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Abstract

Metabolic models serve a dual purpose in understanding biological systems: (1) decoding
mechanistic relationships after experimental data acquisition; and (2) acting as predictive
tools for experimental design. In my thesis, I showcase both aspects in two key applications
demonstrating the versatility of metabolic modeling: (1) normalization of the finger sweat
metabolome measurements to enable a quantitative analysis for clinical applications;
(2) designing an optimal industrial production process for plasmid DNA production.

Up to date, finger sweat normalization has been a challenge as the sweat rate of
participants cannot be controlled for and is hard to measure directly. As a case study on
caffeine was conducted by my experimental collaborators, I developed a metabolic model
that included the absorption, conversion, and elimination of caffeine in the human body
as well as a term representing the mechanism of sweating. By fitting the experimental
data onto the developed model, we were able to estimate personalized kinetic constants
and showed that they shift little over time.

In a follow-up study, I further improved the goodness of normalization by adding a
previously published statistical normalization method on top of the metabolic model.
Simulations and case studies of the combined model showed promising results for the
quantification of time series measurements of biomarkers in the finger sweat and other
body fluids with size effects.

In the plasmid DNA production project, I used metabolic models for medium design of
an industrial production process. Counterintuitively, I found that the partial removal of
an essential medium component, namely sulfate, can lead to improved productivity and
specific yield. The optimal concentration of sulfate in the medium was predicted with
dynamic simulations using a genome-scale metabolic model of Escherichia coli. Validation
experiments conducted by experimental collaborators indeed confirmed the theoretical
predictions. We hypothesize that this strategy has high future potential as it is predictions
are easily convertible to other biomolecule production processes.

In conclusion, my thesis demonstrates the multifaceted utility of (dynamic) metabolic
models in elucidating and predicting biological phenomena. Spanning scientific disciplines,
from analytical chemistry to biotechnology, these models offer invaluable insights and
hold the key to transformative advancements.
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Kurzfassung

Metabolische Modelle dienen einer zweifachen Aufgabe zum Verständnis von biologischen Systemen:
(1) sie können, nach experimenteller Datenerfassung, mechanistische Zusammenhänge entschlüsseln
und (2) sie können Vorhersagen für die Versuchsplanung treffen. In meiner Dissertation demons-
triere ich beide Anwendungsmöglichkeiten von metabolischen Modellen: (1) die Normalisierung
von Fingerschweißmetabolommessungen zur quantitative Auswertung für klinische Studien; (2)
das Design einer optimalen industriellen Plasmid-DNA-Produktionsfermentation.

Bisher war die Fingerschweißnormalisierung ein ungelöstes Problem da die Fingerschweißpro-
duktionsrate der Probanden nicht beeinflusst und schwerlich direkt gemessen werden kann. Da
meine experimentellen Kooperationspartner in ihrer Fallstudie Coffein maßen, entwickelte ich ein
metabolisches Modell das die Aufnahme, die Umwandlung und den Abbau sowie Ausscheidung
von Coffein im Schweiß des menschlichen Körpers abbildet. Anschließend wurden die Parameter
des entwickelten Modells auf die experimentellen Messdaten angepasst und damit konnten wir
individuelle kinetische Konstanten des Coffeinmetabolismus eruieren. Außerdem zeigten wir, dass
diese individuellen Konstanten geringe zeitliche Variabilität aufweisen.

In einer Folgestudie verbesserte ich die Normalisierungsqualität zusätzlich indem ich eine bereits
veröffentlichte statistische Normalisierungsmethode in meinem metabolischen Modell inkludierte.
Simulationen und Fallstudien des kombinierten Modells überzeugten mit guter Normalisierungs-
und Quantifizierungsqualität von Zeitverlaufsmessungen von Biomarkern in Fingerschweiß und
anderen Körperflüssigkeiten.

Im Plasmid-DNA-Produktionsprojekt verwendete ich metabolische Modelle für das Wachstums-
mediumdesign eines industriellen Produktionsprozesses. Kontraintuitiverweise fand ich heraus,
dass die teilweise Entfernung einer wesentlichen Mediumkomponente, nämlich Sulfat, zu einer
verbesserten Produktivität und spezifischen Ausbeute führen kann. Die optimale Sulfatkonzentra-
tion im Medium wurde mit dynamischen Simulationen unter Verwendung eines metabolischen
Modells von Escherichia coli im Genommaßstab vorhergesagt. Von experimentellen Kooperations-
partnern durchgeführte Validierungsexperimente bestätigten tatsächlich die theoretischen Vorher-
sagen. Wir gehen davon aus, dass diese Strategie ein hohes Zukunftspotenzial hat, da sich die
Prognosen leicht auf andere Biomolekülproduktionsprozesse übertragen lassen.

Zusammenfassend zeigt meine Dissertation den vielfältigen Nutzen (dynamischer) metabolischer
Modelle bei der Aufklärung und Vorhersage biologischer Phänomene. Metabolische Modelle
bieten unschätzbare Erkenntnisse und sind der Schlüssel zu transformativen Fortschritten in
verschiedensten Wissenschaftsbereichen, von der analytischen Chemie bis zur Biotechnologie.

v





List of Symbols

Symbol Name
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G

glucose concentration in feed
c cost vector
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E enzyme concentration
ES enzyme-substrate complex concentration
favail bioavailability of external metabolite
F bioreactor feed rate
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k kinetic rate constant
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Vdist volume of distribution
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product yield
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1. Introduction

1.1. Systems Biology

Cell biology is an incredibly complex research discipline due to an intricate interplay of molecular
reactions governed by biological regulation that have the power to shape cells, organisms, and by
extension whole ecosystems. Traditionally, scientists investigate life in a reductionist way, i.e.,
they try to confront the challenge of immense complexity by focusing on smaller and smaller
conceptual subunits. Although this focus has lead to many discoveries, it runs the risk of losing
sight on the bigger picture, namely that in reality, these conceptual subunits do not exist in
isolation but are influencing each other all the time. Therefore, a shift in paradigm has taken
place where instead of the traditional reductionist approach, a holistic view on a biological system
is emphasized. This newly established field of science is aptly named systems biology [1]. Systems
biology fundamentally claims that only by knowing the isolated behaviour in combination with
systematic relationships between organs, cells, organelles, proteins, and metabolites, one is able
to see, understand, and describe the full picture of cell biology [2].

The establishment of systems biology was critically facilitated by the advent of high-throughput
sequencing and analytical chemistry methods. These methods greatly improve our qualitative
and quantitative knowledge on genes, proteins, and molecules in cells which facilitates holistic
analyses as proposed by systems biology [1]. For example, with the measured data scientists can
develop mathematical models to describe cellular processes [2]. Typically, these models describe
signal transduction, gene regulations, or metabolic conversions [1]. Moreover, they can focus on
subsystems of an organism [3] or try to provide an as broad as possible overview [4]. Figure 1.1
shows the systems biology cycle, where scientists use high-throughput analytical chemistry to
inform computer-based models which further explain and predict cellular processes.

My doctoral work sits on the "models & data analysis" third of the systems biology cycle
(Figure 1.1), where I used analytical data provided by the scientific community and experimental
collaborators to get insight into biological processes. More precisely, during my work, I focused
on metabolic conversion networks of variable organisms and sizes, thus in the following sections, I
describe the principles of metabolic modeling in more detail.

1.2. Metabolic Models

As the name suggests, metabolic models describe the interactions and conversions of metabolites.
Metabolites are small molecules including carbohydrates, amino acids, lipids, peptides, nucleic
acids, organic acids, vitamins, and thiols [6]. Metabolic models, for example, can describe the
uptake of metabolites into an organism or cell, their conversion from one metabolite into another,
and their final excretion or respiration [1]. A metabolic model can be mathematically represented
as a network, where metabolites are nodes, and chemical reactions are edges that connect two
(or more) metabolites which can be transformed into each other, e.g., by enzymatic catalysis
(Figure 1.2).

The creation of a metabolic model typically starts with sequencing a genome of an organism
of interest. Functional protein genes in the sequencing data can subsequently be annotated

1



1. Introduction

Figure 1.1.: The systems biology cycle [5]. Analytical chemistry comprises most
importantly genomics, transcriptomics, proteomics, and metabolomics.

[2]. Using databases like KEGG [7] and BioCyc [8] the annotated genes can be mapped to a
metabolic network. Historically, metabolic networks mapped only subsets of the metabolism
of a cell, for example, the central carbon metabolism. However, as experimental methods and
algorithms improved, it became feasible to create genome scale metabolic model (GSMM) with
thousands of metabolites, for example for Escherichia coli [9] or Homo sapiens [4]. After their
reconstruction, metabolic models can be used for computer simulations to study the relationships
between metabolites and other properties of the metabolic network [2].

1.2.1. Mathematical Definition

Mathematically, metabolic networks of any size can be represented as a stoichiometric matrix (S)
[10]. For example,

S =

⎛
⎜⎜⎝

R1 R2 R3 Rex
1 Rex

2 Rex
3

M1 −1 0 0 1 0 0
M2 1 −1 −1 0 0 0
M3 0 1 0 0 −1 0
M4 0 0 1 0 0 −1

⎞
⎟⎟⎠ (1.1a)

describes the metabolic model shown in Figure 1.2. The rows of S represent the metabolites,
and the columns the reactions in the model. Thus S has the shape number of metabolites times
number of reactions (nM ×nR). The value of the entries represents the chemical net stoichiometry
of each reaction. The reactions of the model can be split into two categories as indicated by the
dashed line in Equation (1.1a). Reactions to its left represent mass balanced internal conversions
of metabolites. In contrast, reactions to the right of the dashed line are exchange reactions that
represent fluxes over the system boundary. In this example, the system boundary is the cell
membrane and the exchange reactions correspond to uptake and excretion of metabolites from
the cell. As we consider only internal metabolites (for now) exchange reactions are not mass

2



1.2. Metabolic Models

Figure 1.2.: Network representation of a simple example metabolic model. Generally,
internal metabolic reactions (R1,R2,R3) are set up to be stoichiometrically
accurate and mass balanced. R3 is an example of a reversible reaction.

balanced. To relate the stoichiometry of a metabolic model to the rate of reactions, we can
associate a flux vector (v) of the length nR to S. Together, they describe the time derivatives of
the concentration vector (z),

Sv − µz = ż. (1.1b)

However, in many analysis methods a quasi steady state is assumed [11] and dilution by growth
(µz) is neglected [12], thus Equation (1.1b) simplifies to

Sv = 0. (1.1c)

To further constrain the metabolic network, lower and upper flux bounds can be defined (vlb and
vub, respectively). They can be used to set realistic ranges to fluxes, either defined by experimental
measurements, enzyme kinetics, thermodynamic considerations, or (non-) reversibility information
[1, 13, 14]. Note that in the simple example metabolic network (Figure 1.2), reaction R3 is
reversible. In this case (and without the knowledge of any other information constraining our
system), the flux bounds can be written as

(︁
vlb vub

)︁
=

(︃
0 0 −∞ 0 0 0
∞ ∞ ∞ ∞ ∞ ∞

)︃T

. (1.1d)

As infinite values are computationally hard to deal with, in practice unconstrained fluxes of
reaction i are usually set to

(︁
vlb vub

)︁
i
=

(︁
−103 103

)︁
mmol g−1 h−1 instead of

(︁
−∞ ∞

)︁
as

these values are still far beyond biological limitations.
To efficiently store and share metabolic models, researchers developed the systems biology

markup language (SBML) [15] that is compatible with many computational analysis and simulation
packages, e.g. COBRA toolbox [16], CobraPy [17], CNAPy [18], ecmtool [19], DFBAlab [20], and
many more. SBML models can be uploaded to and distributed from online repositories such as
BIGG [21] and BioModels [22].

3



1. Introduction

1.2.2. Flux Balance Analysis
Flux balance analysis (FBA) is a fundamental computational method used to investigate metabolic
models in form of stoichiometric matrices [11]. It is a biased method, i.e., in order to calculate
FBA, we need to define an objective function (typically one reaction or a linear combination of
reactions in the metabolic network (cTv) which is subsequently optimized,

maximize cTv (1.2a)

subject to steady state conditions and flux bounds,

Sv = 0

vlb ≤ v ≤ vub
(1.2b)

where the cost vector (c) is a vector of zeros except of the objective reaction(s). As the FBA
optimization problem takes the form of a linear program (LP), it can be solved with free or
commercial LP solvers like GLPK [23], CPLEX [24], or Gurobi [25]. One important property
of FBA solutions is that, although a single optimal value for cTv is found (if the problem is
feasible), uniqueness of v is not guaranteed. Especially, in a typically underconstrained GSMM
the non-uniqueness of v is the norm rather than the exception [26].

The definition of the objective function (cTv) and the upper and lower flux bounds (vub,
vlb) are crucial for the predictive power of FBA. For microorganisms, the objective function is
often a biomass reaction, that combines several intracellular metabolites in an artificial biomass
metabolite [27]. Metabolic models for FBA are typically set up such that ż as well as v are
normalized by the biomass, i.e., they both have the unit mmol g−1 h−1 [1] and that the molecular
mass of the artificial biomass metabolite sums up to 1 gmol−1. If this is the case, the rate (i.e.,
the flux) of the biomass reaction can be biologically interpreted as the growth rate of an organism.
The values of the flux bounds (vub, vlb) can be set to measured values which is typically done for
fluxes of carbon uptake. However, for the bulk of fluxes (especially many intracellular ones) only
(ir-)reversibility information exists and the fluxes are left unconstrained otherwise.

FBA is a powerful tool to explore the solution space of metabolic models, and to predict hard to
measure (often intracellular) flux rates. Therefore, many extensions to FBA have been developed.
For my thesis, the most important extensions are parsimonious flux balance analysis (pFBA)
[28], lexicographic FBA [29], and dynamic flux balance analysis (dFBA) [30]. However, many
more methods exist, for example, enzyme constrained FBA [31], thermodynamically constrained
FBA [14], or membrane constrained FBA [32].

1.2.2.1. Parsimonious Flux Balance Analysis

pFBA tries to solve the problem of non-uniqueness of the solution by introducing a second
optimization step where the sum of enzymes needed to support a flux distribution is minimized
[28]. However, as enzyme data often is missing or unavailable, the minimization of the sum of all
fluxes in the metabolic model is used as a proxy [28]. pFBA is a two step optimization algorithm,

Step 1:

maximize cTv = g1 (1.3a)

subject to

Sv = 0

vlb ≤ v ≤ vub,
(1.3b)

4



1.2. Metabolic Models

Step 2:

minimize ||v|| (1.3c)

subject to

Sv = 0

vlb ≤ v ≤ vub

cTv = g1

(1.3d)

Due to its conceptual as well as computational conciseness, pFBA is a popular method for creating
unique FBA solutions for all values of v.

1.2.2.2. Lexicographic Flux Balance Analysis

Lexicographic FBA tries to solve the problem of non-uniqueness of the solution by introducing a
hierarchical optimization strategy [29].

In order to do so, first, an ordered priority list of fluxes of interested has to be compiled [20].
A typical representation of such a priority list is shown in Table 1.1. The top flux on the list is
optimized first, subsequently its optimal value is added as a constraint and the next flux can be
optimized.

For the kth reaction of interest (k ∈ {1, 2, 3, ...,K})

optimize vk = gk (1.4a)

subject to

Sv = 0

vlb ≤ v ≤ vub
(1.4b)

and subject to k − 1 constrained fluxes, for l ∈ {1, 2, 3, ..., k − 1} previous optimization steps

vl = gl. (1.4c)

This is done for all fluxes of interest on the priority list [29] and unique values for these fluxes are
obtained. Note that the list has to be manually curated, which requires prior knowledge of the
metabolic network [20], however, it may give more accurate solutions to fluxes of interest than

Order (k) Direction Reaction

1 max biomass
2 min exchange A
3 min exchange B
K ... ...

Table 1.1.: Typical lexicographic priority list. The main objective often is the biomass
reaction (i.e., growth), further reactions of interest often comprise exchange
(i.e., uptake) rates and/or production rates [20].

5



1. Introduction

the more generic pFBA approach. Contrary to pFBA where only 2 LP optimization steps are
necessary to obtain an unique solution of all fluxes in a system, here K optimization steps are
required to obtain K unique fluxes. Depending on the value of K, this property of lexicographic
FBA can significantly slow down computations, especially when it is combined with more complex
methods like dFBA.

1.2.3. Dynamic Models
FBA methods are a powerful tool to investigate steady state solutions of metabolic fluxes.
However, in order to simulate scenarios, such as depletion of nutrient sources due to uptake of
metabolites, or biotechnological production processes, a steady state cannot be assumed for all
metabolites in a metabolic model. As soon as this is the case, dynamic modeling is required.
Mathematically, we can (re)sort the stoichiometric matrix into two parts

S =

(︃
Sss

Sdy

)︃
(1.5a)

where Sss describes metabolites in a steady state

Sssv = żss = 0, (1.5b)

and Sdy describes the dynamic part of the metabolic model

Sdyv = żdy ̸= 0. (1.5c)

Note, that in some models all metabolites concentrations can change, therefore, Sss may be an
empty matrix. In dynamic modeling, z(t) is called the state variable vector and in order to
calculate it over time, one has to find a function (f) that describes the time derivative of these
state variables (ż)

ż = f(z(t), t;θ) (1.5d)

where the right hand side can be a function of the time (t), the state variables themselves (z), or
other parameters (θ). In many cases, these dynamic models are based on knowledge of enzyme
kinetics (e.g., the Michaelis Menten model [33]) or physical knowledge (e.g., the Bateman function
[34]). In relatively simple cases, it is possible to solve the postulated differential equations
analytically, however, in more complex scenarios this is not feasible and numerical approaches
have to be applied. In contrast to many well established methods for obtaining the stoichiometric
matrix of an organism, defining a dynamic model and estimating its parameters is a difficult
challenge [2]. Therefore, compared to nM > 1000 metabolites modeled with GSMM FBA, the
number of state variables in dynamic models usually does not exceed 20 [1]. This means that
dynamic models are typically more coarse-grained than FBA models. More concretely, to reduce
the number of metabolites present, one can lump multiple reactions into one, or omit less relevant
metabolic pathways. Despite the challenges, recently researches were able to develop a dynamic
model of the central carbon metabolism of E. coli [35].

In the subsequent sections, I present several small dynamic models. The concepts they establish
may seem basic but are central to the more complex models I have developed throughout my
doctoral research.

1.2.3.1. Michaelis Menten Model

As the name suggests the Michaelis Menten model was named after Leonor Michaelis and Maud
Menten who published their model on enzyme kinetics in 1913 [33]. Due to its almost universal

6



1.2. Metabolic Models

Figure 1.3.: Metabolic network of the Michaelis Menten model. E and ES are assumed
to be in a steady state. R1 is reversible, whereas R2 is not.

applicability it has been used in countless studies [36]. The Michelis Menten model describes the
enzymatic conversion of a substrate into a product.1 Free enzyme (E) reacts with the substrate
molecule (S) into an enzyme-substrate complex (ES) and, finally, the product (P) and free enzyme
(Figure 1.3),

E + S
k1−−⇀↽−−
k−1

ES k2−→ E + P. (1.6a)

In the Michaelis Menten model, first order kinetics are assumed. Thus the time derivatives of the
state variables read,

ż = Sv =

⎛
⎜⎜⎝

−1 1
1 −1

−1 0
0 1

⎞
⎟⎟⎠

(︃
k1E S − k−1ES

k2 ES

)︃
. (1.6b)

As we are interested in the product formation rate (Ṗ ), we can consult the constructed metabolic
model and find that

Ṗ (t) = v2 = k2ES. (1.6c)

Next, we need to consider which molecules are in a steady state. As substrate is usually
significantly more abundant than enzyme (S ≫ Etot), the steady state assumption can be made
for the enzyme (E) and the enzyme-substrate complex (ES) concentrations [36],

Ė = 0, EṠ = 0, (1.6d)

1Attentive readers may point out that enzymes are not metabolites, however, in this model we can
disregard the chemical difference.

7



1. Introduction

Figure 1.4.: Relationship of flux rate (v) as a function of substrate concentration (S) in
form of Michaelis Menten kinetics plotted for the parameters kM = 1gL−1

and vmax
2 = 1mmol g−1 h−1.

and following, the total enzyme concentration (Etot) is constant,

Etot = ES + E = const. (1.6e)

Therefore, the ordered stoichiometric matrix z = (E,ES, S, P )T can be written as

S =

(︃
Sss

Sdy

)︃
=

⎛
⎜⎜⎝

−1 1
1 −1

−1 0
0 1

⎞
⎟⎟⎠ (1.6f)

where the dashed line symbolizes the border between Sss and Sdy. However, this expression is
not helpful to parameterize the model as ES is extremely challenging to measure experimentally.
Luckily, by combining Equations (1.6d), (1.6e), and (1.6b), we can substitute ES,

0 = k1(Etot − ES)S − (k−1 + k2)ES (1.6g)
k1S Etot = k1ES S + (k−1 + k2)ES (1.6h)
S Etot = ES(kM + S) (1.6i)

and get the commonly known Michaelis Menten equation,

v2 =
vmax
2 S

kM + S
(1.6j)

where

vmax
2 = k2 Etot

kM =
k−1 + k2

k1
.

(1.6k)

8



1.2. Metabolic Models

Figure 1.5.: The pharmacological interpretation of the Bateman function. Uptake (R1)
and excretion (R2) rates of the internal metabolite (M2) are defined by first
order kinetic constants (ka and ke, respectively).

Note that for experimental parameterization of vmax
2 and kM in Equation (1.6j), only initial

values of v2 are measured. I.e., measurements are done in a timescale where S ≈ const. However,
in a modeling context the Michaelis Menten equation is used at all time points. The relationship of
substrate concentration and product formation rate (Equation (1.6j)) is illustrated in Figure 1.4.
Note that kM defines the value of S where vmax

2 /2 is reached.
The Michaelis Menten model has virtually been an enzyme kinetic standard since its establishment

[36]. Many extensions to the model have been proposed, for example with competitive and non-
competitive inhibitions [37], or by the addition of temperature in the enzyme kinetics [38].

1.2.3.2. Bateman Function

The Bateman function is named after Harry Bateman who in 1910 first published a general
analytical solution to the differential equations for a chain of exponential decays [34]. Although
it was originally derived within the context of radioactivity, it has been extensively used in
pharmacology [39]. A pharmacological intuition of the model is given Figure 1.5 where three
metabolites (M1,M2,M3) are converted into each other by means of first order kinetics (R1,R2).
As no steady state can be assumed, the stoichiometric matrix of the model reads

S = Sdy =

⎛
⎝
−1 0
1 −1
0 1

⎞
⎠ (1.7a)

which combined with the first order kinetics flux vector gives

ż = Sv =

⎛
⎝
−1 0
1 −1
0 1

⎞
⎠
(︃
ka M1

ke M2

)︃
. (1.7b)
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1. Introduction

Figure 1.6.: Analytically evaluated time series of the Bateman Function for M1,M2,
and M3 (Panels 1-3, respectively). The parameters were set to M1(0) =
1 g L−1, ka = 0.5 h−1, and ke = 0.1 h−1.

With the assumption of M1(0) being the only non-zero initial state variable, the analytical
integration of the differential equation system results in the general solution

z(t) = M1(0)

⎛
⎝

e−kat

ka/(ka − ke)
(︁
e−ket − e−kat

)︁

ka/(ka − ke)
(︁
1− ke/ka − e−ket + ke/kae

−kat
)︁

⎞
⎠ . (1.7c)

In the context of pharmacology, scientists are usually only interested in the concentration over
time (i.e., the pharmacokinetics) of M2, thus the general solution is often reduced to

M2(t) = M1(0)ka/(ka − ke)
(︁
e−ket − e−kat

)︁
(1.7d)

which itself is also known as the Bateman Function [39].
Figure 1.6 exemplifies the concentration time series of M1,M2, and M3. Concentration curves

as modeled for M2(t) (panel B) are commonly seen when xenobiotic metabolites are measured
in the blood of a patient after their ingestion. e.g., caffeine [40], ephedrine [41], epicatechin
[42], diphenhydramine [43], ibuprofen [44], cannabinoids [45], and many more. Therefore,
in pharmacology, the Bateman function is used to describe the pharmokinetics of xenobiotic
metabolites. Notably, both reactions of the model are not necessarily chemical transformations
but rather complicated biochemical reactions across multiple compartments that are lumped into
single process. M1 can be understood as a xenobiotic metabolite (i.e., a food or drug compound)
in the stomach of a patient after ingestion at the initial time point (t = 0). M2 is located in the
internal compartment of the model, i.e., the internal fluids of the human body. Consequently,
M3 is the eliminated xenobiotic metabolite. Typically elimination happens by dialysis in the
kidneys (i.e., another transport reaction as illustrated in Figure 1.5) or chemical transformation
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Figure 1.7.: Most commonly used process types for biotechnological production.

to another metabolite via liver enzymes (e.g., via cytochrome P450 group enzymes). Curiously in
this context, the value M1(0) has concrete biological meaning as it is composed out of the volume
of distribution (Vdist) the dose of an external metabolite ingested (e.g., a drug compound, Mdose)
and the bioavailability of this compound (favail)

M1(0) =
Mdose favail

Vdist
[39]. (1.7e)

The values of Mdose, favail, Vdist, ka, and ke can vary significantly between different xenobiotics
(e.g., drugs), but also between individual patients. Population averages of these parameters
are often measured in clinical studies, as they are critical for drug administration dosage and
frequency. However, individual differences are often overlooked and only trough the relatively
recent advent of personal health has gained more momentum [46].

1.2.4. Dynamic Process Models
Dynamic metabolic models are a great way to not only simulate cell biology, but also whole
biotechnological production processes. Figure 1.7 gives an overview of the three most popular
process types: batch, fed-batch, continuous culture. Fed-batch process models are especially
relevant for biotechnology as many important drugs are produced with fed-batch cultures (e.g.,
insulin or plasmid DNA) [47–50].Fed-batch processes are especially popular because setting their
feed rate gives the process engineer additional control [48]. Moreover, fed-batch processes usually
exhibit improved productivity and yields compared to batch [48].

1.2.4.1. Fed-Batch Process Models

In order to simulate (fed-batch) process, we have to extend our dynamic metabolic model. A
schematic of a fed-batch model is given in Figure 1.8, where we have 4 state variables: the
bioreactor volume (V ) and the concentrations of glucose (G), biomass (X), and product (P )
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Figure 1.8.: Schematic of a fed-batch bioreactor model. The reactor volume (V ) increases
with the rate F , biomass grows with the rate µ = γXYX/G

, and the product is
secreted with the rate π = γP YP/G

. The rate γM represents the maintenance
energy requirement of already existing biomass to live.

in the bioreactor. Glucose is fed with the rate F
G
= F C

G
where F is the feed rate and C

G
is

the glucose concentration in the feed medium. Once in the reactor, glucose is taken up by the
cells with the rate γ. As the glucose is the sole source of energy, and assuming that there is no
overflow, we can divide γ into three parts supporting the maintenance energy of living cells (γ

M
),

the biomass growth (γ
X

), and the product formation (γ
P
). All three of these single step reactions

are in reality multiple reactions lumped together. To adjust for stoichiometry a yield parameter
(Y ) is multiplied (Figure 1.8). We can now set up the stoichiometric matrix and the flux vector
of the metabolites z(t) =

(︁
G X P

)︁T as

Sv =

(︃
Sss

Sdy

)︃
v =

⎛
⎝

1 −1 −1 −1

0 Y
X/G

0 0
0 0 0 Y

P/G

⎞
⎠

⎛
⎜⎜⎝

C
G
F/V

γ
X
X

γ
M
X

γ
P
X

⎞
⎟⎟⎠. (1.8a)

Note that a fed-batch is typically limited by the fed glucose, so we can assume that G is in a
steady state [51]

G(t) = 0 and Ġ(t) = 0. (1.8b)
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Including the dilution of metabolites by the feed rate (F ) the time derivatives of the variables
read

ż =

⎛
⎝

1 −1 −1 −1

0 Y
X/G

0 0
0 0 0 Y

P/G

⎞
⎠

⎛
⎜⎜⎝

C
G
F/V

γ
X
X

γ
M
X

γ
P
X

⎞
⎟⎟⎠− F

V
z

V̇ = F.

(1.8c)

As a consequence of Equation (1.8b) γ can be calculated as

γ =
FC

G

V X
. (1.8d)

Moreover, we define the growth rate (µ) as

µ = γ
X
Y
X/G

= γ Y app
X/G

(1.8e)

where the apparent growth yield (Y app
X/G

) is derived from the Pirt equation [52]

γ = γ
M

+ γ
P
+ γ

X
(1.8f)

therefore substitution gives

Y app
X/G

=
µ

γ
M

+ γ
P
+ γ

X

. (1.8g)

Subsequently, while we assume C
G
, Y

X/G
, Y

P/G
, γ

M
, and γ

P
to be constant, we choose F and solve

the differential equations analytically. In the following paragraphs, I will present the solution to
the process model for the exponential and linear fed-batch case.

Exponential Fed-Batch An exponential feeding rate is the most common form of a fed-batch
[48]. It is popular as the internal flux rates are in a steady state throughout the process, i.e., the
process engineer can choose a constant µ (granted µ ≤ µmax, the maximum growth rate of the
organism). The feed rate calculates from the chosen µ as

F (t) = F0e
µt =

X0µe
µt

C
G
Y app
X/G

[49], (1.9a)

and the analytical solution to the differential Equation (1.8c) (e.g., computed with SymPy [53])
gives

⎛
⎜⎜⎝

G(t)
X(t)
P (t)
V (t)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0
Φ(t)−1X0e

µt

Φ(t)−1X0(e
µt − 1)π/µ

V0 + F0/µ (eµt − 1)

⎞
⎟⎟⎠ (1.9b)

where

Φ(t) = V (t)/V0

P0 = 0.
(1.9c)
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Linear Fed-Batch In a linear fed-batch, the feed rate is constant, i.e., the reactor volume
(V (t)) rises linearly with the rate rF [48],

F (t) = rF = const. (1.10a)

To always fulfill the condition G(t) = 0 the maximal possible feeding rate can be calculated
subject to the maximum possible growth rate of a given organism (µmax),

rF, max = X0/CG
(γ

M
+ γ

P
+ µmax/YX/G

). (1.10b)

When substituting Equation (1.10a) in Equation (1.8c) and solving the differential equation, the
analytical solution reads

⎛
⎜⎜⎝

G(t)
X(t)
P (t)
V (t)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

0

eΓ̄t

V (t)

[︂
X0V0Γ + F

G
(eΓ̄t − 1)

]︂

e−Γ̄tπ

V (t)ΓΓ̄

[︂
−X0V0Γ + F

G
(1− eΓ̄t) + Γ

(︁
F

G
Y
X/G

t+X0V0

)︁
eΓ̄t

]︂

V0 + rF t

⎞
⎟⎟⎟⎟⎟⎟⎠

(1.10c)

where

P0 = 0

Γ = γ
M

+ γ
P

Γ̄ = Y
X/G

Γ.

(1.10d)

Comparison of Exponential and Linear Fed-Batch Figure 1.9 illustrates the analytical
solution of an exponential and linear fed-batch production process. Given that the assumptions
we made are correct, two observations become apparent: firstly, the final amount of biomass is
higher for an exponential fed-batch than for a linear one, although for approximately the first two
thirds of the process the linear feed produces more biomass. Secondly, throughout the process
the amount of product is higher in a linear fed-batch. Therefore, with the given assumptions
linear fed-batch always outperforms an exponential one. Another disadvantage of exponential
fed-batches is the fact that much the biomass and product are synthesised in the end of the
process. At that time other limitations (e.g., oxygen or high cell densities) may occur that reduce
the well-being of the cells and, thus, the theoretical yields are hard to reach experimentally.

On another note, some research suggests that the assumption of constant γ
M

and γ
P

may not be
valid throughout the whole process [54]. Especially the definition of γ

P
is dependent on the actual

product of interest and its properties. However, this can be reflected in the process model. For
example, a function for γ

P
(t, z(t);θ) depending on time, state variables or any set of parameters,

respectively, can be plugged into Equation (1.8c). One caveat is that analytical solutions to
such complex models become complex or are not obtainable at all. In such a case, numerical
integrators (e.g., SciPy’s solve_ivp [55]) have to be used to solve the differential equations.

1.2.4.2. Dynamic Flux Balance Analysis

dFBA essentially tries to combine the concepts for FBA and dynamic (process) models by
overcoming the knowledge gap of many reaction rates [30]. More concretely, we extend our
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Figure 1.9.: Analytical solutions to an exponential (black) and linear (red) fed-batch
process. A list of the parameters is given in Supplementary Table B.1. The
values for µ for the exponential fed-batch and µmax for the linear fed-batch
were chosen in a way that the start and end volumes are the same (panel A).
All other parameters are the same for both models.

previous definition of the dynamic model differential equation (Equation (1.5d)) by splitting them
into two parts,

ż =

(︃
fK(z(t), t;θ)
fU

)︃
(1.11a)

where we can describe K rates with known dynamic equations (fK), however, equations fU for U
rates of interest remain unknown. For example, fK here may include the uptake rate of glucose
which can be modeled by a Michaelis Menten kinetic (Section 1.2.3.1) or estimated over the
feed rate (Section 1.2.4.1). fU , for example, may comprise the growth rate or other less studied
essential nutrient uptake rates [20, 30]. dFBA promises to close the knowledge gap as we can
use FBA to calculate the undefined time derivatives. In order to do so, we have to append the
previous definition of FBA (Section 1.2.2) by including external metabolites. A illustration of
the appended simple example model is shown in Figure 1.10. Its stoichiometric matrix can be
written as,

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

R1 R2 R3 Rex
1 Rex

2 Rex
3

M1 −1 0 0 1 0 0
M2 1 −1 −1 0 0 0
M3 0 1 0 0 −1 0
M4 0 0 1 0 0 −1

Mex
1 −1 0 0

Mex
3 0 0 1 0

Mex
4 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (1.11b)
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Figure 1.10.: Illustration of simple example network extended by external metabolites
(Mex

i ).

where the horizontal dashed line indicates the border between internal (i.e., intracellular) and
external metabolites and the vertical dashed line indicates the border between internal and
exchange reactions. Critically for dFBA, we assume that, while internal metabolites (Sin) are in
a steady state, external metabolites (Sex), are not [30]. Additionally we can subdivide the flux
vector (v) in an internal (Ri) and exchange (Rex

i ) part,

Sv =

(︃
Sss

Sdy

)︃(︃
vin

vex

)︃
=

(︃
Sin

0 Sex

)︃(︃
vin

vex

)︃
(1.11c)

Sinv = 0 (1.11d)
Sexvex = ż/X(t). (1.11e)

In dynamic models, the state variable are normalized by volume, however, in FBA they are
normalized by biomass. To translate the state variables from FBA to the dynamic normalization,
one has to divide by the biomass concentration (X(t)) as done in Equation (1.11e) [1]. Subsequently
FBA can be performed by optimization of the objective function

maximize cTv. (1.11f)

subject to

Sv = 0

vlb ≤ v ≤ vub
(1.11g)

and subject to K known dynamic exchange rates (Equation (1.11a)),

Sex
Kvex

K = fK(z(t), t;θ)/X(t). (1.11h)
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1.2. Metabolic Models

Figure 1.11.: dFBA simulation of a batch bioprocess, where the glucose uptake (Ġ/X) was
calculated from a Michaelis Menten model and the rates for biomass growth
(Ẋ/X)and sulfate uptake (Ṡ/X) were calculated with lexicographic FBA
for every finite element. The lexicographic order was: 1. maximize biomass
production, 2. minimize sulfate uptake. The rates and concentrations are
assumed constant within one finite element of the simulation.

Typically, lexicographic [29] or parsimonious [56] FBA are performed as unique solutions to
(v) are required in dFBA [20]. The optimized values of vex are subsequently inserted into the
differential equation of the dynamic model (Equation (1.11a)) as

ż =

(︃
fK(z(t), t;θ)
Sex
U vex

U X(t)

)︃
. (1.11i)

Although the internal metabolites of the metabolic model are assumed to be in a steady state,
the fluxes may change with time. Therefore, to calculated the change of concentration of external
metabolites, step-wise numerical integrators (e.g., SciPy’s solve_ivp [55]) are required [20, 30].
There, Sexvex is calculated with FBA at every finite element and subsequently used as an input
for the integrators.

An example dFBA simulation is shown in Figure 1.11, where the concentration time series
of glucose (G), biomass (X), and sulfate (S) in a batch bioprocess are plotted. While the time
derivatives of glucose are calculated as Michaelis Menten kinetic, the rates of biomass growth
and sulfate uptake were estimated via lexicographic FBA from the E. coli iML1515 GSMM [9].
dFBA is a well established method that has shown to replicate biological phenomena, e.g., diauxic
growth [30] or switching from aerobic to anaerobic respiration [29]. Moreover, as already implied
in Figure 1.11, it is an useful tool to simulate medium component concentrations in bioreactors
of bioprocess.
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1.2.5. Process Optimization
Fed-batch processes are wide spread in the biotechnological industry, for example, for the
production of pharmaceutical drugs. However, many processes are performed in sub-optimal
conditions as classical design of experiment approaches involve trial and error and often are not
able to cover the whole solution space. Improving sub-optimal processes is of high relevance as
this could significantly reduce costs of production and subsequently lower drug prices for patients.

Dynamic metabolic models can be used to systematically sample the solution space for optimal
process designs as computer simulations are cheap and comparatively easy to perform. They
can provide suggestions for setting control variables, for example, the feed rate [57, 58] or the
switch time of two-stage processes [59]. It is crucial to initially collect knowledge on the process
of interest as several design choices need to be made for the construction of dynamic bioprocess
models. A bioprocess engineer should consider following points:

Process Type Firstly, one has to decide which process type (batch, fed-batch, continuous,
or other, Figure 1.7) to optimize. While fed-batch processes are currently the most popular in
industry [48], batch or continuous processes may have additional advantages in certain settings.
The choice of process type directly influences the properties of control variables to set. While in a
fed-batch the feed rate can be constant or change over time, in a continuous process realistically
only one dilution rate can be set. In contrast in a batch process the substrate uptake cannot be
directly controlled at all.

Kinetic Functions Secondly, one has to find functions that model dynamic relationships of
the state variables. For some variables these relationships are well explored, e.g., the Michaelis
Menten kinetic for glucose uptake. However, for many product formation rates, finding realistic
empirical relationships is a challenging task. In some cases Michaelis Menten-like formalae for
product synthesis rates (π) are used, e.g.,

π(t) =
πmaxµ(t)

kπ + µ(t)
[54] (1.12a)

or

π(t) =
πmaxγ(t)

kπ + γ(t)
[60]. (1.12b)

Additionally, in some cases where inhibiting substances are present, inhibition terms (kI/(kI + I))
need to be added to the equation of product formation [60, 61]. The choice of kinetics describing
state variables of interest and the quality of their parameterisation is essential for the predictive
power of process models [62].

Model Type Thirdly, depending on the amount of kinetic information available, one can choose
to either construct the dynamic process model entirely out of kinetic relationships [54, 59, 61] or
employ dFBA which draws additional information from the incorporated stoichiometric matrix
[29, 56, 63]. Originally, the disadvantage of dFBA was its slowness compared to kinetic models as
multiple LPs have to be solved for each finite element. However recently, dFBA was implemented
as an nonlinear optimal control problem in order to efficiently optimize process design [56].

Target Metric Typically in biotechnology, engineers aim to optimize their process in respect
to one of the TRY metrics [64]. TRY stands for titer (i.e., concentration, g L−1), rate (i.e.,
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productivity, g h−1), or yield (g g−1 product/substrate). In reality, one has to chose a target
metric that fits their process of interest, depending on the exact product and its downstream
processing. Therefore, even more target metrics have been employed, e.g., volumetric productivity
(g h−1 L−1), specific yield (g g−1 product/ biomass), or even economically justified combinations
of metrics [65].

1.3. Plasmid DNA Production

Together with small molecules and proteins, plasmid DNA (pDNA) is an important product of
biotechnology [66]. The bulk of pDNA currently produced is either for transfection of mammalian
cells for gene therapy [67] or for the production of mRNA vaccines [68]. Additionally, several DNA
vaccines are in development to combat vexing diseases like HIV, HPV, Ebola, Zika and many
more [69]. Meanwhile, a number of DNA vaccines have been approved worldwide for veterinary
applications, for example against West Nile virus infection of horses [70] or melanoma in dogs
[71]. The recent popularity of DNA vaccines is due to their many advantages, most importantly
the ease of production, development and transport [66]. However, relatively high amounts of
pDNA and are needed per vaccination shot and, therefore, the optimization of its production is
of strong economic interest.

To increase pDNA production, several studies have been conducted. An overview of their
results is depicted in Figure 1.12. Most studies used common laboratory E. coli strains as starting
point for establishing potent production organisms [72]. Improvements were made by screening
of favorable strains or via metabolic engineering through the introduction and knocking-out of
genes to antibiotic-free selection systems and other highly optimized production strains [72].
Apart from maximizing the productivity three prerequisites are required for the design of pDNA
production process.

1. pDNA can be present in an open circular, linear, or supercoild form. However, the supercoild
form is of the most importance as it is generally considered more favorable for transfection
of mammalian cells [73, 74].

2. Historically, a detrimental loss of plasmid during the production process was mitigated by
the introduction of antibiotic resistance selection systems. However, using these systems
comes with two main disadvantages. Firstly, cells are forced to shift metabolic resources
from the production of pDNA to the production of antibiotic resistance proteins [75].
Secondly, antibiotic resistance genes may be detrimental for patients and, therefore, they
have to be removed in the downstream processing. Studies showed that these disadvantages
can be alleviated by renounce antibiotic selection systems all together [76].

3. Finally, European Medicines Agency (EMA) and U.S. Food and Drug Administration
(FDA) require production with defined growth medium for pharmaceutical safety [66].

Conceptually, most strategies for increasing the pDNA production can be put into three
categories: (1) reducing the growth rate, (2) ensuring a constant supply of precursor metabolites,
and (3) optimising the plasmid itself. However, the exact method of how (1) or (2) is achieved
differs widely between studies. In the following paragraphs I will present an overview of published
approaches.

Growth Rate Reduction Studies on continuous cultures showed that a low growth rate
increases the specific productivity of pDNA [98]. To achieve the same effect in batch fermentations,
scientists designed a medium that releases glucose enzymatically and thus limits the glucose
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Figure 1.12.: Overview of reported volumetric and specific yields of pDNA production
studies [50, 76–84, 84–93, 93–97].

uptake rate and subsequently growth of bacteria [78]. An alternative method for reduction of the
glucose uptake rate was achieved by knocking-out the main uptake pathway of glucose increasing
pDNA productivity [90]. Instead of limiting the carbon uptake, also a oxygen limitation proved
to have a beneficial effect [79, 99].

Precursor Supplementation One example for ensuring constant pDNA precursor supplementation
is the deletion of pyruvate kinase which forces metabolization of glucose over the pentose phosphate
pathway [75, 86, 100]. Alternatively, scientists used of stoichiometric models to optimize the
growth medium [85]. Moreover, one study emphasized the importance of aromatic amino acids
(Phe, Tyr, Trp) in the medium for redirecting molecules to the nucleotide synthesis pathways
[87]. Additionally, the effect of amount and type of nitrogen source in the growth medium have
been shown to impact pDNA production [82]. As adding pDNA precursor molecules directly to
the growth medium may be very costly, economical aspects need to be kept in mind [83].

Plasmid Optimization Further potential for optimization is the pDNA itself, for example, the
reduction of its size since longer pDNA has been linked to lower volumetric yields [101]. Other
approaches involved heat induced origins of replication that increase the plasmid copy number at
higher temperatures than 37 ◦C [50, 96]. However, higher temperatures come with physiological
trade-offs and therefore the amplitude and timing of heat induction is of importance [102].
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1.4. Finger Sweat Analysis

As established in Section 1.2 ”Metabolic Models“, we can gain significant biological insight through
measurements of biological systems with high-throughput analytical chemistry methods [1].
Here I focus on the analysis of metabolite measurements, which is aptly called metabolomics
[103]. Typically, metabolomic data is obtained by analysis of biological material with liquid
chromatography-mass spectrometry (LC-MS). The origin of the biological samples can be very
diverse, for example, cell supernatants or cell lysates for single cell cultures [104]. However, for
multicellular organisms like humans, biofluids like blood [105], urine [106], saliva [107], tears [108],
or sweat [109] can be investigated.

The most classical approach to obtain metabolome information is the measurement of blood,
which has been used for centuries. Blood takes a very prominent role in animal bio-fluids since it
is present in all organs. It is, therefore, relatively simple to generalize from blood measurements to
the whole organism [105]. Moreover, many drugs are injected into the blood stream which makes
it an obvious choice to measure the metabolic behaviour of a drug. However, it has two major
drawbacks. Firstly, blood not only contains many metabolites, but also proteins and (blood) cells
in a high concentration. Since the latter two hamper metabolite measurements they have to be
removed before LC-MS analysis [110]. Secondly, drawing blood is a cumbersome procedure for the
patient and, additionally, in many cases requires qualified personnel which impairs measurement
during real life settings [111].

Historically, body fluids other than blood were not easy to sample in large enough quantities
for accurate analysis. This changed with the emergence of more and more sensitive LC-MS
machines. With them, it is possible to qualitatively and quantitatively identify metabolites in
concentrations as low as pg µL−1. This development rendered the analysis of metabolites in sweat
feasible [111, 112]. Recent studies found that there is a plethora of metabolites to be found in
sweat (Figure 1.13) and hypothesize that sweat is a promising matrix for biomarker discovery
[113].

One advantage of finger sweat analysis compared to blood is the ease of sampling. There are
different sampling protocols which can be as simple as holding a filter paper between fingertips
which can easily done from home without trained personnel [111, 114, 115]. This facilitates the
study of metabolic time courses within the real life settings of patients. A flow chart of finger
sweat sampling is given in Figure 1.14. Moreover, finger sweat analysis has been of particular
interest for forensic scientists for two reasons. Firstly, finger sweat can be sampled and analysed
from finger prints after the sample donor already left the location [112]. Secondly it is possible to
differentiate if a patient ingested a substance (e.g., a narcotic) or just came in touch with it by
looking at the presence of metabolic degradation products of a substance of interest [112].

For forensic scientists often a qualitative answer to their questions is enough, however, for
many medical applications a quantitative estimation of measured metabolites is of importance.
In principle it is possible to get this information with LC-MS analysis since it can be set up as a
quantitative method with calibration curves [103]. However, in combination with the previously
mentioned sweat sampling techniques the recovery of quantitative data gets more complex. The
reason for this is our inability to control the amount a patient sweats at a given time point. Finger
tips have one of the highest densities of eccrine sweat glands on the human body [116]. The sweat
flux, however, is highly variable, depending not only on interindividual differences, but also on
temperature, humidity, exercise and further factors. Even with conservative estimates a variability
of sweat flux on the finger tips between 0.05 and 1mg cm−2 min−1 needs to be accounted for
[116–120]. This variability has to be expected and measurements of sweat metabolites have to be
corrected accordingly. The correction of finger sweat metabolome measurements for the respective
sampled sweat volume is from now on referred to as normalization.
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Figure 1.13.: (Finger) sweat is a valuable source of metabolites and potential biomarkers
[113].

A method of normalization is to use capillary forces and microfluidics to get exact volumes of
sweat already show to work in several studies [121, 122]. This, however, needs a relatively large
sample area and more sophisticated sample methods. Therefore, it cannot easily be adopted for
short interval finger sweat analysis. The problem for quantification of metabolite concentrations
in the finger sweat has not been addressed up to date [112, 114].

1.4.1. Finger Sweat Models

As the structure of human sweat gland is very complex [123] sophisticated microfluidic models
have been developed to simulate the concentration time series of metabolites during their secretion
[124]. Moreover, the mode of partitioning (i.e., the passing of metabolites from the cytosol into
the sweat) may change depending on the metabolite. While for many external metabolites (e.g.,
drugs or food compounds) a passive partitioning (via diffusion) is expected, for more common
molecules in the cell active partitioning (e.g., Na+ or Cl-) or even active production by the sweat
gland (e.g. lactate) are possible [124]. Therefore, while the concentration of some metabolites
measured in sweat may correlate with concentrations in the blood, this must not mean that it
can be generally assumed [124].

1.4.2. Size Effect Normalization Methods

Although, before this thesis, the post-measurement normalization of finger sweat has been
overlooked, similar variability exist for other biofluid measurements. For example, in urine, the
concentrations of metabolites heavily depends on the amount of liquid a patient drinks before
the study. These variability is usually referred to as size effect, which need to be corrected with
size effect normalization methods for (semi-)quantitative analysis [125]. Several methods for size
effect normalization have been published [126].
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1.4. Finger Sweat Analysis

Figure 1.14.: Schematic figure of sweat sampling as described in [111]. First the study
participants wash their hands, then they press their index finger and thumb
on a filter paper for one minute. The filter paper can be collected and
submitted to an analytical laboratory, where the metabolites in the filter
paper are resuspended and measured with LC-MS [111].

Internal Standard Normalization One example is the internal standard normalization (IS).
One can define one (or, theoretically, multiple) internal biomarker which concentration fluctuates
little over time (e.g., creatinine in urine or blood) [126]. All measured metabolite abundances in
one sample can then be divided (i.e., normalized) by the amount of the internal standard. IS
has two critical disadvantages: (1) IS hinges on the assumption that fluctuations do not happen
at all which is unlikely to be true [127]. (2) after normalization with IS, all measurements are
biased by the measurement error of the internal standard [126].

Total Sum of Signal Normalization If information on internal standards are not available,
one can try total sum of signal normalization (TSN) [125, 127]. With TSN all metabolite
abundances in one sample are divided by the total sum of all metabolite abundances in one
sample. TSN is also sometimes referred to as MSTUS [128]. Scientists have argued against TSN
as the assumption that the sum of all metabolite abundances is constant over time is probably
incorrect, e.g., when a patient has a meal we would expect higher total amounts of metabolites in
the blood [129].

Probabilistc Quotient Normalization Alternatively, probabilistic quotient normalization
(PQN) assumes that the average quotient of abundance of many metabolites between two samples
is approximately 1 [129]. Comparative studies have found that PQN is a good option for size
effect normalization [125, 128].

Many other normalization methods have been developed so far [125, 128, 130], however, they all
work by dividing measured abundances by a non-physical normalization constant, thus rendering
absolute quantification impossible.
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2. Research Objectives

My research can be divided into two major projects: (1) finger sweat metabolome measurement
normalization and (2) plasmid DNA production process optimization. The objectives of each
project are described in the following paragraphs.

2.1. Finger Sweat Normalization
Measurements of the finger sweat metabolome bear large potential for clinical studies and
personalized medicine, due to the plethora of metabolites present. To fully harness its potential,
quantitative results on metabolite concentrations have to be obtained. This, however, remains very
tricky, due to an ever-changing rate of sweating on the finger tips of patients. There are so many
factors influencing the sweat rate (e.g., temperature, stress, food, drugs, disease, etc.) reported
that it is virtually impossible to control for them all. Moreover, one cannot directly measure the
finger sweat rate without drastically complicating the sampling procedure (Figure 1.14) which is
one of the main advantages of finger sweat measurements to begin with. Therefore, the finger
sweat metabolome data have to be normalized in respect to the sweat rate after measurements are
performed. In my research, I tried to answer the question: can we find a suitable normalization
strategy for finger sweat measurements to enable quantification?

2.2. Plasmid DNA Production Optimization
The industrial production is a key step in the manufacturing process of RNA or DNA vaccines or
pharmaceuticals for gene therapy. Therefore, its production within EMA and FDA guidelines is
essential. In this project, I used genome scale metabolic models of E. coli to comprehensively
examine the addition and removal of various nutrients in the growth medium to answer the
question: how can we optimize the growth medium to enhance the productivity of an industrial
pDNA production system?
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3. Results

This cumulative PhD thesis contains three scientific articles that have been published in
international research journals.

3.1. Publication I: Finger sweat analysis enables short
interval metabolic biomonitoring in humans

Julia Brunmair†, Mathias Gotsmy†, Laura Niederstaetter, Benjamin Neuditschko, Andrea Bileck,
Astrid Slany, Max Lennart Feuerstein, Clemens Langbauer, Lukas Janker, Jürgen Zanghellini,
Samuel M. Meier-Menches and Christopher Gerner. Nature Communications, 2021, 12(1), 5993.

Figure 3.1.: Graphical summary of my first publication [131]. With our model we can
estimate C(t)V (t) (right hand side panels) from the measured ˜︂M(t) (left
hand side panel).

In this study we described a novel analytical method for personalized medicine. We analysed
metabolites (e.g., potential biomarkers or xenobiotics) in the composition of sweat from the
finger tips. In a case study, my experimental collaborators were able to detect caffeine and its
degradation metabolites in the finger sweat of patients that previously ingested either coffee or
purified caffeine. Although we were initially able to show great qualitative results, quantitative
analysis was obstructed by an unknown sweat rate.
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3. Results

To address this problem, I developed a metabolic model comprised of caffeine and its three
major degradation products, paraxanthine, theobromine, and theophylline. Their concentration
over time can be described by a series of first order decays (i.e., a variation of the Bateman
function, Section 1.2.3.2). Furthermore, I discovered that the measured amount of each molecule
(˜︂M) at a time point (t) is equals to its concentration (C) times the sweat volume (V ),

˜︂M(t) = C(t)V (t) (3.1)

where, critically, ˜︂M and C are vectors, but V is a scalar variable. The resulting dynamic model
contains eight kinetic constants describing C and V (t) for every sample time point as parameters.
As in this equation system the number of parameters is smaller than the number of measured
points ˜︂M, we were able to fit the experimental data (˜︂M) onto the model.

Thus, we estimated personalized kinetic first-order degradation constants as well as sweat
volumes at every time point. An example for one measured finger sweat time series is given in
Figure 3.1, where on the left panel the raw experimental data is plotted and on the right panels
the estimated sweat volumes and concentrations can be seen.

Moreover, we were able to show that the kinetic constants are specific to individuals, and
change little over time.

To summarize, in this publication we show that we can measure and quantitatively estimate
biomarkers from finger sweat. Appendix A.1 includes the reprints from the original study
published in Nature Communications [131].
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3.2. Publication II

3.2. Publication II: Probabilistic quotient’s work and
pharmacokinetics’ contribution: countering size effect in
metabolic time series measurements.

Mathias Gotsmy†, Julia Brunmair†, Christoph Büschl, Christopher Gerner, and Jürgen Zanghellini.
BMC Bioinformatics, 2022, 23(1), 379.

Figure 3.2.: Graphical summary of my second publication [132]. Combining PKM and
PQN improves the goodness of normalization significantly.

In this publication we tried to improve on the normalization method we introduced in the
previous paper [131] which is hereinafter referred to as PKM. Critically, PKM only relies on
the (targeted) measurements of four metabolites in the sweat. However, as the finger sweat
measurements are set up, many more untargeted compounds are detected which may hold
potential information on the sweat rate and, thus, could improve the normalization.

Therefore, we combined a popular method for untargeted effect size normalization, namely PQN
(Section 1.4.2), with our previously developed PKM. We simulated finger sweat measurement
data and assessed the goodness of normalization of the different strategies. Moreover, I
streamlined the coding pipeline for size effect normalization by compiling a new Python package
size_effect_normalization which can be downloaded over GitHub [133].

With this novel method, were able to show that the combined model significantly outperformed
standalone PQN and PKM. A representation of reduction of relative and absolute error by
combining both models is shown in Figure 3.2. Moreover, we were able to show the our combined
model is able to overcome high fractions of noise in the measurement data.

Finally, we concluded that the presented model further improves goodness of normalization,
and is a important step towards quantification of metabolite concentrations in the finger sweat.
Appendix A.2 includes the reprints from the original study published in BMC Bioinformatics
[132].
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3. Results

3.3. Publication III: Sulfate limitation increases specific
plasmid DNA yield and productivity in E. coli fed-batch
processes.

Mathias Gotsmy, Florian Strobl, Florian Weiß, Petra Gruber, Barbara Kraus, Juergen Mairhofer,
and Jürgen Zanghellini. BMC Microbial Cell Factories, 2023, 22(1), 242.

Figure 3.3.: Graphical abstract of my third publication [134]. With bioprocess simulations
we were able to predict an optimized growth-decoupled fed-batch process
that improved the specific pDNA yield by 33%.

The regulatory standards for pDNA production in gene therapy are very strict, thus a defined
medium has to be used during its production. However, defined media reduce the productivity.
In this study, we tried to restore the productivity by improving the pDNA production process via
optimization of a defined growth medium.

Counterintuitively, our simulations predicted that not the addition but the depletion of certain
medium components can increase the productivity. This is due to a effect called growth-
decoupling, where cells are artificially stopped in their growth and metabolic resources are freed
up for production. Typically, growth-decoupling is triggered by inducible promoters that activate
sophisticated regulatory processes that have to be genetically introduced into a host organism.
However, FBA simulations we performed showed that this is is not necessary and the depletion of
certain medium components can have the same effect. As a proof of concept, we chose sulfate
from the list of potential decoupling components and developed a 3-stage fed-batch process (1.
batch, 2. fed-batch with cell growth, 3. fed-batch without cell growth). Moreover, we predicted
the optimal time point of switching with dFBA simulations (Figure 3.3).

Validation experiment results showed that growth-decoupling can be triggered by sulfate
depletion as predicted. Moreover, our optimized 3-stage process significantly increased the specific
pDNA yield by 33% and the productivity by 13%. Additionally, we showed that decoupling
via sulfate limitation has potential to improve the performance of many biomolecule production
processes. Appendix A.3 includes the reprints from the original study published in BMC Microbial
Cell Factories [134].
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4. Conclusion and Outlook

4.1. Finger Sweat Normalization

Comparative Study Studies have shown that for many metabolites there is significant
correlation between their blood concentration and their abundance in (finger) sweat [123, and
references therein]. However, this may not be true for all. It is known that for some endobiotic
metabolites their concentration varies between blood and sweat [123, 124]. This may be due to
active partition that occurs in the sweat glands, where, for example, ions are reabsorbed into
the cells [124]. Unfortunately, we were not able to conduct a comparative study between finger
sweat and blood concentrations of caffeine at this point, due to its organisational complexity
(e.g., approval by the ethics committee is harder to obtain for blood studies compared to finger
sweat). However, such a study would be immensely beneficial to further inform the normalization
model and to increase the confidence in finger sweat measurements.

Improving Statistical Normalization In the second study on finger sweat normalization we
combined our pharmacokinetic model with the statistical normalization method (PQN). However,
as size effect normalization is not a problem unique to our group, there are many bright minds
that try to develop more sophisticated normalization strategies, e.g., NOREVA [135]. Historically,
statistical normalization methods were not informed by time, which may be beneficial when
normalizing time-series data. However, recently NOREVA was updated explicitly to include
time-series data in their normalization strategy [136]. I coded my size_effect_normalization
Python package in a way that makes it very easy to switch the statistical normalization part from
PQN to another one [133]. In a future study, it may be able to further improve the normalization
procedure by including NOREVA (or other methods) into the model. A sensitivity analysis
could give insight which statistical normalization approach is most suitable for finger sweat data
normalization.

Personalized Medicine By modeling the amount of metabolite measured in the finger sweat
with PKM [131] as well as combined PKM and PQN models [132], we were able to estimate
personalized kinetic constants of xenobiotic degradation and elimination. For example, the
compound of our case study, caffeine, is metabolized by the cytochrome P450 enzyme CYP1A2
[137]. Moreover, a large number of popular drugs is metabolized by the same family of enzymes
[46]. As we found long lasting individual differences in the kinetic constants of degradation of
caffeine [131], there exist also significant differences in the speed of metabolization of drugs [46].
For example, 20% of the Asian population is considered a poor metabolizer of drugs dependent
on CYP2C19 [46]. As illustrated in Figure 4.1, this can lead to tremendous differences in
intracellular concentrations of affected drugs in patients. Unfortunately, in many cases individual
characteristics in metabolization speed are not tested for, however, with the easy and cheap
method of finger sweat sampling, this may change in the future.

Clinical Studies To receive approval from authorities like FDA and EMA, pharmacokinetic/
pharmacological data of a new drug have to be measured [138]. Important parameters for clinicians
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4. Conclusion and Outlook

Figure 4.1.: Significant fractions of the population are fast or slow metabolizers of common
drugs. The speed of metabolization (i.e., ke in Equation 1.7d) can have a
critical impact of intracellular concentration of a drug [46]. Note that only
ke was varied here.

are the maximum concentration after application and the rate of elimination [139]. After further
refinement and validation of the normalisation strategy, we argue that we will be able to support
or in some cases even replace cumbersome measurements of blood for clinical studies. This
would lead to a significant increase in the quality of life for clinical study participants. This may
especially be feasible for phase 3 clinical studies, where basic pharmacological parameters are
already known and a big cohort needs to be tested [140]. Furthermore, finger sweat sample could
be conducted more frequently which would allow more precise insights into the modes of action
of a drug in the human body.

Conclusion To summarize, I was able to develop a specialized normalization method for finger
sweat metabolome data that uses pharmacokinetic as well as statistical information. This method
allows the elevate finger sweat metabolomics from a purely qualitative to a quantitative method.

4.2. Plasmid DNA Production Optimization

Ease of Implementation Historically, biotechnological production improvements were made
by modifying internal reactions of a production organism. This can, for example, be achieved by
knocking-out (e.g., OptKnock [141]) or modulating the size of fluxes (e.g., MoVE [142]). The
disadvantage of these methods is, however, (1) that they require cumbersome genetic engineering
of the production strains. Moreover, (2) unless genetic controls are introduced (e.g., replacing
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4.2. Plasmid DNA Production Optimization

Figure 4.2.: Preliminary results for optimizing the initial sulfate concentration as well as
the feed rate (blue) compared to optimal process from publication 3 (red).
The method is adapted from the implementation of dFBA as an optimal
control problem [56]. Clearly, several challenges are unsolved, e.g., what
are realistic upper and lower bounds of the feed rate? or how long can the
starvation phase realistically be?

promoters with inducible promoters [143], or RNA interference [144]), these changes are static,
i.e., the cannot be easily changed throughout a production process. Finally, (3) all genetic
modifications to the production strain may be very specific to one product, so much of the work
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4. Conclusion and Outlook

done for strain design is not easily transferable to other production processes.
In my third publication on plasmid production, I demonstrate the effectiveness of sulfate

starvation. In future applications, it may overcome all three disadvantages [134]. (1) no genetic
changes in the production organism have to be performed, only the sulfate concentration in the
growth medium is optimized. (2) theoretically it should be possible to restore a growth by adding
sulfate after a starvation phase. This could be used to effectively extend production processes as
shown in a Master’s thesis of our group [145]. However, experimental validation of this theory
has not yet been conducted. (3) given that no sulfate is required in the biosynthesis pathway
of a biomolecule, sulfate starvation as a method for process optimization should in theory be
applicable to any biomolecule [134]. Therefore, we think that this method can be easily adapted
to many other processes.

Biological Explanation In my publication, I assume that the production rate of pDNA
increases upon starvation of sulfate. This assumption has been validated. However, we do not
know how exactly internal flux distributions change. Moreover, we know that some byproducts
like acetate are produced. However, simulations showed that not all of the excess glucose taken
up is converted to acetate right away. Therefore, insight into intracellular biological changes
during the starvation phase warrants further investigations.

Feed Rate Optimization When thinking of process optimization from a process control point
of view there are two control variables that are easy to set: (1) the initial concentration of sulfate
(i.e., the time point of sulfate starvation) and (2) the feed rate. Therefore, parallel optimization of
(1) and (2) is a logical step to further increase productivity in a follow-up study. Figure 4.2 shows
preliminary results of such an optimisation. However, the increase in control variables that can
be set makes the process design significantly more delicate. On one hand, optimizers (here, Ipopt
[146]) become less stable, and more attention has to be given to, e.g., parameter initialization.
On the other hand, one has to ensure that realistic biological boundaries are defined, which is
easier said than done, as there is often little information (e.g., on the interplay between feed rate
and production rate) available.

Other Decoupling Agents In publication 3 we selected sulfate as our decoupling agent of
choice from a list of potential candidates. Therefore, another follow-up study could investigate
how different decoupling agents (e.g., magnesium, potassium or trace element ions) would affect
the productivity. Studies that focused on the internal metabolites found significant differences in
ATP concentrations depending on the decoupling agents [147]. Moreover, alternative decoupling
agents could be used to improve the production of biomolecules that contain sulfur and thus
cannot be targeted with our previously published sulfate limitation strategy.

Conclusion To summarize, I was able to obtain valuable predictions on the metabolic fluxes
with and without the presence of sulfate and, subsequently, could use this information for process
optimization. My experimental collaborators were able to validate the predictions I made. I think
that sulfate limitation is a promising idea, that can and will be applied to several processes in
the future.
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A.1. Publication I: Finger sweat analysis enables short
interval metabolic biomonitoring in humans
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Bileck, Astrid Slany, Max Lennart Feuerstein, Clemens Langbauer, Lukas Janker, Jürgen
Zanghellini, Samuel M. Meier-Menches and Christopher Gerner

My role was shared first author. I conceived the idea of pharmacokinetic finger sweat normalization,
implemented the code, drafted sections on mathematical modeling, and compiled Figure 5.

45



ARTICLE

Finger sweat analysis enables short interval
metabolic biomonitoring in humans
Julia Brunmair 1,4, Mathias Gotsmy 1,4, Laura Niederstaetter1, Benjamin Neuditschko 1,2,

Andrea Bileck 1,3, Astrid Slany 1, Max Lennart Feuerstein1, Clemens Langbauer1, Lukas Janker 1,3,

Jürgen Zanghellini 1, Samuel M. Meier-Menches 1,2,3 & Christopher Gerner 1,3✉

Metabolic biomonitoring in humans is typically based on the sampling of blood, plasma or

urine. Although established in the clinical routine, these sampling procedures are often

associated with a variety of compliance issues, which are impeding time-course studies.

Here, we show that the metabolic profiling of the minute amounts of sweat sampled from

fingertips addresses this challenge. Sweat sampling from fingertips is non-invasive, robust

and can be accomplished repeatedly by untrained personnel. The sweat matrix represents a

rich source for metabolic phenotyping. We confirm the feasibility of short interval sampling of

sweat from the fingertips in time-course studies involving the consumption of coffee or the

ingestion of a caffeine capsule after a fasting interval, in which we successfully monitor all

known caffeine metabolites as well as endogenous metabolic responses. Fluctuations in the

rate of sweat production are accounted for by mathematical modelling to reveal individual

rates of caffeine uptake, metabolism and clearance. To conclude, metabotyping using sweat

from fingertips combined with mathematical network modelling shows promise for broad

applications in precision medicine by enabling the assessment of dynamic metabolic patterns,

which may overcome the limitations of purely compositional biomarkers.
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Metabolic phenotyping seeks to identify biomarkers for
diagnosis, prognosis or therapy and holds great promise
to improve clinical practice and especially, precision

medicine1,2. Despite considerable progress with respect to the
sensitive and parallel analysis of metabolites in metabolomics/
metabonomics studies3–7 and by mass spectrometry (MS)8,9, the
successful implementation of metabolites as biomarkers in the
clinical setting still represents a major challenge10–12. This is
illustrated by the strong individual and physiological background
variability2 and individual differences in ADME properties, the
latter impacting significantly on drug responses13,14. To the best
of our knowledge, current techniques of metabolic phenotyping
are largely focussed on generating static diagnostic pictures
because the commonly used biological fluids (e.g. plasma,
urine)15–17 or tissues do not routinely allow for time-course
studies. The implementation of dynamic metabolic responses as a
biomarker strategy may be desirable, but requires a considerable
number of data points on a single individual. Clearly, a non-
invasive method from an alternative biological fluid is required to
enable frequent sampling of the same individual in order to
obtain dynamic metabolic patterns in the frame of metabolic
phenotyping.

While fingerprints—the pattern of the ridge details left on a
surface—have been used for the identification of individuals since
the late 19th century18, their relevance for detecting metabolites,
as well as drugs and their metabolites has only recently been
discovered19,20. While drug substances detected in the fingerprint
may originate from accidental dermal contact, the detection of
drug-specific metabolites implies that the drug was ingested,
metabolised and subsequently excreted from sweat glands. Thus,
we hypothesised that sweat from the skin surface may represent a
promising source for metabolic biomonitoring. Sweat is a hypo-
tonic, slightly acidic biofluid secreted by the eccrine, apocrine and
apoeccrine glands located on the skin surface21,22. Eccrine sweat
from the fingertips is mainly composed of water (~99%), but
contains electrolytes, urea, lactate, amino acids, metal ions23,24

and a variety of endogenous metabolites, including peptides,
organic acids, carbohydrates, lipids, lipid-derived metabolites, as
well as xenobiotics21,22,25–27. Sweat composition is highly
dynamic, changes significantly with pathological states and may
reveal habits of diet, metabolic conditions or use of drugs and
supplements17,24,28. In fact, the analysis of sweat has already
been reported to assess individual metabolic characteristics29,30.
Clinical assays based on the analysis of sweat exist and include the
screening of newborn children for elevated chloride and sodium
levels to confirm cystic fibrosis via pilocarpine stimulated ionto-
phoresis or forensic and criminal investigations to test for illicit
drug use17,22,31–33. Furthermore, it has already been successfully
demonstrated that the analysis of proteins contained in sweat
enables not only the diagnosis of active tuberculosis but can also
be used to screen for lung cancer16,34,35, highlighting the potential
of sweat analysis for precision medicine36. Real-time monitoring
of biomarkers was demonstrated with wearable sweat sensors for
uric acid and tyrosine37, interleukin-6 and cortisol38 or electro-
lytes such as sodium, ammonium ions and lactate39.

However, these studies typically assessed a small number
of metabolites and relied on elaborate methods to collect
sweat, including sweat patches or artificially forcing sweat
production17,22,30. This was necessary because the detection
methods required relatively large absolute amounts of these
metabolites. It is known that eccrine glands on the fingertips
produce sweat at a rate of 50–500 nL cm−2 min−1 40. Thus, the
analysis of metabolites from sweat of the fingertips may be
achieved with sufficiently sensitive instrumentation, for example
MS41. Sample collection using sweat from fingertips requires no
patient pre-treatment or trained personnel, is safe and fast. Upon

optimising the entire workflow for the analysis of sweat from
the fingertips, we analysed 1792 samples from 40 participants,
which underlines its potential as a high-throughput metabolic
technology. Proof-of-principle studies based on the consumption
of coffee or ingestion of a caffeine capsule were designed to assess
metabolic time-series of each participant and provided evidence
of the feasibility of this approach. Fluctuations in the rate of sweat
production were accounted for by mathematical modelling of
the conversion of xenobiotics to their catabolic products (e.g.
caffeine to paraxanthine). In this study, we show that metabolic
phenotyping using sweat from fingertips combined with mathe-
matical network modelling may have far reaching relevance for
precision medicine, because it allows to obtain dynamic metabolic
responses of individuals.

Results
Sweat from the fingertips is a rich source for metabolic
phenotyping. A straight-forward workflow was established for
sampling and processing sweat samples from fingertips. In short,
hands are washed without soap and dried with a disposable paper
towel prior to each sampling time-point. For sweat collection, a
circular sampling unit standardised to 1.15 cm diameter was then
held between thumb and index finger for 1 min and was trans-
ferred with clean tweezers into an empty tube for storage
(Fig. 1a). The metabolites were extracted from the sampling units
using aqueous conditions and the resulting solution was directly
introduced into the liquid chromatography-mass spectrometry
(LC-MS) system for analysis. Sample collection and processing
required ~13 min per sample. Sampling can be performed by
untrained personnel in a highly frequent manner and the non-
invasive nature of the sampling facilitates patient compliance.
Data acquisition requires a further 7.5 min, which gives a total of
~20 min for the entire workflow per sample.

Based on the known rates of sweat production in eccrine
glands on the fingertips29,40, the median sweat volume collected
using this method can be estimated at around 200–2000 nL
(2 min × 2 cm2 × 50–500 nL min−1 cm−2) sweat per sample.
High-resolution MS using a Q Exactive HF orbitrap hyphe-
nated with an ultrahigh-performance liquid chromatography
(UHPLC) system proved suitable for metabolic phenotyping
from sweat samples (see methods). Initially, three participants
were sampled multiple times in an observational study in order
to evaluate the metabolic profile obtained from sweat of the
fingertips of each individual. In detail, the participants collected
sweat samples seven times per day at different intervals on 2
consecutive days and using both hands (see methods, study A).
A total of 250 metabolites were identified and verified
by external standards (Supplementary Data 1). Actually, many
known as well as previously unknown endogenous and
exogenous metabolites were identified in the sweat samples
with high confidence (Fig. 1b, c). We detected not only a
number of amino acid-related metabolites (e.g. tyrosine, leucine
or citrulline), but also hormones (e.g. melatonin or progester-
one). Newly identified metabolites include dopamine, proges-
terone and melatonin amongst others. Interestingly, we
observed many coffee-derived metabolites, including caffeine
and the related dimethyl– and methylxanthines. Principal
component analysis (PCA) using those metabolites revealed
that the samples clustered according to individuals (Fig. 1d).
This indicated that the molecular composition of sweat
associated with a given individual dominated the variances
derived from multiple sampling. Interestingly, the principal
components were strongly determined by the endogenous
metabolites histamine, tryptophan, tyrosine and arginine
(Supplementary Fig. 1). Moreover, we did not find notable
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differences of the sweat composition between the left and right
hand from a given individual (Fig. 1d).

Sampling sweat from the fingertips is reliable and robust.
Biomolecules are characterised by LC-MS according to retention
time (RT), the accurate mass of the molecular ion derived from
the full mass spectrum (MS1) and the fragmentation pattern
determined by tandem mass spectrometry (MS2). The experi-
mentally determined mass-to-charge ratios of 15 representative
metabolites showed mass deviations below <2 ppm, which are
typical for Q Exactive HF instruments (Supplementary Table 1).
The coefficient of variation (CV) of the RT determined for the
internal standard caffeine-(trimethyl-D9) was found to be 1%
across 636 injections (Fig. 2a, see methods, study A and C).
Caffeine-(trimethyl-D9) was injected with every sample at 10 pg

on column. The CV of the areas under curve (AUCs) across the
same sample set was 11% (n= 636). The CV improved slightly
when considering study A only (CV= 7%, n= 186), but
remained constant for study C (CV= 10%, n= 450). This indi-
cated that the performance of the LC-MS system was robust
across each sample set. MS2 spectra were of good quality and
provided high matching factors, which supported the identifica-
tion of previously known and newly identified metabolites found
in sweat, e.g. tryptophan42 and dopamine, respectively (Fig. 2b).
Caffeine and its three main metabolites paraxanthine, theo-
bromine and theophylline were spiked onto sampling units in the
range of 1–100 pg µL−1. These samples were processed according
to the above-mentioned procedures and linear calibration curves
were obtained with associated R2 > 0.997 (Fig. 2c). At con-
centrations of 100 fg µL−1, these molecules were still detected

Group Name RT (min)
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Fig. 1 Sweat from the fingertips enables individualised metabolic biomonitoring. A straight-forward workflow for sweat sampling and processing was
established and successfully applied to proof-of-principle studies to investigate caffeine metabolism in an individualised fashion. a Graphical summary of
the workflow including consumption of a cup of coffee or a caffeine capsule, sampling sweat from fingertips, the extraction of analytes and subsequent
LC-MS/MS analysis as well as data analysis with respective durations in minutes. Panel a was modified from Servier Medical Art, licensed under a Creative
Common Attribution 3.0 Generic License (http://smart.servier.com/) and BioRender (https://biorender.com/). Tf Tracefinder Software, Cd Compound
Discoverer Software (both Thermo Fisher Scientific). b Extracted ion chromatograms of exemplary sweat components are shown. Based on their retention
time, analytes were assigned to three groups as listed in c. c Identities of sweat constituents according to order of elution. CA chlorogenic acid, MX
methylxanhine, PX paraxanthine, TB theobromine, TP theophylline, Progest. progesterone. d Principal component analysis (PCA) of finger sweat samples
derived from the left (square) and right (circle) hand of three participants is depicted before and after coffee consumption at two different days (light and
dark colour). PCA was calculated with a set of 250 metabolites (Supplementary Data 1) and successfully clustered the finger sweat samples according to
the participants.
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with signal-to-noise ratios >100 on the Q Exactive HF. Com-
parison of a spiked and processed caffeine standard (10 pg µL−1)
to a directly injected caffeine standard (10 pg µL−1) yielded an
extraction efficiency of 93%. The lower limit of quantification
(LLOQ) was determined from the calibration curves as the mean
AUC plus ten times the standard deviation of caffeine and its
metabolites found in blank sampling units. This resulted in a
LOQ of 0.2 pg µL−1 for caffeine, 0.1 pg µL−1 for paraxanthine
and 1.7 pg µL−1 for theobromine (see Source Data). The AUCs
for theophylline in filter blanks and caffeine in tap water and
paper towels were below the limit of detection (LOD), which
was calculated as the mean AUC plus three times the standard
deviation.

Coffee consumption revealed coffee-specific xenobiotics in
finger sweat. After confirming sweat from the fingertips to con-
tain endogenous metabolites, as well as xenobiotics mainly related
to coffee consumption, we designed an intervention study with 11
participants, who consumed a standardised amount of coffee after
a 12 h fasting period with regard to caffeine-containing food (see
methods, study B). Two additional volunteers were sampled, who
did not consume coffee, thus representing the control group.
Sweat samples were collected before coffee consumption and
subsequently after 15, 30, 45, 60, 90 and 120 min. Caffeine is a
widely used stimulant of the central nervous system and features
an excellent oral bioavailability43,44. Since the ingestion of an

equivalent of a double espresso was already shown to have sys-
temic effects by affecting sleep behaviour45–47, we expected to
find caffeine and related xenobiotics upon coffee consumption in
sweat from the fingertips. The metabolite levels of the participants
before coffee consumption (0 min) revealed negligible amounts of
chlorogenic acid, trigonelline and caffeine, while the primary
metabolites of caffeine showed significant background levels (e.g.
paraxanthine, theobromine and theophylline). The control group
featured stable metabolite levels over time with small variations
probably stemming from fluctuations in the rate of sweat excre-
tion (Supplementary Fig. 2). Strikingly, the sweat from the fin-
gertips 15 min post consumption revealed 35 xenobiotics of 121
metabolites (29%) contained in coffee presently identified by us
from aqueous extracts of the roasted coffee beans used for this
study, including among others caffeine, theobromine, theophyl-
line, paraxanthine, methylxanthines, chlorogenic acid, trigonel-
line, methylsuccinic acid, quinic acid and iditol (Supplementary
Data 2). The AUCs of caffeine, chlorogenic acid and trigonelline
increased significantly in all volunteers as early as 15 min after
coffee consumption (Fig. 3a). The time-dependent sampling
revealed differences in kinetic properties of the coffee-specific
xenobiotics, especially regarding absorption and clearance rates.
For example, the AUCs of caffeine and chlorogenic acid peaked
after 15 min, followed by rapid clearance, while the AUCs of
the dimethylxanthines increased steadily over time on top of a
pre-existing pool (Fig. 3b). Several coffee-specific metabolites
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Fig. 2 LC-MS/MS analysis of metabolites from sweat of the fingertips is precise and robust. a Coefficients of variation of the retention times (RT) and
areas under the curve (AUC) of a set of LC-MS/MS runs, as well as AUCs for the coffee (study B) and caffeine capsule (study C.1) intervention studies
were determined for the internal standard caffeine-(trimethyl-D9). The means (boxes) and standard deviations are as follows: for the retention time
3.28 ± 0.02, for the coffee AUCs 1.80 ± 0.13 × 106, for the capsule AUCs 1.56 ± 0.15 × 106 and for all AUCs 1.63 ± 0.18 × 106. The dashed red line was set to
10%. b Head-to-tail comparison of the recorded MS2 spectrum (blue) to the reference spectrum from mzcloud (red) of tryptophan (left) and dopamine
(right) demonstrates high spectral quality supporting reliable compound identification. c Calibration curves for caffeine, theobromine, paraxanthine and
theophylline with respective correlation factors (R2) are shown. nAUC normalised area under the curve.
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displayed a number of isomers in their extracted ion chromato-
grams. For example, chlorogenic acid (m/z 355.1024, RT= 3.05
min) showed at least five isomers (Fig. 3c) as verified on MS2
level. The ratio of the relative peak intensities of chlorogenic acid
and its isomers was conserved when comparing coffee extracts
and sweat from the fingertip. This indicated that these isomers are
equally distributed into the water-soluble body compartment and
are equally cleared from body on a rapid timescale. Chlorogenic

acids and its isomers were not observed prior to coffee con-
sumption. Such a comparative analysis strategy may be used to
discover other xenobiotics distributed to sweat glands in a sys-
temic fashion as indicated by the yet unidentified feature detected
at m/z 337.0920 (Supplementary Fig. 3). These findings provide
evidence that ingested xenobiotics may be robustly detected in the
sweat from the fingertips, and their time-dependence mirrors
their pharmacokinetic properties.

Fig. 3 Xenobiotics are detected in a time-dependent manner in sweat from the fingertips after coffee consumption. a Levels of normalised areas under
the curve (nAUCs) for caffeine, chlorogenic acid and trigonelline, before (0) and 15 min (15) after coffee consumption are shown, demonstrating a
significant increase in all participants (n= 13 × 2 time-points) after 15 min. D’Agostino & Pearson test was performed to check normality of the data. Paired
two-tailed Wilcoxon signed rank tests were performed for 13 volunteer profiles, delivering a p-value= 0.0002 for caffeine, chlorogenic acid and
trigonelline. The mean nAUCs (boxes) and standard deviations are the following: for caffeine 4.8 ± 4.4 at 0min and 56 ± 35 at 15 min, for chlorogenic acid
0.03 ± 0.04 at 0min and 0.8 ± 0.7 at 15min, for trigonelline 1.0 ± 1.7 at 0min and 12 ± 16 at 15 min. b The temporal evolution of metabolite profiles is
exemplarily shown for one participant (Volunteer 3, study A). The sampling time-point 1440min represents the time-point before consumption on the
second sampling day. Whereas caffeine (violet) and chlorogenic acid AUCs (orange) were found to increase quickly after coffee consumption followed by
rapid clearance, the levels of theobromine, paraxanthine and theophylline (green) increased more slowly within the observation period. c Similarity of
extracted ion chromatograms (EIC) of chlorogenic acid and its isomers from coffee extracts and from sweat of the fingertips 15 min after coffee
consumption. The corresponding sample collected just before coffee consumption (0min) served as negative control.
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Finger sweat enables to elucidate individual metabolic traits.
The metabolism of caffeine by different hepatic enzymes is well
known48, and the catabolic products were successfully identified
in sweat from fingertips after coffee consumption (Fig. 4a, Sup-
plementary Table 1). However, dimethyl– and methylxanthines

may originate from both coffee beans and from endogenous
hepatic metabolism. Additionally, we observed significant back-
ground levels of these metabolites in sweat from the fingertips
before coffee consumption. In order to monitor the physiological
conversion of caffeine into dimethylxanthines by hepatic enzyme
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activity, we designed a study in which participants refrained from
consuming caffeine-containing products for at least 48 h before
ingesting a single caffeine capsule (200 mg). The caffeine capsule
and the longer fasting time were chosen to minimise background
contributions from catabolic products of caffeine. Forty volun-
teers were enrolled in this study and sweat from the fingertips was
sampled repeatedly over 27 h with up to 20 sample collections per
volunteer (see methods, study C.1 and C.2). Six individuals par-
ticipated in both the coffee consumption study (study B) and the
caffeine capsule study (study C.1). Indeed, their prolonged fasting
featured an improved baseline and revealed a significant decrease
of dimethylxanthines to negligible levels after the 48 h fasting
period compared to the 12 h fasting period (Fig. 4b). Ingestion of
the caffeine capsule significantly increased the abundance of
caffeine in sweat from fingertips in all volunteers already after
15 min, in accordance with coffee consumption. The caffeine
abundance remained elevated for at least 480 min in all volunteers
and returned close to baseline after 24 h (Supplementary Fig. 4).
The abundance of the primary metabolite paraxanthine increased
more slowly and peaked between 360 and 480 min post ingestion
(Fig. 4c). Individual metabolic time-courses revealed rather
striking differences regarding caffeine metabolism (Fig. 4d). For
example, volunteer profile 1 displayed a sharp increase in caffeine
abundance, which remained relatively constant over 480 min,
while paraxanthine abundance increased steadily during this
time period. In contrast, volunteer profile 2 featured a similar
increase in caffeine abundance, but started with an elevated
theobromine baseline, which also represented the main metabo-
lite of caffeine. These findings suggest that sampling sweat from
the fingertips may be of particular interest for characterising
personalised metabolic traits. Cytochrome P450 enzymes are key
players in the hepatic metabolism and several isoforms are known
to process xenobiotics at different rates48. Thus, xenobiotics like
caffeine may be subjected to variable metabolisms depending on
the individual expression of these enzymes. This may reveal
individual physiological responses to xenobiotic exposure that
may serve as proxies for hepatic metabolic activity. Therefore, the
influence of the metabolic turnover of caffeine depending on the
expression of cytochrome P450 enzymes was investigated in vitro
using HepG2 cells (Supplementary Information, Supplementary
note 1). Indeed, we found that HepG2 cells would increase the
metabolic turnover of caffeine to its primary metabolites upon
chemical induction of cytochrome P450 enzymes with benzo-[a]-
pyrene (Supplementary Fig. 6). Moreover, the induction of these

enzymes also affected the relative ratios of the primary metabo-
lites significantly. This supports the conclusion that the individual
enzymatic activity status may modulate the formation of meta-
bolites subsequently detected in sweat from the fingertips.
Statistical analysis of the metabolites reproducibly detected in all
47 (study C.1+ C.2) or 27 (study C.2) volunteer profiles revealed
the significant upregulation of caffeine, paraxanthine and theo-
phylline, as well as adenosine 4 h post ingestion. Theophylline
and paraxanthine reflected the metabolic turnover of caffeine
within each volunteer profile, while adenosine was identified as an
endogenous metabolite upregulated upon caffeine ingestion
(Fig. 4e, f). Another endogenous metabolite, dopamine was sig-
nificantly induced 5 h after consuming a caffeine capsule in 27
participants (study C.2, Fig. 4f, Supplementary Fig. 5). Adenosine
and dopamine are not directly related to caffeine metabolism.

Mathematical modelling quantifies individual dynamic meta-
bolic responses. Fluctuations in the rate of sweat excretion cause
significant variance in the collected sweat volumes. This repre-
sents a fundamental challenge for the time-course analysis of
sweat from the fingertips. For example, the apparent down-
regulation of all analytes at 120 min in volunteer profile 2 (Fig. 4d,
arrow) strongly suggests that at that time-point less sweat was
collected in comparison to the adjacent measurements (see
Fig. 5e, arrow). Moreover, the magnitude of this effect on the
apparent concentration is unknown. We used dynamic metabolic
network modelling to discern the effects of the sweat volume on
the measured time-series of caffeine catabolism in the body (see
methods). In brief, caffeine uptake and clearance via its major
metabolic products paraxanthine, theobromine and theophylline
can be described by first order kinetics (Fig. 5a)49,50. Due to
fasting we can set the initial caffeine concentration at time 0 min
to zero (Fig. 4b). Additionally, we consider the sweat volume to be
a function of time, but assume that at every time-point the sweat
volume is constant across all metabolites. The assumption holds if
the modelled metabolites are not reabsorbed during sweating.
The resulting mathematical model was fitted to each volunteer.
We estimated the kinetic constants, the initial concentrations of
paraxanthine, theobromine and theophylline and the sweat
volumes at each time-point, as exemplified for volunteer profiles
1 and 2 (Fig. 5b, c, e, f and Supplementary Table 2). In both cases
our model accurately described individual caffeine metabolisms
with good accuracy (goodness of fit R2adjusted > 0.90). Besides the
possibility to estimate the rate of sweat excretion by means of

Fig. 4 Consumption of a caffeine capsule enables to elucidate individualised metabolic traits from sweat of the fingertips. a Caffeine metabolism
including known metabolic routes, metabolites and related enzymes: CYP cytochromes P450, NAT2 N-acetyltransferase 2, XDH xanthine dehydrogenase,
DM demethylase. These metabolites were all detected in sweat from the fingertips. b Six individuals participated in the coffee as well as in the caffeine
capsule studies. The AUCs of caffeine and the primary metabolites are compared depending on the duration of the fasting period (12 vs 48 h, n= 6).
Longer fasting significantly reduced the amounts of xenobiotics in sweat from the fingertips. It was tested with Kolmogorov–Smirnov test using
Dallal–Wilkinson-Lilliefors p-value if values came from a Gaussian distribution. A two-tailed paired t-test (6 participants × 2 time-points) was performed for
caffeine, paraxanthine, theobromine, and theophylline. c Shared-control plot with data from 47 volunteer profiles for paraxanthine is shown. The mean
differences between the control group (time-point before consumption, red line) and each of the sampling time-points post ingestion is plotted on the y-
axis. Paraxanthine is significantly upregulated from the sampling time-point 1.5 h on after ingesting a caffeine capsule. The effect size is presented as a
bootstrap 95% confidence interval. Mean difference, lower and upper limits are provided in the Source data. d Exemplary metabolic profiles of two
participants, demonstrating individual differences in metabolic properties regarding caffeine metabolism as exemplified by the preferential formation of
paraxanthine in volunteer profile 1 in contrast to theobromine in case of volunteer profile 2. Caffeine is displayed on the right y-axis, while theobromine,
paraxanthine and theophylline are displayed on the left y-axis. Error bars represent standard deviation of two technical replicates (n= 2) for each of the 11
time-points. Means and standard deviations can be found in the Source data. e Metabolic changes 4 h after consuming a caffeine capsule demonstrated
with a volcano plot illustrating the similarities of metabolite regulations in 47 volunteer profiles. Next to the known caffeine metabolites, adenosine is
regulated. f Boxplots for adenosine and dopamine before and 4 h/5 h after consuming a 200mg caffeine capsule shown for 47 (study C.1 and C.2)/ 27
(study C.2) volunteer profiles. Normality of the data was checked with D’Agostino-Pearson test. A two-tailed Wilcoxon Signed Rank Test was performed
for adenosine. A tow-tailed t-test was performed for dopamine. nAUC normalised area under the curve. Boxes represent the means of each time-point. All
statistical test results as well as means and standard deviations can be found in the methods section.
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this modelling approach, the shape of the curves visualises the
dynamic metabolic patterns of each individual.

Interestingly, the kinetic constants for uptake (k1) of caffeine is
within the standard deviation, while the constants of conversion
(k2, k3, k4) are approximately half of the literature values of
population averages for blood plasma (Supplementary Table 2)51.
Whereas the fractional conversion of caffeine to the main
metabolic product paraxanthine in volunteer profile 1 is similar

to what is described as population average51,52 we saw substantial
differences for volunteer profile 2, who displayed theobromine as
the main metabolic product of caffeine (Supplementary Table 3).
We found individual differences to be robust over time. In Fig. 5d
a two-dimensional PCA plot of the fitted conversion constants of
caffeine (k2, k3, k4, k5) is shown. Individuals who generated at
least two volunteer profiles (i.e. independent time-series) are
marked with large symbols. Their respective colour indicates the

Fig. 5 Metabolic networks facilitate the discovery of dynamic metabolic patterns from individuals. a Network of caffeine and its major metabolites that
was used for fitting of the concentration time-series and the constraints of fitting parameters. b, e Estimated sweat volumes (Vsweat) in µL of the
measurements of volunteer profiles 1 and 2, respectively. Each bar represents a single Vsweat. The error bars show the 95% confidence intervals of the
model prediction. c, f Fitted concentration time-series of caffeine, paraxanthine, theobromine and theophylline for volunteer profiles 1 and 2 (compare
Fig. 4d). The lines refer to the fitted concentration and the symbols refer to the measured values ( eM) divided by Vsweat at each time-point (Eq. (1)). The
error bars show the 95% confidence intervals of the model prediction (n= 2 technical replicates times 4 metabolites times 15 time-points per profile). The
arrow marks the sweat volume of profile 2 at 120min (see text). A visual representation of the influence of the sweat volume on the fit is shown in
Supplementary Fig. 7. d Two-dimensional PCA plot of the fitted caffeine conversion constants. Volunteer profiles (i.e. time-series) from the same
participant are plotted with large, coloured symbols whereas participants who contributed only once are marked with small grey circles. The colours
represent the month of sampling.
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month of sampling. Not only do two profiles of the same
volunteer within one month cluster close to each other (e.g. star
symbols), but also the ones that were sampled more than 1.5
years apart are in close proximity (e.g. diamond symbols). The
biggest difference of volunteer profiles from one participant was
found for profiles 4 and 26 (big circles). For volunteer profile 26,
however, we observed an overall poor fit (R2adjusted of 0.56
compared to 0.984 for profile 4). On another note, the original
axes in Fig. 5d show that the catabolism of caffeine into
paraxanthine (k2) and direct elimination (k5) is negatively
correlated, whereas the catabolism of caffeine into theobromine
(k3) and theophylline (k4) is positively correlated. This correlation
is known in literature and is likely due to common hepatic
cytochrome P450 enzymes catalysing the conversion of caffeine to
theobromine and theophylline (Fig. 4a)53.

Targeted assays can be established for clinical implementation.
The described metabolic phenotyping approach represents a
powerful discovery tool for endogenous and xenobiotic com-
pounds found in sweat of the fingertips. In order to evaluate the
feasibility of clinical implementation, we established a targeted
assay for caffeine, and the primary metabolites theobromine,
theophylline and paraxanthine on a triple quadrupole MS using
multiple reaction monitoring (MRM, see Supplementary Infor-
mation, Supplementary note 2 and Supplementary Table 4). For
this purpose, five participants consumed a standardised coffee on
3 independent days after a 12 h caffeine-free fasting period and
samples were collected at different time intervals in analogy to
study B. The assay was validated and revealed linear ranges
between 0.5 and 300 pg µL−1 of the respective metabolites
(0.25–150 pg on column, Supplementary Fig. 9). LOD values were
<0.2 pg µL−1 per collected sweat sample. The overall process
efficiencies were generally >88% and the precision of 25 pg µL−1

spiked metabolite was <1% (Supplementary Table 5), while the
overall CV of the AUC of caffeine 5 h after coffee consumption of
all volunteers over 3 independent days was 22% (Supplementary
Fig. 10). This suggests that targeted assays based on the analysis of
sweat from the fingertips can be successfully established directly
from metabolic phenotyping.

Discussion
The present study provides evidence that sweat from the finger-
tips can be used for dynamic metabolic phenotyping. The sample
collection is non-invasive, safe and can be accomplished by
untrained personnel, supporting patience compliance47. Other
minimally to non-invasive approaches such as microneedle pat-
ches or sweat patches, require longer collection periods of several
minutes up to days, aiming to collect sweat at a single time-
point17,54,55. In our approach, time-course analyses with frequent
sampling can be performed due to the facile collection procedure.
Our setup allows the analysis of unstimulated sweat in contrast to
published approaches where sweat production was induced with
pilocarpine iontophoresis (coupled with the Macroduct sweat
collector) or physical exercise. Such stimuli were shown to alter
the physiological sweat composition, which may introduce bias
into the analysis17,56. The entire workflow can be accomplished
within 20 min per sample, and has the potential to support large
scale longitudinal metabolic studies. However, metabotyping
the small amounts of sweat requires sufficiently sensitive analy-
tical equipment. Although our approach centres on metabolic
profiling using dedicated high-resolution instrumentation, we
demonstrated the successful transfer to a targeted assay. Targeted
MS is now routinely implemented in the clinical laboratory57.

Sweat from the fingertips represents a rich source for metabolic
phenotyping. Considering that a given metabolite may be

represented in an LC-MS experiment by several features due to
different adducts and charge states58, it may be estimated that
several thousand distinct metabolites can potentially be identified
in sweat from the fingertips using this methodology. So far, we
have verified 250 metabolites with external standards (Supple-
mentary Data 1). The analysis is robust and sensitive with limits
of detection of metabolites found in the sub-picogram range per
sweat sample. Indeed, the detection limits found in this study
showed improved sensitivity compared to previously used
methodologies59. As a result, numerous endogenous metabolites
were identified, which have not yet been described in sweat,
including dopamine, progesterone and melatonin (Fig. 1). This
highlights the potential of this approach to successfully identify
low-abundant metabolites, which are challenging to detect in
other biofluids due to matrix effects (e.g. melatonin in blood or
plasma)59–61. Analysis of the area under the curve of the internal
standard revealed an overall coefficient of variation of 11% across
636 samples and indicated acceptable precision (Fig. 2).

Proof-of-principle intervention studies were successfully car-
ried out and support the applicability of the method. In two
separate studies, participants were asked to consume a standar-
dised cup of coffee or ingest a caffeine capsule after a caffeine–
and theobromine-free diet for 12–72 h. After ingestion, sweat
samples were collected up to 20 times within 27 h per volunteer.
Sampling intervals of 15 min were feasible. Coffee consumption
led to a significant upregulation of caffeine, chlorogenic acid and
trigonelline within 15 min in all participants (Fig. 3, study B).
This suggested a fast absorption and distribution of these xeno-
biotics, which also displayed distinct absorption and excretion
kinetics (Fig. 3c). Altogether, 35 metabolites originating from
coffee were detected in sweat from the fingertips.

The observation of significant background levels of dimethyl-
xanthines after coffee consumption in study B pointed towards a
confounding problem with respect to the origin of these caffeine
metabolites. In fact, their temporal increase may have been due to
their absorption from consumed coffee and hepatic caffeine
metabolism. In order to resolve this question, we designed
an additional study in which participants ingested a caffeine
capsule (200 mg) only and adhered to a longer caffeine– and
theobromine-free fasting regime. Of note, the longer fasting
periods (48–72 h) significantly reduced the background levels of
the primary metabolites (Fig. 4b, study C) compared to 12 h
fasting (study B). Interestingly, statistical analysis of the metabolic
profiling data from study C, involving the caffeine capsule,
revealed a significant upregulation of caffeine and of the meta-
bolic products theophylline and paraxanthine across all partici-
pants after 480 min (Fig. 4). Moreover, participants featured
significantly increased levels of dopamine after 5 h. Being an
endogenous metabolite, it is plausible to assume that this upre-
gulation corresponded to a physiological response to caffeine
ingestion. Increased dopamine levels were already observed upon
caffeine62, as well as coffee consumption by others63. Adenosine
was significantly induced 4 h post ingestion of a caffeine capsule.
Caffeine exerts most of its biological actions such as countering
sleep pressure via antagonising adenosine receptors64. It has been
demonstrated that caffeine increases plasma adenosine con-
centration potentially via receptor-mediated regulation of the
plasma adenosine concentration65 and this finding seems to
extend to sweat from the fingertips. We have previously described
individual opposing responses with regard to anti-inflammatory
effects after coffee consumption66. Such studies required the
collection of blood from volunteers and this could now be
facilitated by analysing sweat from the fingertips. Adenosine is
also known to be an anti-inflammatory mediator that may
regulate neutrophils, macrophages and lymphocytes through
interacting with surface receptors of these cells67. It is important
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to note that sweat from the fingertips may not only reveal
ingested xenobiotics, but also endogenously produced metabolic
products and physiological responses to bioactive xenobiotics.

Individual metabolic traits were then investigated by analysing
the time-dependent metabolic evolution of caffeine upon ingest-
ing a caffeine capsule (Fig. 4d). We found that sweat from the
fingertips may be successfully used for the personalised assess-
ment of such metabolic activities. Importantly, this strategy may
be extended to other xenobiotics or drugs and their causally
related metabolic products in order to obtain insight into specific
processes of human metabolism in an individualised manner.
Moreover, by inducing cytochrome P450 enzymes in HepG2 cells
in vitro (Supplementary note 1), we were able to modulate the
metabolic turnover of caffeine and the formation of specific
catabolic products. This suggests that the relative ratios of caffeine
to its primary metabolites may reflect hepatic activity, since the
physiological hepatic metabolism of caffeine relies on a similar set
of enzymes as in HepG2 cells.

Variations in the sweat volume over the course of the study
represented a major challenge for normalisation and quantifi-
cation. Mathematical modelling overcame this issue by addres-
sing molecular constraints of substrate-product relations of
enzymatically linked metabolites. Successful modelling has two
central prerequisites: firstly, the measurement of at least
two metabolites with known dynamics and, secondly, a linear
relationship of said metabolites to the sweat rate. Importantly,
this allowed us to compute a sweat volume that is proportional
to all metabolites at each time-point. This approach was capable
of delivering estimates of individual rate constants for drug
uptake, metabolism and clearance and therefore allows to model
dynamic metabolic patterns in individuals (Fig. 5). Sampling
sweat from the fingertips enables time-course studies, which are
evaluated by means of conversion rates of metabolically related
substance classes. Their observed robustness suggests that
the development of personalised tests via finger sweat mea-
surements is feasible. For example, caffeine elimination was
shown to be a proxy for liver function68, and we hypothesise
that a future study using an experimental setup identical to the
caffeine capsule study could differentiate between patients with
cirrhotic and normal livers. Additionally, we argue that the
method presented here provides a convenient solution to the
normalisation problem of finger sweat, which previously only
has been tackled by employing microcapillaries69. However,
they require large volumes of sweat, and thus need either long
sampling times or require physical exercise. Both are detri-
mental when measuring fast pharmacokinetics, for example, for
caffeine this would circumvent the requirement of absolute
quantitative information of a single measurement.

In summary, metabolic phenotyping from sweat of the fin-
gertips in conjunction with mathematical modelling is a pro-
mising approach to obtain dynamic metabolic patterns from
individuals that may overcome the limitations of conventional
composition biomarkers. Further research is currently performed
in order to consolidate the potential of sampling sweat from the
fingertips for applications in precision medicine.

Methods
Reagents and chemicals. LC-MS grade methanol, water, acetonitrile and formic
acid used during sample preparation and LC-MS/MS analysis were purchased from
VWR chemicals (Vienna, AT). Xenobiotic and metabolite standards (caffeine,
theobromine, theophylline, paraxanthine, 1-methylxanthine, 3-methylxanthine, 7-
methylxanthine, 1-methyluric acid, 3-methyluric acid, 1,7-dimethyluric acid, 3,7-
dimethyluric acid and 1,3,7-trimethyluric acid, chlorogenic acid, xanthine, 5-
Acetylamino-6-formylamino-3-methyluracil, dopamine and proteinogenic amino
acids) were either purchased from Sigma–Aldrich (Vienna, AT) or Honeywell
Fluka (GER). Caffeine capsules were bought from Mach dich wach! GmbH (GER).
Sampling units were made from filter papers (precision wipes, number= 7552,
white, 11 × 21 cm, Kimtech Science, Kimberly-Clark Professional, USA) using a
circular puncher of 1cm2.

Standard solutions and calibration samples. Stock solutions of 1 mgmL−1 of the
analytical standards and the internal deuterated standards caffeine-(trimethyl-D9)
and N-acetyl-tryptophan in methanol were prepared and stored at 4 °C. For caf-
feine, paraxanthine, theobromine and theophylline calibration curves were gener-
ated by spiking onto sampling units with the following concentrations: 0.1, 1, 5, 10,
15, 25, 50 and 100 pg µL−1. The internal deuterated standards were prepared at a
concentration of 1 pg µL−1 in an aqueous solution containing 0.2% formic acid,
which served as the extraction solution for all samples.

Cohort design. Altogether, 21 males and 19 females with ages between 20–55 years
and a BMI of 21 ± 8 kg m−2 were enrolled in this study. Participants had different
dietary habits regarding the consumption of coffee; rare to regular consumption.
Prior sampling, participants were required to fast caffeinated food (e.g. chocolate)
and drinks (e.g. coffee, tea and energy drinks) for a period of 12–72 h. Sweat
samples from the fingertips were collected at different time intervals and in the
presence or absence of an intervention (see Table 1, studies A–C). Study B involved
the consumption of a standardised coffee (equivalent to a double espresso), while
studies C.1 and C.2 involves the ingestion of a caffeine capsule (200 mg). Seven
volunteers have participated in more than one study, which gave a total of 47
volunteer profiles for study C. It was ensured that the volunteers did not touch the
prepared coffee with their fingers.

Collection of sweat from the fingertips. Sampling units of 1 cm2 circular surface
were pre-wetted with 3 µL water and provided in 0.5 mL Eppendorf tubes. For each
sweat collection, volunteers cleaned their hands using warm tap water and dried
them with disposable paper towels. Volunteers kept their hands open in the air at
room temperature for 1 min. Then, the sampling unit was placed between thumb
and index finger using a clean tweezer and held for 1 min. Sweat formation was not
forced. Filters were transferred back to labelled 0.5 mL Eppendorf tubes using a
clean tweezer and stored at 4 °C until sample preparation.

Sample preparation. Coffee extracts were prepared taking an aliquot of 1 mL of a
250 mL coffee cup used for study A and B, which was centrifuged for 10 min at
15000 × g. The supernatant was diluted 1:100, 1:1000 and 1:10000 with the
extraction solution consisting of an aqueous solution of caffeine-(trimethyl-D9)
(1 pg µL−1) with 0.2% formic acid. The dilutions were again centrifuged before
analysis by LC-MS/MS.

For the extraction of metabolites from the sampling units, 120 µL of the
extraction solution consisting of an aqueous solution of caffeine-(trimethyl-D9)
(1 pg µL−1) with 0.2% formic acid was added into the 0.5 mL Eppendorf tube
containing the sampling unit. The metabolites were extracted by pipetting up and
down 15 times. The sampling unit was pelleted on the bottom of the tube and the
supernatant was transferred into HPLC vials equipped with a 200 µL V-shape glass
insert (both Macherey-Nagel GmbH & Co.KG) and analysed by LC-MS/MS.
Additionally, 10 unused filter, 10 paper towels and 10 tap water blanks were
extracted similarly to determine potential contaminants and metabolite
background levels.

LC-MS/MS analysis. A Q Exactive HF (Thermo Fisher Scientific) mass spectro-
meter coupled to a Vanquish UHPLC System (Thermo Fisher Scientific) was
employed for this study. Chromatography was performed using a Kinetex XB-C18

Table 1 Overview of the three studies discussed in this publication.

Study Volunteers Design Fasting [hours] Sampling time-points

A 2 males, 1 female Observational 12 0, 15, 30, 45, 60, 90 and 120min on 2 consecutive days
B 7 males, 6 females Double espresso or

control group
12 0, 15, 30, 45, 60, 90 and 120min

C.1 8 males, 9 females Caffeine capsule 48 0, 15, 30, 45, 60, 90, 120min and 3, 4, 6, 8, 24, 25, 26 and 27 h
C.2 16 males, 11 females Caffeine capsule 72 0, 15, 30, 45, 60, 90, 120min and 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14

and 24 h
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column (100 Å, 2.6 µm, 100 × 2.1 mm, Phenomenex Inc.). Mobile phase A con-
sisted of water with 0.2% formic acid, mobile phase B of methanol with 0.2%
formic acid and the following gradient program was run: 1–5% B in 0.3 min and
then 5–40% B from 0.3–4.5 min, followed by a column washing phase of 1.4 min at
80% B and a re-equilibration phase of 1.6 min at 1% B resulting in a total runtime
of 7.5 min. Flow rate was set to 500 µL min−1, the column temperature to 40 °C, the
injection volume was 10 µL and the injection peak was found at RT= 0.3 min. All
samples were analysed in technical duplicates. An untargeted mass spectrometric
approach was applied for compound identification. Electrospray ionisation was
performed in positive and negative ionisation mode. MS scan range was m/z
100–1000 and the resolution was set to 60000 (at m/z 200). The four most
abundant ions of the full scan were selected for HCD fragmentation applying 30 eV
collision energy. Fragments were analysed at a resolution of 15000 (at m/z 200).
Dynamic exclusion was applied for 6 s. The instrument was controlled using
Xcalibur software (Thermo Fisher Scientific).

Data analysis. Raw files generated by the Q Exactive HF instrument were analysed
using the Compound Discoverer Software 3.1 (Thermo Fisher Scientific). Identified
compounds were manually reviewed using Xcalibur 4.0 Qual browser and Freestyle
(version 1.3.115.19) (both Thermo Fisher Scientific) and the obtained MS2 spectra
were compared to reference spectra, which were retrieved from mzcloud (Copy-
right © 2013–2020 HighChem LLC, Slovakia). The match factor cut-off from
mzcould was 80, while the mass tolerances were 5 and 10 ppm on MS1 and MS2
levels, respectively. Moreover, the identity of compounds suggested by Compound
Discoverer was verified by analysing purchased standards using the same LC-MS
method. The Tracefinder Software 4.1 (Thermo Fisher Scientific) was used for peak
integration and calculation of peak areas. The generated batch table was exported
and further processed with Microsoft Excel (version 1808), GraphPad Prism
(version 6.07) and the Perseus software (version 1.6.12.0)70, the letter being used
for the principal component analysis. Untargeted metabolic profiling by mass
spectrometry delivered more than 50000 reproducible sweat-specific features per
analysis. Microsoft PowerPoint (version 1808) was used for creating figures.

Statistical analysis. D’Agostino-Pearson tests as well as Kolmogorov–Smirnov tests
with Dallal–Wilkinson–Lilliefors p-value were performed to test if values came from a
gaussian distribution. Two-tailed, paired t-tests or Wilcoxon Signed Rank Tests were
performed for mass spectrometry data using GraphPad Prism (Version 6.07) to
evaluate the significance of the abundance increase/decrease of compounds and their
metabolites. For Fig. 4b it was tested with Kolmogorov–Smirnov test using
Dallal–Wilkinson–Lilliefors p-value if values came from a Gaussian distribution. A
two-tailed paired t-test (6 participants × 2 time-points) for caffeine (p-value= 0.1033,
t= 51.990, df= 5), paraxanthine (p-value= 0.0297, t= 3.012, df= 5), theobromine
(p-value= 0.0203, t= 3.353, df= 5) and theophylline (p-value= 0.0118, t= 3.866,
df= 5). Means and standard deviations are for caffeine 25 ± 25 for 12 h fasting and
4.8 ± 2.7 for 48 h fasting, for paraxanthine 6.6 ± 5.5 for 12 h fasting and 2.2 ± 2.1 for
48 h fasting, for theobromine 4.2 ± 2.0 for 12 h fasting and 1.5 ± 1.0 for 48 h fasting,
for theophylline 1.1 ± 0.8 for 12 h fasting and 0.5 ± 0.5 for 48 h fasting. For Fig. 4f
normality of the data was checked with D’Agostino-Pearson test. A two-tailed Wil-
coxon Signed Rank Test was performed for adenosine (n= 47, sum of positive
ranks= 1020, sum of negative ranks=−17,00, sum of signed ranks= 1003, p-
value ≤ 0.0001). A tow-tailed t-test was performed for dopamine (p-value ≤ 0.0001,
t= 5.416, df= 26). The means and standard deviations are the following: for ade-
nosine 0.1 ± 0.2 at 0 h and 0.7 ± 1.2 at 4 h, for dopamine 0.1 ± 0.1 at 0 h and 0.2 ± 0.1
at 5 h. Volcano plots were obtained using Perseus Software70, setting the false dis-
covery rate (FDR) to 0.05 and the minimal fold change (s0) to 0.1. For Fig. 4e the
−log p-value for caffeine is 19.02, for paraxanthine 14.48, for theophylline 9.16 and
for adenosine 1.14. Shared-control plots were generated with an R script71.

Mathematical modelling. The model describes the concentration time-series of
the ingested free caffeine and four sweat metabolites (caffeine, paraxanthine,
theobromine, theophylline) within the constraints of following assumptions
(Fig. 5a):

● caffeine metabolism can be described by mass-action kinetics in a one-
compartment body model49,50,

● the uptake of external caffeine is instantaneous (i.e. no lag time between
ingestion and absorption into the body),

● the steady-state volume of distribution of caffeine, paraxanthine,
theobromine and theophylline is instantaneously reached and time
independent50,51,

● concentration enrichment due to an increase in the water fraction from
blood to sweat and dilution through the inability of bound caffeine to
diffuse cancel each other out72,

● apparent metabolite concentrations are proportional to the sweat volume
(see Supplementary Fig. 8, Eq. (1)), and finally,

● sweat volumes are time dependent, but the same for all metabolites at one
time-point.

A mathematical formulation of the problem of fluctuating sweat volumes is given
in Eq. (1), where eMðtÞ is the measured mass vector of the internal metabolites and

C(t) is the underlying concentration vector. Vsweat(t) is a time-dependent volume that
represents the sampled sweat volume. The resulting mathematical model is explained
in detail in the Supplementary Note 3: Mathematical Model. Briefly, we describe the
kinetics of caffeine metabolism with a system of ordinary differential equations
(Supplementary Information, Supplementary Note 3: Mathematical Model, Eq. (2)).
Subsequently we connect the solution of this equation over the sweat volume to the
concentrations measured in the caffeine capsule study. Our model only contains
variables that are either known and are thus fixed (volume of distribution,
bioavailability, and ingested dose of caffeine) or have a concrete physical meaning but
are unknown and need to be fitted (kinetic parameters, initial concentrations of
paraxanthine, theobromine, and theophylline, sweat volumes). It allows to estimate
absolute concentrations of tri- and dimethylxanthines in the finger sweat. Note that
Vsweat(t) is not constant over time and unknown and thus a unique fitting parameter
at each sampled time-point. Therefore, the number of parameters that need to be
fitted for the model is equal to the number of time-points (one Vsweat value per time-
point) plus the number of parameters of the kinetic model. This requires the
simultaneous fitting of the kinetics of multiple metabolites upon assuming that at each
time-point Vsweat(t) is constant for similar metabolites (Eq. (2)). By doing so the
amount of data points that can be used for fitting is multiplied by the number of
metabolites while the number of parameters for Vsweat(t) stays constant. Thus (as long
as the kinetic model is not overly complex) the system is sufficiently determined and
data fitting is feasible.

eMðtÞ ¼ V sweatðtÞCðtÞ ð1Þ

V sweat ¼ Vcaffeine
sweat ¼ Vparaxanthine

sweat ¼ V theobromine
sweat ¼ V

theophylline

sweat
ð2Þ

Caffeine and its major catabolic products paraxanthine, theobromine and
theophylline were modelled subject to the following constraints: first order kinetics for
all reactions (k1 to k8) with 0 ≤ k1 ≤ 10 h−1 and 0 ≤ k2-8 ≤ 0.2 h−1; initial concentration
of 0 for caffeine and 0 ≤Ci

0 ≤ 1 µg L−1 for dimethylxanthines; and variability of Vsweat

between 0.05 ≤Vsweat(t) ≤ 4 µL. Generally, literature values of kinetic constants and
sweat rates (without exercise) are well within the bounds of the model40,51,73,74.
Finally, Supplementary Eq. (15) was used to fit the experimental data of all volunteers
of the caffeine capsule study normalised by the machine standard individually. Fitting
was performed in Python 3.7 with the SciPy package (version 1.6.1) using the
curve_fit function and the integrated trust region reflective algorithm with default
numerical tolerances (10−8)75. To find optimal settings for the fitting procedure we
performed a systematic investigation of the hyperparameters in the Supplementary
Note 4: Sensitivity Analysis. There, our implementation of the generalised, adaptive
robust-loss function76 in combination with Monte Carlo sampling of initial
parameters for 100 times and selecting the solution with the lowest overall loss
resulted in the smallest errors. Therefore, the same settings were adopted for this
study. Moreover, with the estimated CVs associated to the fitting procedure from the
Sensitivity Analysis we calculated confidence intervals (n= 120, df= 93), which are
shown as error bars in Fig. 5b, c, e, and f (and Supplementary Table 2). Finally, we
performed a PCA of the standard scaled kinetic constants of caffeine degradation (k2,
k3, k4, k5) of all volunteer profiles (Fig. 5d).

Programs for mathematical modelling. PCA of kinetic parameters (Fig. 5d) was
performed with Python 3.7 and scikit-learn (version 0.23.2). Levene-test in sensitivity
analysis was performed with Python 3.7 and scipy (version 1.6.1). The mathematical
modelling and sensitivity analysis was performed with Python 3.7 heavily relying on
packages scipy (version 1.6.1) and robust-loss-pytorch (version 0.0.2).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data supporting the findings from this this study are available within the manuscript
and its supplementary information. The metabolomics datasets have been deposited in
the MetaboLights repository with the accession numbers MTBLS2772 and
MTBLS277677. Any remaining raw data will be available from the corresponding author
upon reasonable request. Source data are provided with this paper.

Code availability
The code for mathematical model fitting and sensitivity analysis is available on GitHub
(https://github.com/gotsmy/finger_sweat and https://doi.org/10.5281/zenodo.5222967)78.
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Probabilistic quotient’s work 
and pharmacokinetics’ contribution: 
countering size effect in metabolic time series 
measurements
Mathias Gotsmy1,2†, Julia Brunmair1†, Christoph Büschl1, Christopher Gerner1,3 and Jürgen Zanghellini1* 

Introduction
In recent years, the analysis of the sweat metabolome has received increased attention from 
several fields of study [1–3]. For example, sweat has been in the focus of forensic scientists 
since it is possible to analyze metabolomic profiles of finger-prints that have been found 
(e.g., at a crime scene) [4]. Also, drug testing can easily be performed on sweat samples. 
One advantage of this method is to not only identify already illegal substances but their 
metabolic degradation products as well, thereby allowing scientist to distinguish between 
drug consumption and mere contact [1]. Another application of sweat metabolomics is 

Abstract 

Metabolomic time course analyses of biofluids are highly relevant for clinical diagnos-
tics. However, many sampling methods suffer from unknown sample sizes, commonly 
known as size effects. This prevents absolute quantification of biomarkers. Recently, 
several mathematical post acquisition normalization methods have been developed to 
overcome these problems either by exploiting already known pharmacokinetic infor-
mation or by statistical means. Here we present an improved normalization method, 
MIX, that combines the advantages of both approaches. It couples two normalization 
terms, one based on a pharmacokinetic model (PKM) and the other representing a 
popular statistical approach, probabilistic quotient normalization (PQN), in a single 
model. To test the performance of MIX, we generated synthetic data closely resem-
bling real finger sweat metabolome measurements. We show that MIX normalization 
successfully tackles key weaknesses of the individual strategies: it (i) reduces the risk of 
overfitting with PKM, and (ii), contrary to PQN, it allows to compute sample volumes. 
Finally, we validate MIX by using real finger sweat as well as blood plasma metabolome 
data and demonstrate that MIX allows to better and more robustly correct for size 
effects. In conclusion, the MIX method improves the reliability and robustness of quan-
titative biomarker detection in finger sweat and other biofluids, paving the way for 
biomarker discovery and hypothesis generation from metabolomic time course data.
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in diagnostics for personalized medicine, where the focus is put on discerning metabolic 
states of the body and trying to optimize nutrition and treatment based upon information 
of biomarkers in sweat [5–7].

Sweat metabolomics offers several technical advantages. Firstly, sweat is a rich source of 
biomolecules and thus offers great potential for biomarker discovery [8, 9]. Secondly, sweat 
sampling is easy compared to sampling other biofluids (e.g., blood or urine). Moreover, it is 
non-invasive and can, in principle, be rapidly repeated.

Several sampling methods have been developed [2, 3, 9, 10]. However, most of them work 
in a very similar manner: a water absorbing material is put onto the skin’s surface to col-
lect sweat for some (short) time. Sweat metabolites are subsequently extracted from this 
material and analyzed [3, 10]. Methods differ, however, in if and how they induce sweating. 
Some methods induce increased sweating by physical exercise [9] or chemical stimulation 
[2], whereas in other studies no sweat induction is performed and the natural sweat rate is 
sufficient for metabolomic analysis [3, 11].

Regardless of the exact sampling method, most of the above mentioned studies suffer one 
major drawback. The sweat flux is highly variable, depending not only on interindividual 
differences but also on body location, temperature, humidity, exercise, and further fac-
tors that may change multiple times over the course of one day [12, 13]. For example, even 
with conservative estimates a variability of sweat flux, qsweat , on the finger-tips between 
0.05 and 1 mg cm−2 min−1 needs to be accounted for [13–16]. This is a major challenge for 
comparative or quantitative studies, which has been acknowledged by many, e.g. [1, 4, 8, 
17–19], however only actively approached by few – most notably [9].

The key problem is associated to the fact that often one is interested in the true metab-
olite concentrations, C ∈ Rnmetabolites , of nmetabolites metabolites, which is obscured by an 
unknown and time-dependent sweat flux. Thus, the measured metabolites’ intensities are 
not proportional to C but to the metabolite mass vector, M ∈ R

nmetabolites,

Here asample and τ denote the surface area of skin that is sampled and the time it takes 
to collect one sample, respectively. We emphasize that throughout the manuscript, 
the mass of a metabolite is defined as the measured abundance of the metabolite in a 
measured sample and neither as the molar mass or mass to charge ratio. Moreover, we 
acknowledge that without a calibration curve, the measured abundances have an arbi-
trary peak-area unit and are thus strictly neither absolute masses nor concentrations. 
The proportionality constant that scales measured intensities to mass units is deter-
mined by the calibration curve. The proper calibration curve is not further discussed 
here but is assumed to be linear and available when applicable.

Metabolic concentration shifts happen in the span of double-digit minutes to hours, 
whereas sampling times are usually low single-digit minutes, therefore it is possible to 
assume that C changes little over the integration time τ [20]. Thus (1) simplifies to 

with an unknown sweat volume during sampling

(1)M̃(t) = asample

∫ t

t−τ

C(t ′) qsweat(t
′) dt ′.

(2a)M̃(t) ≈ C(t) V (t),
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 and the problems reads: given M̃ , how can we compute C if we don’t know V ?
The need to calculate absolute metabolite concentrations from small biological sam-

ples of unknown volume is not unique to sweat metabolomics but known throughout 
untargeted metabolomics. The problem is commonly referred to as size effects [21]. For 
the sake of consistency with previous publications on this topic, we will use the term 
“size effects“ throughout this publication. We emphasize that in this context, it specifi-
cally refers to perceived differences in measured abundances due to changing sample 
volumes and/or dilutions and not to effects of different numbers of measurements per 
sample, also referred to as sample size effects [22].

Three strategies have been developed to tackle size effects:
Direct sweat volume measurement. Measuring V  , for instance via microfluidics [9, 

23, 24], is the most straight forward method to solve (2) and typically very accurate 
with minimally required volumes in the range of ∼ 5 to 100 µ L [9, 23, 24]. However, in 
the case of sweat sampling, it may take quite some time, large sample areas, or increased 
(i.e., induced) sweating to collect enough sweat for robust volume quantification. 
Another alternative is the volume estimation via paired standards [25], however, such 
a method increases the complexity of sample preparation. Either option would impede 
fast and easy sample collection and analysis.

Indirect sweat volume computation. If the chemical kinetics of targeted metabolite 
concentrations are known, then kinetic parameters and the sweat volume at each time 
point can be simultaneously determined by fitting the measured mass vector to Eq. 2. 
Recently, we used this strategy to computationally resolve not only sample volumes 
in the nL to single digit µL-range but also accurately quantify personalized metabolic 
response patterns upon caffeine ingestion [20]. Albeit feasible for the determination of 
individual differences with knowledge of reaction kinetics, this method quickly becomes 
unconstrained when too little prior information is available. Therefore, it is not suited 
for the discovery of unknown reaction kinetics. Moreover, this method requires several 
sampling time points to allow modeling the kinetics of different metabolites, thereby 
decreasing the simplicity of sampling.

Statistical normalization. With this approach the aim is to normalize the mass vec-
tor by the apparent mass of a marker that scales proportionally to the sample volume 
so that the ratio becomes (at least approximately) independent of the sample volume. 
Various strategies have been developed for untargeted metabolomics; for example, nor-
malization by total measured signal [26], and singular value decomposition-based nor-
malization [27]. However, one of the best performing methods – probabilistic quotient 
normalization (PQN) – simply assumes that the median of the ratio of two apparent 
mass vectors is proportional to the sample volume [21, 28–30]. Although PQN does not 
allow one to compute sample volumes per se, it enables one to assess differential changes 
[28].

In this study, we explore the performance of three different normalization methods 
on synthetic data. We illustrate the disadvantages of two previously published meth-
ods only focusing on either targeted or untargeted metabolites, respectively. A third 

(2b)V (t) := asample

∫ t

t−τ

qsweat(t
′) dt ′,
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normalization method is developed by combining both strategies in a single MIX model. 
We show that MIX significantly outperforms its preceding normalization methods. To 
validate the results, we use MIX to characterize caffeine metabolization measured in the 
finger sweat as well as diphenhydramine metabolization measured in blood plasma.

Theory
Probabilistic quotient normalization

Definition. Probabilistic quotient normalization (PQN) assumes that for a large, untar-
geted set of metabolites the median metabolite concentration fold change between two 
samples (e.g., two measured time points, tr and ts ) is approximately 1, 

Consequently, fold changes calculated from M̃ instead of C are proportional to the ratio 
of V ,

with

 In order to minimize the influence of experimental errors

often replaces the dedicated sample in M̃j(ts) in the denominator of Eq. 3c [28]. There-
fore, the normalization quotient by PQN is calculated as

QPQN is a relative measure and distributes around 1. In analogy to Eq. 3b, we define its 
relation to the (sweat) volume V PQN as

where V ref denotes some unknown, time-independent reference (sweat) volume. Note 
that with real data only QPQN(t) values can be calculated, but V PQN(t) as well as V ref 
remain unknown.

Discussion. Mref
j  can be defined differently depending on the underlying data. How-

ever, the choice of reference is usually not critical to the outcome of PQN [28]. As no 
control or blank measurements are available, and the abundances of metabolites can 
range several orders of magnitudes, in this study, we used a metabolite-wise median 
reference for QPQN calculation. Moreover, PQN might be sensitive to missing values; 

(3a)QC = median

{
Cj(tr)

Cj(ts)

}
≈ 1, j ∈ [1, nmetabolites].

(3b)QM = QC V (tr)

V (ts)
≈

V (tr)

V (ts)

(3c)QM = median

{
M̃j(tr)

M̃j(ts)

}
, j ∈ [1, nmetabolites].

(4)Mref
j = median

{
M̃j(ti)

}
, i ∈ [1, ntime points]

(5)QPQN(t) = median

{
M̃j(t)

Mref
j

}
, j ∈ [1, nmetabolites].

(6)QPQN(t) = V PQN(t)

V ref ,
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however, in this study, we only focused on (real and synthetic) data sets where 100% of 
values were present.

The biggest advantage of PQN is that no calibration curves and prior knowledge about 
changes over time of measured metabolites are required. Moreover, PQN is independent 
of the number of sample points measured in a time series. However, its major drawback 
is that the normalization quotient is not an absolute quantification and only shows rela-
tive changes. I.e., it does not quantify V  as given in Eq. 2 directly with an absolute value 
but instead normalizes relative abundances between samples and time points. Another 
critical assumption is that sweat metabolite concentrations need to be – on average – 
constant over the sampled time series. Whereas this is reasonable to assume for the 
sweat of healthy humans [20], one has to take care when investigating disease states (for 
example, cystic fibrosis, which is known to alter the sweat’s composition [31]).

Pharmacokinetic normalization

Definition. In the pharmacokinetic model (PKM) we assume that we know at least the 
functional dependence, i.e. the pharmacokinetics, but not necessarily the value of the k 
(pharmaco-)kinetic parameters θ ∈ R

k for 2 ≤ ℓ ≤ nmetabolites metabolites. Without loss 
of generality we (re-)sort M̃ such that the first ℓ elements (collected in the vector M̃ℓ ) 
correspond to metabolites with known pharmacokinetic dependence, while the remain-
ing nmetabolites − ℓ elements (collected in the vector M̃ℓ+ ) correspond to metabolites with 
unknown kinetics. Then Eq. 2 takes the form of 

with physically meaningful bounds;

V PKM(t) as well as θ can be obtained by parametric fitting of M̃PKM
ℓ (t) . Note that this 

allows not only to compute absolute values of CPKM
ℓ (t; θ) but – with V PKM(t) – also of all 

other concentrations via Cℓ+(t) = M̃ℓ+(t)/V
PKM(t).

As V PKM(ti) may be different at every time step ti , we need to know the (pharmaco-)
kinetics of at least two metabolites; otherwise, the number of parameters is larger than 
the number of data points.

Discussion. The biggest advantage of this method is that it can implicitly estimate abso-
lute values of V  without the need for direct measurements. Therefore, sweat volumes 
can become smaller than the minimum required in volumetric methods, and shorter 
sampling times also become possible. A drawback of this method is the fact that it is 
only feasible if one has prior knowledge of relevant pharmacological parameters (i.e., 
ingested dose of metabolites of interest, volume of distribution, body mass of specimen, 
range of expected kinetic constants), which is limiting the approach to studies where 
at least two metabolites together with their pharmacokinetics are well known. Moreo-
ver, calibration curves of metabolites of interest and sufficiently many samples in a time 

(7a)
(
M̃ℓ (t)

M̃ℓ+(t)

)
=

(
Cℓ (t; θ)

Cℓ+(t)

)
V

PKM(t)

(7b)Vlower bound ≤ V PKM(t) ≤ Vupper bound,

(7c)θlower bound ≤ θ ≤ θupper bound.
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series are required for robustly fitting the equation system. In a previously performed 
sensitivity analysis, an increase in the quality of fit was observed as the number of sam-
ples increased from 15 to 20 time points per measured time series [20].

Mixed normalization

Definition. The mixed normalization model (MIX) is a combination of PQN and PKM. It 
is designed to incorporate robust statistics of untargeted metabolomics via its PQN term 
as well as an absolute estimation of V  via its PKM term.

Optimal parameters of MIX are found via optimization of two equations, 

and

where additional transformations T (PKM and PQN term) and scaling Z (PQN term) 
can be applied to account for random and systematic errors (section "Hyperparameters") 
and VMIX(t) and θ are constrained between physically meaningful bounds,

 E.g. bounds for V  can be calculated by Eq. 2b and minimal and maximal sweat rates 
from literature.

Discussion. We hypothesize that the MIX model can combine the advantages of PQN 
and PKM normalization models. Moreover, we believe that MIX inherits the statistical 
robustness of PQN while simultaneously estimating absolute values as fitted by PKM. 
Several prerequisites are necessary for normalization with PKM or MIX. However, if 
they are fulfilled, the improved goodness of normalization by using MIX instead of PKM 
usually does not come with an additional price as in many metabolomics studies, tar-
geted and untargeted metabolites are measured in combination, and thus, all additional 
data required by MIX is already available.

Methods
Implementation

A generalized version of PKM and MIX (where an arbitrary number of independent 
metabolite kinetics can be modeled) was implemented as a Python class. As input it 
requires the number of metabolites used for kinetic modeling ( ℓ ), a vector of time points 
as well as the measured mass data ( M̃ , matrix with time points in the rows and metabo-
lites in the columns). MIX additionally takes a QPQN = [QPQN(t1), ...,Q

PQN(tntime points)]
T 

vector (calculated with the PQN method from all metabolites, nmetabolites ) for all time 
points of a time series. Upon optimization (carried out with self.optimize_
monte_carlo, which is a wrapper for SciPy’s optimize.curve_fit [32]) the kinetic 

(8a)T

[(
M̃ℓ (t)

M̃ℓ+(t)

)]
= T

[(
Cℓ (t; θ)
Cℓ+(t)

)
VMIX(t)

]

(8b)ZT
[
QPQN(t)

]
= ZT

[
VMIX(t)

]

(8c)Vlower bound ≤ VMIX(t) ≤ Vupper bound,

(8d)θlower bound ≤ θ ≤ θupper bound.
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constants and sweat volumes are optimized to the measured data by minimizing the 
functions listed in Eqs. 9b and 9c for PKM and MIX respectively: 

where

Var(V) is the variance of V (which is the vector of estimated V over all time points), T 
is a transformation function, Z is a scaling function, and L is the loss function. The key 
difference between PKM and MIX is that the fitted V  in MIX are biased towards relative 
abundances as calculated by PQN. An important additional hyperparameter of the MIX 
model is � , which weights the error residuals of LPKM and LPQN . Its calculation is dis-
cussed in section "Hyperparameters". If � = 1 , the MIX model simplifies again to a pure 
PKM model.

To summarize, an overview of the differences between PKM and MIX models is given 
in Additional file 1: Table S1 and a flow chart of data processing for MIX normalization 
is given in Fig. 1.

Hyperparameters

Several hyperparameters can be set for the PKM and MIX Python classes.

(9a)min(LMIX) = min(LPKM + L
PQN)

(9b)L
PKM =

ntime points∑

i=1

nmetabolites∑

j=1

L

[
�

(
T (M̃ij)− T (Cij V

MIX
i )

)2]
,

(9c)L
PQN =

ntime points∑

i=1

L

[
(1− �)

(
ZT (VMIX)i − ZT (QPQN)i

)2
Var(T (VMIX))

]
,

Fig. 1  Flow chart for data processing for MIX normalization
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Kinetic function. Firstly, it is possible to choose the kinetic function used to calculate 
C . In this study we focused on a modified Bateman function F(t) with 5 kinetic param-
eters ( ka, ke, c0, lag , d ): 

with

This function was designed to be flexible and able to represent several different metab-
olite consumption and production kinetics, as exemplified by Fig. 2. Intuitively, ka and ke 
correspond to kinetic constants of absorption and elimination of a metabolite of inter-
est with the unit h −1 . c0 is the total amount of a metabolite absorbed over the volume of 
distribution with the unit mol L −1 . Additionally to these parameters which are also part 
of the classical Batman function [33], we here introduce lag and d. The lag term with the 
unit h shifts the function along the X-axis, intuitively defining the starting time point of 
absorption of a metabolite of interest, whereas the d term with the unit mol L −1 shifts 
the function along the Y-axis.

Loss function, L. L calculates the loss value after estimation of the error residuals of the 
model (Eq. 9). It can be set via self.set_loss_function to either cauchy_loss 
or max_cauchy_loss (or max_linear_loss). In both cases the loss is calculated as 
a Cauchy distribution of error residuals according to SciPy [32]. The difference, however, 
is that cauchy_loss only uses the absolute error residuals, whereas max_cauchy_
loss uses the maximum of relative and absolute error residuals (thus the word max is 
expressed in its name). The reason for its addition was that a good performance has been 

(10a)F(t) =

{
b(t)+ d if b(t) ≥ 0
d if b(t) < 0

(10b)b(t) = c0
ka

ke − ka

(
e−ka(t−lag) − e−ke(t−lag)

)
.

Fig. 2  Examples of concentration time series that can be modeled with the modified Bateman equation 
used. The legend shows the kinetic parameters used to create the respective curves. All parameters are 
within the bounds that were used for kinetic parameter fitting



Page 9 of 30Gotsmy et al. BMC Bioinformatics          (2022) 23:379 	

achieved in a previous study [20]. In this study we used the max_cauchy_loss loss 
function for PKM models and cauchy_loss for MIX models. The choice of L is inter-
twined with the choice of T which becomes clear in the following paragraph.

Transformation function, T. T transforms the measured data M̃ as well as the cal-
culated QPQN , CV  , and V before calculation of the loss (Eq.  9). Two different trans-
formations, none and log10, can be set during initialization with the argument 
trans_fun. As originally reported [20] no transformation was done for PKM (i.e. 
trans_fun=’none’), 

For MIX models, however, a log-transform was performed (i.e. trans_fun=’log10’),

 as the error on measured data is considered multiplicative [34] and the sweat volume 
log-normally distributed (Additional file 1: Fig. S1). To avoid problems with concentra-
tions of the size 0 a small number (i.e., the size of optimizer precision [32]) is added.

In a sensitivity analysis study, we tested the quality of normalization of MIX with dif-
ferent L and T hyperparameters and concluded that a combination of cauchy_loss 
for L and log10 for T performed best (Additional file 1: Fig. S2C, D). This is in agree-
ment with literature where logarithmic transformations performed well in combination 
with PQN for size effect normalization of sweat measurements [35].

Scaling function, Z. Z describes a scaling function performed on T (QPQN) and T (V) . 
Scaling is performed to correct for noisy data (see Results section "In fluence of noise on 
PQN"). Two strategies can be set with the scale_fun argument during initialization of 
the MIX model class, standard or mean. In this study, all MIX models employ stand-
ard scaling, i. e. 

We additionally implemented mean scaling which differs depending on the choice of T 
with

Optimization strategy. The optimization of both PKM and MIX models is done with 
a Monte Carlo strategy where the initial parameters are sampled randomly from a uni-
form distribution between their bounds. Performing a sensitivity analysis, we previously 
showed that this method is preferable to a single fitting procedure [20]. In this study, the 
number of Monte Carlo replicates for model fitting was set to 100.

Weighting of MIX loss terms. A weighting constant for every measured data point can 
be used by the model. In a sensitivity analysis study, we found that the choice of � is not 
critical to the quality of normalization as long as it is not extremely tilted to one side (i.e., 
� close to 0 or 1, Additional file 1: Fig. S2A, B). Thus we propose a method where the loss 
terms are weighted by the number of data points fitted for each of both loss terms but 

(11a)T (M̃) = M̃.

(11b)T (M̃) = log10(M̃ + 10−8)

(12a)ZT (QPQN) =
T (QPQN)−mean(T (QPQN))

Std(T (QPQN))
.

(12b)ZT (QPQN) =

{
T (QPQN)−mean(T (QPQN)) if trans_fun=’log10’

T (QPQN)/mean(T (QPQN)) if trans_fun=’none’.
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not by the number of metabolites used in the calculation of each term (Additional file 1: 
Equation S1). For such a method the solution for � is given by Eq. 13.

Full and minimal models

In this study, we differentiate between full and minimal models. With full models, we 
refer to pharmacokinetic normalization models (PKM or MIX) where all metabolites of 
a given data set are used for the pharmacokinetic normalization. This means that, for 
example, if nmetabolites = 20 all 20 metabolites were modeled with the modified Bate-
man function and thus in Eqs. 7a and 8a, ℓ = nmetabolites and M̃ℓ+ is an empty vector. 
On the other hand, minimal models are models where only the few known, better con-
strained metabolites were modeled with a kinetic function. This means that the informa-
tion used for PKMminimal   does not change upon the addition of (synthetic) metabolites. 
Therefore, its goodness of fit measure should stay constant within statistical variability 
upon change of nmetabolites . This behaviour was used to verify if the simulations worked 
as intended and if  no biases in the random number generation existed. On the other 
hand, the MIXminimal model still gained information from the increase of nmetabolites as 
the PQN part of this model was calculated with all nmetabolites . Therefore, changes in the 
goodness of fit measures for MIXminimal are expected. We emphasize that the defini-
tion of full and minimal models is specific to this particular study. Here we explicitly set 
ℓ = 4 , which originates from previous work where 4 targeted metabolites (caffeine, par-
axanthine, theobromine, theophylline) with known kinetics were measured [20].

Synthetic data creation

Three different types of synthetic data sets were investigated. The first two types of data 
sets (sampled from kinetics, section  "Sampled kinetics" and sampled from means and 
standard deviations, section "Sampled mean and standard deviation") test the behaviour 
of normalization models in extreme cases (either all metabolites describable by pharma-
cokinetics or all metabolites completely random). Finally, the third type of data set (sam-
pled from real data, section "Sampled from real data") aims to replicate measured finger 
sweat data as close as possible. In sum, the performance of normalization methods on all 
three types of data sets can show how they behave in different situations with different 
amounts of describable data.

In all three cases, data creation started with a simple toy model closely resembling the 
concentration time series of caffeine and its degradation products (paraxanthine, theo-
bromine, and theophylline) in the finger sweat as described elsewhere [20]. The respec-
tive parameters are listed in Additional file 1: Table S2. With them, the concentration of 
metabolites #1 to #4 were calculated for 20 time points (between 0 and 15 h in equidis-
tant intervals, Fig. 3). Subsequently, new synthetic metabolite concentration time series 
were sampled and appended to the toy model (i.e., to the concentration vector, C(t) ). 
Three different synthetic data sampling strategies were tested, and their specific details 
are explained in the following sections. Next, sweat volumes ( V  ) were sampled from a 

(13)� =
1

ℓ+ 1
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log-normal distribution truncated at ( 0.05 ≤ V ≤ 4µL ) closely resembling the distri-
bution of sweat volumes estimated in our previous publication [20], Additional file  1: 
Fig.  S1. Finally, an experimental error ( ǫ ) was sampled for every metabolite and time 
point from a normal distribution with a coefficient of variation of 20% and the synthetic 
data was calculated as

For every tested condition, 100 synthetic data replicates were generated, and the nor-
malization models were fitted.

Sampled kinetics

In simulation v1, data was generated by sampling kinetic parameters for 
new metabolites from an uniform distribution. The distribution was con-
strained by the same bounds also used for the PKM and MIX model fitting: 
(0, 0, 0, 0)T ≤ (ka, ke, c0, lag , d)

T ≤ (3, 3, 5, 15, 3)T . Subsequently the concentration time 
series of the synthetic metabolites were calculated according to the modified Bateman 
function (Eq. 10).

Sampled mean and standard deviation

Means and standard deviations of the concentration time series of metabolites were cal-
culated from untargeted real finger sweat data (for details, see section "Real finger sweat 
metabolome data"). The probability density function of both can be described by a log-
normal distribution (Additional file 1: Fig. S3). For the data generation of simulation v2, 
per added metabolite, one mean and one standard deviation were sampled from the fit-
ted distribution and used as an input for another log-normal distribution from which a 

(14)M̃(t) = diag
(
C(t) V (t)

)
ǫ(t).

Fig. 3  Theoretical concentration C for the first four metabolites of the synthetic data. Kinetic parameters 
used for calculation are listed in Additional file 1: Table S2
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random concentration time series was subsequently sampled. This results in synthetic 
concentration values that behave randomly and, therefore, cannot be easily described by 
our pharmacokinetic models.

Sampled from real data

To get an even better approximation to real data, in simulation v3, concentration time 
series were directly sampled from untargeted real finger sweat data (for details, see 
section  "Real finger sweat metabolome data"). To do so, the untargeted metabolite 
M̃ time series data set was normalized with PQN. As the number of metabolites in 
this data set was comparably large ( nmetabolites = 3446 ) we could assume that the rela-
tive error (or rRMSE, for more explanation, see section "Synthetic data simulations") 
was negligibly small. The resulting values are, strictly speaking, fractions of concen-
trations. However, this does not affect the results as these values are anyways con-
sidered untargeted (i.e., no calibration curve exists) and thus relative. Therefore, the 
PQ normalized data set could be used as ground truth for concentration time series 
sampling. Subsequently, a subset of the original ground truth data was sampled for 
synthetic data generation.

Sampling of noisy data

We investigated the influence of background (i.e. noisy) signal on the performance on 
QPQN (and scaled and transformed variants thereof ). To simulate such an environ-
ment we used data sampled from real data (section  "Sampled from real data"), and 
applied V  only to a fraction of the C vector,

The noise fraction is given by the number of elements of M̃ and M̃n vectors,

where subscript n in M̃n,Cn, and fn denotes them as part of the noise.
Simulations were carried out for 20 equidistant noise fractions between 

0 ≤ fn ≤ 0.95 with nmetabolites = 100 and ntime points = 20 for 100 replicates. The error 
residuals of mean and standard scaled QPQN are calculated as 

with Z defined as in Eq. 12b and

(15)
(
M̃ (t)

M̃n(t)

)
= diag

(
C (t)V (t)

Cn(t)

)
ǫ.

(16)fn =
length(M̃n)

length(M̃)+ length(M̃n)
,

(17a)Mean Scaled Error =

ntime points∑

i

[
ZT (QPQN)i − ZT (V)i

]

(17b)Standard Scaled Error =

ntime points∑

i

[
ZT (QPQN)i − ZT (V)i

]
Std(T (V))
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 with Z defined as in Eq. 12a. For both cases T is defined as the logarithm (Eq. 11b). We 
point out that the multiplication with Std(T (V)) for the standard scaled error is impor-
tant to make the results comparable, as otherwise the error would be biased towards 
the method with smaller scaled standard deviation regardless of the performance of the 
scaling.

Normalization model optimization

Normalizing for the sweat volume by fitting kinetics through the measured values only 
has a clear advantage over PQN if it is possible to infer absolute sweat volumes and con-
centration data. In order to be able to do that, some information about the kinetics and 
the starting concentrations of metabolites of interest need to be known. For example, 
when modeling the caffeine network in our previous publication [20], we knew that the 
lag parameter of all metabolites was 0 and that the total amount of caffeine ingested 
(which corresponds to c0 ) was 200 mg. Moreover, we knew that caffeine and its metabo-
lites are not synthesized by humans and implemented the same strategy into our toy 
model (corresponding to d). As the toy model was designed to resemble such a metabo-
lism, we translated this information to the current study. Therefore, we assumed that the 
first 4 metabolites in our toy model had known c0 , lag, and d parameters. For their cor-
responding ka and ke and the parameters of all other metabolites the bounds were set to 
the same (0, 0, 0, 0)T ≤ (ka, ke, c0, lag , d)

T ≤ (3, 3, 5, 15, 3)T used in kinetic data genera-
tion. Fig. 2 shows examples of concentration time series that can be described with the 
modified Bateman function and parameters within the fitting bounds.

Real finger sweat metabolome data

The real world finger sweat data was extracted from 37 time series measurements 
of Study C from ref. [20]. It was downloaded from MetaboLights (MTBLS2772 and 
MTBLS2776).

Preprocessing. The metabolome data set was split into two parts: targeted and untar-
geted. The targeted data (i.e., the mass time series data for caffeine, paraxanthine, 
theobromine, and theophylline) was directly adopted from the mathematical model 
developed by [36]. This data is available on GitHub (https://​github.​com/​Gotsmy/​finger_​
sweat).

For the untargeted metabolomics part, the raw data was converted to the mzML 
format with the msConvert tool of ProteoWizard (version 3.0.19228-a2fc6eda4) [37]. 
Subsequently, the untargeted detection of metabolites and compounds in the sam-
ples was carried out with MS-DIAL (version 4.70) [38]. A manual retention time 
correction was first applied with several compounds present in the majority (more 
than 90%) of the samples. These compounds were single chromatographic peaks 
with no isomeric compounds present at earlier or later retention times (m/z 697.755 
at 5.57 min, m/z 564.359 at 5.10 min, m/z 520.330 at 4.85 min, m/z 476.307 at 4.58 
min, m/z 415.253 at 4.28 min, m/z 371.227 at 3.95 min, m/z 327.201 at 3.56 min, m/z 
283.175 at 3.13 min, m/z 239.149 at 3.63 min, m/z 166.080 at 1.69 min, m/z 159.113 
at 1.19). After this, untargeted peak detection and automated alignment (after the 
manual alignment) were carried out with the following settings: Mass accuracy MS1 
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tolerance: 0.005 Da, Mass accuracy MS2 tolerance: 0.025 Da, Retention time begin: 
0.5 min, Retention time end: 6 min, Execute retention time correction: yes, Minimum 
peak height: 1E5, Mass slice width: 0.01 Da, Smoothing method: Linear weighted 
moving average, Smoothing level: 3 scans, Minimum peak width: 5 scans, Alignment 
reference file: C_D1_I_o_pos_ms1_1.mzML, Retention time tolerance: 0.3 min, 
MS1 tolerance: 0.015 Da, Blank removal factor: 5 fold change). No blank-subtrac-
tion was carried out as the internal standard caffeine was spiked into each sample, 
including the blanks. Peak abundances and meta-information were exported with the 
Alignment results export functionality.

Subsequently, we excluded isomers within a m/z difference of less than 0.001Da and 
a retention time difference of less than 0.5min . To further reduce features that are 
potentially background, features with retention times after 5.5min as well as features 
with minimal sample abundances of < 5×maximum blank abundance (except for the 
internal standard, caffeine-D9) were excluded from the data set. This was done on 
a time series-wise basis. Thus the number of untargeted metabolites considered for 
normalization differs with a mean of 343± 152 for the 37 time series of interest.

Fig. 4  Full network (top panel) and subnetwork (bottom panel) of caffeine absorption, conversion to 
paraxanthine, theobromine, and theophylline and their elimination. The system boundary (dashed line) 
represents the human body. m ∈ {paraxanthine, theobromine, and theophylline}
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Size effect normalization. In this finger sweat data set, time series of targeted as well 
as untargeted metabolomics, are listed. The kinetics of the four targeted metabolites 
(caffeine, paraxanthine, theobromine, and theophylline) are known. A reaction net-
work of the metabolites is shown in the top panel of Fig.  4. Briefly, caffeine is first 
absorbed and then converted into three degradation metabolites. Additionally, all 
four metabolites are eliminated from the body. All kinetics can be described with first 
order mass action kinetics [39, 40].

In order to assess the performance of the sweat volume normalization methods, the 
full network was split up into three subnetworks that all contained caffeine and one deg-
radation metabolite each (Fig. 4 bottom panel). The solution of the first order differen-
tial equations describing such network is given in Additional file 1: Eqs.  S2a and S2b. 
Moreover, the 343± 152 untargeted metabolite time series were randomly split up into 
three (almost) equally sized batches, and each batch was assigned to one subnetwork. 
All three networks were subsequently separately normalized with PKMminimal    and 
MIXminimal methods with kinetic parameters that were adjusted to the specific reaction 
network (Fig. 4 bottom panel). Subsequently, the kinetic constants ( k ′1 , k

′
2 , k

′
3 , k

′
4 ) were 

estimated for 37 measured concentration time series. Fitting bounds were not changed 
in comparison to the original publication [20].

As all three subnetwork data sets originate from the same finger sweat measurements, 
the underlying kinetic constants should be exactly identical. As the kinetic constants of 
absorption ( kcafa = k ′1 ) and elimination ( kcafe = k ′2 + k ′3 ) of caffeine are estimated in all 
three subnetworks, we used their standard deviation to test the robustness of the tested 
normalization methods.

Real blood plasma metabolome data

In the study of Panitchpakdi et al. [41] the mass time series of the metabolome was meas-
ured in different body fluids after the uptake of diphenhydramine (DPH). Here, we focus 
on data measured in the blood plasma, which includes the abundances of DPH (known 
kinetics, calibration curve, pharmacological constants) as well as three of its metaboli-
zation products (known kinetics) and the abundances of 13526 untargeted metabolites 
with unknown kinetics.

Preprocessing. The data of peak areas was downloaded from the GNPS platform [42]. 
To reduce the number of metabolites that are potentially background and/or noise in the 
data set, features with minimal sample abundances of < 5×maximum blank abundance 
were excluded from the data set on a time series-wise basis. Thus, the number of untar-
geted metabolites considered for normalization differs with a mean of 1017± 114 for the 
10 time series of interest.

Size effect normalization. We assume that the kinetics of four metabolites (DPH, 
N-desmethyl-DPH, DPH N-glucuronide, and DPH N-glucose) can be described by the 
modified Bateman (Eq.  10). A reaction network of the metabolites is shown in Addi-
tional file 1: Fig. S4. Briefly, DPH is first absorbed and then – with unknown interme-
diates – converted into three degradation metabolites, which are in turn metabolized 
further downstream or eliminated. c0 of DPH was calculated with pharmacological con-
stants for bioavailability, volume of distribution, and dosage of DPH as reported in the 
original publication [41].
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Analogously to the normalization performed on finger sweat data, the full network 
of four metabolites is split up into three subnetworks with only one, shared, targeted 
metabolite (DPH itself ), one additional untargeted metabolite with known kinetic 
(either N-desmethyl-DPH, DPH N-glucuronide, or DPH N-glucose, Additional file  1: 
Fig. S5) and one third of 1017± 114 untargeted metabolites with unknown kinetics. To 
ensure better convergence during fitting of the models, the M̃ data was first scaled to 
values between 0 and 1 by dividing by its metabolite-wise maximum. This factor can be 
multiplied again as part of c0 after the normalization is done. Thereafter, PKMminimal and 
MIXminimal models were fitted onto the scaled M̃ data (with ℓ = 2 ) for all ten measured 
time series. The bounds of parameters were chosen so that previously reported estimates 
[41] are well within range: 0 ≤ k ≤ 5 h−1 for {k ′1, k

′
3} , 0 ≤ k ≤ 1 h−1 for {k ′2, k

′
4} , c

DPH
0  as 

reported in the original publication normalized by the maximum factor, 0 ≤ cm0 ≤ 300 
for m ∈ {N-desmethyl-DPH, DPH N-glucuronide, DPH N-glucose} and lag = d = 0 as 
well as 0.01 ≤ V ≤ 0.03mL.

As all three subnetwork data sets originate from the same plasma time series meas-
urements, the underlying kinetic constants of DPH should be exactly identical. As the 
kinetic constants of absorption ( kDPHa = k ′1 ) and elimination ( kDPHe = k ′2 ) of DPH are 
estimated in all three subnetworks we used their standard deviation to test the robust-
ness of PKMminimal and MIXminimal.

Data analysis

Goodness of normalization. Two goodness of fit measures were calculated to analyze the 
performance of the tested methods. RMSE is the standard deviation of the residuals of 
a sampled sweat volume time series vector ( Vtrue ) minus the fitted sweat volume vector 
( Vfit ), while rRMSE is the standard deviation of the ratio of sampled and fitted V vectors 
normalized by its mean. Intuitively, RMSE is a measure of how much absolute difference 
there is between the fit and a true value, rRMSE, on the other hand, gives an estimate of 
how good the fitted sweat volumes are relative to each other. A visual depiction of RMSE 
and rRMSE is shown in Additional file 1: Fig. S6 and their exact definition is given in the 
equations in 3.3.

Statistical analysis. The significant differences in the mean of goodness of fit measures 
were investigated by calculating p values with the non-parametric pairwise Wilcoxon 
signed-rank test [43] (SciPy’s stats.wilcoxon function [32]). Significance levels are 
indicated by *, **, and *** for p ≤ 0.05 , 0.01, and 0.001 respectively.

Results

Comparison of PKM and MIX

Synthetic data simulations

In order to test the performance of different normalization models, we generated 100 
synthetic data sets with three different methods (simulations v1, v2, v3) and five different 
nmetabolites (4, 10, 20, 40, 60) each, where the underlying C , V  , and ǫ values were known. 
Simulations v1, v2, and v3 differ in the way how C was generated (kinetic, random, 
sampled from real data set, respectively). In order to quantify the normalization model 
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performance, two measures of goodness of normalization were used for the analysis of 
the results: RMSE and rRMSE.

To visualize the obtained normalization performances we plotted the results for 
simulation v3 and nmetabolites = 60 in Fig. 5 for three normalization models (from left 
to right column, PQN, PKMminimal , and MIXminimal ). The top row shows the predicted 
log10(Cj(ti; θ)/Cj(0; θ)) (i.e. the concentration of each metabolite j at each time point i 
divided by its concentration at time 0) as a function of the true log10(Cj(ti)/Cj(0)) val-
ues. It illustrates the correlation of the relative abundances of one metabolite across 
all time points. Good correlations (i.e. high R 2 ) as seen for PQN and MIXminimal result 
in a low rRMSE measure. On the bottom row of Fig. 5 the absolute values of predicted 
V  are plotted as a function of the true V  . There it becomes evident that good correla-
tions of absolute values result in low RMSE measures.

In the following sections, we will focus on the size of RMSE and rRMSE, respec-
tively, as they are both calculated from the predicted V  directly. Note that for PQN, 
no absolute V  can be estimated and, therefore, no RMSE is calculated.

Influence of the number of metabolites. We tracked RMSE and rRMSE of normaliza-
tion methods for different numbers of metabolites ( nmetabolites ) to investigate how the 
methods behave with different amounts of available information. An overview of their 
goodness of normalization measures as a function of nmetabolites on sampled kinetic 

Fig. 5  Relative and absolute normalization performance. In the top row the predicted 
log10(Cj(ti; θ)/Cj(0; θ)) ( i ∈ {1, ..., ntime points} , j ∈ {1, ..., nmetabolites} ) are plotted as a function of the true, 
underlying log10(Cj(ti)/Cj(0)) . The bottom row shows the predicted V  as a function of the true, underlying 
V  . The columns represent different normalization models (PQN, PKMminimal , and MIXminimal from left to right). 
As no absolute V  can be calculated from PQN the bottom left plot is omitted. To illustrate the effect of 
different RMSE and rRMSE sizes (which both are calculated from V  ), we show their mean over 100 replicates 
in comparison to the R 2  values calculated from the points plotted. Intuitively rRMSE is a measure of good 
correlation on the top row whereas RMSE is a measured of good correlation on the bottom row (high R 2 , low 
rRMSE/RMSE respectively)
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data (panels A, B), on completely random data (panels C, D), and on sampled subsets 
of real data (panels E, F) is given in Fig. 6.

PKMfull which fits a kinetic function through all possible metabolites 
( ℓ = nmetabolites ) performs well (low RMSE, low rRMSE) when the C data originates 

Fig. 6  Goodness of normalization measures of synthetic data simulations. The mean for 100 replicates for 
different sweat volume normalization models is given for RMSE (left column) and rRMSE (right column). 
Results for simulations v1, v2, and v3 are shown in rows one, two, and three, respectively. The error bars 
represent standard deviations of the replicates. For the PQN method no RMSE can be calculated
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from a kinetic function (simulation v1, Fig.  6A, B). However, when the underlying 
data does not originate from kinetic time series (simulation v2, Fig. 6C, D) its perfor-
mance is reduced drastically. For PKMfull this is resembled in an increase of RMSE 
(from 0.19± 0.08µL to 0.64 ± 0.16µL for nmetabolites = 60 ) as well as of rRMSE (from 
0.08± 0.02 to 0.28± 0.14 for nmetabolites = 60).

Another observation is the behaviour of PQN. Its rRMSE approaches a value close to 0 
with increasing nmetabolites , indifferently on how the underlying data was generated.

Interestingly, the results from simulation v3 lie between the results from simulations 
v1 and v2. This gets especially evident when comparing the performance of PKMfull in 
Fig.  6. Such a result suggests that not all of the untargeted metabolites measured are 
completely random, but some can be described with the modified Bateman function. 
This leads to the hypothesis that after sweat volume normalization, the real finger sweat 
data (from which values for v3 were sampled) has  a high potential for discoveringun-
known kinetics.

Exact numbers for RMSE and rRMSE for all normalization methods and nmetabolites are 
given in Additional file 1: Tables S3 and S4 respectively. Moreover, pairwise comparisons 
of RMSE and rRMSE of normalization methods relative to the results from PKMminimal 
are plotted in Additional file 1: Fig. S7.

Statistical testing. As at nmetabolites = 60 the goodness of normalization measures 
started to flatten out, we further investigated this condition for statistical significance. 
We used the two-sided non-parametric Wilcoxon signed-rank test to compare pairwise 
differences in RMSE and rRMSE between the tested models. p-values for all combina-
tions are given in Additional file 1: Tables S5 and S6.

As Fig. 6 already indicated, the overall best performance in RMSE as well as rRMSE 
is observed for the MIXminimal model. For nmetabolites = 60 it significantly outperforms 
every other method’s RMSE (Fig. 7). Moreover, MIXminimal ’s performance in rRMSE is 
at least equal to or better than all other tested methods (Additional file 1: Table S6) with 
one exception: the comparison of rRMSE of MIXminimal and PQN in simulation v1 shows 
significant difference ( p = 0.0029 ), however, the absolute values of rRMSE are still very 

Fig. 7  RMSE measures of simulation v3 with nmetabolites = 60 . The significance between the methods was 
calculated on 100 paired replicates with the two-sided Wilcoxon signed-rank test
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similar ( 0.049± 0.010 and 0.047± 0.009 respectively). Compared to the previously 
used PKMminimal [20], the RMSE of MIXminimal improves by 73± 10% , the rRMSE by 
43± 12% (Additional file 1: Fig. S7). Analogously to Fig. 7 for simulation v3, the results 
of simulations v1 and v2 are shown in Additional file 1: Figs. S8 and S9, respectively.

The two-sided version of the Wilcoxon signed-rank test was used to test for any differ-
ence between multiple normalization methods. After it became evident that MIXminimal 
performed best, we used a one-sided version of the Wilcoxon signed-rank test to verify 
if RMSE and rRMSE are significantly decreased by MIXminimal compared to all other 
normalization methods. The resulting p-values are listed in Additional file 1: Table S7. 
Again, MIXminimal significantly outperformed all other tested methods in RMSE and 
rRMSE except for PQN in any of the simulations.

We, therefore, conclude that normalizing the sweat volume by the MIXminimal method 
reduces the error for the estimated V  compared to other tested methods. Compared 
to PKM, MIXminimal has the advantage that its performance does not vary if metabo-
lites’ concentration time series can be described with a modified Bateman function (i.e., 
simulations v1, v2 v3 have little influence on its performance). Therefore, it is especially 
advantageous if this property cannot be guaranteed.

Computational performance

Analysis of metabolomics data sets is usually a computationally exhaustive process. 
There are several steps in (pre-)processing that need to be executed, many of them 
lasting for hours. Therefore, computational time can quickly stack to large numbers. 
Normalization models are no exception to this general rule. As nmetabolites in a pharma-
cokinetic model increases, the time for optimization of pharmacokinetic models may 
become limiting. Therefore, we investigated the average time for one time series nor-
malization for different methods and different numbers of metabolites.

The computational time spent for one optimization step as a function of nmetabolites is 
given in Fig. 8 for simulation v3. It increased for some normalization models, however 

Fig. 8  Time in seconds for optimization of one normalization model in simulation v3. The error bars 
represent the standard deviation of normalization times between 100 replicates
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not for all of them and not equally. Within the investigated range, PQN stays well under 
1 second per normalization, whereas with PKMfull the normalization time increases 
drastically from 1.6± 1.1 s for a model with 4 metabolites to 110± 44 s for 60 metabo-
lites. Similar normalization times were observed for MIXfull maxing out at 19± 22 s for 
nmetabolites = 60 . In stark contrast to the exponential increase in computational power 
needed for full models are the minimal models. Their time to optimize stays nearly con-
stant ( < 3 s ) within the investigated metabolite range (Additional file 1: Table S8).

Here we demonstrate that MIXminimal is not only superior to other tested models in 
terms of its normalization performance but also in terms of computational feasibility. 
We hypothesize that even data sets with thousands of untargeted metabolites will have a 
minor impact on its speed.

Comparison of PQN and MIX

Influence of noise on PQN

In untargeted metabolomics, it is often difficult to distinguish between metabolites 
originating from the actual matrix of interest or from contamination. As PQN includes 
all untargeted metabolites in its calculation, metabolites stemming from contamina-
tion might become a problem as their fold change is independent of the sweat volume, 
which changes the underlying distributions of quotients. Therefore, we investigated the 
influence of different fractions of metabolites originating from contamination (i.e., noisy 
data). Furthermore, we tested if scaling of QPQN values can counteract errors introduced 
by noise.

Figure  9A demonstrates the problem of using the probabilistic quotient normaliza-
tion on noisy raw data. The direction of size effects can still be explained when noise 
is present, however, absolute values of the size effects decrease. Thus, in Fig.  9A, the 
coefficient of variation (i.e., the standard deviation over the mean) of QPQN is a meas-
ure for the average value of the estimated size effect over one synthetically generated 
time series. As the fraction of noise ( fn , X-axis) increases the coefficient of variation 
decreases drastically and approaches 0 when fn → 1.

Figure 9B shows the performance of scaling methods to counteract the reduction of 
coefficient of variation as described above. The mean scaled error (X-axis) and stand-
ard scaled error (Y-axis) as calculated by Eq.  17 are plotted against each other. When 
fn ≤ 0.05 , mean scaling outperforms standard scaling. However, thereafter the standard 
scaled QPQN is less erroneous than the mean scaled version.

When incorporating QPQN values to the MIX model, it is important to correct for 
errors introduced by noise. As this result shows that standard scaling reduces the detri-
mental effect of noise on the calculation of QPQN , we used standard scaling throughout 
the study for MIX normalization. Moreover, this result underlines the good performance 
of standard scaling in biological data sets [44].

Synthetic data simulations with noise

The synthetic data used for the analysis of section "Comparison of PKM and MIX" did 
not contain any metabolites that are classified as noise, i.e., their M̃ is not influenced 
by size effects (Eq. 15). This, however, is not necessarily a realistic assumption as there 
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are many sources of contaminants in metabolome measurements. Noisy metabolites 
can be either introduced by biological means (e.g., metabolites that do not originate 
from sweat but from the surface of the skin in sweat measurements) [45] or by experi-
mental handling [46]. As shown in Fig. 9, this noise in data negatively affects the per-
formance of PQN. Thus, the goodness of PQN in the results of section "Comparison 
of PKM and MIX" is probably overestimated.

To get a more accurate view of the goodness of normalization of PQN and 
MIXminimal , we tested their performance on synthetic data with different fractions of 
noise, fn . In order to do so, we created 100 replicates of synthetic data sampled from 
real data (i.e., simulation v3) for 10 equidistant noise fractions ranging from fn = 0 
to fn = 0.9 with nmetabolites = 60 . In all simulated data, only untargeted metabolites 

Fig. 9  Influence of the fraction of noisy data on the error of PQN calculation. Panel A illustrates the change 
of the coefficient of variance of QPQN (Y-axis) as the noise fraction ( fn , Y-axis with the same tick labels as the 
color bar) increases. Panel B shows the error size of calculated QPQN to true V  with mean scaling (X-axis) and 
standard scaling (Y-axis). The color of points relates to the noise fraction as depicted in the color bar
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were affected by the introduction of noise, as we assumed that for targeted metabo-
lites (i.e., ℓ = 4 ) with known pharmacokinetic behaviour, one can be highly confident 
that the measurements are not originating from contaminants.

The rRMSE of PQN and MIXminimal is plotted in Fig. 10. Only when zero noise was 
present in the synthetic data set MIXminimal did not improve upon PQN. However, as 
the noise  fraction increased, MIXminimal significantly outperformed PQN in terms of 
rRMSE. The p-values for all noise fractions are listed in the Additional file 1: Table S9.

The difference of rRMSE between PQN and MIXminimal in Fig. 10 is related to the dif-
ference of mean and standard scaled errors in Fig.  9B. PQN alone cannot utilize the 
improved performance of standard scaling as Std(T (V)) has to be known for its calcula-
tion (Eq. 17b). However, when normalizing with MIXminimal , Std(T (V)) can be estimated 
from the pharmacokinetic part of the model (Eq. 9c) significantly improving its quality.

Application to real data

Caffeine network

Previously, we identified and quantified four metabolites (caffeine, paraxanthine, theo-
bromine, and theophylline) in a time series after ingesting a single dose of caffeine [20]. 
To investigate the performance of normalization models on a real finger sweat data set, 
we split all measured M̃ time series into three parts that contained pairs of targeted 
metabolites each, only one shared by all, namely caffeine (compare Fig. 4 top and bot-
tom network). Subsequently we fitted a PKMminimal and a  MIXminimal model ( ℓ = 2 ) 
with adapted kinetics (Methods section "Real finger sweat metabolome data") through 
the three sub data sets. Due to the nature of the metabolite subnetworks (Fig.  4 bot-
tom panel) it is possible to calculate two kinetic constants describing the absorption and 
elimination of caffeine ( kcafa = k ′1 and kcafe = k ′2 + k ′3 ) in all three cases. As the data for 
all three subnetworks was measured in the same experiment, we can assume that the 

Fig. 10  Comparison of the rRMSE of PQN and MIXminimal on data with different fractions of noise. Significant 
differences in rRMSE between PQN and MIXminimal were tested with an one-sided pairwise Wilcoxon 
signed-rank test
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underlying ground truth of these constants has to be the same. Therefore, by compar-
ing the standard deviation of kinetic constants, it is possible to infer the performance of 
normalization methods.

In panels A and B of Fig. 11, the standard deviations of fitted kinetic constants within 
one measured M̃ time series are illustrated. Panel A shows that the standard deviations 
of the absorption constant of caffeine, kcafa  , of PKMminimal are significantly larger than 
of the MIXminimal model ( p = 5.8× 10−4, n = 37 , one-sided Wilcoxon signed-rank test). 
Likewise, a significant decrease in the size of standard deviations of MIXminimal was 
found compared to the previously published PKMminimal model ( p = 1.5 10−5 ) for the 
constant of caffeine elimination, kcafe  (panel B, Fig. 11).

In panel E of Fig.  11, one exemplified normalized C time series of caffeine in sweat 
is depicted as fitted for all three subnetworks with PKMminimal and MIXminimal , 

Fig. 11  Method validation with finger sweat (left column) and blood plasma (right column) data from 
Brunmair et al., 2021 [20] and Panitchpakdi et al., 2021 [41] respectively. On panels A to D, the standard 
deviations of constants of absorption and elimination of caffeine and diphenhydramine ( kcafa  , kcafe  , kDPHa  , kDPHe  ) 
between the three modeled subnetworks are plotted. The number of points per method corresponds to 
the number of concentrations time series present in both data sets (i.e., 37 and 10 for sweat and plasma, 
respectively). A one-sided Wilcoxon signed-rank test was used to test for significant differences. Panels E 
and F show the estimated concentration time series of caffeine and DPH plotted from the three different 
subnetworks. The lines are named after the second metabolite with a known kinetic present in the 
subnetwork; however, they all refer to C of caffeine and DPH. The colors of curves and the area between them 
indicate the results from normalization with PKMminimal or MIXminimal , respectively
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respectively. The selected time series illustrates the median of differences in standard 
deviations between PKMminimal and MIXminimal from panels A and B of Fig. 11. The area 
enclosed by the Cs of MIXminimal models is smaller than from PKMminimal.

We emphasize that in our original study, the caffeine degradation directly produces 
paraxanthine, theobromine, and theophylline; thus, pharmacokinetic parameters 
k2, k3, k4 are explicitly linked [20]. Therefore, the kinetic network resembled specific 
kinetics of that metabolic pathway (Fig. 4 top panel). In contrast, in previous sections, 
we assumed that the underlying pathway structure is not known. Thus parameters are 
not linked, which implies that parameters are less constrained. Yet, in this section, we 
demonstrated that the fundamental improvement found by switching from PKM to 
a MIX model can also  be translated back again to a more specific metabolic network 
(Fig. 4 bottom panel). In order to support this argument, we show the applicability of the 
MIXminimal normalization method on a real finger sweat data set. The results with real 
data emphasize the validity of the simulations done on synthetic data sets. They show 
that, especially when known metabolic networks are small, the MIXminimal model sig-
nificantly improves the robustness of normalization and thus kinetic constants inferred 
from finger sweat time series measurements.

Diphenhydramine network

In the original study [41], the authors measured time series abundances in the blood 
plasma after the application of a single dose of diphenhydramine (DPH). M̃ from tar-
geted DPH (known pharmacological constants, known kinetics) as well as untargeted 
metabolization products (N-desmethyl-DPH, DPH N-glucuronide, DPH  N-glucose, 
known kinetics) and several other untargeted metabolites (unknown kinetics) were 
reported. Similar to sweat, although less pronounced, plasma also suffers from size 
effects (i.e., a systematic error in the measurements) introduced by biological means or 
preanalytical sample handling [47, 48]. Thus, we used the reported data as a second real 
data set for validation of the performance of MIXminimal . The validation was performed 
in analogy to the caffeine study where a full network (Additional file 1: Fig. S4) is split 
into three subnetworks (Additional file 1: Fig. S5, for details see Methods section "Real 
blood plasma metabolome data").

In panels C and D of Fig. 11, the standard deviations of fitted kinetic constants within one 
measured M̃ and three fitted subnetworks are illustrated. Again, the standard deviations of 
kDPHa  of PKMminimal are significantly larger than of MIXminimal ( p = 2, 0× 10−3, n = 10 , 
one-sided Wilcoxon signed-rank test, panel C). A similar significant decrease of the stand-
ard deviations are also found for kDPHe  ( p = 3.2 10−2 , panel D).

In panel F of Fig. 11, one exemplified normalized C time series of DPH in plasma is 
depicted as fitted for all three subnetworks with PKMminimal and MIXminimal , respec-
tively. The time series was selected as it is closest to the median of the differences in 
standard deviations between PKMminimal and MIXminimal . It is visible that the area 
enclosed by the C resulting from the MIXminimal model is smaller than from PKMminimal.

This validation illustrates the performance of the normalization models presented in 
this study on a data set that was measured independently from the development of said 
methods. The results of the plasma validation study are similar to the results observed 
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for the finger sweat study; again, MIXminimal improves the robustness (i.e. reduces stand-
ard deviations) of size effect normalization.

Even though there is a significant decrease in the standard deviation of kDPHe  with 
MIXminimal compared to PKMminimal , MIXminimal also produced an outlier (Fig. 11D). The 
reason for this outlier is that on rare occasions, MIXminimal is not able to detect any size 
effects due to convergence issues (Additional file 1: Fig. S10A). To investigate these results, 
we performed synthetic data simulations (Additional file 1: Fig.  S10B). There, we found 
that this behaviour of MIXminimal can be observed when two different V vectors are applied 
to ℓ and ℓ+ metabolites. Therefore, we hypothesize that the clearly visible malfunction of 
MIXminimal to detect size effects (i.e. the variance of estimated V is close to 0) gives an indi-
cation to scientists that size effects might not be a major concern in such a data set. In this 
specific blood plasma time series measurement, for example, the size effects might have 
been too small compared to other error sources to be identified by MIXminimal.

To summarize, with this validation, we show that the generalized normalization mod-
els, as implemented in this study, can directly be used for the normalization of real data 
as long as the modified Bateman function is able to describe the measured kinetics rea-
sonably well and size effects are large enough to be detectable.

Discussion
In this study, we present a generalized framework for the PKM normalization model, 
first introduced in reference [20]. Moreover, we extend the existing model to incorporate 
untargeted metabolite information, dubbed as MIX model. Both models are implemented 
in Python and are available at GitHub https://​github.​com/​Gotsmy/​sweat_​norma​lizat​ion.

The quality of normalization methods was tested on synthetic data sets. Synthetic 
data sets are necessary as it is impossible to obtain validation data without funda-
mentally changing the (finger) sweat sampling method as described above [20]. How-
ever, three different synthetic data generation methods (v1, v2, v3) were employed to 
ensure that synthetic data sets are as close to real data as possible. We found that when 
nmetabolites ≥ 60 , MIXminimal performs equally well or better than all other tested nor-
malization methods.

Despite true V  values remaining unknown, the real finger sweat data can be used as 
validation for relative robustness of normalization methods. There, MIXminimal signifi-
cantly outperforms PKMminimal . The decreased variance of kinetic constants estimated 
by MIXminimal likely originates from the fact that QPQN does not differ much for three 
subsets as long as sufficiently many nmetabolites = 60 are present in each subset. On the 
other hand, as only few data points are used for PKMminimal optimization, small errors in 
one of the two targeted metabolites’ measured mass have a high potential to change the 
normalization result.

Additionally, the performance of PKMminimal and MIXminimal were compared on a 
blood plasma data set taken from a study independent of any measurements used for 
the development of the normalization models. There, we were able to demonstrate the 
same improvement from PKMminimal to MIXminimal in normalization robustness. Moreo-
ver, we show that the generalized normalization models as implemented as Python class 
in this study can be easily used for size effect normalization with little additional coding 
necessary.
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To recapitulate, the proposed MIXminimal model has several crucial advantages over 
other tested methods.

•	 MIXminimal significantly outperforms PKMminimal in relative (rRMSE, −43± 12% ) 
and absolute (RMSE, −73± 10% ) errors with as little as 60 untargeted metabolites 
used as additional information (Fig. 7).

•	 MIXminimal is invariant to whether untargeted metabolites follow an easily describ-
able kinetic concentration curve (Fig. 6).

•	 Without noise, MIXminimal performs equally well as PQN for relative abundances, 
but additionally, it estimates absolute values of V  , similar to pharmacokinetic (PKM) 
models (Fig. 6).

•	 When noise is present MIXminimal also outperforms PQN for relative abundances 
(Fig. 10).

•	 MIXminimal performs well in this proof of principle study; moreover, it may be used as 
a basis for further improvements. Firstly, different, more sophisticated statistical nor-
malization methods (e.g., EigenMS [27]) could be used as input for the PQN part of the 
model. Secondly, Bayesian priors describing uncertainties of different metabolites could 
be implemented over the � parameter in a similar fashion as discussed in reference [49].

•	 Strikingly, the results showed that for all normalization methods tested, the RMSE 
and rRMSE values flattened once 60 metabolites were present in the original 
information. This suggested that the presented normalization models, especially 
MIXminimal , can be applied even for biomatrices or analytical methods with as few as 
60 compounds measured.

•	 Although MIXminimal was developed especially with sweat volume normalization in 
mind, it can be easily adapted for other biomatrices, e.g., plasma (Fig. 11).

Conclusion
In this study, we described and defined the MIX metabolomics time series normaliza-
tion model and compared it to PKM. Subsequently, we elaborated several advantages of 
the MIXminimal model over PKM and previously published normalization methods. We 
are confident that this will further improve the reliability of metabolomic studies done 
on finger sweat and other conventional and non-conventional biofluids. However, we 
acknowledge that a more thorough investigation with data sets of several more quanti-
fied metabolites and determined sweat volumes needs to be carried out to assess the full 
potential of the proposed method.
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Sulfate limitation increases specific plasmid 
DNA yield and productivity in E. coli fed‑batch 
processes
Mathias Gotsmy1,2   , Florian Strobl3, Florian Weiß3, Petra Gruber4, Barbara Kraus4, Juergen Mairhofer3    and 
Jürgen Zanghellini1*    

Abstract 

Plasmid DNA (pDNA) is a key biotechnological product whose importance became apparent in the last years due 
to its role as a raw material in the messenger ribonucleic acid (mRNA) vaccine manufacturing process. In pharmaceu-
tical production processes, cells need to grow in the defined medium in order to guarantee the highest standards 
of quality and repeatability. However, often these requirements result in low product titer, productivity, and yield. In 
this study, we used constraint-based metabolic modeling to optimize the average volumetric productivity of pDNA 
production in a fed-batch process. We identified a set of 13 nutrients in the growth medium that are essential 
for cell growth but not for pDNA replication. When these nutrients are depleted in the medium, cell growth is stalled 
and pDNA production is increased, raising the specific and volumetric yield and productivity. To exploit this effect 
we designed a three-stage process (1. batch, 2. fed-batch with cell growth, 3. fed-batch without cell growth). The 
transition between stage 2 and 3 is induced by sulfate starvation. Its onset can be easily controlled via the initial 
concentration of sulfate in the medium. We validated the decoupling behavior of sulfate and assessed pDNA quality 
attributes (supercoiled pDNA content) in E. coli with lab-scale bioreactor cultivations. The results showed an increase 
in supercoiled pDNA to biomass yield by 33% and an increase of supercoiled pDNA volumetric productivity by 13 % 
upon limitation of sulfate. In conclusion, even for routinely manufactured biotechnological products such as pDNA, 
simple changes in the growth medium can significantly improve the yield and quality.

Highlights 

•	 Genome-scale metabolic models predict growth decoupling strategies.
•	 Sulfate limitation decouples cell growth from pDNA production.
•	 Sulfate limitation increases the specific supercoiled pDNA yield by 33% and the volumetric productivity by 13%.
•	 We propose that sulfate limitation improves the biosynthesis of over 25% of naturally secreted products in E. coli.

Keywords  Growth decoupling, Medium optimization, GSMM, FBA, dFBA, E. coli, Plasmid production
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Graphical Abstract

Introduction
Plasmid DNA (pDNA) is an important product of the 
pharmaceutical industry being primarily used as vec-
tors for the transfection of mammalian cells. For exam-
ple, pDNA can be directly injected in the form of a DNA 
vaccine [1]. Moreover, it is an important raw material for 
the production of mRNA vaccines, for example against 
SARS-CoV-2 [2, 3]. Additionally, pDNA can be used as a 
vector for gene therapy [4]. Regardless of the application, 
high amounts and high quality of pDNA are needed and 
the optimization of its production is of health-economic 
interest as pDNA is a relevant driver of manufacturing 
costs.

Apart from solely maximizing the yield of pDNA, three 
prerequisites are required for the design of a pDNA pro-
duction process. Firstly, pDNA can be present in an open 
circular (oc), linear (l), or covalently closed circular (ccc), 
i.e., supercoiled form. Generally, the ccc form is consid-
ered more favorable for transfection of mammalian cells 
and, therefore, the fraction of supercoiling is of impor-
tance [5, 6]. Secondly, a loss of plasmid can be severely 
detrimental to the productivity during the fermentation 
process. Classically, this problem can be mitigated by 
the introduction of antibiotic resistance selection sys-
tems and the usage of antibiotic selection pressure during 

fermentation. However, these systems have several down-
sides. They, on the one hand, shift metabolic resources 
from the production of pDNA to the production of anti-
biotic resistance proteins [7]. On the other hand, special 
care has to be taken to remove residual antibiotics dur-
ing pDNA purification and the absence thereof has to be 
validated. Therefore, several alternatives have been devel-
oped [8] although still not state-of-the-art yet for pDNA 
manufacturing. Thirdly, even though pDNA production 
in complex media generates higher yields, chemically 
defined media are preferred for the production of high-
quality and safe pharmaceuticals [1].

Many strategies for the increase of pDNA production 
have been published with a large fraction using E. coli as 
production organism [9]. The methods range from the 
screening of favorable strains to metabolic engineering 
through knocking-in and -out of genes to antibiotic-free 
selection systems and other highly optimized production 
strains [9]. Most strategies for increasing pDNA produc-
tion can be grouped into two conceptual approaches: (i) 
the reduction of cell growth; (ii) ensuring a constant sup-
ply of DNA precursor metabolites. The methods differ 
widely in the way one (or both) aims are achieved.

Early on researchers found that a low growth rate 
increases the specific productivity of pDNA [10]. To 
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achieve this in batch fermentations Galindo et  al. [11] 
designed a medium that releases glucose enzymatically 
and thus down-regulates glucose uptake and subse-
quently growth. Alternatively, Soto et al. [12] developed 
E. coli strain VH33 by knocking-out the main uptake 
pathway of glucose to achieve the same result. With this 
method, they could increase the production to 40 mg L−1 
pDNA compared to 17 mg L−1 of the wild type strain 
[12]. Moreover, an optimization strategy for microaero-
bic environments was devised where E. coli strain W3110 
improved pDNA production in presence of a recombi-
nant expression of the Vitreoscilla hemoglobin protein 
[13]. In a subsequent study, this strain was tested in batch 
fermentations with different oxygen transfer rates and 
they concluded that as oxygen was depleted the growth 
rate decreased and the production of pDNA increased 
[14].

A strategy to ensure a constant supply of DNA pre-
cursor metabolites is, for example, the knocking-out of 
pyruvate kinase which forces metabolization of glucose 
over the pentose phosphate pathway [7, 15, 16]. Other 
methods utilize stoichiometric models to optimize the 
growth medium [17]. The authors concluded that the 
addition of the nucleosides adenosine, guanosine, cyti-
dine, and thymidine as well as several amino acids can 
significantly improve pDNA production ( 60 mg L−1 in 
a batch fermentation). Martins et al. [18] optimized the 
growth medium for the high producer strain VH33 and 
concluded that the presence of aromatic amino acids 
(phenylalanine, tryptophan, tyrosine) is advantageous 
for redirecting molecules to the nucleotide synthesis 
pathways. Additionally, the effect of the amount and 
type of nitrogen source in the growth medium has been 
investigated on the production of pDNA to 213 mg L−1 
[19]. Also, economical aspects of the medium design 
have been discussed [20].

Further potential for optimization is the pDNA itself. 
For example, reducing the size of the pDNA has been 
linked to higher volumetric yields [21]. However, a 
reduction might not always be possible, especially for 
therapeutic applications, where plasmid sizes are typi-
cally large ( > 6 kb ) [22]. Moreover, the pDNA yield of 
a process is highly dependent on the origin of replica-
tion. Currently, most plasmids carry a high copy num-
ber pUC origin of replication that allows up to 700 
pDNA copies per cell [1]. Other approaches involved 
microaerobically induced [23] or heat-induced origins 
of replication that increase the plasmid copy number 
at higher temperatures than 37 ◦ C [24, 25]. However, 
higher temperatures come with physiological trade-offs 
and, therefore, the amplitude and timing of heat induc-
tion are of importance [26].

Recently, also other production organisms were pro-
posed, e.g. Lactococcus lactis. Contrary to E. coli, L. 
lactis is generally regarded as safe (GRAS) and thus 
simplifies the downstream processing [27, 28].

Here, we design a three-stage bioprocess, where cellular 
growth and pDNA production are decoupled. We use con-
straint-based modeling to (i) identify medium components 
that induce the switching and (ii) determine the optimal 
time point for switching between the phases such that the 
average volumetric productivity is maximized.

Methods
Metabolic modeling
All models and code used for the creation, simulation, 
and analysis of these models are available at https://​
github.​com/​Gotsmy/​slim.

Table 1  Lexicographic objectives for dFBA

The order of optimization was top to bottom

Objective

Max Biomass production

Min Sulfate uptake

Max pDNA production

Fig. 1  Schematic of a three-stage growth-decoupled fed-batch 
pDNA production process (1. batch, 2. fed-batch with cell growth, 
3. fed-batch without cell growth). Size of the variables and length 
of the stages are not to scale. As the batch process was kept 
unchanged, it was not included in the fed-batch optimization 
simulations. Instead, the simulation starts at the beginning of the feed 
( t = 0 h ) with realistic values for the process variables at batch end 
(Additional file 1: Table S1)
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Model creation
For our analysis, we used iML1515 [29], a genome-scale 
metabolic model of Escherichia coli strain K-12 substrain 
MG1655. All model modifications and simulations were 
performed in Python 3.10 using the CobraPy package 
[30].

To simulate plasmid production, an 8 base pair (bp) 
dummy pDNA metabolite with 50% GC content was 
added to the model. Subsequently, we added a pDNA 
production reaction, corresponding to the dummy plas-
mid’s stoichiometry. pDNA polymerization cost was esti-
mated to 1.36 mol adenosine triphosphate (ATP) per mol 
dNTP [7, 31]. Additionally, a pDNA sink reaction was 
introduced to make fluxes through the pDNA synthesis 
reaction feasible. An SBML version of the used model is 
available at https://​github.​com/​Gotsmy/​slim/​tree/​main/​
models.

Although 8 bp is an unrealistically small size for a real 
pDNA molecule, we emphasize that the actual length 
of the plasmid does not change the relative underlying 
stoichiometry. The reason we chose a small dummy plas-
mid is that it already has a molecular weight of approxi-
mately 4943.15 g mol−1 . If we included a multiple kbp 
sized plasmid into the model, we would have risked that 
its large molecular weight lead to numerical instabilities 
during simulation [32]. However, all results are shown in 
gram pDNA, therefore, the exact length of the dummy 
plasmid does not change the values.

Identification of decoupling compounds
Initially, we performed a parsimonious flux balance anal-
ysis (pFBA) [33] with biomass growth as objective. The 
maximal glucose uptake rate was set to 10 mmol g−1 h−1 
and a non-growth associated maintenance requirement 
was set to 6.86 mmol ATP g−1 h−1 [29]. Exchange reac-
tions with non-zero fluxes were used for the definition of 
the minimal medium. All exchange reactions that were 
not present in the minimal medium, except for H 2 O and 
H + , were turned off. To investigate the differences in 
uptake fluxes, an additional pFBA was performed with 
pDNA as the objective.

Next, we selected each of the minimal medium compo-
nents and set the maximum exchange flux bound for this 
metabolite to 5, 25, 50, 75, and 100% of the flux during 
biomass growth. For each value, a production envelope 
(pDNA synthesis as a function of growth) was calcu-
lated. Decoupling medium components were identified 
as metabolites which, as their uptake flux decreased, the 

maximum pDNA synthesis potential increased at a maxi-
mum biomass growth.

Process simulation
We used dynamic flux balance analysis (dFBA) [34] to 
simulate the time evolution of the fed-batch processes. 
Only the feed phase was simulated (stage  2 and 3 in 
Fig. 1) as the batch remained unchanged. At every inte-
gration step, a lexicographic flux balance analysis (FBA), 
where all fluxes of interest were consecutively optimized, 
was performed [35]. The list of objectives is given in 
Table  1. The non-growth associated maintenance was 
kept at a constant value as before. We used SciPy’s solve_
ivp function for numerical integration [36].

Sulfate concentration, C
SO2−

4
(t) , in the medium was 

tracked as its depletion coincides with the metabolic 
switch from biomass growth to production. Due to a lack 
of knowledge, no uptake kinetics of sulfate were simu-
lated. Practically, this meant that the sulfate uptake was 
calculated from the biomass stoichiometry and growth 
rate. The exchange reaction bounds were left uncon-
strained when C

SO2−
4
(t) > 0 and were blocked when 

C
SO2−

4
(t) ≤ 0.

High copy number origin of replication plasmids typi-
cally replicate during the growth phase as they high-jack 
genomic DNA synthesis pathways. Therefore, we set a 
lower bound, qµpDNA = 4.9 mg g−1 h−1 , for the pDNA 
synthesis reaction. Moreover, it is unrealistic to assume 
that all available glucose is channeled towards pDNA 
production during the SO2−

4  starvation. Therefore, we set 
an upper bound to the synthesis reaction. Since its actual 
value was unknown, we tested several levels ranging from 
q∗pDNA = 4.9 to 24.7 mg g−1 h−1 . Throughout this manu-
script, that ratio of upper to lower bound of the pDNA 
synthesis reaction is referred to as

We simulated 41 equidistant levels of κpDNA ∈ [1, 5] . 
Because of the implementation of the dFBA, the lower 
and upper bounds of the synthesis reaction can be inter-
preted as the pDNA synthesis fluxes during the growth 
and SO2−

4  starvation phase, respectively. We assumed 
negligible changes in overall biomass composition due to 
pDNA synthesis, which solely derives from external car-
bon sources.

To compare pDNA production processes, we calcu-
lated two performance indicators: the specific yield

(1)κpDNA = q∗pDNA/q
µ

pDNA.

(2)YpDNA/biomass(t) := CpDNA(t)/Cbiomass(t),
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and the average volumetric productivity

Here, t0 = 0 h indicates the start of feeding (see Fig. 1). 
With our parameters, see Additional file 1: Table S1, (3) 
simplifies to

 
A schematic of a three-stage growth-decoupled fed-

batch process is shown in Fig. 1. Initial conditions (at the 
start of the feed phase) resembled realistic values from 
the end of a batch process in a small bioreactor (Addi-
tional file 1: Table S1). Strategies with a linear (i.e. con-
stant) and an exponential feeding rate,

respectively, were tested. The specific glucose uptake rate 
was set to

to ensure Cglucose(t) = 0 throughout the (non-starved) 
fed-batch phase (stage 2, Fig.  1). Here, C feed

glucose denotes 
the glucose concentration in the feed medium.

The dFBA simulation terminated once the maximal 
volume of 1L was reached (i.e. after 35.2 and 36.0 h in 
exponential and linear fed-batch, respectively). The ini-
tial sulfate concentration in the medium at the start of 
feed was varied in 301 equidistant steps to search for a 
productivity optimum. We assumed that sulfate was pre-
sent in the medium at the start of the feed, while the feed 
medium was sulfate-free.

Identifying alternative targets
We screened 307 products with existing exchange reac-
tions in iML1515 [29] by performing lexicographic FBA 
(analogous to Table  1) with and without sulfate in the 
growth medium. Bioproducts for which the calculated 
synthesis rate improved during sulfate  limitation were 
identified as potential products benefiting from a sulfate 
limited process design.

(3)ppDNA(t) :=
CpDNA(t)− CpDNA(0)

t − t0
.

(4)ppDNA(t) = CpDNA(t)/t.

(5)rfeed =

{
rfeedlin ,

µCbiomass(0)V (0)Yfeed/biomass exp (µt),

(6)qglucose(t) =
rfeedC feed

glucose

Cbiomass(t)V (t)

Validation experiments
Upstream process
All experiments were conducted with proline auxo-
troph E. coli K-12 strain JM108 [37], which previously 
had been used for pDNA production [8]. The cells were 
transformed with a plasmid of 12.0 kbp length and 53% 
GC content containing a pUC origin of replication and a 
kanamycin resistance gene. However, no kanamycin was 
added throughout the production process as U.S. Food 
and Drug Administration (FDA) and European Medi-
cines Agency (EMA) recommend to avoid the use of anti-
biotics [1].

For fed-batch fermentations, E. coli JM108 were grown 
in a 1.8 L (1.0 L net volume, 0.5 L batch volume) com-
puter-controlled bioreactor (DASGIP parallel bioreac-
tor system, Eppendorf AG, Germany). The bioreactor 
was equipped with a pH probe and an optical dissolved 
oxygen probe (Hamilton Bonaduz AG, Switzerland). 
The pH was maintained at 7.0 ± 0.1 by addition of 12.5% 
ammonia solution; the temperature was maintained at 37 
± 0.5◦ C. The dissolved oxygen (O2 ) level was stabilized 
above 30% saturation by controlling the stirrer speed, 
aeration rate, and gassing composition. Foaming was 
suppressed by the addition of 2 mL 1:10 diluted Struktol 
J673A antifoam suspension (Schill+Seilacher, Germany) 
to the batch medium and by the automatic addition of 
1:10 diluted Struktol J673A controlled by a conductiv-
ity-operated level sensor. For the inoculation of the bio-
reactor, a seed culture was used (25 mL batch medium 
inoculated with 250 µ L master cell bank in 250 mL baf-
fled glass flasks at 37 ◦ C with shaking at 180 rpm). The 
seed culture was incubated until a final OD600 of 2–4 was 
reached and a defined volume was transferred aseptically 
to the bioreactor to result in an initial OD600 of 0.015.

The fermentation process was designed for a final 
amount of 50 g cell dry mass (CDM) of which 1.51 g 
was obtained in a batch volume of 500 mL and 48.5 g 
during the feed phase via the addition of another 500 
mL of feed medium. The amount of glucose for the spe-
cific medium was calculated based on a yield coefficient 
( Ybiomass/glucose ) of 0.303 g g−1 and added as C 6H12O6 ·

H2 O. For media preparation, all chemicals were pur-
chased from Carl Roth GmbH (Germany) unless oth-
erwise stated. Two different media compositions were 
compared regarding specific pDNA productivity: one 
with a limited sulfur source ( SO2−

4  limitation) and one 
without a limited sulfur source (control). Feeding was 
initiated when the culture in the batch medium entered 
the stationary phase. A fed-batch regime with a linear 
substrate feed (0.26 g min−1 respectively 13.91 mL h −1 ) 
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was used for 35 h (approximately five generations). Dur-
ing SO2−

4  limitation fermentations, the simulations pre-
dicted that the provided sulfur was completely consumed 
at 23 h after feed start. The batch and fed-batch medium 
components are given in Additional file 1: Table S2. The 
cultivations of SO2−

4  limitation and control were con-
ducted in six and three replicates, respectively.

Analysis
For off-line analysis (OD600 , CDM, pDNA product), the 
bioreactor was sampled during the fed-batch phase. The 
OD600 was measured using an Ultrospec 500 pro Spec-
trophotometer (Amersham Biosciences, UK), diluting 
the samples with phosphate-buffered saline to achieve 
the linear range of measurement. For the determina-
tion of CDM, 1 mL of cell suspension was transferred to 
pre-weighed 2.0  mL reaction tubes and centrifuged for 
10 min at 16,100 rcf and 4 ◦ C with an Eppendorf 5415 R 
centrifuge. The supernatant was transferred to another 
reaction tube and stored at − 20◦ C for further analysis. 
As a washing step, the cell pellet was resuspended in 
1.8 mL RO-H2 O, centrifuged, and the supernatant dis-
carded. Afterwards, the pellet was resuspended in 1.8 mL 
RO-H2 O and finally dried at 105 ◦ C for 24 h. The reaction 

tubes with the dried biomass were cooled to room tem-
perature in a desiccator before re-weighing.

For pDNA product analysis, the sampling volume of 
the cell suspension, corresponding to 20 mg CDM, was 
estimated via direct measurement of the OD600 . The cal-
culated amount was transferred to 2.0 mL reaction tubes 
and centrifuged at 16,100 rcf and 4 ◦ C for 10  min. The 
supernatant was discarded, and the cell pellets were 
stored at − 20◦C.

The content of pDNA in ccc-conformation was deter-
mined using AIEX-HPLC (CIMac™ pDNA−0.3 Ana-
lytical Column, 1.4 µ L; BIA Separations d.o.o., Slovenia). 
The column separated open circular, linear, and super-
coiled pDNA fractions into distinct peaks. Quantification 
was achieved using a calibration curve based on peak 
areas obtained from purified pDNA samples. For HPLC 
analysis cell disintegration was performed by an alkaline 
lysis method [38]. The obtained lysate was directly ana-
lyzed by HPLC (Agilent 1100 with a quaternary pump 
and diode-array detector (DAD)). Values derived from 
three biological replicates have a coefficient of variation 
lower than 10%.

The average volumetric productivity ( ppDNA(t) ) and 
the average specific yield ( YpDNA/biomass(t) ) were calcu-
lated as given in Equations (3) and (2), respectively. The 
time-dependent pDNA synthesis rate ( qpDNA(t) ) was 
estimated via the finitediff Python package [39, 40].

Fig. 2  pFBA uptake flux rates for all minimal medium components. 
Black bars represent fluxes for optimization of biomass synthesis, red 
bars represent fluxes of pDNA synthesis

Fig. 3  Normalized pDNA production envelopes for different maximal 
uptake rates of (a single) decoupling nutrient. Ca2+ , Cl  , Co2+ , 
Cu2+ , Fe2+ , K + , Mg2+ , Mn2+ , MoO2−

4  , Ni2+ , SO2−
4  , and Zn2+ all result 

in identical sets of production envelopes. Note that all production 
envelopes include the line segment from (0|0) to (0|100). The inset 
shows the extreme points of a production envelope with a realistic 
pDNA production rate during biomass growth (red circle) 
and a potential 4-fold pDNA production rate increase (red cross)
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Results

Key objective
We aim to design an efficient three-stage fed-batch pro-
cess (Fig. 1) for pDNA production in E. coli, where cellu-
lar growth and pDNA production are separated.

In the following, we will 
	(i)	 use constraint-based modeling to identify medium 

components that enable switching from growth to 
production phase;

	(ii)	 determine optimal switching time points to maxi-
mize the average productivity in a fed-batch fer-
mentation; and

	(iii)	 experimentally validate the computed strategies in 
a linear fed-batch process.

Identification of decoupling compounds
First, we used pFBA to compute a minimal set of uptake 
rates in the genome-scale metabolic model iML1515 [29] 

supporting maximal aerobic growth of E. coli with glu-
cose as carbon source. Similarly, we computed uptake 
rates for maximal pDNA production using the same 
constraints (Fig. 2). All calculated uptake rates are inflex-
ible in the optima, except for Fe2+ and O 2 . Their uptake 
can be further increased by conversion to and excre-
tion of Fe3+ and H 2 O. In contrast to biomass synthesis, 
pDNA production requires only glucose, O2 , NH+

4  , and 
HPO2−

4  , but no further nutrients. Therefore, we conclude 
that these remaining nutrients could potentially be used 
as decoupling agents separating pDNA synthesis from 
growth.

Next, for each decoupling nutrient, we restricted its 
uptake between zero and 100% of its rate at maximum 
growth and computed the corresponding pDNA produc-
tion envelopes as a function of growth (Fig. 3). All twelve 
decoupling nutrients result in identical sets of produc-
tion envelopes, which mirrors the fact that each decou-
pling nutrient is essential for growth but not required for 
pDNA production. Note that the one-to-one trade-off 

Fig. 4  Predicted optimal timing in a SO2−
4  limited linear fed-batch process. A shows average volumetric productivities of pDNA production (g 

L −1 h −1 ) as a function of the initial SO2−
4  concentration in a linear fed-batch process. The full line represents different levels of increased pDNA 

production during starvation as percentages of pDNA production rate during biomass growth ( κpDNA ). The dotted line indicates the location 
of the optima for κpDNA between 100 and 500%. The second X-axis of A (top) illustrates the length of the sulfate starved process phase ( t∗ ). For all 
modeled linear fed-batch processes, right of the gray dashed line, no SO2−

4  limitation occurred. B and C show the process curves of metabolites 
of interest in the optimal process for κpDNA = 200% . The gray dashed lines indicate the switching time point between the growth and production 
phases
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between biomass production and pDNA synthesis, i.e., 
the upper limit of the production envelope, is a straight 
line between the points (0|100) and (100|0).

Realistically, pDNA production rates are significantly less 
than the theoretical value of 100% in Fig. 3. Therefore, in 
the inset of the same figure, the red markers illustrate the 
extreme points of more reasonable production envelopes. 
For example, the red circle (i.e., κpDNA = 100% ) illustrates 
average rates of pDNA production during cell growth. Even 
when the decoupling would lead to a boost by a factor of 
κpDNA = 4 (red cross), the resulting pDNA production flux 
would be only 1.3% of the theoretical maximum.

In the following, we focus on the impact of the six bulk 
non-metal elements (sulfur, phosphorus, oxygen, nitro-
gen, carbon, and hydrogen) that typically make up 97% (g 
g −1 ) of the elemental biomass composition [41]. Moreo-
ver, except for potassium (and sulfate), all other predicted 
decoupling nutrients (iron, magnesium, calcium, chlorine, 
copper, manganese, zinc, nickel, cobalt, and molybdenum) 
are taken up at minute rates ( < 15 µmol g−1h−1 , Fig.  2). 
Thus, exactly dosing their concentrations for limitation 
may be challenging in a bio-process. This leaves sulfate as 
the only predicted decoupling nutrient in a glucose-mini-
mal medium.

Optimal sulfate limited processes
Decoupling production from growth during a bio-process 
raises the question of timing: when to best switch from 
growth to production phase to maximize performance.

In the following, we used dFBA [34] to track the time-
dependent concentrations Ci(t) of biomass, pDNA, glu-
cose, and sulfate and determine the optimal initial sulfate 
concentration, C

SO2−
4
(0) , that maximize the average volu-

metric productivity

in a fed-batch process. Here tend denotes the end of the 
bio-process, which terminates when the maximal volu-
metric capacity of the reactor is reached. Our simulations 
assume that pDNA production occurs (i) at a constant 
rate q∗pDNA = κpDNA q

µ

pDNA during the sulfate starvation 
phase; (ii) at qµpDNA during the growth phase.

We simulated sulfate limited fed-batch processes with 
a linear feed as sketched in Fig. 1 using the values listed 
in Additional file 1: Table S1. In all simulations the feed 

(7)max
C
SO2−

4
(0)

ppDNA

(

tend,CSO2−
4
(0)

)

Fig. 5  Experimental results of sulfate limitation. A illustrates the biomass concentration, B the concentration of produced pDNA, and C the pDNA 
to biomass yield. The violins are calculated from triplicates of the control (i.e., no SO2−

4  limitation, CTRL, black) and from six replicates of the sulfate 
limited process (SLIM, red). The full lines and points are calculated from the mean of the replicates. The gray dashed line represents the estimated 
time of the switch from biomass growth to pDNA production (projected at 23 h)

Fig. 6  Fraction of supercoiled (ccc) pDNA over time for SO2−
4  limited 

(SLIM, red) and control (CTRL, black) process. Experimental replicates 
are shown as violins, full lines and markers represent their means
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rate was constant. Thus, the process length is always 36 h. 
Subsequently, we analyzed the impact of the length of the 
pDNA production phase (induced by sulfate starvation 
during the feed phase, i.e., stage 3 in Fig. 1) on the aver-
age volumetric productivity. An analogous analysis for 
a sulfate limited batch fermentation can be found in the 
Supplementary Notes A.3.1.

We observed distinct maxima in the average volumet-
ric productivity of a linear fed-batch when κpDNA > 1 
(red dotted line, Fig. 4A). Maxima occur at much longer 
starvation times compared to batch processes ( t∗ = 19 h 
versus 2.5 h at κpDNA = 4 , Additional file 1: Fig. S1). Even 
compared to an equivalent exponential fed-batch, the 
optimal starvation is longer in a linear than in an expo-
nential fed-batch process (Additional file  1: Fig.  S2). 
For instance, at κpDNA = 1.5 a linear fed-batch pro-
cess achieves an optimal ppDNA = 0.18 g L−1 h−1 at 
t∗ = 12 h , while an equivalent exponential fed-batch 
process reaches its optimum ppDNA = 0.096 g L−1 h−1 
at t∗ = 3.3 h . Within our modelling assumptions, a lin-
ear fed-batch, even without starvation, outperforms an 
equivalent exponential fed-batch with (optimal) sulfate 
starvation as long as κpDNA ≤ 3.5.

Typically, growth-decoupled processes suffer from a 
substantially decreasing (glucose) uptake rate during the 
production phase [42, 43]. Thus, our assumption of keep-
ing an elevated q∗pDNA constant over several hours may be 
unrealistic. Therefore, we investigated how the produc-
tivity optima change when the maximal feasible starva-
tion length ( t∗max ) is bounded. Yet, even in such cases, 
sulfate limited fed-batches perform better than standard 
processes without starvation (Additional file 1: Fig. S3).

Sulfate limitation experiments
The preceding analysis suggested that a three-stage fed-
batch process with sulfate starvation will deliver superior 
pDNA production performances compared to a conven-
tional, non-starved fed-batch process. To confirm this, 
we set up a linear fed-batch process with E. coli JM108 
as host (see Sect.  2.2 for details). Based on small mole-
cule production rates during sulfate starvation [43, 44], 
we assumed a κpDNA = 2 and consequently predicted 
t∗ = 13 h . Thus, we computed the initial SO2−

4  concen-
tration to be 3.8 g L −1 such that sulfate starvation occurs 
after 23 h in a 36 h bio-process.

Figure  5 highlights the feasibility of sulfate starvation 
(indicated as SLIM) to boost pDNA production in a (lin-
ear) fed-batch. Panel A illustrates the growth arrest due 
to sulfate starvation (compare the diverging lines to the 
right of the dashed line). Due to dilution, the biomass 
concentration (red) decreases if cells no longer grow. 
Yet, pDNA concentration keeps rising – even faster than 
in the unstarved control (compare red SLIM with black 
CTRL in panel B). Consequently, the specific pDNA 
yield rises too (panel C) reaching a maximum of 0.074 g 
g −1 after 31 h, which corresponds to an improvement of 
29% compared to control ( p = 0.0005 , Additional file 1: 
Table S3).

Moreover, we compared the fraction of supercoiled 
pDNA between the SO2−

4  limited and control processes 
(Fig. 6). Up to 27 h after induction, there were no notice-
able differences. After this point, the SO2−

4  limited pro-
cess maintained a higher fraction of supercoiled pDNA 
( +3%, p = 0.0019 , Additional file 1: Table S3), resulting in 

Fig. 7  Calculated experimental rates and comparison to the simulation. A illustrates the average volumetric productivity and B the pDNA 
production fluxes of control and SO2−

4  limited process (black CTRL and red SLIM, respectively). C shows the ratio of qSLIMpDNA and qCTRLpDNA (blue). 
Experimental replicates are shown as markers, dotted lines are calculated from simulations. To adjust the simulations to the rates obtained 
in the experiments, a linearly decreasing qCTRLpDNA was fitted to experimental control data (black dotted line, B). Moreover, we fitted a parallel qSLIMpDNA 
(red dotted line, B) to conform to the experimental flux ratio (panel C). The vertical gray dashed line represents the estimated time of switching 
from biomass growth to pDNA production (projected at 23 h)
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a 33% ( p = 0.0001 ) increase in the specific yield of super-
coiled pDNA.

Beyond 31 h, pDNA concentration and specific yield 
decrease in both the SO2−

4  limited and the control 
process.

Next to the specific yield, also the average volumet-
ric productivity increases by 10% at 31 h ( p = 0.0243 , 
Fig. 7A and Additional file 1: Fig. S3). If only the pharma-
cologically relevant supercoild fraction of pDNA is con-
sidered, the productivity increases by 13% ( p = 0.0052 , 
Additional file 1: Table S3).

To further investigate the experimental results, we 
computed the specific productivities in the sulfate lim-
ited and control fermentations (Fig. 7B). In both bio-pro-
cesses qpDNA decreases with time which is in contrast to 
our modeling assumptions.

Finally, we compared the specific and volumetric yield 
achieved by the experiments in this study (at t = 31 h ) 
to published values. Table 2 shows that in terms of volu-
metric and specific yield the pDNA production strategy 
for our control values is already one of the best we could 
find, and with SO2−

4  limitation it performs better than all 
other published methods of our knowledge. Due to the 
extraordinary pDNA size in this study, the plasmid copy 
number is just above average. However, compared to the 

control, the plasmid copy number of the sulfate limited 
process increases by 29%.

Discussion
We aimed to improve pDNA productivity by designing 
a three-stage fed-batch process that separates cellular 
growth and production. Growth-decoupled processes are 
common design choices to enhance volumetric produc-
tivity in biochemical and biopharmaceutical production 
processes [43–46]. Especially with the advent of dynamic 
control in metabolic engineering that allows switching 
back and forth between metabolic growth and produc-
tion phenotypes, interest in such (multi-stage) process 
designs has strongly grown [47]. While algorithms like 
MoVE [48] exist to identify intracellular metabolic 
switches, our focus here was on easily implementable 
medium modifications to induce these switches.

In this study, we identified twelve possible decoupling 
components ( SO2−

4  , K + , Ca2+ , Cl− , and compounds 
of trace elements) for the production of pDNA (Fig.  2 
and 3). All of them enable and regulate key functions in 
life [49]. Although trace elements act primarily as cata-
lysts in enzyme systems, some of them, like copper and 
iron, play vital roles in energy metabolism [50]. However, 
we specifically selected SO2−

4  for further investigations 
because: (i) Sulfate is one of the six most prevalent ele-
ments in living organisms [41], which makes it compa-
rably easy to measure and consequently determine the 
onset of starvation; (ii) Sulfate, in contrast to the other 
decoupling compounds, has a dedicated metabolic func-
tion that is well captured in the used genome-scale meta-
bolic reconstruction iML1515 of E. coli. [29]; (iii) Sulfate 
itself neither has a catalytic function nor a role in energy 
metabolism [51].

We simulated a three-stage fed-batch process where 
the transition from growth to production is triggered by 
the onset of sulfate starvation. Our computational model 
is based on two assumptions: (i) In each phase the spe-
cific pDNA production rate is constant; (ii) pDNA pro-
ductivity increases upon starvation, i.e., 
κpDNA = q∗pDNA/q

µ

pDNA > 1 . The latter aligns with exper-
imental results of Masuda et  al. [43], who reported a 
value of κmevalonate = 1.16 for mevalonate production 
during sulfate starvation.

In our experiments, we observed a decrease in the spe-
cific pDNA production for both the control and SO2−

4  
limited process (Fig. 7B), challenging our assumption of 
a constant specific pDNA production rate. Investigat-
ing why qpDNA decreases throughout the process will be 
the scope of further work. However, we implemented a 

Fig. 8  Breakthrough production length during starvation in linear 
fed-batch processes. If the pDNA production during starvation can be 
held longer than the breakthrough production length ( t∗breakthrough , 

blue full line), the SO2−
4  limited process outperforms a control (i.e., 

not starved) process. A visual explanation of t∗breakthrough is given in 

Additional file 1: Fig. S4. The start of the starvation is defined 
by the optimal C

SO2−
4
(0) calculated in Fig. 4A (red dotted line). The 

maximum pDNA production length during starvation is equal 
to the total starvation length t∗ (blue dashed line). The contour 
colors indicate the productivity of a SO2−

4  limited process compared 
to the control in % (color bar on the right)
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time-dependent qpDNA in additional simulations which 
demonstrate that the assumption of constant qpDNA is 
not necessary for process improvements by SO2−

4  limita-
tion (dotted lines in Fig. 7 and Additional file 1: Fig. S6) 
Even the optimal switching time changes by less than 
1  h (Additional file  1: Fig.  S7). Sulfate starvation always 
increases pDNA production, provided that κpDNA > 1 , 
regardless of the process (batch, exponential or linear 
fed-batch). In fact, our data consistently shows higher 
specific pDNA production rates during starvation com-
pared to control (Fig. 7C). This trend reinforces and vali-
dates our core assumption of κpDNA > 1 where the length 
of starvation required to maximize volumetric productiv-
ity strongly depends on its exact value.  

Maintaining high κpDNA during sulfate starvation is 
a key requirement of our design. Our predictions are 
based on continuously elevated levels of pDNA produc-
tivity throughout starvation. For long starvation phases, 
this assumption may not be feasible [52]. However, Fig. 8 
illustrates that this assumption is not particularly crucial. 
In the worst case (at κpDNA = 160% ), pDNA production 
needs to be maintained for 8.3 h to perform at least as 
well as a non-starved process. Our experimental data 
(Figs.  5 and  7) demonstrate that this is indeed feasible. 
Interestingly, if κpDNA is raised beyond 160%, the optimal 
starvation time increases too, but the minimally required 
length of pDNA production during starvation drops. This 
hints at a possible trade-off that may be explored in fur-
ther process optimization steps.

In a growth-decoupled process, it is essential to, first, 
reach high biomass which can subsequently catalyze 
product formation. With our process settings (i.e., fixed 
final process volume), this is best achieved with a linear 
feeding regime (Additional file 1: Fig. S2), which quickly 
builds up biomass during the first few hours (compare 
Additional file 1: Fig. S2B and E).

We experimentally verified that a linear feeding strat-
egy (which results in a continuously decreasing growth 
rate) outperforms the exponential feed even without 
sulfate limitation (data not shown). This is in agreement 
with literature which shows that a lower growth rate is 
preferential for pDNA production [10–12]. Interestingly 
a literature survey (Table  2) reveals that exponential 
feeding strategies are more frequently used which may 
explain why even our linear control process is able to out-
perform the majority of previously reported values. How-
ever, an ultimate comparison cannot be made as these 
studies used different plasmids which may significantly 
influence the evaluation metrics of the production pro-
cess [21].

A key challenge in any growth-decoupled process is to 
maintain metabolic activity in non-growing metabolic 

states. Often a strong decrease in nutrient uptake is 
observed [43]. However, during sulfate starvation, glu-
cose concentration in the reactor remained below the 
detection limit, indicating that cells consistently main-
tained glucose uptake equal to the glucose feed rate. This 
supports the validity of our assumption stated in Eq.  5. 
We speculate that this may be related to the fact that (i) 
due to the linear feed, the specific glucose uptake already 
dropped to 4% of its initial value at the onset of starvation 
– 81% lower than the (already) reduced specific glucose 
uptake rate during sulfate starvation reported by Masuda 
et  al. [43]; (ii) sulfate starvation retains high ATP-levels 
compared to other nutrient limitations [45, 67].

Consistent with maintained metabolic activity, 
we detected acetate accumulation during starvation 
(Additional file  1: Fig.  S5), which is a common sign of 
overflow metabolism in E. coli [68]. However, our theo-
retical predictions for the maximum acetate concen-
tration exceeded the measured values, suggesting the 
existence of other byproducts. Identifying these will be 
the focus of future research.

In the future, additional refinement of the process 
model could be achieved by including a term for the 
metabolic burden of resistance protein synthesis. An 
appropriate computational framework has recently 
been published [69]. Several studies have shown that 
this may significantly influence the metabolism of a 
producing organism [7, 8].

In both control and SO2−
4  limited experiments, spe-

cific pDNA yields and concentrations dropped at 
the end of the bioprocess. This might be due to other 
limitations (e.g., the O 2 transfer rate [70]). Therefore, 
we suggest stopping the process at 31 h. At that point 
product concentration, average volumetric productiv-
ity, and specific yield are statistically significantly up by 
10%, 10%, and 29%, respectively (compared to control). 
Considering the fraction of supercoiled pDNA, the sul-
fate limited process gains another 3%  points to con-
centration and productivity, and 4%  points to specific 
yield. A mechanistic interpretation of this interesting 
observation, however, is outside the scope of the cur-
rent methodology and will be the focus of further work.

Despite using a defined, minimal medium and a com-
paratively large plasmid (12  kbp) our process outper-
forms previous reports [25] achieving an 8% increase 
in volumetric yield and a 9% boost in specific yield 
(Table 2). The latter is not only advantageous for higher 
pDNA quantities in sulfate limited experiments but, 
importantly, also aids in downstream processing [71, 72].

To showcase the broad applicability of sulfate limita-
tion in biotechnological production, we explored the 
effect of sulfate limitation on 307 naturally secreted 



Page 14 of 16Gotsmy et al. Microbial Cell Factories          (2023) 22:242 

products of E. coli that are listed in the iML1515 model 
[29]. Through lexicographic FBA with and without sul-
fate in the medium, we identified 83 compounds—more 
than 25% of those investigated—that would benefit from 
sulfate limitation in their production (Fig. 9). This under-
scores the significant potential of sulfate limited process 
design for a wide range of biotechnological products.

Conclusion
Based on genome-scale metabolic modeling, we have 
designed and successfully validated a three-stage, 
growth-decoupled fed-batch process for pDNA pro-
duction in E. coli, cultivated in a minimal medium. We 
achieved the transition between the growth and produc-
tion phases through sulfate starvation. This optimization 
led to statistically significant increases in key metrics: 
average supercoiled volumetric productivity (+13%), spe-
cific pDNA yield (+29%), and supercoiled specific pDNA 
yield (+33%). Overall, our process achieved a specific 
pDNA yield of 74  mg g −1 and a volumetric yield of 8  g 
L −1 , marking an increase of more than 8% compared to 
prior reports. Importantly, our process design may be 
benefitial to a wide range of bio-based products of indus-
trial significance.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12934-​023-​02248-2.

Additional file 1: Table S1. Parameters for dFBA simulations. Cells marked 
with "–" are not applicable and cells marked with "var" are not constant in 
the respective process. Table S2. Growth media components of the 
experiments. Growth media were sterilized by filtration. The trace 
element solution was prepared in 5 M HCl and contained (g/L): 4.41 CaCl2 
⋅ 2H2O, 3.34 FeSO4 ⋅ 7H2O, 1.43 CoCl2 ⋅ 6H2O, 1.03MnSO4 ⋅H2O, 0.15 CuSO4 
⋅ 5H2O, 0.17 ZnSO4 ⋅ 7H2O. † In total, 9.6 mL of a 200 g/L MgSO4 ⋅ 7 H2O 
stock solution were pulsed into the bioreactor (3.2 mL at feed start, 3.2 mL 
at 7 h after feed start and 3.2 mL at 15 h after feed start). ‡ According to 
our stoichiometric model [29], the amount of MgSO4 ⋅ 7 H2O in the batch 
medium alone can support more than 50 g of biomass. However, to 
ensure that Mg2+ is present in excess throughout the sulfate limited 
process we further added Mg2+ in the form of MgCl2 ⋅ 6 H2O. Table S3. 
Average values of several process variables of interest and their p-values 
compared to the control at 31 h (one-sided t-test). ccc pDNA corresponds 
to the supercoiled fraction of plasmid DNA measured.Table S4. List of 
potential targets for process optimization with sulfate limitation. We used 
lexicographic FBA (Table 1) to calculate maximal theoretical production 
rates during sulfate starvation (max. q∗) and sulfate excess (max. qμ) 
in mmol g−1 h−1. Compounds marked with † are displayed with their BiGG 
ID [75] to shorten the name. Previously described sulfate limitation target 
mevalonate is not naturally synthesized in E. coli [43] and, thus, not 

present in the list. Figure S1. Predicted optimal timing in a SO2−

4
 limited 

linear fed-batch (A, B, C) and batch (D, E, F) process. Figure S2. Predicted 

optimal timing in a SO2−

4
 limited linear (A, B, C) and exponential (D, E, F) 

fed-batch process. Figure S3. Predicted optimal timing in a SO2−

4
 limited 

linear fed-batch process with different maximum starvation lengths. 
Figure S4. Visualization explanation of  t∗breakthrough . Figure S5. Acetate 

accumulation during control and SO2−

4
 limited processes. Figure S6. 

Control and sulfate limited process with time-dependent qpDNA. Figure 

S7. Predicted optimal timing in a SO2−

4
 limited linear fed-batch process 

with variable qpDNA.
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B. Appendix II: Supplementary
Information

B.1. Supplementary Tables

Table B.1.: Parameters used for the calculation of the time series shown in Figure 1.9.

Parameter Unit Exponential Fed-Batch Linear Fed-Batch

X0 g 1.52 1.52
P0 g 0 0
V0 L 0.5 0.5
Y
X/G

g g−1 0.54 0.54
Y
P/G

g g−1 0.51 0.51
γP g h−1 g−1 .0061 .0061
γM g h−1 g−1 .16 .16
µmax h−1 – 2
µ h−1 0.12 –
CG g L−1 330 330
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