

MASTERARBEIT / MASTER’S THESIS

Titel der Masterarbeit / Title of the Master‘s Thesis

„Extrapolation of Quantum Time Series“

verfasst von / submitted by

Yoonjeong Shin

angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of

Master of Science (MSc)

Wien, 2023 / Vienna, 2023

Studienkennzahl lt. Studienblatt /
degree programme code as it appears on
the student record sheet:

UA 066 876

Studienrichtung lt. Studienblatt /

degree programme as it appears on
the student record sheet:

 Masterstudium Physics

Betreut von / Supervisor:

Univ. Prof. Dr. Časlav Brukner

i

Acknowledgments

I sincerely appreciate my supervisors Miguel Navascués, Mirjam Weilenmann and Andrew James Philip

Garner for sparing their valuable time for me in the midst of their busy life, giving me constructive

guidance throughout this project and bearing with me. I am also indebted to Prof. Brukner,

administration staffs at IQOQI and SSC Physics at the University of Vienna for their favor.

I gratefully acknowledge Dr. Exl for sparking my interest in optimization and cheering me up. Thanks

are also due to Prof. Gutjahr and Prof. Hermann for imparting their knowledge of optimization to

students at the University of Vienna.

Last but not least, I would like to express my sincere gratitude towards my parents and my little sister.

ii

Kurzfassung

 Eines der Hauptziele der Physik ist es, anhand der aktuell verfügbaren Informationen vorherzusagen,

wie eine physikalische Größe von Interesse in der Zukunft aussehen wird. In diesem Sinne steht die

Extrapolation im Zusammenhang mit Physik. Im Bereich der numerischen Analyse bedeutet

Extrapolation eine Methode, ein gegebner Datensatz zu erweitern und einen Wert über den Bereich

hinaus zu schätzen. In dieser Studie beschränken wir unseren Fokus auf Hilbert-Schmidt

(HS)-Observablen und versuchen, deren Zeitmittelwerte zu extrapolieren. Zu diesem Zweck entwickeln

wir zwei mögliche Szenarien und zwei „HS-Extrapolationsfunktionen“, die auf Superoszillationen bzw.

McLaurin-Expansion basieren. Während wir versuchen, den mit der Extrapolation verbundenen Fehler

zu minimieren, stellen wir fest, dass beide Szenarien auf eine konvexe Optimierung über

Extrapolationsfunktionen mit minimaler l1-Norm hinauslaufen. Zur Vereinfachung wird ein funktionaler

Ansatz in Form einer Reihe gewählt und das Optimierungsproblem hinsichtlich seines Koeffizienten-

vektors mithilfe der Softwarepakete Mosek und CVX gelöst. Bemerkenswerterweise prägen „spärliche

Koeffizienten“ die optimale Extrapolationsfunktionen, d. h. die Funktionen haben nur wenige

Komponenten ungleich Null. In diesem Zusammenhang untersuchen wir zunächst, wie sich ihre Indizes

mit dem Schätzfehler 𝛿 ändern, was uns eine Gruppierung ermöglicht. Gleichzeitig schließen wir aus

der Tatsache, dass die Anzahl der dünnen Koeffizienten zunimmt, wenn 𝛿 abnimmt, dass der

Koeffizientenvektor größtenteils Komponenten ungleich Null aufweist, wenn 𝛿 sich Null annähert.

Andererseits zeigen lineare Anpassungsfunktionen an Werte jeder Gruppe, dass ihre Werte mit hoher

Genauigkeit vorhergesagt werden können. Zuletzt erweitern wir den Ansatz auf einen zukünftigen

Zeitpunkt τ, indem wir die gleichen Schritte in Bezug auf τ wiederholen. Während dieses Prozesses wird

eine neue Indexgruppe entdeckt, die unser Vertrauen in die Schlussfolgerung stärkt. Anschließend

wenden wir uns dem Fehlermodell zu, das angibt, wie zuverlässig jeder Punkt in der Zeitreihe ist.

Um die Entsprechung zwischen Extrapolationsfunktion und Fehlermodellen herauszufinden, formulieren

wir das ursprüngliche Optimierungsproblem basierend auf seiner Dualität neu und betrachten drei

Extrapolationsfunktionen: Lagrange-Polynome und die beiden oben erwähnten HS Extrapolations-

funktionen. Das umformulierte Problem nimmt als Zielfunktion die Dualitätslücke an, die als Indikator

für die Optimalität einer gegebenen Funktion mit dem Fehlermodell dient. Dabei vergleichen wir die

Optimalität der Kandidatenfunktionen anhand ihrer optimalen Werte. Es stellt sich heraus, dass keine

der betrachteten Funktionen für irgendein Fehlermodell optimal ist. Sie sind jedoch alle nahezu optimal

für das Null-Fehler-Modell.

iii

Abstract

It is one of the primary goals of physics to predict what a physical quantity of interest is going to be

like in the future based on currently available information. In this sense, extrapolation is along the lines

of physics. In the field of numerical analysis, extrapolation refers to a method to extend a given set of

data points and estimate a value beyond the range. In this study, narrowing down our focus to

Hilbert-Schmidt (HS) observables, we try to extrapolate their time averages. To this end, we come up

with two possible scenarios and two ‘HS extrapolation functions’, based on superoscillations and

McLaurin expansion, respectively. While trying to minimize the error associated with the extrapolation,

we find that both scenarios boil down to a convex optimization over extrapolation functions with

minimum ℓ1 norm. For the sake of simplicity, a functional ansatz in the form of a series is adopted and

the optimization problem is solved with respect to its coefficient vector by utilizing the software

packages named Mosek and CVX. Remarkably, optimal extrapolation functions feature

‘sparse coefficients’, namely, only few non-zero components. In this regard, we first study how their

indices change with the estimation error 𝛿, which allows us to group them. At the same time, from

the fact that the number of sparse coefficients increases as 𝛿 decreases, we deduce that the coefficient

vector ends up with mostly non-zero components as 𝛿 approximates zero. On the other hand, linear fit

functions to values of each group reveal that their values can be predicted with high accuracy.

Lastly, we extend the ansatz to a future time point 𝜏, by repeating the same steps with respect to 𝜏.

During this process, a new index group is discovered, which strengthens our confidence in the deduction.

Afterwards, we turn our attention to the error model, which indicates how reliable each point in

the time series is. In order to figure out the correspondence between extrapolation function and error

models, we reformulate the original optimization problem based on its duality and consider three

extrapolation functions: Lagrange polynomials and the two HS extrapolation functions mentioned above.

The recast problem takes as its objective function the duality gap, which serves as an indicator of

the optimality of a given function with the error model. We thereby compare the optimality of

the candidate functions based on their optimal values. It turns out that none of the considered functions

is optimal for any error model. However, they are all close to optimal for the zero-error model.

Keywords : Numerical analysis, Extrapolation, Matrix state approximation, Hilbert-Schmidt

operators/observables, Convex optimization, CVX, Mosek.

iv

Contents

Acknowledgements i

Kurzfassung ii

Abstract iii

Ⅰ. Introduction 1

1.1 Statement of the problem .. 1

1.2 Extrapolation method for Hilbert-Schmidt observables .. 3

1.3 Examples of HS extrapolation function .. 4

1.4 From extrapolation to optimization ... 8

Ⅱ. Optimization 13

2.1 Fundamentals .. 13

2.2 Duality .. 20

2.3 CVX and Numerical solvers ... 25

Ⅲ. Hilbert-Schmidt extrapolation function 27

3.1 Optimization problem ... 27

3.2 Results .. 28

Ⅳ. Error models 39

4.1 Optimization problem ... 39

4.2 Potentially optimal extrapolation functions ... 41

4.3 Results ... 46

V. Conclusion 51

v

Bibliography 53

List of Figures 57

List of Tables 61

Appendix A Justification of the equation (1.4.5) 63

Appendix B Fit functions of delta and tau 65

Appendix C Ideas from duality 69

Appendix D Error models associated with Section 4.3 73

Appendix E Ideas for further extrapolation functions 79

1

Chapter Ⅰ

Introduction

1.1 Statement of the problem*

Consider a quantum system represented by Hilbert space ℋ and an associated Hamiltonian

𝐻 ∈ [0, 𝐸𝑚𝑎𝑥] and let 𝐴 denote a self-adjoint operator on the Hilbert space ℋ. We assume that we can

estimate up to a point the averages with respect to an arbitrary state |𝜓0 > ∈ ℋ

 𝑎(𝑡) ≔ < 𝜓0|𝑒
𝑖𝐻𝑡𝐴𝑒−𝑖𝐻𝑡|𝜓0 > (1.1.1)

for any time 𝑡 ∈ [0, 𝑇]. We wish to extrapolate the available data (1.1.1) and provide an estimator for

𝑎(𝜏) where 𝜏 ∉ [0, 𝑇]. Extrapolation in a nutshell is a method to estimate a physical quantity of interest

beyond the observable range given a set of available data points. As for the situation described above,

the observable associated with 𝐴 is the quantity of interest, the time interval [0, 𝑇] is the observable

range, and available data is 𝑎(𝑡) as defined as (1.1.1). Then extrapolation of the observable of 𝐴 is to

estimate 𝑎(𝜏) where 𝜏 is a future point outside the given time interval, that is, 𝜏 > 𝑇, given a set of data

points (𝑡𝑖, 𝑎(𝑡𝑖)) with 𝑡𝑖 ∈ [0, 𝑇] and 𝑖 ∈ ℤ≥0 . Extrapolation is often compared with interpolation to

estimate a quantity between available data points, that is, 𝑎(𝑡′) where 𝑡𝑖 < 𝑡′ < 𝑡𝑖+1. One of the most

widely used interpolation methods, the so-called Lagrange polynomial, will be introduced in Chapter 4

and used as an extrapolation function for the situation under our consideration. There can be many

different scenarios which realize our assumption to estimate 𝑎(𝑡); here we conceptually describe two

possibilities:

Scenario (a) Imagine carrying out a numerical computation that provides us with an estimation 𝑎̃(𝑡)

for 𝑎(𝑡), with |𝑎̃(𝑡) − 𝑎(𝑡)| ≤ 𝜖(𝑡). Here 𝜖(𝑡) denotes the error model which gives an upper bound on

the positive difference between 𝑎̃(𝑡) and 𝑎(𝑡) at time 𝑡. This scenario corresponds with simulating

the evolution of a 1-D equation system via matrix product state (MPS) approximations [1].

* For ease of notation, consider the Plank constant ℏ to be absorbed by the Hamiltonian 𝐻, that is,

𝐻/ℏ → 𝐻. Accordingly, when it comes to its observable 𝐸, 𝐸/ℏ → 𝐸.

Chapter Ⅰ. introduction

2

Given a matrix product state approximation |𝜓̃(𝑡) > for the state of the system at time 𝑡, its time

evolution in 𝛿𝑡 can be approximated by the following equation

 |𝜓̃(𝑡 + 𝛿𝑡) >≔ arg max
𝜓∈ℳ(𝐷)

|< 𝜓|Ι − 𝑖𝐻𝛿𝑡|𝜓̃(𝑡) > |2 (1.1.2)

where ℳ(𝐷) denotes the set of matrix product states of bond dimension of 𝐷, or other family of tensor

network states [1]. The infinitesimal changes in time 𝛿𝑡 guarantees the goodness of the estimation to

some extent by restricting the deviation of 𝑎̃(𝑡) from 𝑎(𝑡) to 𝜖(𝑡) at each time step. Although we wish

to approximate |𝜓̃(𝜏) > and thereby 𝑎̃(𝜏) to estimate 𝑎(𝜏), the MPS approximations can break before

we reach the target point 𝜏. In this case, 𝜖(𝑡) is proportional to |𝐴|.

Proof. Define 𝜀̂(𝑡) as the error between 𝑝𝑟𝑜𝑗 |𝜓̃(𝑡) > and 𝑝𝑟𝑜𝑗 |𝜓(𝑡) > . Here 𝑝𝑟𝑜𝑗 stands for the

projection operator by which the states are projected into the set of MPS with bond dimension 𝐷 [2].

Given the definition of 𝜀̂(𝑡), it follows that, for all 𝑡,

 | 𝑝𝑟𝑜𝑗 |𝜓̃(𝑡) > − 𝑝𝑟𝑜𝑗 |𝜓(𝑡) > |1 ≤ 𝜀̂(𝑡) (1.1.3)

and

 𝜀̂(𝑡) ≤ 2 (1.1.4)

From these considerations, we have

|𝑎̃(𝑡) − 𝑎(𝑡)| = |𝑡𝑟{𝐴(𝑝𝑟𝑜𝑗 |𝜓̃(𝑡) > − 𝑝𝑟𝑜𝑗 |𝜓(𝑡) >)}|
 ≤ |𝐴|| 𝑝𝑟𝑜𝑗 |𝜓̃(𝑡) > − 𝑝𝑟𝑜𝑗 |𝜓(𝑡) > |1
 ≤ |𝐴|𝜀̂(𝑡) ≤ 2|𝐴|

(1.1.5)

□

Scenario (b) Consider an experiment which starts with the initial state |𝜓0 >. Let it evolve for some

time 𝑡 ∈ [0, 𝑇] and measure the observable concerning 𝐴. Let us denote corresponding results as 𝑎𝑡.

We would better not allow the system to evolve for 𝜏 at once so as to prevent disintegration of the

system due to its interaction with environment. By repeating this experiment several times and

averaging out all values of 𝑎𝑡 measured, we can obtain a statistical estimator for 𝑎(𝑡). Employing an

unbiased probability distribution, in other words, a probability distribution with a low variance is

accordingly considered as a natural choice to improve the goodness of the estimation.

These two possible scenarios to come up with an estimator for 𝑎(𝜏) with 𝜏 ∉ [0, 𝑇] will be revisited and

examined in detail in Section 1.4 with the mathematical formulation on Hilbert-Schmidt (HS)

observables, which will be explored in the next section.

3

1.2 Extrapolation method for Hilbert-Schmidt observables

Extrapolation methods should be chosen with caution depending on properties of the operator 𝐴.

For instance, whether the operator 𝐴 is HS needs to be considered; this is the type of operators our

study relates to.

Definition 1.2.1 (HS operator) An operator 𝐴 is called Hilbert-Schmidt (HS) if

 |𝐴|2 = √𝑡𝑟(𝐴2) (1.2.1)

Let |𝐴 > be the vector form of the operator 𝐴 = ∑ 𝐴𝑗𝑘𝑗𝑘 |𝑗 >< 𝑘| , i.e., |𝐴 >= ∑ 𝐴𝑗𝑘𝑗𝑘 |𝑗 > |𝑘 >,

where {|𝑗 >}𝑗 is a real orthonormal basis. Note that |𝐴|2
2 =< 𝐴|𝐴 >. Let 𝐸𝑗 and |𝜙𝑗 > respectively denote

the 𝑗-th eigenvalue of 𝐻 and its corresponding eigenvector. Then 𝑎(𝑡) can be expressed as

 𝑎(𝑡):= < 𝜓0|𝑒
𝑖𝐻𝑡𝐴𝑒−𝑖𝐻𝑡|𝜓0 >

 = ∑ 𝐴𝑗𝑘 < 𝜓0|𝑒
𝑖𝐻𝑡|𝑗 >< 𝑘|𝑒−𝑖𝐻𝑡|𝜓0 >

𝑗𝑘

 = ∑ 𝐴𝑗𝑘 < 𝑘|𝑒−𝑖𝐻𝑡|𝜓0 >< 𝜓0|𝑒
𝑖𝐻𝑡|𝑗 >

𝑗𝑘

 = ∑ 𝐴𝑗𝑘 < 𝑘|𝑒−𝑖𝐻𝑡|𝜓0 >< 𝑗|𝑒𝑖𝐻̅𝑡|𝜓0
̅̅̅̅ >

𝑗𝑘

 = ∑ 𝐴𝑘𝑗
̅̅ ̅̅ < 𝑘|< 𝑗|𝑒−𝑖𝐻𝑡|𝜓0 > 𝑒𝑖𝐻̅𝑡|𝜓0

̅̅̅̅ >
𝑗𝑘

 = < 𝐴|(𝑒−𝑖𝐻𝑡 ⊗ 𝑒𝑖𝐻̅𝑡)|𝜓0 > |𝜓0
̅̅̅̅ >

 = < 𝐴|∑ 𝑒−𝑖(𝐸𝑗−𝐸𝑘)𝑡(|𝜙𝑗 >< 𝜙𝑗| ⊗ |𝜙̅𝑘 >< 𝜙̅𝑘|)|𝜓0 > |𝜓0
̅̅̅̅ >

𝑗𝑘

(1.2.2)

For any functions 𝑔, ℎ whose domain is [0, 𝑇], let us define

 < 𝑔, ℎ > ≔ ∫ 𝑔(𝑡)ℎ(𝑡) 𝑑𝑡
𝑇

0

 (1.2.3)

Note that this quantity is order-invariant, that is, < 𝑔, ℎ > = < ℎ, 𝑔 >. Suppose that there exists a function

𝑓 ∶ [0, 𝑇] → ℝ such that

 ∆(𝐸) ≔ ∫ 𝑓(𝑡)𝑒−𝑖𝐸𝑡 𝑑𝑡 − 𝑒−𝑖𝐸𝜏
𝑇

0

=∶< 𝑓, 𝑒−𝑖𝐸𝑡 > −𝑒−𝑖𝐸𝜏 (1.2.4)

satisfies

 |∆(𝐸)| ≤ 𝛿, 𝐸 ∈ [−𝐸𝑚𝑎𝑥 , 𝐸𝑚𝑎𝑥] (1.2.5)

Chapter Ⅰ. introduction

4

Such a function 𝑓 will be henceforth referred to as an HS function. In order to convince readers of

the existence of HS function, spared is the very next section where two examples are given. For an HS

extrapolation function 𝑓 and a finite |𝐴|2 defined as Definition 1.2.1, the quantity < 𝑓, 𝑎 > can make

a reasonable approximation to 𝑎(𝜏) as follows:

|< 𝑓, 𝑎 > − 𝑎(𝜏)|

= |∫ 𝑓(𝑡)𝑎(𝑡) 𝑑𝑡
𝑇

0

− 𝑎(𝜏)|

= |< 𝐴|{∑ ∫ 𝑓(𝑡)𝑒−𝑖(𝐸𝑗−𝐸𝑘)𝑡 𝑑𝑡
𝑇

0

|𝜙𝑗 >< 𝜙𝑗| ⊗ |𝜙̅𝑘 >< 𝜙̅𝑘|}|𝜓0 > |𝜓0
̅̅̅̅ >

𝑗𝑘
−

< 𝐴|{∑ 𝑒−𝑖(𝐸𝑗−𝐸𝑘)𝜏|𝜙𝑗 >< 𝜙𝑗| ⊗ |𝜙̅𝑘 >< 𝜙̅𝑘|}|𝜓0 > |𝜓0
̅̅̅̅ >

𝑗𝑘
|

= |< 𝐴|{∑ [∫ 𝑓(𝑡)𝑒−𝑖(𝐸𝑗−𝐸𝑘)𝑡 𝑑𝑡 −
𝑇

0

𝑒−𝑖(𝐸𝑗−𝐸𝑘)𝜏]|𝜙𝑗 >< 𝜙𝑗| ⊗ |𝜙̅𝑘 >< 𝜙̅𝑘|}|𝜓0 > |𝜓0
̅̅̅̅ >

𝑗𝑘
|

= |< 𝐴|{∑ ∆(𝐸𝑗 − 𝐸𝑘)|𝜙𝑗 >< 𝜙𝑗| ⊗ |𝜙̅𝑘 >< 𝜙̅𝑘|}|𝜓0 > |𝜓0
̅̅̅̅ >

𝑗𝑘
|

≤ |< 𝐴| |{∑ ∆(𝐸𝑗 − 𝐸𝑘)|𝜙𝑗 >< 𝜙𝑗| ⊗ |𝜙̅𝑘 >< 𝜙̅𝑘|}|𝜓0 > |𝜓0
̅̅̅̅ >

𝑗𝑘
| = |𝐴|2|∆(𝐸)|

≤ |𝐴|2𝛿

(1.2.6)

where the definition (1.2.3) is used to substitute < 𝑓, 𝑎 > in the first line, the equation (1.2.2) 𝑎(𝑡) and

𝑎(𝜏) in the second line, the definition (1.2.4) ∆(𝐸𝑗 − 𝐸𝑘) in the fourth line, and finally the inequality (1.2.5)

results in the last line.

1.3 Examples of HS extrapolation function

 As previously mentioned, in this section we will introduce two examples of HS extrapolation functions:

one inspired by superoscillations and the other based on McLaurin expansions. Derived and proven to

make an HS extrapolation function, that is, proven to satisfy the inequality (1.2.5) in this section,

these two functions will be revisited and further elaborated in Chapter 4.

(A) An HS extrapolation function based on superoscillations

Superoscillations [3], discovered by Yakir Aharonov and his collaborators, is a phenomenon in which

in terms of Fourier Analysis a bandwidth-limited pulse has a Fourier component which oscillates faster

than its bandwidth originally allows [4]. The notion of superoscillating (Fourier) sequence leads us to

an HS extrapolation function.

5

Definition 1.3.1 (Generalized Fourier sequence) [4] A generalized Fourier sequence (or series) is of

the form

 𝑋𝑁(𝑥, 𝛼) ≔ ∑𝐹𝑗(𝑁, 𝛼)𝑒𝑖𝑘𝑗(𝑁)𝑥

𝑁

𝑗=0

 (1.3.1)

where 𝛼 ∈ ℝ≥0, 𝑁 ∈ ℕ, 𝐹𝑗(𝑁, 𝛼) and 𝑘𝑗(𝑁) are real functions.

Definition 1.3.2 (Superoscillating Fourier sequence) [4] A generalized Fourier sequence (1.3.1) is said

to be superoscillating if

• 𝑘𝑗(𝑁) < 𝛽 ∈ ℝ≥0 ∀ 𝑁 𝑎𝑛𝑑 𝑗 ∈ ℕ ∪ {0};

• there exists a compact subset of ℝ on which 𝑋𝑁(𝑥, 𝛼) uniformly converges to 𝑒𝑖𝑲(𝛼)𝑥

where 𝑲(𝛼)is a continuous real function such that |𝑲(𝛼)| > 𝛽.

Consider the following function with respect to 𝐸 ∈ ℝ and 𝜏, 𝑇 ∈ ℝ≥0:

 𝑌𝑁(𝐸, 𝜏, 𝑇):= (1 −
𝜏

𝑇
+

𝜏

𝑇
𝑒−𝑖𝐸

𝑇
𝑁)

𝑁

 (1.3.2)

This function can be shown to be superoscillating once Newton’s binomial theorem (or expansion) is

applied to itself.

Theorem 1.3.3 (Newton’s binomial) For 𝑁 ∈ ℤ≥0, the summation in a particular form can be expanded

as

 (𝑥 + 𝑦)𝑁 = ∑(
𝑁
𝑗
)𝑥𝑁−𝑗𝑦𝑗

𝑁

𝑗=0

= ∑(
𝑁
𝑗
) 𝑥𝑗𝑦𝑁−𝑗

𝑁

𝑗=0

 (1.3.3)

By theorem 1.3.3, the function (1.3.2) can be written in the form of Fourier sequence:

 𝑌𝑁(𝐸, 𝜏, 𝑇) = ∑(
𝑁
𝑗
) (1 −

𝜏

𝑇
)
𝑁−𝑗

(
𝜏

𝑇
)

𝑗
𝑁

𝑗=0

𝑒−𝑖
𝑇
𝑁

𝑗𝐸 (1.3.4)

Indeed,

 lim
𝑁→∞

𝑌𝑁(𝐸, 𝜏, 𝑇) = 𝑒−𝑖𝜏𝐸 (1.3.5)

Having observed the convergence (1.3.5), define quantities 𝑘′𝑗(𝑁) ≔ −
𝑇

𝑁
𝑗 with 𝑗 = 0,… , 𝑁

and 𝑲′(𝜏) ≔ −𝜏 analogous to 𝑘𝑗(𝑁) and 𝑲(𝛼) in Definition 1.3.2. Then we have

−𝑇 < 𝑘′

𝑗(𝑁) < 0

|𝑲′
𝑗(𝜏)| = 𝜏

(1.3.6)

Chapter Ⅰ. introduction

6

From these, one can easily find the compact set 𝛽 ∈ [0, 𝜏) which satisfies the two conditions to be

a superoscillating sequence as given in Definition 1.3.2. □

Furthermore, the limit (1.3.5) together with the sequence (1.3.4) itself implies superoscillations in which

a local segment characterized by 𝜏 , deviates from the original bandwidth specified by

the parameter
𝑇

𝑁
𝑗 which ranges from zero to 𝑇 with 𝑗 = 0, … , 𝑁. The limit (1.3.5), which follows from

standard computation, can be reversely checked with ease by different definitions of exponential

function and the approximation where 𝑁 ≫ |𝐸| max (𝑇, 𝜏) for fixed quantities 𝐸, 𝑇, 𝜏:

 𝑒−𝑖𝜏𝐸 ≈ (1 −
1

𝑁
𝑖𝜏𝐸)

𝑁

≈ (1 −
𝜏

𝑇
+

𝜏

𝑇
𝑒−𝑖𝐸

𝑇
𝑁)

𝑁

=:𝑌𝑁(𝐸, 𝜏, 𝑇) (1.3.7)

Finally, with respect to 𝐸, the series in (1.3.2) is of the form

 ∫ 𝑓𝑆(𝑡)𝑒
−𝑖𝐸𝑡 𝑑𝑡

𝑇

0

 (1.3.8)

where

 𝑓𝑆(𝑡):= ∑(𝑐𝑆)𝑗𝛿(𝑡 − (𝑡𝑆)𝑗)

𝑁

𝑗=0

 (1.3.9)

with

(𝑐𝑆)𝑗 ≔ (

𝑁
𝑗
) (1 −

𝜏

𝑇
)
𝑁−𝑗

(
𝜏

𝑇
)
𝑗

(𝑡𝑆)𝑗 ≔
𝑇

𝑁
𝑗

(1.3.10)

The function (1.3.9) indeed satisfies the inequality (1.2.5), meaning that it is an HS extrapolation function.

(B) An HS extrapolation function based on McLaurin expansion

 Taylor expansion (or Taylor series), widely used to approximate analytic functions, provides

a foundation for the other HS extrapolation function.

Theorem 1.3.4 (Taylor) [5] Let 𝐺(𝑥) have 𝑗 + 1 continuous derivatives on [𝑎, 𝑏] for some 𝑗 ∈ ℤ≥0 .

Then, for 𝑡, 𝑡0 ∈ [𝑎, 𝑏], the function 𝐺(𝑥) can be written as

 𝐺(𝑡) = 𝑃𝑗(𝑡) + 𝑅𝑗+1(𝑡) (1.3.11)

7

where

𝑃𝑗(𝑡):= 𝐺(𝑡0) +
𝐺′(𝑡0)

1!
(𝑡 − 𝑡0) + ⋯+

𝐺(𝑗)(𝑡0)

𝑗!
(𝑡 − 𝑡0)

𝑗

𝑅𝑗+1(𝑡):=
1

𝑗!
∫ 𝐺(𝑗+1)(𝑡) (𝑡 − 𝑡0)

𝑗
𝑡

𝑡0

𝑑𝑡 =
𝐺(𝑗+1)(𝑐)

(𝑗 + 1)!
(𝑡 − 𝑡0)

𝑗+1

(1.3.12)

for 𝑐 ∈ [𝑡0, 𝑡]. 𝑅𝑗+1(𝑡) is called remainder which means the difference between the function 𝐺(𝑡) and

the 𝑗-th order Taylor polynomial 𝑃𝑗(𝑡), that is, 𝑅𝑗+1(𝑡) = 𝐺(𝑡) − 𝑃𝑗(𝑡). In other words, the remainder

represents the approximation error.

McLaurin expansion (or McLaurin series) is a particular case of Taylor expansion with 𝑡0 = 0.

That is, McLaurin expansion of the function 𝐺(𝑡) takes the form

 𝐺(𝑡) ≈ ∑
𝐺(𝑗)(𝑡)

𝑗!

𝑁

𝑗=0

𝑡𝑗 (1.3.13)

Here we discarded the remainder 𝑅𝑗+1(𝑡) and used the approximately equal sign ′ ≈ ′ instead.

Applying the McLaurin expansion (1.3.13) to the function 𝑒−𝑖𝐸𝜏, we have

 𝑒−𝑖𝐸𝜏 ≈ ∑
𝑑𝑗(𝑒−𝑖𝐸𝑡)

𝑑𝑡𝑗
|𝑡=0

𝜏𝑗

𝑗!

𝑁

𝑗=0

 (1.3.14)

By numerical differentiation [6]

𝑑𝑗𝐻(𝑡)

𝑑𝑡𝑗
= lim

ℎ→0

1

ℎ𝑗
∑ (

𝑗
𝑘
) (−1)𝑗+𝑘𝐻(𝑡 + 𝑘ℎ)

𝑗

𝑘=0

 (1.3.15)

the right-hand side of the approximation (1.3.14) can be further approximated and expanded as

∑
𝑑𝑗(𝑒−𝑖𝐸𝑡)

𝑑𝑡𝑗

𝜏𝑗

𝑗!

𝑁

𝑗=0

≈ ∑∑
𝜏𝑗

𝑗! ℎ𝑗
(
𝑗
𝑘
) (−1)𝑗+𝑘

𝑗

𝑘=0

𝑁

𝑗=0

𝑒−𝑖𝐸(𝑘ℎ)

 = ∫ 𝑓𝐵(𝑡)𝑒−𝑖𝐸𝑡 𝑑𝑡
𝑇

0

(1.3.16)

where we define 𝑓𝑀(𝑡) as

 𝑓𝑀(𝑡):= ∑∑
𝜏𝑗

𝑗! ℎ𝑗
(
𝑗
𝑘
) (−1)𝑗+𝑘

𝑗

𝑘=0

𝑁

𝑗=0

𝛿(𝑡 − 𝑘ℎ) (1.3.17)

For sufficiently high 𝑁 and small ℎ, the function 𝑓𝑀(𝑡) satisfies the inequality (1.2.5) and the quantity

< 𝑓𝑀 , 𝑒−𝑖𝐸𝑡 > converges to the first 𝑁 + 1 terms of the McLaurin expansion on 𝜏 of the function 𝑒−𝑖𝐸𝜏

as ℎ → 0.

Chapter Ⅰ. introduction

8

1.4 From extrapolation to optimization

Having introduced the concept of HS extrapolation function in Section 1.2 and studied examples

subsequently, now we are ready to deal with the two scenarios, presented in Section 1.1, in more detail.

In the end, we will see that the efficient extrapolation of the averages (1.1.1) boils down to solving

an optimization problem over extrapolation functions regardless of extrapolation scenarios.

Scenario (a) With the definition (1.2.3) in mind, note that the following holds:

 |< 𝑎̃, 𝑓 > − < 𝑎, 𝑓 >| ≤ ∫|𝑓(𝑡)||𝑎̃(𝑡) − 𝑎(𝑡)|

𝑇

0

𝑑𝑡 ≤ ∫|𝑓(𝑡)|𝜀(𝑡) 𝑑𝑡

𝑇

0

 (1.4.1)

The error model 𝜀(𝑡) plays an important role throughout this study from bounding |𝑎̃(𝑡) − 𝑎(𝑡)| to

controlling time-(in)dependent errors affecting the system. The latter function will be highlighted

in Chapter 4. By adding the two inequalities (1.2.6) and (1.4.1), we get

 |< 𝑎̃, 𝑓 > − 𝑎(𝜏)| ≤ 𝛿|𝐴|2 + ∫|𝑓(𝑡)|𝜀(𝑡) 𝑑𝑡

𝑇

0

 (1.4.2)

As for a constant error model 𝜀(𝑡) = 𝜀0 for all 𝑡, this inequality transforms into

 |< 𝑎̃, 𝑓 > − 𝑎(𝜏)| ≤ 𝛿|𝐴|2 + |𝑓|1𝜀0 (1.4.3)

with

 |𝑓|1 ≔ ∫|𝑓(𝑡)| 𝑑𝑡

𝑇

0

 (1.4.4)

Scenario (b) One way to estimate < 𝑎, 𝑓 > is to choose 𝑡 ∈ [0,𝑇] at random according to

the distribution

 𝜇(𝑡) 𝑑𝑡 ≡
|𝑓(𝑡)|

|𝑓|1
 𝑑𝑡 (1.4.5)

Next, we define the random variable 𝜶 ≔ 𝑎𝑡𝑠𝑖𝑔𝑛(𝑓(𝑡))|𝑓|1 whose value is in |𝑓|1𝜎(𝐴) ∪ |𝑓|1𝜎(−𝐴)

where 𝜎(±𝐴) denote the spectra of ±𝐴. 𝜶 is an unbiased estimator for < 𝑎, 𝑓 >. Indeed,

9

< 𝜶 >= ∫ < 𝜶 > 𝜇(𝑡) 𝑑𝑡

𝑇

0

= ∫ < 𝑎𝑡 > 𝑠𝑖𝑔𝑛(𝑓(𝑡))|𝑓(𝑡)| 𝑑𝑡

𝑇

0

= ∫𝑎(𝑡)𝑓(𝑡) 𝑑𝑡

𝑇

0

 =: < 𝑎, 𝑓 >

(1.4.6)

Not only that, but, as shown in Appendix A, 𝜶 is the unbiased estimator of < 𝑎, 𝑓 > with minmum

variance. By the equality (1.4.6), the inequality (1.2.6) can be written as

 |< 𝜶 > − 𝑎(𝜏)| ≤ |𝐴|2𝛿 (1.4.7)

However, we do not have direct access to the average < 𝜶 >. Rather, we will approximate its value as

𝜶̅:=
1

𝑁
∑ 𝛼𝑖

𝑁
𝑖= . How close is 𝜶̅ to < 𝜶 >? Chebishev's inequality, applicable to a wide range of probability

distributions, gives us an upper bound.

Theorem 1.4.1 (Chebyshev's inequality) [7] Consider a probability distribution where 𝑋 is value of the

variable, 𝜇 the mean and 𝜎 the standard deviation. Then for any 𝛾 ∈ ℝ≥0,

 𝑃(|𝑋 − 𝜇| ≥ 𝛾𝜎) ≤
1

𝛾2
 (1.4.8)

By Chebyshev’s inequality, the probability that the N-sample mean of 𝛼 significantly diverges from

< 𝜶 > is bounded as follows:

 𝑃(| 𝜶̅ −< 𝜶 >| ≥ 𝜔) ≤
(∆𝛼)2

𝑁𝜔2
≤

|𝑓|1
2|𝐴|2

𝑁𝜔2
 (1.4.9)

Now, let us spell out what kind of result we want. We wish that, with (fixed) high probability 1 − 𝑝,

with 𝑝 ≪ 1, our estimator 𝜶̅ is close to 𝑎(𝜏). By the equation above, it follows that

|𝑓|1|𝐴|

√𝑁𝑝
≤ 𝜔 (1.4.10)

is enough to guarantee that

 | 𝜶̅ −< 𝜶 >| ≤ 𝜔 (1.4.11)

with probability at least 1 − 𝑝. In that case,

 | 𝜶̅ −< 𝜶 >| ≤ |𝐴|2𝛿 + 𝜔 (1.4.12)

Chapter Ⅰ. introduction

10

Hence, to guarantee that our estimator is close to 𝑎(𝜏) with probability at least 1 − 𝑝, we are interested

in minimizing the right-hand side of the equation above.

Recall that, regardless of scenarios, we wish to extrapolate the available data (1.1.1) and provide an

estimation of 𝑎(𝜏) for 𝜏 ∉ [0, 𝑇] . Improving the extrapolation for 𝑎(𝜏) corresponds with tightening

(i.e., minimizing) the upper bounds of the inequalities (1.4.2) and (1.4.12), which leads us to the notion

of optimization. Fundamentals of optimization will be accordingly given in the next chapter.

The optimization problem associated with scenario (a) then takes the from

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑓 |𝐴|2𝛿 + ∫|𝑓(𝑡)|𝜀(𝑡) 𝑑𝑡

𝑇

0

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 |∆(𝐸)| ≤ 𝛿, ∀ 𝐸 ∈ [−𝐸𝑚𝑎𝑥 , 𝐸𝑚𝑎𝑥]

(1.4.13)

and, as for a constant error model 𝜀(𝑡) = 𝜀0 for all 𝑡, the problem transforms into

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑓 |𝐴|2𝛿 + |𝑓|1𝜀0

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 |∆(𝐸)| ≤ 𝛿, ∀ 𝐸 ∈ [−𝐸𝑚𝑎𝑥 , 𝐸𝑚𝑎𝑥]
(1.4.14)

while the other concerning scenario (b) is of the form

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑓 |𝐴|2𝛿 +
|𝑓|1|𝐴|

√𝑁𝑝

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 |∆(𝐸)| ≤ 𝛿, ∀ 𝐸 ∈ [−𝐸𝑚𝑎𝑥 , 𝐸𝑚𝑎𝑥]

(1.4.15)

Although these optimization problems (1.4.14) and (1.4.15) have different objective functions

to minimize, due to the fact that both concern the quantity |𝑓|1, of all the extrapolation functions with

maximum error 𝛿, we are interested in the ones with minimum |𝑓|1. Moreover, we can practically solve

both the two optimization problems at once by dealing with the following optimization problem in

a much simpler form than the original ones:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑓 |𝑓|1

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 |∆(𝐸)| ≤ 𝛿, ∀𝐸 ∈ [−𝐸𝑚𝑎𝑥 , 𝐸𝑚𝑎𝑥]
(1.4.16)

Therefore, this optimization problem (1.4.16) makes one of the main subjects of this study; in Chapter

3, a series of trial and error undergone while trying to solve this problem will be presented. The other

main subject is the error model 𝜀(𝑡) as suggested earlier. Multiplied by 𝑓(𝑡) as in the inequality (1.4.1),

it controls some time-(in)dependent errors which affect the system; whereas a constant error model

11

corresponds to an unweighted extrapolation function, a time-dependent error model does to the one

weighted in a particular way with time. In Chapter 4, we will reformulate the optimization problem

(1.4.16) in order to find a correspondence between extrapolation functions and error models.

Together with Lagrange polynomial, which will be explained in the chapter, the HS extrapolation

functions discussed in Section 1.3 will be considered as potential extrapolation functions which match

a particular error model. Lastly, a correlation between different types of error models and extrapolation

functions will be studied. Until then we consider the error model in the simplest form 𝜀(𝑡) = 1.

12

13

Chapter Ⅱ

Optimization

2.1 Fundamentals

An optimization problem consists of the following four elements:

• The vector 𝑥 ∈ ℝ𝑛 with 𝑛 ∈ ℕ;

• The objective function 𝑓 ∶ ℝ𝑛 → ℝ that takes as input the vector 𝑥;

• The inequality constraint functions 𝑔𝑖 ∶ ℝ𝑛 → ℝ where the index 𝑖 ∈ 𝐼, the set of indices of

inequality constraints;

• The equality constraint functions ℎ𝑗 ∶ ℝ𝑛 → ℝ where the index 𝑗 ∈ ℇ, the set of indices of

equality constraints.

While the first two elements are necessary to define an optimization problem, the rest are optional.

If an optimization problem is not subject to any constraints, the problem is said to be unconstrained,

otherwise, constrained. In a broad sense, there are two types of optimization: maximization and

minimization (of the objective function). By switching the sign of the objective function, one can easily

transforms one into the other. A vector 𝑥 which maximizes or minimizes the objective function is

generally called an optimal solution (or optimizer), which is often marked with an asterisk as 𝑥∗.

It is indeed not necessarily unique; there can be no solution or many of them. An optimizer is often

alternatively referred to as a maximizer or a minimizer to highlight its role in optimization.

With all these underlying concepts, an optimization problem is written as follow; it is conventional to

consider minimization.

Definition 2.1.1 (Optimization problem) An optimization problem takes the standard form

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑥 𝑓(𝑥)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑔𝑖(𝑥) ≤ 0, 𝑖 ∈ ℇ

 ℎ𝑗(𝑥) = 0 𝑗 ∈ 𝐼
(2.1.1)

Moreover, when it comes to a constrained optimization problem, a set of vectors satisfying

its constraints is referred to as feasible region.

 This section is mostly based on [8] and [9], unless otherwise referenced.

Chapter Ⅱ. Optimization

14

Definition 2.1.2 (Feasible region) The feasible region for the problem (2.1.1) is the set

 Ω ∶= { 𝑥 ∈ ℝ𝑛| 𝑔𝑖(𝑥) ≤ 0, 𝑖 ∈ ℇ; ℎ𝑗(𝑥) = 0, 𝑗 ∈ 𝐼 } (2.1.2)

An optimization problem is said to be feasible if Ω ≠ ∅, otherwise, infeasible.

Furthermore, there are two types of solutions: global and local solutions. The latter is subdivided into

strict and weak ones depending on types of inequalities. The following definitions are written in terms

of the minimization problem (2.1.1).

Definition 2.1.3 (Global optimal solution) A vector 𝑥∗ is called a global optimal solution to if

𝑓(𝑥∗) ≤ 𝑓(𝑥) for all 𝑥 ∈ 𝛺.

Definition 2.1.4 (Local optimal solution) A vector 𝑥∗ is called a local optimal solution if there exists a

neighborhood 𝛮𝑥∗ 𝑜𝑓 𝑥∗ and 𝑓(𝑥∗) ≤ 𝑓(𝑥) for all 𝑥 ∈ 𝛺 ∩ 𝛮𝑥∗ .

Definition 2.1.5 (Strict and weak local optimal solutions) A vector 𝑥∗ is called a strict local optimal

solution if there exists a neighborhood 𝛮𝑥∗ 𝑜𝑓 𝑥∗ and 𝑓(𝑥∗) < 𝑓(𝑥) for all 𝑥 ∈ 𝛺 ∩ 𝛮𝑥∗ and 𝑥 ≠ 𝑥∗,

otherwise, a weak local optimal solution.

In addition, optimization problems are called linear, nonlinear, or convex, depending on forms of

its objective and constraint functions. A problem whose objective and its constraint functions are all

linear is said to be linear programming; otherwise, that is, if at least one of them is nonlinear,

the associated problem is classified as nonlinear programming. Similarly, the problem whose objective

and constraint functions are all convex is referred to as convex programming. Underlying concepts of

convex optimization will be reviewed, followed by those of conic optimization, a generalization of linear

programing.

Before starting a discussion on convex programing (or convex optimization), associated preliminaries

will be introduced.

Definition 2.1.6 (Affine set) A set S is said to be affine if for any 𝑥1, 𝑥2 ∈ 𝑆 and any 𝜃 ∈ ℝ, we have

 𝜃𝑥1 + (1 − 𝜃)𝑥2 ∈ 𝑆 (2.1.3)

15

Definition 2.1.7 (Affine combination) A vector constructed by affine combination of vectors

𝑥1, 𝑥2, … , 𝑥𝑛 ∈ ℝ𝑛 is of the form

 ∑ 𝜃𝑖𝑥𝑖

𝑛

𝑖=1

 (2.1.4)

where 𝜃1, 𝜃2, … , 𝜃𝑛 ∈ ℝ satisfying ∑ 𝜃𝑖
𝑛
𝑖=1 = 1.

Definition 2.1.8 (Affine hull) A affine hull of a set S is the set of all affine combinations of its elements.

 𝑎𝑓𝑓(𝑆) ≔ { ∑ 𝜃𝑖𝑥𝑖
𝑛
𝑖=1 |𝑥𝑖 ∈ 𝑆, 𝜃𝑖 ∈ ℝ, ∑ 𝜃𝑖

𝑛
𝑖=1 = 1, } (2.1.5)

Definition 2.1.9 (Convex set) A set C is said to be convex if for any 𝑥1, 𝑥2 ∈ 𝐶 and any 𝜑 ∈ [0,1],

we have

 𝜑𝑥1 + (1 − 𝜑)𝑥2 ∈ 𝐶 (2.1.6)

Definition 2.1.10 (Convex combination) A vector constructed by convex combination of points

𝑥1, 𝑥2, … , 𝑥𝑛 ∈ ℝ𝑛 is of the form

 ∑𝜑𝑖𝑥𝑖

𝑛

𝑖=1

 (2.1.7)

where 𝜑1, 𝜑2, … , 𝜑𝑛 ∈ [0,1] and ∑ 𝜑𝑖
𝑛
𝑖=1 = 1.

Definition 2.1.11 (Convex hull) A convex hull of a set C is the set of all convex combinations of its

elements.

 𝑐𝑜𝑛𝑣(𝐶) ≔ { ∑ 𝜑𝑖𝑥𝑖
𝑛
𝑖=1 |𝑥𝑖 ∈ 𝐶, ∑ 𝜑𝑖

𝑛
𝑖=1 = 1, 𝜑𝑖 ∈ [0,1]} (2.1.8)

These concepts are illustrated in the following three figures;

Figure 2-1 Affine (left) and convex (right) sets which have two elements

𝑥1 and 𝑥2. These can be viewed as affine and convex hulls, respectively.

Chapter Ⅱ. Optimization

16

Figure 2-2 Affine (left) and convex (right) sets which have three elements 𝑥1, 𝑥2 and 𝑥3.

These can be viewed as affine and convex hulls, respectively.

Figure 2-3 Convex (left) and nonconvex (right) sets. The two dots and line segments

between them illustrate how to tell convexity of sets geometrically; A set 𝐶 is convex

if a line segment connecting any two points in 𝐶 lies in 𝐶 as well, otherwise, nonconvex.

In addition to sets, functions can also be convex. A convex function change be transformed into

a concave one by switching its sign, vice versa; and the function which is both convex and concave is

commonly called a linear function.

Definition 2.1.12 (convex function) A function 𝑓 ∶ ℝ𝑛 → ℝ is convex if 𝒅𝒐𝒎 𝑓, a set of input variables,

is a convex set and if, for all 𝑥1, 𝑥2 ∈ 𝒅𝒐𝒎 𝑓 and 𝜑 ∈ [0,1],

 𝑓(𝜑𝑥1 + (1 − 𝜑)𝑥2) ≤ 𝜑𝑓(𝑥1) + (1 − 𝜑)𝑓(𝑥2) (2.1.9)

Figure 2-4 Convex (left) and concave (right) functions. From a position of a line segment

between any two points on a graph relative to the function one can determine

convexity/concavity of a function graphically.

Moreover, replacing the inequality in Definition 2.1.12 with the strict equality leads to the definition of

strict convexity of a function (Definition 2.1.13) As an extension of this, strong convexity is defined;

here we present two most widely used variants of its definition (Definitions 2.1.14 and 2.1.15);

for additional variants and proofs of their equivalence, refer to [10].

17

Definition 2.1.13 (Strict convexity) A function 𝑓 is strictly convex if the following strict inequality holds

for all 𝑥1, 𝑥2 ∈ 𝒅𝒐𝒎 𝑓 with 𝑥1 ≠ 𝑥2 and 𝜑′ ∈ (0,1):

 𝑓(𝜑′𝑥1 + (1 − 𝜑′)𝑥2) < 𝜑′𝑓(𝑥1) + (1 − 𝜑′)𝑓(𝑥2) (2.1.10)

Definition 2.1.14 [10] (Strong convexity var.1) A function 𝑓 which is continuous over a convex set

𝐶 ∈ 𝒅𝒐𝒎𝑓 with coefficient 𝜂′ ∈ ℝ>0 is strongly convex if for all 𝑥1, 𝑥2 ∈ 𝐶 and 𝜑 ∈ [0,1], we have

 𝑓(𝜑𝑥1 + (1 − 𝜑)𝑥2) +
𝜂′

2
𝜑(1 − 𝜑)|𝑥1 − 𝑥2|

2 ≤ 𝜑𝑓(𝑥1) + (1 − 𝜑)𝑓(𝑥2) (2.1.11)

Definition 2.1.15 [10] (Strong convexity var.2) Suppose a function 𝑓 is twice continuously

differentiable over a convex set 𝐶 ∈ 𝒅𝒐𝒎𝑓. The function 𝑓 is then strongly convex if there exists 𝜂 ∈ ℝ≥0

such that

∇2𝑓(𝑥) − 𝜂𝐼 ≥ 0 (2.1.12)

By Definitions 2.1.13 and 2.1.14, it is obvious that strong convexity is sufficient for strict convexity.

Additionally, every norm is convex, which can be easily proved as below. Note that both the objective

and the inequality constraint functions of the problem (1.4.16) concern norms. Therefore, it follows that

the problem is convex optimization. Note that its objective function is convex, yet neither strictly nor

strongly convex.

Lemma 2.1.16 (Norms are convex) Every norm |∙| is convex

Proof. For any 𝑥1, 𝑥2 ∈ ℝ𝑛 and 𝜑 ∈ [0,1],

|𝜑𝑥1 + (1 − 𝜑)𝑥2| ≤ |𝜑𝑥1| + |(1 − 𝜑)𝑥2|
 = 𝜑|𝑥1| + (1 − 𝜑)|𝑥2|

(2.1.13)

The triangular inequality is used in the first line, the homogeneity of norm in the second line. □

Now let us turn to convex optimization (or convex programming). Convex optimization is considered

to have advantages as they are often easier to analyze and to solve, which is, for example, grounded

on the following theorems:

Theorem 2.1.17 If the objective function and feasible region of the optimization problem (2.1.1) are

both convex, then any local solution is a global solution.

Proof. Let 𝑥∗ ∈ 𝛺 be a local solution to the optimization problem (2.1.1) and suppose that 𝑥∗ is not a

global solution, meaning that there exists a point 𝑦∗ ∈ Ω such that 𝑓0(𝑦
∗) < 𝑓0(𝑥

∗). By convexity of the

feasible region Ω, we can construct convex combination of 𝑥∗ and 𝑦∗ which reads 𝜑𝑥∗ + (1 − 𝜑)𝑦∗ ∈ Ω

for any 𝜑 ∈ [0,1]. By convexity of 𝑓 and the inequality from the above assumption 𝑓0(𝑦
∗) < 𝑓0(𝑥

∗),

Chapter Ⅱ. Optimization

18

𝑓(𝜑𝑥∗ + (1 − 𝜑)𝑦∗) ≤ 𝜑𝑓(𝑥∗) + (1 − 𝜑)𝑓(𝑦∗)

 < 𝜑𝑓(𝑥∗) + (1 − 𝜑)𝑓(𝑥∗) = 𝑓(𝑥∗)
(2.1.14)

This contradicts the local optimality of 𝑥∗ as 𝜑 approaches 1. □

Theorem 2.1.18 A convex optimization problem has a unique solution if its objective function is strictly

convex.

Proof. Let 𝑓 be a strictly convex function and suppose that there were two global optimal solutions

𝑥∗, 𝑦∗ ∈ 𝛺, that is, for all 𝑧 ∈ Ω,

 𝑓(𝑥∗) = 𝑓(𝑦∗) ≤ 𝑓(𝑧) (2.1.15)

Let us specify a comparison point 𝑧:=
𝑥+𝑦

2
. Then by convexity of the feasible region Ω and strict

convexity of the function 𝑓, we have

 𝑓(𝑧) = 𝑓 (
𝑥 + 𝑦

2
) <

1

2
𝑓(𝑥) +

1

2
𝑓(𝑦) =

1

2
𝑓(𝑥) +

1

2
𝑓(𝑥) = 𝑓(𝑥) (2.1.16)

which contradicts the previous assumption that there were two global solutions. □

Taking a step forward, we would like to guide readers to a broader concept than the previous

categorization of an optimization problem into linear, nonlinear and convex ones; Conic optimization is

“the problem of optimizing a linear function over the intersection of an affine space and a closed

convex cone” [9]. Fundamentals on Conic optimization are followed by the optimization itself.

Definition 2.1.19 (Cone) A cone is a set 𝐾 if, for all 𝑥 ∈ 𝐾 and 𝜂 ∈ ℝ≥0, we have

 𝜂𝑥 ∈ 𝐾 (2.1.17)

“Note that cones are not necessarily convex. For example, the set {(𝑥1, 𝑥2)
𝑇|𝑥1 ≥ 0 𝑜𝑟 𝑥2 ≥ 0}, which

encompasses three quarters of the two-dimensional plane, is a cone.” [11] It can be visualized as

a funnel with a pointed end in the two-dimensional space and as an ice cream cone in the three-

dimensional space. In the context of optimization, a cone normally means a proper cone. Its definition

slightly differs from literature to literature; here we introduce the one excerpted from [12].

Definition 2.1.20 (Proper cone) A proper cone is a cone 𝐾 which satisfies all the followings:

• 𝐾 is convex : 𝜑𝑥1 + (1 − 𝜑)𝑥2 ∈ 𝐾 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑥1, 𝑥2 ∈ 𝐾 𝑎𝑛𝑑 𝜑 ∈ [0,1];

• 𝐾 is closed : it contains all its limit points;

• 𝐾 is solid : meaning that it has nonempty interior;

• 𝐾 is pointed : if 𝑥≠0 ∈ 𝐾, then −𝑥 ∉ 𝐾.

19

Definition 2.1.21 (Convex cone) A convex cone is a set 𝐾 ⊆ ℝ𝑛 if for 𝑥1, 𝑥2 ∈ 𝐾 and 𝜂1, 𝜂2 ∈ ℝ≥0 ,

we have

 𝜂1𝑥1 + 𝜂2𝑥2 ∈ 𝐾 (2.1.18)

Definition 2.1.22 (Conic combination) A point constructed by a conic combination of points

𝑥1, 𝑥2, … , 𝑥𝑛 ∈ ℝ𝑛 is of the form

 ∑𝜂𝑖𝑥𝑖

𝑛

𝑖=1

 (2.1.19)

where 𝜂1, 𝜂2, … , 𝜂𝑛 ∈ ℝ≥0.

Definition 2.1.23 (Conic hull) A conic hull of a set S is the set of all conic combinations of its elements:

 𝑐𝑜𝑛(𝑆) ≔ { ∑ 𝜂𝑖𝑥𝑖
𝑛
𝑖=1 |𝑥𝑖 ∈ 𝑆, 𝜂𝑖 ∈ ℝ≥0 } (2.1.20)

Cones are subdivided into many different types; in this section, we introduce two of them associated

with our study: quadratic (or second-order) cones and rotated quadratic cone. The latter concept will

be used in Chapter 4. For other types, please refer to [13].

Definition 2.1.24 (Quadratic cone) The 𝑛-dimensional quadratic cone is defined as

 ℚ𝑛 = {𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛) ∈ ℝ𝑛 | 𝑥1 ≥ √𝑥2
2 + 𝑥3

2 + ⋯+ 𝑥𝑛
2 } (2.1.21)

Definition 2.1.25 (Rotated quadratic cone) An n-dimensional rotated quadratic cone is defined as

 ℚ𝑛 = {𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛) ∈ ℝ𝑛 | 2𝑥1𝑥2 ≥ 𝑥3
2 + ⋯+ 𝑥𝑛

2, 𝑥1, 𝑥2 ≥ 0} (2.1.22)

The terms Lorentz cone and rotated Lorentz cone, coined after Hendrik Antoon Lorentz, are

interchangeably used for quadratic and rotated quadratic cone, respectively. These two quadratic cones

are illustrated in Figure 2-5. As the latter’s name suggests, it can be obtained by rotating the former,

in other words, by multiplying the quadratic cone by an orthogonal matrix for rotation. Details on the

transformation process can be found in [13].

Figure 2-5 [13] Boundaries of quadratic (left) and rotated quadratic (right) cones.

Chapter Ⅱ. Optimization

20

With all these basics, let us turn to conic optimization. It basically takes the same form as the standard

form of the optimization problem (2.1.1), but with the inequality constraint 𝑔𝑖(𝑥) replaced by the

statement which demands that a vector 𝑥 should belong to a cone 𝐾.

Definition 2.1.26 (Conic optimization) A conic optimization takes the form

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑥 𝑓(𝑥)
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑥 ∈ 𝐾
 ℎ𝑗(𝑥) = 0, 𝑗 ∈ ℰ

(2.1.23)

A conic optimization with respect to a quadratic cone is called quadratic optimization (or second-order

cone optimization). It can be viewed as a generalization of linear programming in that a linear objective

function is optimized subject to (in)equalities with respect to variables which belong to (rotated)

quadratic cone(s) [13]. This explains why some of optimization problems including the previously

presented (1.4.16) and reformulated ones, which will be derived in the following chapter, are recognized

as conic quadratic optimization problems even though they by definition have nothing to do with cones.

This statement will become clearer in the next chapter.

2.2 Duality*

 An optimization problem takes a dual form; primal problem and dual problem. The primal problem

is the original problem itself, while the dual problem is defined by its Lagrangian. The following

discussion including definitions relates to the optimization problem (2.1.1) and associated notations.

Definition 2.2.1 (Lagrangian) The Lagrangian of the convex problem (2.1.1) 𝐿 ∶ ℝ𝑛 × ℝ𝑝 × ℝ𝑞 → ℝ with

𝑓:ℝ𝑛 → ℝ, 𝑔:ℝ𝑝 → ℝ and ℎ:ℝ𝑞 → ℝ is

 𝐿(𝑥, 𝜆, 𝛾) ≔ 𝑓(𝑥) + ∑ 𝜆𝑖𝑔𝑖
(𝑥)

𝑝

𝑖=1

+ ∑ 𝛾
𝑗
ℎ𝑗(𝑥)

𝑞

𝑗=1

 (2.2.1)

As its definition indicates, a Lagrangian is a function to put objective and constraint functions together,

weighting the (in)equality constraints by the Lagrange multipliers 𝜆 and 𝛾 , respectively. Lagrange

multipliers serve as variables of the dual function 𝑑(𝜆, 𝛾), the objective function of the dual problem.

* This section is mostly based on [9], unless otherwise referenced.

21

Definition 2.2.2 (Dual function) The dual function 𝑑 ∶ ℝ𝑝 × ℝ𝑞 → ℝ is the infimum of the Lagrangian

over 𝐷:= 𝒅𝒐𝒎 𝑓.

 𝑑(𝜆, 𝛾):= inf
𝑥∈𝐷

𝐿(𝑥, 𝜆, 𝛾) = inf
𝑥∈𝐷

(𝑓(𝑥) + ∑𝜆𝑖𝑔𝑖(𝑥)

𝑝

𝑖=1

+∑𝛾𝑗ℎ𝑗(𝑥)

𝑞

𝑗=1

) (2.2.2)

Definition 2.2.3 (Dual problem) The dual problem of the optimization problem (2.1.1) is

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒𝜆,𝛾 𝑑(𝜆, 𝛾)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝜆 ≥ 0
(2.2.3)

Theorem 2.2.4 For any dual variables 𝜆 ≥ 0 and any 𝛾, the dual function gives a lower bound on the

optimal value of the primal 𝑓(𝑥̃) with a primal feasible solution 𝑥̃. That is,

 𝑑(𝜆, 𝛾) ≤ 𝑓(𝑥̃) (2.2.4)

proof. Let 𝑥̃ belong to the feasible region of the optimization problem (2.1.1). In other words, its

(in)equality constraints hold at 𝑥 = 𝑥̃ ; i.e., 𝑔𝑖(𝑥̃) ≤ 0 and ℎ𝑗(𝑥̃) = 0 for 𝑖 ∈ ℇ and 𝑗 ∈ 𝐼. Then we can

construct the following inequality:

 ∑𝜆𝑖𝑔𝑖(𝑥̃)

𝑝

𝑖=1

+ ∑𝛾𝑗ℎ𝑗(𝑥̃)

𝑞

𝑗=1

≤ 0 (2.2.5)

Adding the objective function of the primal 𝑓(𝑥) to both sides of the inequality (2.2.5), we get

 𝐿(𝑥̃, 𝜆, 𝛾): = 𝑓(𝑥̃) + ∑ 𝜆𝑖𝑔𝑖
(𝑥̃)

𝑝

𝑖=1

+ ∑ 𝛾
𝑗
ℎ𝑗(𝑥̃)

𝑞

𝑗=1

≤ 𝑓(𝑥̃) (2.2.6)

Thus, by the definition of dual function, we arrive at

 𝑑(𝜆, 𝛾):= inf
𝑥∈𝐷

𝐿(𝑥, 𝜆, 𝛾) ≤ 𝐿(𝑥̃,𝜆, 𝛾) ≤ 𝑓(𝑥̃) (2.2.7)

 □

Theorem 2.2.4 shows a remarkable feature of duality; by solving the dual problem, one can estimate

the optimal value of the primal one. For this reason, the dual problem is often considered as an

alternative way to tackle the optimization problem especially when the primal is hard to solve. Note

that, contrary to the primal, the dual problem aims to maximize its objective function, which

corresponds to finding the highest lower bound on the optimal value of the primal. The highest value

is indeed the best since it minimizes uncertainty. In fact, in some special cases, one can attain an exact

optimal value by alternatively solving its dual. Before presenting associated concepts, let us employ the

notations 𝜆∗ and 𝛾∗ to denote dual optimal solutions, just we have adopted 𝑥∗ to refer to a primal

optimal solution.

Chapter Ⅱ. Optimization

22

Definition 2.2.5 (Weak duality) We speak of weak duality when

 𝑑(𝜆∗, 𝛾∗) ≤ 𝑓(𝑥∗) (2.2.8)

Definition 2.2.6 (Strong duality) We speak of strong duality when

 𝑑(𝜆∗, 𝛾∗) = 𝑓(𝑥∗) (2.2.9)

Definition 2.2.7 (Duality gap) The (optimal) duality gap 𝑔∗ is the positive difference between

𝑓(𝑥∗) and 𝑑(𝜆∗, 𝛾∗), namely,

 𝑔∗: = 𝑓(𝑥∗) − 𝑑(𝜆∗, 𝛾∗) (2.2.10)

Based on their definitions, there is strong duality iff the duality gap is zero. Not surprisingly, this concept

of strong duality has been keenly investigated and as a result there are many sufficient conditions to

guarantee strong duality. Here we present one of the most widely used ones, named Slater’s condition:

Theorem 2.2.8 (Slater’s condition) For any convex problem, strong duality holds if there exists a point

𝑥 ∈ 𝑟𝑖(𝑆) such that

𝑔𝑖(𝑥) < 0, 𝑖 ∈ 𝐼

 ℎ𝑗(𝑥) = 0, 𝑗 ∈ ℇ (2.2.11)

where 𝑟𝑖(𝑆) stands for relative interior of a set 𝑆.

Proof. See Section 5.3.2 in [9].

Definition 2.2.9 [14] (Relative interior) The Relative interior of a set 𝑆 is its interior relative to 𝑎𝑓𝑓(𝑆).

Any point in the set 𝑥 ∈ 𝑆 belongs to 𝑟𝑖(𝑆) if there exists a ball of radius 𝑟 ∈ ℝ>0 centered on 𝑥, denoted

as ℬ𝑟(𝑥), such that

 ℬ𝑟(𝑥) ∩ 𝑎𝑓𝑓(𝑆) ⊂ 𝑆 (2.2.12)

In addition to dual function and optimization, the so-called Karush-Kuhn-Tucker (KKT) conditions are

another key components of duality. These amazingly turn the optimization problem (2.1.1) into an

equivalent set of (in)equalities, in other words, into a feasibility problem.

23

Definition 2.2.10 (KKT conditions) Assume that the functions 𝑓, 𝑔𝑖 and ℎ𝑗 in the optimization problem

(2.1.1) are differentiable and strong duality (2.2.9) holds. Then the KKT conditions consist of the following

(in)equalities:

 𝑔𝑖(𝑥
∗) ≤ 0, 𝑖 ∈ 𝐼 (2.2.13)

 ℎ𝑗(𝑥
∗) = 0, 𝑗 ∈ ℰ (2.2.14)

 𝜆𝑖
∗ ≥ 0, 𝑖 ∈ 𝐼 (2.2.15)

 𝜆𝑖
∗𝑔𝑖(𝑥

∗) = 0, 𝑖 ∈ 𝐼 (2.2.16)

 𝛻𝐿(𝑥∗, 𝜆∗, 𝛾∗):= ∇𝑓(𝑥∗) + ∑𝜆𝑖
∗∇𝑔𝑖(𝑥

∗)

𝑝

𝑖=1

+ ∑𝛾𝑗
∗∇ℎ𝑗(𝑥

∗)

𝑞

𝑗=1

= 0 (2.2.17)

Note that the first two and the third lines are restatements of constraints of the primal and dual

optimization, respectively. The fourth is termed complementary slackness (or complementarily condition)

whose derivation will be given in the very next paragraph. The last one demands that the gradient of

Lagrangian vanish at x∗, which reflects the fact that the optimal solution 𝑥∗ minimizes the Lagrangian

𝐿(𝑥, 𝜆∗, 𝛾∗) over 𝒅𝒐𝒎 𝑓.

This is to how arrive at complementary slackness: suppose that strong duality holds, then

𝑑(𝜆∗, 𝛾∗) = inf

𝑥
(𝑓(𝑥) + ∑𝜆𝑖

∗𝑔(𝑥)

𝑝

𝑖=1

+ ∑𝛾𝑗
∗ℎ𝑗(𝑥)

𝑞

𝑗=1

)

 = 𝑓(𝑥∗) + ∑ 𝜆𝑖
∗𝑔𝑖(𝑥

∗)𝑝
𝑖=1 + ∑ 𝛾𝑗

∗ℎ𝑗(𝑥
∗)𝑞

𝑗=1

(2.2.18)

The second line must equate to 𝑓(𝑥∗) by strong duality. Given the equality constraint (2.2.14), we get

 ∑𝜆𝑖
∗𝑔𝑖(𝑥

∗)

𝑝

𝑖=1

= 0 (2.2.19)

By additional constraints 𝜆 ≥ 0 and 𝑔𝑖(𝑥) ≤ 0 with 𝑖 ∈ 𝐼, every term in the summation (2.2.19) must be

zero, that is, for all 𝑖,

 𝜆𝑖
∗𝑔𝑖(𝑥

∗) = 0 (2.2.20)

This condition (2.2.20) is called complementary slackness. To summarize, for any optimization problem

with differentiable objective and constraints functions, when strong duality holds, the associated optimal

solutions satisfy its KKT conditions. In particular, a relation between KKT conditions and convex

optimization is explained by the following theorem and corollary:

Chapter Ⅱ. Optimization

24

Theorem 2.2.11 For convex problems with differentiable object and constraint functions, KKT conditions

are sufficient for optimality with strong duality.

Proof. Assume that 𝑥̃ and (𝜆̃, 𝛾̃) satisfy the KKT conditions. Then 𝑥̃ is primal feasible based on the first

two conditions (2.2.13) and (2.2.14). Moreover, since 𝜆𝑖̃ ≥ 0 according to the third one (2.2.15), 𝐿(𝑥, 𝜆̃, 𝛾̃)

is convex in 𝑥. The last condition (2.2.17) states that the gradient of 𝐿(𝑥, 𝜆̃, 𝛾̃) with respect to 𝑥 vanishes

at 𝑥 = 𝑥̃, which leads to inf
𝑥∈𝐷

𝐿(𝑥, 𝜆̃, 𝛾̃) = 𝐿(𝑥̃, 𝜆̃, 𝛾̃). From these considerations, we have

𝑑(𝜆̃, 𝛾̃) ≔ inf
𝑥∈𝐷

𝐿(𝑥, 𝜆̃, 𝛾̃)

 = 𝐿(𝑥̃, 𝜆̃, 𝛾̃)

 = 𝑓(𝑥̃) + ∑𝜆𝑖𝑔𝑖(𝑥)

𝑝

𝑖=1

+ ∑𝛾𝑗ℎ𝑗(𝑥)

𝑞

𝑗=1

 = 𝑓(𝑥̃)

(2.2.21)

The conditions (2.2.14) and (2.2.16) are used in the last line. This correspond to the zero duality gap

and therefore 𝑥̃ and (𝜆̃, 𝛾̃) are primal and dual optimal solutions, respectively. □

Corollary 2.2.12 For convex problems with differentiable object and constraint functions, when Slater’s

condition is satisfied, that is, when strong duality holds, KKT conditions are necessary and sufficient for

optimality.

Lastly, Just as a function and an optimization problem, a proper cone 𝐾 (Definition 2.1.20) has its dual,

the dual cone. Furthermore, a cone which coincides with its dual is called self-dual.

Definition 2.2.13 (Dual cone) The dual cone 𝐾∗ of a cone 𝐾 is defined as

 𝐾∗: = { 𝑦 ∈ ℝ𝑛 | < 𝑦, 𝑥 >≥ 0 ∶ 𝑥 ∈ 𝐾} (2.2.22)

where < 𝑦, 𝑥 > denotes the Euclidean inner product.

Definition 2.2.14 (Self-dual) A cone 𝐾 having its dual 𝐾∗ is said to be self-dual if

 𝐾 = 𝐾∗ (2.2.23)

Geometrically, the dual cone can be interpreted as a set of vectors which form an acute to the right

angles with any vector in the original cone. In addition to the simple one 𝐾 ∈ ℝ≥0
𝑛 , quadratic and rotated

quadratic Lorentz cones, mentioned in the last section, are also self-dual. Refer to [13] for its proof.

25

2.3 CVX and Numerical solvers

To numerically solve optimization problems, we use CVX, a Matlab-based package for specifying and

solving convex programs [15], [16], [17]. Its developers have named the mechanism behind the software

‘disciplined convex programming’ and give a brief description of it on their website [16]: it is based on

the so-called DCP ruleset which identifies a type of a given optimization problem and converts it to

a solvable form. This implies that an optimization problem can be treated as a different type due to

the built-in ruleset; which in fact happens to our optimization problems. For detailed information on

the DCP ruleset, please refer to CVX Users’ Guide [18]. This document can be of help when

troubleshooting as well.

According to [18], CVX is highly versatile in that it is applicable to diverse types of optimization:

linear programming (LP), quadratic programming (QP), second-order cone programming (SOCP),

semidefinite programming (SDP), geometric programming (GP) and integer programming (IP). Moreover,

it says it can solve much more complex convex optimization problems including a nondifferentiable

function such as the 𝑙1 𝑛𝑜𝑟𝑚. Recall that we, at the end of the last chapter, arrive at an optimization

problem whose objective function is the 𝑙1 𝑛𝑜𝑟𝑚 of an HS function. Thus CVX is a reasonable choice

for this study.

Additionally, CVX supports a variety of solvers; solvers named SeDuMi (Self-Dual Minimization) [19] and

SDPT3 [20] are built in the standard CVX distribution [16], whereas others need installing. Solvers can

be easily switched through the use of the command ‘cvx_solver solvername’. The capabilities of some

solvers that can be paired with CVX are given in Table 2-1. It shows that one should choose a solver

considering the type of optimization problem.

Solver name LP QP SOCP SDP GP IP

SeDuMi Y Y Y Y E N

SDPT3 Y Y Y Y E N

Gurobi Y Y Y N N Y

Mosek Y Y Y Y Y Y

GLPK Y N N N N Y

Table 2-1 [18] Different capabilities of some solvers CVX supports. Y stands

for Yes, N for No, and E for Experimental.

Chapter Ⅱ. Optimization

26

For this study, we use Mosek (Mathematical Optimization Software package) [21] and SeDuMi, which

are comparable when it comes to solving from LP to SDP according to Table 2-1. Although their

capabilities are comparable and they employ the same method, the so-called primal-dual interior point

method [22], to deal with optimization problems, it turns out that they always yield slightly or noticeably

different results. In the next chapter, we will present results mostly obtained using Mosek and sometimes

the ones derived from SeDuMi alongside in order to highlight these discrepancies.

Regardless of solvers, one will end up with one of the status messages on the list below [18]. The ones

we encountered while solving optimization problems are marked in bold. These status messages and

descriptions should be understood in the context of primal-dual interior point methods, which is

the subject of the next section.

• Solved : A complementary (primal and dual) solution has been found;

• Unbounded : The problem has been proven to be unbounded along the primal direction;

• Infeasible : The problem has been proven to be infeasible;

• Inaccurate/Solved : The problem has been solved by relaxing its conditions;

• Inaccurate/Unbounded : The problem is likely to be unbounded;

• Inaccurate/Infeasible : The problem is likely to be infeasible;

• Failed : The solver has failed to solve the problem.

27

Chapter Ⅲ

Hilbert-Schmidt extrapolation function

3.1 Optimization problem

Let us now turn our attention back to the optimization problem introduced in Section 1.4.

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑓 |𝑓|1 ≔ ∫|𝑓(𝑡)| 𝑑𝑡

𝑇

0

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 |∫ 𝑓(𝑡)𝑒−𝑖𝐸𝑡 𝑑𝑡
𝑇

0

− 𝑒−𝑖𝐸𝜏| ≤ 𝛿, ∀𝐸 ∈ [−𝐸𝑚𝑎𝑥 , 𝐸𝑚𝑎𝑥]

(1.4.16)

For the sake of simplicity, we adopt the functional ansatz

 𝑓(𝑡) = ∑𝑐𝑗𝛿(𝑡 − 𝑡𝑗)

𝑛

𝑗=1

 (3.1.1)

and relax the inequality condition (1.2.5) to |∆𝑓(𝐸)| ≤ 𝛿 , for 𝐸 ∈ [−𝐸𝑚𝑎𝑥 , 𝐸𝑚𝑎𝑥] . The optimization

problem is then recast as

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑐 ∑|𝑐𝑗|

𝑛

𝑗=1

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 |∑𝑐𝑗

𝑛

𝑗=1

𝑒−𝑖𝐸𝑡𝑗 − 𝑒−𝑖𝐸𝜏| ≤ 𝛿, ∀ 𝐸 ∈ 𝔼

(3.1.2)

where, 𝑐 ≔ (𝑐1, … , 𝑐𝑛) is the coefficient vector of the ansatz (3.1.1), 𝑡𝑗: =
𝑗−1

𝑟−1
𝑇 are time steps

with 𝑗 = 1,… , 𝑛 and 𝔼:= {(−1 + 2
𝑙−1

𝑟−1
)𝐸𝑚𝑎𝑥 ∶ 𝑙 = 1,… , 𝑟} for the maximum observable time 𝑇, maximum

energy 𝐸𝑚𝑎𝑥 and resolution 𝑟.

Chapter Ⅲ. Hilbert-Schmidt extrapolation function

28

3.2 Results

The optimization problem in a simpler form (3.1.2) is solved by Mosek [21] paired with CVX [16].

Results derived from Mosek will be occasionally compared with those from SeDuMi [19] in order to

check their reliability. As mentioned in Section 2.3, these solvers always give slightly different results,

even though both are based on the same method; as a result, we can trust three digits at most.

Such discrepancies are assumed to arise from some underlying differences between the solvers in

conjunction with the fact that the optimization problem is ill-conditioned [23]. A problem’s being

ill-conditioned means that great computer precision is required to obtain reliable solutions.

In the first step, for reasonable settings (𝑇 = 1, 𝜏 = 2, 𝐸𝑚𝑎𝑥 = 1 and 𝑟 = 100), the delta interval where

the problem is ‘Solved’ without any computational issues is examined (see Section 2.3 for the list of

status messages); Mosek, 𝛿 ≥ 0.004; and SeDuMi, 𝛿 ≥ 0.05. When it comes to Mosek, to be specific,

all the coefficients of the ansatz (3.1.1) become zero for 𝛿 > 0.985 , while we get the messages

‘inaccurate/Solved’ for 10−8 < 𝛿 < 0.004 and ‘Failed’ for 𝛿 < 10−8. Whilst the first result implies that

the extrapolation loses its meaning and becomes trivial when it comes to too large errors allowed,

the others reveal limitations of tackling the optimization problem with the numerical solvers. This thesis

includes results with the message ‘Solved’ only.

The most striking result is that, for the feasible delta interval [0.004.0.985] , the majority of

the coefficients 𝑐𝑗 are null and only few have nonzero values (Figure 3-1). In the light of the overall

appearance of the coefficients, such nonzero terms will be referred to as ‘sparse coefficients (or terms)’

henceforth. Figure 3-1 additionally shows that the number of sparse coefficients varies with delta;

the smaller the delta, the more of them. While their sign alternates between plus and minus,

their absolute values also increase as delta decreases, which can be seen by the increasing scale of

the vertical axis. These indicate that the extrapolation becomes more complicated as the error model

gets tightened. Despite the limitations of the numerical solvers, we can deduce from Figure 3-1 that

sparse coefficients do not feature in the HS extrapolation function (3.1.1) as 𝛿 approximates zero.

29

Figure 3-1 Change in an optimal solution of the problem (3.1.2) with delta. In the light of the

overall appearance of the coefficients, the nonzero terms are named ‘sparse coefficients’.

As delta decreases, the number of sparse coefficients increases and so do their absolute values.

For some values of delta, some neighboring terms are observed to show up together (See Figure 3-2

for an example). For the sake of simplicity, we from now on regard a local maximum or a local minimum

as a sparse coefficient and assume that it takes as its value the sum of its own value and its close

neighbors’. In Figure 3-2, for instance, two terms appear right next to one another (marked black):

𝑐(30) = 2.35585 and 𝑐(31) = 16.31680. Applying the approximation, we will view 𝑐(31) as a sparse term

whose value is 2.35585 + 16.31680 = 18.67265 . This approximation is indeed reasonable given

Figure 3-3, which illustrates how CVX processes neighboring nonzero components when the resolution

(‘res’) is set lower. Furthermore, Table 3-1 contains indices and values of sparse terms obtained using

the two different solvers at 𝛿 = 0.004, associated with the first two plots in Figure 3-3. Whereas their

indices coincide, at most three digits of their values turn out to be comparable.

Chapter Ⅲ. Hilbert-Schmidt extrapolation function

30

Figure 3-2 At some delta values, for example 𝛿 = 0.020,

neighboring non-zero terms show up (marked black).

Mosek SeDuMi

Figure 3-3 Change in optimal solutions with resolution, obtained using Mosek (Left column) and

SeDuMi (Right column). This illustrates how CVX processes neighboring nonzero components

when the resolution (‘res’) is set lower and thereby increases our trust in the approximation.

31

Index Mosek SeDuMi

1 33.41 33.38

16 -74.68 -74.28

51 98.36 97.70

86 -139.38 -138.97

100 83.29 83.26

Table 3-1 Indices and values of sparse terms associated with the first two plots taken at

𝛿 = 0.004 in Figure 3-3. These are accordingly derived from Mosek and SeDuMi as well.

Whereas indices of sparse terms coincide, their values are comparable up to three digits.

Based on the approximation mentioned earlier, we first study how indices of sparse terms change with

delta (Figure 3-5). In order to get a better understanding of this plot, one might want to refer to

Figure 3-4, which illustrates how Figure 3-5 is constructed out of plots of sparse coefficients obtained

over the feasible delta interval [0.004,0.985]. In Figure 3-5, we group the points into five according to

their sign. Recall our previous observation of the sign of sparse terms; it alternates between plus and

minus in the downhill direction of index. To be specific, while 𝒄𝟏𝟎𝟎, m2 and m4 are positive, the others

are negative. The group name ‘𝒄𝟏𝟎𝟎 ’ reflects that the last term always exists regardless of delta.

On the other hand, the others are named ‘m*’ on the ground that they tend to ‘move’ towards higher

indices as delta decreases; they are numbered from one to four according to their order of appearance

in the descent direction of delta. In the same plot, it is also observed that every m* makes few ‘pauses’

in between; their indices remain unchanged within some intervals of delta. Despite lack of data over

smaller values of delta, m4 is assumed to behave the same way. Furthermore, m* groups are related

through such ‘metastable intervals’ in that whenever m1 enters such an interval, the others start to

make their appearance one by one. These phenomena can be found at three values of delta in

Figure 3-5. First, at 𝛿 = 0.335 , m1 enters a metastable interval, while m2 appears first. Second,

at 𝛿 = 0.014, m1 and m2 simultaneously go in such an interval, whereas m3 makes its first appearance.

Lastly, at 𝛿 = 0.081, m4 shows up first when the others encounter the other interval.

Chapter Ⅲ. Hilbert-Schmidt extrapolation function

32

Figure 3-4 Illustration of how the index-delta plot (Figure 3-5) is constructed

out of sparse coefficients obtained over the feasible delta interval.

Figure 3-5 Plot of indices of sparse coefficients against delta. We group the points

into five; 𝒄𝟏𝟎𝟎, m1, m2, m3 and m4. Whereas the last term always exists regardless

of delta, the others tend to ‘move’ towards higher indices in the downhill direction

of delta. m* groups are related through ‘metastable intervals’ in that whenever m1

enters such an interval, the others start to make their appearance one by one.

Afterwards, for the ℓ1 𝑛𝑜𝑟𝑚 of the coefficient vector and m* groups, their values against delta are

respectively fitted using MATLAB with 95% confidence bounds on coefficients of their fit functions

(Figure 3-6). Detailed formulars of the fit functions including their R-square values are given in

Table 3-2. Remarkably, for 𝛿 < 0.020, all the value against delta plots are fitted to linear functions

(Figure 3-7 and Table 3-3), which significantly simplifies estimation of their values. All numbers in

the two tables are rounded to four significant digits.

0

20

40

60

80

100

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

in
d

ex

delta

c100 m1 m2 m3 m4

0

10

20

30

40

50

60

70

80

90

100

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

In
d

ex

Delta

33

 |c|1 c100

m1 m2

m3 m4

Figure 3-6 For the ℓ1 𝑛𝑜𝑟𝑚 of the coefficient vector and m* groups, their values

against delta are respectively fitted using MATLAB with 95% confidence bounds on

coefficients of their fit functions. Details of the fit functions are given in Table 3-2.

.

Chapter Ⅲ. Hilbert-Schmidt extrapolation function

34

|𝑐|1 𝑐100

f(𝛿) = a*𝛿^b+c

a = 17.07 (15.83, 18.31)

b = -0.9309 (-0.9456, -0.9161)

c = -25.49 (-29.00, -21.97)

R-square: 0.9700

f(𝛿) = 1/(a* 𝛿+b)

a = 1.475 (1.448, 1.502)

b = 0.004992 (0.004744, 0.005241)

R-square: 0.9777

𝑚1 𝑚2

f(𝛿) = -1/(a* 𝛿+b)+c

a = 0.9434 (0.9221, 0.9646)

b = 0.002542 (0.002382, 0.002703)

c = 1.653 (1.495, 1.812)

R-square: 0.9782

f(𝛿) = 1/(a* 𝛿+b)+c

a = 1.602 (1.527, 1.677)

b = 0.002334 (0.001866, 0.002802)

c = -2.470 (-2.827, -2.114)

R-square: 0.9703

𝑚3 𝑚4

f(𝛿) = -1/(a* 𝛿+b)+c

a = 2.791 (2.268, 3.314)

b = 7.258e-05 (-0.002397, 0.002542)

c = 4.462 (2.519, 6.405)

R-square: 0.9304

f(𝛿) = a* 𝛿+b

a = -2966 (-2985, -2946)

b = 45.26 (45.06, 45.46)

R-square: 0.9999

Table 3-2 Details of fit functions in Figure 3-6 including their R-square values.

All the numbers are rounded to four significant digits.

35

|𝑐|1 𝑐100

𝑚1 𝑚2

𝑚3 𝑚4

Figure 3-7 For the ℓ1 𝑛𝑜𝑟𝑚 of the coefficient vector and m* groups, their values

against delta less than 0.020 are respectively fitted using MATLAB with 95%

confidence bounds on coefficients of their fit functions. Details of the fit functions are

given in Table 3-3. Note the linearity of all the fit functions.

Chapter Ⅲ. Hilbert-Schmidt extrapolation function

36

|𝑐|1 𝑐100

f(𝛿) = a* 𝛿+b

a = -2.453e+04 (-2.499e+04, -2.407e+04)

b = 520.4 (515.2, 525.5)

R-square: 0.9991

f(𝛿) = a* 𝛿+b

a = -3529 (-3680, -3379)

b = 94.48 (92.44, 96.51)

R-square: 0.9936

𝑚1 𝑚2

f(𝛿) = a* 𝛿+b

a = 6569 (6414, 6724)

b = -163.2 (-165.2, -161.1)

R-square: 0.9980

f(𝛿) = a* 𝛿+b

a = -6107 (-6212, -6002)

b = 123.7 (122.5, 124.8)

R-square: 0.9993

𝑚3 𝑚4

f(𝛿) = a* 𝛿+b

p1 = 6003 (5955, 6052)

p2 = -98.76 (-99.25, -98.28)

R-square: 0.9999

f(𝛿) = a* 𝛿+b

a = -2966 (-2985, -2946)

b = 45.26 (45.06, 45.46)

R-square: 0.9999

Table 3-3 Details of fit functions in Figure 3-7 including their R-square values.

All the numbers are rounded to four significant digits.

By taking the same steps with respect to tau, we can extend the ansatz (3.1.1) to tau, i.e., 𝑓𝛿 → 𝑓𝛿,𝜏.

During the first phase, we find reasonable settings (𝑇 = 1, 𝛿 = 0.004,𝐸𝑚𝑎𝑥 = 1 and 𝑟 = 100) and check

the feasible tau interval: 𝜏 ∈ [1.0, 2.5]. Figure 3-8 shows how indices and values of sparse coefficients

change with tau. The number of sparse coefficients and their absolute values significantly increase with

tau, which suggests that the extrapolation function becomes more complicated at a future time point

farther away from the observable time interval. On the other hand, the signs of sparse terms follow the

same rule as before; their sign alternates between plus and minus in the descent direction of index.

Note that, at 𝜏 = 2.5 , there exist six sparse coefficients in total according to the approximation

introduced before. As before, Figure 3-9, the index versus tau plot over the feasible tau interval is

obtained by aggregating plots as those in Figure 3-8. Above all, the most significant result to emerge

from tau-related data is the appearance of a new group named ‘m5’, which supports our previous

deduction that the ansatz ends up with many nonzero coefficients as 𝛿 approximates zero. Taking the

existence of m5 into consideration, the index-delta plot is drawn again with respect to deltas close to

zero in Figure 3-10. Completing Figure 3-5, this plot illustrates how indices of sparse coefficients change

within the interval of delta where the optimization problem is ‘Solved’ by the numerical solver.

37

Figure 3-8 Change in an optimal solution of the problem (3.1.2) with tau. The so-called

sparse coefficients are observed as well. Their number and absolute values increase with tau,

while the sign of sparse coefficients alternates between plus and minus. Note that, at 𝜏 = 2.5,

there exist six sparse coefficients in total according to the approximation introduced before.

Figure 3-9 Plot of indices of sparse coefficients against tau over the

feasible tau interval. Note the appearance of a new index group, m5.

0

20

40

60

80

100

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5

in
d

ex

tau

c100 m1 m2 m3 m4 m5

Chapter Ⅲ. Hilbert-Schmidt extrapolation function

38

Figure 3-10 The index-delta plot over small values of delta, which completes

Figure 3-5. Though the numerical solver expects up to six sparse coefficients,

as delta approximates zero, more and more nonzero terms are assume to

show up to the point the ansatz (3.1.1) rather looks continuous.

Afterwards, with respect to each index group, the value against tau plot is fitted using MATLAB in the

same way as before. Combined with those in Figure 3-6, we obtain fit functions which take both delta

and tau as their arguments and thereby values of index groups — 𝐜𝟏𝟎𝟎, m1, …, and m5 — can be

estimated to some degree of reliability (see Appendix B). We are, however, aware that this approach

has two limitations. First, we can hardly predict their indices, however accurately their values are

predicted by the fit functions. Second, our knowledge is just limited to the six index groups found by

Mosek. Though we have deduced that the majority of coefficients of the ansatz (3.1.1) have nonzero

values as delta approximates zero, there is actually no way to estimate indices and values of index

groups other than the six.

0

20

40

60

80

100

0.000 0.001 0.002 0.003 0.004 0.005

in
d

ex

delta

c100 m1 m2 m3 m4 m5

39

Chapter Ⅳ

Error models

4.1 Optimization problem

Removing the assumption that the error model is constant, the optimization problem (1.4.16) is

written as

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑓,𝜀 ∫|𝑓(𝑡)|𝜀(𝑡) 𝑑𝑡

𝑇

0

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 |∆(𝐸)| ≤ 𝛿, ∀𝐸 ∈ [−𝐸𝑚𝑎𝑥 , 𝐸𝑚𝑎𝑥]

(4.1.1)

Let us recast this problem with new variables Ω ∈ ℝ>0 and 𝜈 ≔ 𝛿2 as follows:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑓,𝜀,𝜈 ∫|𝑓(𝑡)|𝜀(𝑡) 𝑑𝑡

𝑇

0

+ Ω𝜈

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 |∆(𝐸)|2 ≤ 𝜈, ∀ 𝐸 ∈ [−𝐸𝑚𝑎𝑥 , 𝐸𝑚𝑎𝑥]

(4.1.2)

Given an extrapolation function 𝑓(𝑡), this problem (4.1.2) can be used to find a corresponding error

model 𝜀(𝑡) and Ω. To this end, going through some steps as given in Appendix C, we arrive at

the optimization problem:

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑓,𝜇,𝜀,𝜈 ∫ 𝜇(𝑡)𝜀(𝑡) 𝑑𝑡
𝑇

0
+ Ων

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜
𝜇(𝑡) − 𝑓(𝑡) ≥ 0, 𝜇(𝑡) + 𝑓(𝑡) ≥ 0, ∀𝑡 ∈ [0, 𝑇]

(𝜈,
1

2
,∫ 𝑓(𝑡) cos(𝐸𝑡) 𝑑𝑡 − cos(𝐸𝜏) , ∫ 𝑓(𝑡) sin(𝐸𝑡)𝑑𝑡 − sin(𝐸𝜏)) ∈ 𝐾𝑠𝑞𝑟𝑡 , ∀𝐸 ∈ [−𝐸𝑚𝑎𝑥, 𝐸𝑚𝑎𝑥]

(4.1.3)

where 𝐾𝑠𝑞𝑟𝑡 denotes the rotated quadratic cone (Definition 2.1.25). Since the rotated quadratic cone is

self-dual (Definition 2.2.14), the dual of the problem (4.1.3) reads

maximize𝑉+,𝑉−,𝑍,𝜀 ∫ < 𝑍(𝐸), (0,
1

2
, cos(𝜏𝐸) , sin(𝜏𝐸)) > 𝑑𝐸

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜
𝜀(𝑡) − 𝑉+(𝑡) − 𝑉−(𝑡) = 0

 𝑉+(𝑡) − 𝑉−(𝑡) − ∫ < 𝑍(𝐸), (0,0, cos(𝐸𝑡) , sin(𝐸𝑡)) > 𝑑𝐸 = 0

Ω − ∫ < 𝑍(𝐸), (1,0,0,0) > 𝑑𝐸 = 0

 𝑍(𝐸) ∈ 𝐾𝑠𝑞𝑟𝑡, ∀𝐸 ∈ [−𝐸𝑚𝑎𝑥 , 𝐸𝑚𝑎𝑥]

 𝑉+(𝑡), 𝑉−(𝑡) ≥ 0, ∀𝑡 ∈ [0, 𝑇]

(4.1.4)

Chapter Ⅳ. Error models

40

and the duality gap is given by

𝛾(𝑉+, 𝑉−, 𝑍, 𝑓, 𝜇, 𝜈) ≔ ∫(𝜇(𝑡) − 𝑓(𝑡) 𝑉+(𝑡)) 𝑑𝑡 + ∫(𝜇(𝑡) + 𝑓(𝑡) 𝑉−(𝑡)) 𝑑𝑡

+∫ < 𝑍(𝐸), (𝜈,
1

2
, ∫ 𝑓(𝑡) cos(𝐸𝑡)𝑑𝑡 − cos(𝐸𝜏) ,∫ 𝑓(𝑡) sin(𝐸𝑡) 𝑑𝑡 − sin(𝐸𝜏)) > 𝑑𝐸

(4.1.5)

Let us define

Δ̅ ≔ max
𝐸∈[−𝐸𝑚𝑎𝑥,𝐸𝑚𝑎𝑥]

Δ𝑓(𝐸) (4.1.6)

If one finds feasible 𝑉+, 𝑉−, 𝑍, 𝜀(𝑡) and Ω such that

 𝛾(𝑉+, 𝑉−, 𝑍, 𝑓, |𝑓(𝑡)|, Δ̅2) = 0 (4.1.7)

this means that 𝑓(𝑡) is an optimal HS extrapolation function for 𝜀(𝑡) and Ω. In this case, 𝑓(𝑡) is also

an optimal extrapolation function for {𝜇𝜀(𝑡𝑗) ≥ 0} and 𝜇Ω for all 𝜇 ∈ ℝ>0. Thus it is reasonable to set

Ω = 1. These considerations bring us to the optimization problem:

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑉+,𝑉−,𝑍,𝜀 𝛾(𝑉+, 𝑉−, 𝑍, 𝑓, |𝑓(𝑡)|, Δ̅2)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜
𝜀(𝑡) − 𝑉+(𝑡) − 𝑉−(𝑡) = 0

 𝑉+(𝑡) − 𝑉−(𝑡) − ∫ < 𝑍(𝐸), (0,0, cos(𝐸𝑡) , sin(𝐸𝑡)) > 𝑑𝐸 = 0

 1 − ∫ < 𝑍(𝐸), (1,0,0,0) > 𝑑𝐸 = 0

 𝑍(𝐸) ∈ 𝐾𝑠𝑞𝑟𝑡, ∀𝐸 ∈ [−𝐸𝑚𝑎𝑥 , 𝐸𝑚𝑎𝑥]

 𝜀(𝑡) ≥ 0, ∀𝑡 ∈ [0, 𝑇]
 𝑉+(𝑡), 𝑉−(𝑡) ≥ 0, ∀𝑡 ∈ [0, 𝑇]

(4.1.8)

Considering the functional ansatz (3.1.1) and approximating the integrals over energy in the constraints

in the problem (4.1.8) to the sum over the elements of 𝔼:= {(−1 + 2
𝑙−1

𝑟−1
)𝐸𝑚𝑎𝑥 ∶ 𝑙 = 1,… , 𝑟}, we have

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑉+,𝑉−,𝑍,𝜀 𝛾𝜀(𝑉
+, 𝑉−, 𝑍, 𝑓)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜
𝜀𝑗 − 𝑉𝑗

+ − 𝑉𝑗
− = 0

𝑉𝑗
+ − 𝑉𝑗

− − ∑ < 𝑍(𝐸), (0,0, cos(𝐸𝑡) , sin(𝐸𝑡)) >

𝐸∈𝔼

= 0

1 − ∑ < 𝑍(𝐸), (1,0,0,0) >

𝐸∈𝔼

= 0

 𝑍(𝐸) ∈ 𝐾𝑠𝑞𝑟𝑡, ∀𝐸 ∈ 𝔼

 𝜀𝑗 ≥ 0, ∀𝑗

𝑉𝑗
+, 𝑉𝑗

− ≥ 0, ∀𝑗

(4.1.9)

41

with

𝛾𝜀(𝑉
+, 𝑉−, 𝑍, 𝑓) ≔ ∑(|𝑐𝑗| − 𝑐𝑗)𝑉𝑗

+

𝑗

+ ∑(|𝑐𝑗| − 𝑐𝑗)𝑉𝑗
−

𝑗

+ ∑ < 𝑍(𝐸), (

𝐸∈𝔼

Δ̅2,
1

2
,∑𝑐𝑗 cos(𝐸𝑡𝑗) − cos(𝐸𝜏) ,

𝑗

∑𝑐𝑗 sin(𝐸𝑡𝑗) − sin(𝐸𝜏)

𝑗

) >
(4.1.10)

If its solution approximates zero, 𝑓(𝑡) can make an optimal HS extrapolation function with the error

model 𝜀(𝑡) for given parameters 𝑇, 𝜏 and 𝐸𝑚𝑎𝑥 .

4.2 Potential optimal extrapolation functions

Three functions — the Lagrange polynomial and the two HS extrapolation functions introduced in

Section 1.3 — are considered as optimal extrapolation functions for some error models. When it comes

to the Lagrange polynomial, though it is originally meant to interpolate, we extend its use to

extrapolation in this study.

(a) Lagrange polynomial

Definition 4.2.1 [24] (Lagrange polynomial) Given a set of data points (𝑥𝑖, 𝑦𝑖) with 𝑖 = 0, … , 𝑛 ,

its Lagrange (interpolating) polynomial is defined as

 𝐿𝑃𝑛(𝑥):= ∑𝑦𝑖 ∏(
𝑥 − 𝑥𝑘

𝑥𝑖 − 𝑥𝑘
)

𝑘≠𝑖

𝑛

𝑖=0

 (4.2.1)

Example Consider the quadratic function 𝑞(𝑥) = 3𝑥2 + 𝑥 + 2 which passes through the three points:

(𝑥0, 𝑦0) = (0,2), (𝑥1, 𝑦1) = (1,6) and (𝑥2, 𝑦2) = (−1,4). Then the Lagrange polynomial to interpolate these

points is given by

𝐿𝑃2(𝑥) = ∑𝑦𝑖 ∏(
𝑥 − 𝑥𝑘

𝑥𝑖 − 𝑥𝑘
)

𝑘≠𝑖

2

𝑖=0

= 𝑦0 (
𝑥 − 𝑥1

𝑥0 − 𝑥1
)(

𝑥 − 𝑥2

𝑥0 − 𝑥2
) + 𝑦1 (

𝑥 − 𝑥0

𝑥1 − 𝑥0
) (

𝑥 − 𝑥2

𝑥1 − 𝑥2
) + 𝑦2 (

𝑥 − 𝑥0

𝑥2 − 𝑥0
)(

𝑥 − 𝑥1

𝑥2 − 𝑥1
)

= 2(
𝑥 − 1

0 − 1
)(

𝑥 − (−1)

0 − (−1)
) + 6 (

𝑥 − 0

1 − 0
)(

𝑥 − (−1)

1 − (−1)
) + 4 (

𝑥 − 0

−1 − 0
)(

𝑥 − 1

−1 − 1
)

= −2(𝑥 − 1)(𝑥 + 1) + 3𝑥(𝑥 + 1) + 2𝑥(𝑥 − 1)

= 3𝑥2 + 𝑥 + 2

(4.2.2)

which coincides with 𝑞(𝑥).

Chapter Ⅳ. Error models

42

Coming back to our discussion on extrapolating the average values (1.1.1), Lagrange polynomial tries

to fit the general function 𝑎(𝑡) to a polynomial 𝑎̃(𝜏). That is,

 𝑎̃(𝜏) = ∑𝑎(𝑡𝑗)∏(
𝜏 − 𝑡𝑘
𝑡𝑖 − 𝑡𝑘

)

𝑘≠𝑗𝑗

 (4.2.3)

Define

 𝑐𝑗 ≔ ∏(
𝜏 − 𝑡𝑘
𝑡𝑖 − 𝑡𝑘

)

𝑘≠𝑗

 (4.2.4)

Then it follows that

𝑎̃(𝜏) = ∑𝑎(𝑡𝑗)

𝑗

𝑐𝑗

 = ∫ 𝑓(𝑡)𝑎(𝑡) 𝑑𝑡
𝑇

0

(4.2.5)

The ansatz (3.1.1) is used in the second line.

(b) HS extrapolation function based on superoscillations

In Section 1.3, we derive the HS extrapolation function inspired by superoscillations [3], [4].

 𝑓𝑆(𝑡):= ∑(𝑐𝑆)𝑗𝛿(𝑡 − (𝑡𝑆)𝑗)

𝑁

𝑗=0

 (1.3.9)

with

(𝑐𝑆)𝑗 ≔ (

𝑁
𝑗
) (1 −

𝜏

𝑇
)
𝑁−𝑗

(
𝜏

𝑇
)
𝑗

(𝑡𝑆)𝑗 ≔
𝑇

𝑁
𝑗

(1.3.10)

There we consider two approximations based on two different definitions of the exponential function

to recover the superoscillating Fourier sequence (1.3.4) from 𝑒−𝑖𝐸𝜏 under the condition 𝑁 ≫ |𝐸|max (𝑇, 𝜏).

For reasonable settings (𝑇 = 1, 𝜏 = 2 and 𝐸 = 1), the first one 𝑒−𝑖𝜏𝐸 ≈ (1 −
1

𝑁
𝑖𝜏𝐸)

𝑁

 requires 𝑁 to be

sufficiently large, while the second one 𝑒−𝑖𝐸
𝑇

𝑁 ≈ 1 − 𝑖𝐸
𝑇

𝑁
 holds for all 𝑁 ∈ ℕ. Figure 4-1 shows how the

approximation error between 𝐴:= 𝑒−𝑖𝐸𝜏 and 𝐵:= (1 −
1

𝑁
𝑖𝜏𝐸)

𝑁

 changes with 𝑁.

43

Figure 4-1 Change in the approximation error with 𝑁 for the reasonable settings

(𝑇 = 1, 𝜏 = 2 and 𝐸 = 1). Here 𝐴 and 𝐵 denote 𝑒−𝑖𝐸𝜏 and (1 −
1

𝑁
𝑖𝜏𝐸)

𝑁

, respectively.

It indicates that 𝑁 needs to be sufficiently large to make a reasonable approximation.

(c) HS extrapolation function based on McLaurin expansion

Next, recall the HS extrapolation function based on McLaurin expansion [5] and numerical

differentiation [6]:

 𝑓𝑀(𝑡):= ∑∑
𝜏𝑗

𝑗! ℎ𝑗
(
𝑗
𝑘
) (−1)𝑗+𝑘

𝑗

𝑘=0

𝑁

𝑗=0

𝛿(𝑡 − 𝑘ℎ) (1.3.17)

This can be written in a similar form as the previous ones as

 𝑓𝑀(𝑡):= ∑ ∑(𝑐𝑀)𝑗𝑘

𝑗

𝑘=0

𝑁

𝑗=0

𝛿(𝑡 − (𝑡𝑀)𝑘) (4.2.6)

with

(𝑐𝑀)𝑗𝑘 ≔

𝜏𝑗

𝑗! ℎ𝑗
(
𝑗
𝑘
) (−1)𝑗+𝑘

(𝑡𝑀)𝑘 ≔ 𝑘ℎ

(4.2.7)

Since the optimization problem (4.1.9) requires the coefficient vector 𝑐𝑀 to be a column vector,

the extrapolation function (4.2.6) needs to be further reduced to

 𝑓𝑀(𝑡):= ∑(𝑪𝑴)𝑘𝛿(𝑡 − (𝑡𝑀)𝑘)

𝑗

𝑘=0

 (4.2.8)

with

(𝑪𝑴)𝑘 ≔ ∑(𝑐𝑀)𝑗𝑘

𝑗

(𝑡𝑀)𝑘 ≔ 𝑘ℎ

(4.2.9)

Chapter Ⅳ. Error models

44

The new coefficient vector (𝑪𝑀)𝑘 can be understood as a vector constructed by summing up all

elements in each column of the matrix (𝑐𝑀)𝑗𝑘.

Recall that two approximations are considered to derive the extrapolation function (1.3.17): the McLaurin

expansion (1.3.14) and the numerical differentiation (1.3.16). In this section, given initial settings

(𝜏 = 2, 𝐸 = 1), we will check under which conditions these are reasonably valid one by one. First, Figure

4-2 illustrates a change in the approximation error between 𝐴:= 𝑒−𝑖𝐸𝜏 and its McLaurin expansion

𝑀:= ∑
𝑑𝑗(𝑒−𝑖𝐸𝑡)

𝑑𝑡𝑗
|𝑡=0

𝜏𝑗

𝑗!

𝑁
𝑗=0 with 𝑁.

Figure 4-2 Change in the approximation error with 𝑁 for the

reasonable settings (𝜏 = 2 and 𝐸 = 1). Here 𝐴 and 𝑀 denote

𝑒−𝑖𝐸𝜏 and its McLaurin expansion ∑
𝑑𝑗(𝑒−𝑖𝐸𝑡)

𝑑𝑡𝑗
|𝑡=0

𝜏𝑗

𝑗!

𝑁
𝑗=0 , respectively.

Next, we study the approximation error between the McLaurin expansion of 𝑒−𝑖𝐸𝜏, denoted 𝑀, and

its numerical differentiation 𝐷:=
1

ℎ𝑗
∑ (

𝑗
𝑘
) (−1)𝑗+𝑘𝑒−𝑖𝐸𝑘ℎ𝑗

𝑘=0 . Figure 4-3 illustrates how the approximation

error varies with 1/ℎ with respect to four different values of 𝑗. Whereas the approximation error is

observed to improve with 1/ℎ for small values of 𝑗 as expected, some fluctuation in the error is

observed for 𝑗 ≥ 7. This can be attributed to the computer precision and consequent rounding errors.

For this reason, together with the fact that the parameter 𝑗 is bounded by 𝑁 by definition, 𝑁 larger

than 6 should be avoided.

45

Figure 4-3 Change in the approximation error with 1/ℎ and 𝑗 for the

reasonable settings (𝜏 = 2 and 𝐸 = 1). Here 𝑀 and 𝐷 denote the McLaurin

expansion 𝑒−𝑖𝐸𝜏 and its numerical differentiation ∑
𝑑𝑗(𝑒−𝑖𝐸𝑡)

𝑑𝑡𝑗
|𝑡=0

𝜏𝑗

𝑗!

𝑁
𝑗=0 , respectively.

Chapter Ⅳ. Error models

46

4.3 Results

With respect to the three candidate functions presented in the last section, we solve the optimization

problem (4.1.9) by using Mosek paired with CVX. Results derived from the functions share the same

characteristics. To begin with, all the tables in this section indicate that both 𝛿 and 𝛾𝜀 decrease with 𝑟;

the decrease in 𝛾𝜀 , equivalent to improvement in the optimality of the function, is a natural consequence

of dividing the given time interval more finely and thereby having more data points to refer to when

fitting the Lagrange polynomial to the data points. Second, for the lower value of 𝜏, the optimality of

the functions improves on the whole as seen in Table 4-2, Table 4-5 and Table 4-8. This can be explained

by the fact that extrapolation of the data at a time point closer to the observable interval [0,1] is more

feasible. Third, the tables concerning 𝐸𝑚𝑎𝑥 = 2 imply that the increased uncertainty in 𝐸 makes the

extrapolation much harder (Table 4-3, Table 4-6, and Table 4-9).

For the values of the parameters 𝑟 and 𝑁(:= 𝑟 + 1) larger than those on the tables, we get the message

‘Unbounded’ with warnings of too large numbers. These warnings concern elements of the coefficient

vectors of the candidate functions, which rapidly increase with the parameters by their definitions (4.2.4),

(1.3.10) and (4.2.9), respectively. Therefore, together with their own limitations in extrapolation, their use

as extrapolation functions is quite restricted; they work only within a limited range of the parameters.

Next, given that the Lagrange polynomial leads to the lowest value of 𝛾𝜀 among them, we can conclude

that it is the most optimal. Remarkably, we observe from Table 4-1 and Table 4-2 that we can study

smaller values of delta (6.10𝐸 − 07 at lowest) with the Lagrange polynomial than we can do with Mosek,

which works for 𝛿 ≥ 0.004 (see Section 3.2).

Lastly, we find out that all the functions lead to optimal values close to zero and approximately

correspond with the zero-error model, a column vector whose components are all zero; error models

associated with the tables in this section are available in Appendix D. We did not expect to find the

same optimal error model for all the tested functions. On the other hand, it is not a complete surprise

that the zero-error model can fit widely different functions, as it corresponds to an optimization problem

where the only goal is minimizing the extrapolation error. In this regard, further studies need to be

performed. As one possible way to come up with HS extrapolation functions which match error models

other than the zero-error one, we suggest tracking back the coefficient vectors corresponding to

different types of error models. This idea is elaborated in Appendix E.

47

(a) Lagrange polynomial

r 𝛿 𝛾𝜀

4 1.78E-03 3.17E-02

5 5.31E-03 2.81E-03

6 1.31E-03 1.72E-04

7 2.80E-03 7.73E-06

8 7.81E-04 6.10E-07

Table 4-1 Changes in 𝛿 and 𝛾𝜀 with 𝑟 for (𝑇, 𝜏, 𝐸𝑚𝑎𝑥) = (1,2,1). Both 𝛿 and 𝛾𝜀 decrease with 𝑟.

 𝑟 𝛿 𝛾𝜀

4 2.97E-02 8.82E-04

5 5.80E-03 3.30E-05

6 9.25E-04 2.61E-06

7 1.27E-04 8.50E-07

8 3.65E-05 7.37E-09

Table 4-2 Changes in 𝛿 and 𝛾𝜀 with 𝑟 for (𝑇, 𝜏, 𝐸𝑚𝑎𝑥) = (1,1.5,1).

Overall improvement in the optimality is observed compared to

when 𝜏 = 2 (Table 4-1).

 𝑟 𝛿 𝛾𝜀

4 2.53 6.41

5 1.55 2.41

6 7.83E-01 6.14E-01

7 3.35E-01 1.12E-01

8 1.25E-01 1.57E-02

Table 4-3 Changes in 𝛿 and 𝛾𝜀 with 𝑟 for (𝑇, 𝜏, 𝐸𝑚𝑎𝑥) = (1,2,2).

Overall deterioration in the optimality is observed compared to

when 𝐸𝑚𝑎𝑥 = 1 (Table 4-1).

Chapter Ⅳ. Error models

48

(b) HS extrapolation function based on superoscillations

 𝑁 𝛿 𝛾𝜀

10 1.04E-01 1.09E-02

11 9.47E-02 8.96E-03

12 8.65E-02 7.48E-03

13 7.98E-02 6.37E-03

14 7.55E-02 5.70E-03

Table 4-4 Changes in 𝛿 and 𝛾𝜀 with 𝑟 for (𝑇, 𝜏, 𝐸𝑚𝑎𝑥) = (1,2,1). Both 𝛿 and 𝛾𝜀 decrease with 𝑁.

 𝑁 𝛿 𝛾𝜀

11 3.46E-02 1.19E-03

12 3.17E-02 1.00E-03

13 2.92E-02 8.54E-04

14 2.71E-02 7.35E-04

15 2.53E-02 6.39E-04

Table 4-5 Changes in 𝛿 and 𝛾𝜀 with 𝑟 for (𝑇, 𝜏, 𝐸𝑚𝑎𝑥) = (1,1.5,1).

Overall improvement in the optimality is observed compared to when

𝜏 = 2 (Table 4-4).

 𝑁 𝛿 𝛾𝜀

11 4.27E-01 1.82E-01

12 3.87E-01 1.50E-01

13 3.54E-01 1.25E-01

14 3.25E-01 1.05E-01

15 9.01E-02 5.02E-02

Table 4-6 Changes in 𝛿 and 𝛾𝜀 with 𝑟 for (𝑇, 𝜏, 𝐸𝑚𝑎𝑥) = (1,2,2).

Overall deterioration in the optimality is observed compared to when

𝐸𝑚𝑎𝑥 = 1 (Table 4-4).

49

(c) HS extrapolation function based on McLaurin expansion

When it comes to this function, we first figure out appropriate values for 𝑁 for each set of parameters

— (𝑇, 𝜏, 𝐸𝑚𝑎𝑥) = (1,2,1), (1,1.5,1) and (1,2,2), taking the two approximation methods (1.3.14) and (1.3.16)

into account: for the first two, 𝑁 = 6; and for the last, 𝑁 = 10. With these values of 𝑁, the best optimality,

equivalent to the lowest 𝛾𝜀 , is attained for each case.

1/ℎ 𝛿 𝛾𝜀

7 1.09E-02 1.21E-02

8 9.40E-02 8.83E-03

9 8.04E-02 6.45E-03

10 7.12E-02 5.06E-03

11 3.08E-02 9.51E-04

Table 4-7 Changes in 𝛿 and 𝛾𝜀 with 1/ℎ for (𝑁, 𝑇, 𝜏, 𝐸𝑚𝑎𝑥) = (6,1,2,1). Both 𝛿 and 𝛾𝜀 decrease with 1/ℎ.

 1/ℎ 𝛿 𝛾𝜀

9 7.72E-02 5.95E-03

10 6.96E-02 4.83E-03

11 6.21E-02 3.86E-03

12 5.65E-02 3.19E-03

13 5.43E-02 2.94E-03

Table 4-8 Changes in 𝛿 and 𝛾𝜀 with 1/ℎ for (𝑁, 𝑇, 𝜏, 𝐸𝑚𝑎𝑥) = (6,1,1.5,1).

An overall worsening in the optimality is observed compared to when

𝜏 = 2 (Table 4-7).

 1/ℎ 𝛿 𝛾𝜀

3 7.30E-02 5.33E-01

4 5.61E-02 3.15E-01

5 4.62E-02 2.13E-01

6 4.00E-02 1.60E-01

7 2.89E-02 8.36E-02

Table 4-9 Changes in 𝛿 and 𝛾𝜀 with 1/ℎ for (𝑁, 𝑇, 𝜏, 𝐸𝑚𝑎𝑥) = (10,1,2,2).

Overall deterioration in the optimality is observed compared to when

𝐸𝑚𝑎𝑥 = 1 (Table 4-7).

50

51

V. Conclusion

In this study, we have formulated the extrapolation of time averages of HS observables as

an optimization problem. Assuming an ansatz on the extrapolation functions, we solved this problem

using the software packages Mosek and CVX. For reasonable settings, its optimal solution consists of

few non-zero terms, the so-called ‘sparse coefficients’. For moderately low values of the approximation

error 𝛿, optimal functions have at most five non-zero terms. We observed that they present alternating

signs and have studied how they vary with 𝛿. When it comes to their indices, though we could have

taken an analytics guess based on their characteristic behavior, there seemed no convincing way to do

that. Nevertheless, from Figure 3-5, we could deduce that the coefficient vector would have mostly

non-zero terms as 𝛿 approximates zero. As for their values, for 𝛿 < 0.020, their values against 𝛿 are

all fitted to linear functions (Figure 3-7 and Table 3-3). Hereby we have demonstrated that

the extrapolation with high accuracy is feasible to some extent, namely, for the five index groups. This

remains valid after extending the ansatz to the future time point 𝜏 as given in Appendix B.

In the meantime, while taking the same steps with respect to 𝜏, we have discovered an additional index

group, which supports our previous deduction. In spite of all these findings, our study is admittedly still

insufficient for a complete extrapolation; due to limitations of the software, we were not able to study

the optimal solution for 𝛿 < 0.004. Though not included in this thesis, we have tried the gradient

descent method [8] and Adam [25] as follow-up studies. However, none of them helped us to get

a better understanding of the optimal solution, failing to reach 𝛿 smaller than Mosek’s limit. For this

reason, further studies need to be performed to either find or devise a better approach. Once these

limitations are overcome, our method could be used to estimate HS observables with high precision.

In addition, to further our research, we intend to extend our consideration from HS observables to any

bounded observables and find universal extrapolation functions.

Afterwards, to study the association between extrapolation functions and error models, we have recast

the problem (1.4.6), removing the assumption that the error model is a constant and using the notion

of duality as elaborated in Appendix C. The reformulated problem (4.1.9) takes as its objective function

the duality gap, which makes an indicator of the optimality of a given function. This problem is solved

by Mosek pared with CVX as before, with respect to the following three extrapolation functions

explained in Section 4.2: Lagrange polynomial and HS extrapolation functions based on superoscillations

and McLaurin expansion, respectively. For all the candidate functions, despite some computational

limitations, we have found that their optimality improves with the parameters such as 𝑟, 𝑁 and 1/ℎ

as expected. Among them, Lagrange polynomials are closest to optimal, followed by the first and

the second HS extrapolation functions. In fact, the Lagrange polynomial has advantage over the others

in that it is not based on approximation methods; it has demonstrated its high performance by reaching

Chapter V. Conclusion

52

smaller values of 𝛿 than Mosek’s limit. On the other hand, though the result that all the extrapolation

functions considered are close to optimal for the zero-error model (Appendix E) can be understood in

the light of the objective of the optimization problem, it has revealed that our formulation did not work

as anticipated. In this respect, we suggest the following directions for future research: to come up with

corresponding HS extrapolation functions by referring to Appendix F, which illustrates how the

coefficient vector changes with different types error models.

53

Bibliography

[1] Cirac, J.I. et al. (2021) ‘Matrix product states and projected entangled pair states: Concepts,

symmetries, theorems’, Reviews of Modern Physics, 93(4). doi:10.1103/revmodphys.93.045003.

[2] Orús, R. (2014) ‘A practical introduction to tensor networks: Matrix product states and projected

entangled pair states’, Annals of Physics, 349, pp. 117–158. doi:10.1016/j.aop.2014.06.013.

[3] Berry, M. (2017) A half-century of physical asymptotics and other diversions, pp. 483–493.

doi:10.1142/10480.

[4] Aharonov, Y. et al. (2017) ‘The mathematics of Superoscillations’, Memoirs of the American

Mathematical Society, 247(1174), pp. 33–36. doi:10.1090/memo/1174.

[5] Atkinson, K.E. (1988) ‘Chapter 1. Mathematical preliminaries’, in An introduction to numerical analysis.

New York, Canada: Wiley, p. 4.

[6] Shilov, G.E. and Silverman, R.A. (1996) Elementary real and complex analysis. New York, USA: Dover

Publications.

[7] Tchebichef, P. (1867). 'Des valeurs moyennes‘. Journal de Mathématiques Pures et Appliquées. 2. 12:

177–184.

[8] Exl, L. (2022) ‘Numerical Methods III: Optimization’, Lecture notes in Master Computational Science:

University of Vienna.

Bibliography

54

[9] Boyd, S.P. and Vandenberghe, L. (2004) Convex optimization. Cambridge, United Kindgom:

Cambridge Univ. Pr.

[10] Bertsekas, D.P. (2009) ‘Section 1.10 (Strong convexity)’, in Convex optimization theory exercises and

Solutions. Nashua (New Hampshire), USA: Athenea Scientific, pp. 13–17.

[11] Anjos, M.F. and Lasserre, J.B. (2012) ‘1 Introduction to Semidefinite, Conic and Polynomial

Optimization’, in Handbook on semidefinite, conic and polynomial optimization. New York: Springer, pp.

1–22.

[12] Nocedal, J. and Wright, S.J. (2006) ‘Numerical optimization’. New York, USA: Springer, pp. 621–622.

[13] ‘Chapter 3. Conic quadratic optimization’ (2018) in Mosek Modeling Cookbook. S.l., Denmark:

mosek.com, pp. 20–24.

[14] Borwein, J.M. and Lewis, A.S. (2000) ‘1.1 Euclidean Spaces’, in Convex analysis and nonlinear

optimization: Theory and examples. 2nd edn. New York, NY: Springer, pp. 7–8.

[15] The MathWorks, Inc. (2023). MATLAB version: 9.13.0.2193358 (R2022b Update 5). Available at:

https://www.mathworks.com (Accessed: 10 November 2023).

[16] Michael Grant and Stephen Boyd. CVX: Matlab software for disciplined convex programming,

version 2.0 beta. http://cvxr.com/cvx, September 2013.

[17] Michael Grant and Stephen Boyd. Graph implementations for nonsmooth convex programs, Recent

Advances in Learning and Control (a tribute to M. Vidyasagar), V. Blondel, S. Boyd, and H. Kimura,

editors, pages 95-110, Lecture Notes in Control and Information Sciences, Springer, 2008.

http://stanford.edu/~boyd/graph_dcp.html.

https://www.mathworks.com/
http://stanford.edu/~boyd/graph_dcp.html

55

[18] Grant, M.C. and Boyd, S.P. (2020) CVX Users’ Guide. Available at: http://cvxr.com/cvx/doc/index.html

(Accessed: 10 November 2023).

[19] Sturm, J.F. (2003) Sedumi. Available at: https://sedumi.ie.lehigh.edu/ (Accessed: 10 November 2023).

[20] Toh, K.C., Tütüncü, R.H. and Todd, M.J. (2001) A MATLAB software package for semidefinite quadratic

linear programming, SDPT3. Available at: https://www.math.cmu.edu/~reha/sdpt3.html (Accessed: 21 10

November 2023).

[21] Mosek APS (2019) Mosek ApS. Available at: https://www.mosek.com/ (Accessed: 21 10 November

2023).

[22] Wright, S.J. (1997) Primal-dual interior-point methods. Philadelphia, USA: SIAM.

[23] Cheney, E.W. and Kincaid, D. (2020). Numerical mathematics and computing. Pacific Grove:

Brooks/Cole.

[24] Atkinson, K.E. (1988) ‘Chapter 3. Interpolation theory’, in An introduction to numerical analysis. 2nd

edn. New York, Canada: Wiley, pp. 131–134.

[25] Kingma, D.P. and Ba, J. (2017) Adam: A method for stochastic optimization, [1412.6980] Adam: A

Method for Stochastic Optimization. Available at: http://export.arxiv.org/abs/1412.6980 (Accessed: 10

November 2023).

56

57

List of Figures

Figure 2-1 Affine (left) and convex (right) sets which have two elements 𝑥1 and 𝑥2. These can be

viewed as affine and convex hulls, respectively. ·· 15

Figure 2-2 Affine (left) and convex (right) sets which have three elements 𝑥1, 𝑥2 and 𝑥3. These can be

viewed as affine and convex hulls, respectively. ·· 16

Figure 2-3 Convex (left) and nonconvex (right) sets. The two dots and line segments between them

illustrate how to tell convexity of sets geometrically; A set 𝐶 is convex if a line segment connecting any

two points in 𝐶 lies in 𝐶 as well, otherwise, nonconvex. ·· 16

Figure 2-4 Convex (left) and concave (right) functions. From a position of a line segment between any

two points on a graph relative to the function one can determine convexity/concavity of a function

graphically. ·· 16

Figure 2-5 [13] Boundaries of quadratic (left) and rotated quadratic (right) cones. ································ 19

Figure 3-1 Change in an optimal solution of the problem (3.1.2) with delta. In the light of the overall

appearance of the coefficients, the nonzero terms are named ‘sparse coefficients’. As delta decreases,

the number of sparse coefficients increases and so do their absolute values. ··· 29

Figure 3-2 At some delta values, for example 𝛿 = 0.020, neighboring non-zero terms show up (marked

dark). ·· 30

Figure 3-3 Change in optimal solutions with resolution, obtained using Mosek (Left column) and

SeDuMi (Right column). This illustrates how CVX processes neighboring nonzero components when the

resolution (‘res’) is set lower and thereby increases our trust in the approximation. ································· 30

Figure 3-4 Illustration of how the index-delta plot (Figure 3-5) is constructed out of sparse coefficients

obtained over the feasible delta interval. ··· 32

List of Figures

58

Figure 3-5 Plot of indices of sparse coefficients against delta. We group the points into five;

𝒄𝟏𝟎𝟎, m1, m2, m3 and m4. Whereas the last term always exists regardless of delta, the others tend to

‘move’ towards higher indices in the downhill direction of delta. m* groups are related through

‘metastable intervals’ in that whenever m1 enters such an interval, the others start to make their

appearance one by one. ··· 32

Figure 3-6 For the ℓ1 𝑛𝑜𝑟𝑚 of the coefficient vector and m* groups, their values against delta are

respectively fitted using MATLAB with 95% confidence bounds on coefficients of their fit functions.

Details of the fit functions are given in Table 3-2. ··· 33

Figure 3-7 For the ℓ1 𝑛𝑜𝑟𝑚 of the coefficient vector and m* groups, their values against delta less

than 0.020 are respectively fitted using MATLAB with 95% confidence bounds on coefficients of their

fit functions. Details of the fit functions are given in Table 3-3. Note the linearity of all the fit functions.

 ··· 35

Figure 3-8 Change in an optimal solution of the problem (3.1.2) with tau. The so-called sparse

coefficients are observed as well. Their number and absolute values increase with tau, while the sign of

sparse coefficients alternates between plus and minus. Note that, at 𝜏 = 2.5, there exist six sparse

coefficients in total according to the approximation introduced before. ··· 37

Figure 3-9 Plot of indices of sparse coefficients against tau over the feasible tau interval. Note the

appearance of a new index group, m5. ··· 37

Figure 3-10 The index-delta plot over small values of delta, which completes Figure 3-5. Though the

numerical solver expects up to six sparse coefficients, as delta approximates zero, more and more

nonzero terms are assume to show up to the point the ansatz (3.1.1) rather looks continuous. ········ 38

Figure 4-1 Change in the approximation error with 𝑁 for the reasonable settings (𝑇 = 1, 𝜏 = 2 and 𝐸 =

1). Here 𝐴 and 𝐵 denote 𝑒−𝑖𝐸𝜏 and (1 −
1

𝑁
𝑖𝜏𝐸)

𝑁

, respectively. It indicates that 𝑁 needs to be sufficiently

large to make a reasonable approximation. ·· 43

Figure 4-2 Change in the approximation error with 𝑁 for the reasonable settings (𝜏 = 2 and

𝐸 = 1). Here 𝐴 and 𝑀 denote 𝑒−𝑖𝐸𝜏 and its McLaurin expansion ∑
𝑑𝑗(𝑒−𝑖𝐸𝑡)

𝑑𝑡𝑗
|𝑡=0

𝜏𝑗

𝑗!

𝑁
𝑗=0 , respectively. ······ 44

59

Figure 4-3 Change in the approximation error with 1/ℎ and 𝑗 for the reasonable settings (𝜏 = 2 and

𝐸 = 1). Here 𝑀 and 𝐷 denote the McLaurin expansion 𝑒−𝑖𝐸𝜏 and its numerical differentiation

∑
𝑑𝑗(𝑒−𝑖𝐸𝑡)

𝑑𝑡𝑗
|𝑡=0

𝜏𝑗

𝑗!

𝑁
𝑗=0 , respectively. ··· 45

60

61

List of Tables

Table 2-1 [18] Different capabilities of some solvers CVX supports. Y stands for Yes, N for No, and E

for Experimental. ·· 25

Table 3-1 Indices and values of sparse terms associated with the first two plots taken at 𝛿 = 0.004 in

Figure 3-3. These are accordingly derived from Mosek and SeDuMi as well. Whereas indices of sparse

terms coincide, their values are comparable up to three digits. ·· 31

Table 3-2 Details of fit functions in Figure 3-6 including their R-square values. All the numbers are

rounded to four significant digits. ·· 34

Table 3-3 Details of fit functions in Figure 3-7 including their R-square values. All the numbers are

rounded to four significant digits. ·· 36

Table 4-1 Changes in 𝛿 and 𝛾𝜀 with 𝑟 for (𝑇, 𝜏, 𝐸𝑚𝑎𝑥) = (1,2,1). Both 𝛿 and 𝛾𝜀 decrease with 𝑟. ······ 47

Table 4-2 Changes in 𝛿 and 𝛾𝜀 with 𝑟 for (𝑇, 𝜏, 𝐸𝑚𝑎𝑥) = (1,1.5,1). Overall improvement in the

optimality is observed compared to when 𝜏 = 2 (Table 4-1). ·· 47

Table 4-3 Changes in 𝛿 and 𝛾𝜀 with 𝑟 for (𝑇, 𝜏, 𝐸𝑚𝑎𝑥) = (1,2,2). Overall deterioration in the optimality

is observed compared to when 𝐸𝑚𝑎𝑥 = 1 (Table 4-1). ·· 47

Table 4-4 Changes in 𝛿 and 𝛾𝜀 with 𝑟 for (𝑇, 𝜏, 𝐸𝑚𝑎𝑥) = (1,2,1). Both 𝛿 and 𝛾𝜀 decrease with 𝑁. ····· 48

Table 4-5 Changes in 𝛿 and 𝛾𝜀 with 𝑟 for (𝑇, 𝜏, 𝐸𝑚𝑎𝑥) = (1,1.5,1). Overall improvement in the

optimality is observed compared to when 𝜏 = 2 (Table 4-4). ·· 48

Table 4-6 Changes in 𝛿 and 𝛾𝜀 with 𝑟 for (𝑇, 𝜏, 𝐸𝑚𝑎𝑥) = (1,2,2). Overall deterioration in the optimality

is observed compared to when 𝐸𝑚𝑎𝑥 = 1 (Table 4-4). ·· 48

Table 4-7 Changes in 𝛿 and 𝛾𝜀 with 1/ℎ for (𝑁, 𝑇, 𝜏, 𝐸𝑚𝑎𝑥) = (6,1,2,1). Both 𝛿 and 𝛾𝜀 decrease with

1/ℎ. ··· 49

List of Tables

62

Table 4-8 Changes in 𝛿 and 𝛾𝜀 with 1/ℎ for (𝑁, 𝑇, 𝜏, 𝐸𝑚𝑎𝑥) = (6,1,1.5,1). An overall worsening in the

optimality is observed compared to when 𝜏 = 2 (Table 4-7). ·· 49

Table 4-9 Changes in 𝛿 and 𝛾𝜀 with 1/ℎ for (𝑁, 𝑇, 𝜏, 𝐸𝑚𝑎𝑥) = (10,1,2,2). Overall deterioration in the

optimality is observed compared to when 𝐸𝑚𝑎𝑥 = 1 (Table 4-7). ·· 49

63

Appendix A

Justification of the equation (1.4.5)

 To estimate < 𝑎, 𝑓 > by the procedure of generating a random variable 𝛼 such that

< 𝛼 > ≡ < 𝑎, 𝑓 >, it is required to choose 𝑡 and to measure the observable of 𝐴(𝑡) on the system. Let

𝑎𝑡 be the random variable corresponding to the measurement result and 𝜇(𝑡) 𝑑𝑡 the probability

distribution for sampling 𝑡 ∈ [0, 𝑇]. The support of 𝜇(𝑡) must contain that of 𝑓, 𝑆(𝑓); otherwise, < 𝑎, 𝑓 >

cannot be evaluated. Once 𝑎𝑡 has been identified, one can generate a random variable through the

function. This will be denoted as 𝛼:= 𝑔(𝑎𝑡, 𝑡). If 𝑔(𝑎𝑡, 𝑡) is deterministic, the only function 𝑔 such that

 < 𝛼 > = ∫ 𝜇(𝑡) < 𝑔(𝑎𝑡, 𝑡) > 𝑑𝑡
𝑇

0
= ∫ 𝑓(𝑡) < 𝑎𝑡 > 𝑑𝑡

𝑇

0
= < 𝑎, 𝑓 > (A.1)

holds for all distributions of 𝑎𝑡 is 𝑔(𝑎𝑡, 𝑡) =
𝑓(𝑡)

𝜇(𝑡)
𝑎𝑡, for 𝑡 ∈ 𝑆(𝑓) or 0, otherwise. If 𝑔 is non-deterministic,

the most general function will be of the form
𝑓(𝑡)

𝜇(𝑡)
𝑎𝑡 + 𝑜𝑡 , where 𝑜𝑡 is an independent random variable

with < 𝑜𝑡 > = 0. In this case, the final estimator 𝛼 will have a higher variance than its deterministic

counterpart, with 𝑜𝑡 = 0 . There exists, therefore, infinitely many unbiased estimations for < 𝑎, 𝑓 > ,

depending on the choice of the distribution 𝜇(𝑡). Among all those estimators, we wish to identify

the one with the minimum variance. We have that

 < 𝛼2 >= ∫ 𝜇(𝑡) (
𝑓(𝑡)

𝜇(𝑡)
𝑎𝑡)

2

𝑑𝑡

𝑆(𝑓)

≤ |𝐴|2 ∫ 𝜇(𝑡) (
𝑓(𝑡)

𝜇(𝑡)
)

2

𝑑𝑡

𝑆(𝑓)

∶= |𝐴|2Λ𝑓(𝜇) (A.2)

with equality if, for all 𝑡 ∈ 𝑆(𝑓), 𝑎𝑡 ∈ {−|𝐴|, |𝐴|}. Hence, in the worst-case scenario, the variance of our

estimator 𝛼 satisfies

 (∆𝛼)2: = < 𝛼2 > − < 𝛼 >2 = |𝐴|2𝐴𝑓(𝜇) − < 𝑎, 𝑓 >2 (A.3)

Appendix A. Justification of the equation (1.4.5)

64

To minimize Λ𝑓(𝜇) over all distributions 𝜇(𝑡)𝑑𝑡, consider the average of a non-negative function under

𝜇(𝑡)𝑑𝑡:

∫ 𝜇(𝑡)(
𝑓(𝑡)

𝜇(𝑡)
− |𝑓(𝑡)|1)

2

𝑑𝑡

𝑆(𝑓)

= ∫ 𝜇(𝑡) (
𝑓(𝑡)

𝜇(𝑡)
)

2

𝑑𝑡

𝑆(𝑓)

+ ∫ 𝜇(𝑡)|𝑓(𝑡)|1
2 𝑑𝑡

𝑆(𝑓)

− 2|𝑓(𝑡)|1 ∫|𝑓(𝑡)| 𝑑𝑡

𝑆(𝑓)

 = Λ𝑓(𝜇) − (1 + ∫ 𝜇(𝑡) 𝑑𝑡
[0,𝑇]\𝑆(𝑓)

) |𝑓|1
2 (A.4)

As it is a non-negative number,

 Λ𝑓(𝜇) ≥ (1 + ∫ 𝜇(𝑡) 𝑑𝑡

[0,𝑇]\𝑆(𝑓)

) |𝑓|1
2 ≥ |𝑓|1

2 (A.5)

This inequality is saturated when choosing 𝜇(𝑡)𝑑𝑡 ≡
|𝑓(𝑡)|

|𝑓|1
 𝑑𝑡 as in equation (1.4.5). □

65

Appendix B

Fit functions of delta and tau

c100 m1

f(x,y) = p00 + p10*x + p01*y + p20*x^2 +

p11*x*y + p02*y^2 + p30*x^3 + p21*x^2*y

with coefficients:

p00 = -36.46 (-44.66, -28.27)

p10 = 54.81 (7.533, 102.1)

p01 = 87.71 (72.88, 102.5)

p20 = 4.824 (-83.95, 93.6)

p11 = -158.7 (-238.7, -78.59)

p02 = -68.57 (-77.24, -59.89)

p30 = 348.6 (226.4, 470.7)

p21 = -193.8 (-301.3, -86.4)

p12 = 177.2 (131.9, 222.4)

p03 = 17.78 (16.14, 19.43)

p40 = -781.9 (-895, -668.9)

p31 = 396.5 (330.4, 462.6)

p22 = -51.76 (-102.2, -1.327)

p13 = -54.31 (-62.8, -45.81)

f(x,y) = p00 + p10*x + p01*y + p20*x^2 +

p11*x*y + p02*y^2 + p30*x^3 + p21*x^2*y

with coefficients:

p00 = 61.74 (49.78, 73.7)

p10 = -81.4 (-148.5, -14.33)

p01 = -149.6 (-170.6, -128.5)

p20 = -149.5 (-298.8, -0.1132)

p11 = 281.4 (177.6, 385.2)

p02 = 120.8 (108.6, 132.9)

p30 = 298.7 (65.79, 531.5)

p21 = 50.2 (-91.75, 192.1)

p12 = -274.4 (-331.3, -217.5)

p03 = -34.28 (-36.59, -31.98)

p40 = -583.4 (-797.2, -369.5)

p31 = 247.3 (151.6, 342.9)

p22 = -87.72 (-148.6, -26.82)

p13 = 112.3 (101.7, 122.9)

Appendix B. Fit functions of delta and tau

66

p50 = 402.5 (356.9, 448.2)

p41 = -102.1 (-126.5, -77.67)

p32 = -75.61 (-89.73, -61.49)

p23 = 39.82 (30.98, 48.66)

R-square: 0.9506

p50 = 535.8 (454.1, 617.5)

p41 = -542.5 (-577.7, -507.2)

p32 = 293.5 (275.1, 311.8)

p23 = -86.03 (-96.35, -75.71)

R-square: 0.9806

m2 m3

f(x,y) = p00 + p10*x + p01*y + p20*x^2 +

p11*x*y + p02*y^2 + p30*x^3 + p21*x^2*y +

p12*x*y^2 + p03*y^3 + p40*x^4 + p31*x^3*y

+ p22*x^2*y^2 + p13*x*y^3 + p50*x^5 +

p41*x^4*y + p32*x^3*y^2 + p23*x^2*y^3

with coefficients:

p00 = -232.4 (-295.9, -169)

p10 = -437.7 (-1695, 819.4)

p01 = 421.4 (322.1, 520.7)

p20 = -5950 (-1.057e+04, -1336)

p11 = 1157 (-896, 3210)

p02 = -253.5 (-304.7, -202.4)

p30 = 1.159e+04 (176.4, 2.301e+04)

p21 = 5227 (-2886, 1.334e+04)

p12 = -943.2 (-2044, 157.9)

p03 = 50.53 (41.87, 59.2)

p40 = 3.41e+04 (2.465e+04, 4.355e+04)

p31 =-2.469e+04 (-3.717e+04, -1.221e+04)

p22 = 670.7 (-4086, 5427)

f(x,y) = p00 + p10*x + p01*y

with coefficients:

p00 = 56.75 (56.11, 57.4)

p10 = 129 (127.8, 130.2)

p01 = -33.02 (-33.32, -32.72)

R-square: 0.9977

67

p13 = 264.2 (70.18, 458.2)

p50 = 5.456e+04 (5.115e+04, 5.798e+04)

p41 = -4.632e+04 (-5.081e+04, -4.184e+04)

p32 = 1.507e+04 (1.171e+04, 1.843e+04)

p23 = -1358 (-2276, -440.7)

R-square: 0.9811

m4 m5

f(x,y) = p00 + p10*x + p01*y + p20*x^2 +

p11*x*y + p02*y^2 + p30*x^3 + p21*x^2*y +

p12*x*y^2 + p03*y^3

with coefficients:

p00 = -3.05e+04 (-3.441e+04, -2.66e+04)

p10 = -2.953e+06 (-3.31e+06, -2.595e+06)

p01 = 5.54e+04 (4.955e+04, 6.125e+04)

p20 = -6.814e+07 (-1.018e+08, -3.452e+07)

p11 = 3.395e+06 (3.131e+06, 3.658e+06)

p02 = -3.316e+04 (-3.61e+04, -3.022e+04)

p30 = -6.829e+08 (-2.249e+09, 8.829e+08)

p21 = 4.096e+07 (3.259e+07, 4.932e+07)

p12 = -9.787e+05 (-1.042e+06, -9.156e+05)

p03 = 6558 (6066, 7050)

R-square: 0.9749

f(x,y) = p00 + p10*x + p01*y

with coefficients:

p00 = 3933 (3784, 4082)

p10 = 9.935e+04 (9.584e+04, 1.029e+05)

p01 = -1973 (-2040, -1906)

R-square: 0.9844

68

69

Appendix C

Ideas from duality

Consider the optimization problem (4.1.2):

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑓,𝜀,𝜈 ∫|𝑓(𝑡)|𝜀(𝑡) 𝑑𝑡

𝑇

0

+ Ω𝜈

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 |∆(𝐸)|2 ≤ 𝜈, ∀ 𝐸 ∈ [−𝐸𝑚𝑎𝑥 , 𝐸𝑚𝑎𝑥]

(4.1.2)

To ease the notation, any integration in 𝒕 and 𝑬 will be hereafter understood to be taken in the

interval [𝟎, 𝑻] and [−𝑬𝒎𝒂𝒙, 𝑬𝒎𝒂𝒙], respectively. The Lagrangian of the problem (4.1.2) is:

ℒ = ∫𝜀(𝑡)|𝑓(𝑡)| 𝑑𝑡 + Ω𝜈 − ∫Λ(𝐸) 𝑑𝐸 (𝜈 − |∫𝑓(𝑡)𝑒−𝑖𝐸𝑡 𝑑𝑡 − 𝑒−𝑖𝜏𝐸|
2

)

= ∫𝜀(𝑡)|𝑓(𝑡)| 𝑑𝑡 + Ω𝜈

−∫Λ(𝐸) 𝑑𝐸 (𝜈 − ∫ 𝑓(𝑡)𝑓(𝑡′)

T ×T

𝑒−𝑖𝐸(𝑡−𝑡′) 𝑑𝑡𝑑𝑡′ − 1 + ∫𝑓(𝑡)(𝑒−𝑖𝐸(𝑡−𝜏) + 𝑒𝑖𝐸(𝑡−𝜏)) 𝑑𝑡)

(C.1)

where 𝚲 is a non-negative real function.

The KKT conditions for this problem are:

𝜀(𝑡)𝑠𝑖𝑔𝑛(𝑓(𝑡))

+∫Λ(𝐸) 𝑑𝐸 (∫𝑓(𝑡′) (𝑒−𝑖𝐸(𝑡−𝑡′) + 𝑒𝑖𝐸(𝑡−𝑡′)) 𝑑𝑡′ − (𝑒−𝑖𝐸(𝑡−𝜏) + 𝑒𝑖𝐸(𝑡−𝜏))) = 0, ∀𝑡 ∈ [0, 𝑇]
(C.2)

 Ω − ∫Λ(𝐸) 𝑑𝐸 = 0 (C.3)

 𝜈 ≥ |∫ 𝑓(𝑡)𝑒−𝑖𝐸𝑡 𝑑𝑡
𝑇

0

− 𝑒−𝑖𝐸𝜏|

2

, ∀𝐸 ∈ [−𝐸𝑚𝑎𝑥 , 𝐸𝑚𝑎𝑥] (C.4)

 Λ(𝐸) ≥ 0,∀𝐸 ∈ [−𝐸𝑚𝑎𝑥, 𝐸𝑚𝑎𝑥] (C.5)

 Λ(𝐸) (𝜈 − ∫𝑓(𝑡)𝑓(𝑡′)𝑒−𝑖𝐸(𝑡−𝑡′) 𝑑𝑡𝑑𝑡′ − 1 + ∫𝑓(𝑡)(𝑒−𝑖𝐸(𝑡−𝜏) + 𝑒𝑖𝐸(𝑡−𝜏)) 𝑑𝑡) = 0 (C.6)

where each instance of ‘𝑠𝑖𝑔𝑛’ denotes an arbitrary value in the interval [−1, 1]. The first two conditions

(C.2) and (C.3) demand the optimality with respect to 𝑓(𝑡) and 𝜈; the next two (C.4) and (C.5) concern

primal and dual feasibility, respectively; and the last one (C.6) enforces strong duality.

Appendix C. Ideas from duality

70

By multiplying (C.2) by 𝑓(𝑡) and integrating it, we have

∫𝜀(𝑡)|𝑓(𝑡)| 𝑑𝑡

+∫Λ(𝐸) 𝑑𝐸 (2 ∫ 𝑓(𝑡)𝑓(𝑡′)

T ×T

𝑒−𝑖𝐸(𝑡−𝑡′) 𝑑𝑡𝑑𝑡′ − ∫𝑓(𝑡)(𝑒−𝑖𝐸(𝑡−𝜏) + 𝑒𝑖𝐸(𝑡−𝜏)) 𝑑𝑡)

= ∫ 𝜀(𝑡)|𝑓(𝑡)| 𝑑𝑡 + ∫Λ(𝐸) 𝑑𝐸 (2𝜈 − 2 + ∫𝑓(𝑡)(𝑒−𝑖𝐸(𝑡−𝜏) + 𝑒𝑖𝐸(𝑡−𝜏)) 𝑑𝑡)

= ∫ 𝜀(𝑡)|𝑓(𝑡)| 𝑑𝑡 + 2(𝜈 − 1)Ω + ∫Λ(𝐸) 𝑑𝐸 ∫𝑓(𝑡)(𝑒−𝑖𝐸(𝑡−𝜏) + 𝑒𝑖𝐸(𝑡−𝜏)) 𝑑𝑡

(C.7)

where (C.6) is used in the first quality and (C.3) in the second one.

Though the optimization problem (4.1.2) does not have an independent dual problem, it can be

reformulated as

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑓𝜀,𝜇,𝜈 ∫𝜀(𝑡)𝜇(𝑡) 𝑑𝑡 + Ω𝜈

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝜇(𝑡) − 𝑓(𝑡) ≥ 0, 𝜇(𝑡) + 𝑓(𝑡) ≥ 0, ∀𝑡

 (𝜈,
1

2
, ∫𝑓(𝑡) cos(𝐸𝑡) 𝑑𝑡 − cos(𝐸𝜏) ,∫ 𝑓(𝑡) sin(𝐸𝑡) 𝑑𝑡 − sin(𝐸𝜏)) ∈ 𝐾𝑠𝑞𝑟𝑡.

 ∀𝐸 ∈ [−𝐸𝑚𝑎𝑥 , 𝐸𝑚𝑎𝑥]

(C.8)

where 𝐾𝑠𝑞𝑟𝑡: = {(𝑢, 𝑣, 𝑤⃗⃗) ∈ ℝ≥0
2 × ℝ𝑑: 2𝑢𝑣 ≥ |𝑤⃗⃗ |2} is the rotated second-order cone (Definition 2.1.25).

Thereby 𝐾𝑠𝑞𝑟𝑡 is self-dual.

Then the Lagrangian of this problem (C.8) is

ℒ′ = ∫𝜀(𝑡)𝜇(𝑡) 𝑑𝑡 + Ω𝜈 − ∫(𝜇(𝑡) − 𝑓(𝑡))𝑉+ 𝑑𝑡 − ∫(𝜇(𝑡) + 𝑓(𝑡))𝑉− 𝑑𝑡

−∫ < 𝑍(𝐸), (𝜈,
1

2
, ∫ 𝑓(𝑡) cos(𝐸𝑡)𝑑𝑡 − cos(𝐸𝜏) ,∫ 𝑓(𝑡) sin(𝐸𝑡) 𝑑𝑡 − sin(𝐸𝜏)) > 𝑑𝐸

(C.9)

where 𝑍(𝐸) ∈ 𝐾𝑠𝑞𝑟𝑡 for all 𝐸 ∈ ℇ and 𝑉+ and 𝑉− are non-negative real functions. The angle brackets are

used to denote the inner product between the two elements surrounded by themselves, that is,

< 𝑎, 𝑏 >≔ 𝑅𝑒(< 𝑎|𝑏 >).

Minimizing the Lagrangian ℒ′ with respect to 𝑓, 𝜇 and 𝜈 and imposing that the minimum is not −∞,

we arrive at the dual problem of the primal one (C.8).

71

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒𝑉+,𝑉−,𝑍,𝜀 ∫ < 𝑍(𝐸), (0,
1

2
, (0,0, cos(𝐸𝑡) , sin(𝐸𝑡)) > 𝑑𝐸

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝜀(𝑡) − 𝑉+(𝑡) − 𝑉−(𝑡) = 0

 𝑉+(𝑡) − 𝑉−(𝑡) − ∫ < 𝑍(𝐸), (0,0, cos(𝐸𝑡) , sin(𝐸𝑡)) > 𝑑𝐸 = 0

 Ω − ∫ < 𝑍(𝐸), (1,0,0,0) > 𝑑𝐸 = 0

 𝑍(𝐸) ∈ 𝐾𝑠𝑞𝑟𝑡, ∀𝐸 ∈ [−𝐸𝑚𝑎𝑥, 𝐸𝑚𝑎𝑥]

(C.10)

In addition, strong duality demands that

 𝑉+(𝑡)(𝜇(𝑡) − 𝑓(𝑡)) = 𝑉−(𝑡)(𝜇(𝑡) + 𝑓(𝑡))

=< 𝑍(𝐸), (𝜈,
1

2
,∫ 𝑓(𝑡) cos(𝐸𝑡) 𝑑𝑡 − cos(𝐸𝜏) , ∫ 𝑓(𝑡) sin(𝐸𝑡) 𝑑𝑡 − sin(𝐸𝜏)) > = 0

(C.11)

Alternatively, the optimization problem (4.1.2) can be reformulated in terms of 𝛿:

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑓𝜀,𝜇,𝜈 ∫𝜀(𝑡)𝜇(𝑡) 𝑑𝑡 + Ω𝛿

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝜇(𝑡) − 𝑓(𝑡) ≥ 0, 𝜇(𝑡) + 𝑓(𝑡) ≥ 0, ∀𝑡

 (𝛿, ∫𝑓(𝑡)𝑒−𝑖𝐸𝑡 𝑑𝑡 − 𝑒−𝑖𝐸𝜏) ∈ 𝐾ℂ, ∀𝐸 ∈ [−𝐸𝑚𝑎𝑥, 𝐸𝑚𝑎𝑥]
(C.12)

where the complex quadratic cone 𝐾ℂ ≔ {(𝑢, 𝑣) ∈ ℝ≥0 × ℂ𝑑 ∶ 𝑢 ≥ |𝑣 |}. Since this cone 𝐾ℂ is also self-dual,

the Lagrangian associated with the problem (C.12) is

ℒ′′ = ∫𝜀(𝑡)𝜇(𝑡) 𝑑𝑡 + Ω𝛿 − ∫(𝜇(𝑡) − 𝑓(𝑡))𝑉+(𝑡) 𝑑𝑡 − ∫(𝜇(𝑡) + 𝑓(𝑡))𝑉−(𝑡) 𝑑𝑡

−∫ < 𝑍(𝐸), (𝛿,∫ 𝑓(𝑡)𝑒−𝑖𝐸𝑡 𝑑𝑡 − 𝑒−𝑖𝐸𝜏) > 𝑑𝐸
(C.13)

where 𝑍(𝐸) ∈ 𝐾ℂ, for all 𝐸 ∈ ℇ and 𝑉+ and 𝑉− are non-negative real functions.

The dual of the problem (C.12) is therefore

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒𝑉+,𝑉−,𝑍,𝜀 ∫ < 𝑍(𝐸), (0, 𝑒−𝑖𝐸𝜏) > 𝑑𝐸

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝜀(𝑡) − 𝑉+(𝑡) − 𝑉−(𝑡) = 0

 𝑉+(𝑡) − 𝑉−(𝑡) − ∫ < 𝑍(𝐸), (0, 𝑒−𝑖𝐸𝑡) > 𝑑𝐸 = 0

 Ω − ∫ < 𝑍(𝐸), (1,0) > 𝑑𝐸 = 0

 𝑍(𝐸) ∈ 𝐾ℂ, ∀𝐸 ∈ [−𝐸𝑚𝑎𝑥, 𝐸𝑚𝑎𝑥]

(C.14)

Appendix C. Ideas from duality

72

and strong duality enforces

𝑉+(𝑡)(𝜇(𝑡) − 𝑓(𝑡)) = 𝑉−(𝑡)(𝜇(𝑡) + 𝑓(𝑡)) = 0

< 𝑍(𝐸), (𝛿,∫ 𝑓(𝑡)𝑒−𝑖𝐸𝑡 𝑑𝑡 − 𝑒−𝑖𝐸𝜏) > = 0
(C.15)

73

Appendix D

Error models associated with Section 4.3

(a) Lagrange polynomial

 r
j 4 5 6 7 8

1 -5.56E-14 2.33E-18 1.05E-14 8.85E-27 1.02E-18

`2 3.32E-18 -1.65E-15 1.83E-16 2.27E-19 3.17E-25

3 -2.22E-13 1.92E-18 -4.36E-16 4.24E-27 -2.27E-22

4 1.16E-19 -1.65E-15 2.91E-16 -2.33E-20 1.60E-25

5 -2.21E-13 1.31E-18 -4.95E-16 5.06E-28 -2.53E-21

6 3.10E-18 -1.65E-15 3.86E-16 -1.90E-20 1.44E-27

7 5.49E-19 -4.08E-16 5.24E-27 -3.63E-21

8 4.66E-16 9.16E-21 1.63E-25

9 9.79E-27 7.54E-21

10 3.19E-25

Table D-1 Components of the error model 𝜀 for (𝑇, 𝜏, 𝐸𝑚𝑎𝑥) = (1, 2,1). This table is associated with Table 4-1.

 r
j 4 5 6 7 8

1 3.29E-09 3.63E-10 -2.73E-11 4.21E-21 1.45E-09

2 1.86E-09 -4.90E-09 1.11E-16 -7.09E-20 7.79E-19

3 -1.36E-08 8.73E-11 -8.43E-10 1.59E-21 -5.94E-11

4 3.37E-09 -1.07E-08 1.16E-16 -4.93E-19 2.92E-19

5 2.10E-10 -8.43E-10 1.21E-21 -7.49E-11

6 3.24E-16 -4.50E-19 2.20E-19

7 3.88E-21 -3.67E-11

8 7.14E-19

Table D-2 Components of the error model 𝜀 for (𝑇, 𝜏, 𝐸𝑚𝑎𝑥) = (1, 1.5,1). This table is associated with Table 4-2.

Appendix D. Error models associated with Section 4.3

74

 r
j 4 5 6 7 8

1 6.59E-10 2.58E-15 -5.70E-14 6.29E-18 3.62E-13

2 1.58E-10 -1.64E-13 1.60E-17 -1.65E-15 5.49E-20

3 -1.23E-09 1.03E-15 -2.27E-13 3.96E-18 -1.55E-14

4 3.59E-10 -1.65E-13 1.84E-17 -1.65E-15 1.22E-20

5 1.46E-15 -2.26E-13 6.75E-20 -1.73E-14

6 4.16E-17 -1.65E-15 3.42E-20

7 4.06E-18 -1.21E-14

8 6.98E-20

Table D-3 Components of the error model 𝜀 for (𝑇, 𝜏, 𝐸𝑚𝑎𝑥) = (1, 2,2). This table is associated with Table 4-3.

(b) HS extrapolation function based on superoscillations

 N
j 10 11 12 13 14

1 1.29E-15 3.02E-14 5.95E-19 1.59E-15 1.14E-26

2 1.24E-10 4.02E-21 1.53E-12 1.60E-25 4.30E-16

3 9.41E-16 -1.19E-17 4.60E-19 2.31E-17 8.84E-27

4 1.61E-12 2.81E-21 1.75E-14 1.23E-25 2.50E-18

5 5.48E-16 -1.67E-17 3.12E-19 1.95E-19 6.14E-27

6 -4.48E-13 1.51E-21 -5.27E-16 8.23E-26 1.15E-20

7 1.35E-16 -1.67E-17 1.56E-19 -1.43E-20 3.27E-27

8 -4.80E-13 1.67E-22 -7.38E-16 3.99E-26 -2.27E-20

9 2.84E-16 -1.67E-17 4.73E-21 -1.98E-20 3.64E-28

10 -3.26E-13 1.18E-21 -7.19E-16 3.34E-27 -2.38E-20

11 6.92E-16 -1.67E-17 1.65E-19 -2.06E-20 2.55E-27

12 2.50E-21 -5.12E-16 4.65E-26 -2.43E-20

13 3.21E-19 -5.93E-22 5.43E-27

14 8.87E-26 -8.10E-21

15 8.18E-27

Table D-4 Components of the error model 𝜀 for (𝑇, 𝜏, 𝐸𝑚𝑎𝑥) = (1, 2,1). This table is associated with Table 4-4.

75

 N
j 11 12 13 14 15

1 9.86E-10 3.35E-15 2.48E-05 1.16E-17 9.07E-07

2 6.20E-19 7.08E-07 1.10E-16 1.45E-08 1.13E-20

3 6.17E-14 2.74E-15 2.75E-08 9.76E-18 6.27E-10

4 4.73E-19 8.09E-10 8.71E-17 1.37E-11 9.27E-21

5 -1.41E-16 2.05E-15 8.01E-11 7.69E-18 1.51E-12

6 3.10E-19 3.99E-11 6.18E-17 3.25E-13 6.99E-21

7 -4.82E-16 1.31E-15 1.54E-12 5.46E-18 4.22E-14

8 1.37E-19 -5.65E-12 3.50E-17 5.98E-15 4.59E-21

9 -5.03E-16 5.28E-16 -1.93E-12 3.12E-18 -2.29E-15

10 3.96E-20 -7.75E-12 7.46E-18 -9.96E-15 2.11E-21

11 -5.02E-16 2.67E-16 -2.05E-12 7.24E-19 -4.55E-15

12 2.15E-19 -6.71E-12 2.03E-17 -1.10E-14 4.09E-22

13 1.05E-15 -1.80E-12 1.69E-18 -4.60E-15

14 4.76E-17 -7.21E-15 2.92E-21

15 4.07E-18 -3.58E-15

16 5.38E-21

Table D-5 Components of the error model 𝜀 for (𝑇, 𝜏, 𝐸𝑚𝑎𝑥) = (1, 1.5,1). This table is associated with Table 4-5.

Appendix D. Error models associated with Section 4.3

76

 N
j 11 12 13 14 15

1 3.01E-14 3.69E-20 1.98E-15 1.78E-26 1.50E-04

2 2.14E-22 1.53E-12 2.27E-26 2.15E-16 1.18E-17

3 -1.21E-17 3.15E-20 2.86E-17 1.17E-26 1.13E-06

4 1.61E-22 1.75E-14 1.97E-26 1.25E-18 1.04E-17

5 -1.67E-17 2.26E-20 1.96E-19 1.47E-26 1.08E-08

6 8.72E-23 -5.26E-16 1.50E-26 5.17E-21 8.26E-18

7 -1.67E-17 1.12E-20 -6.36E-20 1.12E-26 -5.48E-11

8 1.63E-24 -7.38E-16 8.82E-27 -1.19E-20 5.52E-18

9 -1.67E-17 1.31E-21 -7.04E-20 6.92E-27 -3.66E-10

10 8.41E-23 -7.19E-16 1.80E-27 -1.25E-20 2.40E-18

11 -1.67E-17 1.37E-20 -7.14E-20 1.98E-27 -3.76E-10

12 1.58E-22 -5.12E-16 5.38E-27 -1.27E-20 8.93E-19

13 2.47E-20 -4.65E-20 3.10E-27 -3.74E-10

14 1.20E-26 -4.65E-21 4.12E-18

15 7.94E-27 1.12E-10

16 7.06E-18

Table D-6 Components of the error model 𝜀 for (𝑇, 𝜏, 𝐸𝑚𝑎𝑥) = (1, 2,2). This table is associated with Table 4-6.

77

(c) HS extrapolation function based on McLaurin expansion

 1/h
j 7 8 9 10 11

1 8.92E-17 3.22E-16 1.57E-16 2.44E-15 5.82E-15

2 -4.24E-15 -5.21E-15 -5.71E-15 -5.89E-15 -7.69E-15

3 1.05E-16 3.14E-16 1.72E-16 2.06E-15 4.40E-15

4 -4.19E-15 -5.16E-15 -6.19E-15 -9.12E-15 -1.58E-14

5 1.12E-16 2.86E-16 1.78E-16 1.59E-15 2.83E-15

6 -4.21E-15 -5.24E-15 -5.87E-15 -6.06E-15 -7.30E-15

7 1.10E-16 2.41E-16 1.75E-16 1.07E-15 1.17E-15

Table D-7 Components of the error model 𝜀 for (𝑁, 𝑇, 𝜏, 𝐸𝑚𝑎𝑥) = (6,1, 2,1). This table is associated with Table 4-7.

 1/h
j 9 10 11 12 13

1 1.57E-16 2.44E-15 5.82E-15 6.89E-16 7.51E-16

2 -5.71E-15 -5.89E-15 -7.69E-15 -5.89E-15 -5.88E-15

3 1.72E-16 2.06E-15 4.40E-15 4.84E-16 6.38E-16

4 -6.19E-15 -9.12E-15 -1.58E-14 -6.30E-15 -7.35E-15

5 1.78E-16 1.59E-15 2.83E-15 2.66E-16 5.10E-16

6 -5.87E-15 -6.06E-15 -7.30E-15 -5.65E-15 -6.11E-15

7 1.75E-16 1.07E-15 1.17E-15 4.14E-17 3.70E-16

Table D-8 Components of the error model 𝜀 for (𝑁, 𝑇, 𝜏, 𝐸𝑚𝑎𝑥) = (6,1, 1.5,1). This table is associated with Table 4-8.

 1/h
j 3 4 5 6 7

1 1.76E-21 7.09E-19 7.53E-19 4.89E-19 1.67E-19

2 5.85E-16 7.88E-12 1.64E-10 2.31E-10 2.52E-10

3 8.74E-22 1.25E-19 9.76E-21 2.11E-19 1.19E-19

4 -4.16E-17 -4.78E-13 -1.07E-11 -1.54E-11 -1.78E-11

5 1.35E-21 8.45E-19 7.39E-19 1.57E-19 4.64E-20

6 -5.10E-17 -5.75E-13 -1.33E-11 -1.98E-11 -2.28E-11

7 1.51E-21 7.87E-19 1.04E-18 4.58E-19 3.57E-20

8 -5.29E-17 -5.95E-13 -1.33E-11 -1.93E-11 -2.19E-11

9 6.37E-22 6.09E-21 7.10E-19 5.63E-19 1.10E-19

10 1.53E-16 1.33E-12 3.20E-11 4.90E-11 5.98E-11

11 1.81E-21 7.81E-19 5.10E-20 4.27E-19 1.62E-19

Table D-9 Components of the error model 𝜀 for (𝑁, 𝑇, 𝜏, 𝐸𝑚𝑎𝑥) = (10,1, 2,2). This table is associated with Table 4-9.

78

Appendix E

Ideas for further extrapolation functions

By adopting the ansatz (3.1.1), the optimization problem (4.1.2) is transformed into

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑐 ∑𝜀(𝑡)|𝑐𝑗|

𝑛

𝑗=1

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 |∑𝑐𝑗

𝑛

𝑗=1

𝑒−𝑖𝐸𝑡𝑗 − 𝑒−𝑖𝐸𝜏| ≤ 𝛿, ∀ 𝐸 ∈ ℇ

(E.1)

where 𝑐 ≔ (𝑐1, … , 𝑐𝑛) is the coefficient vector of the ansatz (3.1.1), 𝑡𝑗: =
𝑗−1

𝑟−1
𝑇 are time steps with

𝑗 = 1,… , 𝑛 and 𝔼:= {(−1 + 2
𝑙−1

𝑟−1
) 𝐸𝑚𝑎𝑥 ∶ 𝑙 = 1,… , 𝑟} for the maximum observable time 𝑇 , maximum

energy 𝐸𝑚𝑎𝑥 and resolution 𝑟.

For the set of parameters (𝛿, 𝑇, 𝜏, 𝐸𝑚𝑎𝑥 , 𝑟) = (0.004,1, 2, 1, 100), we solve the optimization problem by

using Mosek supported by CVX as before. In this regard, we consider three types of error models: an

error model which linearly increases with time multiplied by a constant 𝜀1(𝑡):= 𝑎𝑡, an error model which

linearly increases with time plus a constant 𝜀2(𝑡):= 𝑡 + 𝑎, and power models 𝜀3(𝑡) in the form of t
1

3, t
1

2,

and 𝑡2. Here we use three numbers — 0.1, 1 and 10 — for the scalar parameter 𝑎. All the results come

with the status message ‘Solved’.

Appendix E. Ideas for further extrapolation functions

68

(a) Model linearly increasing with time 𝜺𝟏(𝒕): = 𝒂𝒕

𝑎 = 0.1

index 1 2 31 78 100

value 1417.830 -1507.490 134.134 -85.124 45.769

𝑎 = 1

index 1 2 30 78 100

value 1455.970 -1542.660 118.434 -80.376 45.020

𝑎 = 10

index 1 2 28 77 100

value -1519.560 -1595.830 38.325 -49.362 41.428
..

Figure & Table E-1 Plots of the coefficient vector 𝑐, followed by indices and

values of its sparse terms for each error model linearly increasing with time.

(b) Model linearly increasing with time plus a constant 𝜺𝟐(𝒕): = 𝒕 + 𝒂

.
𝑎 = 0.1

index 1 8 9 38 39 80 100

value 114.898 -6.342 -176.794 20.157 98.152 53.122 -100.142

𝑎 = 1

index 1 14 47 84 100

value 45.518 -95.236 103.319 -123.985 70.400

𝑎 = 10

index 1 16 51 85 100

value 34.293 -74.873 100.222 -135.504 78.605
.

Figure & Table E-2 Plots of the coefficient vector 𝑐, followed by indices and values of

its sparse terms for each error model linearly increasing with time with a constant added.

Appendix E. Ideas for further extrapolation functions

70

(c) Power models 𝜀3(𝑡)

ε3,1(t) = t
1
3

index 1 8 44 83 100

value 102.240 -149.331 96.787 96.787 63.134

.ε3,2(t) = t
1

2

index 1 6 41 82 100

value 165.125 -217.114 99.096 -104.117 58.117

𝜀3,3(𝑡) = 𝑡2

index 1 3 27 28 29 76 100

value 848.028 -914.810 15.004 39.993 95.713 -81.132 42.890

Figure & Table E-3 Plots of the coefficient vector 𝑐, followed by

indices and values of its sparse terms for each power error model.

