four years following the discovery of the neutron in 1932 [46] for it to be used in diffraction
experiments. Bragg reflection was demonstrated by Mitchell and powers [47], while Halban could show
diffraction in transmission [48]. Coincidentally 1932 was also the year in which diffraction of the other
nucleon, the proton, was observed [49]. The first interferometer for neutrons was built by Maier-Leibnitz
and Springer in 1962 [50]. Similar to Möllenstedt and Dükers experiment they constructed a Fresnel
biprism to realize double-slit interference with neutrons. Diffraction of neutrons at a single slit [51] and
a grating formed by grooves in a piece of glass [52] were shown in 1969. More refined measurements
of neutron diffractions at slits have been carried out by Zeilinger et al. in 1988 [53]. In 1991 neutrons
were also diffracted at a phase grating [54].

The first neutron interferometer enclosing a macroscopic area was developed by Rauch et al. in 1974
[55]. This Mach-Zehnder interferometer was manufactured from a single Si-crystal. This type of neutron
interferometer was quickly adapted for measuring the effects of gravity [56, 57] and demonstrating the
properties of spin-12 systems under rotations [58]. A similar interferometer for cold neutrons has been
realized via holographically written gratings [59, 60]. By entangling in the path and spin of neutrons
Rauch was able to demonstrate a violation of a Bell inequality in his interferometer [61]. The violation of
a similar inequality for three-partite systems was shown for a Greenberger-Horne-Zeilinger (GHZ) state
of the path, spin and energy degrees of freedom of neutrons [62]. This type of entanglement has been
used recently to show localization of individual properties of the neutron in interferometer arms [63].
For a more in depth look at neutron interferometer the reader is directed to Helumut Rauchs excellent
book on the topic [64].

2.3. Atoms

The first diffraction experiment with atoms falls in the same time frame as for electrons in neutrons.
Estermann and Stern observed the diffraction of He atoms and H2 molecules at a variety of crystal
lattices in 1929 [65, 66]. The Kapitza-Dirac effect, first introduced for electrons, also allows for atoms
to be diffracted at a standing light wave [67]. David Pritchard et al. were the first to demonstrate this
experimentally with sodium atoms beginning in 1983 [68, 69]. However, scattering of atoms at standing
light waves was already observed two years before [70, 71]. Bragg scattering of atoms at a standing
light wave was shown shortly after as well [72]. Keith et al. observed diffraction of sodium atoms at a
mechanical grating made out of a gold membrane in 1988 [73]. Diffraction at a mechanical double-slit
was observed by Carnal et al. in 1991 [74] and Shimizu in 1992 [75].

In 1991 Keith and Pritchard used a similar grating to their previous experiment, this time made out of
silicon nitride, as a beam splitter in order to construct a Mach-Zehnder interferometer for sodium atoms
[76]. A similar setup using light gratings was realized by Rasel in 1995 [77]. In 1991 two more closed
Mach-Zehnder like interferometers were also first demonstrated for atoms. Following up on an idea
from two years earlier [78] Bordé et al. used the recoil from 1-photon absorptions to split a molecular
beam. By applying π

2 pulses they could create a coherent splitting, which was also labelled by the
atoms internal state. Four such beamsplitters form an interferometer for Ca atoms, which was used
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to measure rotations [79]. Kasevich and Chu built a Mach-Zehnder interferometer which relied on 2-
photon Raman transitions between hyperfine states of Sodium as a beam splitting mechanism. Similar
to Bordés scheme, the photon recoil transferred momentum to the atoms and the momentum states
were labelled by the internal hyperfine states. The full interferometer scheme consists of a sequence
of π

2 -π-π2 Raman pulses acting on sodium atoms in a magneto-optical trap (MOT). Using this scheme
Kasevich and Chu were able to measure the local gravitational acceleration with high accuracy [80].
The possibility of using atom interferometers as highly precise inertial sensors was already suggested
by Clauser in 1988 [81]. Kasevich and others were able to continuously improve their measurements
of gravitational acceleration and rotations since then [82–90]. Atom interferometry has also proven a
useful tool for measuring atomic properties [91–95] and fundamental constants [96–99].

Weitz and Chu introduced another kind of beam splitter for atoms based on adiabatic following in 1994
[100]. A three grating interferometer based on the Talbot-Lau effect was presented by Clauser and
Li in 1994 [101]. We will see in the next section that this kind of interferometer setup is very useful
in molecule diffraction experiments. Bragg scattering of atoms at standing light waves, first observed
in 1988 [72], has been used in beam splitters with very large momentum transfers [102–104]. There
have also been experiments using holographic masks to create specific diffraction patterns of atoms
[105–108]. Another significant development is the creation of atomic Bose-Einstein condensates, which
was first realized in 1995 [109, 110]. Bose-Einstein condensates have been utilized in a number of
interference experiments [96, 111–115].

2.4. Molecules

Even though Estermann and Stern were able to show diffraction of H2 molecules in 1929 [65, 66], it
took until the 90s for molecular interference experiments to advance further. In 1994 Schöllkopf and
Toennies were able to diffract H2 and D2 molecules as well as small He clusters at a silicon nitride
grating [116]. Also in 1994 Bordé built an interferometer for I2 molecules similar to his 1991 design
for atoms [117]. Pritchard also adapted his Mach-Zehnder interferometer for atoms from a few years
before to interfere Na2 molecules [118].

The first step beyond di- and triatomic molecules came in 1999, when Arndt et al. first showed the wave
nature of a larger molecule by diffracting C60 at a silicon nitride grating [119]. This experiment was
soon repeated with a standing light wave acting as the grating structure [8]. The basic experimental
setup used in this diffraction experiment is the same as for the one presented in this work. This far-field
configuration has also been further developed in the meantime. In 2012 Juffmann et al introduced
single-molecule imaging to the setup [120]. This setup was also utilized for studying the interactions of
molecules with material gratings [2, 121, 122]. A similar setup involving a single light grating has been
used to demonstrate Bragg diffraction of molecules in 2020 [1].

Efforts to show interference of even more massive molecules have lead to the developments of near-field
interferometers for molecules. A three grating configuration based on the Talbot-Lau effect [123]
has proven to be favorable for such experiments. This Talbot–Lau interferometer (TLI) was first
demonstrated with three gold gratings for C70 [124]. The same setup was used to show diffraction of
tetraphenylporphyrin C44H30N4 (TPP) and the fluorofullerene C60F48 in 2003 [125]. Static polarizabili-
ties of molecules have been measured in such a setup via deflection [126]. A further iteration of this setup
introduced a standing light-wave as one of the gratings, forming a so called Kapitza–Dirac–Talbot–Lau
interferometer (KDTLI) [127, 128]. This setup also allowed for the determination of optical polarizabil-
ities and other molecular properties [129–133]. There have also been suggestions for different methods
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with which one might distinguish molecular isomers via matter-wave diffraction [134, 135]. Using the
KDTLI configuration interference of molecules was demonstrated with masses up to 6910 u in 2011
[136], more than 10 000 u in 2013 [137] and finally more than 25 000 u in 2019 [5]. Efforts to create
Bose-Einstein condensates of diatomic molecules have been undertaken as well [138–141]. An slightly
different interferometer setup for large molecules, based on the Talbot-Lau effect in the time domain,
was presented in 2013 [3]. It utilizes photoionization gratings and later also photofragmentation gratings
[142]. Further developments of this interferometer have allowed to study gravitational free fall [143]
and demonstrate interference of a polypeptide [144].

3. Optical properties of molecules

As already briefly mentioned in section 1.1, the different effects occurring at optical gratings are closely
connected to the properties of the molecules, which are diffracted at such gratings. It is therefore
instructive to take a closer look at physical nature of the most relevant of these molecular properties.
We will start by giving an overview of the electric dipole polarizability in section 3.1. The absorption
of photons, which is determined by the optical absorption cross-section of the molecules, can lead to a
variety of effects as discussed in section 1.1. We will take a deeper look into this in section 3.2.

3.1. Dipole polarizability

3.1.1. Introduction

The polarizability α describes the linear response of the electric dipole moment d of a particle to an
external electric field E. In general we can expand the dipole moment of such a particle as follows:

d = d0 +α ·E+
1

2
β : E2 +

1

6
γ :· E3 + . . . (3.1)

d0 is the electric dipole moment of the particle without the electric field. The contribution to the induced
dipole moment which is discussed in this section is given by the second term. In general the polarizability
α is a rank 2 tensor, which can be conveniently expressed as a 3 × 3 matrix in Cartesian coordinates
with components αij . Additionally there are also higher order terms, containing the hyperpolarizabilities
β, γ, . . . , which are tensors of higher ranks. In principle there are also contributions involving ∇E.
If the electric field is relatively weak, in particular for static electric fields, one can generally neglect
the contributions from hyperpolarizabilities. They are however relevant in intense laser fields and play
an important role in non-linear optics [145–147]. One application of these non-linear effects is briefly
discussed in section 4.4.1 of this work. In this section we restrict our discussion to the polarizability and
thus write the induced dipole moment as

dind = α ·E (3.2)

The SI unit of polarizability is Cm2V−1. Experimental values however are often preferably given as
polarizability volumes α̃ by factoring out 4πε0, which is set to be numerically equal to one in atomic
units. The volume is usually given in Å

3
or in units of the Bohr radius cubed a30 when using atomic

units [148, 149]. In this work we will use SI units but write numerical values explicitly as 4πε0 · α̃ to
facilitate comparison with literature values for polarizability volumes. Note that [145] uses polarizability
volumes, giving rise to additional factors of 4πε0 in the expressions given there.
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The polarizability tensor can be decomposed into a symmetric and an antisymmetric part. It turns out
the antisymmetric part vanishes for static electric fields. Here we are however interested in the dynamic
polarizability α(ω). The latter describes the linear response (3.2) in non-static electric field, i.e. in a
light field with frequency ω. This frequency dependent quantity can have an antisymmetric part and is
in general also complex [145]. The imaginary component of α, which usually goes to zero in the static
limit ω → 0, is identified as the absorptive part of the polarizability tensor. As the name suggests this
part describes absorption processes, e.g. followed by relaxation via spontaneous emission or collisions.
It is in fact directly proportional to the total photon absorption cross section. This follows from the
optical theorem. In case the polarizability for a given frequency can be sufficiently described by a single
scalar α(ω), i.e. in the isotropic case, the absorption cross section is given by [145, 150]

σ(ω) =
ω

ε0c
Im {α(ω)} (3.3)

The real part of the polarizability is called the dispersive part. It can be understood to describe absorption
of a photon followed by immediate stimulated emission. [145]. As we will discuss further in section
5.5, the dispersive part will be responsible for the phase grating effect of the standing light wave. In
general the polarizability of individual particles is connected to optical properties of the bulk material.
The susceptibility is proportional to the mean polarizability per unit volume. It follow that the dielectric
constant and the refractive index of a material are also related to the polarizability. E.g. for a dilute
gas of atoms the refractive index can be written as [145, 148, 151]

n ≃ 1 +
Nᾱ

2ε0
(3.4)

N is the number density of the gas and ᾱ is the mean polarizability.

3.1.2. Quantum mechanical expressions

So far the discussion of the polarizability has been entirely classical. Since atoms and molecules are
however quantum mechanical systems, it is necessary to employ a quantum formalism to describe and
compute their polarizabilities. The generalization of (3.2) to the quantum picture is straightforward.
We write the first order corrections to the diagonal elements of the dipole moment operators d̂ as

d̂
(1)
kk (t) =

1

2

(
d̂kk(ω)e

−iωt + c.c.
)

(3.5)

This is is appropriate since the perturbations of the dipole operators are expected to oscillate with the
same frequency ω as the perturbing electric field. The dipole moment operators in (3.5) are related to
the amplitude E0 of the external field via [145, 152]

d̂kk(ω) = α̂kk(ω) ·E0 (3.6)

in analogy to (3.2). The indices kk refer to the matrix elements of the quantum mechanical operators
in (3.5) and (3.6). I.e. k denotes a particular state of the particle. α̂kk is the expectation value of the
polarizability operator for a system in this particular state. It also has two implicit Cartesian components
because of the tensorial nature of α. These matrix elements are also called transition polarizabilities.
Often one refers to the ground state when evaluating (3.6). More generally, the classical relationship
(3.2) is recovered when referring to expectation values of both the dipole moment and the polarizability
operator [153].
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3. Optical properties of molecules

In principle the transition polarizabilities α̂kk(ω) can be computed using perturbation theory. The
Cartesian components ij of the transition polarizability are then given by [145, 153]

(α̂ij)kk (ω) =
∑
l ̸=k


(
d̂i

)
kl

(
d̂j

)
lk

ℏ
(
ωlk − ω − iΓl

2

) +

(
d̂j

)
kl

(
d̂i

)
lk

ℏ
(
ωlk + ω + iΓl

2

)
 (3.7)

The sum runs over all other states k and becomes an integral for continuous states.
(
d̂i

)
kl

denote the

i-th Cartesian component of transition matrix element, ωlk are the transition frequencies between the
states l and k and Γl is the linewidth of the state l. The notion of the transition polarizabilities as
defined above can be generalized further by also introducing off diagonal elements kl. These objects are
then related to the scattering tensor [145, 152]. Off resonance, if the linewidth Γl is negligible compared
to the other terms, (3.7) can be approximated as the real expression [145, 151]

(α̂ij)kk (ω) =
∑
l ̸=k

2ωlk

(
d̂i

)
kl

(
d̂j

)
lk

ℏ
(
ω2
lk − ω2

) (3.8)

The discussion from section 3.1.1 regarding the real and imaginary parts still holds for the polarizability
operator. It can be decomposed into a Hermitian and an anti-Hermitian part:

α̂(ω) = α̂′(ω) + iα̂′′(ω) (3.9)

The Hermitian part α̂′ accounts for the dispersive interaction with the light field, giving rise to an energy
shift (see section 3.1.3). The anti-Hermitian component α̂′′ is associated with the effects of absorption
[145].

In general the polarizability operator can also be decomposed into a scalar, vector and tensor compo-
nent, coresponding to the irreducible components of the spherical-tensor basis. The isotropic scalar
polarizability for a particle in state k is represented by a single scalar ᾱ, which can be conveniently
expressed using the oscillator strengths flk of the system:

ᾱ(ω) =
e2

me

∑
l

flk
ω2
lk − ω2 + iΓlω

(3.10)

For simplicity we do not explicitly denote the quantum state k. Oscillator strengths are given by

flk =
2meωlk

3ℏgJe2
⟨k||d̂||le⟩ (3.11)

The last factor in this expression is the reduced matrix element as defined in the Wigner-Eckart theorem
[154]. me is the electron mass, e is the elementary charge and gJ = 2J + 1 is the degeneracy of the
ground state with rotational quantum number J . Relation (3.10) can be used to compute polarizabilities
if the oscillator strengths have been measured via other experimental methods. Even if only some of
them are known, one can use (3.10) to give an estimate on the scalar polarizability by making use of
sum rules for the oscillator strengths. This is particularly useful for alkali atoms where only one electron
is responsible for most of the polarizability [145–148, 150].

9



3. Optical properties of molecules

3.1.3. Dipole potential

The interaction of a polarizable particle with an external light field is of interest to us as it defines
the phase grating mechanism in our experiment described in section 5.5. Quantum mechanically the
Hamiltonian of the system is modified by the term

δĤ = −|E0|2

4
· e∗ · α̂ · e (3.12)

Here E0 is the amplitude of the oscillating light field and e is its polarization vector. As already
mentioned, the Hermitian part of the operator results in an energy shift while the anti-Hermitian part
describes absorption. At this point we restrict our discussion to the influence of the dispersive (Her-
mitian) part of the polarizability. To find the energy shift in a particular state one has to take the
expectation value of (3.12). For a pure state |k⟩ this yields

δE = ⟨δĤ⟩ = −|E0|2

4
· e∗ · α̂kk · e (3.13)

Note that by definition ⟨k|α̂|k⟩ = α̂kk. It is also possible to compute this energy shift of the particle
as the second order correction in perturbation theory. This is also an alternative way of defining the
polarizability tensor [145, 147, 148, 153].

We can view the energy shift (3.13) caused by the external light field as a potential U seen by the
polarizable particle. As we will see in the next section, often only the isotropic component of the
polarizability is important. In this case we can express this potential in terms of the intensity I of the
light field as

U = −ᾱ · |E0|2

4
= −ᾱ · I

2cε0
(3.14)

For a static electric field E this potential energy is

U = −ᾱ · |E|2

2
(3.15)

If we replace the absolute value of the static field with the average for an oscillating field we recover
(3.14).

3.1.4. Polarizabilities of molecules

For evaluating the components of the transition matrix elements (p̂i)kl in (3.7) one has to choose a
particular coordinate system. For molecules it is convenient to choose a coordinate frame fixed with
respect to some molecular axis. However, to describe interactions with external fields it is more natural
to choose a space fixed coordinates system with respect to the light field. In general it is easy to perform
a rotation in order to transform from one frame to another. Experimentally one however usually deals
with ensembles of randomly orientated, rotating molecules. In this case the only accessible quantities
are the rotational invariants. In particular this is the isotropic scalar polarizability in the space fixed
frame [145–147, 155]:

ᾱ =
1

3
Trα (3.16)

10



3. Optical properties of molecules

For randomly orientated molecules as are present in the experiment, this is the relevant quantity in the
potential (3.14). In principle the polarizability anisotropy

(∆α)2 =
1

2

(
3Trα2 − (Trα)2

)
(3.17)

is also a rotational invariant [145, 146]. It is however not directly relevant for the measurement results
in this work. We will therefore restrict our discussion to the average isotropic polarizability ᾱ from now
on.

For molecules the average polarizability has contributions from both the electrons as well as the vibra-
tional and rotational motion of the molecule. The computation of the average polarizability for diatomic
molecules in particular is described extensively in [155] and also summarized in [145, 153]. We briefly
reproduce the key ideas here.

In the clamped-nucleus method one first assumes the molecular axes, i.e. the position of the nuclei as
fixed. The polarizability caused by the electrons of the molecule is first separately computed using e.g.
(3.7). A variety of techniques [155] can be used to account for the vibrational motions. A value for
the isotropic polarizability can then be found by taking a classical thermal average of the electronic and
vibrational contributions to the polarizability tensor.

The sum-over-states technique represents a more rigorous quantum mechanical treatment. The molec-
ular wave function is written as a combination of electronic, vibrational and rotational components
in the Born-Oppenheimer approximation. For this quantum state describing the entire molecule one
computes the polarizability using (3.7) directly in a space fixed frame. One usually considers the energy
shift which depends on the diagonal components of the polarizability tensor for linear polarized light.
The transition matrix elements can be written using their respective expressions in the molecular fixed
frame using the usual rotation transformations. The energy shift derived this way can be divided into
contributions corresponding to electronic, vibrational and rotational polarizabilities. These expressions
account for interaction between different electronic, vibrational and rotational levels respectively. In
most cases the coupling of the electronic component to different rovibrational states can be neglected.
Thermal averages of these values are computed by averaging over a Maxwell-Boltzmann distribution of
the corresponding quantum numbers (J,M, ν). The electronic, vibrational and rotational contributions
to the polarizability are significant if the frequency of the driving electric field is close to the respective
energy spacing. For optical frequencies this means that usually only the electronic component is relevant
[153, 155].

Polarizabilities of larger molecules can also be computed with the sum-over states method or other
perturbative methods. The necessary electronic wavefunctions can be determined using e.g. the Hatree-
Fock method. Rotations can be accounted for similarly to the diatomic case by considering the molecule
as a rigid rotor. Density-functional theory (DFT) is also used to determine polarizabilities [145, 147,
156]. There are also a number of semi-empirical methods for computing polarizabilities of molecules,
most importantly the so called additivity methods. Here we briefly give an overview of some of them.

In the induced dipole model one associates a polarizability αi with each atomic site i. The induced
dipole moment at each site is then proportional to the local electric field Ei, which is the sum of the
externally applied field and the fields of the induced dipoles at all other sites.

di = αi ·Ei = αi ·

Ei,0 −
∑
j ̸=i

T ijdj

 (3.18)
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The tensor Tij describes the electric field at site i induced by the dipole at site j and E0,i is the external
electric field at site i. (3.18) can then be used to derive an expression for the local dipole moments and
consequently also the total induced dipole moment in terms of the external electirc field. From this one
can compute the polarizability tensor and the average polarizability using (3.16) as usual [157–161].

Another additive approach is to associate empirically determined effective polarizabilities with each atom
depending on its environment. Estimates for the total average polarizabilities are given by the sum of
all atomic contributions. Methods of this type differ depending on how the effective polarizabilities are
assigned. For example effective polarizabilities might be given for specific bonds or chemical subgroups
within the molecules. In the atomic hybrid polarizability method the effective polarizabilities depend
on the state of hybridization of the atom but not the atoms it is bonded to. A related method is the
atomic hybrid component method. In any case it is not sufficient to simply add up the contributions of
the isolated atoms [145, 159, 162–164].

At the end of this section it should be noted that the discussions covered above usually assume linearly
polarized light. In this case only the diagonal components of the polarizability are relevant for the energy
shift (3.13) (for an appropriate choice of basis). In particular this means that the vector component of
the polarizability can be disregarded. Averaging over random orientations of the diagonal elements leads
to the isotropic polarizability (3.16). However, by experimental necessity our experiment uses circularly
polarized light for the standing light wave (see section 4.4). For circular polarization the expression in
(3.13) in general also involves off-diagonal elements of the polarizability tensor. It turns out however
that for the molecules investigated here (see section 4.7) these off-diagonal elements vanish because of
the molecular symmetries, if the molecules are viewed as rigid. This is usually not the case, but we may
still assume the discussion only involving the diagonal elements to be approximately valid [145, 151].

3.1.5. Measuring polarizabilities

Most conventional methods for determining polarizabilities rely on measuring bulk properties, which
depend on the polarizabilities of the individual particles. Naturally this only gives information about
average isotropic polarizabilities as particles will in general be randomly oriented and in a thermal
distribution of states. One of these bulk properties is the dielectric constant ε, which is related to the
polarizability via the Debye equation (Clausius-Mossotti relation if there are no orientating effects). The
dielectric constant can be determined by inserting the material between the plates of capacitor, changing
the capacitance. This gives accurate results for low frequencies. Similarly one can use the relationship
between the average polarizability ᾱ and the refractive index n of a material to determine ᾱ. As already
mentioned for dilute gases equation (3.4) holds, which is a special case of the more general Lorentz-
Lorenz relation, which holds for high frequencies, where orientating effects are negligible. Accurate
determination of n is possible via interferometric methods [165, 166]. For biomolecules in particular
these methods are often challenging because it either requires the molecules to be in solution or to be
brought into gas form. Within solvents the properties of the molecules are modified by intermolecular
interactions. Depending on the chemical stability of the molecules creating a vapor with a well known
and high enough density is also often challenging [145–147, 167].

Other techniques for measuring polarizabilities rely on Rayleigh scattering [168, 169] or, for static
polarizabilities, the deflection of atomic / molecular beams [145–147, 167]. More closely related to
the technique described in this thesis are methods based on atom interferometry. In a Mach-Zehnder
interferometer one applies different electric fields to each one of the interferometer arms. The dipole
potential (3.15) then introduce a phase shift proportional to the mean polarizability and the square
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of the applied voltage. If the geometry of the interaction region is known this allows to deduce ᾱ of
the atoms [93, 145, 146, 170]. For larger molecules static polarizabilities have also been determined
using deflection in near field interferometers of TLI and KDTLI type [126, 132, 133, 171]. Optical
polarizabilities have been measured in the KDTLI setup as well. Like the experiment described here is
based on the light grating acting as a phase grating [128, 129, 133].

3.2. Absorption of photons

3.2.1. Introduction

The probability for a particle to absorb a photon can be quantified by the optical absorption cross-section
σ(ω). It is the effective area a single photon must ”hit” to be absorbed. I.e. the number of absorbed
photons per unit time ṅ is equal to the photon flux times the absorption cross-section [172]. For a given
laser intensity I this is then given by

ṅ =
σ(ω)I

ℏω
(3.19)

As outlined in the previous sections absorption is described by the imaginary part of the complex
polarizability. The two are related via (3.3). Naturally the absorption cross-section is also frequency
dependent. Having already given an overview of the basics of the quantum mechanical description for
the polarizability in section 3.1.2 we want to focus on a more qualitative description in this section to
give some insight into the processes following absorption.

The physical details of the most important processes that a molecule might undergo can be better
understood with the help of a Jablonski diagram [173], which illustrates the energy levels of a molecule
in a simplified way. An example of such a diagram is shown in figure 3.1. For simplicity we only consider
three electronic states in the diagram: the singlet ground state S0, the first excited singlet state S1 and
the lowest triplet state T1. For each of the electronic states a set of vibrational states exist for the nuclei
forming the molecule. Note that the triplet state T1 is of slightly lower energy than the corresponding
singlet state S1. The molecule can absorb a photon matching the energy difference between the ground
state and a vibrational level of the S1 state (kabs) [174, 175]. The relative strengths (i.e. extinction
coefficients) of transitions to different vibrational levels are given by the transition dipole moments and
consequently by the oscillator strengths (3.11). This defines the fundamental shape of the absorption
spectrum, although e.g. solvent effects can in general further influence it. Usually the vibrational
equilibrium positions of the nuclei are different in the electronic ground state S0 and the excited state
S1. As a consequence of the Franck-Condon principle transitions to higher vibrational levels are therefore
in general favored, i.e. the absorption maximum corresponds to a transition to a vibrationally excited
state [175–177]. Once the molecule has been excited into a higher vibrational state of the electronic
configuration S1 it usually quickly relaxes to the vibrational ground state of S1 predominantly non-
radiatively. Usually this occurs on the time scale of picoseconds [174, 178]. During this process, which
is termed intramolecular vibrational randomization (IVR), the excess energy is redistributed among the
internal degrees of freedom of the molecule [179–181].
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Figure 3.1: Jablonski diagram illustrating the most important photophysical processes. Adapted from
[178] and [175]. Nonradiative processes are marked in grey, radiative ones in black. They are
labelled as follows: kexc singlet-singlet absorption, kF fluorescence, kIC internal conversion,
kISC intersystem crossing, kP phosphorescence.

After excitation of the molecule there are different relaxation pathways to the ground, as illustrated
in figure 3.1. The molecule can undergo a direct radiative transition via the emission of a photon,
i.e. fluorescence (kF). This is briefly discussed below. There is also the possibility of reaching the
ground state directly via non-radiative decay (internal conversion, kIC). Another non-radiative process
is intersystem crossing (kISC). This allows the molecule to transition from the singlet state S1 to
the triplet state T1 via spin-flip. From there the molecule can again decay to the electronic ground
state S0 by emission of a photon (kP). The process of light emission via a T1 → S0 transition is
called phosphorescence. The term fluorescence meanwhile is reserved for S1 → S0 transitions. The
main physical difference between these two processes is that fluorescence occurs much faster than
phosphorescence [172, 174]. The lifetimes for fluorescence are commonly on the scale of nanoseconds,
with the longest known lifetimes at the order of microseconds. The lifetime of the triplet states associated
with phosphorescence are on the scale of microseconds up to multiple seconds for the longest lived ones
[174, 175]. The reason for the longer lifetimes of the triplet state is that radiative transitions from T1
to the electronic ground state S0 are spin-forbidden. This is also the reason why direct excitation from
S0 to T1 via absorption can usually be neglected compared to S0 → Sn transitions [172, 175, 177].

The characteristic feature of a molecules exhibiting fluorescence is the absorption of light at some
wavelength λabs and subsequent emission at some longer, i.e. less energetic wavelength λem > λabs
(Stokes shift). In reality both the absorption and emission spectrum will be relatively broad due to
the number of possible transitions between the initial and possible excited states of the molecule.
Interactions with e.g. a solvent can further broaden the spectra [172, 174, 176, 178]. After relaxing to
the excited singlet state S1 the molecule in the vibrational ground level of S1 can eventually reach the
ground state S0 again by emitting a fluorescence photon. Because of the energy dissipated during the
transition from the originally higher vibrational level of S1 to the lowest one, the energy gap between
S0 and the excited state is now narrower than during the absorption process. This is the origin of the
Stokes shift. In analogy to the absorption process the transition to the lower electronic state may in
fact reach higher vibrational levels of S0 before again dissipating the excess vibrational energy via non-
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radiative pathways. Because the vibrational structures are usually similar for S0 and S1 the absorption
and fluorescence spectra are often (approximately) mirror images of each other [172, 174, 175, 177].

The discussion so far has not considered potential changes in the chemical structure of the molecule.
A more refined picture than the Jablonski diagram in figure 3.1 is the one of potential energy surfaces
parametrized by reaction coordinates (e.g. the positions of the nuclei). Stable configuration of the
molecule are identified with minima in these potential energy surfaces. In adiabatic photoreactions
energy barriers between local minima of the molecular configuration are mirrored in the excited state
potential energy surfaces. However, the barriers are usually lowered such that thermal energy might
overcome them, allowing the molecule to reach a different configuration than it was in initially. In
the case of diabatic photoreactions the excited state energy surface comes very close to or crosses the
ground state energy surface at an intermediate configuration between two stable configurations in the
ground state S0. After a transition to the excited state via absorption the molecule has a high probability
of transitioning to the lower state at this point where the surfaces are close. From there it can also
transition to a different minima of the ground state energy surface than the initial one. In a similar
type of process the excited state energy surface has a minimum at some intermediate configuration.
The excited molecule first relaxes to this intermediate before transitioning to the ground state. From
the intermediate configuration in the ground state it can reach a stable minimum different from the
initial one [10, 175]. We will discuss two processes that change the chemical structure upon photon
absorption in more detail in sections 3.2.2 and 3.2.3.

3.2.2. Photocleavage

Photodissociation or photofragmentation is generally characterized by the absorption of a photon causing
the cleavage (breakage) of a chemical bond. Such cleavage reactions of (sigma) bonds can usually be
categorized as one of two types: homolytic cleavage and heterolytic cleavage. In the former case the
resulting fragments are a pair of radicals. The latter case referes to the production of an ion pair. After
photocleavage the products usually undergo additional chemical reactions depending in the particular
bonds which were broken. The process by which absorption leads to the actual photodissociation can also
vary. For diatomic molecules optical dissociation is a common pathway. In this case the energy delivered
by the photon is enough to directly allow for the constituent atoms to separate. For larger molecules
the process of predissociation is more relevant. Here the energy of the electronically excited state
the molecule is in after absorption is not above its dissociation threshold. However, the molecule can
undergo radiationless transitions to another electronically excited state, which has a lower dissociation
limit. Such transitions are favored when the potential energy surfaces of the two excited states cross.
In complex molecules there usually exist a number of different pathways to dissociation. Redistribution
of internal energy also allows the bond cleavage to happen at another part of the molecule from where
the absorbed energy was initially localized [175, 182].

A special case of photodissociation involves the cleavage of a specific functional group. Such functional
groups are of great interest as photoremovable protecting groups (PPGs) in chemical and biological
applications. They allow a molecule or a functional group of a molecule to be activated on demand
via irradiation with light of a particular wavelength. A molecule or drug can therefore be delivered in
a ”caged” form and made active with precise high spatial and temporal control. One advantage of
using light is that is non-invasive and does not cause any contamination in contrast to chemical ways
of control. Wavelength selective PPGs allow for the controlled release of one molecule or functional
group out of multiple. This expands the possibilities for controlling chemical and bimolecular processes
[11, 183, 184]. Photocleavable tags also have applications as a tool for controlling the charge state of
peptides and proteins in the gas phase [185, 186].
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One of the challenges for biological applications is designing PPGs that are active at suitable wave-
lengths. The activation wavelengths for most of the commonly used PPGs are in the UV. However,
the transparency of biological tissue to UV light is usually low and UV light may also be harmful to it.
Motivated by this and other factors a large number of PPGs suitable for different applications have been
studied [11, 184, 187]. In this work we make use of the effectiveness of UV light for photocleavage by
employing a light grating at 266 nm. The molecules used for this purpose (see section 4.7.4) are specif-
ically tailored to cleave at this wavelength. The photocleavable groups in this compound are formed by
nitrobenzyl groups. Nitrobenzyl and its derivatives are one of the most widely used PPGs and also one
of the first which were studied. The primary photoprocess is understood to be excited-state hydrogen
transfer to the nitro group [11, 187–189].

3.2.3. Photoisomerization

As the name suggests photoisomerization involves a molecule changing from one structural isomer to
another, i.e. undergoing some structural rearrangements. The most important types of photoisomeriza-
tion reactions we want to mention here are cis-trans isomerization and ring opening / closing reactions.
The prototypical system for cis-trans isomerization are ethylene derivatives. The isomerization corre-
sponds to a 180◦ rotation around the molecules double bond. In this process an electron is excited from
a bonding to an antibonding orbital. In this electronic state the configuration where the molecule is
rotated by 90◦ around the former double bond is favored. After the molecule relaxes back to the ground
state it can reach a different isomer compared to the one as which it started. Ring opening and closing
is usually characterized by the formation or cleavage of a sigma bond between the termini of a linear
system of pi electrons (electrocyclic reactions). If two new sigma bonds are formed to form rings one
speaks of intramolecular cycloadditions. In both cases the particular mechanisms vary depending on the
molecular system under consideration [175, 182].

An appealing property that often goes hand in hand with photosiomerization is photochromism. Pho-
tochromic compounds exhibit a reversible change in their absorption spectra, i.e. their color, induced
by irradiation with light. This can often be attributed to different electronic structures of the two
isomers. Photochromic molecules that are fluorescent usually also change their fluorescence spectra in
this case. It might, for example, be the case that one isomer is strongly fluorescent while the other
is non-fluorescent. There is a large number of different mechanism for photochromism, in general
not limited to photoisomerization. Many well studied photochromic molecules, such as stilbenes [190]
and azobenzenes [191], do rely on the aforementioned process of cis-trans isomerization. Reversible
opening and closing of rings also enables photochromism in some molecules [192–194]. A rich class
of molecules belonging to the latter category are diarylethenes. Molecules of this type show excellent
stability once switched. Also among the many compounds studied so far there are several which show
a distinct ”on/off” switching of fluorescence. Because of this diarylethenes have also been studied with
the prospect of optical memory [195–197].

3.2.4. Gas-phase spectroscopy

The study of biomolecules in the gas-phase is mainly motivated by the fact that it gives access to the
properties of the molecules in an isolated state. On the one hand this allows for a better comparison
with theory as the latter usually also only describes isolated systems. On the other hand gas-phase
measurement act as a complement to other measurement techniques. Comparison of different phases
gives insight into which properties are intrinsic to the molecules and which are induced by the interaction
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with the environment. This makes it interesting to study molecules in the gas-phase even though this
differs significantly from the usual state they are in when acting in biological systems [198, 199]. Spectra
measured in solution can show notable differences to the gas-phase spectra for both absorption and
fluorescence emission. Solvents can reduce molecular energy levels thus changing transition frequencies.
Perturbations caused by the solvent can also enhance other transitions which might otherwise not be
relevant. These effect are naturally dependent on both the molecules in question and the properties
of the solvent. Usually the effects are larger for polar solvents. Solvents also bring broadening of the
spectral lines, which usually requires gas-phase measurements to be avoided [172, 182].

In principle gas-phase spectra can be measured analogous to spectra in solution by comparing the
intensity before and after the sample and evaluating the result following Lambert-Beer’s law. This
technique of direct spectroscopy is in most cases not suitable for biomolecules as usually only very dilute
gases of these molecules can be created. Thus very long path lengths would be needed to see a significant
effect this way. Instead one usually employs techniques collectively termed action spectroscopy. In this
case the fraction of the molecules which absorbed a photon is compared. Two such methods which are
used for UV spectroscopy in molecular beams are resonance-enhanced multiphoton ionization (REMPI)
and laser-induced fluorescence (LIF) [199, 200]. These and other methods have been refined to allow for
recording spectra with high precision. However, it is usually not possible to extract accurate values for the
absolute absorption cross-sections. Lack of exact knowledge of the molecular density or fluctuations in
the source prevent a precise determination of the absorption cross-section. Matter-wave interferometers
are an interesting alternative for such measurements because the can in principle operate on a per
molecule basis. Absorption cross-section can in principle be deduced directly from photon-recoils as
proposed for near-field setups [201, 202]. While the scheme presented here also indirectly relies on this
recoil it differs in that it is directly measuring the absorption in the grating responsible for the refraction.
As a far-field setup it is also less complex than near-field configurations.
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4. The Far-field setup

4. The Far-field setup

Having reviewed both the historical developments of matter-wave interferometry and the basics of
molecular physics necessary to understand the experiment described here, we now want to turn to a
detailed description of the setup with which the experiment was carried out. The experimental apparatus
used for the measurements presented in this work builds on the ideas developed and used in a number of
previous experiments throughout the last two decades [1, 2, 8, 119, 120, 122]. We will begin this section
by giving an overview of the experiment and its components. In the following sections the various parts
and their functionality will be discussed in more detail.

4.1. Overview of the experiment

z

y

x

Figure 4.1: Sketch of the experiment showing the source, collimation slits and light grating. The fiber
profiler described in section 4.4.2 is also illustrated.

The concept behind far-field diffraction of molecules is very similar to the textbook example of light being
diffracted at a periodic grating. The molecules are emitted from some source, which has to provide the
necessary coherence to later resolve the diffraction effects. They then impinge on a periodic structure,
the grating. At a distance from this grating a spatially resolving detector is located. As in the case
of light, this yields a diffraction pattern consisting of intensity maxima and minima. The separation of
these peaks is directly proportional to the ratio of the de Broglie wavelength λdB to the period d of the
grating [203, 204]. While near-field interferometers have a more favourable scaling of the grating period
with the mass of the object [123, 205], the far-field configuration allows for a more direct observation
of the interference effect by direct imaging and only requires one grating, which makes the setup more
easy to implement. In this setup the grating structure is a standing light wave, which interacts with
the molecule via the Kapitza-Dirac (phase grating) effect [36] and via absorption. We will discuss the
details of these effects in section 5.5.

Figure 4.2 shows a sketch of the setup used here. The experiment is contained in a high vacuum
(HV) chamber, which is divided into three subsections. The sections are connected along the axis of
the molecular beam and are separated by skimmers. The first chamber contains the source for the
molecular beam. The pressure in the source chamber is usually on the order of 1 · 10−6mbar. The
source used in this experiment is discussed in more detail in section 4.2. The main chamber, which
is usually at a pressure of 2 · 10−7mbar, contains a number of collimation slits used to prepare the
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4. The Far-field setup

transversal and longitudinal coherence. The details of the collimation are described in section 4.3. The
main chamber also houses the grating itself. For the optical measurements presented in this work a
deep UV light grating was used. Section 4.4 contains an overview of the optical setup used to create
the grating. After the main chamber the molecular beam reaches the detection chamber where the
molecules impinge on a quartz window and are detected via fluorescence microscopy, as explained further
in section 4.6. The detection chamber is kept at a pressure lower than the main chamber, at the order
of 5 · 10−8mbar− 1 · 10−7mbar.

One of the main experimental challenges with this setup is to ensure proper alignment of all the
components. The small physical sizes of the structures make precise positioning necessary, which needs
to be verified in an appropriate way. We describe the most important procedures used to achieve this
in section 4.5. Based on the constraints invoked by the different components of the experiment we will
give a selection of molecules, for which the measurements covered in this work will be demonstrated, in
section 4.7.

oven
S1,x S2,x SyGM

detection

light grating

source chamber main chamber detection chamber

z

x

y
z1 z2 z3 z4 z5z0

Figure 4.2: Schematic overview of the experimental setup. The sketch shows the view from the top,
the coordinate axes are defined as indicated in the bottom left corner with the z axis along
the molecular beam and the y axis oriented vertically. S1,x and S2,x are the transversal
collimation slits, Sy is the velocity selector and GM denotes the grating mirror. The
positions of the components along the z axis are labeled as indicated. The values for the
distance between the components are collected in table 1.

∆z30 = z3 − z0 ∆z53 = z5 − z3 ∆z43 = z4 − z3 ∆z31 = z3 − z1 ∆z32 = z3 − z2
(90.5± 1.0) cm (70.0± 1.0) cm (8.5± 1.0) cm (38± 5) cm (8± 2) cm

Table 1: Measured distances between the components of the experiment. The exact positions of the
collimation slits inside the vacuum chamber were not directly accessible leading to the relatively
high uncertainties in some of the distances.

4.2. Knudsen cell

An effusive oven source is used for the measurements at light gratings. The oven follows a basic single-
chamber design, figure 4.3 shows a cross-section of the source. The molecular sample (usually in powder
form) is filled in a crucible inserted into the oven. A heating wire with a resistance of RB = 200Ω is
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coiled around the body section of the oven, which contains the crucible. The orifice of the oven is formed
by a circular pinhole with a diameter of DS = 200 µm. To avoid clogging of the pinhole via condensation
the nozzle section of the oven containing the pinhole is heated separately by a RN = 100Ω heating
wire and kept at a higher temperature than the rest of the oven. The nozzle and body sections are
sealed by a silver gasket. Their temperatures are monitored individually by two type-K thermocouples
[206].

Figure 4.3: Cross-section of the effusive oven source used in the experiment. A second heating wire is
used to keep the nozzle at a slightly higher temperature and thus avoid clogging.

Since the aperture of the source is much smaller than the oven chamber itself, it can be assumed that
the vapor molecules within the oven is in thermal equilibrium with the chamber walls and that their
velocities can be described by a Maxwell-Boltzmann distribution:

f(v) dv =

√
2

π
·
(

m

kBT

) 3
2

· v2 · exp
(
− mv2

2kBT

)
dv (4.1)

The rate at which molecules are exiting the nozzle is proportional to their velocity v. Thus the velocity
distribution of the flux exiting the source should be proportional to the distribution within the chamber
multiplied with v. After normalization this yields the distribution

Φ(v) dv =
1

2
·
(

m

kBT

)2

· v3 · exp
(
− mv2

2kBT

)
dv (4.2)

This description of the velocities is only valid if the aperture is much thinner than its diameter and if the
mean free path with in the source is larger than the aperture itself. The thickness of the pinhole used
here is approximately 50 µm, which should be small enough compared to the 200 µm diameter such that
collisions with the walls of the aperture during the passage of molecules can be neglected. However, it
turns out that the approximation of a much larger mean free path is not fully valid. Collisions between
particles close to the nozzle cannot be fully neglected. The model of free-jet expansion gives a better
reproduction of the experimental results in our case. An effective description of the downstream particle
flux in this situation is given by introducing a velocity shift w to (4.2) [206–208]:

Φ(v) dv = C ·
(

m

2kBT

) 3
2

· v3 · exp
(
−m · (v − w)2

2kBT

)
dv (4.3)
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C is a normalization constant. The angular dependence of the flux for effusive sources follows a cosine
law

I(θ) dΩ = I0 cos θ dΩ (4.4)

dΩ is the infinitesimal solid angle element into which the flux is emitted and θ is the angle with
respect to the direction orthonormal to the aperture. The skimmer between the first and the second
vacuum chamber restricts the relevant angles to well below 10mrad, therefore we will neglect the angle
dependence (4.4) in the following discussion [206, 208].

The detector used in this experiment (see section 4.6) records a signal proportional to the number of
molecules reaching the detection area within a given time. It therefore effectively measures the flux,
which follows the distribution (4.2) for an ideal effusive source and (4.3) for free-jet expansion. In the
former case both the mean velocity of the distribution (4.2)

v̄ =

√
9πkBT

8m
(4.5)

and the most probable velocity

vmp =

√
3kBT

m
(4.6)

are approximately 20 % larger than the corresponding values for the Maxwell-Boltzmann distribution
(4.1). As already mentioned however a better description of the experimentally observed velocities
is given by (4.2). The mean and most probable velocities (4.5) and (4.6) are thus shifted to even
faster velocities depending on w. In this case the analytical forms of these parameters are not quite
as simple. In our analysis the parameter w is determined empirically by fitting (4.3) to the velocity
distributions extracted from the diffraction measurements. We generatlly see good agreement of this
velocity distribution with the experiment and the measured source temperatures as long as there are
no there effects changing the distribution of molecules. For more details see section 6.3, figure 6.2
shows an example of such a fit. Typical values for the steady state temperatures of the oven body and
nozzle during the measurements are collected in table 2, the characteristic velocities and the de Broglie
wavelengths (2.1) are also shown in this table. For the typical velocities we use the mean velocity (4.5)
based on the nozzle temperature TN. Despite the additional contribution introduced by the parameter
w for the free jet expansion, this still gives a good estimate for the velocities extracted from the fits to
the experimental data as described in section 6.3. Of course there is a broader distribution of velocities,
which contributes to the signal overall.

molecule
mass
m (u)

body temp.
TB (◦C)

nozzle temp.
TN (◦C)

v̄ (ms−1) λdB (pm)

H2-phthalocyanine 514.5 419 473 206 3.8

meso-
tetraphenylporphyrin

614.7 372 422 182 3.6

dihydroxy-
naphthacenedione

290.3 251 266 234 5.9

photocleavable
Zn-phthalocyanine

1182.4 414 442 133 2.5

Table 2: Overview of source temperatures, typical velocities and de Broglie wavelengths. The mean
velocities are computed using (4.5) for the nozzle temperatures, which agrees well with the
typical velocities observed in the experiment.
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4.3. Coherence preparation

In order for interference effects to be observed the superposition of quantum states must be coherent,
that is, the phase relation between the states must be well defined. In the Schrödinger wave description of
the motional degrees of freedom this can be interpreted analogously to classical wave optics. Coherence
is then quantified by the correlation of the wave function at different points in time and in space. The
former defines the temporal or longitudinal coherence, the latter is related to the transversal (spatial)
coherence [209, 210]. More generally one can associate the coherence of a mixed quantum state with
the presence of off-diagonal elements in its density matrix [211]. In this experiment coherence between
different rotational and vibrational internal states of the molecules emitted by the source cannot be
ensured. However, if the evolution of the spatial degrees of freedom of the state can be regarded
as independent of the specific internal state (e.g. approximately the same polarizability for all initial
rovibrational states) the coherent superpositions of motional degrees of freedom will be independent
as well and yield the same interference pattern for all of them. The internal and motional degrees of
freedom can still get coupled if for example a photon is absorbed. Different such entangled states will
then not show coherent interference with each other [9, 203]. If we assume that the specific initial state
can be viewed as irrelevant for this absorption process as well, we only need to ensure the aforementioned
coherence of the spatial degrees of freedom.

4.3.1. Longitudinal coherence

The Wiener-Khinchin theorem relates the temporal coherence to the Fourier transform of the power
spectral density. The coherence length, characterizing the maximum path length difference below which
interference can be observed, can be estimated from the bandwidth ∆λ as [209, 212]

lc ≃
λ2

∆λ
(4.7)

λ denotes the center wavelength. Strictly speaking (4.7) is only valid if ∆λ is small. Since each
diffraction peak in an interference experiment at a grating or a double slit corresponds to a path length
difference of λ, (4.7) allows us to estimate the highest observable peak order as [212]

nmax ≈
lc
λ

=
λ

∆λ
(4.8)

The de Broglie relation (2.1) relates the wavelength to the velocity of the particle. It follows from
the discussion in section 4.2 that our source is not monochromatic as the source emits a relatively
wide distribution of different velocities. Intuitively these different velocities would yield interference
patterns with different spacings between the maxima. These intensity distributions add up incoherently
because of the lack of quantum coherence between the initial states with different velocities, resulting
in a ”washing out” of the interference maxima [213]. This is illustrated in figures 4.4 and 4.5 for the
example of the diffraction at a double slit. Figure 4.4 shows the intensity distributions as functions of
the diffraction angle θ for a selection of wavelengths λ = λ0 + δλ. It is apparent that the maxima of
the different wavelengths agree less and less with each other for higher diffraction orders. In figure 4.5
the sum of the different intensity contribution is plotted. Because the maxima do not match for higher
orders anymore, the visibility for orders higher than ∼ 10 (θ = 0.10) is comparatively small. This agrees
with the estimation given by (4.8) for a full width of ∆λ ≈ 0.1 · λ.
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Figure 4.4: Plots of the diffraction patterns calculated for an ordinary double slit with period a = 100λ0
and zero slit width [204]. The wavelengths are given by λ = λ0 + δλ. The horizontal axis
shows the diffraction angle θ, maxima occur at θ = n·λ

a . For higher orders the peaks
corresponding to the different wavelengths become more and more mismatched.
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Figure 4.5: The sum of the intensity contributions of different wavelengths plotted in figure 4.4. The
visibility is only high for the first few orders and becomes negligible at order n ∼ 10. This
is consistent with (4.8) for ∆λ/λ = 0.1.

4.3.2. Velocity selection

The previous sections illustrates that it is necessary to either select certain velocities from a relatively
narrow range for the diffraction experiment, or to at least separate them from each other. There exists
a variety of methods for achieving this for a thermal beam. A common solution is to use rotating slotted
disks. If the detection scheme is time resolved, such a disk can be used to imprint a pseudorandom
modulation onto the molecular beam. The velocities can then be distinguished by time of flight. For
continuously integrating detection scheme multiple disks can be used to only let molecules with certain
flight times between them, i.e. velocities, pass [4, 208]. The scheme we use here relies on the free
fall of the molecules in earths gravitational field during their transit through the interferometer. This
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method has already been successfully used in both near [124, 127, 136, 137] and far-field [1, 2, 120,
214, 215] setups. Since only small deviations from forward propagation (along the z axis) make it
through the interferometer, the forward velocity vz is much larger than the other components and thus
predominantly determines the de Broglie wavelength. The flight parabola of these molecules can be
expressed as

y(z) = y0 + vy,0 ·
z

vz
− g

2
·
(
z

vz

)2

(4.9)

where g is the gravitational acceleration, z is the coordinate along the flight direction and y0, vy,0 give
the initial conditions. By fixing three points along this parabola, e.g. y(z0 = 0) = y0, y(z4) = y4 and
y(z5) = y5, it is uniquely defined. Here we chose the notation to be consistent with our coordinates
defined in figure 4.2 and we set z0 = 0. One can then find that the parabola fixed by these three points
corresponds to the forward velocity

vz =

√
g

2
· z4z5 · (z5 − z4)

z5 · (y4 − y0)− z4 · (y5 − y0)
(4.10)

Experimentally y0 is defined by the vertical position of the source. y4 is defined by a horizontal slit
(velocity selector) labeled as Sy in figure 4.2. Each height y5 at the detection then corresponds to
a different velocity as given by (4.10). Different velocity classes are thus separated vertically in the
detection region.

In reality both the source and the velocity selector have a finite size (∆y0 ≡ DS and ∆y4 ≡ Sy
respectively). As a consequence of this not only a single velocity but a certain velocity range arrives at
each detection height y5. The relative width of this velocity distribution, which is equal to the relative
bandwidth, can be evaluated as

∆vz
vz

=
∆λ

λ
= 2− 4 ·

(
1 +

√
1 +

2v2max

g
· ∆y4 · z5 +∆y0 · (z5 − z4)

z4z5 · (z5 − z4)

)−1

(4.11)

Here vmax denotes the maximum velocity in the corresponding velocity range. A derivation of (4.11)
can be found in appendix A. Notably the relative velocity spread (4.11) is independent of the absolute
positions of the source and the velocity selector slits, instead only depending on their widths.

The velocity selector used in the experiment is a Thorlabs S20RD slit with a width of ∆y4 ≡ Sy =
(20 ± 2) µm. By the measurements in table 1 its distance to the source is ∆y40 = (0.99 ± 0.02)m.
The slit is mounted on a Smaract SLC-1740 piezo stage, which allows for adjustment of its vertical
position. With the source size ∆y0 ≡ DS = (200 ± 6) µm and the total length of the interferometer
∆z50 = 1.6m we can estimate the relative velocity spread from (4.11). Figure 4.6a shows ∆vz

vz
as

a function of vmax. In figure 4.6b the same quantity is plotted in dependence of the mean velocity
calculated as vz = vmax − ∆vz

2 . As is apparent from this figure the longitudinal coherence becomes
worse with larger velocities. Using (4.8) we can estimate that we can distinguish at least the first two
diffraction orders for velocities up to mean velocities of ∼ 180m s−1. As we will become apparent when
evaluating our results (see section 7) the intensities of higher orders are too weak to accurately measure
them in our detection for the experimental parameters used here. However, the interaction with the
light grating gives raise to additional peaks between the actual diffraction orders as a consequence of
photon absorption in the light grating. Thus more than two intensity peaks on each side of the central
maximum are still observable. As discussed more extensively in appendix A we technically only give an
upper bound for the bandwidth here. Particularly when ∆vz

vz
becomes large, the velocity distribution of

the source itself (4.2) becomes relevant as well, which will slightly reduce the velocity spread.
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Figure 4.6: Relative velocity spread ∆vz
vz

for different maximum and mean velocities. The relative

bandwidth ∆λ
λ is equal to this quantity.

4.3.3. Transversal coherence

Even for a perfectly monochromatic wave interference effects can only be observed if the amplitudes at
different grating slits are also sufficiently correlated. The characteristic length scale over which this is
the case is called coherence width Wc. As a general guideline, this width has to extend over at least
one grating period d. The transverse coherence is limited by the fact that a realistic source, like the one
used in the experiment, has a finite physical size. This can be modelled by an array of independent point
sources. The transverse coherence is consequently usually very small close to the source. In general
the degree of coherence however increases with larger distance from the source. This is described by
the van Cittert–Zernike theorem. In brief, its statement is that the mutual coherence function at equal
times is proportional to the Fourier transform of the intensity distribution at the source (i.e. the shape
of the source). One finds that the coherence width at a distance L from a source with diameter DS is
given by

Wc =
λ · L
DS

(4.12)

Here we treat the problem one-dimensionally, since the grating is only periodic along one axis we are
only interested in interference effects in that direction. More generally one might want to consider
diffraction in two transverse dimensions. In this case the coherence area Ac is introduced, which scales
quadratically with the distance to the source [203, 209, 216]. The coherence width (4.12) can also be
derived directly in the Wigner formalism introduced in section 5.1 as the characteristic length scale over
which the off-diagonal elements of the density matrix decrease [217]. An intuitive way to understand the
limitations introduced by finite transverse coherence is to consider that molecules emitted by the source
will have random transverse momenta [213]. This momentum distribution gives rise to a divergence of
the molecular beam. If the source is spatially extended, a range of different initial momenta can reach
the grating. The beam divergence will be imprinted onto the intensity distribution at the detector,
as the diffraction patterns of the individual molecules will be shifted proportionally to their transverse
momenta. Since this effectively broadens the diffraction peaks, one will only be able to observe good
interference contrast if the divergence angle of the molecular beam arriving at the detector is smaller
than the diffraction angle. Assuming the extension of the grating to be small compared to the source
and detection regions (as is usually the case when applying the far-field approximation) one can estimate
the divergence angle after the grating to be θdiv ≈ DS

L . Requiring this to be smaller than the diffraction

angle θ = λ
d again yields the condition Wc ≃ d for the coherence width defined in (4.12) [212].
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4.3.4. Transversal collimation

The oven source used for the measurements conducted at light gratings (see section 4.2) has a size of
DS = 200 µm. For a typical de Broglie wavelength of λdB ≃ 4 pm (see table 2) and a grating period
of d = 133 nm, the grating would need to be at a distance of L ≃ 6.65m from the source in order to
achieve a coherence width Wc ≃ d. The true distance between the source and the grating is almost an
order of magnitude smaller (see table 1). In order to prepare the transverse coherence needed for the
diffraction experiment a set of two collimation slits is used. The slits restrict the transverse momenta,
which can travel through the setup, thus reducing the divergence angle of the beam below the width
needed to resolve diffraction peaks. The increased transverse coherence can also be understood from
the point of view that the collimation restricts the region in the source from which the molecules can
originate, thus effectively reducing the size DS of the source [4, 218].

We can estimate the divergence angle θdiv from geometric considerations as sketched in figure 4.7. This
assumes classical trajectories and a negligible thickness of the slits. Since the source size is typically
much larger than the slits, we do not take it into account here.

tan
θdiv
2

=
S1,x + S2,x

2∆z21
(4.13)

S1,x and S2,x are the widths of the slits and ∆z21 is their distance. In our setup we have ∆z21 ≃ 30 cm
(see table 1). For λdB ≃ 4 pm and d = 133 nm the expected diffraction angle is θ ≃ 30 µrad. Therefore
the condition for the divergence angle (4.13) to be smaller than that is S1,x + S2,x ≲ 9 µm.

S1,x S2,x

Δz21

θdiv

Figure 4.7: Geometrical estimate of the transversal collimation angle θdiv

The classical treatment of the slits is certainly justified for the first slit as the source can be considered
approximately completely incoherent because of its comparatively large size. For very small widths
diffraction at the second slit might however become relevant as the first slit provides some transversal
coherence [219, 220]. In our theoretical treatment in section 5.4 we will account for this by only
approximating the first slit as classical.
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4. The Far-field setup

Figure 4.8: Sketch of the assembly of the transversal collimation slits. The molecular beam passes
through the circular opening and is collimated by two razor blades mounted on a piezo.
The slits are mounted to a rigid bar as shown in figure 4.11

The slits used here are made of two razor blades mounted on a piezo. Figure 4.8 shows a sketch of
the slit assembly. Because the piezos can only provide position data relative to the setting where they
are completely open, their absolute opening widths are not directly accessible. We calibrate the relative
change in width by observing the diffraction pattern of a λ = 532 nm laser sent through the slits at
different piezo settings. The distances between the first minima ∆x1 and between the second minima
∆x2 of the diffraction pattern were measured at a distance of l from the slit. The corresponding widths
of the slit are then calculated via [204]

Sx =
2nλl

∆xn
(4.14)

where n = 1, 2 for the first and second minima respectively. The results for the calibration of first slit are
plotted in figure 4.9. The corresponding parameters for the linear fits are collected in table 3. The slope
of the fits shown in these figures are all A ≈ −1. The slits are thus further closed for larger position
values and we see good agreement for the relative change in width displayed by the piezo readout. The
constant coefficients from the linear fits could be used to give an estimate of the piezo positionings for
zero slit widths, i.e. for completely closed slits. However, because the razor blades forming the slits
are not necessarily perfectly parallel, the true width seen by the molecular beam might have a constant
offset from this value if it hits the slit at a different hight than the calibration laser. We therefore instead
observe at which slit setting no transmission is visible anymore and use this value as the zero width
for the slits. We find that the slits show no transmission for the settings S1,x = (201.0 ± 0.5) µm and
S2,x = (124.5±0.5) µm respectively. In principle we could try to use these values to compute the actual
widths from the readout values of the piezos. However, since it is not possible to experimentally ensure
that the height at which the molecular beam passes the slits never changes, this might not always give
accurate results or at least requires regular recalibration. Instead we optimize the slit widths to fit the
observed collimation angle for our theoretical discussion, was is described in section 6.3.
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Figure 4.9: Comparison of slit widths computed via the first and second diffraction minima and the
value of the piezo readout (slit setting). For this calibration the diffraction minima were
measured at a distance of l = 136 cm. The computed parameters for the linear fits shown
in this figure are given in table 3.

n A B R2

1 −0.988± 0.009 (212.9± 1.3) µm 0.9992

2 −0.995± 0.006 (215.3± 0.8) µm 0.9997

Table 3: Computed parameters for the linear fits Sx = A · x = B shown in figure 4.9 for minima
n = 1, 2. A ≈ −1 indicates that relative changes in width are correctly represented by the
setting of the piezo.

4.4. Light grating

The molecules in this experiment are diffracted at a light grating with a wavelength of λ = 266 nm.
The UV light is generated via second harmonic generation (SHG) [212, 221] from a 532 nm laser beam.
As discussed in more detail in section 5.5 a standing light wave acts as a periodic dipole potential
for a polarizable molecule. In addition to the effects of absorption this creates the necessary periodic
modulation of the incoming matter-wave, which is needed to observe diffraction. An overview of the
optical setup used to implement this standing light wave is sketched in figure 4.10.

The 532 nm light is provided by a Coherent Verdi V-10. This commercial Nd:YVO4 laser generates the
desired wavelength by doubling 1064 nm light internally also employing SHG in a LBO crystal [222].
The green light passes an attenuator formed by the half-wave plate λ/2 A and PBS 1. The laser light
then enters an external frequency doubler as indicated in figure 4.10. The waveplate λ/2 B and the
lens L1 ensure the proper coupling. The doubler used is a WaveTrain 2 by Spectra Physics, it uses a
BBO crystal within a triangular cavity for SHG [223, 224]. Further details on the frequency doubling
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Figure 4.10: Sketch of the optical setup used for generating the UV light grating. 532 nm light is
generated by the Nd:YVO4 laser and sent to the frequency doubler. The 266 nmUV light
passes through an optical isolater and an beam expander and is finally focused onto the
grating mirror GM by the grating lens GL.

will be given in section 4.4.1. The doubled light passes the half-wave λ/2 C followed by PBS 2 and
the quarter-wave plate λ/4. Adjusting the polarization of the UV light with the half-wave plate λ/2 C
allows modifying the intensity transmitted to the experiment. The quarter wave-plate λ/4 prevents the
back reflected beam of the standing light wave from re-entering the frequency doubler by redirecting it
to the power meter PM at one of the ports of the polarizing beam splitter (PBS). As a consequence
of this the standing light wave is circularly polarized. The power meter PM additionally allows for
monitoring the relative fluctuations of the UV laser power during the course of the experiment. As
shown in figure 4.10 the UV light transmitted through the wave plates and PBS 2 is first magnified by a
2x beam expander made up of a lens L2 (f = −50mm) and lens L3 (f = 100mm). It is then brought
to the grating lens GL (f = 250mm) by a periscope formed by the mirrors M5 and M6. Enlarging the
waist of the beam with the beam expander allows this lens to achieve a smaller beam diameter at the
focus [212]. The periscope is mounted on a translation stage, which allows it to be translated in the z
direction. The upper mirror of the periscope is mounted on another translation stage, which enables it
to be moved vertically. The combination of these two degrees of freedom allows free positioning of the
beam exiting the periscope within the y-z plane. The f = 250mm lens GL is attached directly to the
upper periscope mirror, this way the laser beam always stays on the optical axis of the lens when being
translated. The lens GL focuses the UV laser onto the grating mirror GM located within the vacuum
chamber. The beam is retro reflected from this mirror, forming the standing light wave used for the
diffraction experiment. The back propagating beam is overlapped with the incoming beam by adjusting
the final mirror M6 of the periscope. It is then redirected to the power meter PM at one of the ports
of PBS 2 as described above.

The grating mirror is mounted on an steel bar together with the collimation slits in order to prevent any
relative movement between them. A sketch of this assembly is shown in figure 4.11. The mirror mount
itself sits on a translation stage, which is able to move it along the x axis, and a piezo rotation stage.
The latter is able to change the angle of the mirror around the vertical (y) axis (yaw angle). As will be
further discussed in section 4.5.2 it is important to adjust this angle to make the surface of the mirror
as parallel to the molecular beam as possible, which is the reason why precise control of it is needed.
The assembly of the grating mirror on these stages is sketched in figure 4.12.

29



4. The Far-field setup

Figure 4.11: The bar on which the transversal collimation slits S1,x, S2,x, the grating mirror and the
velocity selector Sy are mounted (from left to right). A more detailed view of the grating
mirror is shown in figure 4.12.

Figure 4.12: Sketch of the grating mirror assembly. The mirror mount sits on a rotation stage which
itself sets on a linear translation stage, which can move the mirror along the x axis.
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4.4.1. Second harmonic generation

Second harmonic generation (SHG) is a special form of sum frequency generation. It allows coherent
light of (angular) frequency ω to be converted into coherent light of twice that frequency 2ω. The
physical principle this is based on is the non-linear dielectric response of an optical medium to an
electric field. The dependence of the (dielectric) polarization P on an external electric field E may be
written as an expansion of the form

Pα = ε0

(
χ
(1)
αβEβ + χ

(2)
αβγEβEγ + χ

(3)
αβγδEβEγEδ + . . .

)
(4.15)

The linear susceptibility χ(1) is joined by the higher order non-linear susceptibilities χ(2), χ(3) and so
forth. They are given by tensors of rank 2, 3, 4, . . . respectively. We use the usual sum convention for
writing equation (4.15). In general the susceptibilities of increasing orders are very small, thus they only
become relevant for very strong light fields. In the following discussions we will restrict ourselves to the
second order in (4.15), as this the one responsible for second harmonic generation. It should be noted
that the second order susceptibility is in general only non-zero for materials without inversion symmetry
[221, 225–227].

Strictly speaking (4.15) is only true for slowly varying electric fields as it assumes that the response of
the material is instant. In a more physical formulation one has to consider that the polarization at time
t will depend on the electric field at all times t′ < t. For electromagnetic radiation it is then instructive
to look at the Fourier components of the quantities in equation (4.15). The Fourier component of the
second order in the expansion of P is then given by

P (2)
α (ω = ω1 + ω2) = ϵ0χ

(2)
αβγ (ω1, ω2)Eβ(ω1)Eγ(ω2) (4.16)

Similar relations exist for the other orders. Note that the second order susceptibility is in general also
frequency dependent. We see from equation (4.16) how two electromagnetic fields with frequencies ω1

and ω2 will give rise to a polarization with the sum of the two frequencies. If only light of frequency ω0 is
initially present this will yield twice the initial frequency ω = 2ω0. The non-linear dielectric polarization
P′(ω) couples to the light field with frequency ω via a non-linear wave equation. Thus electromagnetic
radiation at the new frequency ω will be created as well [226, 228].

The conversion efficiency of light with frequency ω0 to 2ω0 will be very low unless the phase mismatch
factor

∆k = 2kω0 − k2ω0

=
2ω0

c
· (n(ω0)− n(2ω0))

(4.17)

is zero or at least close to it. Because of dispersion the refractive indices are typically not equal for
both frequencies (n(ω0) < n(2ω0)). Intuitively we can understand that ∆k ̸= 0 corresponds to different
speeds of propagation within the medium for the fundamental (ω0) and harmonic (2ω0) wave. Light
converted at different points within the e.g. crystal will then not be in phase [225, 228–231].

Second harmonic generation can also be understood from a quantum point of view. The second order

susceptibility χ
(2)
αβγ introduces three photon interaction terms into the Hamiltonian. The conversion

of light from the fundamental frequency to the harmonic is then described by the annihilation of two
photons with frequency ω0 and the creation of one with frequency 2ω0. The phase matching condition
∆k = 0 is then simply a consequence of the conservation of momentum during this process [226, 228].
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Figure 4.13: Type 1 critical phase matching. If the beam propagates at an angle θ0 with respect to
the optical axis of the crystal the refractive indices of the ordinary beam at frequency ω
and the extraordinary beam at 2ω become equal. Adapted from [226].

A common way to achieve phase matching is to use birefringence. In an uniaxial crystal the effective
refractive indices for light with ordinary polarization no is independent of the direction of propagation
(relative to the crystal axis), the index for extraordinary polarization is however ne not. In type 1 critical
phase matching the fundamental beam has ordinary polarization and the harmonic has a component
with extraordinary polarization. As indicated in figure 4.13 there is a particular angle between the
propagation direction and the crystal axis θ0 (phase matching angle) for which no(ω0) = ne(2ω0).
Type 2 critical phase matching differs from this by having a fundamental beam with both ordinary and
extraordinary polarization components, which leads to a slightly different condition, where the average
refractive index for the fundamental beam must match the one for the extraordinary harmonic beam.
Another phase matching method is non-critical phase matching. In this case the propagation direction
of the light is chosen orthogonal to the crystal axis and the refractive indices are tuned to match by
changing the temperature of the crystal. While the range over which this tuning is possible is usually
smaller than what can be achieved with critical phase matching, non-critical phase matching avoids
beam walk-off (see below)[225, 226, 228, 232].

The frequency doubler used in this experiment employs critical phase matching. The BBO is placed in
a triangular cavity which is locked using Pound–Drever–Hall method. The cavity enhances the intensity
of the fundamental wave and increases the effective interaction length within the crystal [223, 228,
233]. For a typical input power of 5W 532 nm light one gets around 1.2W UV output at 266 nm. Due
to losses at other optical components along the beam path from the frequency doubler to the vacuum
chamber as sketched in figure 4.10 the power directly in front of the laser window is lower, usually around
1W. While staying locked at large input powers for a longer time period without adjustments to the
doubling cavities the power output decreases slightly. As mentioned, the power meter PM records the
UV power reflected from the grating mirror, which gives information of the relative decrease in output
power of the UV light. Typically the power drops by around 10 − 15 % over the course of a typical
measurement lasting 2 − 2.5 h. The decrease in conversion efficiency can most likely be attributed to
thermal drifts in the doubling cavity and potentially degradation of the non-linear crystal.
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In general the harmonic output power is proportional to the square of the fundamental power.

P2ω0 = C · P 2
ω0

(4.18)

A comprehensive study of SHG for the realistic case of focused Gaussian beams and their optimal
parameters has been given by Boyd and Kleinman [234]. It turns out that for such Gaussian beams the
phase matching condition ∆k = 0 is no longer the optimal case. Instead there is some value ∆k > 0
for which this is the case [234, 235].

Figure 4.14: Effect of beam walk-off of the second harmonic within a non-linear crystal on the output
beam. Reproduced from [235].

Figure 4.15: Photograph of the beam emitted by the frequency doubler hitting fluorescent paper. A
larger number of weaker side fringes are located above and below the nearly Gaussian
main lobe.

As mentioned, a drawback of critical phase matching as used here is that the extraordinary beam in a
birefringent material experiences beam walk-off. As a consequence the extraordinary second harmonic
light will travel through the crystal at some double-refraction angle ρ with respect to the fundamental
beam. As illustrated in figure 4.14 this will cause contributions from different depths within the crystal
to not fully overlap. As a consequence the harmonic output beam is in general no longer Gaussian.
Instead it shows a characteristic ”edge” shape, with bright fringes to one side and much weaker fringes to
the other [235–237]. In the commercial frequency doubler used here this non Gaussian profile is partially
compensated by beam shaping optics [223]. Nevertheless, the output beam still features additional
fringes. Figure 4.15 shows a photo of the 266 nm harmonic laser spot hitting fluorescent paper. One
can clearly see the fringes along the vertical axis to both sides of the nearly Gaussian main peak. In
figure 4.16 a beam profile along the vertical axis of the harmonic is shown. It was recorded after the slit
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S at the location of the periscope (see figure 4.10) using a Coherent BeamMaster BM-7 (UV). From
the beam profile in figure 4.16 we can deduce that approximately 80 % of the laser power are contained
within the main peak, making the contribution to the fringes very low. To have a well characterized
beam for the interference experiments an adjustable slit is used to cut out the outer fringes from the
beam. The slit S is placed directly after the beam expander formed by lenses L2 and L3 as indicated in
figure 4.10, where the beam diameter is large enough to position the slit appropriately. In figure 4.17 a
beam profile similar to figure 4.16 is shown with the adjustable slit in place.
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Figure 4.16: Beamprofile of the UV laser along the vertical axis without slit S. Several smaller side
peaks are visible but they are significantly smaller than the main lobe.
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Figure 4.17: Beamprofile of the UV laser along the vertical axis with slit S. The slit cuts off most of
the side lobes leaving a profile that is closer to an ideal Gaussian.
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4.4.2. Fiber beam profiler

As will become apparent in our theoretical analysis (see section 5.5), it is necessary to know the beam
waist of the UV light grating at the location of interaction with the molecules. Since the relevant light-
grating interactions (phase shift and number of absorbed photons, see equations (5.28) and (5.30))
scale with P

wy
for Gaussian beams (P laser power, wy waist radius in vertical direction), it is clear that

we need a very small waist wy to get considerable interaction strengths. To accurately determine this
waist radius we measure the vertical profile of the laser beam in situ using a fiber based beam profiler
[238]. This fiber also serves a second purpose in facilitating the alignment of the light grating to the
molecular beam (see section 4.5.3). In the setup used here the fiber is mounted on a vertical translation
stage inside the vacuum chamber. It is glued to a post attached to this stage oriented along the vertical
axis. The fiber is a Thorlabs high OH UHV fiber with a 100 µm core and 0.22 NA. The end attached
to the vertical translation stage has been cut and polished to create scattering centers. The other end
is attached to a vacuum feed through and connected to a power meter (Newport 818-UV). When the
laser beam hits the cut end of the fiber light couples into the fiber. When moving the fiber vertically
through the beam the power coupled into the fiber is given by the convolution of the intensity profile
of the beam itself and the effective diameter of the fiber core [238]. Since the fiber is cut at a shallow
angle and mounted almost vertically this effective diameter is much smaller than the 100 µm core size.
A Heidenhain linear encoder is used to readout the vertical position of the stage holding the fiber. The
power and position measurements are automatically recorded by a custom LabVIEW script. The waist
radius w(x) of the (approximately) Gaussian beam with the vertical intensity profile [212]

I(x, y) = I0

(
w0

w(x)

)2

· exp
(
− 2y2

w2(x)

)
(4.19)

is then extracted by fitting a generic Gaussian function

f(y) =
A

w
·
√

2

π
· exp

(
−2 ·

(
y − y0
w

)2
)

(4.20)

to the recorded data. In the experimental setup the distance between the grating mirror and the grating
lens GL is chosen to locate the focus of the beam at the mirror by assuring that the back propagating
beam has the same diameter as the incoming one. The molecular beam passes 0.32mm away from the
mirror surface. The fiber measures the beam waist at the same location as the molecular beam (see
section 4.5.3). For this purpose the grating mirror is moved away from the location along the x-axis at
which it sits during the measurements using the translation stage it sits on. It is also rotated by 1◦ to
redirect the reflected beam such that it cannot interfere with the waist measurement. The waist radius
is at the order of w0 = 15 µm in this experimental setup. The Rayleigh range [212]

z0 =
πw2

0

λ
(4.21)

is thus approximately z0 ≈ 2.7mm. This is much larger than the distance of the mirror surface to the
molecules and the widths of the collimation slits S1,x and S2,x. Consequently we can assume the waist
radius to be constant w(x) ≈ w0 over the interaction region between the light grating and molecules.

In figure 4.18 we show an example of a waist measurement recorded in situ in the experiment. A fit of
the form (4.20) is also shown. For this example the extracted waist radius is w0 = (16.04±0.06) µm. To
ensure the accuracy of these waist measurements, the results were compared with the profiles recorded
by a Coherent BeamMaster BM-7 (UV) knife edge beam profiler. Since this profiler could not be placed
inside the vacuum chamber, the corresponding profiles were measured by redirecting the 266 nm laser
by a mirror placed in front of the laser window. The profile of the UV laser at measured at the focus is
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shown in figure 4.19. The waist radius wy = (15.51±0.02) µm agrees well with the result of figure 4.18.
Note that these measurements were not taken together, thus variations in the positions of the lenses
could cause the minor difference in the waist radii between the two measurements. A more rigorous
comparison between the two beam profilers was conducted with 532 nm light by recording the waist
radii at different positions along the beam path. For more information refer to appendix B
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Figure 4.18: Typical waist profile of the grating laser at the focus recorded with the fiber beam profiler.
A fit of the form (4.20) is shown in red. The fit gives a waist radius of w0 = (16.04 ±
0.06) µm.
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Figure 4.19: Vertical waist profile of the grating laser at the focus recorded with the knife edge beam
profiler. A fit (4.20) is shown in red. The computed waist radius is wy = (15.51±0.02) µm.
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4.5. Alignment procedures

4.5.1. Pre alignment of the source

As described in the previous sections, the molecules emitted by the source should pass through the
collimation slits and eventually hit our detection region. Since the involved widths are all small compared
to the overall length of 1.6m of the experiment, it is necessary to pre align the components. To this
end a 421 nm laser beam is sent through the experiment along the desired axis of the molecular beam.
The laser is centered on the first vacuum flange on which the oven source is otherwise installed (left
end of figure 4.2). The laser tilt is adjusted such that it reaches the window at the detection end
of the vacuum chamber centered as well. The collimation slits S1,x and S2,x are positioned using to
translation stages to allow the laser to pass through them. For the measurements at the light grating
these positions will remain fixed. The two points will thereby define the axis of the molecular beam in
the horizontal plane fully. Similarly, the velocity selection slit Sy is inserted and vertically positioned
such that the 421 nm alignment laser can pass through it. This position will be taken as a starting
point for the exact alignment later. The fiber profiler described in section 4.4.2 is positioned such that
its tip hits the alignment laser. The power meter connected to the other end of the fiber can be used
to precisely find this location.

After reinstalling the oven source and heating it to the desired temperature, its horizontal position is
optimized by maximizing the signal transmitted through the two collimation slits. The oven is mounted
on a 2 axis translation stage to allow for these adjustments in the x-y plane. The velocity selector Sy is
inserted and its position is initially optimized to get transmission at the detection height. In order to get
reproducible alignment of the molecular beam for subsequent measurements the height of the velocity
selector Sy is kept fixed from this point on. While the Sy position can be positioned and read out with
an accuracy of 40 nm thanks to the piezo stage it is mounted on, the vertical positioning of the source
itself is not easily reproducible. This is due to the limited resolution of the translation stage the oven
is mounted on and the fact that the construction of the source itself is prone to deformation due to
thermal effects during heating. In order to still position it accurately enough the vertical oven position is
adjusted to the transmission at the detection. The detector height is kept fixed and the vertical profile
of the transmission is recorded. A Gaussian is fitted to this profile to find the approximate center. The
oven height is adjusted to yield the same center position for every measurement run. Since the mean
velocities of the molecules are defined by the temperature of the oven, the two fixed points (Sy slit and
center at detection) should suffice to fully define the flight parabolas. The center of this Gaussian fit of
the transmission through the Sy slit can be found with an accuracy better than 10 µm. As sketched in
figure 4.20 we can use a simple geometrical consideration to estimate the accuracy of the vertical oven
position found this way as 90 cm

70 cm · 10 µm ≈ 13 µm. This position can easily adjusted with the 10 µm
resolution of the micrometer screw used to position the oven. A similar geometrical argument lets us
estimate how reproducible the height of the molecular beam is at the location of the light grating. We
can estimate it as 9 cm

70 cm · 10 µm ≈ 1.3 µm. This is an acceptable variation for the laser beam waist,
which is at the order of 15 µm.
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Figure 4.20: Geometrical estimation of the vertical alignment. The sketch shows a side view of the
layout of the experiment. For a fixed center position of the velocity selector Sy the
reproducibility of the vertical oven position can be estimated from the position of the
transmission at the detection by simple geometric considerations. Similarly we can esti-
mate the corresponding reproducibility of the molecular beam height at the position of
the light grating.

4.5.2. Grating mirror alignment

There are three critical alignment parameters for the light grating and consequently the grating mirror,
which defines the orientation of the standing light wave. As indicated in figure 4.21 two angles, denoted
roll (axis along the molecular beam) and yaw (vertical axis), define the orientation of the light grating.
Additionally the distance of the mirror surface to the molecular beam needs to be adjusted. To prevent
the interference maxima of different velocity classes from mixing the roll angle has to be chosen such
that the light grating is horizontal with respect to gravity [119]. The yaw angle has to be adjusted such
that the molecular beam is perpendicular to the light grating, i.e. the molecular beam has to be parallel
to the mirror surface. If the yaw angle deviates from this orientation interaction with neighbouring
antinodes of the grating may average out, decreasing the interference contrast [8]. An imperfect yaw
orientation would also change the effective period of the grating. A precise alignment of these angles
is also necessary because we assume these orientations to be perfect for our theoretical analysis in
section 5.

The roll angle of the grating is adjusted directly after installation of the mirror. To ensure that the
mirror surface is as perfectly vertical with respect to gravity as possible the following alignment method
is used. An alignment laser beam is sent to a mirror on top of an optical level (Davidson Optronics
D-626). The mirror ”floats” such that it is oriented perpendicular to gravity. The beam is reflected
back to the source of the laser with this mirror. The beam pointing is now adjusted such that the back
propagating beam overlaps with the incoming one vertically. Because the optical level is vertical with
respect to gravity, this ensures that the alignment laser is propagating horizontally. The optical level is
then rotated such that it reflects the alignment laser to the grating mirror. The roll angle of the grating
mirror can then be set using the adjustment screws of the mirror mount, such that the back reflection
from it also has perfect vertical overlap with the incoming beam. This aligns the grating mirror vertically
with respect to gravity.
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yaw
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Figure 4.21: Definition of the roll and yaw angles of the grating mirror. Yaw is rotation around the
y-axis, roll is rotation of the mirror around the z-axis. The orientation of the mirror also
defines the direction of the light grating.

The approximate alignment of the yaw angle of the mirror is first found using the same alignment laser
described in section 4.5.1, which propagates along the same axis as the molecules. The mirror is moved
using the horizontal translation stage (along the x axis) on which it is sitting (see figure 4.12) until
it clips the alignment laser. The angle of the mirror around the vertical axis is then adjusted to make
the mirror surface parallel to this laser beam. For this first step this is judged visually by moving the
mirror horizontally such that it just starts clipping the laser and comparing if this cut-off is symmetric at
both ends of the mirror. The precise alignment of the yaw angle is conducted with the molecular beam
itself. For this purpose the beam is collimated less tightly than later for the diffraction measurements.
The translation stage is used to move the mirror into the beam as before. By observing the molecular
beam at the detector we can determine when the mirror surface blocks part of the beam because the
transmission becomes narrower in this case. A spacer ring has been added to the mirror mount to ensure
that it sticks out by about 1mm from the frame. This ensures that the mirror surface itself blocks the
molecular beam and not the mirror mount itself. As sketched in figure 4.22 the amount by which the
mirror cuts the molecular beam depends on its yaw angle and is minimized if the mirror surface is parallel
to the beam. We can thus find the optimal yaw angle by measuring the width of the molecular beam for
different yaw angles and finding the maximum. The yaw angle in the experiment can be reproducibly
set using a SmarAct SR-5714C rotation stage, on which the mirror sits. It can be reproducibly set with
better than 5 µrad accuracy. The values for the angle ϕ given below are with reference to the zero point
of the rotation stage.

In practise the grating mirror is moved into the beam, and the yaw angle is changed until the width no
longer increases. At this point the mirror has rotated out of the beam. It is then translated closer to the
beam until it cuts the beam again. This procedure is repeated until one finds a local maximum of the
width as a function of the yaw angle. This width should be smaller than the total width of the beam,
measured with the grating mirror moved completely out of the way, to ensure that the mirror actually
is clipping the beam. The result for this alignment in our experiment is shown in figure 4.23. The
maximum beam width corresponding to parallel alignment of the mirror surface is found at ϕ0 = 5.08◦.
The values shown in figure 4.23 are only the widths recorded for the final step of the alignment. At this
point the mirror was no longer moved along the x axis and the angle was scanned in finer steps than
for the initial part of the alignment.
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Note that this procedure only works as described if the vertical rotation axis is centered on the mirror
itself. Otherwise the change in width is not symmetric and the correspondence between minimal width
and a parallel mirror surface is broken. Another caveat is the fact that the projection of the circular
mirror surface along the propagation axis of the molecules is elliptical. The cut-off is thus not a straight
line. Unless the detector images the section of the molecular beam which traverses at the center height
of the mirror, one will thus observe a width which is approximately linearly increasing / decreasing with
height. In order to compare widths of cut-off beams for different yaw angles it is therefore necessary to
always measure the width of the same (small) section of the detected beam.

The yaw angle found by this method is used as a starting point for scanning the diffraction measurements
themselves in a small range around this point. This is scan is done after the other alignment steps
described below have been completed. Since the effect, i.e. the intensity of the higher order peaks in
the diffraction image, is stronger for better yaw alignment, we can find the true optimum by comparing
these measurements. In our case this only led to a small correction with a new optimal yaw angle of
ϕ0 = 5.07◦.

Δs Δs0

yaw

Figure 4.22: Alignment of the grating mirror yaw angle. The figure shows a top view of how the mirror
cuts different amounts of the molecular beam depending on how parallel it is to the beam.
The width of the transmitted beam takes on its maximum value ∆s0 when the mirror is
parallel to the molecular beam (grey). For other angles the width ∆s is reduced (black).

The alignment of the horizontal position of the mirror (along the x-axis) follows from the previous
alignment steps. As discussed in section 4.4.2 the Rayleigh range of the grating laser is approximately
z0 ≈ 2.7mm. It is necessary for the molecular beam to pass the light grating close to the focus. This
is required because we can only then neglect the wavefront curvature, which might cause the phases
imprinted by the grating to be averaged out. Also being close to the focus means that the intensity of
the light will be higher, which allows us to observe stronger diffraction effects. The grating laser has to
be focused onto the grating mirror surface to ensure maximum overlap of the incoming and outgoing
beams, which form the standing light wave. Consequently the distance between the mirror surface and
the molecular beam needs to be small compared to the Rayleigh length. The surface however also
cannot be to close as the mirror might otherwise (partially) block the molecules. To align this distance
we first collimate the molecular beam to the same narrow divergence angle as is used for the actual
diffraction measurements. The mirror is now moved along the x-axis until it blocks this beam and
moved out in small steps until transmission is observed again. From this closest possible approach of
the mirror to the beam of molecules we move away an additional distance of 0.32mm ≪ z0.
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Figure 4.23: Results of the yaw alignment of the grating mirror using the technique illustrated in figure
4.22. The maximum beam width is observed for the yaw angle ϕ0 = 5.08◦ marked in red.

4.5.3. Alignment of the light grating

As outlined already the UV laser needs to be retro reflected into itself to form the standing light wave.
As illustrated in figure 4.24 it is also necessary that the focus is on the grating mirror surface for the
incoming and outgoing beam to fully overlap. Otherwise only part of the beam can contribute to the
standing light wave. In section 4.4 we briefly described how the final mirror of the periscope (M6 in
figure 4.10) can be used to adjust the angle of the UV laser such that it is orthogonal to the grating
mirror. The overlap of the incoming and reflected laser beam is checked in front of the slit S. To adjust
the focus of the grating laser to the surface of the mirror we utilize the fiber beam profiler described
in section 4.4.2. First the fiber is positioned in such a way that its tip blocks the collimated molecular
beam. The translating degrees of freedom of the periscope are used to adjust the grating laser to the
fiber tip in the y-z-plane. For this purpose the power measured at the other end of the fiber is monitored.
From this position the fiber is translated 0.32mm along the x-axis away from the grating lens GL. This
is the same distance the mirror is moved away from its closest approach to the collimated molecular
beam for the measurements. Thus the fiber will be positioned at the location where the mirror will be
during measurements. Note that the grating mirror has to be further out to make space for the fiber
for this procedure. We can now readjust the positioning of the grating laser and measure its profile
using the fiber profiler as outlined in section 4.4.2. The grating lens GL is now translated along the
beam axis (x-axis) and the waist is measured for each location. We find the location with the minimal
waist, which corresponds to the focus at the mirror surface. Note that we can assume that translating
the grating lens corresponds to simply translating the focus of the beam because we are far from the
waist of the incoming UV laser and because it is not very divergent. Since the waist of a Gaussian beam
focused by a lens only depends on the waist at the lens for a wavefront curvature much larger than the
focal length, we get the same waist at the focus after the lens if the diameter of the incoming beam is
approximately the same over the distance the lens is translated [212].
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GM focus

Figure 4.24: If the grating laser is not focused onto the grating mirror surface, the overlap between
incoming and outgoing beam is imperfect.

After the angle and focus of the light grating have been aligned its position in the y-z plane needs to
be configured such that the trajectories of the molecules overlap with the laser beam. This is sketched
in figure 4.25. As mentioned in section 4.4 the periscope can be translated to adjust this position. The
z position of the light grating does in fact not need to be aligned in a precise manner as the two beams
may intersect at any point along the trajectory of the molecules. Small adjustments of the z position
however allow moving the focus of the laser to a fresh spot on the mirror if necessary. This might
be required in case the currently used one gets damaged. The y-axis alignment of the light grating is
optimized by scanning the vertical position of the laser and recording diffraction measurements. Optimal
overlap between the two beam corresponds to the most pronounced diffraction effect. This alignment
is conducted for phthalocyanine C32H18N8 (PcH2). The other molecules listed in table 2 are still be
approximately compatible with this alignment since their trajectories are necessarily similar due to the
same alignment method being used. The vertical position is reproducibly set by measuring its beam
profile along the vertical axis using the fiber beam profiler (see section 4.4.2) and determining the
center position of the Gaussian fit to this profile. The center can usually determined with less than 1 µm
uncertainty, so the reproducibility of the overlap is mainly limited by the source alignment described
in section 4.5.1. Nevertheless this gives a reasonably well defined overlap between the two beams. To
find a starting point for the aforementioned overlap scan the fiber beam profiler is used for an initial
approximate alignment. For this purpose the fiber is positioned in the molecular beam again, such that
it cuts off the beam. The height of this cut-off is compared to the transmission through the Sy silt
without the fiber. The height of the fiber is adjusted such that the maximum of this transmission and
the midpoint of the cut-off are at approximately the same height. The grating laser position is then
adjusted such that the maximum power is couped into the fiber tip. This alignment procedure only
gives a rough starting point for the overlap scan, it is by itself not accurate enough for a variety of
reasons. The adjustment of the cut-off to the Sy transmission is done ”by eye” and is not reproducible
on the scale of the laser waist. Additionally the location where the maximum light is coupled into the
fiber might not be at the very tip of the fiber depending on how the fiber tip was prepared.
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Figure 4.25: Alignment of the laser to the molecular beam in the y-z-plane. The figure shows a side
view of the experiment. The light grating must be aligned vertically (along the y-axis) to
overlap with the trajectories of the molecules. The alignment along the z-axis is not as
critical.

4.6. Fluorescence microscopy detection

The detection end of the interferometer consists of a 160 µm thick quartz window as sketched in figure
4.2. The probability density of finding a molecule at a certain position on this window is defined by
the wavefunction according to Borns rule [239]. We thus want to measure the relative distribution of
the molecules arriving at the detection window. In this experiment a wide-field fluorescence microscopy
setup, introduced in [120] is used to directly image the molecule distribution.

The physical principles of fluorescence have already been reviewed in section 3.2.1. For the imaging
setup used in this experiment even phosphorescence lifetimes can be considered ”short” due to the long
illumination times. Our detection scheme thus does not actually differentiate between fluorescence and
phosphorescence. Both phenomena are sometimes collectively termed (photo-)luminescence [174, 177].

4.6.1. Detection setup

To detect the molecules in this experiment we use wide field fluorescence microscopy, i.e. essentially the
entire field of view of our microscope is illuminated with light of the excitation wavelength. As illustrated
in figure 4.26 the illumination occurs from the side of the quartz window opposite to the camera at
a grazing angle. This is dia-illumination like scheme is usually not used in conventional fluorescence
microscopes in favor of an epifluorescence setup. The later design reduces the danger of accidentally
sending excitation light into the eyes of the experimentators when viewing the samples directly [174,
178]. In our case this is not necessary as the fluorescence signal is not directly observed but instead
imaged by a camera. Additionally the grazing angle of the illumination suffices to prevent excitation
light from entering the objective. A complete overview of the detection setup is sketched in figure 4.26.
The overall setup has been used in several previous experiments already [1, 2, 120, 240]. The excitation
light is chosen according to the absorption spectrum of the molecule used in the experiment. Table 4
contains a list of the excitation wavelengths used for the data presented in this work.

Red 661 nm excitation light is provided by a diode laser and sent through a narrow band filter (filter
1). A spatial light modulator (SLM) is used to generate a flattop profile at the detection region to
ensure homogeneous illumination. As shown in figure 4.26 the diode laser passes a mode cleaning stage
formed by the pinhole P and lenses L1 (f = 50mm) and L2 (f = 150mm) before reaching the SLM.
A diffuser is added in the beam path to prevent speckles from occurring in the final image. Lenses L3
(f = 400mm), L4 (f = 500mm) and L5 (f = 100mm) image the flattop to the detection window at
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the end of the detection chamber. The shutter S is controlled directly by the camera software to only
illuminate the molecules while taking an image. For the UV 266 nm illumination the emission from the
frequency doubler mentioned in section 4.4 is diverted at PBS 2 in figure 4.10 and sent directly to the
detection window instead of to the beamdump BD 2. 421 nm light is provided by the same laser, which
was used for the initial alignment described earlier. A diffuser is also added in these two cases. We do
not introduce additional beam shaping for the 266 nm and 421 nm illumination as higher powers and
spot sizes were available in this case.

The fluorescence light emitted by the molecules is imaged using a 20x EC Zeiss Plan-Neofluar objective
(NA = 0.5). For 266 nm and 421 nm illumination a long working distance objective (20x LD Plan-
Neofluar, NA = 0.4) is used to mitigate background light originating from fluorescence of the objective
glass itself in case UV light enters it. As sketched in figure 4.26 the molecules are imaged onto an IXON
DV885KCS-VP CCD camera using lens L6 (f = 164mm). The light passes through a fluorescence
filter (filter 2), which removes any light at the excitation wavelength from the picture. The particular
choices of filters according to the emission wavelengths of the used molecules can be found in table
4. Information about the detection setup used here is also available in the supplementary materials of
[120].

To calibrate the exact magnification of the detection setup a Thorlabs R1L3S3 calibration grid is imaged.
It is found this way that the size of one pixel in the images recorded corresponds to approximately 0.33 µm
for both 20x objectives (see (C.1) and (C.3)). More details on this calibration can be found in appendix
C. In principle the imaging setup used here can be used to localize individual molecules to ∼ 10 nm
using a technique relying on the same principles as single-molecule high-resolution imaging with photo-
bleaching (SHRIMP) [120, 241]. Since information of individual molecule positions is not relevant here,
we do not make use of any further steps to carry out this localization. Nevertheless, the pointspread
functions of isolated molecules can be seen on some of the images recorded here demonstrating the
effective single-molecule resolution.

In order to remove the molecules from the quartz surface and to prepare it for a new measurement
plasma cleaning as described in [120] is used. For this purpose the pressure in the detection chamber
is raised to 1 − 4mbar by letting a controlled amount of air into the chamber via a needle valve. An
electrode formed by a conventional razor blade is brought into close proximity of the outside surface of
the quartz window. A voltage of 1.5 kV AC at 10 kHz is then applied to the electrode, which ignites the
plasma within the chamber. The ground contact is formed by the vacuum chamber itself. After several
seconds the plasma has removed the fluorescent molecules from the quartz surface and it is ready for
the next measurement.
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Figure 4.26: Overview of the detection optics for 661 nm illumination. Light emitted by the diode laser
passes the shutter S and goes through a mode cleaning stage formed by lenses L1, L2 and
pinhole P. The light is reflected of a SLM creating flattop illumination at the detection
window. The fluorescent light emitted by the molecules on the window is imaged through
filter 2 onto an CCD camera.

molecule
abs. max.
λmax

(nm)

emis. max.
λem (nm)

excitation λex
(nm)

filter trans.
(nm)

Ref.

H2-phthalocyanine 686 690 661 711/25 BP [242, 243]

meso-
tetraphenylporphyrin

403 653, 720 421 650/40 BP [244, 245]

dihydroxy-
naphthacenedione

265a 527, 565, 600a 266 550/88 BP [243]

photocleavable
Zn-phthalocyanine

678b 690c 661 692/40 BP
see sec.

4.7.4

Table 4: Summary of absorption maxima λmax, fluorescence emission maxima λem and the detection
parameters used for the different molecules. When available spectral data taken in the vapor
phase is stated for λmax and λem. The following solvents were used for data taken in solution:
a MeOH, b Dioxane, c THF. λex is the wavelength used to excite the fluorescence for the
detection in our setup. The band pass (BP) filter used in each case is given as well.
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4.7. Selection of molecules

The experimental parameters described in the previous sections put some constraints on which molecules
can be used in the setup. The molecules are required to be thermally stable enough such that the source
leaves them intact (see section 4.2). The detection scheme used here (see section 4.6) also requires
them to be fluorescent. The physical dimensions of the apparatus and the period of the grating used
restrict the mass of the molecules to be m ≲ 1500 u in order to be able to resolve individual diffraction
peaks. In order to study the effects of UV optical gratings it is naturally desirable that the molecules
also show some significant interaction with light of this wavelength. In the following we present the
selection of molecules which are used in the experiments presented here. These organic molecules fulfill
the aforementioned experimental requirements and show combination of different optical behaviours. A
summary of the typical velocities and de Broglie wavelenghts of the molecules is also given in table 2.
Spectral data relevant to the detection is collected in table 4.

4.7.1. H2-phthalocyanine
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Figure 4.27: Structure of phthalocyanine C32H18N8 (PcH2)

Phthalocyanine C32H18N8 (PcH2) is a dye molecule which has established itself as a prototypical molecule
to be used in different variants of the far-field setup because of its good compatibility with the source
and detection [1, 2, 120]. Its mass is m = 514.5 u is also in the ideal range. The structure of PcH2

is shown in figure 4.27. In the ground state it has D2h symmetry and consequently no electric dipole
moment [246]. Phthalocyanine is thermally very stable and can be easily evaporated, which is ideal for
the effusive source used here. At a typical oven body temperatures TB in the range of 400− 420 ◦C the
vapor pressure of PcH2 is at the order of 1− 3Pa [247].

PcH2 and its derivatives are known for their intense blue - green coloration. This is due to their strong
absorption usually in the spectral region around 660 nm [248]. The limited solubility of the metal
free phthalocyanine PcH2 in the appropriate solvents makes it challenging to record UV-Vis absorption
spectra even in solution. However, vapor phase UV spectra have been reported [242, 243, 249]. While
not providing absolute numbers for the absorption cross-section, this data clearly shows that in addition
to strong absorption peaks at 623 nm and ∼ 686 nm (Q-bands) PcH2 also shows strong absorption in
the UV region from ∼ 340 nm (Soret-band) to below 200 nm. Moreover, PcH2 is known to fluoresce
both in solution [250, 251] and in the gas phase [243]. In the latter case the fluorescence emission has
its maximum also at ∼ 690 nm.

46



4. The Far-field setup

From the vapor phase spectrum in [242] we estimate the absorption at 266 nm to be ∼ 0.46 of the
maximum at 690 nm. To find an estimate of the absolute absorption cross-section at this wavelength
we compare this with spectra taken in solution (1-Chloronaphthalene). The extinction coefficient at the
698 nm maximum has been determined as ϵ698 nm = 1.62 ·105mol−1 cm−1 [252]. Note that the Q-band
maxima are slightly red shifted in solution compared to vapor measurements [242]. From this extinction
coefficient we approximate the absorption cross-section [172] at 266 nm to be σ266 nm ≈ 2.8 · 10−20m2.
This value should only be understood as a rough estimate as it neglects the differences between the
absorption in vapor and solution. The solution extinction coefficient at 698 nm we used might also be
modified by the solvent compared to the absolute value in the gas phase. Additionally the spectrum of
PcH2 given in [242] was recorded in two separate runs, which prevents an accurate comparison of the
absorption in the UV with the Q-bands. Nevertheless it should give us at least a rough estimate on the
order of magnitude for σ.

Measurements of the optical polarizability at 266 nm are not readily available. Computations reported in
[253] give ᾱ ≈ 4πε0 · 101 Å

3
for the polarizability in the high-frequency limit, which differs only slightly

from the static value ᾱstat ≈ 4πε0 · 98.6 Å
3
. However, because the spectrum suggests that we are not

far from resonances these values might differ significantly from the actual value at 266 nm. For example
DFT calculations using the PPBE0 method yielded a dynamic polarizability of ᾱ266 nm = −8.3 Å

3 ·4πε0
at this wavelength [254], which differs significantly from the previously cited values. However, there is
also some dispersion in the results for different computations methods, which is why this number might
also have limited applicability.

4.7.2. Meso-tetraphenylporphyrin

PcH2 discussed in the previous section is structurally very similar to the porphyrins. However, their
spectral properties, can differ significantly [249]. The specific porphyrin we are investigating here is
metal free tetraphenylporphyrin C44H30N4 (TPP), which has a mass of m = 614.7 u. Its structure is
shown in figure 4.28, like PcH2 it has D2h symmetry [255]. At the usual temperatures (TB ∼ 370 ◦C)
the vapor pressure of TPP is of the same order as for PcH2 (∼ 2Pa) [256, 257].
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Figure 4.28: Structure of tetraphenylporphyrin C44H30N4 (TPP)

The vapor absorption spectrum of TPP shows a very intense peak (Soret-band) at 403 nm, more than
one order of magnitude larger than the absorption at other wavelengths in the UV-Vis retion. In solution
this peak is red-shifted by about 20 nm. For a toluene solution the maximum extinction coefficient was
measured as ϵ419 nm = 4.43 ·105mol−1 cm−1 (corresponds to σ419 nm = 1.7 ·10−19m2) [244, 258, 259].
At 266 nm, which is the wavelength relevant for this experiment, the absorption is significantly lower.
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We estimate from [244] that in the gas phase it is approximately 12 % of the maximum at 400 nm.
This gives us the estimate σ266 nm ≈ 2 · 10−20m2. Again this is only a rough approximation since we
are comparing spectra in vapor and solution. TPP also exhibits fluorescence with emission maxima
in solution at 653 nm and 720 nm [245, 250]. While data for the dynamic porlarizability of TPP is
not readily available, there have been measurements for the static polarizability in the gas phase via
deflection near-field matter-wave interferometry [260]. This static value ᾱstat ≈ 4πε0 · 105 Å

3
is similar

to the one of PcH2. However, again the dynamical polarizability at 266 nm might differ significantly
from this number.

4.7.3. 6,11-dihydroxy-5,12-naphthacenedione

Dihydroxy-naphthacenedione is a derivative of tetracene with a mass of m = 290.3 u. Similar to the
previous molecules, vapor pressures for these dihydroxy-naphthacenedione are at the order of ∼ 3Pa for
the temperatures relevant in this experiment (TB ≈ 220 ◦C) [261]. The basic structure of dihydroxy-
naphthacenedione sketched in figure 4.29 suggests that this molecule has C2v symmetry. However, the
formation of intramolecular hydrogen bridges between the neighbouring functional groups may raise the
symmetry to D2h [262, 263]. Comparison with spectra of molecules where this hydrogen bonding is
blocked reported in [264] indicates that this also has a significant influence on the spectral properties of
the molecules. Dihydroxy-naphthacenedione has absorption maxima in the region around 500 nm, which
are not present at these wavelengths in the modified molecules. The UV wavelength investigated in the
experiment presented here (266 nm) lies almost exactly at another absorption maximum of dihydroxy-
naphthacenedione. Measurements of the extinction coefficient at this peak and also the spectra overall
show a strong dependence on the solvent used. Values for the extinction coefficient vary from ϵ266 nm ≈
4.1·104mol−1 cm−1 to ϵ266 nm ≈ 1.8·105mol−1 cm−1 [263]. This gives us an estimate of 1.6·10−20m2−
7 · 10−20m2 for the absorption cross-section σ266 nm [172], however because of this strong solvent-
dependence the applicability of these numbers to our experiment is most likely limited. The reason for
the influence of the solvent lies in the formation of hydrogen bonds between dihydroxy-naphthacenedione
molecules (formation of dimers) and between the molecules and the solvent itself. Because of this the
individual molecules may take on different structures in solution depending on the nature of the solvent
[263]. Dihyrdroxy-naphthacenedione also shows fluorescence emission in the region of 560 − 580 nm
when excited with 270 nm [263, 264]. Polarizability data for dihydroxy-naphthacenedione is not readily

available. DFT calculations suggest a dynamic polarizability of ᾱ266 nm = 4πε0 · 43 Å
3

and a slightly
smaller static value of ᾱstat = 4πε0 · 34 Å

3
[265].
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Figure 4.29: Structure of 6,11-dihydroxy-5,12-naphthacenedione
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4.7.4. Zn-phthalocyanine with photocleavable tags
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Figure 4.30: Structure of Zn-phthalocyanine with photocleavable tags (−R)

The molecules shown in figure 4.30 consist of a Zn-phthalocyanine with four functional groups (−R
in figure 4.30). As already mentioned in section 3.2.2 these nitrobenzyl groups are designed to cleave
off after absroption at our target wavelength of 266 nm. The molecular samples were synthesised by
our collaborator Alfredo Di Silvestro (University of Basel) for this purpose. Because of the additional
functional groups and the metal ion the mass m = 1182.4 u of these photocleavable molecules is more
than twice the mass of PcH2. We expect that molecules which undergo photocleavage are effectively
lost for the purposes of our experiment. Either because the recoil from the leaving group kicks the rest
of the molecule out of the beam far enough to not reach the detection at all, or because the random
directions of the recoils yield an even distribution of molecules as a background in the detection. If the
cleavage process leaves the remaining part of the molecule as an ion, stray electric fields might also
deflect it out of the beam.

Absorption spectra of the photocleavable Zn-phthalocyanines have been recorded in different solvents
as shown in figure 4.31 [266]. The basic structure of the spectrum is very similar to the vapor phase
spectra recorded for PcH2 and Zn-phthalocyanine [243]. In particular both the Soret-band at ∼ 340 nm
and the Q-bands in the 600− 700 nm region are also present. Similar to PcH2 the Zn-phthalocyanines
with photocleavable tags also show fluorescence emission with a maximum at ∼ 690 nm. Test the
thermal stability of the molecules and the photocleavable tags, they were evaporated directly on a glass
slide and subsequently analysed via mass spectrometry. This confirmed that the molecules stay intact
during evaporations and that the tags do not already cleave off prematurely [267].
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Figure 4.31: UV-Vis absorption spectra of Zn-phthalocyanine with photocleavable tags in different
solvents [266].

5. Theoretical description

In the previous section we have extensively discussed the technical realization of the experiment as
well as the roles of the various components. In this section we want to model this setup theoretically.
Our model used the Wigner formalism, which we will introduce in section 5.1. The following sections
will cover the description of the components of the experiment in this formalism. This allows us to
write down a slightly simplified model for computing the diffraction patterns we expect to see in the
experiment, which is given in section 5.4.

5.1. Wigner formalism

5.1.1. Introduction

For a variety of reasons it is convenient to describe the propagation of the molecular matter waves in our
experiment using a phase space formalism. The Wigner quasi-probability distribution in particular has
been established as a very useful framework for analyzing matter wave interferometers, predominantly
in the near-field. The main advantages lie in the easy comparison to classical phase space distributions
as the two coincide for incoherent mixtures. This is useful for the experimental setup used here as we
can thus more easily incorporate the initial thermal distribution of the molecules. As we will see shortly
the Wigner formalism also has the benefit of a nearly trivial description of free propagation [128, 219,
268].

50



5. Theoretical description

The Wigner function is a concept commonly used in quantum optics. For a given density matrix ρ̂,
which in general describes a mixed state, the Wigner function is defined as [269, 270]

w(x,p) =
1

(2πℏ)d

∫
Rd

dds exp
{
i
p · s
ℏ

}〈
x− s

2

∣∣∣ ρ̂ ∣∣∣x+
s

2

〉
(5.1)

d = 1, 2, 3 denotes the number of spatial dimensions. The parameters x and p correspond to the
classical position and momentum forming the phase space (for light these might be the quadratures).
The Wigner function has a number of interesting properties. Most notably it is real and normalized,
i.e. its integral over all x and p is unity, and it can take on negative values. The latter is what
makes it a quasi-probability distribution. This is compatible with the fact that the Wigner function
gives an alternate way of expressing a quantum state ρ̂ and we thus cannot interpret it as a probability
distribution directly. The relation to measurable probabilities is given by the marginals of the Wigner
function. The probability distribution in position space, which corresponds to the measured intensity in
our experiment, is given by the integral over p [268, 269]:

w(x) =

∫
Rd

ddp w(x,p) (5.2)

An analogous relation holds for the probability distribution in momentum space. It will be useful to
define the characteristic function χ(s, q) as the two dimensional Fourier transform of the Wigner function
[217, 270]:

χ(s,q) =

∫∫
Rd

ddx ddp exp

{
i
q · x− s · p

ℏ

}
w(x,p) (5.3)

The normalization of the Wigner function requires the property χ(0, 0) = 0. The probability density in
position space (5.2) can be expressed as the Fourier transform of the characteristic function for s = 0:

w(x) =
1

(2πℏ)d

∫
Rd

ddq exp
{
−iq · x

ℏ

}
χ(0,q) (5.4)

5.1.2. Dynamics in the Wigner formalism

Most generally the time evolution of the Wigner function in the presence of an external potential U(x)
is governed by the quantum Liouville equation [268, 269]:(

∂

∂t
+

p

m
· ∇x

)
wt (x,p) =

∞∑
l=0

(−1)lℏ2l

22l(2l + 1)!

(
∇2l+1

x U(x)
)
·
(
∇2l+1

p wt (x,p)
)

(5.5)

A very useful property of (5.5) is that it is identical to the classical Liouville equation for potentials that
are at most quadratic in x. As a consequence of that the free evolution subject to the gravitational
potential U(x) = mgy (where x = (x, y, z)T with the axes defined in figure 4.2) can be described
entirely classically. The Wigner function is thus simply changed by a shearing transformation [217, 268,
269]

wt+∆t (x,p) = wt

(
x− p∆t

m
+

g∆t2

2
,p− gm∆t

)
(5.6)

Here g = (0,−g, 0)T is the gravitational acceleration. Note that the negative sign in the g term in
the first argument is a consequence of the fact that p is the final momentum. The coordinate axes
are defined as shown in figure 4.2. For the strong collimation present in our experiment, the forward
momentum pz is typically much larger than any deflection in the transverse direction. Because of this we
can assume the forward momentum to stay constant throughout the experiment. It is thus convenient
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to reparametrize wt(x,p) in terms of the z position instead of time t [205, 217]. We may then write
the transformation (5.6) as

wz+∆z (x,p) = wz

(
x− p∆z

pz
+

gm2∆z2

2p2z
,p− gm2∆z

pz

)
(5.7)

Here and from now on we write the z position instead of the time dependence in the subscript of the
Wigner function. x and p in (5.7) are now two dimensional vectors (d = 2) describing the position and
momentum in the transverse x-y-plane. The free evolution of the characteristic function (5.3) is also a
shearing transformation, the gravitational potential yields an additional phase factor [217]

χz+∆z (s,q) = exp

{
i
gm2∆z

ℏpz
·
(
q∆z

2pz
− s

)}
· χz

(
s− q∆z

pz
,q

)
(5.8)

To describe the interaction of the Wigner function with some transmissive mask (e.g. a grating or
collimator) it is useful to apply the eikonal approximation. Effectively this means that we neglect the
transversal shift during the propagation through the interaction potential U(x). In (5.5) the positional
derivative of the Wigner function on the left hand side may then be disregarded [217]. The solution for
the transformation of the Wigner function is then found to be given by a convolution [205, 219, 270]

wz′(x,p) =

∫
R2

d2p̃ wz(x, p̃)T (x,p− p̃) (5.9)

with the transmission kernel

T (x,p) =
1

(2πℏ)2

∫
R2

d2s exp
{
i
p · s
ℏ

}
t
(
x− s

2

)
t∗
(
x+

s

2

)
(5.10)

The function t(x) appearing in (5.10) is the transmission function. This is the multiplicative factor
which would appear in front of the wavefunction ψ(x) for a pure state. In the eikonal approximation
the transmission function has the form [217, 268]

t(x) = t0(x) · eiϕ(x) (5.11)

t0(x) = |t(x)| describes the absorptive effect of the mask. E.g. it is zero for the parts of a collimator
or material grating where the molecules are blocked. Similarly it describes the transmission through a
light grating if molecules might be removed via absorption (see section 5.5). ϕ(x) is the eikonal phase
acquired during transmission through the mask due to the interaction potential U(x). It is given by

ϕ(x) = −1

ℏ

∫ t+∆t

t
dt U(x(t))

= − m

ℏpz

∫ z′

z
dz U(x, y, z)

(5.12)

Here we applied the aforementioned reparametrization t → z. We will discuss in section 5.5 how
the potential U(x) looks for light gratings. Note that since (5.11) is in general not unity due to its
absorptive part t0(x), (5.9) does not preserve the normalization of the Wigner function. Since only
relative probabilities will be relevant in the end we will disregard the normalization factors for now and
only renormalize the Wigner function at the end of our calculations [219].
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5.2. Grating transformation

Let us assume that our grating is periodic in the x-coordinate with period d. The same is then true for
the transmission function (5.11) and thus also for the transmission kernel (5.10). Both may then written
as Fourier series. It is convenient for our calculations to write this Fourier series for the transmission
kernel in the form [217, 270]

T (x,p) =
1

(2πℏ)2
∑
n∈Z

exp

{
i
2πx

d
n

}∫
R2

d2s exp
{
i
p · s
ℏ

}
Bn

(sx
d
, sy, y

)
(5.13)

We only apply the Fourier series to the x-component of x and keep the y-dependence explicit because
we only assume that the grating is periodic along this one axis. Note that s = (sx, sy)

T. The coefficients
Bn

(
sx
d , sy, y

)
are called Talbot coefficients. They are in fact just the Fourier transforms in p space of

the Fourier coefficients of T (x,p) in x-space. They are also directly related to the Fourier coefficients
of the transmission function t(x). We will discuss how these coefficients look like for a light grating like
the one used in the experiment in section 5.5.

For now we will just assume them to be given parameters. To see how to apply this notation we first
note that we can write an analogous expression to (5.9) for the characteristic function (5.3) [217]:

χz′(s,q) =

∫
R2

d2q̃ χz(s, q̃)Tχ (s,q− q̃) (5.14)

Here we introduced the function

Tχ (s,q) =
1

(2πℏ)2

∫∫
R2

d2x d2p exp

{
i
q · x− s · p

ℏ

}
T (x,p)

=
1

2πℏ
∑
n∈Z

∫
R

dy exp
{
i
qyy

ℏ

}
· δ
(
qx +

2πℏ
d
n

)
·Bn

(sx
d
, sy, y

) (5.15)

in analogy to (5.3). The second line of (5.15) is derived by inserting (5.13). δ(x) is the Dirac delta
distribution and q = (qx, qy)

T was split up into components. If we insert (5.15) into (5.14) we arrive at

χz′(s,q) =
1

2πℏ
∑
n∈Z

∫∫
R

dy dq̃y χz

(
s, qx +

2πℏ
d
n, q̃y

)
· exp

{
i
(qy − q̃y) y

ℏ

}
·Bn

(sx
d
, sy, y

)
(5.16)

Equation (5.16) simplifies significantly for the case where the Talbot coefficients are independent of y,
as would be the case for an infinitely tall grating. In this case we are left with [217]

χz′(s,q) =
∑
n∈Z

χz

(
s, qx +

2πℏ
d
n, qy

)
·Bn

(sx
d
, sy

)
(5.17)

The problem essentially becomes one-dimensional and the Talbot coefficients appear as multiplicative
factors. Unfortunately the light grating used in our experiment is collimated very tightly and we will
therefore certainly have an explicit y-dependence. We may however under certain conditions neglect the
sy dependence of Bn

(
sx
d , sy, y

)
. Recall that the characteristic function (5.3) is the Fourier transform

of the Wigner function. An incoherent initial state corresponds to a Wigner function which occupies
a large area in phase space, in the limit of a complete mixture it is constant over all of phase space
[217, 270]. The characteristic function of such an incoherent state will thus only have a small extend
around zero, in the limit of a constant Wigner function it is given by a Dirac delta distribution. In our
experiment there is no collimation in the y direction in front of the grating. Because of this we will

53
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assume that the distribution of the momentum in the y-direction py is still sufficiently incoherent at the
grating that we can approximate the sy dependence of χz′(s,q) as

χz′ (s,q) ∝ δ (sy) (5.18)

Then only the value sy = 0 is relevant for the Talbot coefficients in (5.17). I.e. we approximate that
the sy width of χz′ (s,q) is narrow enough that only values of the Talbot coefficients where sy ≈ 0
contribute. In essence this approximation means that we neglect diffraction in the y-direction and only
consider its effect in the x-direction. The Talbot coefficients Bn

(
sx
d , 0, y

)
≡ Bn

(
sx
d , y

)
are simply the

coefficients for a one-dimensional grating with y as an additional parameter. For a transmission function
of the form (5.11) we can write them as

Bn (ξ, y) =
1

d

∫ d
2

− d
2

dx t0

(
x− d

ξ

2
, y

)
t0

(
x+ d

ξ

2
, y

)
·exp

{
−i2πx

d
n+ iϕ

(
x− d

ξ

2

)
− iϕ

(
x+ d

ξ

2

)}
(5.19)

As we will see in section 5.5 this becomes more involved when we consider additional contributions from
multiple photon absorptions.

5.3. Collimator transformation

A collimator can be described by a transmission function [217, 268]

t(x) = θ

(
D

2
− |x|

)
(5.20)

Here D is the full width of the collimator opening and

θ(x) =

{
1 x ≥ 0

0 x < 0
(5.21)

is the Heaviside step function. (5.20) describes a collimator in the horizontal direction, like S1,x and
S2,x in this experiment. Since the generalization to other orientations is trivial we will only treat this
case. Using (5.10) we can compute the transmission kernel for a collimation slit [268]:

T (x,p) = δ (py) · θ
(
D

2
− |x|

)
D − 2|x|
πℏ

sinc

(
px (D − 2|x|)

ℏ

)
(5.22)

The corresponding transmission kernel for the characteristic function is found via (5.15):

Tχ (s,q) = δ (qy) · θ (D − |sx|)
D − |sx|
2πℏ

sinc

(
qx (D − |sx|)

2ℏ

)
(5.23)

The sinc term in (5.22) describes the diffraction effect originating from the slit. This effect vanishes
when the slit width becomes much larger than the spatial localization of the initial state, i.e. if the
initial state is more incoherent. This is particularly the case if the initial state is completely incoherent
and is thus described by a constant Winger function. In this case the effect of the slit can be described
classically as [268]

wz′ (x,p) = |t (x)|2 · wz (x,p) = t (x) · wz (x,p) (5.24)

The second equality is true for the collimator transmission function (5.20). We will apply this ap-
proximation for the first collimator along each axis in our experiment, as the source will be practically
incoherent before that.
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Note that all transformations discussed in this section do naturally not keep the normalization of the
Wigner function. As already mentioned we will ignore that for our computation and just renormalize
the final result.

5.4. Wigner function description of the Far-field setup

Having introduced the necessary formalism for describing our diffraction experiment in the previous
section we want to consider the explicit Wigner description here. We will start by considering an initial
classical phase space distribution and sequentially apply the transformations described in section 5.2 and
5.3. In between we will freely evolve the Wigner function as outlined in section 5.1.2. The computation
steps thus follow the propagation sketched in figure 4.2. We treat the problem as two-dimensional. I.e.
we only include the x and y coordinates in our Wigner description and take the z coordinate as the
parameter for the evolution of the Wigner function instead of time as explained in section 5.1.2. The
computation is carried out for a fixed pz = mvz. We include the thermal distribution of molecules with
a particular velocity per unit time by integrating the final intensity pattern over (4.3) at the end. In
order to obtain an analytical result some additional approximations are necessary:

• The first collimators along each axis (S1,x and Sy) are treated classically according to (5.24) as
their is no significance coherence before collimation.

• We approximate the initial transversal momentum distribution µx(px) as constant. This is justified
by the fact that parts of the beam which deviate far enough from straight trajectories such that
the angle dependence of the source becomes relevant are cut off by e.g. the skimmers between
the vacuum chambers anyway.

• As discussed in section 5.2 we will neglect any dependence of the Talbot coefficients on the
parameter sy but will explicitly keep the y dependence.

Carrying out the computation yields the following result for the flux at the detector [271]:

j (x) =
∑
n∈Z

∫
R+

dpz

∫∫
R

dqx dpy
[
exp

{
−iqxx

ℏ

}
· µz (pz)

· χ(x)
z′2

(
−

2πℏ
d n∆z32

pz
− qx∆z52

pz
, qx +

2πℏ
d
n

)

· θ
(
DS

2
−
∣∣∣∣y − py

∆z50
pz

− gm2∆z250
2p2z

∣∣∣∣) · µy
(
py +

gm2∆z50
pz

)
·

· Bn

(
−qx∆z53

pzd
, y − py∆z53

pz
− gm2∆z253

2p2z

)
·

· θ
(
Sy
2

−
∣∣∣∣y − ySy −

py∆z54
pz

− gm2∆z254
2p2z

∣∣∣∣)]
(5.25)

A full calculation, which leads to this result, is given in appendix D.1. Because our detection scheme is
integrating the flux over time, this result is directly proportional to our measured signal. The functions

µz (pz) and χ
(x)
z′2

(sx, qx) appearing in (5.25) are defined in (D.17) and (D.8) respectively. To simplify

the computation further we may also assume that the distribution µy (py) is approximately constant, by
the same argument as for µx (px).
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5.5. Interactions in the light grating

The derivation of (5.25) did not make any specific assumptions about the Talbot coefficients Bn (ξ, y).
As outlined in section 5.2 these coefficients describe the interaction of the molecules with the grating.
They does define which grating mechanisms our model describes. In the case of our experiment part of
the interaction is given by the effective potential the polarizable molecules sees in the light grating, as
described in section 3.1.3. This gives rise to the standing light wave acting as a phase grating (see figure
1.1a). Additionally molecules can absorb photons as discussed in section 3.2. We can find different
models describing giving approximate descriptions of some of the effects connected to absorption.

The dipole potential (3.14) in the standing light wave gives rise to an eikonal phase (5.12) acquired by
the molecule during its transmission through the grating. We model the intensity profile of the standing
light wave by a Gaussian beam [212, 240]

I(x, y, z) =
8P

πwywz
· cos2 (kx) · exp

(
−2 (y − y0)

2

w2
y

− 2z2

w2
z

)
(5.26)

This includes the assumption that the waist radii are constant for the relevant values for x, which is
justified by the large Rayleigh range in the experiment as discussed in section 4.4. P is the power of
the laser forming the standing light wave, wy and wz are the waist radii along the corresponding axis.
k = 2π

λ is the wavenumber of the laser. We also introduced the vertical position y0 of the grating as
a parameter. Inserting the intensity (5.26) into the relation for the potential (3.14) and integrating to
compute the eikonal phase (5.12) yields [217]

ϕ(x, y) = ϕ0 (y) · cos2 (kx) (5.27)

where the y-dependent maximum phase shift is given by

ϕ0 (y) =

√
8

π

ᾱmP

ℏε0cwypz
· exp

(
−2 (y − y0)

2

w2
y

)
(5.28)

To describe absorption we first compute the mean number of absorbed photons by integrating (3.19)
over t for a molecule passing through the intensity profile (5.26) [217]

n̄(x, y) = n̄0(y) · cos2 (kx) (5.29)

with the maximum mean number of absorbed photons

n̄0(y) =
8σmP√
2πℏωwypz

· exp

(
−2 (y − y0)

2

w2
y

)
(5.30)

Let us for a moment disregard molecules which have absorbed one or more photons, for example
because they are almost certainly destroyed via a photocleavage process (see section 3.2.2). We can
find the factor t0 (x) in the transmission function (5.11) by requiring |t0 (x)|2 to equal the probability for
absorbing zero photons at x. For a Poissonian distribution of absorption events this yields in combination
with the eikonal phase (5.27)

t(x, y) = exp

{(
− n̄0(y)

2
+ iϕ0(y)

)
· cos2 (kx)

}
(5.31)
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Notice how the contribution from the absorption can also be recovered by inserting a complex polar-
izability into (5.28) and relating its imaginary part to the absorption cross section (3.3). For clarity
we will however only denote the real part of the polarizability by α and write absorption cross section
explicitly.

Expression (5.31) describes the transmission function for molecules which do not absorb photons and
subsequently undergo changes in their state. However, as described in section 3.2 molecules can also
redistribute the energy of an absorbed photon without immediately remitting it or undergoing major
changes in structure. Such molecules may still be visible in our detection and in fact not be directly
distinguishable from the ones which have not absorbed any photons. Since the process of absorption
still changes the internal states there will not be a coherent superposition of different numbers of
photon absorptions for a particular molecule. Instead we observe an incoherent sum of the different
contributions. The absorption of a photon results in a change of the molecular momentum by ±ℏk
along the x-axis. Since the standing light wave itself is a superposition of two counter-propagating
waves the molecules are in fact in a coherent superposition of the two possible ”kicked” momentum
states. 1ℏk momentum transfers result in a additional peaks which can be observed in the experiments.
These peaks lie in-between the usual maxima one expects in far-field diffractions, which correspond to
multiples of the grating kick ℏ2π

d = 2ℏk (d = λ/2 is the grating period). This realizes the mechanism
denoted absorption & heating in figure 1.1b [9, 272].

An effective description of a molecule which can undergo potentially multiple photon absorptions is
given by the ladder model presented in [217, 272]. In this model photon absorptions are described by
generalized measurements. The number of absorbed photons l would in principle be encoded in the
thermal state of the molecule. If the molecules stay intact the imaging in our experiment is in general
insensitive to the thermal state of the detected molecules. In this case our results are described by the
unconditional Talbot coefficients

Bn (ξ, y) = e−ζ′abs

(
ζcoh + ζ ′abs
ζcoh − ζ ′abs

)n
2

· Jn
(
sgn

(
ζcoh − ζ ′abs

)√
ζ2coh − ζ ′2abs

)
(5.32)

Here Jn(x) is the Bessel function of the first kind. The two new expressions in (5.32), whose functional
dependence we did not write explicitly, are defined as

ζcoh (ξ, y) = ϕ0(y) sin (πξ) (5.33)

and

ζ ′abs (ξ, y) = n̄0(y) sin
2

(
πξ

2

)
(5.34)

The y-dependence in our expressions enters through the definitions (5.28) and (5.30).

For the case of photodepletion gratings (figure 1.1c and d) only the case of l = 0 absorptions contributes
to the interference pattern, if we assume that this process happens with 100 % efficiency. In this case
we need the conditional Talbot coefficients. They are given by

Bn (ξ, y; l = 0) = e−
n̄0
2

(
ζcoh − ζabs
ζcoh + ζabs

)n
2

· Jn
(
sgn (ζcoh + ζabs)

√
ζ2coh − ζ2abs

)
(5.35)

Here we introduced

ζabs (ξ, y) =
n̄0(y)

2
cos (πξ) (5.36)

Conditional Talbot coefficients corresponding to higher numbers l of absorbed photons can be computed
iteratively starting from (5.35):

Bn (ξ, y; l) =
l∑

k=0

k∑
m=0

( n̄0
4

)k
·

(l −m)!ζ l−k
abs

l! (l − k)! (k −m)!
·Bn−k+2m (ξ, y; l = 0) (5.37)
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Derivations of (5.32), (5.35) and (5.37) are given in [217]. These particular models do not incorporate
the effects of fluorescence and also assume that the polarizability and absorption cross-section are the
same for all molecular states in the ”ladder”. As already mentioned, modelling a photodepletion grating
with (5.35) also implicitly assumes that the process leading to the removal of molecules from the signal
happens with 100 % efficiency after absorption of a photon.

6. Data evaluation

6.1. Overview

raw data data pre-processing

cleaned data

fitting to vertical intensity
and velocity distributions

m, T , distances, DS , Sy, ySy

ydetection, w

peak widths

simulation of peak widths

S1,x, S2,x simulation of diffraction patterns

comparison with experimental data

wy, P , λ

estimate for ᾱ and σ

Figure 6.1: Schematic overview of the data evaluation procedure. Experimentally determined parame-
ters are represented by black rectangles, parameters extracted from the data are shown in
gray. The white boxes represent the individual steps in the evaluation.

In the previous section we gave an outline of how the diffraction pattern corresponding to our experiment
can be computed for an optical light grating. For a given velocity distribution and fixed geometrical
parameters, the observed flux (5.25) is determined by the Talbot coefficients Bn (ξ, y). In section
5.5 we have seen that these coefficients encode optical properties of the molecules. In the particular
model considered here, these are the (scalar) mean dipole polarizability ᾱ and the optical absorption
cross section σ at the frequency of the laser used in the experiment. The model also differs depending
on whether molecules which have undergone absorption contribute to the signal (unconditional Talbot
coefficients (5.32)) or if we consider a photodepletion grating (conditional Talbot coefficients (5.35)).

The extraction of the optical parameters from the experimental signal is hindered by the lack of precise
knowledge of all geometrical parameters appearing in (5.25). Concretely, the absolute heights of the
light grating y0. the velocity selector ySy and the detection region relative to the source are not known.
As mentioned in section 4.3.4 the absolute widths of the collimation slits S1,x and S2,x could also not
be precisely determined from the experiment. Finally the velocity shift w appearing in the description
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of the free-jet expansion (4.3) is also an unknown parameter. Because of this we first apply separate
fitting procedures for the geometrical parameters of the collimation slits and the velocity shift w. These
can be determined without modelling the diffraction, we describe the procedure in section 6.3. This
allows us to reduce the number of free parameters to y0, ᾱ and σ. We can then simulate the diffraction
according to (5.25) on a grid of values ᾱ and σ for. We use this parameter sweep to find the combination
of parameters that best fits the experimental data in order to find an estimate for that actual values.
This is also done for different values of y0 to treat this remaining degree of freedom and find the best
fitting grating height y0. Beforehand we however need to apply some cleaning and pre-processing to
our raw data. This is summarized in section 6.2. Figure 6.1 shows a schematic of the steps in the data
evaluation and the origin of the parameters used.

6.2. Data pre-processing

The diffraction patterns recorded using the imaging setup described in section 4.6.1 are 1003 × 1003
pixels large images of brightness values (counts). An initial background subtraction is done in software
directly when recoding the images. For this purpose background data with the illumination laser blocked
is taken. Nevertheless we apply two additional steps of background correction. An additional background
image is recorded before depositing the molecules with the illumination laser open. This accounts e.g.
for additional signal originating from the fluorescence filter (filter 2 in figure 4.26) not perfectly blocking
the illumination laser. The background image can be aligned with the actual data by comparing the
location of small dust spots which are visible in some regions of most images. In the next step of data
cleaning regions of the image containing such contaminations are manually removed. Singular spikes in
the experimental data are removed by excluding the top and bottom 0.001 % of the data. In the final
step of background subtraction we fit a linear model f(x, y) = p00 + p10 · x+ p01 · y to the remaining
background and subtract it. The actual fluorescence signal is manually excluded from this fit. This step
ensures that slight variations in ambient light between the recording of the diffraction pattern and the
background without the molecules do not introduce an additional offset. Finally the data is normalized
to the mean of the top 0.01 % of data points. For the purposes of plotting the images are additionally
cropped and centered.

6.3. Estimation of source and slit parameters

To determine the velocity shift w in (4.3) and the vertical offset ydetection of the detection region with
respect to the source we compare the vertical intensity distributions in the experiment and the simulation.
It turns out that with appropriate shifts of y0 and ydetection the results are for all intends and purposes
independent of the height ySy . It is therefore arbitrarily set to ySy = −150 µm, which is approximately
the distance expected from free fall over the distance ∆z40 for a typical velocity of vz ≈ 180m s−1.
Integrating our theoretical model (5.25) over x yields∫

R
dx j (x) ∝

∫
R+

dpz

∫
R

dpy

[
pz · µz (pz) · θ

(
DS

2
−
∣∣∣∣y − py

∆z50
pz

− gm2∆z250
2p2z

∣∣∣∣) ·

· θ
(
Sy
2

−
∣∣∣∣y − ySy −

py∆z54
pz

− gm2∆z254
2p2z

∣∣∣∣)] (6.1)

This follows from Bn (0, y) = δn,0 and χ
(x)
z′2

(0, 0) ∝ pz [271]. The former is strictly speaking only true for

the unconditional Talbot coefficients (5.32). For the moment however we will restrict ourselves to this
model. The slit and source sizes DS and Sy, the mass m of the molecules and the distances between the
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components (see table 1) are known experimental parameters. The temperature T appearing in µz (pz)
(D.17) is estimated as the nozzle temperature TN measured by the thermocouple in the experiment
(see section 4.2). We can then fit the normalized model (6.1) to the normalized horizontally integrated
experimental data to determine the remaining free parameter w (appearing in (D.17)) and the offset
ydetection.
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Figure 6.2: Horizontally integrated intensity as a function of y-position at the detector for PcH2. The
red curve shows the same quantity extracted from the theoretical model fitted to this data.
Here ySy = −150 µm was chosen. The fit gave the results w = 74.3m s−1, ydetection =
−226 µm. The heights y shown in the graph are given relative to ydetection.

An example for such a fit is shown in figure 6.2 for PcH2. The good agreement with the experimental
data also demonstrates that the free-jet expansion (4.3) seems to be an appropriate model here. To
further validate these results we also compare the vertical distribution of velocities vz with the model.
We compute the relative distribution of the velocities vz at each height in analogy to (6.1) via

Φz (vz, y) dvz ∝
∫
R

dpy

[
vz · µz (pz) · θ

(
DS

2
−
∣∣∣∣y − py

∆z50
pz

− gm2∆z250
2p2z

∣∣∣∣) ·

· θ
(
Sy
2

−
∣∣∣∣y − ySy −

py∆z54
pz

− gm2∆z254
2p2z

∣∣∣∣) dvz

] (6.2)

where pz = m · vz. To estimate the velocities from the experimental data we separate the data into
10−20 horizontal slices over each of which the data is vertically integrated. To each slice a symmetrically
spaced Gaussian functions are fitted to determine the average separation between the diffraction peaks.
From this we can estimate the diffraction angle θ and thus the de Broglie wavelength λdB. (2.1) then
allows the calculation of vz. Care needs to be taken if there are additional diffraction peaks originating
from absorption (see section 5.5), which is the case for our example of PcH2. In general we can give
a reasonable estimate of the velocity from the thermal distribution in the source via (4.5) or (4.6) (see
table 2), which allows to determine whether the first order peaks correspond to a 1ℏk or 2ℏk momentum
recoil. Exemplary results for the comparison of the velocity distributions are shown in figure 6.3. The
plot shows a heatmap of the velocity distribution (6.2) parametrized by y and vz. The experimentally
determined velocities are shown for 10 slices in blue. The plot shows a good agreement between the
fitted velocities and the regions with the highest probability at each height. For the top most values of
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y this agreement becomes less good, however the quantity of the fits to the slices becomes worse as
well because the separation of the peaks is no longer large enough for high velocities to accurately fit
them.

The Gaussian fits to the diffraction peaks used to extract the velocities from the slices is also used to
gain an estimate for the width of the diffraction peaks. We use this information to fix the absolute
widths of the collimation slits S1,x and S2,x, which could not be determined with accurately enough from
the experiment as outlined in section 4.3.4. The 2σ widths of the Gaussian functions fitted to the peaks
are extracted for each slice. This is shown for the example of PcH2 in figure 6.4. The average width is
marked in red. The parameters S1,x and S2,x are now optimized such that this width is matched. We
expect the width of an undiffracted beam to be approximately the same as the with of the diffraction
peaks. This can be understood from the fact that (for each n) (5.25) is given by a convolution with the

Fourier transform χ
(x)
z′2

(sx, q̃x), which also describes the undiffracted beam since the shift introduced by

the n is not expected to change the width significantly. We thus extract the 2σ width from the model
by computing

j(x) ∝
∫
R

dpz

∫
R

dqx exp
{
−iqxx

ℏ

}
pz · µz (pz) · χ

(
−qx∆z52

pz
, qx

)
(6.3)

and fitting a Gaussian function

f(x) = C · exp

{
−(x− x0)

2

2σ2

}
(6.4)

to it. Note that we also removed the y-dependence in (6.3) and instead integrated over all pz without the
restriction introduced by the theta functions in (5.25). However, since the averaging over all heights in
the experimental data also corresponds to an averaging over velocities this should still give an appropriate
estimate.

Figure 6.3: Heatmap of the vz velocity distribution at different detection heights y with experimentally
determined velocities (blue). Heights are given relative to ydetection. For all but the last
datapoint the error bars are smaller than the visible size of the marker.
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Figure 6.4: 2σ widths fitted to slices of experimental data for PcH2. The red line shows the average
width ((6.6± 0.3) µm), the shaded red area indicates the associated uncertainty. Because
of the larger velocities at the top of the screen accurate fitting was not possible for the
hightest point.

Figure 6.5: Parametric plot of the absolute difference between the width extracted from the simulation
and the one determined from the fits in figure 6.4 as a function of S1,x and S2,x. The
white circle marks the combination of slit widths chosen for the further evaluation of the
PcH2 data.
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Finally we compute the absolute difference of the simulated width and the experimentally determined
one for a range of values for S1,x and S2,x. Figure 6.5 shows a parametric plot of this absolute difference
for the case of PcH2. As can be seen from this plot, there is a range of possible combinations for the two
slit widths which yield a good agreement with the stripe width extracted from the fit to the experimental
data. For the further evaluation we choose a combination where S1,x and S2,x have a similar size. The
influence of the silt sizes beyond determining the width of the diffraction peaks should only become
relevant if the single slit diffraction at S2,x makes a noticeable contribution. Since the diffraction effects
from the light grating are dominant, the precise choice of the values is not expected to matter too
much.

6.4. Simulation of diffraction patterns and parameter sweep

The procedures described in section 6.3 allow for a reasonable estimation of most unknown experimental
parameters. The only free parameters left in the computation of (5.25) are the mean polarizability ᾱ
(strictly speaking this is the real part of the polarizability), the photon absorption cross-section σ and
the vertical position of the light-grating y0. In order to gain an estimate for the former two parameters,
which are properties of the molecule itself, we will numerically evaluate (5.25) for a large number of
combinations of both values on appropriate intervals. The theoretical model is compared to the (cleaned)
experimental data to gain an estimate for the best match. y0 is held fixed for this purpose, however we
repeat the evaluation for several values of y0 to also find the best agreement here.

The numerical simulation is written in Matlab and Julia. Computation of (5.25) is slightly simplified
to reduce the computational cost. As mentioned at the end of section 5.4 we approximate µy (py) as
constant. We further first only need to compute the inverse Fourier transform of (5.25), which is a
function of qx and y. As discussed in appendix D.2 we only need to carry out this evaluation for positive
qx because the inverse Fourier transform will be symmetric around zero. For the purposes of calculation
we can also integrate the theta-function dependence in (5.25) into the integration limits for py. We
can then evaluate the inverse Fourier transform of the flux (5.25) at every point (qx, y). To keep the
computational cost low this is done at a resolution of 500 × 10 pixels. The higher resolution for qx is
necessary to properly resolve the diffraction effects, while we can be more lenient with averaging along
the y-axis. For the comparison to the experimental data we then apply the Fourier transform along the
x-axis in equation (5.25). If the diffraction pattern was already centered in the pre-processing step. We
also correct a small rotational misalignment of the experimental images at this step if necessary.

For each combination of ᾱ and σ the sum of the squared differences of all pixels in the simulated and
experimental images is computed. These values are collected in a parametric plot to find the regions of
best agreement between the two images, which allows us to estimate the optical parameters. For large
differences of ᾱ and σ to the optimal values qualitative differences in the diffraction images become
apparent (e.g. higher order peaks). We use this to set limits on the regions over which the parameters
are sampled. After the regions with good agreement between the experiment and simulation are found,
a more restricted array of values is investigated. This analysis may be carried out with any of the models
for the Tablot coefficients discussed in section 5.5. If the destruction of the molecules can be neglected
the unconditional Talbot coefficients (5.32) are expected to be the most appropriate. For photodepletion
gratings (e.g. via photocleavage) we can use the l = 0 absorptions conditional Talbot coefficients (5.35)
as a model if we assume that the depletion process happens with 100 % efficiency after absorption of
a single photon. To account for the more general case where this is not necessarily the case the model
needs to be further adapted, which will however not be covered here [217, 271]. When not using the
unconditional Talbot coefficients, our assumptions which allowed us to write the intensity distribution
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as (6.1) are no longer true. When running the simulation with the conditional Talbot coefficients we
therefore use an adapted version of this relation which includes these Talbot coefficients. In this case
we need to start with an initial guess for the absorption cross-section and grating height. After fitting
with this adapted intensity distribution we can proceed as usual. Intuitively one can understand that
such a modification is necessary because in the cases using the conditional Talbot coefficients absorption
events lead to a loss of molecules. The overall intensity distribution is thus modified depending on how
likely such an absorption event is for a molecule landing at a certain height.

7. Results

7.1. H2-phthalocyanine
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(a) Background subtracted experimental data for PcH2.
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(b) Simulated data for PcH2 with optimal parameters.

Figure 7.1: Comparison between experimental data with the simulation results for PcH2. The joint
colorbar of both images on the right shows the normalized intensity. Note that the horizontal
axes of both images are stretched by a factor of two compared to the vertical axis.

A typical diffraction image recorded for PcH2 is shown in figure 7.1a. The data shown in the figure
has already underwent the pre-processing described in section 6.2 and is stretched by a factor of two
along the horizontal axis to better show the individual diffraction peaks. We can recognize up to three
diffraction peaks to each side of the zeroth order in figure 7.1a. This can be seen a bit more easily in
figure 7.2, which shows the vertically integrated data of the bottom 150 pixels (49 µm) of the image.
Using the velocity estimates from table 2 we can deduce that these peaks effectively correspond to
momentum recoils nℏk, which are multiples of the photon momenta ℏk of the light grating. The first
and third diffraction peaks thus correspond to odd multiples of this photon momentum. As discussed in
section 5.5 they can therefore be attributed to absorption of photons (without photocleavage or other
loss mechanisms).
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Figure 7.2: Experimental data integrated over the bottom 150 pixels in figure 7.1a. Savitzky-Golay-
filtering [273] was applied to smooth the data. The photon momentum recoils nℏk asso-
ciated with the peaks are marked in the figure.

Results of the fitting to the velocity distribution of this data was already shown in section 6.3. For
the simulation of the experiment the unconditional Talbot coefficients (5.32) were used. The absolute
height of the light grating y0 was also still a free parameter in this simulation. The data shown here
corresponds to the height, which showed the best agreement with the experiment. This also coincides
with the height for which the diffraction effect appears the most intense visually in the simulation.

Figure 7.3 shows the comparison of the simulation with the experimental data for a range of ᾱ and σ
values. For each combination of parameters the squared difference of the experimental data and the
simulation is shown summed over all pixels. A larger parameter space was also investigated, figure 7.3
shows the region with the best match between experiment and simulation in detail. As is apparent
from figure 7.3 there two regions for which the value pairs (ᾱ, σ) give a similarly good agreement with
the experiment. In figure 7.3 the dark blue to black regions have the minimum discrepancy between
experiment and simulation. Since the experimental data is always subject to noise and other factors
not included in the simulation, this minimum is always still clearly larger than zero. Even though the
parametric plot does not determine an unambiguous set of optimal vales for ᾱ and σ, we can still use
it to infer reasonable restrictions for the parameters:

5 · 10−21m2 ≲ σ266 nm ≲ 7 · 10−21m2 (7.1)

and
7 Å

3 · 4πε0 ≲ |ᾱ266 nm| ≲ 15 Å
3 · 4πε0 (7.2)

As expected this only gives us a broad estimate of the optical parameters. However, if one of the
parameters would be measured more accurately via other means, we would already be able to conclude
more concrete information about the other parameter from the correlation between the two in figure
7.3. Also note that for the parameters of our experiment the results are almost perfectly symmetric for
positive and negative values of ᾱ. We can therefore not make any conclusions about the sign of the
dynamic polarizability here. Nevertheless we see that the approximate value (7.1) we determined does
more or less agree with the order of magnitude of the estimate we presented in section 4.7.1. In fact,
our results suggest that we overestimated the cross-section by at least a factor of two in section 4.7.1,
which is not unreasonable considering that the comparison with solution measurements we used there
was only an estimate for the order of magnitude of σ. The limits for the dynamic polarizability (7.2)
extracted from our measurements are clearly significantly smaller than the static values of PcH2 cited
in section 4.7.1, demonstrating the relevance of analysing a specific frequency. Our results are indeed
much better in line with the DFT calculations mentioned at the end of section 4.7.1 and might give
insight into determining the best computation method.

65



7. Results

Note that the further evaluation of the results in figure 7.3 and also the following sections must also
consider the uncertainties in some of the experimental parameters. The numbers given in (7.1) and
(7.2) do not yet take this additional uncertainty factors into account. Most importantly, the mean laser
power in the standing light wave during the measurement was only known as P = (0.96 ± 0.04)W
for the data presented here. The relevant parameters in (5.28) and (5.30) are actually the products
ᾱ · P and σ · P . This means that the polarizability and absorption cross-section extracted from the
simulation, which assumed the mean value for the laser power P , necessarily have at least the same
relative uncertainty of ∼ 5 %. In this case the spread of values if reasonable agreement in figure 7.3 is
clearly the more limiting factor, however the uncertainty of the laser power, which has its origin in the
limited stability of the laser remains as the fundamental limit for the accuracy of the values extracted.
Additionally there will also be an indirect influence of e.g. the geometric parameters which went into
the simulation.

The minimum of the difference measure plotted in figure 7.3 is found for the value pair ᾱ = 10.3 Å
3·4πε0,

σ = 6.3·10−21m2. However, the other dark blue areas in figure 7.3 show only minor differences compared
to this value set. These differences are more likely attributed to the numerics of the computation. In
particular we have more or less the same optimal agreement for ᾱ = −10.3 Å

3 · 4πε0 because of the
aforementioned high symmetry of the results. We still use the previously stated optimal value pair as
an example to highlight the agreement between experiment and simulation. The simulated diffraction
pattern for these parameters is plotted in figure 7.1b next to the experimental data. Both datasets are
normalized and plotted with the same color scale for easy comparison. Evidently the simulation matches
the data well for these parameters. However, the agreement is not perfect.

>

Figure 7.3: (ᾱ, σ) parameter sweep for PcH2. The plot shows the squared differences of the experi-
mental and simulated data summed over all pixels. As indicated by the colorbar on the
right dark blue values correspond to the best agreement.

66



7. Results

The model presented so far assumed the unconditional Talbot coefficients (5.32), i.e. that the molecules
stay intact after an arbitrary number of absorptions. This might not necessarily be realistic as photoion-
isation after absorption of multiple photons might occur. We also compared the experiment so simula-
tion data for a model, which only included the l = 0 and l = 1 conditional Talbot coefficients given by
(5.35) and (5.37). In this description absorption of two photons in the light grating leads to loss of the
molecules e.g. by ionization with 100 % efficiency. Meanwhile molecules, which only absorb a single
photon, remain unaffected. Even though this model is also describing a very idealized case, it might
indicate if such multi-photon ionization processes have to be considered, if it gives a better or at least
similarly good match for the experimental data with appropriate parameters. However, the agreement
of our simulation with the data was significantly worse in this case over a wide range of (ᾱ, σ) values.
Our first model was thus more fitting in this case. However, a more refined model including efficiencies
different than unity might be necessary for a better fitting description. We can also see qualitatively
by comparing the experimental data and the simulation shown in figure 7.1 that the model using the
unconditional Talbot coefficients (5.32) gives already a good description of the experiment.

7.2. Meso-tetraphenylporphyrin
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(a) Background subtracted experimental data for TPP
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(b) Simulated data for TPP with optimal parameters
using the unconditional Talbot coefficients.

Figure 7.4: Comparison between experimental data with the simulation results for TPP. The joint
colorbar of both images on the right shows the normalized intensity. Note that the horizontal
axes of both images are stretched by a factor of two compared to the vertical axis.

The fits to the intensity and velocity distributions of TPP showed a similarly good agreement to the
ones for PcH2 shown in section 6.3 and also yielded similar numerical values for ydetection and w. For
ydetection in particular this was expected, as the alignment procedure described in section 4.5.1 was
designed to make the geometrical parameters as reproducible as possible. We thus already see a level
of consistency from this. In figure 7.4 the comparison between the experimental data (left) and the
simulated diffraction pattern (right) for the optimal values (ᾱ, σ) is shown. The results of the parameter
sweep for the model using the unconditional Talbot coefficients (5.32) are collected in figure 7.5. As for
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PcH2 we cannot extract definitive values for the parameters but are able to give estimates, which show
acceptable agreement between the simulation and the experiment. We can give the approximate values

σ266 nm ≈ 1 · 10−21m2 (7.3)

and
13 Å

3 · 4πε0 ≲ |ᾱ266 nm| ≲ 17 Å
3 · 4πε0 (7.4)

Similarly to PcH2 we also seem to have overestimated the absorption cross-section in section 4.7.2. Our
estimate for the polarizability (7.4) is also again clearly much smaller than the static value reported
in section 4.7.2. However, again the numbers given here are effectively only an order of magnitude
estimate as the same additional experimental uncertainties exist as in the case of PcH2. The optimal
values in figure 7.5 are ᾱ = −14.5 Å

3 · 4πε0, σ = 1.1 · 10−21m2. Also in this case the simulation
results do not allow us to draw any decisive conclusion about the sign of ᾱ. The numbers found for
the optimum are used to compute the simulated diffraction pattern shown in figure 7.4b. Also in this
case we see a decent agreement between simulation and experiment. In particular both images lack a
1ℏk recoil peak, which was present in the case of PcH2. Our results suggest that this is explained by a
lower absorption cross-section of TPP at this wavelength.

>

Figure 7.5: (ᾱ, σ) parameter sweep for TPP with unconditional Talbot coefficients (5.32). The plot
shows the squared differences of the experimental and simulated data summed over all
pixels. As indicated by the colorbar on the right dark blue values correspond to the best
agreement.
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>

Figure 7.6: (ᾱ, σ) parameter sweep for TPP with conditional Talbot coefficients for l = 0 (5.35). The
plot shows the squared differences of the experimental and simulated data summed over
all pixels. For better comparison the colorbar uses the same scale as in figure 7.5.

Despite the good agreement observed so far, we also want to consider another model besides the one
using the unconditional Talbot coefficients (5.32), which we used for computing the data in figure 7.5.
To treat the possibility that one of the phenyl rings (see figure 4.28) of the TPP molecule is cleaved
off after absorption of a UV photon we additionally run the simulation with the conditional Talbot
coefficients for the case of l = 0 (5.35). This corresponds to a model where such a cleavage (or another
depletion mechanism) occurs with 100 % efficiency after absorption of a single photon. The results
for the parameter sweep with this model are shown in figure 7.6. The same color scale as in figure
7.5 was used to facilitate easy comparison. Clearly the agreement is better for the model using the
unconditional Talbot coefficients we discussed previously. Nevertheless, we see that even if the other
model was more fitting for other reasons, the predictions for the absorption cross-sections would not be
significantly different. Meanwhile the polarizabilities would need to be higher to give a better agreement
in. In any case we cannot exclude the possibility of photocleavage from our results since our model
assumed perfect efficiency, which is possibly not realistic.

7.3. Zn-phthalocyanine with photocleavable tags

The main goal of our analysis of the results for Zn-phthalocyanine with photocleacable tags is to see the
effects of the photocleavage and confirm that this is indeed a realization of a photodepletion grating. A
diffraction pattern recorded for these particles is shown in figure 7.7a. The results are visually very similar
to those of PcH2 (see figure 7.1a). This becomes also apparent when comparing the data integrated
over the bottom 150 pixels (49 µm) shown in figure 7.9 with the corresponding data for PcH2 in figure
7.2. However, because the photocleavable molecules are slightly more than two times as massive as
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PcH2 we assign even numbers of photon momentum recoils to these peaks (the velocities are similar in
both cases because of the geometric constraints). The contrast in figures 7.9 and 7.2 is also comparable,
indicating that figure 7.9 does not exhibit significant contributions from absorption (odd multiples of
ℏk). This already suggests that molecules might be lost after absorption instead of contributing to the
signal as for PcH2.

To analyse this data in more detail using our theoretical model, we compare the agreement with both the
computation using the unconditional Talbot coefficients (5.32) and the conditional Talbot coefficients
(5.35) for l = 0 absorptions. The latter case should correspond to a photodepletion grating with 100 %
efficiency as it only considers the contributions of molecules, which have not experienced an absorption
event. As mentioned at the end of section 6.4 we need to adapt our intensity distribution model in this
case. For this purpose we use an initial estimate of σ ≈ 1 · 10−20m2 for the absorption cross-section.
This is the order of magnitude we found for PcH2. Since the spectral properties of the photocleavable
Zn-phthalocyanines are apparently similar to those of PcH2 (see section 4.7.4) this should give us a
reasonable initial estimate. The influence of including the depletion on the fit of the y distribution of
the intensity is only small, giving similar values for ydetection and w. Nevertheless this effect should be
included in order to not bias the parameter sweep to the better fitting intensity distribution.

Figures 7.9 and 7.10 show the results of the parameter sweep using the conditional and unconditional
Talbot coefficients respectively. For better comparability the same color scale was used for both plots.
We find that for the model based on the conditional Talbot coefficient a better agreement with the
experimental data is possible. In this case the parameters are also restricted to a more defined region.
In contrast to this figure 7.10 shows a relatively large region in which our quantitative measure for
comparing the data gives a similar level of agreement. However, it never quite reaches the values
of the other model. The better description of the data given by the conditional Talbot coefficients
(l = 0) becomes even more apparent if we directly compare the simulation data. Figure 7.7b shows a
simulated diffraction pattern using this model for the optimal parameters found in figure 7.9. These
optimal parameters are ᾱ = −82.7 Å

3 · 4πε0 and σ = 2.1 · 10−21m2. The direct interpretation of
these values is however somewhat limited as it based on an idealized model assuming perfectly efficient
photocleavage. As we can see from the simulation in figure 7.7b there is a good qualitative agreement
with the experimental data shown in figure 7.7a. Figures 7.7c and 7.7d on the other hand show
simulations results computed with the model based on the unconditional Talbot coefficients. Since the
optimum is less well defined in this case we chose two exemplary parameter combinations marked in
figure 7.10. We can see from these simulation results that the unconditional Talbot coefficients do
not yield the peak structure we see in the experiment (figure 7.7a). In fact the diffraction pattern is
practically completely washed out in this case. This agrees with our expectations since the collimation
(width of the diffraction peaks) would be too broad to resolve 1ℏk photon momentum recoils as was
the case for the half as massive PcH2. The fact that we still observe good contrast in the experiments
gives a better match with the simulation results for the unconditional Talbot coefficients (l = 0). We
can interpret these results as a strong indication that these molecules do indeed undergo photocleavage
after absorption of 266 nm photons with high efficiency. We do observe that the model corresponding
to a photodepletion grating gives a better explanation of our results.
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(a) Background subtracted experimental data.
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(b) Simulated data with the best fitting parameters for
the model using the conditional Talbot coefficients
(l = 0).
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(c) Simulated data using the unconditional Talbot co-
efficients for point 1 in figure 7.10
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(d) Simulated data using the unconditional Talbot co-
efficients for point 2 in figure 7.10

Figure 7.7: Comparison between experimental data with different simulation results for Zn-
phthalocyanine with photocleavable tags. The joint colorbar of both images on the right
shows the normalized intensity. Note that the horizontal axes of both images are stretched
by a factor of two compared to the vertical axis. Only the model using the conditional
Talbot coefficients shown in b can reproduce the fringes observed in the experiment.
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Figure 7.8: Experimental data integrated over the bottom 150 pixels in figure 7.7a. Savitzky-Golay-
filtering [273] was applied to smooth the data. The photon momentum recoils nℏk asso-
ciated with the peaks are marked in the figure.

>

Figure 7.9: (ᾱ, σ) parameter sweep for photocleavable Zn-phthalocyanine with conditional Talbot co-
efficients for l = 0 (5.35). The plot shows the squared differences of the experimental and
simulated data summed over all pixels. The dark blue regions show the best agreement
with the experimental data.
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point 2

point 1

>

Figure 7.10: (ᾱ, σ) parameter sweep for photocleavable Zn-phthalocyanine with unconditional Talbot
coefficients (5.32). The plot shows the squared differences of the experimental and sim-
ulated data summed over all pixels. For better comparability the same color scale as
in figure 7.9 is used. The two markers indicate the parameters used for the simulations
shown in figures 7.7c (point 1) and 7.7d (point 2).
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7.4. 6,11-dihydroxy-5,12-naphthacenedione

The data set for dihydroxy-naphthacenedione, shown in figure 7.11, is unfortunately not available with
the same quality as the other molecules. We are thus somewhat limited in the knowledge oft some of the
experimental constraints such as the exact laser power and heights. We can still check the consistency
of our models and attempt to interpret the effects occurring for this molecules but will not be able to
draw any firm conclusions about the values of the optical parameters.

In contrast to the previously described cases it was not possible to find a decent fit for w and ydetection
such that the y distribution of the intensities matches the experimental data. The most likely explanation
is that the 266 nm laser used for fluorescence excitation in this case did not illuminate the detection region
homogeneously. This would result in a bias at some heights where the intensity of the excitation laser
is higher. Such an imperfect illumination is unfortunately likely in this case because of the suboptimal
beam profile of the laser (see section 4.4.1) and because no SLM was available for this wavelength,
which could have been used to generate a flattop profile like for the 661 nm detection (see section 4.6).
The analysis is further complicated by the fact that because dihydroxy-naphthacenedione fluoresces
after absorption of UV light at the wavelength of the grating, we would need to include this effect in
the model. Fluorescence events lead to decoherence, which is not included in the Talbot coefficients
presented in section 5.5. The model can be extended to treat this case, however we can then no longer
write the Talbot coefficients in the relatively simple closed analytic form presented in section 5.5. The
main effect of fluorescence is a reduction in contrast, caused by a background of molecules, which have
undergone fluorescence events before reaching the detector [217].
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Figure 7.11: Background subtracted experimental data for dihydroxy-naphthacenedione. The colorbar
shows the normalized intensity. Note that the horizontal axis is stretched by a factor of
two compared to the vertical axis.
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(a) ᾱ = −10 Å
3 · 4πε0, σ = 0.1 · 10−20 m2.
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(b) ᾱ = −50 Å
3 · 4πε0, σ = 0.1 · 10−20 m2.
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(c) ᾱ = −10 Å
3 · 4πε0, σ = 2.0 · 10−20 m2.
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(d) ᾱ = −50 Å
3 · 4πε0, σ = 2.0 · 10−20 m2.

Figure 7.12: Comparison between simulation results for dihydroxy-naphthacenedione for a selection
of parameter combinations. All simulations where run with the model based on the
unconditional Talbot coefficients. The joint colorbar of both images on the right shows
the normalized intensity. Note that the horizontal axes of both images are stretched by a
factor of two compared to the vertical axis.
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A full modelling of fluorescence by numerically evaluating the Talbot coefficients as described in [217]
is beyond the scope of this thesis. Also it will most likely not improve our analysis by much in this case
because of the aforementioned issues regarding the quality of this dataset. We can partially account for
the loss of contrast by fluorescence by modelling it as a broadening of the diffraction peaks. This is in
fact already accounted for by our procedure used to fit the slit widths S1,x and S2,x (see section 6.3).
Because of the limited ability of the model to match the recorded data we restrict ourselves to a more
qualitative analysis for dihydroxy-naphthacenedione. We compute diffraction patterns for a selection of
combinations of ᾱ and σ to study the influence of high / low contributions from phase and absorption.
We use the unconditional Talbot coefficients for this simulation. Even thought we cannot find a good
quantitative match with the data shown in figure 7.11, this will allow us to learn something about which
effects are most relevant for the diffraction of this molecule.

We present such a selection of simulation results in figure 7.12. While none of them give an exact match
for the experimental data, we can see that the distinct shape of the diffraction pattern in figure 7.11
can still be reproduced. This rather simple qualitative comparison suggests that our experimental data
may be explained by dihydroxy-naphthacenedione having a comparatively low absorption cross-section
and a larger polarizability. The values we used for the qualitatively best fitting simulation out of our
small selection (figure 7.11 are ᾱ = −50 Å

3 · 4πε0 and σ = 1 · 10−21m2. Similar to TPP we could
explain the lack of 1ℏk peaks for this molecule with a small absorption cross-section. The polarizability
being slightly larger in this case appears to be consistent with the fact that we can still observe a strong
diffraction effect. Still we cannot draw any further conclusions as we cannot quantitatively match the
data.
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8. Conclusions & Outlook

8.1. Discussion of results

The results presented in section 7 showcase how a variety of grating effects can be relevant for diffraction
of molecules. As described in section 1.1 the most relevant mechanisms here are the phase shift
introduced by the dipole potential (3.14) and the effects of absorption. Our results suggest that PcH2 is
a molecule for which both this phase effect and photon absorption resulting in a heating of the molecule
are the dominant mechanisms (a and b in figure 1.1). Both contributions are in fact of a similar order
of magnitude in this case. We can estimate the relative contributions by using (5.28) and (5.30) to
compute the ratio

R =

∣∣∣∣2ϕ (x, y)n̄ (x, y)

∣∣∣∣ = ∣∣∣∣ ᾱσ · ω

ε0c

∣∣∣∣ (8.1)

The transmission function (5.31) makes clear why this ratio allows us to judge the relative importance
of the phase grating and absorption effects. Importantly the dependence on the parameters P , wy

and pz drop out of the ratio (8.1). This means that even though our estimates for ᾱ and σ given in
section 7 are subject to additional uncertainties because of the variance in laser power P , this does not
directly influence the quantity defined in equation (8.1). In figure 8.1 the ratio R is plotted for our
selection of molecules together with the mass m. The ratios are computed from the parameters which
gave the best fits to the experimental data. For dihydroxy-naphthacenedione the parameters from the
simulation in figure 7.12, which gave the best qualitative agreement, are used instead. For PcH2 we
have R ≈ 0.5 indicating that both phase shift and absorption are approximately equally important as
already mentioned, with the absorption effect being slightly more relevant. For TPP on the other hand
the standing light wave acts mainly as a phase grating as indicated by the value R ≈ 3.9. Even though
our analysis of dihydroxy-naphthacenedione was limited as described in section 7.4, we can still estimate
R ≈ 15 from the qualitative comparisons presented there. This would suggests that the effect of the
polarizability is far more dominant for these molecules. However, as we also discussed in section 7.4
fluorescence is another effect which likely influences the experimental results for this molecule. While
we did not include this in our model, it is possible that additional effects like this are also part of
the cause for the disagreement between the simulation and the experiment in this case. We also only
used a qualitative comparison to arrive at this value for dihydroxy-naphthacenedione, so our value for
R given here might not fully represent the properties of the molecule. Our results for the tailored
Zn-phthalocyanine indicate a different mechanisms being relevant compared to the other molecules. In
this case we see a strong indication that the light-grating acts as a photocleavage grating (d in figure
1.1). For the ratio (8.1) we estimate R ≈ 11.7 for this molecule. However, even if the influence of
polarizability is larger in this sense, the cleavage process is still clearly very relevant to fully explain our
results. Therefore absorption very important for the diffraction of this molecule despite the apparently
large polarizability.
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Figure 8.1: Overview of the ration R (8.1) for the molecules investigated in this work. Dihydroxy-
naphthacendione is only a qualitative estimate. Zn-phthalocyanine also showed strong
indication that photocleavage is a relevant effect.

8.2. Limitations & Potential improvements

While our results allows us to make some estimates about the polarizabilities and cross-sections of the
molecules we tested, we can unfortunately not give concrete numerical values. The main limitation,
which prevents this, is the fact that there still remain several experimental parameters which are not
known with enough certainty. In particular the absolute heights of the grating and other components
as well as the precise velocity distribution could only be approximated based on the experimental data.
Additionally, the values of the laser power and waist radius directly influence our results for ᾱ and σ.
While we can give a reasonable accurate value for the waist radius, the power is not well defined because
of the lack of stability of the laser. As described in section 4.4.1 the laser power drops significantly
during a single measurement run, allowing us to only observe an averaged effect. The problems related
to the vertical alignment can in fact also be partly attributed to the limitation of the laser. Our analysis
and also our results would simplify significantly if the waist wy of the laser could be chosen much larger,
such that the y dependence of the Talbot coefficients could be neglected. This would also suppress
the influence of the precise grating height y0, which is also an unknown in the experiment. However,
simply increasing the waist is not possible as the limited available laser power means that this will mean
a significant reduction of the intensity in the standing light wave. As can be seen from (5.28) and
(5.30) the ratio P/wy defines the strength of the effects relevant for the diffraction. A reduction of
this quantity would mean that only much weaker diffraction could be observed, which would also hinder
our analysis. Nevertheless, future technological improvements might make more powerful UV lasers
available in the coming years. This could solve many of the issues related to the laser in this experiment
and make more accurate results possible.

Besides the issues we just discussed, we should also mention the limits introduced by the theoreti-
cal models we used. Comparison of the experimental results with the simulated diffraction patterns
we covered in section 7 indicates that even for the optimal parameters we found there is still some
disagreement between the two data sets. In our analysis we optimized the parameters such that the
overall agreement for the whole diffraction pattern is as good as possible. However, we can see that
this does not give a perfect match at all heights y. It turns out that for the given model different
parameter combinations are required to give a better match at each detector height [271]. This most
likely indicates some limitations in the theoretical model. Indeed there are a number of effects which
might become relevant in the experiment, which the simplified model we applied here did not include.
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Most importantly we did not take into account the possible change in optical properties for the excited
state. If the molecule is transferred to the triple state after absorption, the polarizability and absorption
cross-section might differ from the ground state values. If multiple absorption processes are relevant for
the experimental results this might explain some of the discrepancies we are seeing. The ladder model
we used here assumed that these values do not change in the higher states of the ”ladder” [217]. Certain
phthalocyanines and porphyrins are in fact known to have a much higher absorption cross-section in the
triplet state. They have applications as so called optical limiters [274]. In a similar manner our model
did also not include the effects of fluorescence we briefly discussed in section 7.4.

For the photocleavable Zn-phthalocyanines our model is also simplified because it implicitly assumes
that the cleavage process happens with 100 % efficiency. While this still gave a good match for these
molecules in our case, it might be necessary to assume an efficiency different from unity to find a better
agreement with the experimental data at all detection heights. This would however also introduce
another free parameter into our analysis, which is why it might still not be easy to find a much better
match. However, the prospect of cleavage with a limited efficiency might shed some light onto our
results for PcH2 and TPP. In both cases we saw that the model neglecting cleavage gave a better
match with the data than the one based on the conditional Talbot coefficients. This however only tells
us that 100 % efficient cleavage is no good model for the experimental data. But it is possible that we
could reproduce the experimental results better if we use a model where cleavage occurs with a small
non-zero probability after absorption. While it is possible that this would also result in different optimal
values for ᾱ and σ, it would most likely not change our order of magnitude estimate to much as the
already good agreement with our existing model suggests a smaller influence of such additional effects.

Despite the shortcomings of our model we can still use our model to explain most of our results. We
see both from qualitative comparisons and from our parameter estimates how the properties of the
molecules result in different grating mechanisms contributing to a varying degree. Even though we
are not able to give confident predictions for the numerical values of these parameters, we have still
learned their order of magnitude. Importantly the limitations preventing us from giving narrower bound
on these values may be resolved by advancements in technology in the future and by extending the
existing theoretical model. Our results are still a proof of concept as we can clearly see that the we can
tie our experimental results to certain combinations of parameters. We have also demonstrated that
a photodepletion grating best explains our results for the Zn-phthalocyanines with photocleavable tags
we investigated. This affirms that we have realized a photocleavage grating with these molecules.
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8.3. Outlook: Photoisomerization gratings with thioindigo molecules

So far we have extensively discussed the effects of phase gratings, photon absorption leading to an
increased internal temperature and photocleavage we introduced section 1.1. In this section we give a
brief outlook on a specific molecule that could be used to implement another new grating mechanism:
photoisomerization gratings. As discussed in section 3.2.3 the process of photoisomerization involves a
molecule changing from one isomer to another after absorption of a photon. Photochromic molecules
in particular then also exhibit a significant change in their spectra, which could be used to distinguish
the two isomers. In an optical light grating the ”switching” of one isomer to another would act like
a depletion grating for the original isomer. It would be interesting to see whether the other isomer,
which is formed in the grating, also exhibits interference effects and how they are realized. This would
potentially give rise to interesting new phenomena. Additionally there might also be a more pronounced
interplay with other effects, such as additional phase shifts from the dipole potential and multiple
successive switching processes. Photochromic molecules would be useful for such applications as they
could potentially be distinguished directly in fluorescence detection.

The molecule proposed here for a first set of such experiments is thioindigo C16H8O2S2. Thioindigo
can undergo photoisomerization by rotation around its central double bond [275]. The two isomers of
thioindigo are shown in figure 8.2. Successful tests with both the source and fluorescence detection used
in the experimental setup have already been carried out for this molecule. Note that here a micro-focus
laser evaporation source [1, 240] was used instead of the oven described in section 4.2. The mass of
thioindigo m = 296.36 u is also in a suitable range for the far-field setup.

The absorption spectrum of the cis-isomer is shifted by ∼ 70 nm to shorter wavelengths. However,
both isomers show reasonable strong absorption for green visible light around ∼ 500 nm. The thermally
more stable trans-isomer has its maximum at ∼ 540 nm and also absorbs strongly at 532 nm [276–278].
This wavelength is readily available at high powers from commercial lasers, which makes the trans-cis
isomerization process of thioindigo attractive for photoisomerization gratings. Particularly this would
be an advantage considering the drawbacks of the limited performance of UV lasers we encountered.
Photoisomerization is possible both from trans to cis and cis to trans. Measurements of the quantum
yields for trans to cis isomerization are usually at the order of 0.05−0.1, while the quantum yield for the
reverse process is up to an order of magnitude larger. However, measurements of both show a relatively
strong solvent and temperature dependence [277–279]. Besides the photochromism due to differences
in the absorption spectra, thioindigo also displays different fluorescence for the two isomers. Trans-
thioindigo fluoresces with an emission maximum at ∼ 585 nm. In contrast to this cis-thioindigo has not
been observed to fluoresce [280–282]. In particular the on-off switching of the fluorescence may be used
to easily distinguish the isomers in the experiment as only one of them will be visible in the detection.
The two isomers also differ in their electric dipole moment, which vanishes for trans-thioindigo and has
been determined to be 3.44Debye for cis-thioindigo [283].

Preliminary experiments have shown that exposure of thioindigo to 532 nm light both in flight and
after deposition on the quartz detection window result in a notable loss of fluorescence signal. This
may be attributed to the isomerization process, which turns the fluorescent trans-thioindigo into its
non-fluorescent cis counterpart. However, several experimental challenges remain before a photoisomer-
ization grating can be implemented. While the fact that cis-thioindigo is not directly detectable with
fluorescence microscopy allows to distinguish the two isomers, it might still be necessary to record signal
for both isomers in order to study the full effect of a photoisomerization grating. A possible approach
might be to isomerize cis-thioindigo back into the trans-isomer. An increase in fluorescence singal would
then indicate the presence of cis-thioindigo. However, so far it was not possible to succesfully do this af-
ter deposition on the quartz window. A possible reason for this might be that the cis-trans isomerization
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Figure 8.2: Photoisomerization of thioindigo C16H8O2S2. The absorption of green light can change
trans-thioindigo into the cis-isomer and vice versa. Both isomers absorb photons at
λ ∼ 532 nm. While the trans-isomer is fluorescent, the cis-isomer is not [278, 280].

process is geometrically inhibited when the molecule is adsorbed to the surface. Such effects have been
observed for thioindigo on alumina surfaces [284, 285]. An alternative approach for indirectly detect-
ing cis-thioindigo with fluorescence microscopy might be to induce a back-photoisomerization process
in-flight. Because the absorption of cis-thioindigo is approximately on order of magnitude weaker at
532 nm than for trans-thioindigo [278] this might require a laser with a shorter wavelength.

Other complications when studying a photoisomerization grating with thioindigo might arise from the
fact that even though trans-thioindigo is the more stable isomer, it is to be expected that the molecular
sample used in the source contains some mixture of both isomers. Additionally it will be necessary
to account for the finite quantum efficiencies of the isomerization process. While thioindigo is also
attractive for such experiments because of its easy commercial availability, there are also a large number
of thioindigo derivatives which have been studied for their photochromic properties [286–289]. The
compatibility of thioindigo with the constraints imposed of the experiments might also suggest that
some of these molecules are suitable as well, some of which might have more favorable properties.
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Appendices

A. Velocity selection

Consider the velocity at a fixed height y5 given by (4.10). The physical dimensions of the source and the
velocity selection slit set the restrictions y0,max −∆y0 ≤ y0 ≤ y0,max and y4,min ≤ y4 ≤ y4,min +∆y4.
The maximum and minimum velocities vz compatible with these bounds are then

vmax =

√
g

2
· z4z5 · (z5 − z4)

y4,min · z5 − y0,max · (z5 − z4)− y5 · z4

vmin =

√
g

2
· z4z5 · (z5 − z4)

(y4,min +∆y4) · z5 − (y0,max −∆y0) · (z5 − z4)− y5 · z4

(A.1)

Note that we assume here that the radicand appearing in (4.10) is positive for all heights in the chosen
ranges. Otherwise no real velocity would be compatible with the chosen heights, i.e. it would not
contribute to the final transmission. We now estimate the velocity spread as ∆vz = vmax − vmin.
This is an approximation because the relative probability for all velocities in this range, which can be
transmitted, is not equal. The two main factors contributing to this are the velocity distribution (4.2) of
the source itself and the number of possible flight parabolas compatible with a particular velocity. The
latter can be understood by considering that for a given y5 different combinations of y0 and y4 yield
the same vz when evaluating (4.10) as long as y4 · z5 − y0 · (z5 − z4) remains constant. Thus velocities

originating from a height interval of the width ∆̃y0 = ∆y4 ·
(

z5
z5−z4

)
on the source can contribute to a

particular velocity at a given detection height h2. Under the assumption that the emission of the source
is independent of y0, this will not give different weights to different velocities in general. However,
this argument is no longer true when y0 is close to its bounds such that not the full width ∆̃y0 can
actually emit velocities. When can conclude that the relative intensities of the different velocities will
fall of when approaching the limits (A.1), independently of the velocity distribution given by the source

itself. This could potentially be accounted for by considering a source with the reduced size ∆y0− ∆̃y0.
Another effect one might have to consider is that the horizontal collimation (see section 4.3.4) might
only allow molecules emitted from a particular (relatively narrow) horizontal position to be transmitted.
If this position if off-center from the circular orifice, the effective height of the source might be further
reduced, as it has only its full height at the center. All these effects will however at most make the
velocity spread narrower than estimated via ∆vz = vmax − vmin. Therefore we will continue with these
approximations, thus effectively calculating a lower bound for the longitudinal coherence. Using (A.1)
we compute

∆vz
vmax

= 1− vmin

vmax

= 1−

√
y4,min · z5 − y0,max · (z5 − z4)− y5 · z4

(y4,min +∆y4) · z5 − (y0,max −∆y0) · (z5 − z4)− y5 · z4

= 1−
(
1 +

∆y4 · z5 +∆y0 · (z5 − z4)

y4,min · z5 − y0,max · (z5 − z4)− y5 · z4

)− 1
2

= 1−
(
1 +

2v2max

g
· ∆y4 · z5 +∆y0 · (z5 − z4)

z4z5 · (z5 − z4)

)− 1
2

(A.2)
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To calculate the velocity spread relative to the mean velocity vz = vmax+vmin
2 = vmax − ∆vz

2 (assuming
that the distribution is approximately symmetrical) we use

∆vz
vz

=
1

vmax
∆vz

− 1
2

(A.3)

Inserting (A.2) yields

∆vz
vz

=

( √
r√

r − 1
− 1

2

)−1

=

(
1

2
·
√
r + 1√
r − 1

)−1

= 2 ·
√
r − 1√
r + 1

= 2 ·
(
1− 2√

r + 1

)
(A.4)

For simplicity the expression under the root in (A.2) was abbreviated as r in (A.4). After reinserting it
we get equation (4.11).

B. Fiber beam profiler calibration

To further verify the accuracy of the fiber beam profiler described in section 4.4.2 the beam waist
was measured at multiple positions along the beam path of a 532 nm laser. This was compared to
measurements conducted with a Coherent BeamMaster BM-7 (UV) knife edge beam profiler. For this
purpose the green 532 nm laser was redirected around the frequency doubler in figure 4.10 such that it
follows the path of the 266 nm laser to the grating mirror GM. The green laser was used instead of the
usual UV one because its better stability and beam quality should allow for a more accurate comparison
between the two beam profiling methods. Instead of changing the measurement position of the beam
profilers we actually translated the grating lens GL, which focuses the laser, since this turned out to be
more reproducible. The divergence of the laser low enough at the location of this lens, that this should
effectively be equivalent to measuring the waist at different positions along the beam propagation.

Since the knife edge beam profiler could not be placed inside the vacuum chamber in front of the grating
mirror GM, where the fiber beam profiler is located, the laser was redirected using an additional mirror
directly after the grating lens GL. The knife edge profiler was placed at a total distance, which was
approximately the same as the distance of the fiber profiler to the grating lens. Figure B.1 shows the
waist radii for different grating lens positions. The red curve is a fit of the theoretical waist radius for
Gaussian beams as a function of the position z along the beam [212]:

w(z) = w0 ·

√
1 +

(
z − zfocus

z0

)2

(B.1)

z0 is the Rayleigh range given by (4.21), which also depends on w0. Clearly the fit matches the
experimental data well. We find a minimum waist radius of

w0 = (41.0± 0.4) µm (B.2)
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B. Fiber beam profiler calibration

The same measurement of waist radii was repeated with the fiber beam profiler. The results are plotted
in figure B.2. The figure again contains a fit (B.1) which yields a minimum waist radius

w0 = (40.9± 0.4) µm (B.3)

(B.2) and (B.3) clearly are in very good agreement with each other.

w
ai
st
	ra

di
us
	(µ

m
)

40

50

60

70

80

90

100

110

lens	position	(mm)
20 30 40 50

Figure B.1: Waist radius of the 532 nm laser for different lens positions recorded with the knife edge
beam profiler. The red curve shows a fit of the form (B.1).
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Figure B.2: Waist radius of the 532 nm laser for different lens positions recorded with the fiber beam
profiler. The red curve shows a fit of the form (B.1).
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C. Detector pixel size calibration

C. Detector pixel size calibration

The physical width on the detection window corresponding to 1 pixel in the recorded images is calibrated
using a Thorlabs R1L3S3 calibration grid. For the 20x/0.5 objective a grid width a period of 50 µm is
used. We read out a distance of (760 ± 2) pixels between two edges of the grid squares 250 µm apart
(see figure C.1). Therefore we can calculate that

1 pixel =̂ (0.329± 0.001) µm (C.1)

The grid shown in figure C.1 is slightly rotated. We estimate the rotation to be smaller than θ ≲ 10mrad.
The correction factor introduced by this is cos θ ≳ 1 − 5e · 10−5. Which is much smaller than the
uncertainty in (C.1) originating from the readout of the pixels.

250 µm

Figure C.1: 50 µm grid for the calibration of the 20x/0.5 objective. The marked distance of 250 µm is
used to reference the size of a single pixel.

The image of the 50 µm grid used to calibrate the long working distance 20x/0.4 objective is shown in
figure C.2. Here we read off (745 ± 2) pixels for the 250 µm distance marked in the figure. For this
objective we then have

1 pixel =̂ (0.336± 0.001) µm (C.2)

We estimate the rotation of the grid in figure C.2 as θ ≈ (0.09 ± 0.01) rad giving a correction factor
of cos θ ≈ 0.996 ± 0.001 in this case. The corrected pixel calibration for the long working distance
objective is then

1 pixel =̂ (0.335± 0.001) µm (C.3)
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250 µm

Figure C.2: 50 µm grid for the calibration of the 20x/0.4 long working distance objective. The marked
distance of 250 µm is used to reference the size of a single pixel.

D. Supplementary information about the theoretical model

D.1. Derivation of the Wigner function description of the Far-field setup

Here we give a derivation of (5.25) based on the properties and transformations of the Wigner function
discussed in section 5.1. This evaluation is based on the results of a collaboration with Lukas Martinez
[271]. For notation in this section we will use the subscript of wz and χz to denote the Wigner function
and characteristic function at beam position z respectively. As described in section 5.1.2 we parametrize
the time evolution with the longitudinal position here. To differentiate the function immediately in front
of and after a slit of the grating we will use z for in front of the slit (grating) and z′ for immediately
after the slit (grating). We will also leave out any normalization constants in the following calculation.

We start at the source with a Wigner function

wz0 (x,p) = θ

(
DS

2
− |x|

)
· θ
(
DS

2
− |y|

)
· µy (py) (D.1)

This approximates the source as rectangular instead of circular. However, this should not be a problem
as the collimation slits S1,x and S2,x strongly restrict the relevant x coordinates, so we can assume
the y extension of the source to be independent of x. Also as mentioned in section 5.4 we assume
a constant momentum (velocity) distribution in x direction. We leave the corresponding distribution
µy (py) unspecified for now.

Free evolution to the first slit S1,x via (5.7) yields

wz1 (x,p) = θ

(
DS

2
−
∣∣∣∣x− px

∆z10
pz

∣∣∣∣) · θ
(
DS

2
−
∣∣∣∣y − py

∆z10
pz

− gm2∆z210
2p2z

∣∣∣∣) · µy
(
py +

gm2∆z10
pz

)
(D.2)
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We now consider the effect of the collimator S1,x classically by the means of (5.24). We further assume
that both the slit width S1,x and px

∆z10
pz

(for relevant px) are much smaller than DS . Then

wz′1
(x,p) = θ

(
S1,x
2

− |x|
)
· θ
(
DS

2
−
∣∣∣∣y − py

∆z10
pz

− gm2∆z210
2p2z

∣∣∣∣) · µy
(
py +

gm2∆z10
pz

)
(D.3)

It is convenient to now go to a characteristic function picture using (5.3). We write

χz′1
(s,q) = δ (sx) · sinc

(
qxS1,x
2ℏ

)
· χ(y)

z′1
(sy, qy) (D.4)

Here we introduced the shorthand notation

χ
(y)
z′1

(sy, qy) =

∫∫
R

dy

[
dpy exp

{
i
qyy − sypy

ℏ

}
· θ
(
DS

2
−
∣∣∣∣y − py

∆z10
pz

− gm2∆z210
2p2z

∣∣∣∣) ·

· µy
(
py +

gm2∆z10
pz

)]
=

∫∫
R

dy dpy exp

{
i
qyy − sypy

ℏ

}
· w(y)

z′1
(y, py)

(D.5)

This corresponds to the characteristic function of just the y part of the Wigner function. In this case
both degrees of freedom are still decoupled. We evolve (D.4) to the next slit S2,x via (5.8):

χz2 (s,q) =δ

(
sx −

qx∆z21
pz

)
· sinc

(
qxS1,x
2ℏ

)
· χ(y)

z′1

(
sy −

qy∆z21
pz

, qy

)
·

· exp
{
−igm

2∆z21
ℏpz

·
(
qy∆z21
2pz

− sy

)} (D.6)

The second slit S2,x is now treated without the classical approximation. We convolve (D.6) with the
corresponding transmission kernel for the characteristic function (5.23). The result is

χz′2
(s,q) =

pz
∆z21

· θ (S2,x − |sx|) · (S2,x − |sx|) · sinc
(
sxS1,xpz
2ℏ∆z21

)
· sinc

(S2,x − |sx|) ·
(
qx − sxpz

∆z21

)
2ℏ

 ·

· χ(y)
z′1

(
sy −

qy∆z21
pz

, qy

)
· exp

{
−igm

2∆z21
ℏpz

·
(
qy∆z21
2pz

− sy

)}
=χ

(x)
z′2

(sx, qx) · χ(y)
z′1

(
sy −

qy∆z21
pz

, qy

)
· exp

{
−igm

2∆z21
ℏpz

·
(
qy∆z21
2pz

− sy

)}
(D.7)

In the last line we introduced another shorthand notation

χ
(x)
z′2

(sx, qx) =
pz

∆z21
·θ (S2,x − |sx|)·(S2,x − |sx|)·sinc

(
sxS1,xpz
2ℏ∆z21

)
·sinc

(S2,x − |sx|) ·
(
qx − sxpz

∆z21

)
2ℏ


(D.8)

We freely evolve (D.8) further to z3, the location of the grating.

χz3 (s,q) = χ
(x)
z′2

(
sx −

qx∆z32
pz

, qx

)
· χ(y)

z′1

(
sy −

qy∆z31
pz

, qy

)
· exp

{
−igm

2∆z31
ℏpz

·
(
qy∆z31
2pz

− sy

)}
(D.9)

88



D. Supplementary information about the theoretical model

As discussed in section 5.2 the effect of the grating is described by (5.16) with the aid of the Talbot
coefficients Bn

(
sx
d , y

)
. Thus (D.9) transforms to

χz′3
(s,q) =

∑
n∈Z

χ
(x)
z′2

(
sx −

(
qx +

2πℏ
d n
)
∆z32

pz
, qx +

2πℏ
d
n

)
·

·
∫∫

R
dy dq̃y

[
exp

{
i
(qy − q̃y) y

ℏ

}
χ
(y)
z′1

(
sy −

qy∆z31
pz

, qy

)
·

· exp
{
−igm

2∆z31
ℏpz

·
(
qy∆z31
2pz

− sy

)}
·Bn

(sx
d
, y
)]

(D.10)

As discussed in section 5.2 already the sy dependence of the Talbot coefficients is neglected. We now
return to the Wigner function by transforming the characteristic function back. This is achieved by
simply applying the inverse Fourier transforms from (5.3). The result is

wz′3
(x,p) =

∑
n∈Z

∫∫
R

dqx dsx

[
exp

{
i
pxsx − qxx

ℏ

}
· χ(x)

z′2

(
sx −

(
qx +

2πℏ
d n
)
∆z32

pz
, qx +

2πℏ
d
n

)
· w(y)

z3 (y, py) ·Bn

(sx
d
, y
)]

(D.11)

Here we introduced the function

w(y)
z3 (y, py) = θ

(
DS

2
−
∣∣∣∣y − py

∆z30
pz

− gm2∆z230
2p2z

∣∣∣∣) · µy
(
py +

gm2∆z30
pz

)
(D.12)

To see this simply note that the expression at the end of the second line in (D.10) is simply the free
evolution (5.8) of the characteristic function (D.5). The next step is the free evolution of (D.11) to the
location of the velocity selector Sy at z4.

wz4 (x,p) =
∑
n∈Z

∫∫
R

dqx dsx

[
exp

{
i
pxsx − qxx

ℏ

}
·

· χ(x)
z′2

(
sx −

(
qx +

2πℏ
d n
)
∆z32

pz
− qx∆z43

pz
, qx +

2πℏ
d
n

)

· w(y)
z3

(
y − py∆z43

pz
− gm2∆z243

2p2z
, py +

gm2∆z43
pz

)
·

· Bn

(
sx − qx∆z43

pz

d
, y − py∆z43

pz
− gm2∆z243

2p2z

)]
(D.13)

Since there has been no collimation in the y direction so far we assume sufficient incoherence in that
direction to justify also approximating this slit with the classical transformation (5.24). We also introduce
the vertical position ySy of the slit as a free parameter.

wz′4
(x,p) =

∑
n∈Z

∫∫
R

dqx dsx

[
exp

{
i
pxsx − qxx

ℏ

}
·

· χ(x)
z′2

(
sx −

(
qx +

2πℏ
d n
)
∆z32

pz
− qx∆z43

pz
, qx +

2πℏ
d
n

)

· w(y)
z3

(
y − py∆z43

pz
− gm2∆z243

2p2z
, py +

gm2∆z43
pz

)
·

· Bn

(
sx − qx∆z43

pz

d
, y − py∆z43

pz
− gm2∆z243

2p2z

)
· θ
(
Sy
2

−
∣∣y − ySy

∣∣)]
(D.14)
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Finally we apply another free evolution to our detector at z5.

wz5 (x,p) =
∑
n∈Z

∫∫
R

dqx dsx

[
exp

{
i
pxsx − qxx

ℏ

}
·

· χ(x)
z′2

(
sx −

(
qx +

2πℏ
d n
)
∆z32

pz
− qx∆z53

pz
, qx +

2πℏ
d
n

)

· w(y)
z3

(
y − py∆z53

pz
− gm2∆z253

2p2z
, py +

gm2∆z53
pz

)
·

· Bn

(
sx − qx∆z53

pz

d
, y − py∆z53

pz
− gm2∆z253

2p2z

)
·

· θ
(
Sy
2

−
∣∣∣∣y − ySy −

py∆z54
pz

− gm2∆z254
2p2z

∣∣∣∣)]

(D.15)

The compute the flux at the detector we must first compute the marginal distributions by integrating
(D.15) over px and py according to (5.2). We must also integrate over the distribution of the forward
velocities (4.3). The result is

j (x) =
∑
n∈Z

∫
R+

dpz

∫∫
R

dqx dpy
[
exp

{
−iqxx

ℏ

}
· µz (pz)

· χ(x)
z′2

(
−

2πℏ
d n∆z32

pz
− qx∆z52

pz
, qx +

2πℏ
d
n

)

· θ
(
DS

2
−
∣∣∣∣y − py

∆z50
pz

− gm2∆z250
2p2z

∣∣∣∣) · µy
(
py +

gm2∆z50
pz

)
·

· Bn

(
−qx∆z53

pzd
, y − py∆z53

pz
− gm2∆z253

2p2z

)
·

· θ
(
Sy
2

−
∣∣∣∣y − ySy −

py∆z54
pz

− gm2∆z254
2p2z

∣∣∣∣)]
(D.16)

With the definition

µz (pz) = pz · exp

{
−(pz − pw)

2

2mkBT

}
(D.17)

In analogy to (4.3). The additional factor p2z in (4.3) originates from the integration over a finite solid
angle element. This is already inherently contained in the above computation which is why we do not
include the factor here. The reaming factor pz shows up because our detector is integrating the flux
of the molecules. Note that we also do not consider normalization factors here. In (D.16) we also
reinserted the expression (D.12). The final expression (D.16) is equation (5.25).
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D.2. Symmetry properties of the Talbot coefficients

The unconditional Talbot coefficients (5.32) and the zero photon absorption (l = 0) conditional Talbot
coefficients (5.35) both possess a useful symmetry property:

Bn (ξ, y) = B−n (−ξ, y) (D.18)

To show this we make use of the following properties of the Bessel function for integer n [290]:

J−n (x) = (−1)n · Jn (x) = Jn (−x) (D.19)

We also use the relation [217](
u− v

u+ v

)−n
2

· sgn (u+ v)n =

(
u+ v

u− v

)n
2

· sgn (u− v)n (D.20)

for u, v ∈ R, n ∈ Z. The relation is trivial for sgn (u+ v)n = sgn (u− v)n. If this is not the case the
fractions on both sides become negative and exponentiation by ±n

2 gives different results depending on
which principal branch we are on.

We can now prove (D.18) for the case (5.32). According to (5.33) and (5.34) exchanging ξ → −ξ
corresponds to replacing ζcoh → −ζcoh.

B−n (−ξ, y) = e−ζ′abs

(
−ζcoh + ζ ′abs
−ζcoh − ζ ′abs

)−n
2

· J−n

(
sgn

(
−ζcoh − ζ ′abs

)√
ζ2coh − ζ ′2abs

)
= e−ζ′abs

(
ζcoh − ζ ′abs
ζcoh + ζ ′abs

)−n
2

· sgn
(
ζcoh + ζ ′abs

)n · Jn
(√

ζ2coh − ζ ′2abs

)
= e−ζ′abs

(
ζcoh + ζ ′abs
ζcoh − ζ ′abs

)n
2

· sgn
(
ζcoh − ζ ′abs

)n · Jn
(√

ζ2coh − ζ ′2abs

)
= e−ζ′abs

(
ζcoh + ζ ′abs
ζcoh − ζ ′abs

)n
2

· Jn
(
sgn

(
ζcoh − ζ ′abs

)√
ζ2coh − ζ ′2abs

)
= Bn (ξ, y)

(D.21)

Similarly we can treat the case (5.35):

B−n (−ξ, y; l = 0) = e−
n̄0
2

(
−ζcoh − ζabs
−ζcoh + ζabs

)−n
2

· J−n

(
sgn (−ζcoh + ζabs)

√
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)
= e−

n̄0
2

(
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)−n
2
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n · Jn
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)
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)n
2

· sgn (ζcoh + ζabs)
n · Jn

(√
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)
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(
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)n
2

· Jn
(
sgn (ζcoh + ζabs)

√
ζ2coh − ζ2abs

)
= Bn (ξ, y; l = 0)

(D.22)

Finally we can also infer from (D.22) that (D.16) holds for the conditional Talbot coefficients with l = 1
as defined in (5.37). This can easily be seen because all factorial pre factors are equal to 1 in this case.
We then just need to relabel the sum m→ k −m and arrive at the desired result:

Bn (−ξ, y; l = 1) =
1∑

k=0

k∑
m=0

( n̄0
4

)k
· ζ1−k

abs ·B−n+k−2m (ζ, y; l = 0)

=

1∑
k=0

k∑
m=0

( n̄0
4

)k
· ζ1−k

abs ·B−n−k+2m (ζ, y; l = 0) = B−n (ξ, y; l = 1)

(D.23)
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The property (D.18) is useful because it implies that the integrand in (D.16) is symmetric under exchange
of qx ↔ −qx after summing over all n. This means that the Fourier transform of the flux is symmetric
in qx and we can simplify the computation described in section 6 by only evaluating the cases qx ≥ 0.
This symmetry can easily be seen by recognizing that qx and n only appear in the Talbot coefficients

Bn (ξ, ỹ) and the function χ
(x)
z′2

(sx, q̃x) in (D.16). χ
(x)
z′2

(sx, q̃x) defined in (D.8) is clearly symmetric if

both its argument change their sign (q̃x, sx → −q̃x,−sx). Therefore χ
(x)
z′2

(sx, q̃x) appearing in (D.16)

is also symmetric under simultaneous exchange of qx, n → −qx,−n. The same is true for the Talbot
coefficients as a consequence of (D.18). Thus the whole integrand shares this symmetry. Because we
are summing over all n ∈ Z we can simply relabel the summation index n → −n and the expression
becomes symmetric in qx ↔ −qx.

The Talbot coefficients presented here also have the useful property that they are always real. For (5.32)
this is only non-trivial for the case ζcoh < ζabs′ . Then the argument of the Bessel function is imaginary.
For purely imaginary x Jn(x) is real for n even and imaginary for n odd. Similarly the prefactor raised
to the power of n

2 is imaginary for only odd n and real otherwise. Thus the product in (5.32) is always
real. A similar argument can be made for (5.35). (5.37) is then also obviously real.
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[20] Bühl, A. “Elektronenbeugung und inneres Potential der Metalle”. Die Naturwissenschaften 20,
577–578 (July 1932).

[21] Farnsworth, H. E. “Diffraction of Low-Speed Electrons by Single Crystals of Copper and Silver”.
Physical Review 40, 684–712 (June 1932).

[22] Young, T. “I. The Bakerian Lecture. Experiments and Calculations Relative to Physical Optics”.
Philosophical Transactions of the Royal Society of London 94, 1–16 (Nov. 1803).
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[134] Tüxen, J., Gerlich, S., Eibenberger, S., Arndt, M. & Mayor, M. “Quantum Interference Distin-
guishes between Constitutional Isomers”. Chemical Communications 46, 4145 (2010).

101

http://dx.doi.org/10.1088/1367-2630/13/6/065027
http://dx.doi.org/10.1088/1367-2630/13/6/065027
http://dx.doi.org/10.1103/PhysRevLett.110.093602
https://arxiv.org/abs/2107.03709
http://dx.doi.org/10.1126/science.266.5189.1345
http://dx.doi.org/10.1126/science.266.5189.1345
http://dx.doi.org/10.1016/0375-9601(94)90437-5
http://dx.doi.org/10.1016/0375-9601(94)90437-5
http://dx.doi.org/10.1103/PhysRevLett.74.4783
http://dx.doi.org/10.1038/44348
http://dx.doi.org/10.1038/nnano.2012.34
http://dx.doi.org/10.1002/andp.201500214
http://dx.doi.org/10.1002/andp.201500214
http://dx.doi.org/10.1002/prop.201600025
http://dx.doi.org/10.1002/prop.201600025
http://dx.doi.org/10.1088/1464-4266/5/2/362
http://dx.doi.org/10.1088/1464-4266/5/2/362
http://dx.doi.org/10.1103/PhysRevLett.88.100404
http://dx.doi.org/10.1103/PhysRevLett.91.090408
http://dx.doi.org/10.1103/PhysRevA.76.013607
http://dx.doi.org/10.1103/PhysRevA.76.013607
http://dx.doi.org/10.1038/nphys701
http://dx.doi.org/10.1088/1367-2630/11/4/043032
http://dx.doi.org/10.1088/1367-2630/11/4/043032
http://dx.doi.org/10.1007/s00340-007-2873-6
http://dx.doi.org/10.1007/s00340-007-2873-6
http://dx.doi.org/10.1002/anie.200801942
http://dx.doi.org/10.1103/PhysRevA.81.031604
http://dx.doi.org/10.1103/PhysRevA.81.031604
http://dx.doi.org/10.1088/1367-2630/13/4/043033
http://dx.doi.org/10.1088/1367-2630/13/4/043033
http://dx.doi.org/10.1002/anie.201704916
http://dx.doi.org/10.1039/c0cc00125b
http://dx.doi.org/10.1039/c0cc00125b


References

[135] Brand, C. et al. “Conformer Selection by Matter-Wave Interference”. Physical Review Letters
121, 173002 (Oct. 2018).

[136] Gerlich, S. et al. “Quantum Interference of Large Organic Molecules”. Nature Communications
2, 263 (Sept. 2011).

[137] Eibenberger, S., Gerlich, S., Arndt, M., Mayor, M. & Tüxen, J. “Matter–Wave Interference
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