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Abstract 

The human amygdala has long been subject of extensive investigation, yielding numerous 

structural and functional models. In terms of functionality, the amygdala is mostly associated 

with mechanisms underlying fear in both humans and animals. In vivo examination of the 

human amygdala proves more challenging than in animals, since fMRI group analysis underlies 

spatial inaccuracies, which interfere with the identification of functionally distinct subregions. 

This thesis aims to investigate the usefulness of two unsupervised clustering algorithms to 

obtain functional parcellations of the human amygdala and compares the functional 

connectivity of obtained subregions to the one of the Jülich Brain Atlas. Analysis of high 

resolution resting state fMRI data of 123 individuals showed that the used clustering 

algorithms were able to derive parcellations, that are definitely comparable to the Jülich Brain 

Atlas. Deviations of structure occurred in the smaller centromedial and superficial amygdala. 

However, functional connectivity suggests that the clustered subregions are a better fit to the 

fMRI data at hand. Although some inconsistencies with literature in terms of functionality 

remain, unsupervised clustering has proven to be a feasible method for obtaining functional 

parcellations of the human amygdala, which can be built upon in the future. 

Die menschliche Amygdala ist seit langem Gegenstand umfangreicher Untersuchungen, die zu 

unterschiedlichen strukturellen und funktionellen Modellen geführt haben. Was die 

Funktionalität betrifft, so wird die Amygdala sowohl bei Menschen als auch bei Tieren meist 

mit den kognitiven Prozessen von Angst in Verbindung gebracht. Die in vivo Untersuchung der 

menschlichen Amygdala erweist sich als schwieriger als bei Tieren, da die fMRI 

Gruppenanalyse mit räumlichen Ungenauigkeiten behaftet ist, die die Identifizierung von 

funktionell unterschiedlichen Unterregionen beeinträchtigen. Ziel dieser Arbeit ist es, die 

Nützlichkeit von zwei unüberwachten Clustering-Algorithmen zu untersuchen, um funktionelle 

Parzellierungen der menschlichen Amygdala zu erhalten und die funktionelle Konnektivität der 

erhaltenen Subregionen mit der des Jülich Brain Atlas zu vergleichen. Die Analyse von 

hochauflösenden fMRT-Daten von 123 Individuen im Ruhezustand zeigte, dass die 

verwendeten Clustering-Algorithmen in der Lage waren, Parzellierungen zu generieren, die 

durchaus mit dem Jülich Brain Atlas vergleichbar sind. Strukturabweichungen traten in der 

zentromedialen und in der oberflächlichen Amygdala auf. Die funktionelle Konnektivität legt 

jedoch nahe, dass die geclusterten Subregionen besser zu den vorliegenden fMRI-Daten 

passen. Obwohl einige Unstimmigkeiten mit der Literatur in Bezug auf die Funktionalität 

bestehen bleiben, hat sich das unüberwachte Clustering als vielversprechende Methode zur 

Gewinnung von funktionellen Parzellierungen der menschlichen Amygdala erwiesen, auf der 

in Zukunft aufgebaut werden kann.  
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1. Introduction 

1.1. Investigating Structure and Function 

The human amygdala is a comparably small almond-shaped area in the brain, located in the 

medial temporal lobe and was first described  at the beginning of the 19th century by the 

German physiologist Karl Friedrich Burdach (Burdach, 1826). However, the region initially 

identified by Burdach as a cytoarchitectonic independent area was actually just a region now 

often referred to as the basolateral amygdala and did not include all the areas that are 

associated with the amygdala today (McDonald, 2003). The basolateral amygdala is only one 

subdivision among several others, although it might be the largest and easiest to locate. In the 

50 years following its partial discovery, first attempts were made to microscopically examine 

the human amygdala to find histological tissue sections (Swanson & Petrovich, 1998). The 

rising interest in parcellating the amygdala led to an increase in structural differentiation. 

About 100 years after Burbach’s discovery, Johnston (1923) identified several nuclei that he 

associated with the “amygdaloid complex”, examining the region in a selection of mammalian 

species. He introduced an extensive and fundamental description of the formation, that is the 

most commonly referred to until this day. Johnston identified six main nuclei, namely the 

central, medial, cortical, accessory, basal and lateral nuclei. The first three being declared as a 

primitive group associated with the olfactory system and the latter three being a 

phylogenetically more recently developed group (Swanson & Petrovich, 1998). This 

nomenclature chosen by Johnston is just one amongst many naming systems that arose over 

time and the specific areas that he chose to associate with each nuclei vary across today’s 

available literature (Heimer et al., 1999; De Olmos, 2004; Yilmazer-Hanke, 2012). Since the first 

half of the twentieth century, when Johnston made his postulation, a lot more data regarding 

anatomy and functionality of the amygdala and its surrounding regions has been accumulated. 

A common interpretation that this data yields is that the amygdaloid complex constitutes a 

heterogeneous accumulation of expanses of these surrounding brain areas, with the central 

and medial nuclei and anterior area being an extension of the striatum. The nucleus of the 

lateral olfactory tract, cortical nucleus, postpiriform and piriform amygdalar areas are being 

associated with the olfactory cortex and the lateral, basal and posterior nucleus being a 

ventromedial extension of the claustrum (Swanson & Petrovich, 1998).  
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In the past five decades the interest in classifying the amygdala in terms of cytoarchitecture 

has been replaced by the growing importance of comprehensive investigation of its 

functionality. The most common association today in this regard is its involvement in 

mechanisms underlying emotions (LeDeux, 2000). The first ones that addressed these 

mechanisms were William James and C. G. Lange (James, 1884; Lange 1887), who formulated 

the James-Lange theory of emotion. The theory postulated that emotions are cognitive 

responses that are evoked by the physiological responses of the body and had nothing to do 

with the amygdala. Even though it was discovered earlier that century, it was not considered 

to be involved in the mechanisms underlying emotions.  Over the next 75 years progressing 

investigation associated emotional responses more and more with dedicated areas in the brain 

and led to the concept of the limbic system, which still did not include the amygdala (Cannon, 

1927; Papez, 1937; McLean, 1949; Sah et al., 2003). When Klüver and Bucy (1939) conducted 

an experiment that aimed to investigate the effects of medial temporal lobe lesions in 

monkeys, they observed changes in emotional behaviour, but did not attribute these effects 

directly to the amygdala, possibly because the lesion also included parts of the hippocampus 

and surrounding cortical areas (Sah et al., 2003). It was not until Weißkrantz (1956) that the 

amygdala’s role in emotional processing was first consolidated, by replicating the findings of 

Klüver and Bucy with lesions targeting the amygdala directly. Further investigations led to the 

increasing popularity and development of fear conditioning tasks. Especially in rodents, 

amygdala’s involvement in fear responses can be studied thoroughly with in vivo methods not 

applicable to humans like nuclei specific neurotoxic lesions and harmful conditioning stimuli 

(Goosens & Maren, 2001). Due to the simplicity and effectiveness of fear conditioning in 

rodents, paired with the physiological similarities of fear in humans and rodents (Phelps & 

LeDoux, 2005), the amygdala has gotten a lot of attention. This widespread interest in 

investigating the amygdala’s association with fear processing has greatly reinforced the 

argument for its involvement in rodents and humans. Although these neural systems of fear 

can be studied in detail in rodents, they only provide a basis for our understanding how these 

mechanisms unfold in the human brain and cannot be taken as fully analogous (Davis et al., 

2010). Furthermore, this influx in fear conditioning research has resulted in an abundance of 

studies highlighting the amygdala’s involvement in today’s literature, a circumstance that can 

lead to misinterpretation on a meta-analytical level. For instance, if one would search for the 

term “fear” on the website www.neurosynth.org (Yarkoni et al., 2011), a synthesized activation 
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map from 363 studies done on humans will appear, that shows highest statistical association 

with an area encompassing the entire amygdala. Of course, the amygdala is neither the only 

region involved in fear processing, nor does it function as one homogenous region. It is the 

nature of the meta-analytical approach which suggests that the considered studies yield 

activation most prominently in the whole amygdaloid complex. The key takeaway from this 

example is not the amygdala is consistently the most active area in studies examining fear. It 

rather emphasizes the misconception that the entire amygdaloid complex is associated with 

the mechanisms of fear. A notion that is a distortion of contemporary understanding of the 

amygdala’s functionality. The modern understanding is reflected in recent literature where the 

amygdala is treated as a conglomerate of different nuclei that are distinct from each other 

through intra- and interconnectivity with other brain regions (LeDoux, 2007). Most commonly, 

the amygdala is segmented into three functionally distinct subdivisions. The Jülich probabilistic 

brain atlas (Amunts et al., 2020), which is based on cytoarchitectonic examination of humans, 

declares these three subdivisions as the laterobasal group, the centromedial group and the 

superficial group. This specific nomenclature is the one constituted by Heimer et al. (1999). In 

the Jülich brain atlas the superficial group includes the anterior amygdaloid area, the 

amygdalo-piriform transition area, the amygdaloid-hippocampal area and the ventral and 

posterior cortical nuclei. The centromedial group entails the central nucleus, as well as the 

medial nucleus and the laterobasal group defines the lateral, basolateral, basomedial and 

paralaminar nuclei (Amunts, 2005). The Jülich Brain Atlas will be used in this thesis as reference 

along data analysis due to its wide use in recent literature regarding the human amygdala (Roy 

et al., 2009; Eickhoff et al., 2018; Bzdok et al., 2013). Although the atlas is widely used, a lot of 

advancements and attempts in structural investigation have brought forth several other valid 

options (Hawrylycz et al., 2012, Tyszka & Pauli, 2016) and the best fitting number of 

subdivisions, as well as which specific nuclei of the amygdala they entail, remains a topic of 

debate until this day. However, even though these mappings are based on human brain tissue 

examinations and most likely reflect the amygdala’s functional parcellation, they do not fully 

describe it. In other words, in vivo investigation of the human amygdala is a challenging task 

compared to tissue segmentation or in vivo investigation of rodents amygdala.  
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1.2. Contemporary Problems 

Even if there would exist an anatomical correct and detailed model of the amygdala, the 

application to fMRI data would still presents several challenges and limitations. Histological 

differences in the tissue would not automatically mean that the BOLD signal would follow 

these borders, due to characteristics of both data acquisition and analysis. Concerning data 

acquisition, the problem lies within the spatial resolution of fMRI scanners. A wide range of 

fMRI studies collect their data at a 3×3×3mm³ voxel size, a resolution that cannot capture a lot 

of the more fine grained differences in tissue. Additionally, the probabilistic nature of fMRI 

group analysis, makes it even harder to take full advantage of maximally detailed parcellations, 

because the investigated region is not spatially aligned across all examined subjects. For 

capturing functionally distinct subregions which are detectable with fMRI and fine grained 

enough to yield robust findings, other solutions have to be applied. A promising way to tackle 

this issue is the use of unsupervised clustering algorithms (Thirion et al., 2014). As can be 

inferred from their name these algorithms work in an unsupervised manner, meaning that 

they do not take any additional information into account, except the data they are given and 

the number of clusters into which the data should be divided. The idea behind using these 

algorithms is that they might possess the ability to accommodate for the spatial variability of 

brain regions between subjects, simply because they group voxels with similar signals, doing 

so without spatial constraints. This means that it might be possible to obtain functional 

parcellations of certain brain regions that fit the used sample better than a refence atlas, due 

to their ability to react to possible spatial inaccuracies which change from sample to sample, 

invoked by the miss-alignment of investigated regions.  

A former study conducted by Zhang et al. (2018) has shown that the implementation of semi-

supervised clustering of the human amygdala’s resting state signal is a powerful tool to 

functionally parcellate the structure. In this semi-supervised approach the clustering algorithm 

was informed by the Jülich brain atlas’ amygdala subregions, by using the centre of mass of 

each subregion as a reference point for the algorithm. Another study using semi-supervised 

clustering informed by the Jülich brain atlas was done by Cheng and Fan (2014) who found 

similar promising results and argue that this approach yields more favourable outcomes than 

unsupervised clustering methods. However, informing the algorithm with subregions of a 

reference atlas might enhance the algorithm’s ability to find clusters similar to these 
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subregions, but also imposes a bias on the results. With the array of nomenclatures and 

parcellations of the amygdala in the available atlases, this does not clarify what the real 

intrinsic functional parcellation of the human amygdala looks like. For this reason, this thesis 

aims to test whether a) unsupervised clustering algorithms are viable tools to obtain a valid 

functional parcellation of the human amygdala using resting-state fMRI that fit the data at 

hand better than the Jülich brain atlas and b) how the results of two different clustering 

algorithms compare to each other.  

1.3. Clustering Algorithms 

To parcellate the amygdala into subdivisions, two of the most common clustering algorithms 

were selected – k-means clustering and agglomerative hierarchical clustering. The reason that 

these two have been chosen is they are being commonly used to cluster resting state fMRI 

signals (Blumensath et al., 2013; Mezer et al., 2009; Thirion et al., 2014). In principle, these 

algorithms work in a similar fashion. Data in the format of a two-dimensional matrix of samples 

× features is passed to the algorithms and the attributes of the data largely determine the 

results. Both algorithms will return the data in divided subsets of datapoints that they declare 

as more similar to each other than to datapoints that are placed in other subsets. The 

datapoints mentioned here correspond to the samples in the matrix and are compared in 

similarity along their features. To put this into the perspective of fMRI data, the samples are 

the voxels of the region that is to be clustered and the features are the timeseries of the BOLD-

signal of each voxel. Although both algorithms mathematically compare the similarity between 

datapoints there are some fundamental differences, one of them being how they arrive at the 

number of clusters that is being returned. In the following section the formalism of both 

algorithms will be explained to give a better understanding of these differences. 

1.3.1. K-Means Clustering 

The k-means clustering algorithm is used to divide a dataset into a predefined number of 

clusters and was firstly developed by Lloyd (1982). It tries to find local minima in the data by 

reducing the sum of squared distances ϕ between each point and its closest centre-point. This 

can be expressed with the function: 

ϕ = ∑  𝑚𝑖𝑛
𝑐∈𝐶

𝑥∈𝑋

‖𝑥 − 𝑐‖2 
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In this equation we see that the goal is to minimize the total error ϕ, which is the sum of the 

minimum squared distances of data-points 𝑥 and centroids (points in centre of mass) 𝑐 for 

each Cluster 𝐶. To accomplish this goal, the algorithm looks for the optimal centroids of each 

cluster in an iterative way. 

For the algorithm to work we have to pass it a predefined number of clusters 𝑘, as it does not 

make any estimation about the optimal number of clusters (hence, the name k-means). Then 

the k-means clustering follows a defined set of steps, until a certain criteria is met. The steps 

as described by Arthur & Vassilvitskii (2007) are as follows: 

1. First the algorithm starts by randomly placing 𝑘 initial centers 𝐶 = {𝑐1, … , 𝑐𝑘} in the data.  

2. Then for each 𝑖 ∈ {1, … , 𝑘} it assigns the closest points in 𝑋 to 𝑐𝑖, to cluster 𝐶i. As 

mentioned above each data point can only be assigned to one cluster. 

3. After this a new centroid is defined, based on the current distribution of data points in the 

cluster 𝐶𝑖: 𝑐𝑖 =
1

Ci
∑ 𝑥𝑥∈𝐶𝑖

. 

4. Now steps two and three are repeated until the centres 𝐶 no longer change their location.  

Assigning the datapoints to a cluster in Step 2 results in the data-clusters, by giving each 

datapoint of a cluster the same label. In terms of fMRI data this means that each voxel gets a 

number from 1 to 𝑘.  

The implementation of the k-means clustering algorithm was done with the Python library 

scikit-learn (Pedregosa et al., 2018). The exact algorithm that scikit-learn uses as a default is 

the “greedy kmeans++” algorithm by Arthur & Vassilvitskii (2007). The k-means++ algorithm 

differs from the standard k-means algorithm above in Step 1. Instead of arbitrarily choosing all 

initial centroids, only the first one is chosen randomly. The placement of each following 

centroid is based upon the location of the first one by a method called “D² weighting” which 

they presented in their work cited above. The “greedy version” of the k-means++ algorithm is 

another optimization in regard to the centroid selection. It samples more than one centroid at 

each step and chooses the best option among those initialized centroids (Grunau et al., 2022). 

1.3.2. Hierarchical Clustering 

Hierarchical clustering can be used for the same purposes as k-means clustering but it differs 

substantially in its functionality. One of the biggest differences is that it does not need a 
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predefined number of clusters. The way it works is that it either merges or splits nested clusters 

to the point it has merged the data into only one cluster or until it has split the data into all its 

smallest possible parts. The approach used in this work is utilizing the merging-approach and 

it is called hierarchical agglomerative clustering (HAC). The implementation was done similarly 

to the k-means implementation, with the Python library scikit-learn. Among the different 

versions of the algorithm that are offered in scikit-learn, the default “ward” linkage method 

was chosen. The linkage method relates to the strategy for merging similar datapoints. The 

“ward” method chooses variance as its metric to minimize the sum of squared differences. In 

other words Ward’s algorithm (Ward, 1963) merges two clusters if the resulting combined 

cluster minimizes the sum of squared differences across all clusters. This happens in a step by 

step iterative fashion, where at each step two clusters are merged into one until only the whole 

dataset results in one cluster. Thirion et al. (2014) described this procedure with its application 

to resting state fMRI formally in the following way. We denote the two clusters under 

inspection as 𝑐1 and 𝑐2. Our goal is to merge the clusters that reduce the difference Δ(𝑐1, 𝑐2): 

Δ(𝑐1, 𝑐2) = ∑ |𝑦𝑗 − ⟨𝑌⟩𝑐1∪𝑐2
|2

2

𝑗∈𝑐1∪𝑐2

− (∑|𝑦𝑗 − ⟨𝑌⟩𝑐1
|2

2

𝑗∈𝑐1

+ ∑ |𝑦𝑘 − ⟨𝑌⟩𝑐2
|2

2

𝑘∈𝑐2

) 

In this equation 𝑌 is a vector of our voxel timeseries y, Y = [y1, … , yQ], where Q is the amount 

of voxels in our data. ⟨𝑌⟩𝑐 is the average signal of the voxels in the denominated cluster. The 

equation compares the sum of squared (Euclidean) distances between each voxel’s timeseries 

and the average signal of a designated group of voxels. The groups of voxels compared are 

voxels in either 𝑐1 or 𝑐2 (group 1), voxels in 𝑐1 (group 2) and voxels in 𝑐2 (group 3). In the first 

term, the sum of squared distances between each voxels timeseries and the average signal of 

all voxels in both clusters combined is calculated. In the second term the summations of 

squared distances for voxels in each cluster are calculated separately and added together. Then 

the first term is compared to the second term in form of a subtraction. This comparison shows 

if merging the clusters results in a smaller sum of squared distances than keeping them 

separate. So, for instance, if combining 𝑐1 and 𝑐2 is the better option then the result would be 

Δ(c1, c2)  <  0. This way the algorithm searches for clusters that are most optimal to combine. 

To visualize the clustering HAC is often presented with a so called dendrogram. A dendrogram 

shows which clusters are being merged at each step and how far they are from each other 
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along the chosen metric. As mentioned above HAC does not require a predefined number of 

clusters. However, it is common practice to make the cutoff at the step that shows the largest 

distance of the chosen metric in the dendrogram (Khosla et al., 2019). In this work the amount 

of clusters was defined in advance, since the algorithm is used to parcellate the amygdala 

under the assumption that it is functionally divided into three subdivisions, as it is commonly 

suggested by cytoarchitectonic models, such as the Jülich Brain Atlas (Amunts et al., 2020). 
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2. Materials and Methods 

2.1. Data  

For analysis resting-state fMRI data of 123 participants was used. The sample consisted of 48 

(26 female, mean age 27.9±8.1) healthy participants and 75 neurodivergent patients. The 75 

patients were classified according to ICD-10 as F33.1 (9 female, 4 male, mean age 30.3±8.99), 

F33.2 (9 female, 7 male, mean age 27.6±8.6), F33.4 (20 female, 13 male, mean age 28.3±7.7), 

F40.1 (3 female, 2 male, mean age 34.6±9.4), F40.1 remitted (2 male, age 24 and 46), F41.0 (2 

male, age 29 and 30), F41.1 (3 male, mean age 35.7±10) and F41.1 remitted (1 female, age 27). 

The data acquisition was part of a large-scale research project where measures were taken to 

ensure that the 48 healthy participants had no history of psychiatric or neurological diseases. 

Furthermore, they underwent urine testing to preclude substance use and, if required, 

pregnancy. Resting-state fMRI data was acquired with a MAGNETOM 7T whole-body MR 

scanner (Siemens Medical, Erlangen, Germany). The number of whole-brain volumes per scan 

was 258, collected with a 32-channel head coil (Nova Medical, USA). The used CMRR 

multiband EPI sequence collected the data with parameters T = 1.4 s, TE = 23 ms and flip angle 

= 62°). During resting-state scans participants were instructed to fixate a white cross and think 

about nothing. 

2.2. Preprocessing 

Preprocessing steps included slice time correction (FSL; Sladky et al., 2011), bias-field 

correction (ANTs, Avants et al., 2011), realignment (FSL) and normalisation to MNI space 

(ANTs), yielding volumes with 1.5x1.5x1.5mm³ voxel-size. To smooth the functional images a 

Gaussian Filter with a 3mm full-width half maximum (FWHM) parameter was applied (Nilearn).  

2.3. Atlas 

As an anatomical reference model, the Jülich Brain atlas was used for extracting brain signals 

in the area of the amygdala and for extracting brain signals of each subdivision in the 

amygdaloid complex. The atlas is based on 23 postmortem brains (11 female, mean age = 64 

years, age range = 30-86 years), which were histologically analysed. The cytoarchitectonic 

maps are probabilistic representations of cortical areas and subcortical nuclei (Amunts et al., 

2020). For the purpose of building a mask all subdivisions of the amygdala available in the atlas 
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were used. Besides the above mentioned laterobasal, centromedial and superficial group this 

also included the fibre masses (VTM, IF and MF). For statistical analysis only the first three 

subdivisions were included.  

2.4. Simulation 

One of the aims of this thesis is to shed light on the behaviour of unsupervised machine 

learning methods on fMRI data. As outlined above the described algorithms follow certain 

mathematical operations which determine how they would most likely react to a certain set 

of data. For fMRI analysis this data comes in form of timeseries, which each occupy a certain 

point in a three-dimensional space, resulting in a four-dimensional matrix (volume x time). 

Considering the properties of the data at hand and the detailed operations of the algorithm 

one could make inferences about their behaviour with a mathematical approach. But since 

this thesis investigates the issue from the perspective of cognitive psychology it will utilize a 

simulation where the behaviours of the clustering algorithm is tested under varying conditions. 

Using a simulation of fMRI data offers the comparison of the results to a ground truth. In this 

particular case it enables us to make assumptions about the functional parcellation of the 

amygdala and investigate how good the clustering algorithms are at detecting this parcellation. 

Especially interesting is how the clustering methods react to noise in the data, since the signal 

to noise ratio (SNR) is a prominent issue in fMRI analysis. A certain robustness to noise, would 

mean that these data-driven methods could as well be applied to datasets with smaller sample 

sizes. Another interesting aspect of entangling functionally similar voxels is how the algorithms 

perform in the transition areas between subregions. 

The simulation was done in Python using the libraries Numpy and SciPy. Conceptionally it is a 

four-dimensional matrix that is filled with a signal-noise vector and three signal vectors, where 

each of the vectors are spatially weighted in different ways. The first three dimensions of the 

matrix, which represent space, were chosen to fit the size of the amygdala model. The fourth 

dimension models the timeseries and its length is the same as the timeseries in the real fMRI 

data. To model the noise, a vector in length of the fourth matrix dimension was created with 

numpy.random.normal and placed at every point in the three-dimensional space. This function 

draws random samples out of a Gaussian distribution with a predefined standard-deviation. 

This standard deviation parameter was used to stepwise increase the noise scale, to test how 
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the algorithms would perform under increasing signal distortion. The signal vectors, opposed 

to the noise vector, were created in a more informed way. Each vector consists of three 

different waves with a variety of different functions, which were added together to form the 

respective simulated signal. A criteria for these vectors was that they should be distinct from 

each other, which was measured by a correlation coefficient. 

To create a model of the amygdala under the assumption that it is functionally divided in the 

three subregions of the Jülich Brain Atlas, the atlas was used to inform the spatial properties 

of the signals in the simulation. This was accomplished by using the probabilistic atlas regions 

as spatial weights. Each of the three regions (LB, CM and SF) was brought into the simulations 

coordinate space and separately multiplied with one of the three vectors. The probabilistic 

nature of the atlas had much in common with the properties of the fMRI BOLD signal. In fMRI 

data, the centre of an area of interest often shows the most activation towards its centre of 

mass and decays towards its periphery. A characteristic that is caused by the likewise 

probabilistic nature of statistical analysis of fMRI data, in regard to spatial information. The 

atlas was thresholded at the 25th percentile mark, in contrary to the 50th percentile for creating 

the mask, which is applied as a spatial constraint. This was done to obtain signals in the 

periphery that would fade out closer to the noise signal of the “empty” background voxels. 

This way the algorithm’s ability of separating noise from actual signal could be tested better. 

The 25th percentile mark was chosen over no threshold at all, because it was assumed that in 

application to real data some degree of spatial functional distinction is normally given.  

The simulation was clustered by both described clustering-algorithms under two conditions, 

where one condition was run with the simulation as outlined above. In the second condition a 

mask with a 50th percentile threshold was applied. This condition resembled the analysis of 

the real fMRI data more closely and was added to show the algorithms performance in a 

constrained space. In each condition several parameters were manipulated such as the noise 

scale and the number of initialisations for k-means clustering. The outcome of trials varying 

this parameter number of initialisations were used to inform the application of the k-means 

clustering parameter on the real fMRI data. 
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2.5. Statistical Analysis 

The statistical analysis was done exclusively in Python, most prominently with the Nilearn 

library (https://nilearn.github.io/). A visual overview of the analysis workflow is provided in 

Figure 1. In the following sections the analysis steps will be described in detail. 

2.5.1. Masking 

As outlined above the amygdala mask used in this thesis was made with the probabilistic Jülich 

Brain Atlas. To get a homogenous binary mask that captures the amygdaloid area across 

subjects a few steps were performed. Firstly a threshold had to be defined to cut off voxel 

below a certain probability. As a probabilistic atlas is an estimation of the likelihood of each 

voxel being a part of the corresponding subdivision, voxels with a low likelihood have to be cut 

off to ensure that the mask does not overextend the area of interest too much. The amount 

of voxels with a sub 50% chance of being part of a subdivision is often higher than the amount 

of voxels above 50% likelihood. This occurs especially in small brain areas where the 

intersubject-variability in terms of anatomical location has a stronger effect. On the other 

hand, we want to make sure that we do not limit the atlas to a too high probability as this 

increases the chances that the mask does not capture enough of the area of interest. A good 

middle ground has to be found that is liberal enough to capture all of the amygdaloid complex 

in every subject with a high enough probability and at the same time does not overextend too 

far into brain tissue that is not part of the amygdaloid complex. Because of the arbitrary nature 

of this decision, previous literature that obtained satisfying results was used as an inspiration 

(Roy et al., 2009). This resulted in the use of a 50th percentile value of the probabilistic atlas of 

each of its subdivisions. Additionally to using previous literature as orientation the resulting 

masks were qualitatively inspected.  
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Figure 1 Analysis workflow overview depicting the single steps taken. 

After choosing the cutoff strategy, the 50th percentile of voxel-values for each subdivision atlas 

(of areas LB, CM, SF, VTM, IF and MF) was calculated. Then the nilearn.image.math_img 

function was used to multiply each atlas image with a Boolean-Value-Matrix of itself, that only 

assigned a Boolean True value to the voxels above the 50th percentile threshold. This operation 

is possible in nilearn.image.math_img, because it treats the image as a data matrix. This way 

simple calculations like the one explained above can be carried out. After obtaining the 

thresholded atlas regions, smoothing was applied in the same manner as outlined above, to 

get a homogenous chunk of data, since the mask contained holes in form of missing voxels. 

Lastly the images were simply added together and binarized with the function 

nilearn.image.binarize_img. Masks for both hemispheres were obtained in this fashion. The 

masks were then utilized by the nilearn.maskers.NiftiMasker to extract a timeseries for each 

probably-amygdala voxel in the mask. 

2.5.2. Fixed Effects Analysis 

To prepare the data for clustering, a fixed effects approach was chosen. In a fixed effects model 

all subject timeseries are treated as one continuous timeseries by simply concatenating them. 

A mixed-effects model, where the between-subject variability is compared, would be a more 

powerful way of analysing the data (Chen et al., 2013), because it is more robust against strong 

effects in a subset of subjects and therefore not as easily biased as the fixed effects model, 

where the effect of one statistical outlier can have a high influence on the analysis. A fixed 
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effects approach on the other hand is generally more sensitive. In a fixed effects model each 

subject makes the same contribution to the activation timeseries without considering random 

variations from subject to subject. Treating the activation as common to all subjects can reflect 

aspects of functional anatomy that may be representative of the examined group (Friston et 

al., 1999). The disadvantage of increased sensitivity is that the inferences made are hard to 

generalize to other populations except the one where the sample was drawn from. Another 

problem would be that a fixed effects analysis is unfavourable when comparing different 

groups of subjects (Friston et al., 1999). But considering these characteristics it can be said 

that it still remains a suitable approach for cluster analysis, because high sensitivity in regard 

to effects reflecting functional anatomy is highly desirable for this purpose. Furthermore, the 

limitation of being able to describe only one group of subjects does not affect the inferences 

made in this thesis, because no between-group comparisons are made based on the fixed 

effects model. These characteristics also align with the overall intentions of this thesis of 

investigating methods to obtain parcellations that fit the data at hand better than general 

anatomical models. 

Another reason for using a fixed effects approach was of a more practical nature. Difficulties 

arose due to certain characteristics of the clustering algorithms. As outlined above the k-means 

algorithm randomly places its centroids in the data space. This has the advantage of reducing 

bias, but comes with the disadvantage that every time the algorithm is run over a set of data, 

the labels of clusters, which would theoretically occupy the same space across subjects, for 

the most part carry different values. So if the algorithm would parcellate every single subject, 

acquiring a mean clustering on a group level was not possible without relabelling the obtained 

single clusters. A possible solution for this would have been to apply a similarity metric like the 

Dice-Coefficient (Dice, 1945) and compare which clusters were the most similar. However, the 

implementation of such an algorithm was not deemed a reasonable decision in the face of the 

moderate added value gained by a mixed-effects model, compared to the significant time-

costs related to the successful accomplishment of the task. The deterministic nature of the 

hierarchical clustering algorithm would not have caused the problem of alternating labels 

across subjects, but would have needed further arbitrary decisions. These decisions would 

have also applied to the k-means algorithm and concerned the threshold at which value a voxel 

would have been assigned to a certain cluster after group level averaging. 



21 
 

Furthermore, the fixed effects model was only used for running both clustering algorithms. For 

the final analysis steps, where the comparison of between-subject effects was of higher 

importance, a different approach was chosen. So considering that this thesis additionally 

aimed to test an efficient implementation of unsupervised machine learning to individual data, 

the trade-off made with the fixed effects approach was considered a valid decision.  

2.5.3. Clustering 

The implementation of the k-means and hierarchical clustering algorithms was, as mentioned 

above, done in the Python library scikit-learn with the functions sklearn.cluster.KMeans and 

sklearn.cluster.AgglomerativeClustering respectively. Both functions are object-based, which 

means that the properties of each algorithm are defined beforehand in a so called “object”. 

This object is then fitted to the data and gets callable attributes which resemble the results of 

the calculation. For HAC the only property that had to be defined was the number of clusters 

that had to be found. For k-means clustering additionally a parameter that dictated the 

number of times that the algorithm is run with different centroid seeds (number of 

initializations) had to be passed. The simulation was used to observe the impact of changing 

this parameter by comparing different variations. These tests indicated an increase in 

performance when initializing the algorithm 50 times instead of scikit-learns default 

configuration (number of initializations = 1). This increase of performance was predicted 

especially for the application at hand, namely masked timeseries data (see Results). The 

maximum iterations of the k-means algorithm were limited to 300 for a single run, which 

corresponds to scikit-learns default parameter. Both functions were then applied to the 

transposed concatenated timeseries of the masked images. 

Turning the format of the resulting clusters back into a NifTI file format required the help of 

Nilearn functions, since the scikit-learn library is not made for fMRI analysis and is not 

equipped with straightforward solutions. Both clustering functions returned a one dimensional 

list of the corresponding labels of each voxel, where the label value represented the cluster 

they were assigned to. The labels had the same index as the voxels in the feature matrix. This 

way the spatial information was still present in the one dimensional array. To return the list 

from one dimension into three-dimensional space the nilearn.maskers.NiftiMasker was 

utilized to fit the amygdala mask to the labels. First the labels had to be extended along the 
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second dimension, in length of the amount of timepoints in the signal timeseries, to replicate 

timeseries data. This way the amygdala mask could be fit to the “labels-matrix” and transform 

it into a 3-dimensional NIfTI-image that represented the clusters in the standard coordinate 

space for fMRI-analysis. This resulting image represents the derived parcellated amygdala for 

each clustering algorithm and was further used as a map of regions of interest (ROIs) for 

further analysis. 

2.5.4. General Linear Model (GLM) 

For obtaining whole brain connectivity maps a General Linear Model was used for each set of 

subdivisions (Jülich Atlas, k-means clustering, HAC) respectively. The acquisition of the 

clustering-based subdivision was outlined above. For the subdivisions of the Jülich Brain Atlas 

the 50th percentile thresholded probabilistic maps from previous steps were used. Additionally, 

minor overlaps between the subregions were removed, so every voxel was assigned to only 

one of the three subdivisions. Every parcellation image contained three subdivisions with a set 

of voxels that were assigned a value from 1 to 3. Nilearn’s nilearn.maskers.NiftiLabelsMasker 

was used to extract the mean timeseries of every subject for every region of interest (ROI) for 

every of the three methods described above.  

For first level GLM analysis the nilearn function nilearn.glm.first_level was used. As with the 

clustering procedure, a first level model object was defined and then fit to the data together 

with the design matrix of every subject. The design matrix contained every extracted mean 

timeseries for every ROI, which served as regressors in the GLM. This procedure was done for 

all three parcellations respectively. 

The second level GLM analysis was done in a similar fashion using the function 

nilearn.glm.second_level. The second level analysis contrasts always directly compared each 

of the three ROIs against the other two, using a paired t-test (e.g. ROI1 vs ROI2 & ROI3). This 

direct comparison yielded associations significantly higher in one ROI than in either one of the 

other two ROIs. 
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3. Results 

3.1. Simulation 

3.1.1. K-Means 

3.1.1.1. Number of Initializations = 1 

Unmasked. The clustering of the unmasked simulation with only one initialization of cluster 

centroids showed that the k-means algorithm could easily differentiate the ground truth 

clusters, when no noise was present. After gradually increasing the noise scale the resulting 

clusters began to decay continually. At a noise-scale of three standard deviations the clustering 

algorithm could not clearly differentiate the no-signal voxels from signal voxels (Fig. 3). This 

could be related to the signal strength of voxels lying within the yellow cluster. When the 

strength of the noise signal reaches a strength similar to the signal strength of the “amygdala 

signal” then the detection of voxels in the cluster becomes increasingly random. 

Masked. Applying a mask to the data as it is standard practice in fMRI analysis, 

counterintuitively did not improve the clustering results. Looking at (Fig. 4) it can be observed 

that with an increase of the noise scale, the quality of the results drastically decreases. At a 

scale of 0.5 standard deviations one of the true clusters disappears and instead the region 

which appears to be the transition area between the two other true clusters gets detected as 

its own distinct group. Increasing the noise scale further leads to the formation of nested 

clusters, suggesting that the algorithm is detecting different signal intensities of the same 

signal as different regions. At 2.5 standard deviations the algorithm fails to detect more than 

one cluster of the ground truth. The results of this trial were somewhat unexpected as the 

mask was thought to improve the quality of resulting subregions, because the data signals are 

spatially constrained. Due to the similar principle of approach in real fMRI data this raised 

concern that the results of clustering masked data could be impaired. A possible solution for 

improving the cluster quality was increasing the number of initializations parameter. 
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Figure 2 Clustering obtained from applying k-means to unmasked data with number of initialisations = 1. Note that colours of 
each cluster can change from plot to plot due to random labelling. 

3.1.1.2. Number of Initializations = 50 

Masked. Increasing the number of initializations to 50 helped to stabilize the clustering and 

improved the results significantly, compared to the previous trial. Clusters were stable up until 

the noise scale reached two standard deviations. After passing that point the results showed 

similar patterns as before when only one initialization was performed. The cluster representing 

SF disappeared and in its stead the algorithm identified a transition area as an independent 

region. At the point of three standard deviations noise the algorithm was not able anymore to 

detect more than one cluster.  
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These findings strongly suggest to increase the number of initialization for application of the 

algorithm on real fMRI data due to the comparable properties. It is hard to find an explanation 

for the observed behaviour, since spatially constraining the data was expected to improve 

clustering performance. However, a detailed analysis of the algorithm’s behaviour is not the 

aim of this thesis and the mere observation of the behaviour suffices to inform the algorithms 

parameters in further analysis. 

3.1.2. HAC 

Unmasked. The performance of hierarchical clustering of the unmasked simulation was similar 

to the performance of k-means clustering. With no noise at all the algorithm had no problems 

identifying the underlying subregions. With increasing noise, the identified clusters decayed 

continually, but in different ways as in the runs with k-means. On the one hand HAC was better 

at detecting the background noise as one coherent voxel-group, but on the other hand the 

detected subregions were absorbed quicker (at a lower noise scale) than with k-means 

clustering.  

Masked. Masking increased the performance of the hierarchical clustering algorithm 

drastically. Compared to the unmasked conditions clustered with k-means, HAC had little 

problems in detecting the three subregions even in high noise conditions. The subregions 

decayed marginally, but retained most of their voxels in a coherent cluster. 
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Figure 3 Clustering obtained from applying k-means to masked data with number of initialisations = 1. Note that colours of 
each cluster can change from plot to plot due to random labelling. 
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Figure 4 Clustering obtained from applying k-means to masked data with number of initialisations = 50. Note that colours of 
each cluster can change from plot to plot due to random labelling. 
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Figure 5 Clustering obtained from applying HAC to unmasked data. Note that colours of each cluster can change from plot to 
plot due to random labelling. 
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Figure 6 Clustering obtained from applying HAC to masked data. Note that colours of each cluster can change from plot to 
plot due to random labelling. 
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3.2. Clustering 

The resulting clusters obtained by both k-means clustering and HAC are similar in location to 

the ones delineated by the Jülich brain atlas but show some notable differences in their size 

(see Fig. 7). K-means parcellation (Fig. 7A) yielded respective cluster-sizes for left and right 

hemisphere LB of 2311.5mm³ (39.3%) and 2535mm³ (39.9%), for left and right CM of 

1336.5mm³ (22.7%) and 1411.5mm³ (22.2%) and for the two SF clusters, 2233.5mm³ (38.0%) 

and 2410.5mm³ (37.9%). HAC parcellation (Fig. 7B) resulted in respective cluster-sizes for left 

and right LB in 2224.5mm³ (37.8%) and 2602.5mm³ (40.9%), for CM in 732mm³ (12.4%) and 

564mm³ (8.9%) and for SF in 2925mm³ (49.7%) and 3190.5mm³ (50.2%). In comparison the 

reference regions of the Jülich Brain Atlas (Fig. 7C) which underwent cut-off at their 50th 

percentile show larger LB (left: 2466mm³, 47.9%; right: 2563mm³, 47.5%) and CM (left: 

1207.5mm³, 23.4%; right: 1303.5mm³, 24.2%). The biggest difference can be seen in SF regions 

as they are substantially smaller than the clustering derived counterparts with 1477.5mm³ 

(28.7%) and 1528.5mm³ (28.3%) for left and right hemisphere respectively. In the k-means and 

HAC conditions parts of the CM have been “swallowed” by SF. However, overall these findings 

yield satisfactory results and are subjected to validation through connectivity analysis in 

further sections. 

3.3. Connectivity Analysis 

The results yielded by brain connectivity analysis will be shown below in three stages. Starting 

off with so called glass-brain plots of the connectivity maps, allowing a brief presentation of 

the signal distribution across the brain followed by a more detailed comparison of connectivity 

maps and detailed analysis of signal peaks in the connectivity maps. 

3.3.1. Glass-Brain Overview 

Laterobasal. The direct comparison results for the laterobasal subdivision yielded similar 

distributions for positive and negative signal-associations in all three conditions for both 

hemispheres. Overall the visualizations for each condition indicate positive associations in 

parietal and frontal regions, as well as negative associations in occipital regions across all three 

conditions. For the laterobasal subdivision the glass-brain plots suggest similar connectivity 

across all conditions for both hemispheres.  
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Figure 7 Clustered amygdala obtained by k-means (A), HAC (B) and the Jülich atlas (C). The regions most likely represent LB 
(green), CM (blue) and SF (red) in all three conditions. Regions have been printed on MNI-Space template. 

Centromedial. A more diverse distribution can be seen in the glass-brain plots for the 

centromedial subdivision, as the signal association map for the k-means condition in the left 

hemisphere shows negative signal association in latero-occipital regions in contrast to all other 

maps. By and large, all maps indicate positive associations in areas of the limbic lobe, medio-

occipital areas and marginally in the medial frontal lobe. The most significant difference of the 

k-means derived map of the left hemisphere is, that it suggests a much more distinct 

connectivity map in limbic regions, compared to the other conditions. This can also be seen in 

the visualization of the right hemisphere, although to a lesser degree.  

Superficial. Another interesting finding was made comparing the association maps of the 

superficial subdivision. As can be seen in Fig. 10, maps across both k-means and HAC 
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conditions in both hemispheres indicate resemblance across all areas, including positive 

associations in the frontal and parietal lobe, negative associations in the occipital lobe and a 

highly distinct connectivity network in the limbic regions. In contrast, the maps derived from 

the Jülich atlas show global negative signal associations in the left hemisphere and almost 

global negative association in the right hemisphere. There are some indications of more 

diverse signal distributions in the limbic regions. However, these show little more than positive 

auto-associations. 

 

Figure 8 Obtained connectivity maps of the laterobasal amygdala for all three conditions and both hemispheres. Maps were 
corrected voxel-wise (p<0.001) and plotted in glass brains, depicting all voxels at once. 

By examining these glass-brain visualizations it can be seen that the association maps derived 

from each clustering method are comparable across each other and both hemispheres. What 

stands out though, is the indication, that in maps derived from k-means and HAC more detailed 

and nuanced networks are present in the limbic regions. The next section will take a closer 

look at the signal association maps. 
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Figure 9 Obtained connectivity maps of the centromedial amygdala for all three conditions and both hemispheres. Maps were 
corrected voxel-wise (p<0.001) and plotted in glass brains, depicting all voxels at once. 

 
Figure 10 Obtained connectivity maps of the superficial amygdala for all three conditions and both hemispheres. Maps were 
corrected voxel-wise (p<0.001) and plotted in glass brains, depicting all voxels at once. 

3.3.2. Connectivity Comparison 

Laterobasal. In Fig. 11 the connectivity maps derived from direct comparison LB vs. CM+SF are 

depicted for the left hemisphere. For all three conditions (k-means, HAC and Jülich) positive 

connectivity extends from the seed region posterior into hippocampal regions, as well as 

lateral into superior and middle temporal gyrus (Fig. 11A: x=-30, B: y=0). Other positive 
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activation in all three regions can be observed in frontal lobe, ventromedial prefrontal cortex, 

tegmental area, anterior cingular and cingular cortex.  

Negative connectivity in all three conditions is evident bilaterally in centromedial amygdala 

and hypothalamus. Furthermore, negative association can be found in occipital areas in all 

three conditions, but in strongly varying degrees of cluster size, with k-means and Jülich 

conditions having substantially smaller clusters than the HAC derived connectivity maps. 

Overall the connectivity maps for LB of the left hemisphere show a very similar distribution of 

positive and negative signal clusters. However, what stands out looking at Fig. 11, is that 

connectivity maps derived from the Jülich Atlas yield overall bigger clusters with positive 

association. 

Connectivity maps of right hemisphere LB (LBr, Fig. 12) show positive and negative signal 

associations largely in the same locations as do connectivity maps of left hemisphere LB (LBl), 

although, the cluster sizes for positive associations appear to be smaller in LBr than in LBl. 

Although less prominent, positive association is still present in LBr frontal and temporal regions 

as well as posterior and anterior cingulate cortex. Furthermore, there is no significant positive 

association in LBr ventral tegmental area. Regarding negative association, LBr shows bigger 

clusters in occipital areas across all three conditions, with k-means and Jülich differing the most 

from LBl. Negative connectivity in CM, hypothalamus and thalamus stays the same. Two 

differences to LBl are that in LBr we can see negative anterior insula connectivity (Fig. 12B: 

y=10-30, Fig. 12C: z=10) and left somatosensory cortex (Fig. 12C: z=20), especially in k-means 

and HAC conditions. 

Centromedial. When we look at connectivity maps of left hemisphere CM (Fig. 13), the first 

thing one might see is the positive association along the stria terminalis across all three 

conditions that extends from CM, however, not to the same degree. For the k-means CM map 

striatal activity is visible in Fig. 13C: z=-10, but not in Fig. 13A: x=-30, Fig. 13B: y=0. For HAC 

and Jülich derived maps striatal activity is visible in all of the above plots. Further similarities 

between HAC and Jülich which are not present in k-means is positive connectivity in anterior 

insula and putamen (Fig. 13C: z=10), as well as in lateral regions of the thalamus. In contrast 

to the big clusters in lateral thalamus of HAC and Jülich, lateral thalamus in k-means shows 

smaller clusters with higher connectivity and additional negative associations (Fig. 13A, x=10, 
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x=-10). Positive connectivity in posterior thalamus (Fig. 13C, z=0) and anterior cingulate cortex 

(Fig. 13A, x=0) is present in all three conditions ,as well as in regions of the cerebellum, 

however more so in HAC and Jülich connectivity maps (Fig. 13A, x=-30, x=30; Fig. 13C, z=-30). 

All three conditions show negative signal associations with areas adjacent to CM, suspected to 

be the superficial region of the amygdala. In k-means and HAC conditions this negative 

connectivity extends to the hypothalamus. Negative connectivity in the visual cortex is only 

present in k-means derived connectivity maps. 

The connectivity maps of derived CM for the right hemisphere (CMr, Fig. 14) are again similar 

to left hemisphere maps, but with potentially relevant differences. All differences remain the 

same except for following changes in CMr k-means derived maps: there is no more negative 

association in visual cortex, it is now the only condition where negative connectivity in the 

hypothalamus is visible and there is now positive connectivity in the putamen and marginally 

in the anterior insula. 

Superficial. In connectivity maps derived from left hemisphere superficial amygdala (Fig. 15) 

there is clear positive signal association in bilateral superficial amygdala and hypothalamus 

across all conditions (Fig. 15B, y=0). The connectivity cluster extends bilateral from SF and 

hypothalamus to striatal regions in all conditions, but less so in Jülich derived maps (Fig. 15B, 

y=20). Other clusters of positive connectivity can be found in visual cortex of k-means and HAC 

derived maps (Fig. 15A, x= -30) and in regions medial of the caudate nucleus in the anterior 

callosum and nucleus accumbens across all conditions (Fig. 15B, y=20).  

Negative signal association is much more present in the SF derived connectivity maps than 

from the other regions reported above. For the Jülich condition we have negative connectivity 

covering large portions of cortex which makes it hard to pinpoint regions (see Fig. 15 and 16). 

Regions that show negative bilateral connectivity across all conditions are the laterobasal 

amygdala extending into the temporal lobe (Fig. 15B, y=0). This cluster is more detailed in k-

means and HAC conditions as can be seen in Fig. 15A (x=-30) and extends partially into 

hippocampus. Another structure that shows clear negative connectivity across all three 

conditions is the caudate nucleus (Fig. 15B, y=20, z=0), frontal lobe and ventromedial 

prefrontal cortex and ventral tegmental area (Fig. 15C, z=-20). In connectivity maps of SF the 

same regions are associated positively and negatively for both hemispheres, other than 

functional connectivity of LB and CM. 
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Figure 11 Direct comparison of left hemisphere functional connectivity LB vs. CM+SF. Red areas indicate a significant positive 
prediction of fMRI signal and blue areas indicate significant negative predictions. Brighter colours indicate stronger signal 
association. A voxel-wise threshold (p≤0.001) and cluster size threshold (min. 1000 voxel) have been applied. The maps are 
displayed sagittal (A), coronal (B) and axial (C) for k-means, HAC and Jülich derived maps. 
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Figure 12 Direct comparison of right hemisphere functional connectivity of LB vs. CM+SF. Red areas indicate a significant 
positive prediction of fMRI signal and blue areas indicate significant negative predictions. Brighter colours indicate stronger 
signal association. A voxel-wise threshold (p≤0.001) and cluster size threshold (min. 1000 voxel) have been applied. The maps 
are displayed sagittal (A), coronal (B) and axial (C) for k-means, HAC and Jülich derived maps. 
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Figure 13 Direct comparison of left hemisphere functional connectivity of CM vs. LB+SF. Red areas indicate a significant 
positive prediction of fMRI signal and blue areas indicate significant negative predictions. Brighter colours indicate stronger 
signal association. A voxel-wise threshold (p≤0.001) and cluster size threshold (min. 1000 voxel) have been applied. The maps 
are displayed sagittal (A), coronal (B) and axial (C) for k-means, HAC and Jülich derived maps. 
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Figure 14 Direct comparison of right hemisphere functional connectivity of CM vs. LB+SF. Red areas indicate a significant 
positive prediction of fMRI signal and blue areas indicate significant negative predictions. Brighter colours indicate stronger 
signal association. A voxel-wise threshold (p≤0.001) and cluster size threshold (min. 1000 voxel) have been applied. The maps 
are displayed sagittal (A), coronal (B) and axial (C) for k-means, HAC and Jülich derived maps. 
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Figure 15 Direct comparison of left hemisphere functional connectivity of SF vs. LB+CM. Red areas indicate a significant 
positive prediction of fMRI signal and blue areas indicate significant negative predictions. Brighter colours indicate stronger 
signal association. A voxel-wise threshold (p≤0.001) and cluster size threshold (min. 1000 voxel) have been applied. The maps 
are displayed sagittal (A), coronal (B) and axial (C) for k-means, HAC and Jülich derived maps. 
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Figure 16 Direct comparison of left hemisphere functional connectivity of SF vs. LB+CM. Red areas indicate a significant 
positive prediction of fMRI signal and blue areas indicate significant negative predictions. Brighter colours indicate stronger 
signal association. A voxel-wise threshold (p≤0.001) and cluster size threshold (min. 1000 voxel) have been applied. For the 
Jülich condition a cluster threshold of 500 was used to display positive clusters of contralateral SF. The maps displayed sagittal 
(A), coronal (B) and axial (C) for k-means, HAC and Jülich derived maps. 
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3.4. Cluster Peaks 

In the following section the cluster analysis results, done with atlasreader (Notter et al., 2019) 

will be reported. The atlasreader toolbox looks at connectivity clusters and reports the signal 

peak intensity, size and location of clusters meeting the criteria. The cutoff-criteria used for 

this analysis is a cluster size of 200 contiguous voxels (1.5 mm³ per voxel results in clusters of 

at least 300mm³). Moreover the algorithm reported peaks within the same cluster, if the 

Euclidean distance between them was at least 100mm. The identified signal peaks were put 

into a table along with information describing the clusters they were discovered in and sorted 

based on their intensity (see Appendix). Only the top ten of both positive and negative signal 

intensity were considered. The main emphasis of this section will be to report differences and 

similarities between the k-means, HAC and Jülich derived connectivity maps. An overview of 

the differences and overlaps in cluster peaks can be found in Table 1 and Table 2. 

LB Right 

Highest positive and negative signal peak (PSP and NSP) for right hemisphere LB occurred in 

the right LB itself (Fig. 17) and in right CM (Fig. 18) in all three conditions. K-means and HAC 

derived connectivity maps showed overlap in the right primary somatosensory cortex (S1) and 

the ventral tegmental area (VTA), whereas HAC and Jülich derived maps had similar peaks in 

the premotor cortex (PMC). Coinciding negative signal peaks (NSP’s) in all conditions occurred 

in the left frontal pole, the right anterior insula (aINS) and the anterior cingulate cortex (ACC). 

Otherwise no overlapping peaks were found. 
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Figure 17 Orthogonal plots at the location of the highest positive cluster peak for right LB in each condition. Cluster ID in the 
top left corner of each plot correspond to tables in the Appendix. Maps were voxel-wise corrected (p≤0.001) and a cluster size 
thresholded of 200 has been applied. 

 
Figure 18 Orthogonal plots at the location of the highest negative cluster peak for right LB in each condition. Cluster ID in the 
top left corner of each plot correspond to tables in the Appendix. Maps were voxel-wise corrected (p≤0.001) and a cluster size 
thresholded of 200 has been applied. 

LB Left 

Overlapping PSP in all conditions were only found in the left LB (Fig. 19). Other similarities 

occurred between k-means and Jülich derived maps in the left PMC and the right Brodmann 

Area 45 (BA45). Regarding NSP’s, only one in the left CM (Fig. 20) was found across all 

conditions. In the ACC and the left aINS overlaps were found between k-means and HAC 

derived maps. Converging regions between k-means and Jülich conditions can be seen in 

nucleus accumbens (NAC) and thalamus (TH). 
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Figure 19 Orthogonal plots at the location of the highest positive cluster peak for left LB in each condition. Cluster ID in the 
top left corner of each plot correspond to tables in the Appendix. Maps were voxel-wise corrected (p≤0.001) and a cluster size 
thresholded of 200 has been applied. 

 
Figure 20 Orthogonal plots at the location of the highest negative cluster peak for left LB in each condition. Cluster ID in the 
top left corner of each plot correspond to tables in the Appendix. Maps were voxel-wise corrected (p≤0.001) and a cluster size 
thresholded of 200 has been applied. 

CM Right 

The only overlapping PSP across all conditions was found in the right CM (Fig. 21) itself. All 

other positive signal similarities occurred between k-means and HAC derived maps, namely 

peaks in the ACC, the anterior prefrontal cortex (aPFC) and left secondary somatosensory 

cortex (S2).  
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Figure 21 Orthogonal plots at the location of the highest positive cluster peak for right CM in each condition. Cluster ID in the 
top left corner of each plot correspond to tables in the Appendix. Maps were voxel-wise corrected (p≤0.001) and a cluster size 
thresholded of 200 has been applied. 

Table 1 

 
Note: The table shows positive signal peaks among the ten highest peaks, that co-occurred in at least two conditions. Cluster 
ID’s refer to atlasreader outputs, which can be found in the appendix for more detailed information. Subitems of one cluster 
indicate multiple signal peaks found within the same cluster (with at least 100mm distance in between). Cluster ID’s in 
parenthesis indicate that the signal peak is similar to the other(s), but differs considerably nonetheless.  

Coinciding NSP’s were found bilateral in SF (Fig. 22), although for the right SF k-means and HAC 

derived maps were more similar opposed to Jülich derived maps. Overlap in the anterior 

callosum (AC) was found only in k-means and HAC conditions.  
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Figure 22 Orthogonal plots at the location of the highest negative cluster peak for right CM in each condition. Cluster ID in the 
top left corner of each plot correspond to tables in the Appendix. Maps were voxel-wise corrected (p≤0.001) and a cluster size 
thresholded of 200 has been applied. 

Table 2 

 
Note: The table shows negative signal peaks among the ten highest peaks, that co-occurred in at least two conditions. Cluster 
ID’s refer to atlasreader outputs, which can be found in the appendix for more detailed information. Subitems of one cluster 
indicate multiple signal peaks found within the same cluster (with at least 100mm distance in between). Cluster ID’s in 
parenthesis indicate that the signal peak is similar to the other(s), but differs considerably nonetheless.  

CM Left 

For the left CM parallels in PSP’s across all conditions were found in itself (Fig. 23). Like in the 

right CM, all other similarities can be seen only between k-means and HAC derived maps in 
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the ACC and the brainstem. NSP’s are again similar to the right hemisphere, occurring across 

all conditions bilaterally in SF (Fig. 24). However, the only other co-occurrence can be found 

between HAC and Jülich derived maps in the left temporal pole. 

 
Figure 23 Orthogonal plots at the location of the highest positive cluster peak for left CM in each condition. Cluster ID in the 
top left corner of each plot correspond to tables in the Appendix. Maps were voxel-wise corrected (p≤0.001) and a cluster size 
thresholded of 200 has been applied. 

 
Figure 24 Orthogonal plots at the location of the highest negative cluster peak for left CM in each condition. Cluster ID in the 
top left corner of each plot correspond to tables in the Appendix. Maps were voxel-wise corrected (p≤0.001) and a cluster size 
thresholded of 200 has been applied. 

SF Right 

For right hemisphere SF PSP’s only the auto-associated cluster was found across all conditions 

(Fig. 25). All other similar PSP’s occurred parallel in k-means and HAC conditions in the anterior 

callosum, the TH, right lateral occipital cortex and midbrain. For NSP’s two peaks in the same 

cluster were found for all three conditions. The regions these NSP’s occurred in were the right 
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CM (Fig. 26) and the right PMC. The only other similar NSP was found between k-means and 

HAC derived maps in right S1. 

 
Figure 25 Orthogonal plots at the location of the highest positive cluster peak for right SF in each condition. Cluster ID in the 
top left corner of each plot correspond to tables in the Appendix. Maps were voxel-wise corrected (p≤0.001) and a cluster size 
thresholded of 200 has been applied. 

 
Figure 26 Orthogonal plots at the location of the highest negative cluster peak for right SF in each condition. Cluster ID in the 
top left corner of each plot correspond to tables in the Appendix. Maps were voxel-wise corrected (p≤0.001) and a cluster size 
thresholded of 200 has been applied. 

SF Left 

In left hemisphere SF, PSP’s occurring in all three conditions can be seen in the left SF (Fig. 27) 

and the anterior callosum. The only other PSP, found in the midbrain, arose in both k-means 

and HAC derived maps. Looking at the NSP’s it can be seen that three peaks occurred in the 

same cluster. The first two peaks can be found in all three conditions, in the left CM (Fig. 28) 

and the right PMC. Another NSP of this cluster that was reported under the selected peaks is 

located in the right cerebellum for k-means and HAC derived maps. The fact that the cluster 
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peaks are this far apart, makes it unlikely that they truly belong to the same cluster. However 

for this comparison the location and intensity of the signal peak are the information of interest. 

The only other similarities were found between k-means and HAC conditions and occurred in 

the left S1 and the right PMC. 

 
Figure 27 Orthogonal plots at the location of the highest positive cluster peak for left SF in each condition. Cluster ID in the 
top left corner of each plot correspond to tables in the Appendix. Maps were voxel-wise corrected (p≤0.001) and a cluster size 
thresholded of 200 has been applied. 

 
Figure 28 Orthogonal plots at the location of the highest negative cluster peak for left SF in each condition. Cluster ID in the 
top left corner of each plot correspond to tables in the Appendix. Maps were voxel-wise corrected (p≤0.001) and a cluster size 
thresholded of 200 has been applied. 
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4. Discussion 

Applying the k-means and hierarchical agglomerative clustering algorithms to high resolution 

resting-state fMRI data, masked by a 50th percentile probabilistic atlas has yielded parcellations 

into amygdala-subregions that are definitely comparable to the subregions defined by the 

Jülich probabilistic atlas. As has been shown in the simulation, the algorithms return clusters 

that are analogous to the ground truth of the simulation data when, in case of k-means 

clustering, the number of iterations parameter (ninit) is set above 50. Of course the simulated 

data is not an exact resemblance of real fMRI data, but it inherits similar conditions. These 

conditions are granted by the nature of the used signal weights, which have the highest value 

at the centre of mass of the subregion they are intended to represent and a continuous 

decrease towards its periphery. Along with this, the maximal weight-values are differing 

between the subregions, which represents different (measured) signal strengths, a 

circumstance which gave insights into how the algorithms would react to these conditions. 

Even though all analysed signals are standardised, the difference in signal to noise ratio most 

likely has an impact on the signal amplitudes. Another feature of the simulated data that is 

shared with real fMRI data is the mixing of signals in the transition areas of adjacent 

subregions. The assumptions that this signal mixing occurs is not necessarily based on 

neurophysiological properties, but rather on the probabilistic nature of fMRI group analysis. 

Even when the signals do not mix in single subject recordings, they probably will do so after 

group level analysis, as the location of small brain regions as amygdala subregions will not be 

aligned across all participants. Signal mixing in the simulation does probably not occur in real 

data in the same way, but again, these circumstances allowed testing of the algorithm’s 

behaviour. As can be seen, when applying the k-means algorithm to masked data with a low 

ninit parameter, the algorithm seems to have problems separating signals of the conjunction 

between two subregions and declares it as a separate region. This behaviour could be 

corrected by changing ninit = 1 to ninit = 50. Although, the problem reoccurred with increasing 

noise, where the algorithm seemed to include proportionally larger parts of the transition area 

between LB and CM into the CM cluster (Fig. 4D). The HAC algorithm on the other hand had 

seemingly no problems with detecting the transition areas as part of the encircling clusters. 

Both algorithms yielded parcellations of the amygdala that resemble the widely used 

subdivisions defined by the Jülich Probabilistic Brain Atlas (Fig. 7). Although the laterobasal 
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cluster corresponds quite well between the three parcellations in terms location, the clusters 

that are suspected to be centromedial and superficial subdivisions are not as homogeneous 

across the three parcellations regarding their size and shape. In both clustering algorithms SF 

is noticeably larger than the corresponding structure in the Jülich atlas, especially in HAC. In 

contrast to Jülich subdivisions (Fig. 7C) the clusters yielded by k-means (Fig. 2A) and HAC (Fig. 

2B) show that the supposed SF is extending into large portions of CM. In the k-means condition 

the CM cluster is wrapping around SF, which means that the CM cluster is present in the 

anterior/posterior and lateral/medial periphery, although in form of a continuous cluster. This 

can also be observed in Figure 26 where the positive connectivity cluster of SF and negative 

connectivity cluster of CM are intertwined. The SF cluster appears to be located in between LB 

and CM and entails large areas of Jülich CM. A similar case can be observed in the HAC clusters, 

where CM is on the one hand more concentrated, location wise, but SF is covering a lot of 

Jülich CM region as well.  

As described above, the simulation results give reason to assume that signal mixing in 

transition areas was not causing substantial distortions in the resulting clusters. This lowers 

the probability that an area with mixed signals was declared a separate cluster. The case that 

the whole transition area, or large parts of it, was assigned to SF is possible due to similar 

behaviour in the simulation, but obtained evidence is not very clear. Furthermore, the fact that 

measured fMRI signal of a region of interest is tied to the probabilistic spatial properties 

mentioned above, leads to the assumption that smaller brain regions underlie higher spatial 

inaccuracies and thus exhibit weaker signal strength. According to the probabilistic properties 

of the Jülich atlas CM and SF regions, SF had higher probabilistic values than CM. Consequently 

CM should have been affected more by spatial inaccuracies, which would have led to higher 

probability of SF signal being dominant in the transition area as opposed to CM signal. The fact 

that areas that are part of CM in the Jülich atlas were denominated as SF by both clustering 

algorithms makes this at least a plausible explanation and suggests that differences in signal 

strength impose a limitation to unsupervised clustering.  

Another explanation for this result could be that the algorithms were detecting a signal that is 

not part of any amygdala subregion and that the supposed CM is either noise or signal that 

belongs to another neighbouring structure, whereas SF entails both SF and CM. This particular 

case was not tested in the simulation, but from trials without masking it is evident that both 
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algorithms were able to detect all three subregions sufficiently without applying a mask. This 

shows that the algorithms can handle the lack of signal, but do not account for the mask 

entailing a fourth signal cluster. In this case the mathematical formalities of the algorithms 

would suggest that they are merging voxels that are most similar to each other. If a non-

amygdala signal appears inside the masks border, then it can be assumed that this signal differs 

from both CM and SF signal more than the two amygdaloid subregions would differ from each 

other, hence merging CM and SF to one cluster. To clarify whether the clusters found by both 

algorithms are part of the amygdala and if so, which parts they represent, we have to look at 

the obtained connectivity maps.  

As can be seen in the glass brain plots in section 3.1.1 the signal distribution that varies most 

across all three parcellations are the ones for CM and SF. In LB differences are apparent as well, 

but opposed to CM and SF positive and negative signal associations are always in the same 

location and only the cluster sizes seem to change. For CM maps positive/negative distribution 

of the left hemisphere k-means derived plots differ substantially from HAC and Jülich derived 

plots and for SF maps of both hemispheres signal distribution of k-means and HAC plots differ 

a lot from Jülich plots. These global signal patterns indicate, like the observations of obtained 

clusters, that there is indeed a difference between CM and SF connectivity maps across at least 

some of the three methods. 

Direct comparison maps of LB vs. CM+SF in the Jülich condition predicted positive signals in 

the same regions as HAC, namely in striatum, hippocampus, anterior insula, putamen, lateral 

thalamus, posterior thalamus and ACC. For k-means derived maps we only see this positive 

signal associations in hippocampus, marginally in lateral thalamus, posterior thalamus and 

ACC. The centromedial amygdala’s role as an output region associated with ACC, putamen, 

insula and thalamus (Roy, 2009; Davis, 1997) is explained better by the predictions made by 

HAC and Jülich derived CM. Positive connectivity to the bed nucleus of the stria terminalis 

(BNST) in all three conditions is in line with literature (Tillman, 2018; Gorka, 2018). The left 

hemisphere CM cluster connectivity obtained by k-means is missing predictions of signal in the 

insula, which has been proven to be associated with centromedial amygdala (Kargl et al. 2020; 

Tillman et al. 2018). Marginal association with the anterior insula cortex can be seen in k-

means derived right hemisphere CM, but not as prominent and consistent as in the other two 

conditions. Another region that is known to be associated with centromedial amygdala nuclei 
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is the hypothalamus (Weera et al, 2021; Ballotta et al, 2021). Negative signal predictions are 

made by HAC and k-means CM clusters of the left hemisphere and only for the k-means CM 

cluster of the right hemisphere. Comparing these findings with existing literature, it is to 

assume that the CM cluster obtained by the HAC algorithm and the Jülich atlas CM exhibit 

more plausible functional connectivity. Due to HAC CM’s associations with hypothalamus this 

cluster proofs to be an even better fit than the Jülich atlas CM. 

Looking at the direct comparison maps for SF vs. LB+CM, it can be seen that almost all regions 

associated with k-means and HAC SF clusters are also associated with Jülich SF, except for 

positive associations of visual cortex and brain stem. In the Jülich derived maps the clusters 

are spread across large areas of the cortex with no visible regions of high intensity z-values. 

This could be a sign that the Jülich atlas SF was spatially less accurate than the SF clusters 

obtained by clustering algorithms. Examining functional connectivity maps of k-means and 

HAC SF clusters it is evident that there is a more fine grained and detailed spreading of both 

negative connectivity into limbic regions from the superficial amygdala. Connectivity of SF with 

ACC, caudate, nucleus accumbens and hippocampus was also found by Roy et al. (2009). 

Negative associations with vmPFC and LB, with the cluster extending into the temporal lobe 

indicate a contrasting connectivity of SF to LB. The fact that SF negatively predicted activation 

in BNST in all three conditions indicates contrast to the CM connectivity maps.  

Evidence obtained from the cluster peak analysis shows that positive as well as negative cluster 

peaks of k-means and HAC conditions are much more similar to each other than to the Jülich 

condition for CM and SF in both hemispheres. For LB the degree of overlapping cluster peaks 

vary across the modalities. This suggests that k-means and HAC clustering algorithms 

parcellated the amygdala into subregions that also compare to each other on a detailed 

functional connectivity level and at the same time differ from the connectivity maps obtained 

by the widely used Jülich brain atlas. The cluster peaks obtained from the clustered regions 

provide evidence that functional connectivity is in line with literature. For instance, positive 

peaks in right hemisphere CM occur in ACC and anterior prefrontal cortex, which are regions 

associated with pain, a mechanism the centromedial amygdala is associated with 

(Neugebauer, 2015) 

Signal peaks of SF in brain stem, cerebellum and motor cortex suggest that areas of the CM 

have been attributed to the wrong cluster since these regions are believed to receive input 
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from centromedial amygdala nuclei to facilitate fast motor responses (Simons et al., 2014; 

LeDoux et al. 1988). On the other hand, a study conducted by Koelsch and Skouras (2014) 

found a functional connectivity network of the superficial amygdala associated with joyful 

stimuli rather than fearful stimuli. This network connects SF first and foremost to LB, 

hypothalamus and striatum, but also to hippocampus, thalamus, cerebellum and regions 

responsible for attention, sensorimotor function and vision. These connections can also be 

seen in the connectivity maps of SF obtained by the clustering algorithms in form of PSP’s in 

thalamus, midbrain and occipital lobe (see Table 1), NSP’s in cerebellum and somatosensory 

regions (see Table 2) and overall significant signal association in hypothalamus, striatal regions, 

hippocampus, brain stem and visual cortex (Fig. 15 and 16). Furthermore, connectivity 

patterns of SF derived from clustering algorithms yield much more detailed connections in 

contrast to their Jülich atlas counterparts. These qualitative observations paired with the 

above described parallels to literature do indeed suggest that the clustered SF is fitting the 

data at hand better than the default Jülich atlas SF. 

Lastly, functional connectivity direct comparison of LB vs. CM+SF has been largely consistent 

across the three conditions and is in line with literature. This can be derived from association 

with auditory cortex and vmPFC, as well as PSP’s in somatosensory cortex, indicating the LB’s 

involvement in regulating sensory processes (Canteras & Swanson, 1992; LeDoux, 2007).  

5. Concluding Remarks 

Functional connectivity of the obtained clusters has delivered mixed results. On the one hand 

many connections can be validated by literature, but on the other hand some inconsistencies 

remain. These inconsistencies most prominently entail significant positive association of 

regions relevant for motor control with SF instead of CM. Interestingly, the more general signal 

associations of HAC’s and Jülich’s CM are more in line with literature than k-means. However, 

looking at the cluster peaks it is evident that parallels here are almost exclusively shared by 

the two clustering conditions in CM and SF, indicating a similarity concerning the processing 

hubs. Nonetheless, these processing hubs are subject to the before mentioned 

inconsistencies, suggesting that the clustering algorithms are underlying inaccuracies, even 

when applied to high resolution fMRI data of a large number of subjects. These inaccuracies 

are most likely due to the algorithms problems of handling data with deviating signal strength 
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discussed earlier. Moreover, the sample entailed a large proportion of neurodivergent 

individuals with conditions known to affect amygdala function. In future studies 

neurodivergent participants have to be accounted for . 

Taking a few steps back to look at the whole picture these results suggest that unsupervised 

clustering methods can indeed be taken as a feasible method to derive parcellations of the 

human amygdala. Further, it is evident that these derived clusters might even provide a better 

fit to the data at hand than the normative Jülich atlas. To further build upon this initial proof 

of concept, steps, such as subjecting the data to principle components analysis, counteracting 

the problems identified in this thesis, can be implemented. With contemporary amygdala 

models getting progressively detailed, normative references like the Jülich brain atlas fail more 

and more to accommodate for this specificity. Thus, effective application for these promising 

unbiased machine learning based methods have to be found to improve in vivo functional 

examination of the human amygdala. 
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Appendix 

Tables of top ten positive and negative cluster peaks identified by atlasreader sorted by peak value. 

 



62 
 

 



63 
 

 



64 
 

 



65 
 

 



66 
 

 



67 
 

 



68 
 

 



69 
 

 



70 
 

 



71 
 

 



72 
 

 



73 
 

 



74 
 

 



75 
 

 



76 
 

 



77 
 

 


