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Abstract
As a major real-world problem, snow plowing has been studied extensively.

However, most studies focus on deterministic settings with little urgency yet enough

time to plan. In contrast, we assume a severe snowstorm with little known data and

little time to plan. We introduce a novel time-dependent multi-visit dynamic safe

street snow plowing problem and formulate it on a rolling-horizon-basis. To solve

this problem, we develop an adaptive large neighborhood search as the underlying

method and validate its efficacy on team orienteering arc routing problem bench-

mark instances. We create real-world-based instances for the city of Vienna and

examine the effect of (i) different snowstorm movements, (ii) having perfect informa-

tion, and (iii) different information-updating intervals and look-aheads for the rolling

horizon method. Our findings show that different snowstorm movements have no

significant effect on the choice of rolling horizon settings. They also indicate that (i)

larger updating intervals are beneficial, if prediction errors are low, and (ii) larger

look-aheads are better suited for larger updating intervals and vice versa. However,

we observe that less look-ahead is needed when prediction errors are low.
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1 INTRODUCTION

Snow plowing is a major real-world problem. It affects street safety, travel times, and traffic jams. Furthermore, some regions

suffer considerable costs for efficient plowing and often go over budget, for example, total costs of $ 192 million in Montreal

in 2018 [18]. To deal with such problems, snow plowing has been studied extensively in the literature. Most studies, however,

consider deterministic problems where arcs do not need repeated plowing and priorities between sets of arcs do exist. These

models are good representations of situations after typical snowstorms with no major impact. In our opinion, however, these

models are not too well suited for severe snowstorms that threaten to shut down the whole infrastructure and that require

immediate care. Such a scenario was considered by Dussault et al. [4]. The snowstorm of their model warranted a shutdown

and imposed impassable streets, even for a snow plowing truck. A problem as in the aforementioned paper could be evaded or

mitigated, should effective plowing be performed before the accumulation of masses of snow.

We want to address this research gap by modeling a novel time-dependent multi-visit dynamic safe street snow plowing

problem called the time-dependent multi-visit dynamic team orienteering arc routing problem (TDMVD-TOARP), which aims

to keep the streets as safe as possible. The roads are deemed safe if the accumulated snow is below a specified threshold.

Different priorities are assigned to streets according to classical characteristics (e.g., streets leading to critical infrastructure,
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2 FRÖHLICH ET AL.

streets located in heavily populated areas). In doing so, however, we do not create classes of priorities (e.g., Perrier et al. [13]),

where higher ones must be serviced before the lower ones; instead, we transform them into weights and include them in the

objective function. Further, fleet costs are not considered, as the fleet is assumed to be available anyways, and we want to

maximize the efficacy of the available resources. Snowfall intensity is not assumed to be constant or known ahead of time.

This can result in some streets not requiring any service, while others require multiple plowings to be deemed safe over the

entire planning horizon. These characteristics lead to a time-dependent problem wherein an earlier plowing can turn detrimental

(see Section 3.5). A time-discretized mixed integer program (MIP) would be very challenging to solve, even if snowstorm

movement is predictable; therefore, we address the problem on a rolling planning horizon. The proposed framework splits the

problem into smaller problems and predicts the future snowfall and the state of the system before solving each subproblem. The

subproblems are, hence, considered to be deterministic and solutions are generated using adaptive large neighborhood search

(ALNS). Due to considering a real-world problem with dynamic changing data, the rolling horizon framework has only a very

limited computation time to calculate a solution for a given subproblem, therefore a metaheuristic solution technique is used.

During this time the solution for the previous subproblem is executed (e.g., the solution for the subproblem starting at minute

31 is determined during minutes 30 to 31; then, for minute 32, the solution will be determined during minutes 31 to 32). In the

following, this available computation time will be called updating interval. In order to not be too myopic, subproblems might

plan a little ahead of time, even if the latter part of the solution will not be used (e.g., the subproblem lasts from minute 31 to

32.5). This additional time (e.g., 0.5 min) will be called look-ahead.

The contribution of our study is fourfold:

1 We introduce a novel and challenging dynamic safe street snow plowing problem, model it as a TDMVD-TOARP, and

tackle it in a rolling horizon framework.

2 To generate solutions, we propose an effective ALNS-based method with tailored destroy and repair operators.

3 In an extensive computational study, we examine the effects of different snowstorm movements, different levels of

information, and forecasting quality.

4 We perform an in-depth analysis of the most important parameters for the rolling horizon frameworks (e.g., updating

interval, look-ahead).

The remaining paper is structured as follows: Section 2 provides an overview of the related literature. Section 3 defines

the problem and describes the transformation to the rolling horizon setting. Section 4 explains the proposed solution approach,

while Section 5 presents the computational study. There, we first show the efficacy of the algorithm and then apply it to

real-world-based instances. Finally, Section 6 includes concluding remarks and future research.

2 LITERATURE REVIEW

An extensive overview of the characteristics and problems related to snowfall can be found in the four-part review by Perrier

et al. [9-12]. The authors classify the problems on strategic (e.g., facility location, fleet replacement scheduling), tactical (e.g.,

sector assignment to snow disposal sites, fleet size), and operational (e.g., vehicle routing and crew management) levels and

extend them to real-time problems. The snow plowing problem is closely related to anti-icing, deicing, and abrasive spreading

operations. All these problems typically belong to the operational or real-time class and are often closely related to the Chinese

postman problem, rural postman problem, or capacitated arc routing problem. Commonly added characteristics are priorities

or hierarchies for subsets of streets, turn penalties, variable speeds, and heterogeneous fleets. Priorities are deemed necessary

as some streets (e.g., those leading to a hospital) are more important than others. Priorities can be included by weights or the

requirement to serve arcs with a higher priority before those with lower ones. Turn penalties can be due to (i) street conditions

leading to risky turns, or (ii) turns leading to snow accumulation on crossings. Within the models, these penalties can be tackled

by forbidding very risky turns, adding time for turns, or adding penalties in the objective functions. Variable speeds are needed

to carry out deadheading, which is typically faster than plowing. Regarding heterogeneous fleets, authors typically assume that

companies use vehicles of different sizes (e.g., smaller ones for alleys), and vehicles for plowing or spreading.

Perrier et al. [13] study a hierarchical rural postman problem with lexicographic objectives; the problem minimizes the

makespan for each subset of streets of the same priority and includes heterogeneous vehicles, turn restrictions, and variable

speeds. Different decompositions are applied. Aguillar et al. [17] focus on a synchronized arc routing problem with the aim to

minimize the makespan. They require synchronization for streets that have multiple lanes in the same direction. This is due to

the fact that a single plow would only create a large amount of snow on the neighboring lane. This problem is tackled by using a

synchronized convoy of plows, with each plow pushing the snow further to the edge. They tackle it by solving a relaxed MIP and

then improving it via ALNS. Dussault et al. [4], in their windy postman problem, forbid the deadheading of non-plowed arcs, as

their scenario assumes a snowstorm severe enough to warrant a shutdown. Their objective is cost minimization and they tackle

the problem using a heuristic, which delivers results close to the lower bounds. Hajibabai and Ouyang [6] study a stochastic
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FRÖHLICH ET AL. 3

snow plow fleet management problem with a weighted sum of deadheading and repositioning costs and rewards depending on

service levels. The authors split the problem into multiple periods. They assign vehicles to snow routes such that the tasks can

be served within one period. In each period, a truck can either (i) serve tasks in its current snow route, (ii) move to a different

snow route, or (iii) remain idle. The tasks can arise randomly (following a Poisson process), and vehicles can fail randomly. In

case of vehicle failure, the tasks that should have been serviced are added to the next period. To generate solutions, the authors

propose adaptive dynamic programming, which is used to evaluate the effect of taking uncertainty into account. Quirion et al.

[15] study a hierarchical plowing and spreading problem with heterogeneous fleets, variable speeds, and turn penalties. They

use ALNS to solve it for varying fleet compositions and deduce bottlenecks. Quirion et al. [16] focus on a hierarchical rural

postman problem with turn penalties, variable speeds, and heterogeneous vehicles with the objective to minimize a weighted

sum of the makespan for each subset of streets of the same priority. The problem is transformed into an asymmetric traveling

salesman problem and is solved using ALNS.

Holmberg [8] investigates a snow plowing problem for a single snow remover, where streets need to be plowed up to

four times. The reasoning is that some cities with broader streets require additional plowing between the lanes, as plows are

too narrow. While some types of plowing need to be performed in a specific direction, others can be performed in either

direction. The problem is reformulated into an asymmetric traveling salesman problem and solved using a heuristic. Hajizadeh

and Holmberg [7] extend this study by creating a hybrid heuristic and a MIP relaxation. The authors use branching techniques in

both methods, which allows sharing of information between the hybrid heuristic and the MIP relaxation. Castro et al. [3] prove

that the problem in [4] can be solved in polynomial time when costs are symmetric or metric, that is, uphill service costs are,

at most, equal to downhill service costs and two uphill deadheadings. This assumption applies to several real-world problems.

Additionally, the authors also create heuristics for this problem, which make use of several of their theoretical findings.

Xu and Kwon [19] address service levels based on users’ driving times. The objective is to minimize the weighted sum of

travel times and the makespan of the snow plowing problem. Travel times are time-dependent, as cleared streets can be traversed

faster. Accordingly, the following two user behaviors are tested in this problem: (i) users follow their usual path and (ii) users

adapt to street conditions and make use of alternative street segments. The authors propose to tackle the problem using tabu

search. Ahabchane et al. [1] address a hierarchical salt spreading model, where priorities are included in the objective function.

The latter consists of the total routing costs and the sum product of weights given according to the priorities and the times they

are serviced. While the original problem is a mixed capacitated general routing problem, the authors transform it into a node

routing problem. Furthermore, the demands are not deterministic, which they tackle using a robust formulation by accounting

for demand variation. The authors create a heuristic based on simulated annealing (SA) and evaluate the performance using

Monte Carlo simulations.

Through this work, we extend the research on dynamic real-time snowplowing problems, where complexity and, particularly,

the underlying time-dependencies require a new solution approach. We propose to tackle the problem within a rolling horizon

framework and evaluate the updating intervals as well as look-aheads based on prediction accuracy.

3 PROBLEM FORMULATION

Our problem formulation is split into multiple parts. First, we define the main problem of keeping the streets as safe as possible.

However, as it is too large to be solved and, for the rolling framework, is later decomposed into smaller problems, a formal

definition for these subproblems is given. Due to the subproblems’ limited time frame lengthy arcs might pose problems and

require special consideration, explained in Section 3.3. Afterwards the information handling—what information is available,

what is only assumed—for the rolling horizon framework is explained. Finally, a section is dedicated to the calculation of

changes to the solution.

3.1 Integrative model
The TDMVD-TOARP can be represented on a graph G = (V ,A), where V is the set of vertices and A is the set of arcs in

which each arc a is of different priority wa. Arcs with high wa typically include locations that are (i) critical infrastructure

(e.g., hospitals), (ii) situated within highly populated areas, or (iii) considered arterial roads. The time horizon is denoted as  .

During  , a snowstorm passes through the system (the city), causing snow to accumulate, while a fleet of vehicles K, which

starts at a depot, clears the streets and tries to keep them as safe as possible.

When an arc a is affected by the snowstorm at time t, its level of snow lat increases with the storm’s intensity it (lat = la,t−1+it).
Should an arc a be serviced by a vehicle at time t, the level is reset to 0 (lat = 0). Whenever an arc’s level of snow is below a

threshold H, it is deemed safe (sat = 1); otherwise, it is deemed not safe (sat = 0).

The objective is to maximize the weighted time streets are safe. Here, cost minimization is not an objective, as the fleet of

vehicles is considered to be available.
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4 FRÖHLICH ET AL.

TABLE 1 Decision variables and constants.

Sets

AS Set of arcs, where traversal includes service

AT Set of arcs, where only traversal occurs

D Set of nodes, where depots are located

K set of vehicles

T Set of discretized time units

Parameters

wa Weight (priority) of arc a

𝑑a Duration for arc a (depending on the arc it can either be service and traversal

If a ∈ AS, or only traversal, if a ∈ AT )

iat Intensity of snowfall on arc a at time t

𝜎a Start node of arc a

𝜔a End node of arc a

ek Node from which vehicle k starts

ts
k Time at which vehicle k starts

H Threshold of snow that has to be met

M Large number

Decision variables

xatk Equals 1 if arc a is traversed by vehicle k starting at time t; otherwise, 0

sat Equals 1, if arc a is unsafe at time t; otherwise, 0

pat Equals 1, if arc a is serviced starting at time t; otherwise, 0

lat Level of snow on arc a at time t

To depict the problem as a MIP (cf. Table 1 for naming of decision variables and constants), each arc is represented twice:

once in set AS = {as
1
, … , as

n} and once in set AT = {at
1
, … , at

n}, where every arc corresponds to (i) traversing and servicing or

(ii) only traversing the arc, respectively. The duration needed for each arc is denoted by 𝑑a. Traversal and service of an arc takes

longer than just traversal (𝑑as
i
> 𝑑at

i
). The starting and ending nodes for an arc are given by 𝜎a and 𝜔a. The decision variable

xatk equals 1 if an arc a’s traversal (and possibly service) starts at time t by vehicle k. Similarly, pat equals 1 if arc a’s service

starts at time t.
max

∑

a∈AS

∑

t∈
satwa, (1)

∑

a∈AS∪AT |𝜎a∈D
xa,0,k = 1, ∀k ∈ K, (2)

∑

a∈AS∪AT

xatk ≤ 1, ∀t ∈ T , ∀k ∈ K, (3)

𝜔axatk =
∑

j∈AS∪AT

xj,t+𝑑a𝜎j, ∀a ∈ AS ∪ AT , ∀t ∈ T , ∀k ∈ K, (4)

(1 − xatk)M ≥
t+𝑑a−1∑

j=t+1

xajk, ∀a ∈ AS ∪ AT , ∀t ∈ T , ∀k ∈ K, (5)

pat =
∑

k∈K
xatk, ∀a ∈ AS, ∀t ∈ T , (6)

lat ≥ la,t−1 + iat − patM, ∀a ∈ AS, ∀t ∈ T , (7)

lat ≥ 0, ∀a ∈ AS, ∀t ∈ T , (8)

lat < H + (1 − sat)M, ∀a ∈ AS, ∀t ∈ T , (9)

xatk ∈ {0, 1}, ∀a ∈ AS ∪ AT , ∀t ∈ T , ∀k ∈ K, (10)

sat ∈ {0, 1}, ∀a ∈ AS, ∀t ∈ T . (11)
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FRÖHLICH ET AL. 5

Equation (1) defines the objective function, while Constraints (2) force every vehicle to traverse an arc connected to a depot at

time 0. Returning to the depot, however, is not required. At any time, a vehicle may only start the traversal of a single arc due to

Constraints (3). Constraints (4) enforce vehicles to never be idle and to choose a connecting arc. If arc a’s traversal started at time

t, and therefore, finishes its traversal at t+𝑑a, a new traversal must start on an arc i, right where a ended. Constraints (5) guarantee

that no additional traversals take place during this time; with 𝑑a − 1 being sufficiently large big-Ms. The service of an arc is

determined by Constraints (6), while the levels of snow are calculated using Constraints (7) and (8). Constraints (9) define the

safety of the arcs. The largest value needed for the big-Ms in Constraints (7) for a specific arc a and time t is M = la0+
∑t

n=0
ian,

as it enables clearing the largest amount of snow that would be possible on arc a at time t. Similarly, for Constraints (9) with

arc a and time t, a big-M of M > la0 +
∑t

n=0
ian −−−H is sufficient. In addition, when only using a single big-M, the smallest

sufficient value for both types of constraints would be M = maxa∈AS{la0 +
∑

t∈T iat}, which is the largest amount of snow that

can accumulate on a single arc if no plowing is performed.

3.2 Rolling horizon adaptation
If the problem is embedded within a rolling horizon framework, the following conditions are required:

• Vehicles do not necessarily start at the depot, but at the node they stopped previously (ek).

• Instead of the time frame  , a reduced time frame T ′i is considered. This reduced time frame consists of the updating

interval Ti and the look-ahead Ei. All vehicles must end their movement within T ′i .

• Due to the look-ahead component, vehicles may be forced to first finish a previously started movement and, consequently,

start later
(
ts
k
)
. For example, a vehicle started with arc a in the previous subproblem during Ti but finished its movement

in Ei.

These adaptions can be represented in the MIP by replacing Constraints (2)–(5) and Constraints (10) with the following

constraints. All other constraints would replace the set T with T ′i , as a reduced time frame T ′i would be used instead of the whole

time frame. ∑

a∈AS∪AT |𝜎a=ek

xa,ts
k ,k = 1, ∀k ∈ K, (12)

∑

a∈AS∪AT

xatk ≤ 1, ∀t ∈ T ′i |t ≥ ts
k, ∀k ∈ K, (13)

𝜔axatk =
∑

j∈AS∪AT

xj,t+𝑑a,k𝜎j, ∀a ∈ AS ∪ AT , ∀t ∈ T ′i |t ≥ ts
k, ∀k ∈ K, (14)

(1 − xatk)M ≥
t+𝑑a−1∑

j=t+1

xajk, ∀a ∈ AS ∪ AT , ∀t ∈ T ′i |t ≥ ts
k, ∀k ∈ K, (15)

xatk = 0, ∀a ∈ AS ∪ AT , ∀t ∈ T ′i |t < ts
k, ∀k ∈ K, (16)

xatk ∈ {0, 1}, ∀a ∈ AS ∪ AT , ∀t ∈ T ′i |t ≥ ts
k, ∀k ∈ K. (17)

Constraints (12) and (16) handle the vehicle finishing any previous movement and starting after the arc of the previous move-

ment. Constraints (13)–(15) and (17) are adapted to start after the previous movement is done (∀t ∈ T ′i |t ≥ ts
k). The calculations

of the snow level and penalties (cf. Constraints (6)–(9) and (11)) would not be influenced by the previous movement (∀t ∈ T ′i ).

The following stopping criteria might be applied for the rolling horizon optimization: (i) all streets are safe for a sufficient

period of time, and (ii) the snowstorm has ended. For the first case, no additional steps are required. Vehicles would return

to the depot(s); but due to costs not being considered in the model, the details of the return would not matter. For the second

case, however, unsafe arcs must be plowed. As every arc requires at most one plowing operation during this phase, a different

problem formulation would be required for the end of the horizon phase. Nevertheless, the rolling horizon framework could be

used until all streets are cleared.

3.3 Splitting of arcs
Some arcs cannot be traversed, as their traversal or service time is larger than T ′i , whereas other arcs may be so long that they

cannot be combined with any other arc. For example, consider three arcs with service durations of 1.5 times, 0.9 times, and 0.4

times the time frame T ′i (cf. the arcs on the left graph of Figure 1). The arc with a duration of 1.5T ′i clearly cannot be serviced
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6 FRÖHLICH ET AL.

FIGURE 1 Illustration of the splitting of arcs. On the left side, t1 could not be scheduled at all, while t2 could not be combined with any other arc. On the

right side, all arcs are split into smaller arcs with times of at most T ′i ∕2.

FIGURE 2 Updating process within the rolling horizon framework. The previous solution Soli is executed at the start of interval Ti and until the start of Ti+1.

The next solution is determined with all available information.

within the time frame T ′i . The other two arcs could be serviced, but only individually. To enable the servicing of every arc in

this problem and enable more combinations, they are remodeled into several smaller arcs, each within T ′i ∕2. Assuming an arc

a has a traversal time t, the number n of required segments can be calculated by n = ⌈2t∕T ′i ⌉. The arc is then split into n arcs

of equal length. For all arcs except the last one, the only successor is the directly following arc (Succ(ai) = {ai+1}∀i < n). Note

that within the updating framework, either all arcs a1, … , an must be serviced consecutively or not serviced at all (e.g., service

of a2, but not a1, is prohibited). Figure 1 provides an example with one arc of each type. While the arcs representing the arc

that previously had a duration of 1.5T ′i still could not be serviced within T ′i , the arc can now be serviced over two periods (e.g.,

first t1,1 and t1,2, and in the next period t1,3). Similarly, the service of the arc with a duration 0.9T ′i could follow the arc with a

duration 0.4T ′i , by starting with the first segment in the first period and finishing the second segment in the second period.

3.4 Information handling for the rolling horizon
Figure 2 and Table 2 illustrate the sequencing within the rolling horizon framework. During each updating interval Ti, while the

solution SolTi for the current period is executed (see Figure 2), solution SolTi+1
for the next period is determined. Available data

includes the current state of the system STi , the solution SolTi for the current period, and the previous snowstorm movements

MT
0
, … ,MTi−1

. In all, four steps are performed. First, the previous snowstorm movements are used to predict the upcoming

snowstorm movements ̂MTi and ̂MTi+1
(see step 1 in Table 2). Next, the current state and the solution for the current period

are combined with the predicted snowstorm movements for the current period, resulting in the predicted starting state for the

next period ̂STi+1
(see step 2 in Table 2). Based on the predicted starting state for the next period and the predicted snowstorm

movements, the solution SolTi+1
for the next time period is determined (see step 3 in Table 2). Finally, time passes to the next

period and the real state STi+1
and snowstorm movement MTi become known (see step 4 in Table 2).

Three criteria are used for predicting the snowstorm: angular speed, acceleration, and intensity change. After every iteration

of the rolling horizon, the true movement of the snowstorm during the period is read and saved for the three criteria. Individual

entries correspond to 1 s. Furthermore, entries that are more than 1000 s in the past are deleted, as their likelihood of still being

correlated to the current diminishes. Based on the remaining entries, the expected values are calculated by moving averages for

the three criteria. They are further used for the angular speed, acceleration, and intensity change of the predicted snowstorm.

Table 3 depicts a small example of such a prediction. Given are the measured centers of the snowstorm and snowstorm inten-

sities over the first 4 time units. From them, the speed, angle, acceleration, angular speed, and intensity change are determined.
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FRÖHLICH ET AL. 7

TABLE 2 Sequences of information becoming available within the rolling horizon framework.

Time Step Known Predicted Unknown Step

Ti−1 · · · · · · · · · · · · · · ·
Ti 1 STi

, SolTi
, MT

0
, … , MTi−1

— SolTi+1
, STi+1

, MTi
, MTi+1

predictMovement(MT
0
, … ,MTi−1

)→ {̂MTi
̂MTi+1

}
Ti 2 STi

, SolTi
, MT

0
, … , MTi−1

̂MTi
, ̂MTi+1

SolTi+1
, STi+1

predictState(STi
, SolTi

,
̂MTi
)→ ̂STi+1

Ti 3 STi
, SolTi

, MT
0
, … , MTi−1

̂STi+1
, ̂MTi

, ̂MTi+1
SolTi+1

performALNS(̂STi+1
,
̂MTi+1

)→ SolTi+1

Ti 4 STi
, SolTi

, MT
0
, … , MTi−1

, SolTi+1

̂STi+1
, ̂MTi

, ̂MTi+1
— timePasses()→ {STi+1

,MTi
}

Ti+1 1 STi+1
, SolTi+1

, MT
0
, … , MTi

— SolTi+2
, STi+2

, MTi+1
, MTi+2

predictMovement(MT
0
, … ,MTi

)→ {̂MTi+1

̂MTi+2
}

Ti+1 · · · · · · · · · · · · · · ·

TABLE 3 Example for predicting the snowstorm.

Measured values Predicted values

Time 1 2 3 4 5 6

Snowstorm’s center (0, 0) (0, 1) (1, 2) (2, 3) (3.5, 3.62) (5.33, 3.62)

Speed — 1 1.414 1.414 1.621 1.828

Angle — 0
◦

45
◦

45
◦

67.5
◦

90
◦

Intensity — 10 8 9 8.5 8

Acceleration — — 0.414 0 0.207 0.207

Angular speed — — 45
◦

0
◦

22.5
◦

22.5
◦

Intensity change — — -2 1 -0.5 -0.5

The expected acceleration, angular speed, and intensity change are calculated by moving average (e.g., (0.414+0)÷2 = 0.207 for

the acceleration), and are then used to calculate the predicted values via linear equations (e.g., 45
◦+22.5

◦ ⋅1 = 67.5
◦
). For calcu-

lating a snowstorm’s center (x, y) based on speed s and angle g, circle equations are used; (x, y) = (xol𝑑+s sin(g), yol𝑑+s cos(g)).
Arcs within a limited range of the predicted snowstorm centers (e.g., at most one kilometer away) are predicted to accumulate

snow according to the intensities.

3.5 Calculating changes in safety
While the calculation of weighted safety is not difficult, it can take some time should a straightforward approach be used. For

every arc and every discretized time unit, a check whether the accumulated snow is too much must be performed. Should the

solution be changed by inserting or removing sequences of arcs, any later parts of the solution would change as well due to

being plowed later/earlier resulting in more/less snow than before. A straightforward, but slow approach would again be simply

making a conditional check for every affected arc.

However, by preprocessing the benefits bat of plowing an arc a at time t these calculations can be sped up significantly.

Should multiple plowings of an arc be allowed during time frame T ′i , such precalculations would be problematic, as the plowings

would influence one another. For example, assume an unsafe arc, for which snow accumulates at a rate that it is unsafe again

after 5 minutes. Individually, plowing it at t = 3 would keep it safe for 5 minutes, and plowing it at t = 5 would keep it safe for

5 minutes. When plowing it at t = 3 and at t = 5 it would be safe from t = 3 to t = 10; only 7 minutes. Fortunately, servicing

every arc at most once in T ′i is a reasonable assumption given the relatively small time frames. If the arc is unsafe at time t,
and enough snow for it to be unsafe again is accumulated at time t′, the plowing has yielded a benefit of bat = wa(t′ − t). But

if the arc was safe at the time of plowing and instead had become unsafe at t′, the new time of it becoming unsafe t′′ must be

determined. This then yields the benefit of bat = wa(t′′ − t′).
Those benefits can be used to efficiently calculate the benefit/detriment of changes to a route. For instance, assume a route

with services at t1, … , tn on arcs a1, … an. The current benefit then is
∑n

i=1
bai,ti . When rerouting and inserting a new serviced

arc a∗ after arc aj at time t∗, by replacing the path {aj, b1, … , bm, aj+1} with {aj, c1, … , ck, a∗, ck+1, … , cl, aj+1}, all following

services are postponed by 𝛿 = 𝑑a∗+
∑l

i=1
𝑑ci−

∑m
i=1
𝑑bi . This results in the benefit of

(∑j
i=1

bai,ti

)
+ba∗,t∗ +

(∑n
i=j+1

bai,ti+𝛿

)
. Should

a consecutive sequence of service be inserted at t∗
1
, … t∗m, the benefit would be

(∑j
i=1

bai,ti

)
+
(∑m

i=1
ba∗i ,t

∗
i

)
+
(∑n

i=j+1
bai,ti+𝛿

)
.

While not directly related to these calculations, we also want to point out that early plowing of an arc a may decrease

the benefit. For instance, assume a steady snowstorm causing arcs to be unsafe within 20 minutes, and two different plowing

schedules. In the first hour-long schedule, arc a is plowed every 30 minutes, once at t = 0 and then at t = 30. This results in

arc a being safe in the intervals [0, 20] and [30, 50]; in total 40 minutes. In the second schedule, the second plowing is brought
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8 FRÖHLICH ET AL.

forward to t = 10, resulting in a safe interval [0, 30]; in total 30 minutes. This prohibits schemes of optimizing the benefit by

simply performing everything as soon as possible.

4 SOLUTION METHODS

Due to the underlying problem’s complexity, we propose to embed ALNS into the rolling horizon framework. ALNS is a

renowned metaheuristic that was introduced by Pisinger and Ropke [14]. It has been applied to a multitude of related problems

(e.g., [15-17]). To the best of our knowledge, we are the first to apply it to the introduced dynamic stochastic snow plowing

problem. Additionally, we also propose problem-specific operators.

4.1 Basic component: Adaptive large neighborhood search
ALNS iteratively selects pairs of destroy and repair operators (𝑑 and r), which are applied to the incumbent solution s. The

selection is based on scores, which are updated depending on the operator pairs’ performance during the last interval of v
iterations. Every pair begins each interval with a score of 1, which increases for a good performance (i.e., if an operator pair

finds a new best solution s∗ or a new incumbent solution s). After v iterations, the old scores are overwritten with the currently

accumulated scores. The new solution s′ is further improved by a Variable Neighborhood Descent (VND), which strengthens

it further. An acceptance test using SA is performed to determine whether the solution is accepted as a new incumbent solution

or not. SA includes a temperature and cooling parameters. As long as the temperature is high, the likelihood of accepting

worse solutions is also high

(
exp

(
currentSolutionValue−incumbentSolutionValue

temperature

))
. Cooling, on the other hand, indicates how much the

temperature is lowered in each iteration. The whole process is iterated until it reaches the given stopping criterion. For the

pseudocode, see Algorithm 1.

The following standard and problem-specific operators are used.

1 [𝑑1] Random cluster: Consecutive sequences of serviced arcs are randomly chosen and only traversed.

2 [𝑑2] Random cluster and shorten: Consecutive sequences of serviced arcs are randomly chosen and only traversed. If

beneficial, paths between serviced arcs are replaced with the shortest path.

3 [𝑑3] Greedy cluster: Consecutive sequences of serviced arcs, whose traversal yields the greatest benefit, are only

traversed.

4 [𝑑4] Isolated: Serviced arcs that are the most isolated from the previous and the following serviced arcs, are only traversed.

5 [𝑑5] Individual saving cluster: Consecutive sequences of serviced arcs, whose service, without considering other arcs,

yields the smallest benefit, are only traversed.

6 [r1] Random: Unserviced arcs are randomly chosen and assigned to a random vehicle. If the vehicle’s current route

already includes a traversal of the arc, service takes place at that time. Otherwise, Random path change is executed.

Algorithm 1. ALNS

1: {s′, s, s∗}←generateInitialSolution()

2: while stoppingCriterionNotReached do
3: {𝑑, r}←selectDestroyAndRepairOperators(D,R, scores)

4: s′ ← r(𝑑(s))
5: s′ ← VND(s′)
6: {s, s∗, scores′}←acceptanceTestViaSimulatedAnnealing(s′, s, s∗, scores′, 𝑑, r)

7: if iterationsWithoutImprovementSinceLastKick= w then
8: s ←randomDestroyAndRepair(s)

9: s ←VND(s)

10: end if
11: n ← n + 1

12: if n = v then
13: {scores, scores′}←updateScores(scores, scores′)
14: n ← 0

15: end if
16: end while
17: return s∗
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FRÖHLICH ET AL. 9

(A)

(B)

(C)

(D)

FIGURE 3 Illustration of possible changes to a route via the ALNS. The routes start and end at A. Bold lines are traversed and serviced, while dashed lines

are only traversed. Thin lines are unused arcs.

7 [r2] Random path change: Unserviced arcs are inserted into random routes at a random position by removing a sequence

of pure traversals and reconnecting the route with two shortest paths.

8 [r3] Greedy insertion: Unserviced arcs with the greatest insertion benefits are inserted at their best positions.

9 [r4] k-regret: Unserviced arcs with the highest regret value, when comparing their best and k-best option (where k ≤ 3),

are inserted at their best positions. (e.g., the benefit of best option 100, the benefit of second best option 70, the benefit

of third best option 20 ⇒ 2-regret of 30, 3-regret of 80.)

Figure 3 illustrates some movements possible with these operators. From the initial solution in Figure 3A the operators

𝑑1, 𝑑3, and 𝑑5 could remove two consecutive services (arcs AB & CG), by changing them to pure traversal (cf. Figure 3B).

The route itself would not change through these operators. In contrast to 𝑑1, 𝑑2 could change the route. In Figure 3C, it not

only removes arcs AB & CG, but also replaces the path between the services HA & DE with a shorter path (ABCD instead of

 10970037, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.22189 by C

ochraneA
ustria, W

iley O
nline L

ibrary on [08/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



10 FRÖHLICH ET AL.

ABCGFD). All repair operators (except for r1, should it not call r2) can change the route as they insert services regardless of

whether the arc was already part of the route. For example, in Figure 3D, where the service BG is added to the route between

services HA & DE by replacing the path ABCD with ABGFD.

For all operators except the random ones (𝑑1, 𝑑2, r1, r2), we include noise factors u, which we randomly draw from an interval

U = [−𝜓,+𝜓]. The values used to select the arcs are multiplied by 1 + u, which increases diversification.

In addition to the destroy and repair operators, we use VND operators that only change when an arc is only traversed or

traversed as well as serviced. This is why these operators do not impact the routing. Further, due to limited computational effort,

VND operators can be applied whenever a new solution is generated. The following operators are proposed.

1 [v1] Beneficial traversals to services: A previously traversed arc is serviced.

2 [v2] Single arc traversal-service-switch on same route: For an arc that was traversed multiple times during a route and

also serviced, the service is moved to a different traversal (e.g., given traversals at t1 and t2 and service at t1, the changes

will bet that the service is scheduled for t2 instead of t1).

3 [v3] Single arc traversal-service-switch on different routes: For an arc that was traversed multiple times and also serviced

(on any route), the service is moved to a different traversal.

4 [v4] Two arcs traversal-service-switch on same route: A previously serviced arc is only traversed, while a previously only

traversed arc is serviced; both arcs are on the same route.

The operators are applied in the order listed above. Should an operator not find an improvement, the next operator is used

(e.g., v3 after v2). However, if an improvement is found, the VND continues with v1. The VND ends once v4 was applied without

any improvement. For the pseudocode, see Algorithm 2.

Figure 4 illustrates some movements possible with these operators. An initial solution is given in Figure 4A. Operator v1

changes BG to be not only traversed but serviced as well (cf. Figure 4B). Operator v2 causes HA, which was traversed twice

and serviced during the first traversal, to be serviced on the second traversal instead (cf. Figure 4C). Lastly, operator v4 causes

the previously only traversed arc FD to now be serviced, while the inverse holds true for arc FG (cf. Figure 4D).

If no new best solution result is found for w iterations, operators 𝑑1 and 𝑑2 are applied to the incumbent solution several

times before the solution is improved using the VND operators (see Algorithm 1, lines 7–10). Whether 𝑑1 or 𝑑2 is used, is

determined randomly. The number of times it is applied depends on the iterations since the last best solution was found, and

this is also decided randomly (e.g., if it was found recently, it will be applied once; but if the last best is very far in the past, it

will be applied 3 to 5 times).

The algorithmic parameters (see Table 4) were set similarly to previous work of Fröhlich et al. [5]. Scores were awarded for

finding (i) a new best solution, (ii) a solution better than the current incumbent solution but not a new best solution, and (iii) a

solution worse than the current incumbent but sufficiently good to be accepted via SA.

4.2 Basic component: Rolling horizon framework
Given a total time horizon  , the rolling horizon solves subproblems, each with a time horizon of T (equaling the updating

interval) and an extra horizon E (equaling the look-ahead). The steps are identical to Section 3.4 for all but the first iteration,

which requires a slight modification. First, the previously measured snowstorm movements (M−1, … ,Mi−1) are used to predict

the next snowstorm movements (̂Mi and ̂Mi+1). Then the next predicted statêSi+1 is created from the current state Si, the expected

snowstorm movement ̂Mi and solution Soli for this updating interval. Based on the next predicted state ̂Si+1 and snowstorm

movement ̂Mi+1, the next solution Soli+1 is created using ALNS. At the end of the updating interval, the current state is updated,

Algorithm 2. VND

1: i ← 0

2: while i ≠ 4 do
3: {s, improvementBoolean}←performNeighborhood(s, i)
4: if improvementBoolean then
5: i ← 0

6: else
7: i ← i + 1

8: end if
9: end while

10: return s
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FRÖHLICH ET AL. 11

(A)

(B)

(C)

(D)

FIGURE 4 Illustration of possible changes to a route via the VND. The routes start and end at A. Bold lines are traversed and serviced, while dashed lines

are only traversed. Thin lines are unused arcs.

TABLE 4 List of algorithmic parameters.

Parameter Values

Noise 𝜓 0.05

Scores for ALNS {10, 3, 1}

Iterations before updating scores v 40

Iterations without improvement before random destroy-and-repair w 1000

Initial temperature Initial solution value

Cooling factor SA 0.975

Termination criterion (time in seconds) 3600
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12 FRÖHLICH ET AL.

Algorithm 3. Rolling horizon framework

1: {̂M−1,
̂M0}←predictInitialSnowstormMovements()

2: ̂S0 ←createInitialPredictedState(S−1,
̂M−1)

3: Sol0 ←ALNS(̂S0,
̂M0)

4: S0 ←updateState(S−1,M−1)

5: i ← 0

6: while i + 1 <  ∕T do
7: {̂Mi, ̂Mi+1}←updateAndCreateNextPredictedMovements(M−1,… ,Mi)

8: ̂Si+1 ←createNextPredictedState(Si, ̂Mi, Soli)
9: Soli+1 ←ALNS(̂Si+1,

̂Mi+1)

10: Si+1 ←updateState(Si,Mi, Soli)
11: end while

TABLE 5 Benchmarking ALNS against the optimal results available in [2].

Instance set Average ratio Standard deviation Worst-case ratio # of optimal solutions # of opt. sol. in all runs

Hertz_p0_d_2 98.73% 1.37% 95.39% 11 from 27 7 from 27

Hertz_p0_d_3 98.19% 1.78% 94.18% 8 from 27 7 from 27

by using the actual snowstorm movement Mi, instead of the prediction ̂Mi. The deviations for the first iteration are that there

might not be any snowstorm data available for predicting the movements and that no solution is available for creating the

predicted state and updating the actual state. The pseudocode is provided in Algorithm 3. More details on the generation of

predictions are provided in Section 3.4. If all the streets are safe, the vehicles can return to the depot.

5 COMPUTATIONAL STUDY

Our computational study, which was performed on the Vienna Scientific cluster 4 (3.1 GHz), consists of two parts. First, we

compare the proposed ALNS to the optimal results on benchmark instances. Second, we present a newly generated set of

real-world-based instances, which we use to derive computational and managerial findings.

5.1 Results on benchmark instances
To validate the efficacy of the proposed ALNS, we apply it to the team orienteering arc routing problem (TOARP), as this

problem class is arc-based and does not require all arcs to be visited. The main difference is its need for vehicles to return to the

depot and a time-independent reward for service. However, as the time-independence is similar to an arc starting with snow but

not being further affected by the snowstorm, this characteristic is covered by our proposed ALNS. Therefore, only the need to

return to the depot is added.

All experiments are conducted with a runtime of 1 h on the Hertz_p0_d_2 and Hertz_p0_d_3 instances, which have either

two or three vehicles and networks with 96–846 arcs, including 10–121 profitable arcs. We benchmark the proposed ALNS

against the optimal results available in Archetti et al. [2], who also had a time limit of 1 h. For each instance, we perform five

runs. Table 5 lists the average percentage ratios (i.e., we divide our results by the state-of-the art result, which are optimal

solutions in most cases), standard deviations, worst-case ratios, and the number of instances solved to optimality.

We observe an average ratio of 98.46% (i.e., an average percentage gap of less than 1.6%), and a worst-case ratio of about

95%. More detailed results are available in Table A1 in the Appendix. Furthermore, we examine the ratios after 30 s, as this

is the smallest updating interval for the rolling horizon framework. Even for the most difficult instances, an average ratio of

94.02% is achieved.

5.2 Real-world-based instances
To gain computational and managerial insights, we generate a new set of instances based on data from the city of Vienna.

In the following sections, we first describe the details of data generation and then provide detailed results and discussions.
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FRÖHLICH ET AL. 13

TABLE 6 List of parameters.

Parameter Values

Updating interval 30, 60, 120, 300

Look-ahead 50, 100, 200, 300

Instance vienna_1, … , vienna_5

Snowstorm movement snow_1, … , snow_4

Prediction Normal, perfect

TABLE 7 Information on real-world-based instances.

Arcs when split to be equal or less

Instance ∞ 300 160 80 40

vienna_1 1778 1826 1925 2194 2763

vienna_2 499 509 521 595 739

vienna_3 1670 1675 1727 1900 2251

vienna_4 1469 1469 1472 1526 1647

vienna_5 1214 1246 1296 1465 1855

vienna_6 3637 3668 3765 4183 5180

vienna_7 2498 2567 2725 3259 4495

vienna_8 3828 3840 3884 4084 4795

As the instances are far too large for the MIP-formulation to deliver results within a reasonable time frame, no comparison to

(near) optimal solutions are performed. The instances are made available at https://bda.univie.ac.at/research/data-and-instances/

vehicle-routing-problems/.

5.2.1 Instance generation

We generate eight instances based on the street network of Vienna (denoted as vienna-instances); five smaller ones, and three

larger ones. For each district, the set of arcs S initially consists of all arcs starting or ending in a district. However, as Vienna has

many one-way streets, S would only be partially connected and some arcs or whole sets may be unreachable. Hence, for every

arc a in S that could not be reached when using only S, the shortest path P between any other arc in S and a using the whole street

network of Vienna is inserted (S ∶= S ∪ P). We use Cartesian coordinates to calculate the arcs’ centers and normalize them to

have 0 as the smallest value (e.g., the smallest x-coordinate in S is 2000; therefore, the x-coordinate of 2500 is normalized to

500). Traversal times are set according to the length and speed limits.

Further, snowstorm movements are generated according to different shapes (straight line (straight), wavy line (snake), full

circle (clock), and half circle that is backtracked (half-half )). Figure A1 in the appendix depicts the movements. Detailed results

are not provided as the shape of the snowstorm did not lead to significantly different findings.

5.2.2 Computational results

For each setting, consisting of updating interval, look-ahead, instance, snowstorm movement, and prediction type, we conduct

8 runs of the proposed rolling horizon framework with a duration of 3600 s (e.g., the problem is split into 120 subproblems,

when the updating interval is 30 s, and 12 subproblems, when the updating interval is 300 s). Table 6 lists the applied param-

eter settings. Table 7 lists the number of arcs for the vienna-instances, when performing the splitting according to Section 3.3.

However, as all 16 combinations of updating intervals and look-aheads would have been too confusing, we only list four com-

binations. Instances vienna_6—vienna_8 were used in later tests, to examine whether observations change for larger instances.

Normal prediction corresponds to the procedure described in Section 3.4, while perfect prediction simply reads the input file

for the snowstorm and replicates it, and thus has no prediction errors.

Tables 8–11 report the results for the binomial tests that determine whether the results show significant differences based on

the applied setting. Detailed results for different movements of snowstorms are provided in Tables A2 and A3 in the Appendix.

Tables 8 and 9 compare the influence of the updating interval. Their binomial tests had identical look-aheads (e.g., a comparison

of T = 30, E = 50 with T = 60, E = 50; but not a comparison of T = 30, E = 50 with T = 60, E = 100). The first row

denotes the updating interval and the following rows contain the results for different instances. Every result x∕y lists the number

of snowstorm movements, for which the base setting yields significantly better (x) and significantly worse (y) according to
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14 FRÖHLICH ET AL.

TABLE 8 Aggregated results for the binomial test comparing updating intervals, when predicting snowstorm movements.

T = 30 compared to T = 60 compared to T = 120 compared to T = 300 compared to

T = 60 T = 120 T = 300 T = 30 T = 120 T = 300 T = 30 T = 60 T = 300 T = 30 T = 60 T = 120

vienna_1 0/4 0/1 0/4 4/0 0/0 0/3 1/0 0/0 0/1 4/0 3/0 1/0

vienna_2 0/4 0/4 0/4 4/0 0/4 0/3 4/0 4/0 0/2 4/0 3/0 2/0

vienna_3 0/4 0/4 0/4 4/0 0/4 0/4 4/0 4/0 0/4 4/0 4/0 4/0

vienna_4 0/4 0/4 0/4 4/0 0/4 0/4 4/0 4/0 0/0 4/0 4/0 0/0

vienna_5 0/4 0/4 0/4 4/0 0/4 0/3 4/0 4/0 0/0 4/0/ 3/0 0/0

Total 0/20 0/17 0/20 20/0 0/16 0/17 17/0 16/0 0/7 20/0 17/0 7/0

Note: The first number indicates the number of times a setting performed significantly better (𝛼 = 5%) than the other setting; the second number of times is performed

significantly worse.

TABLE 9 Aggregated results for the binomial test comparing updating intervals, when perfectly predicting snowstorm movements.

T = 30 compared to T = 60 compared to T = 120 compared to T = 300 compared to

T = 60 T = 120 T = 300 T = 30 T = 120 T = 300 T = 30 T = 60 T = 300 T = 30 T = 60 T = 120

vienna_1 0/4 0/4 0/4 4/0 0/4 0/4 4/0 4/0 0/4 4/0 4/0 4/0

vienna_2 0/4 0/4 0/4 4/0 0/4 0/4 4/0 4/0 0/4 4/0 4/0 4/0

vienna_3 0/4 0/4 0/4 4/0 0/4 0/4 4/0 4/0 0/4 4/0 4/0 4/0

vienna_4 0/4 0/4 0/4 4/0 0/3 0/4 4/0 3/0 0/4 4/0 4/0 4/0

vienna_5 0/1 0/4 0/4 1/0 0/4 0/4 4/0 4/0 0/4 4/0 4/0 4/0

Total 0/17 0/20 0/20 17/0 0/19 0/20 20/0 19/0 0/20 20/0 20/0 20/0

Note: The first number indicates the number of times a setting performed significantly better (𝛼 = 5%) than the other setting; the second number of times is performed

significantly worse.

TABLE 10 Aggregated results for the binomial test comparing look-aheads, when predicting snowstorm movements.

E = 50 compared to E = 100 compared to E = 200 compared to E = 300 compared to

E = 100 E = 200 E = 300 E = 50 E = 200 E = 300 E = 50 E = 100 E = 300 E = 50 E = 100 E = 200

T = 30 0/0 4/0 4/0 0/0 4/0 4/0 0/4 0/4 4/0 0/4 0/4 0/4

T = 60 0/1 4/0 4/0 1/0 4/0 4/0 0/4 0/4 4/0 0/4 0/4 0/4

T = 120 0/4 0/0 3/0 4/0 0/0 4/0 0/0 0/0 3/0 0/3 0/4 0/3

T = 300 0/3 0/3 0/2 3/0 0/4 0/1 3/0 4/0 3/0 2/0 1/0 0/3

Note: The first number indicates the number of times a setting performed significantly better (𝛼 = 5%) than the other setting; and the second refers to the number of times

a setting performed significantly worse.

binomial tests (e.g., 0∕2 in Table 8 for vienna_2 denotes that the updating interval of 120 never performs significantly better, but

performs significantly worse than the updating interval of 300 in 2 cases; thus, in the remaining 2 cases, there is no significant

difference). Tables 10 and 11 compare the effect of a look-ahead with different fixed updating intervals (30, 60, 120, and 300).

For Tables 8 and 9, every binomial test consists of 32 comparisons (4 different look-aheads with 8 runs each). For Tables 10

and 11, every binomial test consists of 40 comparisons (5 different instances with 8 runs each).

Table 8 shows a clear picture of shorter updating intervals performing worse than the larger ones, when predictions are

imperfect. This is an overall trend, but it is strongest when T = 30 and T = 60 are compared to the larger intervals. Further,

T = 30 and T = 60 are significantly worse in 57 tests out of 60 (95%) and 33 tests out of 40 tests (82.5%), respectively.

The effect decreases between T = 120 and T = 300 with 7 tests out of 20 (35%) being significantly worse. We explain this

observation by the rolling horizon framework effectively splitting the problem into smaller subproblems. Another aspect to be

considered is that a smaller T results in less computation time for each problem. As Table 9 shows, these findings are similar,

when the snowstorm movement is known ahead of time/predicted perfectly (57 out of 60 tests for T = 30 and 39 out of 40 tests

for T = 120). The exception is T = 300, compared to T = 120, performing even better than previously, as it has significantly

better results for all 20 binomial tests.

Table 10 shows a clear trend that the look-ahead should increase with the updating interval, when predictions are imperfect.

For small T , the small look-aheads E = 50 and E = 100 perform best, as they dominate E = 200 and E = 300 in all tests. This

can be explained by the computational effort required for long look-aheads. However, E = 100 performs better than E = 50
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FRÖHLICH ET AL. 15

TABLE 11 Aggregated results for the binomial test comparing look-aheads, when perfectly predicting snowstorm movements.

E = 50 compared to E = 100 compared to E = 200 compared to E = 300 compared to

E = 100 E = 200 E = 300 E = 50 E = 200 E = 300 E = 50 E = 100 E = 300 E = 50 E = 100 E = 200

T = 30 0/4 0/0 4/0 4/0 4/0 4/0 0/0 0/4 4/0 0/4 0/4 0/4

T = 60 0/4 0/1 4/0 4/0 2/0 4/0 1/0 0/2 4/0 0/4 0/4 0/4

T = 120 0/4 0/0 3/0 4/0 3/0 4/0 0/0 0/3 3/0 0/3 0/4 0/3

T = 300 0/1 2/0 3/0 1/0 2/0 3/0 0/2 0/2 0/0 0/3 0/3 0/0

Note: The first number indicates the number of times a setting performed significantly better (𝛼 = 5%) than the other setting; and the second refers to the number of times

a setting performed significantly worse.

(A) (B)

(C) (D)

FIGURE 5 Inverse average ranks for different settings of updating interval T and look-ahead E. The best and worst possible values are 15 and 0, respectively.

when T increases to 60 and 120, and E = 200 dominates in case of very long updating intervals (T = 300). These observations

can be explained by the following: (i) a lower increase in problem size—and therefore computational effort—compared to

smaller T (e.g., an increase by 71.4% for T = 300 when extending E = 50 to E = 300), which is outweighed by (ii) larger

look-aheads enabling less myopic solutions, and (iii) smoother transitions between sub-problems occurring due to more arcs

being available as the “connecting arc” (the last arc starting within the updating interval and ending within the look-ahead).

Table 11 shows slightly different results when predictions are perfect. The small look-ahead (E = 100) proves best for all

updating intervals. However, this effect diminishes (e.g., it is significantly better for T = 30 in 12 out of 12 tests, but it is only

better in 6 out of 12 tests for T = 300).

To validate the results, we increase the available computation time by 900% (e.g., a setting with T = 30 and E = 120 runs

with 300 instead of 30 s). Regarding updating intervals, the observed trends are supported for T = 30 and T = 60. Hence, myopic

behavior leads to poor solutions. However, the trend of T = 300 proving better than T = 120 (as it performed significantly

better in 7 out of 20 settings and never worse, previously) does not hold as there is even an instance, where T = 120 performs

better. This suggests that once enough computation time is available, prediction errors can be sufficiently large enough to result

in smaller updating intervals (in this case T = 120) performing better. Regarding look-aheads, the additional computation time

did not bring new insights. All observations, particularly the fact that larger look-aheads are more suitable for larger updating

intervals when predictions are imperfect, are confirmed.
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16 FRÖHLICH ET AL.

To further examine whether observations change with problem size, we conduct experiments on large instances with

2498–3828 arcs (before splitting). Note that vienna_1 to vienna_5 have 499–1778 arcs before splitting. Once more, larger

updating intervals perform significantly better, especially when using perfect information.

For T = 30 and T = 60, without perfect forecasting of the snowstorm, the look-ahead E = 200 performs best. However,

when using T = 300, a trend toward shorter look-aheads is noticeable. This can be explained by the problem becoming too

large when using larger look-aheads, as a similar effect was already observed for the largest instance of T = 200 and T = 300.

Results are depicted in Figure 5, where we show the performance of individual settings on the smaller and larger instances

when using imperfect and perfect predictions. The height of the bars in each subfigure corresponds to the inverse average rank of

the respective pair of updating interval and look-ahead. For instance, if a pair yields the best average performance in 18 out of 20

aggregated runs, and the second best performance in the remaining runs, it results in the average rank of (1 ⋅18+2 ⋅2)∕20 = 1.1

and, as 16 pairs are compared, an inverse average rank of 16 − 1.1 = 14.9. For perfect predictions, the updating interval is

clearly the most impactful parameter, as in Figure 5B,D, the four best average ranks were achieved by T = 300. For imperfect

predictions (see Figure 5A,C), the updating interval still seems to be more important. However, a poorly chosen look-ahead can

be detrimental. When instances are large, the sum of updating interval and look-ahead should not be too large (see Figure 5C).

However, when instances are small, both large updating intervals and look-aheads yield good results. Lastly, we want to point

out that these findings depend on the method’s relative efficacy. A more effective method might find larger instances to deliver

results more similar to smaller instances, and vice versa for a less effective method. Nonetheless, should these findings prove

valuable for a decision maker appropriately assessing their method.

6 CONCLUSION

While a large body of literature on problems related to snow plowing does exist, a gap regarding more efficient and adaptive

methods exists, as well. Possible reasons for this may be the technical difficulties in predicting the street conditions. However, as

measuring systems and data communication have improved and become more affordable, such adaptive methods have become

of interest.

In this study, we examined a novel snow plowing problem based on several challenging characteristics, such as ongoing

stochastic snowfall, the necessity for arcs to be plowed repeatedly, and a time-dependent objective function where earlier ser-

vice could be detrimental. As these characteristics make it difficult to apply exact methods, we tackled the problem using a

rolling horizon framework with embedded ALNS. The ALNS was benchmarked against optimal solutions on available TOARP

instances.

Our computational study on real-world-based instances examined the effect of updating intervals as well as the effect of

look-aheads within the rolling horizon framework. The results suggested that the loss of optimality is low when the horizon

is split into larger parts, but that larger problems suffer from imperfect predictions that lead to inefficient moves. The derived

results also pointed to the importance of sufficient look-aheads, as well as to the fact that the connection of individual horizons

is important. Further, managerial findings included that large look-aheads are more suited for large updating intervals, and vice

versa. Additionally, they concluded that small updating intervals should not be paired with very large look-aheads, even when

sufficient computational time is available.

Future improvements of the model can be made by adding other common snow plowing considerations such as turn restric-

tions or heterogeneous fleets. Since the necessity for turn restrictions typically arises from street conditions, they should be

assumed to be time-dependent. This would not only make the problem more challenging, but it could also render some inser-

tions or removals infeasible. Another future research direction would be examining different partitioning schemes for the rolling

horizon framework.
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APPENDIX A

Table A1 lists the

(
OurResult

LiteratureResult

)
ratios of individual runs for Hertz_p0_d2 and Hertz_p0_d3 instances, which include 2

and 3 vehicles, respectively. The networks have 96–846 arcs including 10–121 profitable arcs.

Figure A1 depicts the 4 types of snowstorm movements. We tried more realistic movements and also more severe ones, to

test whether any effect become be visible. Movements straight and snake seem to be the most natural ones. For straight, the

wind would not turn at all, while for snake, the wind would gradually change its direction and then gradually change its direction

back into the original direction. The movement half-half might seem natural, when looking at the figure, but after it has moved

in a half-circle once, it perfectly backtracks the half-circle. It, therefore, assumes that the wind gradually turns right, then makes

a 180-degree turn, and finally gradually turns left. Similarly atypical, clock would be described by a wind that is permanently

turning into the same direction.

Tables A2 and A3 list the results for binomial tests, when having imperfect predictions. In Table A2, the influence of

the updating interval on different snowstorm movements and instances is compared. The first row denotes the comparison of

updating intervals. The following rows contain similar results for different instances. Every four rows correspond to one instance

(vienna_1, … , vienna_5). The superscript
+

denotes that the base setting has performed significantly better, for example, for the

clock-movement, the T = 60 setting performs better than T = 30. Table A3 compares the effect of a look-ahead with different

fixed updating intervals.

Table A2 clearly shows smaller updating intervals performing worse than larger updating intervals. The results are consistent

for vienna_2-vienna_5 and also do not significantly deviate for specific snowstorm movements. For vienna_1, which is the

largest instance of the five, updating interval T = 120 delivers mixed results, which were better on average, but not generally

dominating.
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18 FRÖHLICH ET AL.

TABLE A1 Results for benchmark tests on TOARP instances using the proposed ALNS.

Instance Run 1 Run 2 Run 3 Run 4 Run 5 Instance Run 1 Run 2 Run 3 Run 4 Run 5

hertzd10_d2 1 1 1 1 1 hertzd10_d3 1 1 1 1 1

hertzd11_d2 1 1 1 1 1 hertzd11_d3 1 1 1 1 1

hertzd12_d2 1 1 1 1 1 hertzd12_d3 0.9762 0.9762 0.9762 0.9762 0.9762

hertzd13_d2 1 1 1 1 1 hertzd13_d3 1 1 1 1 1

hertzd14_d2 1 1 1 1 1 hertzd14_d3 1 1 1 1 1

hertzd15_d2 0.9758 1 0.9653 0.9811 0.9811 hertzd15_d3 1 1 1 1 1

hertzd16_d2 0.9811 0.9811 0.9811 0.9811 0.9811 hertzd16_d3 0.9957 0.9957 0.9957 0.9957 0.9957

hertzd17_d2 1 1 1 1 0.9951 hertzd17_d3 0.9552 0.9552 0.9552 0.9552 0.9552

hertzd18_d2 0.9907 0.9907 0.9907 0.9907 0.9907 hertzd18_d3 0.9844 0.9932 0.9932 0.9932 0.9932

hertzd19_d2 1 0.9785 1 0.9785 1 hertzd19_d3 0.9886 0.9886 0.9943 0.9943 0.9943

hertzd20_d2 0.9795 0.9795 0.9966 0.9966 0.9795 hertzd20_d3 0.9953 0.9953 0.9953 1 1

hertzd21_d2 1 1 1 1 1 hertzd21_d3 0.9514 0.9514 0.9514 0.9514 0.9514

hertzd22_d2 0.9728 0.9728 0.9728 0.9747 0.9728 hertzd22_d3 0.986 0.9686 0.9674 0.9942 0.9686

hertzd23_d2 0.9981 0.9981 0.9981 0.9981 0.9907 hertzd23_d3 1 1 1 1 1

hertzd24_d2 0.9983 0.9983 0.9983 0.994 0.9983 hertzd24_d3 0.9537 0.966 0.9528 0.9528 0.9537

hertzd25_d2 1 0.981 0.9744 0.9744 0.9905 hertzd25_d3 0.9898 0.9898 0.9898 0.9898 0.9898

hertzd26_d2 0.9969 0.9939 0.9977 0.9939 0.9969 hertzd26_d3 1 1 1 1 1

hertzd27_d2 0.98 0.9736 0.9703 0.9736 0.9714 hertzd27_d3 0.9726 0.975 0.9726 0.9726 0.975

hertzd28_d2 0.9762 0.9955 0.9955 0.9955 0.9762 hertzd28_d3 0.9713 0.9713 0.9809 0.974 0.9809

hertzd29_d2 0.9981 0.9981 0.9893 0.9981 0.9845 hertzd29_d3 0.945 0.9881 0.9916 0.9904 0.9916

hertzd30_d2 0.9732 0.9844 0.9844 0.9732 0.9732 hertzd30_d3 0.9565 0.9565 0.9565 0.9565 0.9552

hertzd31_d2 0.9606 0.9606 0.9606 0.9619 0.9606 hertzd31_d3 0.9926 0.989 0.9845 0.9948 0.9897

hertzd32_d2 1 1 1 1 1 hertzd32_d3 0.9859 0.9792 0.9933 0.9963 0.9908

hertzd33_d2 0.9762 0.9612 0.9721 0.9721 0.9721 hertzd33_d3 0.9775 0.9628 0.9675 0.9775 0.9628

hertzd34_d2 0.9539 0.9544 0.9544 0.9539 0.9539 hertzd34_d3 0.9676 0.9878 0.9692 0.9708 0.9718

hertzd35_d2 0.9737 0.9761 0.9972 0.9681 0.9756 hertzd35_d3 0.9596 0.9444 0.9633 0.9523 0.9418

hertzd36_d2 0.9805 0.9805 0.9921 0.9782 0.994 hertzd36_d3 0.956 0.9513 0.9658 0.9902 0.9814

Note: We provide ratios found within 1 h run times.

Table A3 shows not only that smaller look-aheads are desirable for smaller updating intervals, but also the independence of

these results from the snowstorm movement. For the two smallest updating intervals, small look-aheads (E = 50 and E = 100)

are desirable for all snowstorm movements, as all entries show that they perform significantly better. For T = 120, the look-ahead

of E = 100 still performs significantly better than the other setting, independent from the snowstorm movement. Similar effects

can be observed for T = 300 and E = 200.
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(A) (B)

(C) (D)

FIGURE A1 Illustration of the four different snowstorm movements used.
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20 FRÖHLICH ET AL.

TABLE A2 Results for the binomial test comparing updating intervals when predicting the snowstorm movement (in %).

T = 30 T = 60 T = 120 T = 300 T = 60 T = 30 T = 120 T = 300 T = 120 T = 30 T = 60 T = 300 T = 300 T = 30 T = 60 T = 120

Clock 0.02− 50 0− Clock 0.02+ 27.06 0− Clock 50 27.06 0.03− Clock 0+ 0+ 0.03+

HH 0− 25.17 0− HH 0+ 33.88 0− HH 25.17 33.88 30.36 HH 0+ 0+ 30.36

Snake 0.02− 4.81− 0.21− Snake 0.02+ 33.88 32.38 Snake 4.81+ 33.88 11.33 Snake 0.21+ 32.38 11.33

Straight 0.81− 14.31 0.12− Straight 0.81+ 7.58 0.01− Straight 14.31 7.58 19.38 Straight 0.12+ 0.01+ 19.38

Clock 0− 0− 0.03− Clock 0+ 0− 11.48 Clock 0+ 0+ 57.22 Clock 0.03+ 11.48 57.22

HH 0− 0− 0.04− HH 0+ 0− 1.73− HH 0+ 0+ 20.24 HH 0.04+ 1.73+ 20.24

Snake 0− 0− 0− Snake 0+ 0− 0− Snake 0+ 0+ 3.84− Snake 0+ 0+ 3.84+

Straight 0− 0− 0− Straight 0+ 0− 0− Straight 0+ 0+ 0− Straight 0+ 0+ 0+

Clock 0− 0− 0− Clock 0+ 0.01− 0− Clock 0+ 0.01+ 0.17− Clock 0+ 0+ 0.17+

HH 0− 0− 0− HH 0+ 0− 0− HH 0+ 0+ 0.03− HH 0+ 0+ 0.03+

Snake 0.01− 0− 0− Snake 0.01+ 0.11− 0.01− Snake 0+ 0.11+ 2.51− Snake 0+ 0.01+ 2.51+

Straight 0− 0− 0− Straight 0+ 1− 0− Straight 0+ 1+ 1− Straight 0+ 0+ 1+

Clock 0− 0− 0− Clock 0+ 0− 1− Clock 0+ 0+ 18.85 Clock 0+ 1+ 18.85

HH 0− 0− 0− HH 0+ 0− 0.11− HH 0+ 0+ 43 HH 0+ 0.11+ 43

Snake 0− 0− 0− Snake 0+ 0− 2.51− Snake 0+ 0+ 10.77 Snake 0+ 2.51+ 10.77

Straight 0− 0− 0− Straight 0+ 0− 0.11− Straight 0+ 0+ 43 Straight 0+ 0.11+ 43

Clock 0.02− 0− 0.02− Clock 0.02+ 0− 7.48 Clock 0+ 0+ 50 Clock 0.02+ 7.48 50

HH 0− 0− 0− HH 0+ 0− 1− HH 0+ 0+ 50 HH 0+ 1+ 50

Snake 0− 0− 0.33− Snake 0+ 0− 1.13− Snake 0+ 0+ 27.06 Snake 0.33+ 1.13+ 27.06

Straight 0− 0− 0.33− Straight 0+ 0− 0.01− Straight 0+ 0+ 41.94 Straight 0.33+ 0.01+ 41.94

Note: Bold numbers indicate strong significance according to the binomial test, while italic numbers indicate weak significance. Superscript
+

denotes that the setting of

the block performs better than the setting of the column, while
−

denotes the inverse.

TABLE A3 Results for the binomial test comparing look-aheads with real time horizons fixed at 30, 60, 120, and 300 when predicting the snowstorm

movement (in %).

E = 50 E = 100 E = 200 E = 300 E = 100 E = 50 E = 200 E = 300 E = 200 E = 50 E = 100 E = 300 E = 300 E = 50 E = 100 E = 200

Clock 36.01 0+ 0+ Clock 36.01 0+ 0+ Clock 0− 0− 0+ Clock 0− 0− 0−

HH 6.07 0+ 0+ HH 6.07 0+ 0+ HH 0− 0− 0+ HH 0− 0− 0−

Snake 36.01 0+ 0+ Snake 36.01 0+ 0+ Snake 0− 0− 0.03+ Snake 0− 0− 0.03−

Straight 43.4 0+ 0+ Straight 43.4 0+ 0+ Straight 0− 0− 0+ Straight 0− 0− 0−

Clock 8.14 0.07+ 0+ Clock 8.14 0+ 0+ Clock 0.07− 0− 0+ Clock 0− 0− 0−

HH 56.27 0.32+ 0+ HH 56.27 0.01+ 0+ HH 0.32− 0.01− 0+ HH 0− 0− 0−

Snake 1.19− 0.05+ 0+ Snake 1.19+ 0.01+ 0+ Snake 0.05− 0.01− 0+ Snake 0− 0− 0−

Straight 56.27 0.17+ 0+ Straight 56.27 0.01+ 0+ Straight 0.17− 0.01− 0+ Straight 0− 0− 0−

Clock 2.66− 9.98 0.04+ Clock 2.66+ 31.79 0.01+ Clock 9.98 31.79 0.35+ Clock 0.04− 0.01− 0.35−

HH 0.69− 12.79 23.66 HH 0.69+ 31.79 0.01+ HH 12.79 31.79 18.85 HH 23.66 0.01− 18.85

Snake 0.01− 9.98 0+ Snake 0.01+ 50 0+ Snake 9.98 50 0+ Snake 0− 0− 0−

Straight 1.92− 31.79 1+ Straight 1.92+ 21.48 0+ Straight 31.79 21.48 1+ Straight 1− 0− 1−

Clock 1.21− 0− 4.48− Clock 1.21+ 0.01− 5.51 Clock 0+ 0.01+ 0.25+ Clock 4.48+ 5.51 0.25−

HH 15.37 1− 1− HH 15.37 0− 0.01− HH 1+ 0+ 56.27 HH 1+ 0.01+ 56.27

Snake 3.84− 9.46 14.31 Snake 3.84+ 1.13− 7.58 Snake 9.46 1.13+ 4.94+ Snake 14.31 7.58 4.94−

Straight 0.03− 0− 33.18 Straight 0.03+ 1.13− 27.06 Straight 0+ 1.13+ 2.35+ Straight 33.18 27.06 2.35−

Note: Bold numbers indicate strong significance according to the binomial test, while italic numbers indicate weak significance. Superscript
+

denotes that the setting of

the block performs better than the setting of the column, while
−

denotes the inverse.
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