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Abstract

Magnetic field sensing plays a crucial role in our everyday life. Whether for safety aims
in the automotive sector, for electronical devices used on a daily basis or for industrial
purposes, a huge variety of potential applications exists for magnetic field sensors. In
all these application fields, a high sensing accuracy and a good response to small field
changes in the presence of realistic disturbances is of major importance. To sense the
strength of magnetic fields, the simple Hall sensor exploiting the Hall effect is the most
widely used sensor type. This is mostly due to its simplicity, both in the theoretical de-
scription and in the practical application, and due to its high sensor accuracy. However,
the Hall sensor based on the typical Hall effect with the Lorentz force controlling it is not
always applicable, especially for the measurement of small magnetic fields. Fortunately,
there are many different Hall effects with more complicated physical backgrounds, that
enable magnetic field sensing of small fields. A very promising approach is to take the
spins of electrons into account. Spintronics has a large variety of potential applications
and also in the present case, the Spin Hall effect might help in the improvement of mag-
netic field sensors. This effect is one of the main contributors to the recently described
Spin Orbit Torque (SOT) effect.

Another interesting application of a sensor in a magnetic field is the multiturn counter.
The aim of such a sensor device is to count the number of rotations of a magnetic field
without the help of current enabling the field sensing at any time. Hence, the sensor
is initialized and afterwards, no power supply takes place when counting the rotations.
When determining the final number of rotations, power must be supplied for readout.
The application fields for such a sensor device are very diverse, ranging from industrial
realizations to safety facilities. Actually, a multiturn counter is applicable where a robust
positioning with a finite number of positions is needed.

This thesis is divided into two parts. The first part focuses on the inspection of the SOT
effect as potential magnetic field sensing principle. Some sensor concepts are discussed
and examined in terms of accuracy and resilience against disturbing fields. Since the
topic is relatively new and there is ongoing research on this topic, the present report
aims to give basic insights into some concepts under examination.

The second part of the thesis is dedicated to concepts of multiturn sensors. Some con-
cepts are working with moving magnetic domain walls in certain soft magnetic structures.
Others are working by moving magnetic bubbles due to a certain guiding structure. The
later principle is already known from bubble memory realized in the 1970s. (Nielsen,
1979) (Gowland, 1977) However, applying this concept to implement a multiturn sensor
with thin layers in the nanometer regime requires further investigation, where this report
should only encourage examinations beyond the outcome presented here.
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Kurzfassung

Magnetfeldsensoren spielen eine immer größere Rolle in den verschiedensten alltäglichen
Anwendungsbereichen. Ob für Sicherheitsanwendungen im Mobilitätssektor, für Sen-
soren in mobilen Geräten oder für Positionsmessungen in der Industrie, das Poten-
zial von solchen Sensoren zur Detektierung der Magnetfeldstärke ist immens, beson-
ders im Hinblick auf die jüngsten technologischen Fortschritte. Dabei dominieren Hall-
Sensoren dieses Segment. Typische Hall-Sensoren basieren auf dem ”normalen” Hall-
Effekt, welcher durch die Lorentzkraft zustande kommt. Dieser Effekt bietet eine ein-
fache Möglichkeit, um Magnetfeldstärken zu messen, wobei die Sensoren genau und
verlässlich detektieren. Wenn jedoch sehr kleine Magnetfelder gemessen werden sollen,
müssen andere Detektierungsmethoden gefunden werden. Praktischerweise gibt es weit-
ere Hall-Effektarten, welche auf anderen physikalischen Grundlagen basieren und kom-
plexere Realisierungen von Hall-Sensoren ermöglichen. Wenn die Spins von Elektro-
nen in die Betrachtung miteinbezogen werden, so gibt es den Spin-Hall-Effekt, welcher
maßgeblich zum kürzlich entdeckten Spin-Bahn-Drehmoment-Effekt (Spin Orbit Torque
(SOT)) beiträgt. Dieser tritt auf, wenn ein Schwermetall wie Platin oder Tantal und ein
ferromagnetisches Material übereinandergestapelt werden und Strom durch das Schw-
ermetall fließt. Das Drehmoment auf die Magnetisierung im Ferromagneten kann zur
Magnetfelddetektierung genutzt werden, wobei in dieser Masterarbeit verschiedene Re-
alisierungskonzepte untersucht werden sollen. Die Magnetisierung des Ferromagneten
wird dabei durch einen geeigneten Magnetowiderstand bestimmt.

Runde oder elliptische Sensorelemente bestehend aus einer dünnen Schwermetall-
Ferromagnet-Stapelung bieten eine sehr einfache Struktur. Falls die Anfangs-
magnetisierung aus der Ebene der Stapelung zeigt, handelt es sich um einen transver-
salen (out-of-plane) Sensor, der eine planare Magnetisierungskomponente detektieren
kann. Dieser funktioniert trotz seiner Einfachheit überraschend zuverlässig. Falls die
Anfangsmagnetisierung planar ausgerichtet ist, handelt es sich um einen planaren (in-
plane) Sensor, der die auf die Stapelebene normal stehende Magnetisierungskomponente
messen kann. Hier ergibt sich das Problem, dass sich bei vielen Störfeldausrichtungen ein
Nullpunktversatz der Signalkurve ergibt. Dieser kann durch Kombination verschiedener
Sensorelement kompensiert werden.

Durch eine geschickte Kombination solcher planaren Sensorelement in einer Wheatstone-
Brücke ergibt sich ein Sensorkonzept, welches durch eine Forschungsgruppe um Yanjun
Xu (Xu et al., 2018) präsentiert wurde. Dieser weist laut dem Forschungsbericht ausgeze-
ichnete Eigenschaften auf, wie z.B. eine sehr hohe Detektierfähigkeit, vernachlässigbaren
Nullpunktversatz und vernachlässigbare Hysterese. Allerdings muss betont werden, dass
der Sensor nur zur Messung von sehr kleinen Feldstärken im Bereich bis 10 µT geeignet
ist. Für größere Feldstärken ergeben sich gravierende Probleme, welche kaum behoben
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werden können. Falls die Feldstärken auf bis zu 10 µT beschränkt sind, funktioniert
dieses Sensorkonzept jedoch überraschend gut. Auch als Rotations- und Vibrationssen-
sor bietet sich dieser Aufbau an, wobei die gegebene Feldstärkenschwelle auch hier zu
beachten ist. Das setzt natürlich hohe Anforderungen an die Abschirmung störender
Magnetfelder von außen voraus, da schon das Erdmagnetfeld einige µT ausmacht.

Der Spin-Bahn-Drehmoment-Effekt kann auch in einer typischen Hall-Kreuz-Geometrie
zur Detektierung verwendet werden. Dabei bricht das Kreuz in einen Multidomänen-
zustand auf, wobei die Domänen eine Magnetisierung aus der Kreuzebene aufweisen.
Durch den Stromfluss in einem Arm des Kreuzes wird die Magnetisierung abhängig
vom wirkenden Magnetfeld beeinflusst, sodass eine Domäne bevorzugt wird und bei
genügend großem Feld der gesamte Arm nur noch in eine Richtung magnetisiert ist.
Dies ermöglicht die Feldstärkenbestimmung in Richtung des Stromflusses. Durch einen
geschickten Schaltungsaufbau, bei dem beide Arme abwechselnd mit dem relevanten
Strom angesteuert werden können, und durch Kombination der Signale kann ein dreidi-
mensionaler Feldstärkensensor realisiert werden. Dieser weist eine gute Signalkurve mit
einer hohen Empfindlichkeit auf, wobei der lineare Bereich zur Feldstärkenmessung recht
klein ist.

Magnetische Rotationszähler haben ebenfalls verschiedene Anwendungsgebiete, ob im
Automobilsektor oder bei der Positionsmessung in der Industrie. Dabei setzen die meis-
ten Realisierungen eine ständige Stromzufuhr voraus. Falls es während der Messung
jedoch zu einem Stromausfall kommt, kann die gemessene Rotationsanzahl bei neuer-
licher Stromzufuhr nicht mehr wiedergewonnen werden, wodurch eine neuerliche Initial-
isierung und eine neuerliche Messung erforderlich sind. Ziel eines ”unvergänglichen”
Rotationszählers ist, dass dieser während des Zählvorgangs nicht auf eine ständige
Stromzufuhr angewiesen ist, sondern nur während der Initialisierung und dem Ausle-
sen der Rotationsanzahl. Dies hätte in sensiblen Anwendungsfällen im Automobil- und
Industriesektor einige Vorteile, wobei die Realisierung entsprechender Konzepte einige
Schwierigkeiten mit sich bringt.

Ein mögliches Konzept wäre die Bewegung einer magnetischen Domänenwand in einem
weichmagnetischen Material, welche durch ein rotierendes Feld getrieben wird. Durch
eine geeignete Geometrie können auf Basis der Position der Domänenwand mehrere Ro-
tationen gezählt werden. Neben der intuitiven Spiralform wird in der Forschungsgruppe
um Roland Mattheis (Mattheis et al., 2012) eine Höckerstruktur vorgeschlagen, wobei die
Höcker die Bewegung der Domänenwände durch die Magnetfeldrotation verlangsamen.
Diese Realisierung erweist sich als sehr zuverlässig und kann durch Aneinanderreihung
vieler Höcker zur Zählung einiger Rotationen verwendet werden. Allerdings setzt dieses
Konzept eine dünne Struktur voraus, welche in größerem Ausmaß industriell schwer zu
produzieren ist.

Ein weiteres Konzept basiert auf dem Magnetblasenspeicher, welcher in den 1970ern
und 1980ern intensiv untersucht wurde. Dabei wurden Skyrmionen in einer geeigneten
Schicht durch ein rotierendes magnetisches Feld mit Hilfe einer weichmagnetischen
Führungsstruktur an bestimmte Positionen bewegt. Skyrmion oder kein Skyrmion
entsprach dabei den Bits 0 oder 1, wodurch Datenspeicherung ermöglicht wurde. Anstatt
zur Datenspeicherung kann dieses Prinzip verwendet werden, um ein Skyrmion durch ein
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rotierendes Feld zu bewegen und über die Position eben dieses die Anzahl an Rotatio-
nen zu messen. Obwohl Magnetblasenspeicher in der Vergangenheit realisiert wurden
und die Bewegung der Skyrmionen entsprechend zuverlässig funktionerte, ergeben sich
bei den Simulationen entsprechender Rotationszähler überraschend Probleme. Im Zuge
dieser Arbeit werden einige Materialkombinationen für dieses Konzept untersucht, die
in der Vergangenheit realisiert wurden, jedoch ermöglicht keine dieser Konstellationen
eine Rotationszählung, da sich die Skyrmionen nicht durch die Führungsstruktur be-
wegen lassen, sondern nur eine unkontrollierte Beeinflussung zu beobachten ist. Dies
ist insofern überraschend, als dass sich die Skyrmionen in Simulationen leichter bewe-
gen lassen sollten als im Experiment, bei dem störende Einflüsse die Bewegung hemmen
können. Aufgrund der praktischen Realisierung von Magnetblasenspeichern und der Kon-
trollierbarkeit der Skyrmionenbewegung in diesem Aufbau ist jedoch zu erwarten, dass
dieses Konzept als Rotationszähler verwendet werden kann.

Abschließend kann gesagt werden, dass der Spin-Bahn-Drehmoment-Effekt viel Potential
für neue Sensorkonzepte zur Detektierung von Magnetfeldern birgt. In der Arbeit wurden
nur sehr einfache Realisierungen besprochen, welche in komplexeren Konstellationen
verlässliche Sensoren ermöglichen können. Für magnetische Rotationszähler scheint der
Höckersensor geeignet, wobei die Produktion im großen Maße ein Problem darstellt,
welches durch Anpassung der Geometrie möglicherweise umgangen werden kann. Die
Rotationszählung mit Skyrmionen wirkt in Simulationen unzuverlässig, sollte jedoch auch
realisierbar sein. Alle Untersuchungen in dieser Arbeit sollen einen groben Überblick über
Rotationszähler und Magnetfeldsensoren basierend auf dem Spin-Bahn-Drehmoment-
Effekt liefern und weitere Forschungsbemühungen in diese Richtungen anregen.
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Chapter 1

Introduction

1.1 Landau-Lifshitz-Gilbert equation

The Landau-Lifshitz equation was first introduced by Lew Dawidowitsch Landau and
Jewgeni Michailowitsch Lifschiz (Landau & Lifshitz, 1992) and an alternative formu-
lation was presented by Thomas L. Gilbert. (Gilbert, 2004) The well-known Landau-
Lifshitz-Gilbert (LLG) equation describes the magnetization dynamics in a ferromagnetic
material. The implicit form is given by the equation (1.1), which can be easily trans-
formed into the explicit form (1.2) by applying simple vector algebra and basic identities.
The LLG equation characterizes the time evolution of the magnetization unit vector m,
which in contrast to the actual magnetization vector M is normalized with respect to
the spontaneous magnetization Ms, that is the saturation magnetization in the case
of zero temperature: M = Msm. Since magnetic simulations assume zero temper-
ature, Ms is referred to as saturation magnetization throughout the following thesis.
γ = µ0γe ≈ 2.2128 · 105 m/As with µ0 being the vacuum permeability and γe being the
gyromagnetic ratio of an electron is the reduced gyromagnetic ratio and α is the Gilbert
damping parameter. (Abert, 2019)

∂m

∂t
= −γm×Heff + αm× ∂m

∂t
(1.1)

∂m

∂t
= − γ

1 + α2
m×Heff − αγ

1 + α2
m× (m×Heff ) (1.2)

The effective field Heff combines all contributions of energy terms, that tend to be min-
imized during the dynamical evolution of the magnetic system. In the following sections
the different energy terms according to (Abert, 2019) are described. The theoretical
model, which these energy term formulations are based on, is the micromagnetic model
described in Section 2.2. These energy terms translate into Heff by the relation (1.3),
where δE/δm is the functional derivative of the energy E with respect to the magnetic
moment m. Note that the functional derivative with respect to a vector field means in
this case the functional derivative for each component of the vector field, which gives
the corresponding component of the resulting vector field.

Heff = − 1

µ0Ms

δE

δm
(1.3)
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1.1.1 Zeeman energy

The energy contribution of the external magnetic field to the ferromagnetic system is
called Zeeman energy. The energy term is given by (1.4), which is indeed the equation
leading to relation (1.3), since without any other energy contributions the effective field
has to be equal to the external field Hzee. The other energy contributions are therefore
considered to act as additional external fields, which add up to the effective field Heff .
The integration is performed over the magnetic region Ωm.

Ezee = −µ0

∫
Ωm

Msm ·Hzeedx (1.4)

1.1.2 Exchange energy

The exchange energy integrates the exchange interaction between the spins into the
calculation. This interaction is described by the Heisenberg model. The exchange energy
of two unit spins si/j is given in (1.5), where J is the coupling constant or exchange
integral.

Eij = −Jsi · sj (1.5)

Embedding this model for the exchange energy into the framework of micromagnetics,
performing some simplifications and assuming cubic and isotropic lattice structures leads
to the expression for the total exchange energy (1.6) with A being the exchange constant
and (∇m)2 =

∑
i,j(∂mi/∂xj)

2 being like the Frobenius inner product.

Eex =

∫
Ωm

A(∇m)2dx (1.6)

1.1.3 Demagnetization energy

The demagnetization energy or stray-field energy takes into account, that magnetic
systems tend to demagnetize themselves macroscopically. At this point the mathematical
derivation of the demagnetization energy is omitted (for further details the reader is
referred to (Abert, 2019)). The demagnetization field Hdem, which depends on the
position x, is given by the expression (1.7), where M = Msm is the magnetization and
Ñ is the demagnetization tensor given by (1.8).

Hdem(x) =

∫
Ωm

Ñ(x− x′)M(x′)dx′ (1.7)

Ñ(x− x′) = − 1

4π
∇∇′ 1

|x− x′|
(1.8)

The resulting energy contribution can be calculated by using the relation (1.9), where
the integral is performed over the magnetic region Ωm. The factor 1/2 results from the
quadratic dependency on M. (Abert, 2019)

Edem = −µ0

2

∫
Ωm

M ·Hdemdx (1.9)
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1.1.4 Uniaxial anisotropy energy

The anisotropy energy takes into account, that a magnetization alignment parallel to
certain axes is favored. These axes are called easy axes. The reasons for this energy
are either anisotropic crystal structures or lattice deformations at material interfaces. If
there is only one easy axis present in a sample, the situation is called uniaxial anisotropy.
The energy term of this anistropy is given in equation (1.10), where Ku is the uniaxial
anistropy constant and eu is the unit vector along the easy axis.

Eaniso = −
∫
Ωm

[Ku(m · eu)2 +O(m4)])dx (1.10)

A cubic lattice structure induces three easy axes pairwise orthogonal to each other.
However, this cubic anisotropy will not be used in this thesis.

1.2 Spin Orbit Torque (SOT)

Besides of being charged particles, electrons also exhibit a spin. If there are no ferro-
magnetic samples present in a current circuit, the spins of electrons do not play a role
there. Introducing ferromagnetic components in current circuits leads to some interest-
ing effects. A very prominent example is the Spin Transfer Torque (STT), where the
electrons flowing through a ferromagnetic layer become partially spin-polarized and can
influence the magnetizations of other ferromagnetic components by exerting a torque on
the magnetization vectors, hence it is called Spin Transfer Torque. (Ralph & Stiles, 2008)

The Spin Orbit Torque (SOT) is a phenomenologically described effect, which dates back
to the early 2010s. A charge current flowing through a paramagnetic layer (typically a
heavy metal like platinum or tantalum) induces a spin current or a spin accumulation
normal to the charge current flow. This phenomenon can be explained by the Spin Hall
Effect (SHE), which describes the spin current generated due to a charge current. This
effect is illustrated in Figure 1.1(a), where a charge current Je leads to a spin current
Js with σ being the polarization vector according to which the spins of the electrons
(e) align. Things get more interesting, if a ferromagnetic (FM) layer is added adjacent
to the heavy metal layer, because the spin flow can affect the magnetization (M) in
the ferromagnetic layer. Hence a torque is applied due to the charge current in the
adjacent paramagnetic layer. The theory underlying this phenomenological SOT is not
fully understood, but it is assumed that both the SHE as a bulk interaction and the
Rashba-Edelstein effect as an interfacial interaction contribute to the SOT. (Nguyen &
Pai, 2021)

There are two SOT effects, which have to be differentiated: the dampinglike and the
fieldlike effect. They contribute to the SOT in the form of a Dampinglike Torque (DLT)
and a Fieldlike Torque (FLT). These torques can both be induced by the SHE and by
the Rashba-Edelstein effect, which makes the exact theoretical description burdensome.
(Zhu & Zhao, 2020) The torque terms add up to the other contributing terms in the
LLG equation (1.1), where the equations for DLT and FLT according to Slonczewski are
given by (1.11) and (1.12), respectively. (Abert, 2019)

DLT = ηdamp
jeγh̄

2etµ0Ms

m× (m× p) (1.11)
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Figure 1.1: Illustration of the SHE in (a) a Spin-Hall (SH) layer (typically a heavy-metal layer) and
(b) a heterostructure of a SH layer and a ferromagnetic (FM) layer. (taken from Nguyen & Pai, 2021,
p. 2).

FLT = ηfield
jeγh̄

2etµ0Ms

m× p (1.12)

The parameters ηdamp and ηfield characterize the strengths of the torques and are functions
of the angle between the magnetization unit vector m and the polarization vector p.
je, t and Ms are the SOT current density, the thickness of the free layer and the
saturation magnetization, respectively. The constants γ, h̄, e and µ0 are the reduced
gyromagnetic ratio, the reduced Planck constant, the charge of an electron and the
vacuum permeability. The torque terms can be expressed as effective field contribution.
The incorporation of the torque contribution into the LLG equation leads to the Landau-
Lifshitz-Gilbert-Slonczewski (LLGS) equation, which in the explicit form can be written
as (1.13). (Abert, 2019) (Makarov, 2014) (Zhu & Zhao, 2020)

∂m

∂t
=− γ

1 + α2
m×

[
Heff +

jeh̄

2etµ0Ms

(αηdamp − ηfield)p

]
− αγ

1 + α2
m×

(
m×

[
Heff +

jeh̄

2etµ0Ms

(
− 1

α
ηdamp − ηfield

)
p

]) (1.13)

1.3 Magnetoresistances

Magnetoresistance (MR) describes the influence of a magnetic field on the resistivity of
a material. The MR-ratio is the amplitude of the effect and is given as ∆ρ/ρ0, where
∆ρ is the change in resistivity due to a magnetic field compared to a resistivity ρ0 at
zero field. There exist different effects in this phenomenon group. One of the first ob-
served MR-effects was the Anisotropic Magnetoresistance (AMR)-effect, which appears
in ferromagnetic materials. The MR-ratio amounts to 2% and the resistivity change
depends on the direction of the magnetic field compared to the current flow, therefore
being anistropic. The underlying physical mechanism is the Spin Orbit Coupling, which
causes a deformation of the electron clouds around each nucleus, hence leading to a
change in the scattering probability depending on whether the deformation is parallel or
normal to the current direction. (Nickel, 1995)

The Giant Magnetoresistance (GMR)-effect was first observed in 1988 in the paper
(Baibich et al., 1988) and appears, if two thin magnetic layers are separated by a non-
magnetic conducting layer. Depending on how the magnetization configurations are
oriented, the resistivity changes along the stack and the magnetic field contributes to
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this configuration. The MR-ratio is up to 50%. (Nickel, 1995) Especially if one layer has
a fixed magnetization configuration realized with a hard magnetic material, this effect
can be exploited to determine the magnetization direction of the other ferromagnetic
layer. The Tunneling Magnetoresistance (TMR)-effect is similar to the GMR-effect con-
cerning the stack, but instead of separating the magnetic layers by a conducting layer, a
non-magnetic insulator is used. This effect is based on spin-dependent electron tunneling
through the insulator. Electrons tunnel more easily, if the magnetization orientation is
equal in both magnetic layers, thus reducing the resistivity. This enables much higher
MR-ratios of some hundreds of percent with a theoretically possible value of 1000% with
crystalline magnesium oxide as tunnel barrier. (Yuasa, 2008) Magnetic tunnel junctions
exploiting the TMR-effect are widely used to sense magnetization configurations.

The Spin Hall Magnetoresistance (SMR)-effect appears in bilayers of a ferromagnetic
insulator (for example yttrium iron garnet) and a metal. Due to the SHE and current
flowing through the metal, a torque is transferred to the ferromagnetic layer depending
on the current direction and the magnetization configuration in the magnet, causing a
resistance dependency on the magnetization configuration. (Chen et al., 2016)
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Chapter 2

Methods

This thesis is based on theoretical considerations and magnetic simulations. Even though
the assumptions taken in the different simulation models seem to be restrictive and far
away from real settings, they are capable of predicting the behaviour of magnetic sys-
tems quite well within the limits of their applicability. Simulation and experiment will
always exhibit some sort of discrepancy, since the simulation assumes zero temperature
and large numbers of magnetic moments are combined to a few magnetic moments to
reduce computational effort. Moreover, it is crucial to take all sorts of disturbances into
account, which in experiment and in potential practical application occur, but which
have to be added into the calculation in magnetic simulations. Nevertheless, simulations
are very successful in predicting physical trends, which enables a first rough examination
of a physical system. Combined with the respective experiments, magnetic simulations
and in general simulations in all parts of physics are a very helpful tool to understand
the behaviour of physical systems.

In this chapter, the used simulation methods are described. These methods are based on
the theory given in Chapter 1 Introduction. The simulation scripts are written in the pro-
gramming language Python and these scripts use other packages and simulation codes
for the actual computation, which are written in more efficient programming languages
for numerical computation. It is not the aim of this thesis to investigate the performance
of simulation codes or to put some effort in the improvement of those. Throughout the
thesis, applicable simulations are used to examine physical systems without being con-
cerned about performance improvements of the available simulation codes, which are
already proven to work fine within the limits of their applicability.

Reducing the number of magnetic moments in a system is necessary to enable feasi-
ble magnetic simulations. Since every atom in a physical system has its own magnetic
moment, the number of magnetic moments is determined by the number of atoms n
in a physical system. These n magnetic spins (the terms magnetic moments and mag-
netic spins are used synonymously) can interact with each other, which would lead to a
computational effort of O(n2), which can be reduced to an effort of O(n · log(n)) by
calculating interactions in the Fourier space and using clever transformation algorithms
like the Fast Fourier Transform (FFT). (Abert, 2019) However, without further assump-
tions the computational effort would be enormous also for small magnetic systems in the
micrometer regime. Therefore, further steps reducing the number of magnetic moments
relevant for the calculation have to be taken. This leads to single spin simulations and
the micromagnetic model, which are described in the following sections.
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2.1 Single spin simulation

In single spin simulations, a system is assumed to have only one relevant magnetic mo-
ment, since all magnetic spins in the system are directed parallel to each other. This is
a very rough assumption, but for a small magnetic sensor device this model might be
able to predict the sensor outcome. The time evolution of a magnetic system is easy to
be calculated, if this simulation model is applicable, since the LLGS equation (1.13) has
to be solved only for one magnetization vector. Integration of this differential equation
in explicit form can be done for example by using Runge-Kutta-algorithms. However,
packages like Scipy (Virtanen et al., 2020) offer a large variety of different solvers, which
exhibit better performances as simple Runge-Kutta-algorithms. In this thesis, single spin
simulations are typically performed using the Scipy ordinary differential equation solver
vode using Backward Differentiation Formulas (BDF), which is beneficial for stiff prob-
lems. A simple example script is presented in the Appendix A. This code performs a
single spin simulation for an in-plane SOT-sensor device presented in Section 3.2, where
the corresponding sensor signal for different external fields in z-direction is calculated by
solving the LLGS equation for the different field strengths.

If different magnetization directions are present in the sample, this simulation model is
not applicable anymore. For SOT-sensor designs with different magnetic domains the
micromagnetic model has to be applied. Further, the working principles of multiturn sen-
sors are based on different magnetization directions, which makes single spin simulations
useless for those concepts.

2.2 Micromagnetics

Micromagnetic simulations are a very successful tool to examine the behaviour in mag-
netic structures. The review paper (Abert, 2019) gives a comprehensive overview over
micromagnetics and the integration of spintronics into this theory. This section will
mainly follow the information given in this report. The micromagnetic model is a de-
terministic model, which however takes quantum mechanical effects like the exchange
interaction into account, that are necessary to ferromagnetism. The reduction of the
total number of magnetic spins is based on the assumption, that the magnetization is
kept parallel on a length scale λ well above the lattice constant a of the sample. Hence
the condition (2.1) is required, where Si/j are two distinct magnetic spins whose distance
from each other is smaller than the characteristic length scale λ.

Si ≈ Sj for |xi − xj| < λ ≫ a (2.1)

This enables the approximation of the discrete spin distribution by a continuous magne-
tization vector density M(x). This magnetization can be normed by M(x) = Msm(x)
with the unit vector field m(x). (Abert, 2019, p. 1) This continuous model is not us-
able for numerical simulations. Therefore, the continuous magnetization field has to be
discretized again. The trick is to discretize the volume with the magnetization field in
much larger elements as the original atomistic lengths would do, such that the compu-
tational effort is kept feasible to handle. Depending on the new length scales of the
discretization, this seems to be a very rough estimation, but if the magnetic spins are
kept parallel in a large enough region, this model approximates magnetic systems quite
well.
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The discretization can be performed in different ways, where two types have been estab-
lished in particular. The corresponding methods are the Finite Difference (FD) method
and the Finite Element (FE) method and the different discretizations are schematically
visualized in Figure 2.1. In the following, the main characteristics of the different meth-
ods and the used simulation codes should be mentioned without going further into detail.
For further information please refer to the paper (Abert, 2019).

Figure 2.1: Discretization of a sphere. (a) Grid consisting of regular cubes for FD method. (b)
Tetrahedral mesh for FE method. (taken from Abert, 2019, p. 22).

2.2.1 Finite Difference method

The FD method is based on the discretization in regular cubes. This grid of cuboids has
the advantage, that the mathematical approximations/discretizations of derivatives and
operations in general are easy to implement. By using accelerated implementations on
Graphics Processing Units (GPUs), also small discretization lengths can be dealt with in
acceptable simulation times. Therefore, the FD method is beneficial for easy geometries,
since the simulation time can be kept small very well also for small cubes. However, the
main disadvantage can be seen from Figure 2.1 as a sphere cannot be meshed appropri-
ately. Of course, by choosing the cube lengths smaller and smaller, the spherical shape
is approached, but the deviation from this shape stays noticeable at any cube length.
Thus, the FD method has problems at simulating spherical shapes and other complex
shapes in general.

In this thesis, the simulations for the SOT-sensor concept and the multiturn counter
based on bubble memory are performed with the FD method, since the respective ge-
ometries are simple and can be meshed with regular cuboids appropriately. Also the
out-of-plane device concept based on SOT is simulated with FD code, even though the
shape is elliptical. However, the incorrect reconstruction of round edges does not influ-
ence the results in that case. Therefore, the FD method is appropriate with a fine grid.
The used simulation packages are Magnum.af and Magnum.np. Magnum.af is a sim-
ulation package based on ArrayFire. (Yalamanchili et al., 2015) Magnum.np is a GPU
enhanced simulation package (Bruckner et al., 2023) based on PyTorch. (Paszke et al.,
2019) In the Appendix A, sample scripts are presented. For Magnum.af, a Hall Cross
device exploiting SOT is simulated in the exemplary code. For Magnum.np, a simulation
of an out-of-plane SOT-device is presented. Both sample simulations contribute to the
results in this thesis.
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2.2.2 Finite Element method

The FE method is more appropriate for complex structures due to the tetrahedral mesh-
ing, which enables the adequate discretization of complex geometries. This can be seen
in Figure 2.1, where the sphere is reconstructed perfectly with the mesh. However, for
this irregular meshing direct approximations of the differential equations are not possi-
ble. Therefore, the problem has to be solved differently by using the weak formulation
of the original partial differentiation problem and undertaking some mathematical con-
siderations. More details about this approach can be found in the paper (Abert, 2019).
The advantage of this method is the ability to simulate any complex geometry. The
drawback is the more complex implementation in numerical simulations.

In this thesis, the simulations of the multiturn counter based on the loop with obstacles
are performed with the FE method. This is due to the more complex geometry, which
could not be reconstructed perfectly with the FD method. The used simulation package
is Magnum.pi, which is an FE simulation package based on Firedrake. (Ham et al.,
2023) It is a further developed package of the simulation code Magnum.fe (Abert et al.,
2013) based on FEniCS. (Alnaes et al., 2015) (Logg et al., 2012) In Appendix A an
exemplary simulation script is shown, which simulates 4 obstacles in the form of cusps,
which slow down the motion of a magnetic Domain Wall (DW) through the wire. The
results of this simulation are presented in the thesis.
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Chapter 3

Elliptically shaped sensor elements
exploiting Spin Orbit Torque

3.1 Field sensing with out-of-plane device

A potential field sensor exploiting the SOT-effect is based on the SOT-induced mag-
netization switching in Magnetoresistive Random Access Memory (MRAM) elements
explained in the paper by Zhu D. and Zhao W. (Zhu & Zhao, 2020). The sensor con-
cept is presented in the paper by Koraltan S. et al. (Koraltan et al., 2023) and in the
patent application by Süss D. et al. (Suess et al., 2021). This out-of-plane device is
illustrated in Figure 3.1. The current JSOT flowing in the heavy metal induces an SOT in
the free magnetic layer. The initial magnetization of the free magnetic layer is pointing
out of plane in z-direction (0,0,1)T and the polarization vector is pointing into negative
y-direction (0,-1,0)T, if the current flows in positive x-direction.

Figure 3.1: Illustration of out-of-plane device. (taken from Zhu & Zhao, 2020, p. 3).

The induced SOT leads to a deviation of the free layer magnetization from the z-axis.
This deviation can be quantified by measuring the z-component of the magnetization
in the free magnetic layer exploiting a type of magnetoresistance, for example TMR or
GMR. Therefore, a reference layer magnetized in positive z-direction and a barrier, which
is isolating in the case of TMR or conducting and non-magnetic in the case of GMR, are
introduced above the free magnetic layer. By measuring the resistance in z-direction,
the z-component of the magnetization of the free magnetic layer can be quantified.
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If no external field in x-direction Hx is applied, reversing the current direction from +x to
−x and therefore reversing the polarization vector leads exactly to the opposite deviation
of the magnetization vector from the z-axis than current flowing in +x-direction. An
external magnetic field changes this situation and introduces some sort of asymmetry in
the system, which depends on the strength of the magnetic field. This can be used for
field sensing. The according signal of the device is proportional to the difference between
the z-components of the free magnetic layer for the SOT-current flowing either in +x
(mz,+J) or −x-direction (mz,−J):

Signal ∝ mz,+J −mz,−J

Further investigation of this sensor design focuses mainly on the impact of the magnetic
parameters and other system parameters on the signal output and the according linear
range as the potential working window of the sensor.

3.1.1 Variation of magnetic parameters in simulation

In the following section simulations are performed in the form of magnetic field sweeps
in x-direction to examine how the system parameters influence the output of the sys-
tem. Therefore the magnetic parameters uniaxial anisotropyK, saturation magnetization
µ0Ms and exchange constant A of the free magnetic layer are varied. Furthermore, the
impact of the current density Je, the elliptical shape and an additional magnetic field in
z-direction µ0Hz is investigated. For this purpose an elliptical out-of-plane sensor device
is simulated using the finite-difference method. The simulated sensor element is illus-
trated with the standard elliptical shape in Figure 3.2. The parameters quantifying the
SOT-efficiencies are chosen to be ηdamp = −0.09 and ηfield = 0.17, which are parame-
ters that evolved during the scientific project this thesis belongs to. The main parameter
values, that are varied one by another in the following paragraphs, are: Je = 2.4 · 1011
A/m2, µ0Ms = 0.75 T, K = 0.24 MJ/m3 and A = 9 pJ/m. The sensor principle
works also for round sensor elements, but the standard elliptical shape for the following
simulations is chosen such that the ratio between major and minor axis is 5:3. Regularly,
no additional magnetic field in z-direction is applied. The Gilbert damping parameter is
set to α = 0.1.

Figure 3.2: Visualization of the magnetic part of the simulated sensor element.
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Variation of the current density: First the impact of the SOT-current density should
be investigated. Since higher current densities lead to stronger torques, they should
increase the slope of the transfer curve and therefore decrease the linear range of the
signal. This can be seen in the simulation data visualized in Figure 3.3. Here, the 3
different current densities Je = 1.2 ·1011 A/m2, Je = 2.4 ·1011 A/m2 and Je = 4.8 ·1011
A/m2 are exploited. The higher the current density, the higher is the slope of the transfer
curve and the lower is the linear range, consequently, making it beneficial to use smaller
currents.

Figure 3.3: Impact of current density variation on transfer curve of out-of-plane device.

Variation of the uniaxial anisotropy: An uniaxial anisotropy in z-direction should
hamper the tilting of the magnetization vector due to the SOT-effect. Thus, a higher
uniaxial anisotropy in z-direction should lead to a flatter signal curve and to a higher
linear range. This is visualized in the simulation data in Figure 3.4. In Figure 3.4a a small
range of the field sweep is illustrated showing that the higher the uniaxial anisotropy, the
lower is the slope of the transfer curve, which increases the potential working window
of the sensor. Figure 3.4b visualizes a wider range of the field sweep and shows the
exact same result. Methods of how to increase the uniaxial anisotropy in a material are
presented at a later stage of the thesis.

Variation of the saturation magnetization: Figure 3.5 shows the signal curves for
different values of the saturation magnetization µ0Ms. The higher it is, the smaller
is the linear range of the curve (the green curve has just a very small slope). This
is a bit unintuitive, since by the expressions (1.11) and (1.12) Ms should have the
opposite impact on the torque efficiency as Je. However, Ms seems to have a more
complex influence. Thus, choosing a material with an adequate saturation magnetization
improves the potential working range of the sensor.

Variation of the exchange constant: A variation of the exchange constant should
not have any significant impact on the slope of the transfer curve. This is confirmed by
the simulation data in Figure 3.6, where the change due to different exchange constants
is negligible.
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(a) Tighter range of the field sweep. (b) Wider range of the field sweep.

Figure 3.4: Impact of uniaxial anisotropy variation on transfer curve of out-of-plane device.

Figure 3.5: Impact of saturation magnetization variation on transfer curve of out-of-plane device.

Variation of the elliptical shape: Producing a more elliptical sensor element in-
creases the shape anisotropy of the element making it favourable for the magnetization
to point along the x-axis. This increases the efficiency of the tilting from the z-axis.
Therefore, the longer the major axis is with respect to the minor axis of the sensor ele-
ment, the higher should be the slope of the transfer curve and consequently the lower
should be the linear range of the signal curve. This can be seen in the simulation result
visualized in Figure 3.7. The higher the shape ratio of major axis to minor axis, the
higher is the slope of the curve, making it favourable to use circular sensor elements.

Exertion of a magnetic field in z-direction: Applying an additional magnetic field in
z-direction should have a similar impact than an uniaxial anisotropy in z-direction, since
the tilting of the magnetization vector is hampered and the linear range of the signal
curve should be increased. However, exerting a z-field shows an interesting behaviour. In
Figure 3.8, the impact of this exertion is illustrated for different field strengths between
0 mT and 20 mT. Note that the range of the field sweep is chosen to be significantly
higher to visualize the changing behaviour of the signal curve for different applied field
strengths. Besides the signal curve, also the curves of the z-magnetization for the
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Figure 3.6: Impact of exchange constant variation on transfer curve of out-of-plane device.

Figure 3.7: Impact of shape variation on transfer curve of out-of-plane device.

different current directions is illustrated. For zero field the sensor exhibits a very small
linear range. For µ0Hz = 5 mT, a small linear range in between appears. This is due to
the hindered switching of the magnetization due to the SOT. So instead of switching
at µ0Hx = 0 mT the sign of the z-magnetization changes at approximately µ0Hx = ±8
mT. For µ0Hz = 10 mT this behaviour appears more significantly and the switching
happens at approximately µ0Hx = ±20 mT, leaving behind a linear range in between
-20 mT and +20 mT (or slightly beyond it). For µ0Hz = 20 mT the linear part expands
even further and the boundaries are no more visible in the chosen range. Thus, applying
an additional magnetic field in z-direction as a bias improves the linear range of the
sensor element.
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Figure 3.8: Impact of different additional magnetic fields in z-direction on transfer curve of out-of-plane
device.

3.2 Field sensing with in-plane device

The in-plane device is similar to the out-of-plane device presented above. However, the
initial magnetization of the free magnetic layer with flowing SOT-current is pointing in-
plane in the y-direction, which is the reason for the device to be referred to as in-plane
device. It is not sensitive to magnetic fields in x- or y-direction but to magnetic fields in
z-direction. An illustration of this sensor design is given in Figure 3.9.

The current JSOT in the heavy metal induces an SOT in the free magnetic layer, which
leads to a magnetization M of the free magnetic layer pointing along the y-axis without
external field. If no external field is applied, reversing the current direction from +x to −x
leads to the opposite magnetization direction as if the current would flow in +x-direction.
An external magnetic field in z-direction Hz leads to a tilting of the magnetization from
the y-axis dependent on the current direction, which enables field sensing. The simple
current circuit, which is used for this sensor element, is shown in Figure 3.10. The two
current directions used to extract a signal out of the sensor are depicted and xMR stands
for any magnetoresistance exploited to measure the x-magnetization of the free magnetic
layer.

The signal of this in-plane device is proportional to the difference between the x-
magnetizations of the free magnetic layer for the SOT-current flowing either in +x
(mx,+J) or −x-direction (mx,−J):

Signal ∝ mx,+J −mx,−J
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Figure 3.9: Illustration of the in-plane device.

Figure 3.10: Illustration of potential current ciruit.

In magnetic simulations, the magnetization is computed directly and the practical need
of a magnetoresistance to measure the magnetization is neglected. However, the simula-
tions show trends that could be realized by well-designed read-out techniques. Therefore,
the sensor design should be examined by means of single spin simulations. The shape of
the free magnetic layer and the other layers on top of the heavy metal is round or elliptical
with the long axis in y-direction according to the coordinate system introduced in Figure
3.9. The reason for the elliptical shape is the implementation of a shape anisotropy
as additional anisotropy in y-direction, which is discussed below in Section 3.2.1. For
the first examination of the system the following parameters are chosen: The saturation
magnetization is set to Js = µ0Ms = 0.5 T, the thickness of the free magnetic layer
is chosen to be d = 2.5 nm, the Gilbert damping parameter is set to 0.01, the uniaxial
anisotropy constant for anisotropy in z-direction amounts to 105 J/m3 and the current
density is chosen to be 5 · 1012 A/m2, which would result in a current of less than 1
A for typical sensor dimensions. The anisotropy in z-direction seems to be high forcing
the magnetization to point along the z-axis. However, DLT and FLT introduced by the
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flowing SOT-current lead to a magnetization along the y-axis without external field in
z-direction due to the polarization vector in y-direction. The shape is chosen to be round
introducing no addtional anisotropy other than the anisotropy in z-direction. In Figure
3.11 the sensor transfer curve, which gives the connection between the signal and the
entity to be measured, is shown for the mentioned parameter values. The linear range is
surprisingly high for such a simple sensor realization, ranging from -100 mT to +100 mT.

Figure 3.11: Transfer curves for different ranges of the magnetic field in z-direction.

The offset of this sensor is zero in the simulation, which was expectable for the given setup
with pure magnetic fields in z-direction. However, this is an artificial situation since the
field to be measured might be distorted with non-negligible x- or y-components or with
additional fields as disturbing noise. Therefore, it is crucial to examine the system with
additional x- and y-fields. To prove zero-offset also for x- and y-field components, they
are added to the overall magnetic field in the simulation. In Figure 3.12 the corresponding
transfer curves for pure x- or y-fields as disturbances are shown, where the field strength
of the additional field is chosen to be 10 mT. It turns out, that disturbing fields either
solely in x-direction or in y-direction do not affect the zero-offset of the sensor element,
which at first seems promising. The slope of the transfer curves are different compared
to the original one, which disables field sensing with this simple design. However, it has
to be mentioned, that a disturbing field of 10 mT for the given measurable field range is
quite high. Moreover, by using more of these zero-offset sensor elements with different
alignments and by combining their signals, field sensing might be possible.

(a) Additional x-field of 10 mT. (b) Additional y-field of 10 mT.

Figure 3.12: Transfer curves for disturbing fields either in x- or in y-direction.
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Until now, only disturbing fields solely in x- or in y-direction were applied. Another
problem appears when going one step further and applying disturbing magnetic fields with
both x- and y-component. In Figure 3.13a a disturbing field of µ0H = 5 mT · (1, 1, 0)T
is applied in addition to the magnetic field in z-direction. Besides a small bending of
the transfer curve, this leads to a conspicuous offset of approximately -45 mT. The
examined disturbing field is quite high, but the immense offset suggests that also for
small disturbing fields the offset is not negligible at all. In Figure 3.13b a rotating
disturbing field of 1 mT is applied to measure the offset depending on the angle of the
field to the x-axis. Note that in simulation no z-field is applied and that the offset is
quantified in terms of the magnetization difference, so in terms of the actual signal at
zero field. For pure x-fields (0◦ and 180◦) and pure y-fields (90◦ and 270◦) the offset is
zero, whereas it is non-zero in between. Where the disturbing field is aligned 45◦, 135◦,
... to the x-axis, the offset reaches its maximum. This is, where the x- and y-component
are equal in magnitude. In the following, the dependency of this offset on different
parameters is investigated.

(a) Additional magnetic field of 5 mT in x-direction and 5
mT in y-direction.

(b) Offset of transfer curve for a rotating disturbing field of
1 mT.

Figure 3.13: Transfer curve behaviour for disturbing fields in x- and in y-direction.

3.2.1 Offset dependency on additional anisotropy

A parameter, that could be adapted to reduce the offset by reducing the impact of
disturbing y-fields, is an additional anisotropy. This additional anisotropy in y-direction
leads to a magnetization vector, that tends to align according to the additionally intro-
duced easy axis and therefore lowers the maximum offset for disturbing fields aligned
45◦, 135◦, ... to the easy axis. There are some ways to introduce such an additional
anisotropy in the sensor element. One possibility is to use an elliptical form for the
sensor element, where the major axis of the ellipsis defines the additional easy axis. This
is called shape anisotropy. Other possibilities would be to apply a magnetic field during
film-growth or to use specific crystal substrates. (Lim et al., 2022) In Figure 3.14a, an
additional anisotropy in y-direction is introduced. The higher the additional anisotropy
is, the lower is the offset. The values for the anisotropy field range from 0 mT to 10
mT, which is small compared to the original anisotropy in z-direction, where the coercive
field in z-direction is µ0Hk,z = 125 mT. The magnitude of the rotating disturbing field is
1 mT.
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(a) Offset for rotating disturbing field of 1 mT for different additional
anisotropy fields in y-direction named in the legend. (b) Transfer curve for additional anisotropy

fields of 0 mT and 10 mT.

Figure 3.14: Offset dependency on additional anisotropy in y-direction.

Nevertheless, it has to be taken into account, that introducing an additional anisotropy
also reduces the actual signal, which might make the offset lowering non-profitable.
This can be seen in Figure 3.14b, where the transfer curves for additional anisotropy
fields of 0 mT and 10 mT are depicted. The signal strength is reduced by a factor of
approximately 10. The offset reduction is bigger than the signal reduction, which shows
that the introduction of an additional anisotropy is beneficial to realize offset-reduction.

3.2.2 Offset dependency on ηfield and ηdamp

Other parameters that might influence the offset are ηfield and ηdamp, which are the co-
efficients for the fieldlike and dampinglike torque, respectively. These depend on the
choice of the materials used in the in-plane sensor. To extract these parameters there
are different experimental methods. Prominent examples of such extraction methods are
the Hayashi method (Hayashi et al., 2014) and the Dutta method (Dutta et al., 2021).
Without going further into detail about these methods, the offset dependency on these
parameters is observed. In Figure 3.15 the signal offset for a rotating field of 1 mT is
examined for different values of ηfield and a fixed value of ηdamp = 0.1. This examination
is repeated for a different value of ηdamp = 0.01 in Figure 3.16. In the left plots, the
range of ηfield-variation is 0 to 0.09, whereas it is 0.10 to 0.19 in the right plots. Note
that the graphs on the right showing the dependencies for higher values of ηfield have
another y-range than the graphs on the left for reasons of visibility.

The figures illustrate that the FLT is responsible for the offset and that the signal offset
increases for increasing values of ηfield until a threshold of ηfield = 0.06. Above this
threshold the offset decreases for increasing ηfield values. It is remarkable that the max-
ima of the signal offset are shifted away from 45◦, 135◦, ... so strongly, especially at and
around the threshold value of ηfield = 0.06.
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Figure 3.15: Offset for rotating disturbing field of 1 mT for ηdamp = 0.1 and different values of ηfield.
(The left figure displays values from 0 to 0.09 and the right figure displays values from 0.10 to 0.19).

Figure 3.16: Offset for rotating disturbing field of 1 mT for ηdamp = 0.01 and different values of ηfield.
(The left figure displays values from 0 to 0.09 and the right figure displays values from 0.10 to 0.19).

From the above results it is already clear that ηdamp has no effect on the offset behavior
of the in-plane sensor element. To validate this observation the offset behaviour for a
rotating field of 1 mT is investigated for fixed ηfield values and different values of ηdamp.
In Figure 3.17 and 3.18 the simulations are performed with the values ηfield = 0.1 and
ηfield = 0.01, respectively. In the left plots, the range of ηdamp-variation is 0 to 0.09,
whereas it is 0.10 to 0.19 in the right plots. Note that the plot on the right in Figure
3.18 showing the dependencies for higher values of ηdamp has another y-range than the
plot on the left for reasons of visibility.

As expected, the offset does not depend on ηdamp in Figure 3.17. However, for very
high values of ηdamp at ηfield = 0.01 there appear some offset fluctuations, which might
have its origin in the numerical approach of solving the underlying differential equations.
Probably, these fluctuations are non-physical and can be neglected in the offset reduction.

The circumstance that the offset does not depend on ηdamp can be explained analytically.
For the LLGS equation (1.13), an expression can be extracted for the equilibrium by
requiring that the magnetization does not change anymore in time. This expression is
given in (3.1). For further analytical examinations of the LLGS equation the reader is
referred to (Zhu & Zhao, 2020).
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Figure 3.17: Offset for rotating disturbing field of 1 mT for ηfield = 0.1 and different values of ηdamp.
(The left figure displays values from 0 to 0.09 and the right figure displays values from 0.10 to 0.19).

Figure 3.18: Offset for rotating disturbing field of 1 mT for ηfield = 0.01 and different values of ηdamp.
(The left figure displays values from 0 to 0.09 and the right figure displays values from 0.10 to 0.19).

m×

[
Heff − jeh̄

2etµ0Ms

[
ηdampp×m+ ηfieldp

]]
= 0 (3.1)

Without an applied external field the magnetization is pointing parallel to the y-axis
due to the FLT and DLT terms, since the polarization vector is (0,-1,0)T or (0,1,0)T

depending on the current direction. The DLT leads to a tilting of the magnetization
vector into the x-direction if an external field in z-direction Hz is applied. This can be
seen by looking at the contribution of the DLT term and neglecting the FLT in equation
(3.2). Computing the cross-product in the inner brackets for the different polarization
vectors (3.3) leads to the mentioned observation. The magnetization vector gets a small
z-component mz due to Hz, which leads to a respective reduction of the y-component
of the vector. The DLT results in a tilting of the vector in the x-direction.

m×

[
Heff − jeh̄

2etµ0Ms

[
ηdampp×m

]]
= 0 (3.2)

pI± ×m =
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∓1
0

×
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 =
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0
0

 (3.3)
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The above analytical examination especially implies that the signal offset of the sensor
is zero if only the DLT is taken into account, since for Hz = 0 (valid for the offset) no
tilting happens. This directly leads to the finding that the FLT is responsible for the
offset.

Additional anisotropy and the insight on the dependencies of the offset on the parameters
ηfield and ηdamp can be exploited to reduce the signal offset of the in-plane sensor device.
Other material parameters and the current strength also affect the offset and by choosing
the material composition and the used current density wisely it can be reduced even
further. Concerning the SOT-current a higher current density reduces the signal offset.
However, it cannot be reduced to zero. Therefore, a potential explanation of the offset
and a possible workaround should be provided in the following.

3.2.3 Offset explanation and workaround

The main reason for the offset comes from the asymmetry of the elliptical in-plane sensor
with respect to the different current directions and external fields not pointing exactly
in x- or y-direction. The elliptical shape provides a given initial magnetization, which is
different for the two possible current directions I+ and I−. This is visualized in Figure
3.19. If no magnetic field is applied, the magnetization equals the initial magnetization.
If a magnetic field is applied in x- or y-direction solely, the tilting of the magnetization
direction happens to be symmetric. If it is applied in another direction, especially in the
direction 45◦ off the x-axis Hxy, the situation is not symmetric anymore. This is also
illustrated in Figure 3.19. The tilting of the magnetization for I+ is small compared to
the tilting of the magnetization for I−. Since the signal is proportional to mx,I+ −mx,I− ,
the sensor signal appears with an offset.

Figure 3.19: Tilting of magnetization due to no magnetic field or a magnetic field rotated 45◦ from
x-axis for different current directions.

A simple solution to the offset problem is to remove the asymmetry from the sensor
element, which causes the offset. This can be done by combining the sensor signals
of two in-plane sensor elements which are rotated 90◦ to each other. This workaround
is visualized in Figure 3.20. By adding up the sensor signals of the two elements a
new signal is generated, which shows symmetry concerning disturbing in-plane magnetic
fields in any direction. The disadvantage of this workaround is the need of 2 sensor
elements, but that would be no serious drawback in practical realizations since such
sensor elements are easy and cheap to produce.
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Figure 3.20: Potential workaround avoiding the signal offset of the single in-plane sensor element. The
red arrow depicts the magnetic field rotated 45° from the x-axis and the little blue arrows visualize the
current directions in each sensor element.

3.3 Wheatstone SMR-sensor (results from (Xu et al.,
2018))

In the following section, a sensor design proposed by a Chinese group around Yanjun
Xu et al. from 2018 should be investigated. The title of the corresponding paper calls
the sensor design an ”Ultrathin All-in-One Spin Hall Magnetic Sensor with Built-In AC
Excitation Enabled by Spin Current” and the paper appeared in the journal Advanced
Materials Technologies. (Xu et al., 2018) The sensor consists of 4 distinct sensor el-
ements, which are arranged in a Wheatstone bridge circuit. The design is shown in
Figure 3.21. Note here, that the illustration of the heavy metal layer (Platinum Pt)
and the free ferromagnetic layer (Nickel-iron NiFe) with the according current paths is a
bit misleading. The current flows through the heavy metal layer and the magnetization
gets tilted in the adjacent free magnetic layer. In Figure 3.22 the circuit depiction is
simplified and the circuit is identified to be a typical Wheatstone bridge.

Figure 3.21: Schematic illustration of the Wheatstone SMR-sensor. (taken from Xu et al., 2018, p. 7).
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Figure 3.22: Simple schematic of Wheatstone SMR-sensor and Wheatstone bridge circuit.

The distinct sensor elements consist of a 2 nm thick Platinum heavy metal layer and
a 1.8 nm thick Nickel-iron layer as the ferromagnetic free layer. These elements are
of elliptical shape with a ratio long axis to short axis of 4:1 and they are grown up
on a Si/SiO2 substrate. The working principle of this sensor design is based on the
coexistence of the Spin Hall Magnetoresistance (SMR) and the SOT in the bilayers of
the distinct sensor elements. By using Alternating Current (AC) current for the supply
of the Wheatstone bridge, the demonstrated sensor seems to be an all-in-one magnetic
sensor that features a simple structure, nearly zero Direct Current (DC) offset, negligible
hysteresis, a high sensitivity and low noise. For small fields it can be used as field sensor,
but also as rotation and vibration detector. (Xu et al., 2018)

To examine this type of sensor design the experimental properties demonstrated in the
paper are presented in the following. Afterwards, some simulations are performed to
confirm the properties and also to investigate the properties at higher magnetic fields.
First of all, the origin of the sensor signal has to be examined analytically. The current
flows symmetrically through the upper and the lower branch in Figure 3.21, so the same
amount of current flows through the elements 1 and 2 as it flows through the elements
3 and 4. Therefore, the voltage signal can be described by looking only at one branch.
In Figure 3.23 one branch, in this case the lower branch, is illustrated with the according
current flows and the schematic magnetization tilting due to the applied external mag-
netic field.

Figure 3.23: One branch of the Wheatstone SMR-sensor. (taken from Section 2 of Supporting Infor-
mation of Xu et al., 2018).
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For the exact derivation of the voltage output of the sensor the reader is referred to
the Supporting Information of (Xu et al., 2018). Here, only the final formulas for the
signal taken from the mentioned source should be discussed. The voltage output of the
Wheatstone SMR-sensor Vout is given in equation (3.4), where I0 is the current amplitude
(I = I0 sinωt), ∆R0 is the resistance offset difference between the elements 1 and 2,
ω is the angular frequency of the current and α is the SOT-efficiency parameter with
the property that the overall SOT-bias field can be written as Hbias = HFL + HOe =
αI with HFL being the effective field contribution from the FLT and HOe being the
Oersted field generated due to the current flow through a conductor. ∆R takes into
account the changes in resistance due to magnetoresistance effects and is given as
∆R = ∆RSMR + ∆RAMR with ∆RSMR being the contribution of SMR and ∆RAMR

being the contribution of AMR. Therefore, the overall magnetoresistance is given as
R = R0 +∆R sin2φ with R0 being the resistance offset and φ being the angle between
the current direction and the magnetization. At this point, it has to be mentioned that
besides SMR also AMR can be used for the measurement. However, SMR and AMR can
be seen as two sides of a coin and it turns out that concentrating on the SMR-effect has
practical benefits. HD and HK are the demagnetization field and the uniaxial anisotropy
field, respectively, and Hy is the external field, which is the field of interest.

Vout =
1

2
I0∆R0sinωt+

1

2

αI20∆RHycos2ωt

(HD +HK)2
− 1

2

αI20∆RHy

(HD +HK)2
(3.4)

The time average of the voltage signal, so the DC-component of Vout can be computed
from (3.4) and is given as (3.5). This formula shows the direct link between the voltage
output, the magnetoresistance and the magnetic field of interest.

Vout =
αI20∆R

2(HD +HK)2
Hy (3.5)

At this point it is important to mention that this DC-component of Vout, which is nec-
essary to measure the magnetic field, can be obtained in two different ways. One way
would be to use DC excitation instead of AC excitation. However, the paper (Xu et al.,
2018) states clearly that DC excitation makes an initial magnetization 45◦ off the current
direction and therefore off the easy axis necessary. ”It is worth noting that, under the
AC excitation, it is no longer necessary to bias the magnetization 45◦ away from the
easy axis for output linearization, which greatly simplifies the sensor design.” (Xu et al.,
2018, p. 4) Since for this thesis no experiments were performed, this experimental issue
cannot be confirmed. In simulation, it does not make a difference if DC excitation or AC
excitation with subsequent time averaging is exploited. However, it is comprehensible
that process fluctuations might have a problematic impact on the experimental procedure
when exciting the circuit only with DC current and an initialization as given in Figure
3.21 is necessary to obtain correct results. The second way, which solves this issue in a
very efficient way and which is demonstrated as the way to go for this sensor design, is
to use AC current and to compute the time average in the sensing procedure by using
a standard lock-in technique and extracting the DC signal from the second harmonic.
Going further into detail about the experimental extraction of the sensor signal is beyond
the scope of the thesis.
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The experimental results in the according paper seem very promising. In Figure 3.24
field sweeps from -0.5 Oe forwards to 0.5 Oe and afterwards from 0.5 Oe backwards to
-0.5 Oe are performed. The signal curve, which is the time averaged voltage output, is
a surprisingly smooth transfer curve, that although performed experimentally seems to
be obtained in simulation. The used AC current density amplitude is 5.5 · 105 A/cm2

(jPt rms stands for the root mean square amplitude of the current density flowing through
the Platinum layer) and the AC frequency is 5000 Hz. The resulting signal output range
for the given field sweep is in the order of a few hundreds of µV, which can be measured
easily. The linear range of the transfer curve extends from -0.1 Oe to 0.1 Oe, which can
be seen in the small frame in Figure 3.24. Although promising, the field measurement
also shows the very narrow linear range from -10 µT to 10 µT. If the scope is to achieve
good measurement results for such small magnetic fields, this sensor clearly exhibits
beneficial properties.

Figure 3.24: Field measurement for a field range between -0.5 Oe to 0.5 Oe (additional magnification
for the range between -0.1 Oe and 0.1 Oe). (taken from Xu et al., 2018, p. 7).

An experiment performed in the paper, that shows a strength of this sensor, is visualized
in Figure 3.25. An external oscillating magnetic field with an amplitude of 0.1 Oe and
an oscillation frequency of 0.1 Hz is applied and the respective sensor signal is examined.
Due to the choice of the amplitude being 0.1 Oe the single vector components are always
in the linear range between -0.1 Oe and 0.1 Oe, which ensures that the sensor is always
working in the given working window. From the visual inspection of the signal curve
in Figure 3.25a at the beginning and after 1, 2 and 3 hours of measurement it can be
derived that the change of the signal curve properties over time has to be very small.
This observation is confirmed in Figure 3.25b, which shows the change of the amplitude
and the change of the offset over time. The amplitude and offset change are about
0.2% and 0.3%, respectively, compared to the signal amplitude. This negligible changes
emphasize the stability of the presented Wheatstone SMR-sensor over time.
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(a) Illustration of the oscillating sensor signal at the begin-
ning and after 1, 2 and 3 hours of measurement.

(b) Amplitude change and change of DC offset during the
oscillation measurement.

Figure 3.25: Investigation of sensor signal for an oscillating magnetic field with an amplitude 0.1 Oe
and an oscillation frequency of 0.1 Hz. (taken from Xu et al., 2018, p. 7).

There are two contributions to the overall magnetoresistance in the resulting voltage out-
put, the SMR and the AMR. Even though both effects contribute, SMR is dominant,
which is why the sensor is referred to as Wheatstone SMR-sensor. This fact can be seen
in Figure 3.26. At room temperature the SMR contribution is two times bigger than
the AMR contribution. Therefore, the change in magnetoresistance is predominantly
determined by the SMR-effect contributing with 2/3, while only 1/3 comes from the
AMR-effect. This circumstance is even amplified for higher temperatures emphasizing
the dominant role of SMR. Since the SMR-contribution nearly does not change for
higher temperatures, the sensor is stable to temperature changes.

Another important characteristic of a sensor is the detectivity. Therefore, the detectivity
of the Wheatstone SMR-sensor is investigated for the oscillation experiment visualized
in Figure 3.25 for different bias current frequencies and for different frequencies of the
oscillating magnetic field. The result is illustrated in Figure 3.27. At a frequency of 1
Hz for the oscillating field the sensor with DC bias shows a detectivity of 2.8 nT/

√
Hz,

whereas it exhibits a detectivity of around 1 nT/
√
Hz for AC bias at all AC frequencies,

which shows another benefit of AC excitation. (Xu et al., 2018, p. 8) The detectivity is
overall very good and even improves for higher oscillation frequencies as it exhibits small
and even decreasing values. The peak for an AC bias at 500 Hz can be explained by bad
filtering of the signal and does not represent a weakness of the sensor at this special AC
frequency.

A major application for such sensor designs are rotation sensors. Therefore, a rotation
measurement and a back and forth sweeping in a small angle range are performed in (Xu
et al., 2018) to examine the quality of the Wheatstone SMR-sensor as rotation sensor
concerning accuracy and angle resolution. In Figure 3.28 the rotation measurement is
illustrated. By comparing the signal curve to the sine fit it can be observed that the
sensor works very accurately due to the high accordance between experimental data
and fitting curve. To investigate the angular resolution of the sensor the field is swept
between 0◦ and 0.1◦ back and forth with steps of 0.01◦. The angles and the according
sensor signals are depicted in Figure 3.29. The experimental curve (red) shows that
the angular resolution of the sensor is in the order of 0.01◦, which is better than most
comparable sensor designs available can do.
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Figure 3.26: Temperature dependency of SMR
and AMR contribution. (taken from Xu et al.,
2018, p. 7).

Figure 3.27: Detectivity of the sensor for the os-
cillation experiment from Figure 3.25 for different
current biases and different oscillation frequen-
cies. (taken from Xu et al., 2018, p. 11).

Figure 3.28: Rotation measurement for H0 = 0.1
Oe. (taken from Xu et al., 2018, p. 13).

Figure 3.29: Sensor signal for sweeping the field
back and forth from φ = 0◦ to 0.1◦ in steps of
0.01◦. (taken from Xu et al., 2018, p. 13).

All of the examination in the paper (Xu et al., 2018) described above seems very promis-
ing. Another illustrative proof-of-concept experiment is performed to show the capability
of this Wheatstone SMR-sensor. A finger motion sensor is realized using the sensor de-
sign, which is illustrated in Figure 3.30. By changing the angle of the finger to the Earth’s
surface from 90◦ to 15◦, the y-component of the acting external field on the sensor gets
more and more equal to the horizontal component of the Earth’s magnetic field, which
explains the increase in signal magnitude along the experiment. The stepwise change
visualizes the accuracy of the sensor. The experiment works since the Earth’s magnetic
field is in the order of a few µT. However, depending on the location of the experimenter
on the Earth, the Earth’s magnetic field might already be too high to provide accurate
measurement results, since it is typically higher than the 10 µT accurately measurable
with the Wheatstone SMR-sensor.
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Figure 3.30: Finger motion sensor exploiting the Wheatstone SMR-sensor design. (taken from Xu et al.,
2018, p. 18).

As already mentioned and emphasized in the paper, the results from the paper (Xu et al.,
2018) discussed above are surprisingly promising, since the sensor exhibits properties as
astonishing detectivity, negligible hysteresis and DC offset and better angular resolution
than comparable sensors. When listing these characteristics, it is of utmost importance
to mention that the Wheatstone SMR-sensor only works for a very narrow field range
of a few µT. Higher fields cannot be detected accurately and for practical realizations
it might even be necessary to shield the sensor from the Earth’s magnetic field, since it
might already have a strong impact of the sensing accuracy. Till now, only the exper-
imental examination performed in the paper (Xu et al., 2018) was taken into account.
In the following, simulations are performed to investigate the system further. The above
mentioned properties should be confirmed and the behaviour at higher fields should be
looked at.

3.4 Wheatstone SMR-sensor (simulation results)

The simulation scripts performing single spin simulations look similar to the presented
single spin simulation script in Appendix A, just with more sensor elements included in
the simulation process. Therefore, presenting a simulation script for the Wheatstone
SMR-sensor is renounced.

First of all, a way of obtaining the Wheatstone SMR-sensor signal by single spin simula-
tions has to be elaborated. Therefore, the magnetization components, that contribute
to the change in magnetoresistance due to SMR, have to be identified. This is elab-
orated in the paper (Cho et al., 2015). In this paper, field rotations along different
rotation axis relative to the current direction are performed and the resistance signals
are measured. The experimental setup to measure the longitudinal resistance along the
current direction Rxx and the transversal resistance normal to the current direction Rxy

is a Hall cross. The applied field rotations as well as the resistance signals are illustrated
in Figure 3.31.
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Figure 3.31: Field angular dependency of the magnetoresistance. (a) Schematic of the applied field
rotations. (b) Longitudinal resistance Rxx (along the current direction). (c) Transversal resistance Rxy

(normal to the current flow direction). (taken from Cho et al., 2015, p. 3).

The theory behind SMR is further explained in (Chen et al., 2013). There, the longitu-
dinal and transversal resistivities ρxx and ρxy are identified (besides some adaptions from
(Cho et al., 2015)) as (3.6) and (3.7). Besides ρ as the intrinsic electric resistitvity and
∆ρ0 as the resistivity without spin-orbit contributions, the important contributions are
∆ρ1 and ∆ρ2 as the changes of the longitudinal resistivity due to SMR and AMR effect,
which are also the changes of the transversal resistivity due to Planar Hall Effect (PHE)
and Anomalous Hall Effect (AHE). According to these formulas the magnetoresistance
effects can be assigned to the different signals in Figure 3.31, since for different rotation
axes different magnetization components change.

ρxx = ρ+∆ρ0 +∆ρ1(1−m2
y) + ∆ρ2m

2
x (3.6)

ρxy = ∆ρ1mxmy +∆ρ2mz (3.7)

However, the important thing to note is that the SMR-effect is proportional to m2
y.

Therefore, in the simulation the y-component of the magnetization vector can be ex-
ploited to obtain a measure of the sensor signal. As already mentioned, for simulation
purposes it does not make a difference, if AC or DC current is used since no process
fluctuations appear and the upper and lower branch of the Wheatstone bridge are equal.
On account of simplicity, DC current is assumed. A simplified illustration of the sensor
with the sensor elements used for the simulation is plotted in Figure 3.32.
To obtain the corresponding sensor signal, the magnetization of the two elements is sim-
ulated and the y-components are taken to mimic the SMR-effect. The logic, that is also
illustrated in Formula (3.8), is the following: When using DC current, the experimental
signal, i. e. the DC-voltage output, is given as the product of the current strength I
times the resistance due to SMR. This resistance is zero for the initial state, when no
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Figure 3.32: Simple illustration of the Wheatstone SMR-sensor with the elements used in the simulation.

external field is applied. I is obviously proportional to the current density je since the
cross-sections of the elements do not change in time. Both elements 1 and 2 contribute
to the magnetoresistance and they do so in opposing manner. That is because the cur-
rent direction in element 1 is the opposite compared to the current direction in element
2. Due to this circumstance and the proportionality of the resistance to the squared
y-component of the magnetization in each element, the resistance signal is given as
RSMR ∝ (m2

y,1 −m2
y,2). All in all, a direct link between the experimental signal and the

simulation signal is established enabling the simulation of the Wheatstone SMR-sensor.

Experimental signal = Vout = I ·RSMR ∝ (m2
y,1 −m2

y,2) · je = Simulation signal (3.8)

In the following, some sensor properties are examined by means of numerical simula-
tions. For all the simulations, the following parameters are fixed: ηdamp = 0.1, ηfield =
0.1, saturation magnetization µ0Ms = 0.5T and thickness of the free magnetic layer
d = 2 nm. These parameters do not represent the original parameters for the used
materials in the experiment, since the exact values for ηdamp and ηfield of the given
Pt/NiFe-bilayer is not given. For thickness and saturation magnetization, the nearly
exact value and a typical value for the saturation magnetization are used, respectively.
While this means that the exact signal curves are not reproduced exactly, which is not
the scope of numerical simulations of magnetic sensors, some main sensor characteristics
still can be extracted.

3.4.1 Application of Wheatstone SMR-sensor as field sensor

First of all, the experimentally obtained astonishingly smooth transfer curve in Figure
3.24 should be reproduced in simulation. Therefore, a field sweep from -0.5 Oe to 0.5 Oe
(so from -50 µT to 50 µT) is performed in a single spin simulation. A shape anisotropy
of 0.12 mT due to the elliptical shape is assumed as effective anisotropy field and a
current density of 5.5·109 A/m2 (= 5.5·105 A/cm2) is taken into account. The initial
magnetization is set into x-direction for all sensor elements. The result is the transfer
curve in Figure 3.33. The y-axis is showing the signal with respect to a maximal signal
strength in the subsequent image. This, however, does not change the characteristics of
the signal curve since the experimental signal and simulation signal are just equal up to
an unknown proportionality factor, which does not affect the shape of the curve. The
sensor curve is indeed smooth and has a linear range between -10 µT to 10 µT. The
very small curvature might come from an inadequate choice of the SOT-parameters.
However, the experimentally obtained signal curve can be confirmed.
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Figure 3.33: Simulated field sweep in the field range between -50 µT and 50 µT.

Another interesting examination of the system can be done by varying the current den-
sity used in the sensor. This is done in Figure 3.34, which shows the signal curves for
a wider field range between -100 µT and 100 µT. The enormous dependence of the
signal curve properties on the current density is surprising. Note that a current reversal
does not change the sign of the slope since the branches of the Wheatstone bridge are
symmetric. However, varying the current density changes the linear range and also the
sign of the slope in this potential working window of the sensor. For example, raising
je from 5.5 ·109 A/m2 to 1 ·1010 A/m2 increases the linear range, but changes the sign
of the transfer curve slope to negative. For 2 ·1010 A/m2 an even higher linear range
with positive slope is obtained. Further increases in the current density lead partially to
higher linear ranges with negative slope until at a current density of 1 ·1011 A/m2 the
transfer curve collapses. This might be due to the high current flow in the small sensor
elements. At je = 1 · 1011 A/m2 the current flowing through the sensor elements is at
least 40 mA at the largest extent of the elements. This might be already critical for the
tiny elliptical sensor elements.

Some current densities seem to be beneficial exhibiting a wider linear range. To examine
this further, the current densities 3 ·1010 A/m2, 4 ·1010 A/m2 and 5 ·1010 A/m2 are
chosen for a field sweep in a wider field range. The result is illustrated in Figure 3.35.
A good choice of the current density leads to a better linear range, which however does
not extend significantly over a few tens of µT.

The major scope of the simulation part for the Wheatstone SMR-sensor is to establish
higher linear ranges and therefore to increase the working window of the sensor, besides
looking at the corresponding properties. An obvious way of increasing the linear range
is to reduce the ability of the magnetization vector to tilt away from the easy axis.
This scope can be achieved by introducing an additional uniaxial anisotropy with easy
axis along the current direction or by establishing a so called exchange bias. Additional
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Figure 3.34: Simulated field sweep in the field range between -100 µT and 100 µT for different current
densities.

anisotropy is already discussed above for the single sensor elements and can be obtained
by using a more elliptical shape, by applying a field during depositional growth or by
using a single-crystal substrate. Exchange bias can be seen as a bias field applied during
sensing and is further described in the paper (Lim et al., 2022). To illustrate the improve-
ment due to these adjustments, simulations are performed with a shape anisotropy field
of 10 mT as effective anisotropy field and different exchange bias fields. An anisotropy
field of 10 mT is high, but the same effect can be achieved by using higher exchange
biases. The current density is set to je = 5 · 109 A/m2. Figure 3.36 is obtained by these
simulations. In Figure 3.36a no exchange bias is established, whereas in Figure 3.36b an
exchange bias field of 10 mT is applied as an additional external field.

It can be seen that this method is able to increase the linear range. Already without
exchange bias, a stronger shape/additional anisotropy leads to an improvement of the
operation margin compared to the result illustrated in Figure 3.33, where a small shape
anisotropy of 0.12 mT is considered. An additional exchange bias enlarges the linear
range even further. However, it has to be taken into account, that the signal strength
itself also decreases when making the tilting of the magnetization vector smaller. This
might be a problem in the practical signal measurement, even though the measurement
of tiny voltages is not a big experimental obstacle.

Another important aspect of why to establish some sort of bias field in one direction is
the initialization of the sensor. Without such a constraint, an anisotropy along the x-axis
could lead to an initial magnetization in positive or negative x-direction. This could, in
the worst case, lead to the initial configuration visualized in Figure 3.37. There are other
possible initial configurations, but the shown configuration leads to the same magnetiza-
tion outcomes in both sensor elements of the upper and the lower branch, which causes
the cancellation of the overall signal output. This is illustrated in the simulated transfer
curve in Figure 3.38, where the mentioned initial magnetization is assumed.
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Figure 3.35: Simulated field sweep in the field range between -1 mT and 1 mT for 3 specific current
densities.

(a) Signal curve for no exchange bias field and a shape/ad-
ditional anisotropy field of 10 mT.

(b) Signal curve for an exchange bias field of 10 mT and a
shape/additional anisotropy field of 10 mT.

Figure 3.36: Influence of reducing the tilting ability of the magnetization vector on sensor signal.

The Wheatstone SMR-sensor is sensitive to magnetic fields in y-direction. An important
examination of the sensor principle is to apply x-fields as disturbing fields. The results
of this observation have also a huge impact on the potential performance of the sensor
as rotational sensor. Positive x-fields act into the same direction as constraining bias
fields. Therefore, they should have a positive impact on the linear range of the transfer
curve with a resulting reduction in the signal strength as already pointed out. This can
be confirmed with the simulated transfer curves shown in Figure 3.39, where different
x-fields from 0 mT to 1 mT are assumed. The used current density is je = 5 · 109 A/m2

and a shape anisotropy of 10 mT is assumed to achieve wider linear ranges. The overall
strength decreases for higher magnetic fields in the positive x-direction. This trend con-
tinues also for higher fields as shown in Figure 3.36, which can be explained theoretically,
since higher fields in positive x-direction reduce the tilting of the magnetization vector
further and further.
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Figure 3.37: Visualization of the Wheatstone
SMR-sensor with wrong initialization caused po-
tentially by missing bias field constraint.

Figure 3.38: Sensor signal with the initial magne-
tization given in Figure 3.37.

Figure 3.39: Sensor signal for disturbing fields in the positive x-direction.

The examination of disturbing fields in negative x-direction is more interesting. Such
constraining fields lead to a higher signal strength, since the tilting of the magnetization
vector is benefited. The same simulation as before is now performed in Figure 3.40
for different fields in negative x-direction ranging from 0 mT to 1 mT (Figure 3.40a)
and also for distinct field strengths ranging from 0 mT to 3 mT (Figure 3.40b). For
small disturbing fields in the negative x-direction the overall signal strength is slightly
increased. However, for higher fields fluctuations appear and the linear range is reduced
strongly. Especially the behaviour with magnetic fields in negative x-direction, but also
the change in signal strength for x-fields in general might cause severe problems when
using the sensor to measure rotations.

3.4.2 Application of Wheatstone SMR-sensor as rotation sensor

In Figure 3.28, the sensor principle is used for rotation sensing. It is important to note,
that the rotating field has a strength of H0 = 0.1 Oe, which is µ0H0 = 10 µT, which
is very small. Even for such a small magnetic field, it might be seen in the mentioned
illustration of the sensor signal, that the signal curve deviates slightly from the sine
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(a) Sensor signal for disturbing fields in the negative x-
direction ranging from 0 mT to 1 mT.

(b) Sensor signal for disturbing fields in the negative x-
direction ranging from 0 mT to 3 mT.

Figure 3.40: Sensor signal for disturbing fields in the negative x-direction.

curve at the minimum and maximum at 90◦ and 270◦. To examine the potential of the
sensor principle for rotation sensing, a higher shape anisotropy of each sensor element
is assumed to increase the linear range of the field sensor. It is set to 10 mT and the
current density is chosen to be je = 5 · 109 A/m2. First, a rotating magnetic field with
µ0H0 = 10 µT is applied. This leads to the signal curve in Figure 3.41. The curve
seems to be quite good and close to the sine curve. The opposite course of the curve
compared to the curve presented in the paper has no physical meaning, since the signal
curves in simulation and experiment are just proportional to each other.

Figure 3.41: Sensor signal for rotating field of µ0H0 = 10 µT.

Problems appear, if higher magnetic fields are chosen to rotate. This is visualized in
Figure 3.42. In Figure 3.42a a magnetic field with µ0H0 = 0.1 mT is chosen, whereas
in Figure 3.42b a magnetic field with µ0H0 = 1.8 mT is applied. Due to the severe
problems with negative x-fields the maximum and the minimum of the curve are shifted
together when increasing the rotating field.
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(a) Sensor signal for rotating field of µ0H0 = 0.1 mT. (b) Sensor signal for rotating field of µ0H0 = 1.8 mT.

Figure 3.42: Sensor signal for rotating fields with higher strengths.

To illustrate this further, the shift of the maximum in the signal curves of the rotation
sensing is examined for increasing magnitude of the rotating field. Therefore, different
field strengths between 0.1 mT and 1.8 mT are applied in the rotation simulation and
the shift of the angle, at which the maximum appears, is visualized in Figure 3.43. It
can be seen clearly that the angle of the maximum increases linearly with increasing field
strength and the shift is tremendous. For the sensor to work properly as rotation sensor
the angle of the maximum should be 90◦ and already for a field strength of 1 mT the
displacement of the maximum amounts to more than 10◦. If the curve in Figure 3.43 is
prolonged, the conclusion can be drawn that flawless rotation sensing is only possible in
the limit of zero rotating field, which however would not deliver any signal. Already for
tiny rotating fields an error occurs, which might be insignificant to some extent.

Figure 3.43: Shift of angle of signal maximum in rotation measurement for increasing strength of
rotating field.
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In the following, the potential of the Wheatstone SMR-sensor for rotation sensing should
be examined. The simplest possible realization of a rotation sensor with this sensor prin-
ciple are two Wheatstone SMR-sensors rotated 90◦ to each other as depicted in Figure
3.44. The reason for this necessity is that the sine curve is not an injective imaging,
meaning that two distinct angle values can be projected onto one and the same signal
output. This leads to an indeterminacy in the sensing procedure, which can be elimi-
nated by measuring the signal outputs of two sensor elements arranged in the illustrated
manner. The signal curves of the two sensor elements are a sine curve and a cosine
curve. By dividing the signal of the left sensor in Figure 3.44 by the signal of the right
one and applying the arctangent to this value, the rotation angle can be extracted and
therefore sensed unambiguously. This works only flawlessly, if the signal curves are ideal
sine and cosine curves.

Figure 3.44: Realization of a rotation sensor using two Wheatstone SMR-sensors rotated 90◦ to each
other.

With the above concept the rotation sensing procedure can be simulated. First, a ro-
tating magnetic field with a small magnitude of µ0H0 = 10 µT is assumed. In Figure
3.45, the corresponding two signal curves are drawn. Moreover, the angle is extracted
from the two sensor signals and the deviation of this calculation from the actual angle
is illustrated. Although small, the worst detection error amounts to nearly 0.1◦. If this
error is acceptable for practical use, the sensor principle is capable of rotation sensing in
the case of very small rotating magnetic fields.

Due to the deformation of the signal curve for higher rotating fields, the rotation sensing
becomes more and more inaccurate when increasing the strength of the rotating field.
In Figure 3.46a and 3.46b the rotation sensing procedure is simulated as before for field
magnitudes of 0.1 mT and 1 mT, respectively. The shift of the maximum and minimum
toward each other leads to a more and more inaccurate angle detection for increasing
field strengths. For a magnetic field of 1 mT the worst sensing error amounts already
to nearly 10◦, which is obviously unacceptable for any field of use.
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Figure 3.45: Sensing error for a rotating field with a magnitude of µ0H0 = 10 µT.

(a) Sensing error for a rotating field with a magnitude of
µ0H0 = 0.1 mT.

(b) Sensing error for a rotating field with a magnitude of
µ0H0 = 1 mT.

Figure 3.46: Sensing error for rotating fields with higher magnitudes.

All in all, the Wheatstone SMR-sensor is not capable of flawless rotation sensing for
any field strength. However, if small, but not negligible, detection errors are acceptable,
the sensor principle can be used combined with small field strengths and an adequate
shielding. It has to be taken into account, that a rotating magnetic field of µ0H0 = 10
µT is superposed considerably by the Earth’s magnetic field, which hampers rotation
sensing substantially.
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Chapter 4

Hall cross sensors exploiting Spin
Orbit Torque

The Hall cross design plays a crucial role in magnetic field measurements. The classical
Hall effect enables field sensing in bigger dimensions and the respective Hall sensor is one
of the most widely used sensor concepts. Instead of the well-known Hall effect, the SOT
effect should be exploited in the following to show potential field sensing possibilities.
There are different approaches to such a sensor concept. In the paper by Li et al. (Li
et al., 2021) an SOT-device is presented, that is able to sense magnetic fields in all three
dimensions. The concept is based on the movement of a DW due to the SOT-current
and the external magnetic field. An analytical description of Hall cross SOT-devices
based on DW-motion is given in the paper (Schulz et al., 2017). In the following chap-
ter, a different concept should be examined that uses a multidomain SOT-device.

Figure 4.1: Schematic illustration of the Hall cross structure.
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In Figure 4.1 the schematic illustration of the used Hall cross design is depicted. The
relevant part of the sensor consists of a heavy metal (HM) layer with thickness tHM and a
ferromagnetic (FM) layer with thickness t. In addition, an oxide as insulator is added on
top of the FM layer. As HM tantalum is used with a thickness of tHM = 6 nm. CoFeB
is used as FM with a thickness of t = 0.92 nm. The width of the Hall cross is assumed
to be w = 2 nm and the length of the crossing arms is set to 10 nm. The SOT-current
is flowing in x-direction through the sensor in positive or negative direction, but the flow
is illustrated in the HM layer since the current flow through the heavy metal is causing
the SOT-effect and the current flow through the FM layer should have a negligible effect.

The necessary resistances used for field evaluation Rxx and Rxy are also visualized in the
schematic figure. As already mentioned in the context of Figure 3.31 these resistances
depend on the magnetization vector according to equations (3.6) and (3.7). For the
resistance along the current direction Rxx the SMR-effect (∝ m2

y) and the AMR-effect
(∝ m2

x) are relevant, whereas for the transversal resistance Rxy the PHE (∝ mx ·my)
and the AHE (∝ mz) are the determining factors. By measuring the resistances in com-
bination with an appropriate sensing principle, magnetic field sensing can be enabled.

The assumed sensor is based on the patented sensor concept (Suess et al., 2021). A
Hall cross sensor is used which breaks up into a multidomain state. This means that the
Hall cross consists of many magnetic domains that point out-of-plane either in positive
or negative z-direction with DWs in between. The starting point for field measurements
is illustrated in Figure 4.2 with red regions being magnetic domains with magnetization
pointing in positive z-direction and blue regions being magnetic domains with magneti-
zation pointing in negative z-direction. This state corresponds to zero SOT-current. For
most simulations only the resistance along the current direction Rxx with the slightly
greyed out area is computed, since the behaviour of the magnetization leading to the
desired signal can be fully observed in the respective area. In the simulation, the mag-
netization components are computed in contrast to the experiment, where only the
resistances are available.

The grey area outside of the Hall cross sensor is set to be non-magnetic in the simu-
lation. The vector of the magnetic field to be measured is located in the plane of the
Hall cross and it turns out, that the sensor principle is sensitive to the x-component of
the magnetic field. By choosing the experimental setup wisely and being able to change
the current direction and the arm of the Hall cross pervaded by the current flow, it is
possible to determine both components of an inplane magnetic field. Furthermore by
combining the signals appropriately and using additional sensing concepts (especially by
using an additional TMR-junction in the middle of the Hall cross), the multidomain Hall
cross sensor might be used as three dimensional magnetic field sensor. The scope of this
chapter is not to prove this potential application, but to investigate the ability of the
sensor to sense the magnetic field component along the current direction. Therefore,
the setup in Figure 4.2 is exploited with only one current direction.

For the following simulations (if not further specified), a saturation magnetization of
Js = µ0Ms = 0.75 T, an exchange constant of A = 9.2 · 10−12 J/m, a Gilbert damp-
ing parameter of α = 1 and an uniaxial anisotropy constant of K = 0.24 MJ/m3 are
assumed. These are adequate values for the stack Ta(6 nm)/CoFeB(0.92 nm)/MgO(2
nm). For the current density, different values are chosen for examination. The most com-
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Figure 4.2: Multidomain state of the used sensor principle.

plicated part in choosing appropriate simulation parameters is finding adequate values for
the SOT-efficiency parameters ηdamp and ηfield. These are phenomenological parameters,
that have to be determined experimentally by already mentioned means (e.g. Hayashi
method (Hayashi et al., 2014) or Dutta method (Dutta et al., 2021)). This determina-
tion can be quite cumbersome and general values for the given sensor stack are hard to
find in literature. In the scientific project this thesis aims to contribute to, the values are
first assumed to be ηdamp = −0.1451 and ηfield = −0.0276. Throughout the project the
used parameters change to ηdamp = 0.09 and ηfield = −0.17, which changes the sign of
the transfer curve. The used torque parameters are specified in the following sections.
Since the scope of the simulations is to give qualitative insights into the system with
some non-realistic assumptions and not to exactly compute experimental results, the
exact values for these parameters do not play a major role in the following observation.

The field sweeps are simulated by starting from a random initial magnetization state,
that relaxes into the final state due to the corresponding external applied field and due
to the other contributions stated in the introductory part of this thesis, especially due
to the SOT. The choice of an adequate relaxation time is important to achieve proper
results, which is also discussed in the following.

4.1 Application of different current densities

In this part the torque parameters are ηdamp = −0.1451 and ηfield = −0.0276. The
impact of the current magnitude should be examined by applying first a current density
huge enough for appropriate field sensing and then comparing this to the behaviour of
the sensor for small current densities. Afterwards, the performance of the sensor with
different current strengths in the higher regime should be investigated.
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A potential current density enabling field sensing and exploited in the experimental part
of the underlying scientific project is Je = 2.4 ·1011 A/m2, which results from an applied
current magnitude of I = 3.351 mA. A simulated field sweep in x-direction from -10
mT to 10 mT leads to the behaviour of the magnetic domains shown in Figure 4.3. For
higher field magnitudes, the SOT-current drives out the different domains according to
current and field direction, such that the entire arm flooded by the current is magne-
tized either in +z- (red) or in −z-direction (blue). The lower the field magnitude, the
more different domains appear in this arm with a maximum of present domains at zero
magnetic field. It is evident from looking onto the transversal arm of the Hall cross, that
the z-magnetization and the according domain sizes are similar for all field strengths, if
no current is flowing.

Figure 4.3: Field sweep for a current density of Je = 2.4 · 1011 A/m2 flowing in positive and negative
x-direction.

The sensing principle is based on the AHE, which is proportional to the z-component
of the magnetization. In the simulation, this is directly available. The behavior of the
z-magnetization in the longitudinal arm for the different current directions is illustrated
in Figure 4.4. Combining the different magnetization behaviours by subtracting the two
curves leads to the sensor signal curve. The potential transfer curve as the linear part
of the signal ranges approximately from -2 mT to 2 mT.

Furthermore, the AMR and SMR signal curves might be interesting to examine. Since
these effects are proportional tom2

x andm
2
y, respectively, the corresponding signal curves

should behave as in Figure 4.5. In the linear range of the transfer curve the two signal
curves exhibit opposing parabolic behaviour, which gives rise to the already mentioned
fact that AMR- and SMR-effect are just two sides of one coin. This can be also seen from
the following representation of the resistance change ∆Rxx,AMR,SMR due to AMR and
SMR in the longitudinal arm, where ∆RAMR and ∆RSMR are the respective contributions
of the two effects, m is the unit magnetization vector and σ is the polarization vector:

∆Rxx,AMR,SMR = (∆RAMR +∆RSMR)(m · σ)2
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Figure 4.4: Z-Component of the magnetization as a function of external field and transfer curve for the
current I = 3.351 mA.

(a) AMR signal curve. (b) SMR signal curve.

Figure 4.5: AMR and SMR signal curves for the different current directions for I = 3.351 mT.

Besides looking at big current densities enabling field measurement, it is also important
to examine small current densities and the corresponding behaviour. For example, if the
resistance in the transversal arm has to be measured, a small current is applied through
this arm and the impact on the magnetic domains is relevant. Therefore, a field sweep
with a current density of Je = 7.2 · 109 A/m2 is performed, which would result from an
applied current of 0.1 mA. It turns out, that the magnetic domains pointing either in
+z- or −z-direction do not change significantly in terms of size and orientation. This is
illustrated in Figure 4.6, where only the x-component of the magnetization is visualized.
The grey regions in between the domain walls occupy nearly the same areas in all cases
and it can be seen clearly, that the magnetization of the domain walls itself changes
and aligns with the applied external field. Therefore, an applied small current in the
transversal direction would not affect the magnetization behaviour in the longitudinal
arm due to a big current density.
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Figure 4.6: Field sweep with illustrated x-component of the magnetization for a current density of
Je = 7.2 · 109 A/m2 flowing in positive and negative x-direction.

Also for the case of a small applied current, the signal curve and the SMR and AMR
curves can be depicted. In Figure 4.7, the signal curve for the small current is visualized.
The signal is tiny compared to the signal in Figure 4.4, since the magnetic domains do
not change significantly in size. Moreover, the curve does not exhibit a smooth linear
range. In Figure 4.8, the AMR and SMR curves are depicted. Since the effect of po-
larization due to SOT is negligible for the small current, the y-component remains zero.
The x-component increases almost linearly, which results in a parabolic behaviour of the
AMR curve, where the corresponding strength is very small.

Figure 4.7: Z-Component of the magnetization as a function of external field and signal curve for the
current I = 0.1 mA.

The possibilities to enlarge the linear range of the transfer curve should be explored.
Potentially, the current density flowing through the Hall cross can be varied. Therefore,
3 different currents I = 2.5 mA, I = 3 mA and I = 3.351 mA are assumed. First,
all temperature dependent parameters are also varied according to the exploited current
density. This leads to the results in Figure 4.9. For smaller currents, that are large
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(a) AMR signal curve. (b) SMR signal curve.

Figure 4.8: AMR and SMR signal curves for the different current directions for I = 0.1 mA.

enough for application, the linear range is larger than for bigger currents. So by using
smaller currents, the working window of the sensor could be enlarged. However, the
simulation takes also into account the change of the other parameters (especially of the
uniaxial anisotropy and the saturation magnetization) with respect to the temperature
and hence with respect to the current density. This means, that the current density itself
might not be the determining parameter for this change. In Figure 4.10 the simulation
is repeated with fixed magnetic parameters and only changing current density. It can be
seen, that the linear range stays the same for all current magnitudes. Thus, the current
itself does not control the linear range, but dependent parameters might do.

Figure 4.9: Z-Component of the magnetization as a function of external field and transfer curve for the
different currents I = 2.5 mA, I = 3 mA and I = 3.351 mA.

Figure 4.10: Z-Component of the magnetization as a function of external field and transfer curve for
the different currents I = 2.5 mA, I = 3 mA and I = 3.351 mA (other magnetic parameters are fixed).
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The examination of the other magnetic parameters in terms of their potential to enlarge
the linear range should be waived in this thesis. As illustrated in Figure 4.9, a combination
of the changing parameters increases the linear range slightly, but as it turned out during
simulations tuning only the single parameters does not improve the transfer curve. The
increase of the linear part in the above figure results in small bumps in the curve making it
unprofitable to reduce the current density with the according parameter changes. Other
possibilities have to be exploited to achieve a larger linear range. Especially the use of
multistack structures, i.e. stacking heavy metal, ferromagnet and insulator more times
above each other, seems promising, but the investigation of such systems goes beyond
the scope of this thesis.

4.2 Impact of relaxation time in simulation

In this section, a small comment should be given about the impact of the relaxation time
in simulation on the sensor behaviour. It is crucial to let the system relax long enough
such that the right experimental reaction can be simulated. This is necessary in any
simulation and it can be also seen in the following example. For the upper simulations
a simulation time of about 20 ns is used. For the first simulations performed for this
section, it was assumed that a relaxation time of 5 ns is sufficient. With a relaxation
time of 5 ns the field sweep in Figure 4.3 looks differently. It is visualized in Figure 4.11.
In this non-relaxed field sweep, skyrmions appear and the magnetic domains for zero
field are smaller than in the relaxed field sweep. This circumstance distorts the result
since in experiment the strong current is able to drive out the skyrmions also for small
external fields reducing the linear range of the Hall cross sensor.

Figure 4.11: Field sweep for big current density flowing in positive and negative x-direction with a too
short relaxation time.
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The impact of the relaxation time on the sensor transfer curve is illustrated in Figure
4.12. The linear part shrinks for higher relaxation times and a relaxation time of 5 ns is
not sufficient to imitate the trend of an experimental execution, whereas 20 ns is already
an adequate amount of time.

Figure 4.12: Impact of the relaxation time in simulation on the transfer curve.
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Chapter 5

Multiturn Sensors

Rotational counters have many fields of application. They can be necessary for indus-
trial applications, in the automotive sector or in other applications used on a daily basis.
The point of these sensors is to count the number of performed rotations with a finite
number of rotations maximally countable. Therefore, they enable rotation counting and
position determination for a limited amount of rotations or a limited movement. In
today’s typical realizations, they rely on a steady power supply. This means, that the
physical mechanism behind the rotation counting is based on current flowing through
the sensor all the time, so during initialization, counting and read-out. With this steady
power supply, reliable multiturn counters can be realized easily based on different physi-
cal principles.

However, the need for steady power supply leads to a fundamental weakness of the
sensor. If the power supply at any time of the rotation sensing is interrupted e.g. by a
power failure, the information about the current number of performed rotations gets lost
and cannot be recovered without the help of other means. The multiturn counter itself
cannot recover this information. This fundamental problem should be illustrated with an
example of the macroscopic world visualized in Figure 5.1. Suppose there is a gate at a
property’s driveway, which opens and closes automatically. The closed state is the initial
state. The rotary motor opening the gate is activated and determines the position of
the gate by counting the number of performed rotations. At some point in the opening
process the power supply is interrupted and the gate stops. After fixing the problem,
the power supply is ensured again and the gate could continue to move. However, the
rotational counter lost the information about the position of the gate, which cannot be
recovered. The system needs to be fixed somehow.

Of course, for such a big system, which is not so delicate, there are many ways to
overcome this circumstance. For example, the gate could open and close to certain
positions by default, which makes it obsolete to determine the position in between. This
can be realized with light barriers or contact sensors. In any system, an initial position
can be defined, e.g. the open position, to initialize the system again and to start the
counting process anew. This is also a common method for microscopic rotational sen-
sors, which rely on steady power supply, to fix this circumstance. However, it would be
much more favourable, if the information about the performed rotation is not lost due
to an interruption in the power supply. The system could go on with the movement
from any position after the failure. Therefore, it would be beneficial to realize a sen-
sor concept, which needs power supply only for initialization and read-out and is able
to count performed rotations without any intervention during the actual sensing process.
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Figure 5.1: Schematic illustration of an automatic gate at a property’s driveway as a macroscopic
example for the problem of multiturn counters relying on steady power supply.

This is the goal of the multiturn counters presented in this chapter of the thesis. There
are two main concepts of how to realize such counters. The first one uses the movement
of domain walls in magnetic strips due to an external field. This idea is already exploited
by many different approaches, since it is easy to understand and to use. By choosing
the geometry of the stripe for the DW propagation wisely, reliable counters can be built.
The second concept is based on the movement of magnetic bubbles as used in magnetic
bubble memories. These memory devices were developed and examined in the 1970s
and 1980s and the scientists understood the physics behind the memory concept quite
well. Exploiting it for a multiturn counter is a new approach.

5.1 Motion of Domain Walls in magnetic stripes

Applying an external field on a magnetic stripe with a certain initial magnetization leads
to the alignment of the magnetic moments according to the magnetic field, if the mag-
netic material is soft-magnetic. In Figure 5.2 a stripe is visualized, where the initial
magnetization is pointing first into the positive x-direction (rightwards) and an external
field is applied pointing left (into the negative x-direction). This leads to the generation
of a DW separating the domain with the magnetization pointing into positive x-direction
(red region) and the domain pointing into negative x-direction (blue region). Since the
magnetization pointing into negative x-direction is favoured due to the external field,
the DW propagates leftwards and is driven out of the stripe after relaxation of the system.

This easy concept can be used to count the rotations of a magnetic field by choosing a
stripe geometry, where the DW can propagate through in a controlled way. The obvious
choice is a spiral. The DW propagates circular in the structure and one rotation of the
external field corresponds to one rotation of the DW. For the spiral, an open and a closed
form can be used. These forms are described in the paper (Borie, Voto, et al., 2017)
and schematically illustrated in Figure 5.3. The open form consists of a DW generator
at the beginning and a pointed tail at the end. A rotating external field generates DWs,
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Figure 5.2: Schematic illustration of DW motion through a magnetic stripe due to an external field
pointing left. The colour refers to the x-magnetization with red indicating a magnetization pointing
rightwards and blue indicating a magnetization pointing leftwards.

which then propagate circular. In the closed form a DW has to be generated in the
geometry, e.g. by a short strong magnetic field application or a local one. The benefit
of this form is that after n rotations, where n is the number of loops, the initial state is
reached again. In the paper (Borie, Voto, et al., 2017) the superiority of the closed loop
in many realization is explained, but also the need for additional structural details to
overcome problems at the crossings of the wires. Other papers describing and improving
the DW motion in spirals are (Diegel et al., 2009) and (Borie, Wahrhusen, et al., 2017)
amongst many others.

Figure 5.3: Open and closed form of a spiral as potential geometry for DW propagation. (taken and
adapted from Borie, Voto, et al., 2017, p. 1).

All these reports describe 180◦ DWs, which separate domains with opposing magneti-
zation directions. Without going too much into detail, one major problem of the wire
crossing is explained in the paper (Borie, Voto, et al., 2017) and visualized in the fol-
lowing. Depending on how the magnetization is pointing in the DW and towards it,
a Head-to-Head DW or a Tail-to-Tail DW is present visualized in Figure 5.4. If the
magnetization in the DW is pointing into the same direction as in the transversal arm
to be crossed, the crossing will happen without further issues. In the case of Figure
5.4 the crossing of the Head-to-Head DW is uncritical, since the magnetization in the
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transversal arm points upwards. If this is not the case and a Head-to-Head DW tries to
cross an arm with a magnetization pointing downwards, the situation is critical. This is
illustrated in Figure 5.5, where besides the normal crossing two other outcomes can be
generated.

Figure 5.4: Propagation of a Head-to-Head DW through a crossing of wires in an uncritical configura-
tion. (taken and adapted from Borie, Voto, et al., 2017, p. 3).

Figure 5.5: Propagation of a Head-to-Head DW through a crossing of wires in a critical configuration.
(taken and adapted from Borie, Voto, et al., 2017, p. 3).

In the paper (Borie, Voto, et al., 2017) some geometrical resorts are presented, where
a syphon structure at the crossing points has to be mentioned specifically. However,
this detailed examination would go beyond the scope of the presentation of this counter
concept, which will not be investigated further in this thesis. Besides using 180◦ DW,
also 360◦ DW appearing in planar magnetic nanowires are exploited for propagation.
This is presented in the paper (Geng & Jin, 2012).
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5.1.1 Cusp sensor

This part of the thesis focuses on the concept presented in the paper (Mattheis et al.,
2012). A loop with specifically shaped obstacles is used to count the rotations of the
magnetic field. The obstacles hamper and slow down the circular propagation of the
DW in the wire loop. The presented cusp geometry of the obstacles is shown in Figure
5.6 in the left subfigure. The wires have a certain width w, which is w = 160 nm in the
report. The opening angle 2θ and the length of the neck l determine the window, for
which magnetic field strengths the concept works, and how stable the rotation counting
can be performed. On the other 3 subfigures, the magnetization configurations for
different directions of the external magnetic field are illustrated. The colour quantifies
the y-component of the magnetization with red pointing upwards and blue pointing
downwards. The DW moves through the cusp in half a rotation. The propagation seems
to be controlled and stable.

Figure 5.6: Geometry of cusp obstacles and magnetization for different directions of the external
magnetic field. (taken and adapted from Mattheis et al., 2012, p. 2).

Combining these cusps in a loop leads to a potential multiturn counter. In Figure 5.7,
one cusp is put into a wire loop and the position of the DW is shown for different direc-
tions of the external magnetic field. After one and a half rotations of the field, the DW
is at the initial position again. A huge benefit of the cusp design is the possibility to
combine more and more such obstacles in one loop without further issues. In Figure 5.8,
6 cusps are combined in one loop and 4 rotations can be counted. The experimental
design in this Figure presented in the paper (Mattheis et al., 2012) shows a potential
experimental realization exploiting the GMR effect with Gnd being the ground, Vcc being
the supply voltage and Ub1 and Ub2 being bridge voltages indicating the relative magne-
tization direction in the adjacent arms, where the GMR of a nanowire is determined by
the magnetization state with respect to a reference magnetization direction Ref.

If the length of the neck l in Figure 5.6 is fixed to be l = 2 · w, the operation margin
of the externally applied magnetic field is only determined by the opening angle 2θ. In
Figure 5.9, this margin found in the paper (Mattheis et al., 2012) is visualized. The
red dots indicate the minimal field, at which the sensor principle works with the given
geometry, and the black dots indicate the maximal one. Below the minimal field, the
propagation of the DW is not ensured and above the maximal field, other parts of the
loop could suffer from unwanted reversals of the magnetization. The blue dots indicate
the operation margin, which decreases with increasing opening angle. This is meaning-
ful, since a wider opening angle makes the obstacle less efficient.
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Figure 5.7: Loop with one cusp as obstacle and corresponding magnetization direction depending on
the direction of the external magnetic field. (taken and adapted from Mattheis et al., 2012, p. 2).

Figure 5.8: More cusp in one loop and potential experimental realization to determine the position of
the DWs. (taken and adapted from Mattheis et al., 2012, p. 5).

To confirm the applicability of the cusps as obstacles for DWs, a finite element simulation
of such cusps is performed. Therefore, 4 cusps are combined in a row. The permalloy
wires have a saturation magnetization of µ0Ms = 1 T, zero anisotropy and an exchange
constant of A = 13 pJ/m. The width is chosen to be w = 160 nm as in the reference
paper and the opening angle is chosen such that θ = 13◦. The length of the neck is
set to l = 2 · w and the rotating field in the simulation has a strength of µ0Hrot = 25
mT. During simulation it turned out, that the wide operation margin in Figure 5.9 can
not be confirmed in simulation, since only 25 mT and slight deviations of approximately
±2 mT work fine.

The initial magnetization is chosen as shown in Figure 5.10 such that only one DW is
in the system. The colour indicates the y-component of the magnetization with red
pointing into positive y-direction (upwards) and blue pointing into negative y-direction
(downwards). In the light gray regions the y-component is zero and the magnetization is
pointing solely along the x-axes. The arrows indicate the magnetization direction locally
to make the visualization clearer. From this initial magnetization a counterclockwise
rotation of the magnetic field with the magnitude of 25 mT is simulated, starting from
the field pointing -30◦ as illustrated in Figure 5.6.
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Figure 5.9: Operation margin for the applied rotating magnetic field. (taken and adapted from Mattheis
et al., 2012, p. 3).

The rotation simulation is illustrated in Figure 5.11 and the simulation movie can be
found on u:cloud.1 Moreover, the simulation folder is located on GTO3, which is the
recent computer for numerical calculations in the scientific group Physics of Functional
Materials at the University of Vienna.2 Due to the counterclockwise rotation of the
field, the DW propagates along the cusps and after 2 rotations the DW is driven out of
the system. This propagation of the DW is very stable and controlled. The presented
simulation is performed dynamically, which means that the external field for the LLG-
solver rotates constantly. However, if a quasistatic simulation is performed, where the
field direction is rotated stepwise and at every distinct direction the system is relaxed,
the behaviour of the DW stays the same. Thus, the cusp design can be used for rotation
counting.

The row of cusps can be put into one loop and a closed sensor is realized. However,
an important aspect has to be taken into account, namely how to initialize the system
in practical application. For the mentioned simulation, a DW was put into the system
artificially. Reversing the magnetization locally would be one option, but this is quite
cumbersome, if only one DW should be in the system. Working with more DWs is
another option. However, if the system is saturated, the loop is full of DWs and no
information can be extracted from the sensor, since at every nook of the geometry a
DW is placed and they move forward in a jointly manner. Thus, one or more DW have to
be erased in the loop, which is also cumbersome. Trying out different ways of initializing
the system in an easy way led to the following initializing steps:

1. Saturate the structure: First the entire geometry is magnetized into one direc-
tion. This can be realized by applying a strong magnetic field at first, exceeding
noticeably the magnitude of the maximal magnetic field to use as rotating field.

1The simulation movie is located at https://ucloud.univie.ac.at/index.php/s/2CQ21jZ9d3lsS16 in
the folder movie files and it is named cusps in a row.mp4.

2The according simulation folder is located on GTO3 with the following directory:
/home/gasser/data/master thesis/cusp sensor/cusps in a row.
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Figure 5.10: Initial magnetization for 4 cusps in a row with one DW in the system. (The colour indicates
the y-component of the magnetization).

2. Fast rotation: If the rotating magnetic field has a high enough frequency, the
DWs can propagate along the cusps, but they get stuck at one corner of the loop.
Thus, all the DWs join to one DW at one corner of the loop. The initial state is
reached.

3. Normal rotation: Afterwards, the rotational frequency of the applied external
field is decreased such that the remaining DW propagates through the entire struc-
ture and rotation counting is enabled.

The ability of these steps to initialize the system properly should be proven in simulation.
First, the system is saturated with a magnetization pointing downwards into negative
y-direction by applying a strong starting field Hstart. This is illustrated in Figure 5.12 in
the upper left subfigure. The loop is filled with DWs labeled by the black arrows. Then
the magnetic field with the ”standard” field magnitude Hrot is rotated counterclockwise
with a high rotational frequency. In the case of this simulation, a frequency of 20 MHz
is used for the rotation of the magnetic field. The behaviour of the DWs is illustrated in
the other subfigures of Figure 5.12, where at total 3.5 rotations are performed. It can
be seen, that after each roation the number of DWs decreases, since they get stuck in
the upper right corner of the loop and they cannot pass the long arm at the top of the
loop. After 3.5 rotations only one DW remains in the system at the upper right corner.
This is the initial state for the multiturn counter. Afterwards, the actual sensing process
can start, where the rotational frequency of the magnetic field is smaller. In simulation,
5 MHz are used for the rotation at the sensing process, which works fine. In practical
realization the rotational frequency is not constant, typically, but if it stays well below
the fast rotational frequency hampering the propagation of the DW, no further issues
should occur.

The DW propagation after the initializing steps is reliable. An entire rotation simulation
is visualized in Appendix B, where a magnetic field of 25 mT is rotated several times.
The red arrow illustrates the current direction of the magnetic field and the black arrow
shows the position of the DW. Since it works for the 4 cusps in Figure 5.11, it is not
surprising, that it also works in a loop constellation. Note that after one full propagation
of the DW, the magnetization configuration in the cusps is reversed. Since 5 cusps are
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Figure 5.11: Magnetization configuration for different field directions of a counterclockwise ro-
tating magnetic field. The subfigures ordered by numbers depict some consecutive situations.
The colour indicates the y-component of the magnetization. (The simulation movie can be
retrieved on https://ucloud.univie.ac.at/index.php/s/2CQ21jZ9d3lsS16/download?path=%2Fmovie
files&files=cusps in a row.mp4. The according simulation folder is located on GTO3 with the fol-
lowing directory: /home/gasser/data/master thesis/cusp sensor/cusps in a row.)

simulated, first 3 cusps are magnetized downwards and 2 upwards, whereas after one
full propagation 3 cusps are magnetized upwards and 2 downwards. The full simulation
movie including the initializing steps and the normal rotation can be found on u:cloud.3

Moreover, the simulation folder is located on GTO3.4

Instead of having a high rotational frequency of the magnetic field at first, it might be
possible to think of other possibilities of how to hamper the DWs at passing the long
arm at the top of the loop and merging them at the upper right corner. Potentially,
some obstacles at the long arm could be included, which cannot be passed with small
fields, but with the fields used in the actual sensing process. Then the system can be
initialized with the rotation of the smaller field, but the field has to be strong enough
such that the DWs can propagate along the cusps. In simulation, the operation margin
for the rotating magnetic field is very small, which makes this initialization process dif-
ficult. However, it might work in practical realization. Other possibilities might also be
possible, but varying the angular frequency of the rotating field can be realized easily.

For the given configuration, the cusp sensor works well. The main problem of this
concept is the need for small widths of the magnetic wires. In the simulation a width of
w = 160 nm is used. This width is also used in the experimental verification in the paper
(Mattheis et al., 2012) with some deviations in the practical realization. In simulation, it
turns out that slightly bigger widths are also tolerable until approximately 300 nm. This
can be achieved by decreasing the driving rotating magnetic field. However, increasing

3The simulation movie is located at https://ucloud.univie.ac.at/index.php/s/2CQ21jZ9d3lsS16 in
the folder movie files and it is named cusp loop.mp4.

4The according simulation folder is located on GTO3 with the following directory:
/home/gasser/data/master thesis/cusp sensor/loop.
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Figure 5.12: Initializing steps for the cusp loop and corresponding magnetization configuration. The
subfigures ordered by numbers depict some consecutive configurations for a counterclockwise rotat-
ing field. 3.5 rotations are performed during initialization. The colour indicates the y-component of
the magnetization. (The simulation movie, which shows the displayed initializing steps at the begin-
ning, can be retrieved on https://ucloud.univie.ac.at/index.php/s/2CQ21jZ9d3lsS16/download?path=
%2Fmovie files&files=cusp loop.mp4. The according simulation folder is located on GTO3 with the
following directory: /home/gasser/data/master thesis/cusp sensor/loop.)

the width beyond this threshold is troublesome. The origin of the troubles at wider
wires is the region B in the left subfigure of Figure 5.6. The magnetic field tries to
change the magnetization in the region B according to its direction. This is already
visible in the performed simulation procedure in Figure 5.11. The respective regions in
the cusps, that are magnetized oppositely to the magnetic field, appear brighter than
the tops and the branches of the respective cusps. This illustrates an initiating switching
of the magnetization according to the external field. If the field strength stays under a
certain threshold depending on the width of the wire, the alignment of the corresponding
magnetization is inhibited. For bigger widths, the region B becomes bigger and the field
strength has to be lowered correspondingly. If the region becomes too large, the magnetic
field strength cannot be decreased sufficiently, such that the DWs move appropriately
and the switching of the magnetization in the respective region is hindered. Trying
to solve this problem, the geometry was adapted with respect to the opening angle
2Θ, the height of the cusps and the height of the tips throughout the work for this
thesis. However, for wider wires with widths of approximately 500 nm the geometrical
concept seems to be unusable. The magnetization in the troublesome region aligns too
easily according to the external field. Maybe a rough adaption of the geometry solves
this circumstance. Another possibility might be to use another material with non-zero
uniaxial anisotropy or other different material parameters. Nevertheless, this might lead
to problems in the DW motion and therefore to other severe troubles.
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5.2 Motion of magnetic bubbles

Magnetic Bubble Memory (MBM) is based on the motion of magnetic bubbles in a
magnetic garnet film. These bubble domains are small regions in a homogeneously mag-
netized garnet material, that appear with reversed magnetic polarity. The bubbles are
stabilized by an external magnetic field exerted by a permanent magnet. Therefore, the
bubble memory concept is nonvolatile since the bubble do not vanish due to missing
power supply to the sensor. The magnetic bubbles are moved by guiding structures that
produce magnetic field gradients. (Nielsen, 1979)

The schematic structure is illustrated in Figure 5.13. The permalloy guiding structure
consists of T-shaped and I-shaped elements that move the magnetic bubbles existing in
the underlying magnetic garnet film. HBIAS is the bias field that stabilizes the magnetic
bubbles. The clockwise rotating magnetic field Hω moves the magnetic bubbles into
the marked bubble motion direction. This movement is based on the magnetic poles
developing in the guiding structures due to the rotating driving field Hω.

Figure 5.13: Visualization of basic structure for magnetic bubble devices. (taken from Nielsen, 1979,
p. 89).

The magnetic poles and the corresponding positions of a magnetic bubble are visualized
in Figure 5.14. The periodically appearing TI-structure and the clockwise rotating mag-
netic field cause the magnetic bubble to move rightwards along the guiding structure.
After one full rotation of the driving field Hr the bubble is moved from one TI-group
to the next one. The plus poles in the guiding structure attract the bubbles, where the
magnetic polarity is reversed pointing anti-parallel to the bias field illustrated in Figure
5.13. Besides the TI-structure, also other guiding structures are used for magnetic bub-
ble memory, for example a guiding structure consisting of V-shaped elements. However,
the TI-structure is the most commonly used concept in literature.
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Figure 5.14: Visualization of developing magnetic poles in the guiding structure forcing the magnetic
bubble to move. (taken and adapted from Gowland, 1977, p. 8).

For MBM, a rotating driving field has to be produced artificially. This is done with two
coils wrapped around the above described structure, that are arranged perpendicular to
each other. This is illustrated in Figure 5.15. By sending a current through a coil, a
magnetic field along the axis of the coil is produced. By varying the current flowing
through two coils standing perpendicular to each other, a rotating magnetic field inside
the coils can be generated. (Salzer, 1976)

Figure 5.15: Coils wrapped around the structure for magnetic bubble memory to generate a rotating
magnetic field. (taken from Salzer, 1976, p. 37).

MBM uses the bubbles to store information in the sense that bubble and no bubble are
related to the bits 0 and 1 or vice versa. By moving the bubbles to certain positions
in the garnet film, a certain bit sequence can be achieved, which enables the storage
of information. Bubbles are generated by specifically structured elements in the guiding
structure that serve as generators (Gowland, 1977) or by electric current pulses that are
exerted to reverse the bias field direction locally. (Theis, 1984)
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To adapt the concept for multiturn counters, no rotating field has to be generated arti-
ficially. A permanent magnetic field is exerted in-plane and the rotation to be measured
causes the movement of the magnetic bubbles. Since the design has been realized in
MBM, it can be expected that the adaption for rotation sensing should be feasible. How-
ever, many problems occurred when trying to exploit this concept for rotation counters.

First tries are done with small dimensions in the range of a few nanometers. Thus, the
thickness and the width of the guiding structure elements are chosen to be a few tens
of nanometers, for example 50 nm. Also, the bubble garnet is chosen for bubbles with
the same size. Nevertheless, to be able to move bubbles the guiding structure has to
split up into different magnetic domains. This splitting does not happen in such small
structures. The magnetization in these small elements points into the direction of the
rotating driving field, but no attracting magnetic poles exist.

Typical Magnetic Bubble Memory devices exhibit bigger dimensions. The width of the
guiding structure elements amounts to some micrometers and so does the diameter of
the magnetic bubbles. For example, the paper (Nielsen, 1979) proposes a width of the
guiding structure elements of 3 µm to move bubbles with a size of 3 µm. Throughout
the work for this thesis, many different parameters and sizes were used to see, if the
concept works for rotation counting. The paper (Nielsen, 1979) offers different potential
material choices from many different approaches in the past. Unfortunately, none of the
materials and structural concepts worked out well in simulation. The magnetic bubbles
do not move according to the rotating field. This is especially surprising since Magnetic
Bubble Memory devices were realized with stable bubble movement.

The purpose of this thesis is not to show all tries performed, since most of them do not
work. However, the best and most promising try throughout the simulation approaches
should be mentioned in the following. The approach by (Bullock et al., 1975) is inves-
tigated, who used the compositions LuxSm3−xFe5O12 with 1.5 ≤ x ≤ 1.9 as bubble
garnet. For the guiding structure, permalloy is used. The material parameters are sum-
marized in Table 5.1. Additionally, other important structural details as the thickness of
the isolation layer between the guiding structure and the bubble garnet, the diameter of
the magnetic bubbles and the necessary fields are given in this table.

Bubble garnet Permalloy
Saturation magnetization µ0Ms 0.2 T 1 T

Anisotropy constant K 30 kJ/m3 0 J/m3

Exchange constant A 8.2 pJ/m 13 pJ/m
Thickness of layer 1.5 µm 20 nm

Thickness of isolation 50 nm
Bubble diameter 0.5 µm

z-Bias field 100 mT
Rotating driving field 10 mT

Table 5.1: Material parameters for the bubble garnet and the permalloy as well as structural parameters.
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Figure 5.16: Dimensions of the used TI-guiding structure.

In Figure 5.16, the dimensions of the exploited guiding structure with the T-shaped and
I-shaped elements is depicted. The lengths of the longer arms amount to 2 µm and the
width of the structure amounts to 0.4 µm, which is slightly smaller than the diameter of
the magnetic bubbles. The distance between the elements is chosen to be smaller than
the width of the elements, which deviates from the geometry described in (Bullock et al.,
1975). This is due to the problem, that the bubbles do not jump from one element to
another. Larger distances were also investigated without success.

Instead of simulating a rotating field directly, which did not work out well for other
approaches, the rotation is simulated quasistatically. Thus, the driving field is exerted
in distinct directions simulating the behaviour of a rotation, however ensuring, that the
system is able to relax for every distinct field direction. This is important to ensure,
since in simulation only nanoseconds elapse, whereas in reality the time spans can be
significantly larger. The simulation strategy is to exert the driving field in-plane into 4
different directions, namely upwards, downwards, leftwards and rightwards. The effect of
the different field directions on the magnetization of the guiding structure can be seen
in Figure 5.17. The elements split up into different magnetic domains and magnetic
poles develop. Especially for the downward direction, the plus pole in the middle of the
horizontal T-bar is noticeable. This configuration is able to attract the bubble at this
plus pole best. Moreover, the other directions seem to generate the correct patterns to
move the bubble. Unfortunately, the magnetic poles, especially the plus pole, are not
so remarkable than for the downward direction. This leads to an uncontrolled motion of
the magnetic bubble. For a clockwise rotating field, the bubble should move rightwards,
but in Figure 5.18 the motion of a bubble under such constraints is simulated. The
initial position for the left-pointing field is correct, but the bubble does not jump to the
I-shaped element. Instead, it moves closer to the T-shaped element under the influence
of the plus pole for the field pointing downwards. This configuration seems to be the
only stable configuration, where the bubble is attracted towards the middle of the hori-
zontal T-bar. Afterwards, the bubble moves at the T-shaped element in an uncontrolled
manner. The simulation movie of this bubble motion is available on u:cloud.5 Moreover,
the simulation folder can be found on GTO3.6

5The simulation movie is located at https://ucloud.univie.ac.at/index.php/s/2CQ21jZ9d3lsS16 in
the folder movie files and it is named bubble motion.mp4.

6The according simulation folder is located on GTO3 with the following directory:
/home/gasser/data/master thesis/bubble sensor.
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The jumping of the bubble between the guiding elements does not work out properly.
Maybe the influence of the guiding structure in the z-direction on the garnet film is too
small or the guiding structure is not designed properly such that the domains do not
split up correctly. However, Figure 5.17 shows appropriate domains and the downwards
configuration seems to attract the bubble properly. Maybe the thicknesses of the lay-
ers should be adapted or another bubble garnet material works better, but as already
mentioned many different combinations of materials and dimensions were simulated with
rotating fields and quasistatically rotating fields and none of them worked out well. It
is astonishing that in experiment the Magnetic Bubble Memory is realized with stable
bubble motion. Normally, the bubbles should be easier to control in simulation, since
disturbances occurring in experiment are neglected. Nevertheless, when trying to exploit
magnetic bubble motion for rotation sensing, it seems to be the other way around.
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Figure 5.17: Magnetization of the guiding structure for different directions of the external in-plane
driving field (big red arrow). The small arrows depict the magnetization direction and the colours
visualize the x- or y-component of the magnetization as written with red being positive and blue being
negative. The coordinate system is depicted in the upper left corner to clarify the x- and y-direction.

Figure 5.18: Motion of a magnetic bubble for the exertion of a clockwise rotating driving field. The
guiding structure is illustrated transparently above the bubble garnet for visual reasons. (The simulation
movie can be retrieved on https://ucloud.univie.ac.at/index.php/s/2CQ21jZ9d3lsS16/download?path=
%2Fmovie files&files=bubble motion.mp4. The according simulation folder is located on GTO3 with
the following directory: /home/gasser/data/master thesis/bubble sensor.)
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Chapter 6

Conclussion

One aim of this thesis is to give a brief overview of some magnetic field sensing concepts
exploiting the recently observed SOT-effect. This torque effect in thin layer structures
mainly based on the SHE has an enormous potential in magnetic field sensing enabling
reliable detection with small power consumption. Thus, such sensor concepts might be
able to support or even replace today’s typical Hall sensors in many fields of application,
as for example in the automotive security sector.

First, simple out-of-plane and in-plane sensor elements are examined. These round or
elliptical elements exploit the SOT-effect in the easiest way possible, where the read-out
is done with some sort of magnetoresistance. Especially the out-of-plane sensor concept
works well, however encountering some troubles concerning linear range. Some methods
of improving the linear range and therefore the potential operation margin of the sensor
are investigated. The in-plane device exhibits a severe offset for disturbing magnetic
fields as elaborated above, if only one element is used. By combining two elements, the
offset can be cancelled. Combining in-plane elements in a Wheatstone bridge gives an
interesting sensor concept proposed in the paper (Xu et al., 2018). Some approaches
to use this concept also for higher fields of a few mT are investigated, but it turns out,
that the Wheatstone SMR-sensor concept only works well for tiny magnetic fields in
the range of a few µT, which is also the used range in the paper. For such fields, the
concepts seems surprisingly promising, however setting severe requirements for shielding
methods against disturbing magnetic fields.

Moreover, the SOT-effect can be used in a Hall cross setup. The Hall cross splits up
into a multidomain state and the magnetization configuration of the current-carrying
arm is depending on the magnetic field along the current direction. This enables a two-
dimensional magnetic field sensor, if both arms are used consecutively for field sensing.
For proper current densities, the device works very reliable with the limitation, that the
linear range is small. Other approaches have to be investigated to increase the range for
field sensing.

Another aim of this thesis is to examine some nonvolatile multiturn sensor concepts.
These should not depend on a steady power supply during rotation counting, which
might enable a more robust sensing for security applications. The concept of a moving
DW, which is often proposed in literature with a huge variety of realizations, seems to be
very promising. The cusp sensor introduced in the paper (Mattheis et al., 2012) works
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stable and reliable, as confirmed by simulations in this thesis. Moreover, a new initial-
ization method is suggested for this sensor concept. The only drawback of the presented
sensor is the need for narrow structures, making it difficult to produce it industrially on
a larger scale. However, for certain special applications this sensor concept might be
beneficial and maybe, by adapting the geometry, a production on a larger scale can be
enabled.

The concept of moving magnetic bubbles for rotation counting is based on MBM re-
alized in the past. The skyrmions in a garnet film move guided by a guiding structure
according to a rotating magnetic field. Instead of storing data by controlling the rotating
field, the rotations should be counted by determining the position of skyrmions in the
system. Even though it seems obvious, that this method should work due to the already
available realizations of MBM, in simulation severe problems appear concerning the mo-
tion control of the bubbles. The skyrmions do not move as expected for certain material
combinations and certain setups. This is surprising, since in simulation the motion of
skyrmions is not hampered by external influences in contrast to the experiment. How-
ever, by performing some adaptions the concept might probably be useful for rotation
counting.

As already mentioned in the goals of this thesis, the aim is not to investigate exact
properties of one specific sensor type, but rather to give an overview of some recent
sensor concepts exploiting SOT and focusing on nonvolatility in the field of rotation
counters. These concepts show an enormous potential towards practical realizations in
magnetic field sensing. Instead of proposing certain concepts for certain fields of appli-
cation, different concepts are presented and summarized, not to give specific information
about them, but to encourage more investigation to learn, how they could be used in
practical realizations as reliable sensors. Therefore, this thesis does not raise any claim
to completeness, it rather supports further examination of recent magnetic field sensor
concepts.
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Appendix A

Examples of simulation scripts

Single spin simulation

1 from scipy.integrate import ode

2 import scipy.optimize

3 import numpy as np

4 import matplotlib.pyplot as plt

5 from functools import partial

6

7 class Parameters:

8 gamma = 2.2128 e5

9 alpha = 0.01

10 K1 = -2.e4

11 K12 = 1.e4

12 Js = 0.5

13 d = 2.5e-9

14 hbar = 1.054571e-34

15 e = 1.602176634e-19

16 mu0 = 4*3.1415927*1e-7

17 easy_axis = np.array ([0 ,0 ,1])

18 easy_axis2 = np.array ([0 ,1 ,0])

19 d = 2e-9

20 currentd = 5e10

21 K1 = -0.5*Js**2/( mu0)

22 linearrange = 0.000

23 K12 = linearrange*Js/(2* mu0)

24

25 p_axis = np.array ([0,1,0])

26 etadamp = 0.1

27 etafield = 0.1

28

29 def f(t, m, p):

30 prefactorpol = p.currentd*p.hbar /(2*p.e*p.Js*p.d)

31 hani1 =2*p.K1/p.Js*p.easy_axis*np.dot(p.easy_axis ,m)

32 hani2 =2*p.K12/p.Js*p.easy_axis2*np.dot(p.easy_axis2 ,m)

33 h=p.hext+hani1+hani2

34

35 mxh = np.cross(m, h-prefactorpol *(p.etadamp*np.cross(m,p.p_axis)+p.etafield*p.

p_axis))

36 mxmxh = np.cross(m, mxh)

37 rhs = -p.gamma /(1+p.alpha **2)*mxh -p.gamma*p.alpha /(1+p.alpha **2)*mxmxh

38 return [rhs]

39

40 def calc_equilibrium(m0_ ,t0_ ,t1_ ,dt_ ,paramters_):

41 t0 = t0_

42 m0 = m0_

43 dt = dt_

44 r = ode(f).set_integrator(’vode’, method=’bdf’,atol=1e-14)

45 r.set_initial_value(m0_ , t0_).set_f_params(paramters_).set_jac_params (2.0)

46 t1 = t1_

47 while r.successful () and r.t < t1:

48 mag=r.integrate(r.t+dt)

49 return(r.t,mag)
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50

51 ###############################################################

52 #################################################################

53

54 paramters = Parameters ()

55 p=paramters

56 a=0.05/(p.mu0)

57 fieldrange = np.linspace(-a, a, num =19)

58 signal = []

59 fieldrangeT =[]

60 orgdensity = paramters.currentd

61 for i in fieldrange:

62 paramters.hext = np.array([0,0,i])

63 paramters.currentd = orgdensity

64 initm =[1,0,0]

65 initm=np.array(initm)/np.linalg.norm(initm)

66

67 t1,mag1 = calc_equilibrium(m0_ = initm ,t0_=0,t1_ =150e-9,dt_=1e-9, paramters_=

paramters)

68 paramters.currentd = -paramters.currentd

69 t2,mag2 = calc_equilibrium(m0_ = initm ,t0_=0,t1_ =150e-9,dt_=1e-9, paramters_=

paramters)

70 print("###############################################################")

71 print("field:",i*paramters.mu0)

72 print("mag1:",mag1[0],mag1[1],mag1 [2])

73 print("mag2:",mag2[0],mag2[1],mag2 [2])

74 print("signal:",mag2[0]-mag1 [0])

75

76 signal.append(mag2[0]-mag1 [0])

77 fieldrangeT.append(i*paramters.mu0)

78

79 plt.plot(fieldrangeT , signal , marker=’o’)

80 ax=plt.axes()

81 ax.set(xlabel=r’$\mu_0 H_z$ (T)’,ylabel=r’$m_{x,I+} - m_{x,I-}$ ’)

82 plt.savefig(’signal.png’)

83 plt.show()

Listing A.1: Single spin simulation for in-plance sensor device.

Micromagnetic simulation with Magnum.af

1 #!/usr/bin/python3

2 import arrayfire as af

3 from magnumaf import *

4 mu0 = Constants.mu0

5 args = parse()

6 filepath = args.outdir

7

8 def calcK1(Hk , Js):

9 Keff = Js*Hk/2./ mu0

10 K = Keff + 0.5* mu0*(Js/mu0)**2.

11 return K

12

13 def calcAex(Js_T):

14 A0 = 20e-12#Joule/meter

15 J0 = 1.2#Tesla

16 Aex_T = A0*(Js_T/J0)**1.7

17 return Aex_T

18

19 def cross_geometry(nx : int , ny: int , nz : int , width_cross_x : float ,

width_cross_y : float , make_3d = True , region = 0):

20 thickness_x = int(width_cross_x/dx)

21 thickness_y = int(width_cross_y/dy)

22

23 cross = af.constant(0, nx, ny, nz, 1, dtype=af.Dtype.f64)

24 x_strt = nx/2 - thickness_x /2

25 x_stop = nx/2 + thickness_x /2

26 y_strt = ny/2 - thickness_y /2

27 y_stop = ny/2 + thickness_y /2
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28 if region == 0: #Hall Cross Geometry

29 cross[x_strt : x_stop , :] = 1

30 cross[:, y_strt:y_stop] = 1

31 elif region == 1: #Only stripe along X -> relevant for Rxx Measurements

32 cross[:, y_strt:y_stop] = 1

33 elif region == 2: #Only stripe along Y -> relevant for Ryy Measurements

34 cross[x_strt : x_stop , :] = 1

35 elif region == 3: #Only central region -> relevant for Ryx Measurements

36 cross[x_strt : x_stop , y_strt : y_stop ] = 1

37 if make_3d:

38 return af.tile(cross , 1, 1, 1, 3)

39 else:

40 return af.tile(cross , 1, 1, 1, 1)

41

42 def get_random_m0(nx, ny, nz, mask , seed=None):

43 if seed: np.random.seed(seed)

44 m0 = np.random.normal (0,1,(nx,ny ,nz ,3))

45 m0 = m0/np.linalg.norm(m0,axis=3,keepdims=True)

46 m0 = af.interop.np_to_af_array(m0)

47 return m0 * mask

48

49 def get_hext_arr(h_ext , h_axis):

50 if h_axis == ’x’: # Field in X direction

51 Hextarray = np.array([h_ext , 0, 0])

52 elif h_axis == ’y’: # Field in Y direction

53 Hextarray = np.array([0, h_ext , 0])

54 elif h_axis == ’z’: # Field in Z direction

55 Hextarray = np.array([0, 0, h_ext ])

56 return Hextarray

57

58 tlist = np.array ([0.92e-9, 1.02e-9, 1.14e-9, 1.25e-9])#Units of m.

59 Jslist = np.array ([1.15 , 1.13, 1.06, 0.94, 0.76])#Mslist for T = 25, 100, 150, 200,

250

60 I0list = np.array ([0.1, 1.9, 2.5, 3, 3.351]) *1e-3

61

62 transfer_curve = True # tranfer curve by relaxation at different external fields

63

64 tindex = 0 # Choose index for thickness , 0:= t = 0.92nm etc.

65 tempindex = 4

66 Jdir = ’+x’ # Choose current direction: +x, -x, +y, -y

67

68 width_cross_x = 2000e-9

69 width_cross_y = 2000e-9

70 length_cross_x = 10000e-9

71 length_cross_y = 10000e-9

72 thickness_Ta = 6.e-9

73

74 x, y, z = np.max([ length_cross_x , width_cross_y ]), np.max([ length_cross_y ,

width_cross_x ]), tlist[tindex]

75 dx,dy,dz = 5e-9, 5e-9, z

76 nx, ny , nz = int (2000) , int (2000) , int (1)

77

78 Acrosssection = width_cross_x if ’x’ in Jdir else width_cross_y

79 Acrosssection *= (tlist[tindex] + thickness_Ta)

80 Jlist = I0list/Acrosssection

81

82 Hksystem = 20e-3

83 tsystem = tlist[tindex]

84 Tsystem = Tlist[tempindex]

85 Jssystem = Jslist[tempindex]

86 Jesystem = Jlist[tempindex]

87 K1system = calcK1(Hksystem , Jssystem)

88 Aexsystem = calcAex(Jssystem)

89

90 cross3d = cross_geometry(nx , ny , nz , width_cross_x , width_cross_y)

91 cross1d = cross_geometry(nx , ny , nz , width_cross_x , width_cross_y , make_3d = False)

92 crossrxx = cross_geometry(nx, ny, nz , width_cross_x , width_cross_y , make_3d = False

, region = 1)

93 crossryy = cross_geometry(nx, ny, nz , width_cross_x , width_cross_y , make_3d = False

, region = 2)

94 crossrxy = cross_geometry(nx, ny, nz , width_cross_x , width_cross_y , make_3d = False

, region = 3)

95 crossrxx3d = cross_geometry(nx , ny , nz, width_cross_x , width_cross_y , make_3d =
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True , region = 1)

96 crossryy3d = cross_geometry(nx , ny , nz, width_cross_x , width_cross_y , make_3d =

True , region = 2)

97 crossrxy3d = cross_geometry(nx , ny , nz, width_cross_x , width_cross_y , make_3d =

True , region = 3)

98

99 testing = False

100 if testing:

101 Util.write_vti(cross3d , dx, dy, dz, filepath + "Region_Hallcross")

102 Util.write_vti(crossrxx , dx, dy, dz , filepath + "Region_rxx")

103 Util.write_vti(crossryy , dx, dy, dz , filepath + "Region_ryy")

104 Util.write_vti(crossrxy , dx, dy, dz , filepath + "Region_rxy")

105 exit()

106

107 eta_damp = -0.1451

108 eta_field = -0.0276

109 if Jdir == ’+x’:

110 #this results in a polarization p = [0, -1, 0]

111 parray = crossrxx3d * Magnetization.homogeneous(nx, ny, nz, [0., -1., 0.])

112 elif Jdir == ’-x’:

113 #this results in a polarization p = [0, +1, 0]

114 parray = crossrxx3d * Magnetization.homogeneous(nx, ny, nz, [0., 1., 0.])

115 elif Jdir == ’+y’:

116 #this results in a polarization p = [-1, 1, 0]

117 parray = crossryy3d * Magnetization.homogeneous(nx, ny, nz, [-1., 0., 0.])

118 elif Jdir == ’-y’:

119 #this results in a polarization p = [+1, 0, 0]

120 parray = crossryy3d * Magnetization.homogeneous(nx, ny, nz, [1., 0., 0.])

121

122 Ms_array = cross1d * Jssystem / Constants.mu0

123 A_array = cross1d * Aexsystem

124 K_array = cross1d * K1system

125 Kaxis_array = cross3d * Magnetization.homogeneous(nx, ny, nz, [0, 0, 1])

126

127 random = True

128 homogenous = False

129 m0list = [0., 0., 1.]

130 artificial_DW = False

131 mrandomseed = 101

132 if random:

133 m0 = get_random_m0(nx, ny , nz , cross3d , seed=mrandomseed)

134 Util.write_vti(m0 , dx, dy, dz, filepath + "m0_seed_%d"%mrandomseed)

135 elif homogenous:

136 m0 = cross3d * Magnetization.homogeneous(nx , ny, nz, m0list)

137 elif artificial_DW: # this is only for Keff > 0.0

138 m0 = cross3d * Magnetization.homogeneous(nx , ny, nz, m0list)

139 m0[:, :ny/2, :, 2] += -1.0

140 m0[:, ny/2:, :, 2] += 1.0

141

142 mesh = Mesh(nx, ny, nz , dx , dy , dz)

143 state = State(mesh , Ms = Ms_array , m = m0)

144

145 exchange = ExchangeField(A_array , mesh)

146 demag = DemagField(mesh , verbose = True , caching = False , nthreads = 32)

147 aniso = UniaxialAnisotropyField(K_array , Kaxis_array)

148 sot = SpinTransferTorqueField(parray , eta_damp , eta_field , Jesystem , z)

149

150 llgterms = [exchange , demag , aniso , sot]

151 llg = LLGIntegrator(alpha = 1.0, terms = llgterms)

152

153 def relax_m(relax_time):

154 cnt = 0

155 stream = open(filepath +"m_relax.dat", "w")

156 stream.write("#t(s), mx,my,mz , mx_rxx , my_rxx , mz_rxx , mx_rxy , my_rxy , mz_rxy ,

mx_ryy , my_ryy , mz_ryy\n")

157 state.t = 0.0

158 while state.t <= relax_time:

159 mx,my,mz = Util.spacial_mean_in_region(state.m, cross1d)

160 mx_rxx , my_rxx , mz_rxx = Util.spacial_mean_in_region(state.m, crossrxx)

161 mx_rxy , my_rxy , mz_rxy = Util.spacial_mean_in_region(state.m, crossrxy)

162 mx_ryy , my_ryy , mz_ryy = Util.spacial_mean_in_region(state.m, crossryy)

163 stream.write("%g %g %g %g %g %g %g %g %g %g %g %g %g\n"%(state.t,

164 mx,my,mz ,
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165 mx_rxx , my_rxx , mz_rxx ,

166 mx_rxy , my_rxy , mz_rxy ,

167 mx_ryy , my_ryy , mz_ryy ,

168 ))

169 print("%g %g %g %g"%(state.t,mx,my ,mz))

170 if int(cnt %1000) == int (0):

171 state.write_vti(filepath + "m_relax_%d"%llg.accumulated_steps)

172 llg.step(state)

173 cnt += 1

174 stream.close()

175

176 if transfer_curve:

177 Bmax = 10e-3 # Maximal Field Value in Tesla

178 B_step = 0.5e-3 #

179 b_list = np.arange(-Bmax , Bmax+B_step , B_step)

180 theta = np.deg2rad (0.)

181 Hextdir = np.array ([1., 0., 0.])

182 #Hextdir = np.array ([0., 1., 0.])

183 #Hextdir = np.array ([0., 0., 1.])

184

185 relax_time = 5e-9

186 m0 = get_random_m0(nx, ny , nz , cross3d)

187 state = State(mesh , Ms = Ms_array , m = m0)

188 def relax_trans(i, h, je_var , hbias , relax_time , cont = True):

189 Hbias = af.constant(hbias , nx , ny , nz, 3, dtype=af.Dtype.f64)

190 zeebias = ExternalField(Hbias)

191

192 if cont:

193 if i == 0:

194 relax_time = 10e-9

195 state.m = m0

196 else:

197 state.read_vti(filepath + "m_%.5d.vti"%(i - 1))

198 else:

199 state.m = m0

200

201 zeeswitch = af.constant (0.0, nx, ny, nz, 3, dtype=af.Dtype.f64)

202 zee = ExternalField(zeeswitch)

203 Hextarray = h * Hextdir

204 zee.set_homogeneous_field(Hextarray [0], Hextarray [1], Hextarray [2])

205

206 sot = SpinTransferTorqueField(parray , eta_damp , eta_field , je_var , z)

207 llgterms = [exchange , demag , aniso , sot , zeebias , zee]

208 llg = LLGIntegrator(alpha = 1., terms = llgterms)

209

210 filename = filepath + "log_ %.5d.dat"%(i)

211 state.t = 0.0

212 with open(filename , ’w’) as stream:

213 while state.t <= relax_time +1e-12:

214 mx, my , mz = Util.spacial_mean_in_region(state.m, cross1d)

215 mx_rxx , my_rxx , mz_rxx = Util.spacial_mean_in_region(state.m,

crossrxx)

216 mx_rxy , my_rxy , mz_rxy = Util.spacial_mean_in_region(state.m,

crossrxy)

217 mx_ryy , my_ryy , mz_ryy = Util.spacial_mean_in_region(state.m,

crossryy)

218 stream.write("%g %g %g %g %g %g %g %g %g %g %g %g %g %g %g %g\n"

219 %(state.t, Hextarray [0], Hextarray [1], Hextarray [2],

220 mx, my , mz ,

221 mx_rxx , my_rxx , mz_rxx ,

222 mx_rxy , my_rxy , mz_rxy ,

223 mx_ryy , my_ryy , mz_ryy ,

224 ))

225 print("%g %g %g %g"%(state.t,mx,my ,mz))

226 llg.step(state)

227 state.write_vti(filepath + "m_%.5d"%(i))

228 for i in range(0, len(b_list)):

229 b = b_list[i]

230 relax_trans(i, b/Constants.mu0 , Jesystem , hbias = 0e-3 / mu0 , relax_time =

5e-9, cont = False)

Listing A.2: Micromagnetic simulation of Hall cross sensor withMagnum.af (Field sweep for one current
direction and density).
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Micromagnetic simulation with Magnum.np

1 from magnumnp import *

2 import torch

3

4 Timer.enable ()

5

6 outpath="output_pos_je/"

7

8 # initialize mesh

9 eps = 1e-15

10 n = (500, 300, 1)

11 dx = (0.5e-9, 0.5e-9, 1e-9)

12 mesh = Mesh(n, dx , origin = (-n[0]*dx[0]/2. , -n[1]*dx[1]/2. , 0.0))

13

14 state = State(mesh)

15 x, y, z = state.SpatialCoordinate ()

16 a = n[1]*dx [1]/2.

17 b = (n[0]*dx[0] - n[1]*dx[1]) /2.

18 magnetic = ( (((x-b)**2. + (y)**2. <= (a)**2.) | ((x+b)**2. + (y)**2. <= (a)**2.))

| ( x**2 <= b**2.) )

19 write_vti(magnetic , outpath+"magnetic.vti")

20

21 # initialize polarization , p, and charge current amplitude

22 # thickness of thin film on which the SOT acts

23 p = state.Constant ([0, -1, 0])

24 p[~ magnetic] = 0.

25 je = 2.4e11

26 d = n[2] * dx[2]

27

28 #write Polarization to file

29 write_vti(p, outpath+"Polarization.vti", state)

30

31 #define space dependent material parameters

32 Ms = state.Constant ([0.])

33 Ms[magnetic] = 0.75 / constants.mu_0

34

35 #define space dependent material parameters

36 K = state.Constant ([0.])

37 K[magnetic] = 0.24e6

38

39 #define space dependent material parameters

40 A = state.Constant ([0.])

41 A[magnetic] = 9e-12

42

43 # initialize material parameters

44 state._material = {

45 "Ms": Ms,

46 "A": A,

47 "Ku": K,

48 "Ku_axis": state.Tensor ([0,0,1]),

49 "alpha": 1.0,

50 "eta_damp": -0.09,

51 "eta_field": 0.17,

52 "p": p,

53 "d": d,

54 "je": je

55 }

56

57 state.m = state.Constant ([0, 0, 1])

58 state.m[~ magnetic] = 0.

59

60 # initialize field terms

61 demag = DemagField ()

62 exchange = ExchangeField ()

63 aniso = UniaxialAnisotropyField ()

64 torque = SpinOrbitTorque ()

65

66 #define external field

67 Hmax = 20e-3 / constants.mu_0

68 t_final = 200e-9

69 zeeman = ExternalField(lambda t: state.Tensor ([( Hmax*t/t_final)-(Hmax *0.5) , 0, 0]))
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70

71 state._material["alpha"] = 0.1

72 Timer.enable ()

73 llg = LLGSolver ([demag , aniso , exchange , torque , zeeman ])

74 logger = Logger(outpath , [’t’, ’m’], [’m’])

75

76 while state.t < t_final:

77 llg.step(state , 1e-10)

78 logger << state

79

80 Timer.print_report ()

Listing A.3: Micromagnetic simulation of elliptical out-of-plane SOT-device with Magnum.np for a
current density of je = 2.4 · 1011 A/m2 and one current direction.

Micromagnetic simulation with Magnum.pi

1 from magnumpi import *

2

3 mesh = Mesh("mesh/sample.msh")

4

5 state = State(mesh ,

6 cell_domains = {

7 "other": 2,

8 "down": (1,4),

9 "up": (3,5),

10 "right": (10 ,12),

11 "left": 11,

12 "magnetic": (1,2,3,4,5,10,11,12)

13 },

14 scale = 1e-9

15 )

16

17 state.material["magnetic"] = Material(

18 alpha = 0.01,

19 Ms = 8e5 ,

20 A = 1.3e-11,

21 Ku = 0.0,

22 Ku_axis = (0, 0, 1),

23 )

24

25 state.m = Constant ((0, 0, 0,))

26 state.m["down"] = Constant ((0, -1, 0))

27 state.m["up"] = Constant ((0, 1, 0))

28 state.m["left"] = Constant ((-1, 0, 0))

29 state.m["right"] = Constant ((1, 0, 0))

30 state.m["other"] = Constant ((1, 1, 0))

31 state.m.normalize ()

32

33 # setup effective field

34 demag = DemagField ()

35 exchange = ExchangeField ()

36 aniso = UniaxialAnisotropyField ()

37

38 t_final = 200e-9

39 omega = 2*pi*1/ t_final *2.

40 external = ExternalField(lambda t: Constant ((25e-3/ constants.mu_0 * cos(omega *(t-0e

-8) -0.5236), 25e-3/ constants.mu_0 * sin(omega *(t-0e-8) -0.5236), 0.)))

41 state.hext = external.h

42

43 state.h = exchange + aniso + demag + external

44 llg = LLGSolver ()

45 logger = ScalarLogger("log_rot.dat", [’t’, ’hext’, ’m’])

46 mlogger = FieldLogger("m_rot/m.pvd", "m", every = 10)

47

48 while state.t < t_final:

49 logger << state

50 mlogger << state
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51 llg.step(state , 1e-10)

Listing A.4: Micromagnetic simulation of 4 cusps as obstacles for domain walls with Magnum.pi
(Simulation script for the procedure presented in the Figures 5.10 and 5.11).

Figure A.1: Mesh of 4 cusps as obstacles used for the Magnum.pi simulation in Listing A.4. The
different regions for the magnetic initialization are marked with different colours.
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Appendix B

Domain Wall propagation after
initialization
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Figure B.1: DW propagation for several rotations in the cusp loop after the initializing steps proposed
in the thesis. The subfigures ordered by numbers depict some consecutive field directions. The DW
moves in the loop in a controlled and stable way. The red arrow indicates the current direction of the
counterclockwise rotating magnetic field and the black arrow shows the corresponding position of the
DW. The colour indicates the y-component of the magnetization. (The simulation movie, which shows
the displayed DW propagation after the initializing steps, can be retrieved on https://ucloud.univie.
ac.at/index.php/s/2CQ21jZ9d3lsS16/download?path=%2Fmovie files&files=cusp loop.mp4. The ac-
cording simulation folder is located on GTO3 with the following directory:
/home/gasser/data/master thesis/cusp sensor/loop.)
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