
MASTERARBEIT / MASTER’S THESIS

Titel der Masterarbeit / Title of the Master’s Thesis

„A Multi-Cloud-Based Blockchain-as-a-Service“

verfasst von / submitted by

Ismail Alhamzeh BSc

angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of

Master of Science (MSc)

Wien, 2024 / Vienna, 2024

Studienkennzahl lt. Studienblatt / UA 066921
degree programme code as it appears on
the student record sheet:

Studienrichtung lt. Studienblatt / Masterstudium Informatik
degree programme as it appears on
the student record sheet:

Betreut von / Supervisor: Univ.-Prof. Dipl.-Ing. Dr. Wolfgang Klas

Acknowledgements

I extend my heartfelt appreciation to my supervisor, Univ.-Prof. Dipl.-Ing. Dr. Wolfgang
Klas for his invaluable guidance and support that made this work possible. His expertise
and dedication have truly been instrumental throughout this thesis.

I would also like to thank my family for their unwavering encouragement and support.
Their belief in me has been a constant source of inspiration, and I am blessed to have
them by my side.

i

Abstract

Blockchain is a shared, immutable ledger that tracks transactions and provides means to
establish trust between different parties. However, building and maintaining a production-
level infrastructure and hosting a blockchain network for enterprises benefiting from
blockchain technology is complex and challenging. Those barriers and challenges are
resolved using Blockchain-as-a-Service (BaaS). Such a cloud-based service combines
the high availability, elasticity, and high computing power of cloud computing with
blockchain technology’s decentralization, immutability, and transparency. This technology
combination gives enterprises that utilize this technology combination advantages such as
reduced costs, scalability, and increased security. This thesis provides an overview of BaaS
commercial and academic systems. It provides a comparative analysis based on different
characteristics and parameters specified in this thesis’s scope. Furthermore, this thesis
presents an architectural design and a prototype implementation of a Blockchain-as-a-
Service platform that offers multi-cloud, multi-region blockchain framework deployments,
a property many commercial Blockchain-as-a-Service providers like AWS or Google Cloud
do not provide. Finally, the BaaS platform proposed in this thesis will be evaluated based
on user experiments and functional and non-functional requirements evaluation.

iii

Kurzfassung

Blockchain ist ein gemeinsames, unveränderliches Ledger, das Transaktionen verfolgt
und Möglichkeiten bietet, Vertrauen zwischen verschiedenen Parteien aufzubauen. Der
Aufbau und die Wartung einer Infrastruktur auf Produktionsebene sowie das Hosten eines
Blockchain-Netzwerks für Unternehmen, die von der Blockchain-Technologie profitieren,
sind jedoch komplex und herausfordernd. Diese Hindernisse und Herausforderungen
werden mithilfe von Blockchain-as-a-Service (BaaS) gelöst.

Ein solcher cloudbasierter Dienst kombiniert die hohe Verfügbarkeit, Elastizität und
hohe Rechenleistung des Cloud Computing mit der Dezentralisierung, Unveränderlich-
keit und Transparenz der Blockchain-Technologie. Diese Technologiekombination bietet
Unternehmen, die diese Technologiekombination nutzen, Vorteile wie geringere Kosten,
Skalierbarkeit und erhöhte Sicherheit. Diese Arbeit bietet einen Überblick über kom-
merzielle und akademische BaaS-Systeme. Es bietet eine vergleichende Analyse auf
der Grundlage verschiedener Merkmale und Parameter, die im Rahmen dieser Arbeit
spezifiziert werden.

Darüber hinaus stellt diese Arbeit einen Architekturentwurf und eine prototypische
Implementierung einer Blockchain-as-a-Service-Plattform vor, die Multi-Cloud-, Multi-
Region-Blockchain-Framework-Bereitstellungen ermöglicht, eine Eigenschaft, die viele
kommerzielle Blockchain-as-a-Service-Anbieter wie AWS oder Google Cloud nicht an-
bieten. Abschließend wird die in dieser Arbeit vorgeschlagene BaaS-Plattform auf der
Grundlage von Benutzerexperimenten und der Bewertung funktionaler und nichtfunk-
tionaler Anforderungen evaluiert.

v

Contents

Acknowledgements i

Abstract iii

Kurzfassung v

List of Tables xi

List of Figures xiii

List of Algorithms xv

Listings xv

1. Motivation 1
1.1. Topic Motivation and Problem Description 1
1.2. Goals . 2
1.3. Work Process and Used Methods . 3

2. Related Work 5
2.1. Literature Background and Related Work 5

2.1.1. Blockchain . 5
2.1.2. Blockchain Types . 10
2.1.3. Blockchain Node Types . 11
2.1.4. Blockchain Consensus Algorithms 13
2.1.5. Blockchain Frameworks . 16
2.1.6. Blockchain-as-a-Services . 17
2.1.7. Commercial Blockchain-as-a-Service Providers 17
2.1.8. Academic Blockchain-as-a-Service Systems 19

2.2. Comparative Analysis - BaaS Commercial Providers 23
2.3. Comparative Analysis - BaaS Academic Systems 24
2.4. Summary and Transition . 26

3. Design 31
3.1. Requirements . 31

3.1.1. Functional Requirements . 31
3.1.2. Non-Functional Requirements . 34

vii

Contents

3.2. Design Approach and Overview . 36
3.2.1. Platform Components . 36
3.2.2. Platform Microservices . 37

3.3. Architectural Design Decisions . 37
3.3.1. Architectural Design Decision: Platform Architecture - Microservices 37
3.3.2. Architectural Design Decision: Event-Driven Communication -

Apache Kafka . 39
3.3.3. Architectural Design Decision: Clusters Management 39
3.3.4. Architectural Design Decision: Clusters Integration and Connectivity 41
3.3.5. Architectural Design Decision: OpenID Connect Authentication

Protocol . 42
3.3.6. Architectural Design Decision: Blockchain Resources Mangement . 43

3.4. Components and Services Description/Design/Interfaces 44
3.4.1. Cluster Management Microservice 45
3.4.2. Cluster Integration Microservice 49
3.4.3. Blockchain Management Microservice 56
3.4.4. Notification Microservice . 60

3.5. Inter-Service Communication . 63
3.6. BaaS Custom Blockchain Framework . 64

3.6.1. Structure . 64
3.6.2. Consensus Algorithm . 64
3.6.3. Architecture . 66
3.6.4. Blockchain Entities Structure . 66
3.6.5. Validation Rules . 68
3.6.6. API Reference . 68
3.6.7. Custom Blockchain Framework using BaaS multi-cloud Architecture 70

4. Implementation 75
4.1. Technology Stack . 75
4.2. Implementation . 76

4.2.1. API Gateway . 76
4.2.2. Identity And Access Management Component 78
4.2.3. Event Driven Communication - Apache Kafka 78
4.2.4. Data Store . 78
4.2.5. Microservices . 78

4.3. Running The Prototype . 87
4.3.1. Cloud Providers Prerequisite . 87
4.3.2. Local Setup Prerequisites . 88

5. Evaluation and Discussion 91
5.1. User Experiment . 91

5.1.1. System Usability Scale - Tasks . 91
5.1.2. System Usability Scale - Survey . 92
5.1.3. System Usability Scale - Results 93

viii

Contents

5.1.4. Funtional-Related Items Results 94
5.1.5. Overall Results . 94

5.2. Non-Functional Requirements Evaluation 94
5.2.1. Decentralization . 95
5.2.2. High Availability . 95
5.2.3. Multi-Cloud And Vendor Lock-In 96
5.2.4. Performance . 96

6. Future Work and Conclusions 99
6.1. Future Work . 99
6.2. Conclusion . 100

Bibliography 103

A. Appendix 107
A.1. Source Code . 107
A.2. Figures . 107

ix

List of Tables

2.1. BaaS Providers Blockchain Type, Blockchain Framework and Use Case
comparison . 24

2.2. BaaS Providers Architecture, Pricing, Pay-as-you-go and Programming
language-agnostic comparison . 25

2.3. BaaS Providers Vendor Lock-In, multi-cloud / On-premise deployment and
Other comparisons . 25

4.1. Project Components and Descriptions . 75

5.1. System Usability Scale (SUS) Results . 93
5.2. Functional Items Results . 94

xi

List of Figures

2.1. Generic Block Structure. Source: [55]. 5
2.2. Blockchain Transaction. Source: [49]. 6
2.3. Blockchain UTXO Account Model. Source: [55]. 7
2.4. Blockchain Account Model. Source: [49]. 9
2.5. Merkle Tree Representation and Traversal. Source: [31]. 10
2.6. Blockchain Node Types. Source: [5]. 12
2.7. Consensus Algorithms for Blockchain Technology. Source: [30]. 13
2.8. UBaaS Architecture. Source: [46]. 20
2.9. FBaaS Architecture. Source: [7]. 28
2.10. FSBaaS Architecture. Source: [8]. 29
2.11. NutBaaS Architecture. Source: [52]. 30

3.2. Cluster Management Microservice - UML Class Diagram. 46
3.3. Cluster Integration Microservice - UML Class Diagram. 50
3.4. Multi-Primary Multiple Networks Architecture. Source: [22] 53
3.5. Cluster Integration between Google Cloud and Microsoft Azure 55
3.6. Blockchain Management Microservice - UML Class Diagram. 57
3.7. Round-Robin Deployment Policy in Multi-Cloud Deployment Plan. 60
3.8. Notification Microservice - UML Class Diagram. 61
3.9. BaaS Microservices Events Flow. 63
3.10. Custom Blockchain Framework Architecture. 66
3.11. Custom Blockchain Framework Multi-Cloud Architecture. 71
3.1. BaaS Architecture Specification. 73

4.1. BaaS Platform Successful Login Authentication Flow. 77

5.1. System Usability Scale (SUS) Scores by User 93

A.1. Cluster Management Microservice - UML Class Diagram. 108
A.2. Cluster Integration Microservice - UML Class Diagram. 109
A.3. Blockchain Management Microservice - UML Class Diagram. 110
A.4. Notification Microservice - UML Class Diagram. 111

xiii

Listings

3.1. ClusterProviderManager . 48
3.2. ClusterProviderDescriptor . 49
3.3. ClusterProviderConfigurationBuilder . 49
3.4. PoA Consensus Algorithm - Validator Selection 65

4.1. API Gateway Request Routing . 76
4.2. Cluster Management Microservice OpenAPI - GET /providers endpoint . 79
4.3. ClusterProvidersService Specification Class 80
4.4. ClusterIntegrationServiceProcess Abstract Class 81
4.5. CreateIstioEastWestGatewayProcess Class 82
4.6. BlockchainResourcesManager Class . 83
4.7. BlockchainDeploymentService Interface . 84
4.8. KubernetesBlockchainDeploymentService Class 84
4.9. KubernetesBlockchainDeploymentService Class 85
4.10. KubernetesBlockchainDeploymentService Class 86
4.11. ScheduledMonitoringService Class . 87

xv

1. Motivation

1.1. Topic Motivation and Problem Description

Blockchain is a shared, immutable ledger that tracks transactions and provides means to
establish trust between different parties [53]. What is being transacted can be coin in the
case of cryptocurrencies, health data in the case of human health tracking blockchain, or
asset ownership (car, house, and land), basically anything that has a value can be tracked
and secured through the blockchain which provides trust between different authorities [53].

It is a complex and challenging task to build and maintain a production-level infrastruc-
ture that hosts a blockchain network for enterprises that aim to benefit from blockchain
technology because it costs a lot to configure, deploy, manage, and do scheduled software
updates for the hosted blockchain nodes [48, 18]. Therefore, BaaS - Blockchain-as-a-
Service was introduced to make blockchain technology accessible for businesses and
enterprises by shifting those complex tasks to the cloud provider and making businesses
of different sizes focus on developing blockchain-based applications without the need to
have advanced knowledge about the infrastructure [18].

BaaS is a cloud-based service that combines the high availability, elasticity, and high
computing power of cloud computing with blockchain centralization, immutability, and
transparency [45]. This technology combination gives enterprises that utilize this techno-
logy combination many advantages, such as reduced costs, scalability, increased security,
faster time-to-market, and access to blockchain experts who can assist with developing
blockchain applications.

BaaS is a new concept that has gained public traction in recent years. Microsoft Azure
and IBM first offered it, and since then, other cloud providers have also provided their
own BaaS solutions [18, 45]. Therefore, it is a relatively new technology, and some issues
still need to be discussed and resolved, and optimizations can be done.

Many of the current BaaS products like AWS - Amazon Managed Blockchain [2], Oracle
Blockchain [43], and Alibaba Cloud [11] do not provide the ability to deploy a blockchain
network instance on multiple cloud providers (multi-cloud deployment: the deployment of
the blockchain nodes on various public clouds) or on-premise or in a hybrid way (deploying
the blockchain nodes on the cloud and on-premise).

Currently, any Blockchain-as-a-Service platform either does not support multi-cloud
and hybrid deployment or supports it using commercial enterprise technologies like Redhat

1

1. Motivation

Openshift or Google Anthos or using its closed-source solution [27, 28, 29, 12, 24].

A Blockchain-as-a-Service provider that allows its users to deploy the blockchain nodes
only on their infrastructure creates cloud provider dependency issues and drawbacks,
which can be classified into the following four categories of challenges:

1. Availability: If the public provider data centers experience an outage for any reason,
then the BaaS platform becomes unavailable for businesses. However, only a specific
number of nodes will be unavailable when the blockchain nodes are distributed
among multiple infrastructures (cloud providers).

2. Provider Lock-In: It becomes a challenging task to migrate the blockchain nodes to
a different infrastructure or cloud provider.

3. Centralization: Making a whole blockchain network depending on a single cloud
provider, introduces much centralization.

4. Security: If the provider experiences a data leak or security breach, the whole BaaS
instance may be compromised.

These challenges and BaaS requirements motivate us to research and find a solu-
tion focusing on decentralization, high availability, and preventing vendor lock-in of a
Blockchain-as-a-Service platform. Such a solution is feasible by making the platform
support multi-cloud or hybrid blockchain deployments, which is possible by designing a
control plane layer that orchestrates all the different required operations that vary from
provisioning infrastructure from a single cloud provider and ending by connecting multiple
infrastructures and utilize them for hybrid and multi-cloud deployments.

1.2. Goals

This master’s thesis aims to compile a comprehensive state-of-the-art analysis of the cur-
rent Blockchain-as-a-Service platform solutions by understanding architectural solutions,
identifying significant issues and challenges, and proposing a more advanced approach to
BaaS, including a prototypical implementation of the proposed method.

The work to be done can be organized into the three subsequent major research
questions:

1. What are the current research advances in BaaS providers, challenges, and architec-
tures?

2. What are the various architectures and solutions for a Blockchain-as-a-Service
platform that effectively address the issues and challenges mentioned in the first
section, particularly those related to availability, centralization, and provider lock-in?

2

1.3. Work Process and Used Methods

3. How can the answers to the previous research sub-questions be used to create a
Blockchain-as-a-Service prototype that addresses most of the mentioned issues and
challenges?

These three subsequent research questions can be defined as the following concrete
research goals:

1. The comparison of different commercial Blockchain-as-a-Service (BaaS) providers
based on specific characteristics thoroughly specified throughout this thesis: sup-
ported blockchain types and frameworks, use cases, architecture, pricing, vendor
lock-in, and multi-cloud/on-premise deployment support.

2. The comparison of different academic BaaS solutions based on specific character-
istics that were thoroughly specified throughout this thesis, which are: proposed
architecture, to which area in BaaS they contribute (decentralization, deployment,
adoption, security, and utilization of BaaS), vendor lock-in and multi-cloud/on-
premise deployment support.

3. Design a Blockchain-as-a-Service solution that uses the benefits of different analyzed
BaaS commercial providers and architectures, focusing on scalability, decentraliza-
tion, high availability, and enabling multi-cloud and multi-region blockchain network
deployments. The design must be done as a specification to enable its adoption and
implementation by various frameworks and technologies.

4. Implement a concrete Blockchain-as-a-Service solution and control plane that is
specialized for blockchain network deployments. The implementation must enable:

a) Dynamic provisioning and managing of multiple kubernetes clusters from
various cloud providers.

b) Secure communication between the provisioned clusters.

c) Single-cloud and multi-cloud-based blockchain node deployment.

d) Integration with Google Cloud and Microsoft Azure, with the ability to integ-
rate additional cloud providers.

e) Usage of the custom blockchain framework, with the ability to integrate
additional blockchain frameworks.

1.3. Work Process and Used Methods

The work process started by exploring the current Blockchain-as-a-Service research status
and how it evolved — followed by analyzing and researching the related work by reviewing
the BaaS academic and commercial providers and comparing them based on carefully
selected parameters and characteristics based on the intersection of the presented para-
meters by each commercial provider or academic architecture since some parameters are

3

1. Motivation

present in some providers but hidden in the others.

After that, we continued analyzing the different possibilities and technologies that
enable us to achieve a decentralized, highly available, and no vendor-locked-in BaaS
control plane that allows users to manage Kubernetes clusters across different cloud
providers dynamically, provide the ability to configure and connect those clusters, and
manage blockchain workloads across those distributed clusters.

After researching and analyzing the literature and suitable technologies, we started
designing the BaaS multi-cloud specification, considering all the functional and non-
functional requirements the end solutions must fulfill, iteratively refine, and improve based
on the ongoing research and supervisor’s feedback. After that, approach a meaningful
design that satisfies all the requirements and resolves all the challenges the solution has
to fulfill by implementing the prototype and iteratively updating it based on the applied
design changes.

4

2. Related Work

2.1. Literature Background and Related Work

2.1.1. Blockchain

Blockchain Architecture - Block Structure

Blocks contain a set of transactions that are verified and will cause the blockchain state
to change. Each block is linked and chained with the previous block hash, creating a
chain of immutable blocks since the blocks are linked together with their hash [49].

Figure 2.1.: Generic Block Structure. Source: [55].

Figure 2.1 shows a generic overview of the block structure in a blockchain. The following
attributes are present in each block:

1. Block hash: Block identifier.

2. Previous block hash: Previous block identifier.

3. Merkle root: Calculated Merkle root for transactions verified and accepted in this
block.

4. State root (present in the account-based-model blockchain): Calculated Merkle root
for the state (blockchain accounts) after applying a batch of transactions (block) to
the blockchain.

5

2. Related Work

5. Validator/Miner Identifier: The identifier of the block validator or miner depends
on the blockchain type and consensus mechanism.

6. Height: Height of block.

7. Transactions: Transactions batch that will be appended and accepted to the block-
chain and change its state.

8. Timestamp: Block creation timestamp.

Blockchain Architecture - Transaction Structure

As explained in [49, 55], a blockchain transaction refers to an action triggered by a
user and causes a change in the blockchain state (in the case of account-based-model
blockchain).

Figure 2.2.: Blockchain Transaction. Source: [49].

Each block in the blockchains contains a set of accepted transactions that will be
appended to the ledger and cause the world state of the blockchain to be changed (Figure
2.2). The miner/validator nodes verify these transactions and validate when the other
nodes receive the block before accepting the new one.

Depending on the blockchain type (public or private), these transactions may require a
fee to get executed and accepted [49], and they change the blockchain state in case the
Account Model is used.

The following attributes are usually present in different blockchain types (public, private,
and hybrid) [49, 41]:

1. Sender: The sender address - the sender’s public key.

2. Receiver: The receiver address - the receiver’s public key.

6

2.1. Literature Background and Related Work

3. Signature: The sender identifier - the sender signs the transaction with its private
key to verify that he and only he created the transaction.

4. Nonce: Incrementing number to avoid duplicate transactions. Whenever a user
creates a transaction, it gets incremented.

5. Timestamp: Transaction creation timestamp.

6. Transaction Hash: An identifier that can be used to locate a transaction.

7. Value: The amount of money sent from the sender to the receiver.

8. Other attributes may be included depending on the blockchain and use case require-
ments.

Blockchain Account Models

UTXO Model - Unspent Transaction Output Model: UTXO, the unspent trans-
action output model that is utilized in bitcoin [41], means that when a sender creates
a transaction, then he uses one or more of his unspent transactions as input to his
transaction when this transaction is confirmed and added to the blockchain. The receiver
can use the outputs of this transaction.

Figure 2.3.: Blockchain UTXO Account Model. Source: [55].

7

2. Related Work

As Figure 2.3 shows, the sender can spend his unspent transactions by signing the hash
of the last transaction with the receiver’s public key and private key. In this way, the
coins are transmitted from the sender to the receiver account, and only the sender can
spend the new transaction output by signing it with the new receiver’s public key [41, 50].

The problem is how the network can check for double-spending. A simple solution
would be for a central authority to check each new incoming transaction to see if it
is double-spent or not. However, in a peer-to-peer system, the solution would be to
make all the nodes agree on the earliest incoming transaction to prevent double-spending.
Because of the enormous number of transactions, keeping all the peers in sync after each
transaction is complicated, so transactions are grouped into a block [41]. It is generally
recommended to use the UTXO model when the transaction logic is simple.

Account Model: The account-based model is based on the idea of the bank account,
where the state is a set of accounts with a balance, public key, and other attributes
(Figure 2.4). There are two types of accounts:

1. The first is an account with a public and private key used to sign transactions.

2. The second is an account with a contract code specifying when a transaction/trans-
actions must be created/confirmed [49].

Account attributes [49, 50]:

1. Nonce: A number that can be incremented whenever the account owner creates a
transaction. This number helps the network to get information about the account
(how many transactions are done by this account), and it also prevents the receiver
from duplicating the transaction without the sender knowing.

2. Balance – The current account balance. Balance is always checked when an account
tries to create a transaction, and the transactions will be rejected if there is
insufficient balance in the sender account.

3. Code Hash (in the case of Ethereum): An account’s code.

4. Public key: It is used as an account identifier of a node and can also be used to
verify that the sender’s private key creates a transaction.

5. Storage Root (in the case of Ethereum): The hash of the root in the Merkle tree.

6. Private key: Used to sign the transaction when the sender account creates one.
In this way, no one other than the sender’s account owner can create and sign a
transaction.

8

2.1. Literature Background and Related Work

Figure 2.4.: Blockchain Account Model. Source: [49].

Merkle Tree

A Merkle tree, shown in Figure 2.5, is a one-way tree constructed starting from the
children’s nodes and going up until the root node is constructed. It is used in many
applications within cryptography, and it provides a fingerprint for the data set [31].

With the Merkle Tree [31], two different nodes can verify for each other that data is
included in the tree with the help of the Merkle path, which is constructed through pair
nodes from the lead up to the root.

In a blockchain system, the Merkle tree is used with transactions; the transactions will
be the leaves, and every two elements (transactions) will be hashed together until having
a single hash value, which is the Merkle root [31]. After constructing the Merkle tree and
Merkle root, it is then possible for a node to ask other nodes if a transaction is included
in a block or not with simple payment verification and trust the other node’s response by
verifying the received Merkle path.

Smart Contracts

A piece of code that is stored on the blockchain can have a balance, functions, and
persisted state that may change whenever the smart contract is invoked. Users can
interact with the smart contract by creating a transaction and invoking a specific function.
They are immutable, and the transactions that involved the smart contracts can not be
revoked [55, 50].

9

2. Related Work

Figure 2.5.: Merkle Tree Representation and Traversal. Source: [31].

2.1.2. Blockchain Types

Different contexts and requirements use different blockchains, which provide different
features, depending on if the blockchain needs to be permissioned/permissionless, users’
ability to read its records, or restrict mining/validating operations for some/all nodes.
There are four blockchain types:

Public Blockchain

Bitcoin [41] defines public blockchain as a permissionless blockchain that allows anyone to
join. Also, anyone can read the data stored in the blockchain, create transactions, or join
the mining process as a miner node. It is entirely decentralized because the blockchain
will be stored in every node (except in wallet nodes) and requires a consensus algorithm
for public blockchains like Proof of Work (PoW) or Proof of Stake (PoS). Anyone can
verify transactions, and its source code is usually open, and anyone can participate in the
source code maintaining process. Public blockchains are trustable since they rely on PoW
or PoS consensus algorithms for transactions and blocks validation. Furthermore, the
more nodes participate in such networks, the more secure and distributed they become
[41]. Another advantage that public blockchains offer is transparency, which is achieved
by allowing everyone in the network to trace its transactions and blocks [55]. Using the
Proof of Work for public blockchain is expensive and consumes a lot of energy. Another
disadvantage is scalability. Public blockchains process transactions slowly because the
more extensive the network becomes, the slower it becomes [50].

Private Blockchain

Also called permissioned or business blockchains, are in most cases controlled by single
identities. Participation in such networks (blockchains) is restricted to a limited number
of identities that only join by a valid invitation [42]. Validation is also required and
should be done either by a validator node (operator) or by a set of rules implemented by

10

2.1. Literature Background and Related Work

the network. The difference to a public blockchain is that it controls who can join the
network and who has the right to mine new blocks and read the stored data. They are
also smaller than public blockchain networks [42, 55]. Private blockchains are used mostly
by private entities and organizations; therefore, they were designed to be scalable and
fast to process many transactions. Since the network size is small, it may be vulnerable
to attacks, and another disadvantage is that private blockchains are centralized because
one/multiple organizations or entities control it [42, 55]. Private blockchains are used
in many applications, such as supply chain management, asset ownership, and internal
voting.

Hybrid Blockchain

It combines public and private blockchains; it takes advantage of both, and its records and
transactions stay private and are only accessible to the public through smart contracts
[50].

In blockchain review paper [50], It is mentioned that hybrid blockchain is secure since
it prevents many attacks, such as 51 percent attacks. It is also scalable and highly
customizable. However, private blockchains lack transparency since some information is
hidden, and therefore, it can be seen as an advantage and disadvantage. Furthermore, it
is also challenging to maintain and upgrade the network.

Consortium Blockchain

Hyperledger Fabric [1] defines Consortium blockchains as enterprise-level blockchains
similar to private blockchains, but they are controlled by multiple entities/organizations
rather than a single private organization. Only nodes that belong to one of the organ-
izations that control the network are allowed to participate. It is mainly used when
organizations and businesses want to exchange information and create transactions.

2.1.3. Blockchain Node Types

Figure 2.6 shows a clear view of the different categories and types of blockchain nodes.
Different types of nodes provide different types of functionalities. Therefore, a blockchain
network will utilize various nodes depending on the blockchain type (public, private, or
hybrid), requirements, and consensus mechanism.

1. Primary Node or Full Node: Blockchain full nodes maintain and store the blockchain
records and blocks and act as blockchain servers. These nodes verify the network
transactions and fulfill other nodes’ requests, such as requesting a specific block or
transaction information [5]. They are also responsible for acting as bootstrap nodes
so that other nodes can discover and join the network. They also participate in the
decision-making process through their ability to vote for changes in the network.

2. Miner Node: Miner nodes perform tasks to be able to verify the next block in
the network and receive a specific reward for verifying it [5]. For example, in the

11

2. Related Work

Figure 2.6.: Blockchain Node Types. Source: [5].

case of PoW consensus, miner nodes consume high amounts of energy to solve
cryptographic/mathematical tasks, proving that the node is willing to contribute to
the network [41]. In some cases, miner nodes are also responsible for fulfilling other
lightweight node requests.

3. Staking Node: Staking nodes are known in public blockchains where a node stakes
or invests some/all of its money to be able to validate the next block [5], which in
return gets some money once a block is correctly validated [49].

Like Miner nodes, staking nodes are also responsible for fulfilling some requests
from lightweight or other nodes.

4. Lightweight Node: As the name says, this node type does not store the ledger or
transactions. It only stores the blockchain headers and requests data to fulfill user
requests. It does not require considerable space or CPU requirements and is known
as an SPV node or Simplified Payment Verification node [55].

5. Authority Node: It is used in the Proof of Authority consensus mechanism. A
group of nodes will be selected, called validators, responsible for verifying pending
transactions and accounts and adding them to the blockchain [5]. Those nodes are
authorized to act based on their reputation and identity [50].

6. Archival Node: They maintain the entire blockchain, including its transactions and
state (in the case of the account-based model), and have enough space capacity to
fulfill the network validation requests and other nodes requests [5, 50].

12

2.1. Literature Background and Related Work

2.1.4. Blockchain Consensus Algorithms

A consensus algorithm comprises multiple rules that all the nodes follow to reach consist-
ency and synchronization between the nodes in the network [55]. These rules determine
what is considered a valid block or a valid transaction and how to resolve conflicts [49, 55].
For example, when two blocks are received simultaneously, which should be accepted?
All these rules will make the network reach a standard agreement about the state of
the blockchain. With consensus algorithms, trust and reliability are achieved between
unknown peers in the network and ensure that all the peers agree on a block that is the
only source of truth [55].

As Figure 2.7 shows, consensus algorithms can be categorized into two main sections:
voting-based and proof-based algorithms.

Figure 2.7.: Consensus Algorithms for Blockchain Technology. Source: [30].

Proof-Based Consensus Algorithms

1. Proof-of-Work: This is the most used consensus algorithm. It was introduced by
Bitcoin [41], and its idea is that each miner node can add the next block to the
blockchain by spending computing power. For example, in Bitcoin, the miner node
has to find a nonce, that when it is combined with the block and calculate the hash,

13

2. Related Work

then the hash must be smaller than a predefined number; once this hash is found,
the miner node constructs the block and broadcasts it to the network [41]. Other
nodes receive the new block with its hash value and recalculate the block hash. If it
is correct, the nodes accept the block [41]. No Node should be able to have more
than 50 percent of the computing power in the network because, in this way, the
node can control the longest chain in the network, which means it can attack the
network by double-spending transactions and which will be accepted by the network
[41, 50].

2. Proof-of-Stake: Proof-of-Stake can replace PoW consensus because instead of
spending computational power, miners (leaders) are selected based on the number
of coins they have (stake) and their input in the network [49]. The stake is how
much a node hold or deposit; a leader will be randomly selected based on its stake
to do the mining process and add a new block to the blockchain [49].

3. Proof-of-Burn: It has two main functions:

a) A function that generates a random address, so when a miner node sends coins
to this address, then these coins will be no longer available (destroyed) [34].

b) A function that verifies that the account that received the coins can’t spend
the coins. The main characteristics to make this consensus algorithm work
are achieving a way to check if an account is only for burning (cannot spend
coins), binding data to the coins that are being burned, and a way to make a
difference between a regular and burning address [34].

4. Proof-of-Space: Instead of spending computational power or burning coins like in
Proof of Burn, validating nodes must invest their hard drive space to be selected for
mining the next block. The chance of being selected increases the more available
space they have [17]. The participants are provers who store some data and verifiers
who check if the provers are storing the data; verifiers will send challenges to provers
who will respond with proof of storage [17].

5. Proof-of-Elapsed-Time: Two measures ensure the user has waited an amount of
time. First, once generating a block, each user needs to generate proof for the
waiting activity with assistance, which is submitted together with the block [9].
Second, statistical tests are employed to check whether the waiting times of a user
indeed follow a specific probability distribution [9].

Voting-Based Consensus Algorithms

Figure 2.7 also shows that Voting-Based consensus can be further classified into two main
sections: Crash-Fault-Tolerance (CFT) like Raft, Paxos, and Zab, and Byzantine-Fault-
Tolerance (BFT) like PBFT, RBFT, and DBFT.

Crash-Fault-Tolerance consensus algorithm guarantees blockchain network resiliency
and recovery from network and node failures such as node crashes, failed hardware, and
failed network calls. However, CFT does not prevent Byzantine failures where malicious

14

2.1. Literature Background and Related Work

actors are involved [30]. Therefore, CFT is only suitable in environments where all the
node’s identity is known and everyone is trusted, this is relevant in private and consortium
blockchains that are used privately by businesses and enterprises [30].

On the other hand, BFT or Byzantine-Fault-Tolerance consensus mechanisms are based
on the Byzantine Generals Problem, where several armies should agree on a single action,
either attack or surrender. These armies can communicate with each other only through
a messenger and must prevent the traitors who want to maliciously prevent the armies
from achieving an agreement. BFT must have 3m+1 active nodes to tolerate m malicious
nodes [30].

1. Paxos - CFT: It is a fault-tolerant algorithm based on message passing. It has
three types of nodes: proposer, acceptor, and learner. The proposer is responsible
for creating proposals and waiting for a response from the accepters; the acceptor
is responsible for voting. The consensus execution is divided into two phases,
PREPARE phase and ACCEPT phase, and it can tolerate F crashing nodes when
2F+1 nodes are present [30].

2. Raft - CFT: The raft consensus algorithm [44] is designed for enterprises and
industrial applications. It is also widely adopted in academic research, and its
nodes are divided into three types, leader, follower, and candidate. The candidate
is responsible for initiating election voting. Once a candidate wins the elections, it
is changed to a leader; the first phase is called leader election. The second phase is
called log replication, where a leader receives client requests, updates its log, and
sends heartbeat requests for the followers to replicate its log [44, 51].

3. PBFT: Practical Byzantine Fault Tolerance [51] is based on state machine replication
and can tolerate both crash failures and byzantine failure. It is designed and
optimized to work in an asynchronous system and achieve high performance. It
achieves consensus through its three phases, which are pre-prepare, prepare, commit,
and reply, and it can process the transactions efficiently; however, the communication
overhead makes it challenging to scale since it requires identifying the participating
nodes, this makes it unsuitable for public blockchains environments [30]. PBFT can
guarantee the system works robustly and correctly when there are a total of 3f+1
nodes where only and no more than f faulty nodes are present in the network [30].

4. RBFT: Redundant Byzantine Fault Tolerance requires the same as PBFT, that
there are no more than f faulty nodes present in the network where the total
nodes are 3f+1, and each node runs several instances of PBFT (f+1 instances)
where there is only one primary instance and other instances are used as backup
instances, it introduces a new phase to the PBFT which in the propagate phase
before pre-prepare to ensure that a request will reach all the nodes [51]. Each node
now has a monitoring mechanism that switches to another PBFT instance whenever
a threshold is reached for the throughput difference between the primary and a
backup instance [30].

15

2. Related Work

2.1.5. Blockchain Frameworks

There are different private and permissioned blockchain frameworks and each has its spe-
cific features and advantages, such as smart contracts, performance, identity management,
and pluggable consensus.

With the help of the existing blockchain frameworks, many enterprises, businesses, and
organizations are continuously and rapidly adopting this technology since they provide a
predefined solution divided into modules that are configurable and pluggable depending
on the business requirements, the most known and used frameworks are Ethereum,
Hyperledger Fabric, Hyperledger Sawtooth, and Corda.

Ethereum

Private Ethereum blockchain [49] can be used by enterprises to create their private
blockchain and build it on the Ethereum main net or other blockchains that are based
on the Ethereum technology. Nodes deployed on the private Ethereum blockchain can
achieve higher transaction throughput than the Ethereum main net. Enterprises have
only to pay for maintaining their servers where the private blockchain nodes are deployed.
There is no payment when the nodes connect to Ethereum’s main net; however, a gas fee
must be paid whenever transactions are created on the main net. It also provides privacy
and node permissions by only allowing authorized nodes to join the private chain, and
the stored data is not visible to anyone outside the network [49].

Hyperledger Sawtooth

Hyperledger Sawtooth is an enterprise-level blockchain platform, and it is mainly designed
to achieve smart contract security and keep the ledger distributed. It separates the core
system and the application domain, making it easier for the developer to develop the
applications without knowing about the underlying core system [21]. It is also highly
modular, offers pluggable components, and allows its user to have its preferred consensus
algorithm, transaction rules, authorization, and permission rules [21]. It is focused on
parallelizing the execution of the transactions by grouping them by the state part that
is changed by a transaction. Furthermore, it parallelizes the execution of transactions
that belong to the same changed state. It offers several other features, such as creating
and broadcasting events within the network, extending the Sawtooth interoperability
to deploy Ethereum smart contracts to Sawtooth. Furthermore, it offers many different
consensus mechanisms depending on the enterprise requirements, such as PBFT, Raft,
and Sawtooth PoET [21].

Hyperledger Fabric

Enterprises have many requirements that are not satisfied with the current public block-
chain solutions like Bitcoin and Ethereum, such as identified participants, permissioned
networks, high transaction throughput, and low latency for transaction confirmation.
Therefore, Hyperledger Fabric has been designed [1].

16

2.1. Literature Background and Related Work

Hyperledger Fabric [1] is an open-source enterprise-grade permissioned blockchain that
was established under the Linux Foundation and maintained by over 35 organizations and
200 developers. Its highly modular and configurable architecture makes it suitable for a
wide range of use cases like banking, finance, supply chain, and various other use cases.

It is focused on fulfilling enterprise-specific requirements like node identity, high transac-
tion throughput, low latency, and confidentiality of transactions. It offers various features
like pluggable consensus protocols, which do not require a native cryptocurrency, is highly
modular, and follows the execute-order-validate transaction architecture [1]. Furthermore,
it is the first to support smart contracts written in a general-purpose programming
language, which improves the agility of developing applications.

2.1.6. Blockchain-as-a-Services

BaaS is a cloud-based service that combines the high availability, elasticity, and high
computing power of cloud computing with the decentralization, immutability, and trans-
parency of blockchain technology [48]. This gives enterprises that utilize this technology
combination many advantages such as reduced costs, scalability, increased security, faster
time-to-market, and access to blockchain experts who can assist with developing the
blockchain applications [48, 18].

2.1.7. Commercial Blockchain-as-a-Service Providers

In BaaS, the state of the art is constantly improving as new cloud providers are offering
BaaS, and existing cloud providers who offer BaaS are continuously improving their BaaS
solutions. The leading cloud providers in BaaS solutions are:

AWS - Amazon Managed Blockchain (AMB)

It is a fully managed blockchain that makes it easy to participate in blockchain networks
or create and manage private networks using Hyperledger Fabric and Ethereum [2].

It takes responsibility for the infrastructure provisioning and eliminates the overhead
required for the blockchain network and node creation in minutes. It manages software
updates and maintenance and allows inviting partners from other organizations based on
their AWS-Account-ID.

Amazon-managed blockchain allows the provisioning of dedicated Ethereum full nodes
to build in the web3 area and connect to the main net. It provides many different
features such as adding/removing members based on voting API, choice of the framework
(Ethereum or Hyperledger Fabric), easy to scale, and secure interactions [2].

It makes it easier for enterprises to build and deploy private blockchain networks
using Hyperledger Fabric open source framework [2]. It is also supported in GovCloud,
which makes it possible for government agencies to use this platform and deploy it in
a specialized environment designed for users that require high security and compliance
requirements.

17

2. Related Work

AMB is easy to scale; new nodes can be added to meet the required capacity depending
on the client’s requirements. Furthermore, the user can specify each node’s memory
and CPU size, which makes it flexible depending on the deployed applications on the
blockchain [2].

It is backed by AWS Key Management Service, which secures the Hyperledger Fabric
certificate authorities, using FIPS 140 hardware security module in Key Management
Service (KMS), which is integrated with AWS monitoring services where all actions and
activities are traced [2].

AMB comes with its own custom Hyperledger fabric [1, 2] ordering service - AWS
Quantum ledger Database (QLBD) which is optimized for storing the transactions and
makes it capable of storing all uncommitted transactions immutable.

IBM Cloud - IBM Blockchain Platform

It started to offer BaaS in 2016 using Hyperledger Fabric and provides a managed full-
stack Blockchain-as-a-Service with the offer of delivering it to an organization-selected
environment (on-premise, IBM Cloud, other environments) [27]. It has an easy-to-use
interface for managing networks, channels, and smart contracts, the customer data are
stored securely because they are encrypted [29].

The IBM blockchain platform worked in September 2019 on deploying a non-vendor
lock-in solution by allowing on-premise and multi-cloud blockchain deployment. IBM
then announced a new version of IBM Blockchain platform software based on Red Hat’s
Kubernetes platform [29]. Depending on the user requirements, it is now flexible where
the blockchain nodes will be deployed, whether on-premises, single-cloud, or multi-cloud
architecture. Furthermore, they created software tools to build, maintain, and grow
blockchain networks [28, 27].

Oracle Cloud Infrastructure - Blockchain Platform Service

It is a managed blockchain service for hosting an immutable and tamperproof ledger,
built on the open-source Hyperledger Fabric, and simplifies the development of secure
applications [43].

It integrates well with other Oracle cloud services and provides a robust REST API
and UI, providing complete lifecycle management for smart contracts. Some of its main
features are simple provisioning, high availability, easy expansion for partner organizations,
and high support for smart contracts development [43].

Kaleido

Kaleido provides enterprise-grade BaaS with various configuration options such as multi-
cloud, multi-region, hybrid-based BaaS deployments, SLA and 7/24 expert support, secure
network isolation, and automatic failover [33]. Kaleido integrates well with different
Kaleido services such as key management, monitoring, REST-API, and event-based
integration tools [33].

18

2.1. Literature Background and Related Work

Google Cloud - Blockchain Node Engine

It is a fully managed node-hosting service that can minimize the need for node operations.
It is suitable for companies and enterprises that need dedicated Ethereum nodes, which
makes it possible to create transactions and smart contracts and read and write blockchain
data in a reliable way [12].

Web3 organizations will have the following benefits when using the Google blockchain
node engine: streamlined provisioning (deploy the Ethereum node with a single simple op-
eration by just applying some configurations), authorized access, fully managed operations,
and high availability [12].

2.1.8. Academic Blockchain-as-a-Service Systems

uBaaS - Unified Blockchain-as-a-Service Platform

The unified BaaS platform [46] aims to simplify implementing and deploying blockchain-
based applications by providing design patterns related to data management and smart
contracts. Those are categorized into two primary services: Deployment-as-a-Service and
Design-pattern-as-a-Service (Figure 2.8). Deployment-as-a-Service consists of blockchain
and smart contract deployment services, which are platform-agonistic and avoid vendor
lock-in to a specific cloud provider. Meanwhile, Design-pattern-as-a-Service comprises
data management and smart contract design services to achieve blockchain properties
such as data integrity, confidentiality, and transparency.

As addressed by [46], many challenges must be addressed when storing and managing
data in blockchain applications, like limited storage capacity, scalability, data privacy, and
confidentiality. Those challenges are resolved by utilizing the data management design
patterns:

• On-chain and off-chain: Store only the sensitive, required, and small data on the
blockchain while storing the others with bigger off-chain. This approach resolves
the limited-storage-capacity challenge.

• Hash Integrity: All the off-chain stored data must be referenced in the on-chain data
by calculating the off-chain data hash and storing it on the blockchains. This design
pattern guarantees the integrity of the off-chain data by comparing the stored hash
with the computed hash.

• Data Encryption: Since users continuously join the blockchain network, data privacy
is a big challenge for blockchain users. It can be solved using asymmetric encryption
by encrypting the data before storing it on the blockchain. This approach gives the
users who store data control over who can read this data and who cannot.

UBaaS proposes the following design patterns to improve the security of smart contracts:

• Multiple Authorities: Smart contracts require the authorization of a specific number
of blockchain addresses to get executed. Some addresses (authorities) may be

19

2. Related Work

unavailable for some time, so the design pattern of Multiple Authorities is applied,
giving some flexibility by requiring only M of N blockchain addresses to authorize
the transaction.

• Dynamic Binding: When deploying a smart contract, some authorities may still
be unknown that is required to authorize a transaction, which can be dynamic-
ally defined by adding an off-chain secret sufficient to permit a transaction when
associated with it.

• Embedded Permission: Reject unauthorized smart contract function calls by adding
permission control to every function defined in the smart contract.

Figure 2.8.: UBaaS Architecture. Source: [46].

uBaaS contains three categories, each with its set of services with related responsibilities:
deployment as a service, design pattern as a service, and auxiliary service [46].

• Deployment Service: Includes blockchain and smart contract deployment service.
Blockchain deployment service takes the desired configurations from the operator and

20

2.1. Literature Background and Related Work

deploys the blockchain using the infrastructure as code (IaC) approach. Meanwhile,
the smart contract deployment service allows developers to select and deploy
predefined smart contracts on the blockchain.

• Data Management Service

– Using the on-chain and off-chain service, the user can determine the data
schema and which data is stored on- or off-chain. Based on the user-defined
data model, a smart contract is generated and deployed on the blockchain,
which acts as a data registry for on-chain data. Meanwhile, it creates a data
table for storing the data off-chain.

– Integrity service generates hashes for off-chain data to guarantee their integrity.

– Data encryption services encrypt data that should only be visible to a subset
of users using asymmetric encryption.

• Smart Contract Design Service: Focus on smart contract security by applying the
defined design patterns.

• Auxiliary service: Contains a file comparisons service that compares the on-chain
hash value with the hash of the off-chain stored file. Furthermore, it includes a key
generation service responsible for creating and distributing the keys when a user is
willing to encrypt data and share it with only a subset of users.

FBaaS - Functional Blockchain-as-a-Service Platform

FBaaS [7] proposes a new service model, Functional Blockchain-as-Service, based on the
Function-as-a-Service (FaaS) model. It simplifies the implementation of business logic
which gives many advantages such as improving the blockchain performance, benefiting
from the high availability and resilience of the FaaS network, and implementing a higher
level of abstraction of the logic.

The FBaaS architecture follows the Cloud Computing Open Architecture and is im-
plemented using the Big Data Open Architecture. As the figure 2.9 shows, the layers of
BDOA that represent the FBaaS architecture are [7]:

• Infrastructure layer: Mapped to layer one and layer 2 of FBaaS, which only relies
on AWS EC2 instances.

• Components layer: Mapped to layer 3 of FBaaS, which contains the essential
functions frequently used in the upper layers, this layer is realized using a Container-
as-a-Service solution.

• Service layer: Mapped to layers 4 and 5. In this layer, most of the BaaS functions
are realized.

• Business logic layer: Mapped to layer APPs and large-scale services. This layer is
based on the functions that are present in layer three.

21

2. Related Work

The service layer is composed of the following functions: [7]:

• Object Storage: Used for object storage and management, done using strong
consistency. Users do not worry about eventual consistency issues.

• New transaction: Add the new transaction and append it to a block to be mined.
The transaction has no size limit and will get encrypted.

• Mine: A function responsible for mining a new block, done using Apache Kafka to
accelerate the mining process.

• Chain Info: Fetch blockchain information.

• Resolve: A function that resolves conflicts by running consistency algorithms.

• Add Node: Responsible for adding a new node to the network by storing the state,
replicating a node, and changing its configurations.

FSBaaS - Full-Spectrum Blockchain-as-a-Service Platform

Many enterprises and businesses do not prefer and are not adopting specialized private
blockchains like Amazon QLDB, which belong to blockchains that work with a centralized
authority [8]. However, they should be used in cases like a single organization using the
blockchain. Such cases do not make a difference if there is a central authority. FSBaaS
[8] integrates the two underlying blockchain runtimes, centralized and decentralized, to
support consortium blockchain networks. Both runtimes are exposed using unified inter-
faces and REST APIs. An FSBaaS tenant can subscribe to both runtimes simultaneously
and synchronize data across networks [8].

Figure 2.10 shows the architecture of an FSBaaS node, which comes with both of the
runtimes bc-fabric and bc-lite sharing the same business network manager and contract
executor. Hyperledger Fabric is used for bc-fabric, and MongoDB is the world state
database. MongoDB stores the world state and the ledger data in bc-lite, and the
client-side API server can be reached through REST API [8].

NutBaaS - Nut Blockchain-as-a-Service Platform

Most current BaaS solutions focus on reducing the effort and cost of blockchain deployment
and development for businesses and enterprises. However, NutBaaS platform [52] provides
a safer development environment for developers by focusing on smart contracts security.

The NutBaaS architecture is divided into four main layers. As Figure 2.11 shows, its
purpose is to provide a detailed operational monitoring mechanism that covers config-
uration management, visual monitoring, user-defined alert, and automated deployment
[52].

• Resource Layer: Provides networking, storage, and virtual machines from a cloud
provider. It supports public, private, and hybrid blockchain deployment. It pro-
motes multi-cloud deployment, making a blockchain network instance secure and

22

2.2. Comparative Analysis - BaaS Commercial Providers

decentralized. Kubernetes is used to make the system scalable and maintainable
through container orchestration. The resource layers support the deployment of dif-
ferent blockchain frameworks like Hyperledger Fabric and public/private Ethereum
peers.

• Service Layer: All blockchain-essential services are implemented in this layer. When
integrating these layers, we achieve general-purpose solutions and many other
services, like the contact center, divided into three sub-layers.

– Underlying system: Support public, private, consortium, and blockchains.

– Developer Tools: Varies depending on the type of blockchain.

– Service: The integration and combination of the tools provide this layer’s
advanced and basic services.

• Application Layer: Contains the integrated services and applications from the
previous layer, which are general-purpose solutions.

• Business Layer: This layer contains existing solutions for many different industries,
making it easy for enterprises to find a suitable solution for their use case.

NBaaS - Noval Blockchain-as-a-Service Platform

NBaaS provides a decentralized and secure platform that protects the blockchain’s main
characteristics, like decentralization and security, despite being managed and deployed on
the cloud [54].

It classifies BaaS platforms into two categories: encapsulated Blockchain-as-a-Service
(eBaaS) and native Blockchain-as-a-Service (nBaaS). The nBaaS is about deploying and
hosting blockchain nodes on the cloud. Meanwhile, eBaaS provides interfaces like REST
APIs to deploy blockchain instances on the cloud [54]. Since eBaaS affects blockchain
characteristics like decentralization negatively, a new transparent eBaaS is done by nBaaS
that protects the blockchain’s main features.

It is done by making an eBaaS deployment a white box deployment using the deployable
components approach, which allows the client to deploy the components wherever he
wants, regardless of whether on-premises or on different cloud providers [54].

2.2. Comparative Analysis - BaaS Commercial Providers

The following considers the BaaS providers introduced in this paper. The comparison
shows that all providers offer private blockchain types while most offer consortium
blockchains. Furthermore, Hyperledger Fabric is offered in almost all BaaS providers,
making them suitable for many use cases (Table 2.1).

Based on the comparison shown in Table 2.2, Kaleido and Oracle Blockchain platforms
offer the cheapest price for hosting and managing a BaaS instance. Most of the BaaS
providers are programming language agnostic since Hyperledger Fabric is present in most
of them, which allows writing smart contracts in many programming languages.

23

2. Related Work

BaaS Provider Blockchain Type Blockchain
Framework

Use Cases

Amazon Managed
Blockchain

Private, Consor-
tium, Public

Hyperledger Fabric,
Ethereum

Supply chain, Man-
ufacturing, Retail,
Trading

IBM Blockchain Private, Consor-
tium

Hyperledger Fabric,
Custom Blockchain
Frameworks

Retail, Banking,
Transportation

Oracle Blockchain
Platform Service

Private, Consor-
tium

Hyperledger Fabric Retail, Manufactur-
ing, Finance, sup-
ply chain, Health-
care

Kaleido Private, Consor-
tium,
Public

Ethereum, Polygon
Edge, Hyperledger
Fabric, Corda

Supply chain, Fin-
ance, Public sector,
Healthcare

Google Blockchain
Node Engine

Public, Private Ethereum Web3 Applications

Table 2.1.: BaaS Providers Blockchain Type, Blockchain Framework and Use Case com-
parison

The pricing comparison is based on the following parameters:

• Deployment Region: US

• Package Type: Starter package

• Blockchain Framework: Hyperledger Fabric

• Currency: US Dollar

As Table 2.3 shows, only some providers allow the user to deploy and manage the BaaS
instance on Multiple cloud providers or on-premise, making the BaaS more decentralized
and resilient. However, when inspecting more BaaS providers, only some of them are
expected to offer this important characteristic.

2.3. Comparative Analysis - BaaS Academic Systems

The addressed BaaS systems work on different generic areas that contribute to the
adoption and utilization of BaaS systems:

• The most desired goal is simplifying a blockchain network deployment and manage-
ment process.

• Maintaining and improving the essential characteristics like decentralization and
security of the blockchain in a cloud environment.

24

2.3. Comparative Analysis - BaaS Academic Systems

BaaS Pro-
vider

Architecture Pricing Pay-as-you-
go

Programming
language ag-
nostic

Amazon
Managed
Blockchain

Component-
based architec-
ture

0.33 per
hour/node

True True

IBM Block-
chain

Modular/layered
architecture

180 per
month/Vir-
tual processor
core

False, 12-
month commit-
ment

True

Oracle Block-
chain Platform
Service

Layered archi-
tecture

0.215 per
hour/oCPU

True True

Kaleido - 0.22 per
hour/node

True True

Google Block-
chain Node En-
gine

- - False False

Table 2.2.: BaaS Providers Architecture, Pricing, Pay-as-you-go and Programming
language-agnostic comparison

BaaS Provider Vendor Lock-In Multi-Cloud /
Onpremise de-
ployment

Other

Amazon Managed
Blockchain

True False Custom ordering
service- AWS
QLDB

IBM Blockchain False True based on open
source technologies
Kubernetes, Hyper-
ledger

Oracle Blockchain
Platform Service

False True Dev tools

Kaleido False True -
Google Blockchain
Node Engine

True False -

Table 2.3.: BaaS Providers Vendor Lock-In, multi-cloud / On-premise deployment and
Other comparisons

25

2. Related Work

• Simplify the development of blockchain applications by providing development tools.

• Secure the blockchain network and applications by providing design patterns for
smart contracts, vulnerability checks, and visual monitoring.

• Provide services to enable infrastructure agnostic deployment, which means allowing
the deployment of blockchain networks on-premise or in a multi-cloud fashion and
preventing vendor lock-in.

Both uBaaS and NutBaaS work on the security aspects of the BaaS platform. The
first did this by providing smart contract design patterns, and the second by integrating
monitoring services and smart contract vulnerability checks. Both systems, including
NBaaS, overlap by allowing users to deploy the blockchain nodes on-premise, on a
single cloud, or in a multi-cloud environment. NBaaS achieves this by making the BaaS
deployment a white box deployment using the deployable components approach. Other
systems do this by implementing generic deployment services and container orchestration
tools.

The other BaaS systems don’t overlap, and each works on its specific area in BaaS. For
instance, FSBaaS integrates different blockchain runtimes (fabric and lite) in a single
node to enable their use simultaneously. On the other hand, FBaaS focuses on simplifying
business logic implementation using FaaS functions.

2.4. Summary and Transition

Chapter 2, Related Work, started by giving a background overview of blockchain techno-
logy, covering its types, frameworks, consensus algorithms, and architecture.

Followed by offering a comprehensive overview of Blockchain-as-a-Service and the
current leading platforms that provide BaaS. It compares them based on different factors
and characteristics: blockchain types and frameworks, use cases, architecture, pricing,
vendor lock-in, and multi-cloud/on-premise deployment ability. The comparison shows
that all providers offer private blockchain types while most provide consortium blockchains.

Furthermore, Hyperledger Fabric is supported by almost all BaaS providers. Kaleido
and Oracle Blockchain Platform offer the lowest price for hosting and managing a BaaS
instance. The comparison also showed that not all top BaaS providers offer multi-cloud or
on-premise deployments, negatively affecting blockchain’s decentralization and resiliency
characteristics.

Finally, it offers a comprehensive overview and compares the recent BaaS academic
systems and their architecture. The comparison shows that these systems work on
different areas that contribute to the adoption and utilization of BaaS systems, which are
simplifying the blockchain network deployment and management process, maintaining
the blockchain characteristics, supporting and guiding the blockchain developers by
providing design patterns, and development tools and enabling agnostic deployment
whether on-premises or multi-cloud deployment.

26

2.4. Summary and Transition

UBaaS, NutBaaS, and NBaaS overlap by allowing users to deploy the blockchain nodes
on-premises, on a single cloud, or in a multi-cloud environment. However, NBaaS achieves
this by making the BaaS deployment a white box deployment using the deployable
components approach. FSBaaS integrates different blockchain runtimes in a single node
to enable using them simultaneously. On the other hand, FBaaS focuses on simplifying
business logic implementation using FaaS functions.

Based on the related work research, analysis, and comparison done between the various
academic and commercial Blockchain-as-a-Service systems, we know that:

1. The BaaS academic systems that support multi-cloud blockchain deployment do not
define an exact architecture and specification that clearly shows how to implement
such a platform that supports multi-cloud and avoids vendor lock-in.

2. Many commercial BaaS providers do not support multi-cloud deployments, negat-
ively affecting platform characteristics like decentralization, high availability, and
security.

3. All the BaaS platforms that are currently in use are:

a) Closed source.

b) Commercial and cost a lot.

Therefore, this thesis will provide a BaaS architecture that focuses on providing a
specification for a BaaS platform that supports multi-cloud and multi-region blockchain
deployments. Besides that, a prototype will be implemented based on the defined
specification, focusing on scalability, maintainability, high availability, and decentralization
of the end solution.

27

2. Related Work

Figure 2.9.: FBaaS Architecture. Source: [7].

28

2.4. Summary and Transition

Figure 2.10.: FSBaaS Architecture. Source: [8].

29

2. Related Work

Figure 2.11.: NutBaaS Architecture. Source: [52].

30

3. Design

The presented design and specifications outlined in this chapter are done to realize a robust
multi-cloud, multi-region Blockchain-as-a-Service platform. The design evolved through
an iterative process, considering the challenges and issues mentioned in the Motivation
and Related Work chapters. The design also considers all the defined functional and
non-functional requirements and all the architectural design decisions that consider the
different paths of achieving the end solution and select the most suitable among them.

3.1. Requirements

3.1.1. Functional Requirements

Functional Requirement: User Registration and Login

Requirement ID: FR-001
Description: Only authenticated users are permitted to access the platform. It must

be possible for users to register and log into the platform by providing their credentials.
Priority: HIGH
Use Case: User Registration
Dependencies: NONE
Acceptance Criteria:

1. Users can register and log in to the platform

2. The platform is only accessible by authenticated users.

3. Once a user completes the login/registration process, he must be forwarded to the
Home layout.

Functional Requirement: Cluster Management

Requirement ID: FR-002
Description: The platform must enable its users to create, configure, and delete

clusters (a group of virtual machines that provide resources to deploy applications and
software on them like Kubernetes) from various cloud providers so they can be later used
to deploy blockchain networks and nodes on them.

Priority: HIGH
Use Case: Cluster Management
Acceptance Criteria:

31

3. Design

1. The authenticated users can create clusters from different cloud providers. After
the successful creation process, they should also be able to display them.

2. After the cluster creation process is completed, the system should enable the users
to configure and delete the clusters they want.

3. The required input fields during cluster creation differ depending on the selected
cloud provider.

4. Once a cluster is created, the users will receive a cluster creation notification. The
notification will be emailed, and the cluster status will change on the dashboard to
RUNNING.

Functional Requirement: Cluster Integration and Configuration

Requirement ID: FR-003
Description: The platform should allow the configuration and integration of clusters

from different cloud providers. This feature enables users to create multi-cloud, multi-
region blockchain networks.

Priority: HIGH
Use Case: Cluster Integration and Configuration
Dependencies: Successful implementation of the requirements: FR-001, FR-002.
Acceptance Criteria:

1. The authenticated users can integrate multiple clusters from different cloud providers.

2. The users can later integrate additional clusters into existing integrated clusters.

3. Once multiple clusters are integrated, a resilient, encrypted, and secure connection
is established between those clusters that can be later utilized for communica-
tion between deployed blockchain nodes and applications distributed among these
clusters.

4. The user is notified via email after the cluster integration process succeeds.

5. The platform should enable its users to view the clusters integration they created
and their current status.

6. The platform should enable its users to delete clusters integration they previously
created.

Functional Requirement: Cluster Monitoring

Requirement ID: FR-004
Description: The platform should enable observing the health status of each provi-

sioned cluster.
Priority: MEDIUM

32

3.1. Requirements

Use Case: Cluster Monitoring
Dependencies: Successful implementation of the requirements: FR-001, FR-002.
Acceptance Criteria:

1. The users can see their provisioned clusters’ health status on the cluster management
dashboard.

2. Once a cluster becomes unhealthy or unreachable, the user is notified via email.

Functional Requirement: Blockchain Management

Requirement ID: FR-005
Description: The system should support the configuration deployment and manage-

ment of private and consortium blockchain types.
Priority: HIGH
Use Case: Blockchain Management
Dependencies: Successful implementation of the requirements: FR-001, FR-002,

FR-003.
Acceptance Criteria:

1. The users can deploy and manage private and consortium blockchains on the
previously provisioned clusters.

2. The system must enable configuring the deployment, whether to deploy the block-
chain instance nodes and resources to a single cluster or distribute them among
multiple integrated clusters to achieve multi-cloud, multi-region deployments.

3. When deploying a blockchain instance, the user can configure the blockchain network
instance and its initial nodes. Furthermore, the user can select whether to deploy
the blockchain nodes on a single or integrated cluster. In the case of integrated
cluster deployment, the user can select a deployment policy for the nodes. The
deployment policy can be either static when the user specifies whether a node is
deployed on a specific cluster, or round-robin, when the nodes are distributed among
the clusters in a round-robin fashion.

Functional Requirement: Blockchain Membership

Requirement ID: FR-006
Description: An authenticated platform user can only view a blockchain network

instance when his account identifier owns a node. Furthermore, that user can only manage
and configure a blockchain node that he owns.

Priority: HIGH
Use Case: Blockchain Management
Dependencies: Successful implementation of the requirements: FR-001, FR-002,

FR-005.
Acceptance Criteria:

33

3. Design

1. The system allows users to display only blockchain instances they are members of.

2. The system enables users to configure and manage their blockchain nodes.

3. The users receive email notifications when invited to a new blockchain network.

Functional Requirement: Blockchain Node Management

Requirement ID: FR-007
Description: The user can manage, configure, and interact with his node through the

platform UI. Depending on the platform’s supported blockchain framework, the user can
view his node information, configure the node, manage his wallet, and sign transactions.
Priority: HIGH

Use Case: Blockchain Node Management
Dependencies: Successful implementation of the requirements: FR-001, FR-005.
Acceptance Criteria:

1. For each supported blockchain framework by the platform, the system must support
all the operations offered by the blockchain framework into the platform.

2. In the case of the P2 blockchain framework, the user must be able to configure and
manage his wallet, read the blockchain network information, and sign transactions.

3.1.2. Non-Functional Requirements

Non-Functional Requirement: Clusters Integration - Clusters Connectivity

Requirement ID: NFR-001
Description: The platform should enable cluster integration by supporting reliable,

encrypted, and authenticated connectivity between multiple clusters.
Priority: High
Category: multi-cloud multi-region Support
Acceptance Criteria:

1. The connectivity between clusters must be successfully established whenever a user
integrates a group of clusters.

2. The platform must enable its users to observe the status of the cluster integrations.

Non-Functional Requirement: Request Response Time

Requirement ID: NFR-002
Description: The platform should ensure that the response time for user requests and

interactions is no more than 2 seconds.
Priority: HIGH
Category: Performance
Acceptance Criteria:

34

3.1. Requirements

1. The AVG response time for user requests should be less than 2 seconds.

2. For cluster integration operations and blockchain node deployments, it is acceptable
for some operations to take longer.

Non-Functional Requirement: Platform Components Design - Open-Closed Principle

Requirement ID: NFR-003
Description: The platform components must be implemented that allow the simple

extension of the platform, whether by integrating a new cloud provider or supporting a
new blockchain framework.

Priority: HIGH
Category: Maintainability and Reusability
Acceptance Criteria: The platform components are implemented in a maintainable

and reusable way, enabling easy platform extension.

Non-Functional Requirement: Support at least 2 Cloud Providers

Requirement ID: NFR-004
Description: The platform should support cluster management and creation from at

least two cloud providers.
Priority: HIGH
Category: multi-cloud, high availability, and decentralization
Acceptance Criteria:

1. The platform supports cluster management from multiple cloud providers.

2. The users can select different cloud providers for cluster creation and management.

Non-Functional Requirement: Clusters Monitoring

Requirement ID: NFR-005
Description: The managed clusters are monitored, and the user should be able to

check their status and health through the platform.
Priority: HIGH
Category: Observability and Reliability
Acceptance Criteria:

1. The users can see their managed cluster’s health and status through the platform.

Non-Functional Requirement: Web User Interface

Requirement ID: NFR-006
Description: The platform should support a web user interface that is easy to use

and self-explanatory.
Priority: HIGH

35

3. Design

Category: Usability
Acceptance Criteria:

1. Basic criteria for usability that should be met.

2. The system should allow users to navigate and use all functional requirements easily.

Non-Functional Requirement: Cluster Deployment Region

Requirement ID: NFR-007
Description: The platform should allow users to freely select the region where the

managed clusters can be provisioned. This feature gives more flexibility and makes a
multi-cloud Blockchain deployment highly available and decentralized.

Priority: HIGH
Category: Availability and Decentralization.
Acceptance Criteria:

1. Basic criteria for usability that should be met.

2. The system should allow users to easily navigate and use all functional requirements.

3.2. Design Approach and Overview

The platform is designed based on the given functional and non-functional requirements,
considering the challenges and issues that must be addressed to achieve a reliable multi-
cloud, multi-region Blockchain-as-a-Service. Furthermore, All the design and architectural
design decisions are justified and discussed in the upcoming sections of this chapter.

3.2.1. Platform Components

As Figure 3.1 shows, the platform is designed based on the event-driven microservices
architectural style and follows the microservices architectural design patterns.

The platform is composed of the following components:

1. Identity and Access Manager: Responsible for managing authentication and
authorization of the user and supporting various features like MFA, SSO, OIDC
OAuth2, SAML, and safely stored passwords. In the context of the implemented
prototype, the open-source identity and access management tool Keycloak is used
to manage access to the BaaS platform.

2. Event Streaming Platform: To enable reliable, scalable, asynchronous, and
decoupled communication between the different microservices, an event streaming
component is required to orchestrate the internal communication between different
microservices. In the context of the implemented prototype, the open-source
distributed event-streaming platform Apache Kafka is used.

36

3.3. Architectural Design Decisions

3. API Gateway: The single entry point for all clients into the microservices, it
can apply various cross-cutting concerns like, authentication, authorization, rate
limiting, and request routing.

4. Frontend User Interface: A web application that provides a basic level of
usability to interact with the platform and its services.

5. BaaS Platform Microservices: A set of loosely coupled and fine-grained services
that implement all the Blockchain-as-a-Service platform.

3.2.2. Platform Microservices

As previously mentioned, the platform comprises multiple microservices, each covering
a specific domain with a specific set of operations to orchestrate. The BaaS platform
contains the following microservices:

1. Cluster Management Service: Responsible for all Kubernetes cluster Manage-
ment tasks like creating, deleting, and configuring a cluster. It supports integration
with multiple cloud providers through cloud providers programming language-
specific SDKs.
This microservice fulfills the requirements: FR-002.

2. Cluster Integration Service: Responsible for all cluster connectivity and integra-
tion tasks. Given a set of provisioned clusters, it established a resilient, encrypted,
and authenticated connection between those Kubernetes clusters. This microservice
fulfills the requirements: FR-003.

3. Cluster Monitoring Service: Responsible for observing the provisioned cluster’s
status and health. This microservice fulfills the requirements: FR-004.

4. Notification and Alert Service: Responsible for notifying the user whenever
a specific event happens in the platform, like cluster creation or blockchain node
invitation. The notification configurations can be changed depending on the user’s
preference. This microservice is responsible for fulfilling the requirements: FR-002,
FR-003 and FR-005.

5. Blockchain Management Service: Responsible for blockchain network instance
creation and management. This service schedules nodes and blockchain applications
based on multiple deployment policies to be deployed on the provisioned cluster.
This microservice is responsible for fulfilling the requirements: FR-005 and FR-006.

3.3. Architectural Design Decisions

3.3.1. Architectural Design Decision: Platform Architecture - Microservices

Decision ID: ADD-001

37

3. Design

Context: As part of designing the BaaS Platform, we must decide on the architecture
that meets the platform’s scalability, reliability, and maintainability requirements.

Problem Statement: Choosing between microservices, monolithic, or serverless
architectures.

Considered Options:

1. Microservices architecture

2. Monolithic architecture

3. Serverless architecture

Decision: The microservices architecture has been chosen, as it offers the required level
of scalability for the platform. Besides that, it is highly available since all services are
independently deployable and loosely coupled.

Benefits:
1. High scalability.
2. Loosely coupled services.
3. Independently deployable services.
4. Fine-grained control over service behavior.

Drawbacks:
1. Increased complexity.
2. Operational challenges.
3. Cost of communication.

Alternatives:

1. Monolithic architecture is simple and has a faster development cycle. However, it has
limited scalability and is unsuitable for complex and diverse functional requirements.
Furthermore, it does not meet the high availability requirements for a multi-cloud
multi-region Blockchain-as-a-Service platform.

2. Serverless architecture offers high scalability and cost savings, but it is not suitable
for complex workflows that may require orchestration. Furthermore, it does not
offer complete control over the infrastructure.

Dependencies: Distribute the platform requirements between the services and end
up with a set of microservices where each has its specific functionality.

References: [26, 32]

38

3.3. Architectural Design Decisions

3.3.2. Architectural Design Decision: Event-Driven Communication -
Apache Kafka

Decision ID: ADD-002
Context: To design the BaaS microservices, we must establish reliable, resilient, high

throughput, and loosely coupled communication and data flow between the services.
Problem Statement: Choose between REST API and event-driven for inter-service

communication.
Considered Options:

1. REST API Calls.

2. Event-Driven Communication - Apache Kafka.

Decision: The Event-Driven Communication - Apache Kafka is chosen for inter-service
communication since this pattern offers scalability, loose coupling, and real-time data flow.

Benefits:
1. Loose coupling between services.
2. Highly scalable.
3. Real-time data flow and responsiveness.

Drawbacks:
1. Event management between the services.
2. Data consistency challenges.

Alternatives: REST API calls can lead to tight coupling between services. Synchron-
ous calls can cascade effects during high-traffic periods. Error handling and retries become
complex.

Dependencies: Understanding Kafka concepts and defining the topics.

References: [20, 3, 36]

3.3.3. Architectural Design Decision: Clusters Management

Decision ID: ADD-003
Context: To reliably manage Kubernetes clusters in the platform, we have to analyze

and select the most suitable way of achieving the functionality, taking into count the
maintainability, scalability, and availability. Furthermore, commercial, closed-source, or
cloud provider-specific tools/solutions must be avoided to prevent vendor lock-in and
achieve high decentralization and transparency of this platform.

Problem Statement: Choose between Infrastructure-as-Code solutions, directly using
cloud provider SDK, or using existing open/source non-commercial Kubernetes cluster
management tools to manage Kubernetes clusters.

Considered Options:

39

3. Design

1. IaC - Terraform.

2. KubeSpray.

3. Rancher.

4. Cloud Provider SDK.

Decision: Use the cloud provider SDK offered by each provider that should be integrated
into the BaaS Platform.

Benefits:
1. Complete control and flexibility over how the resources in each cloud provider are
provisioned and managed.
2. No dependency or contract to any commercial or closed-source Kubernetes platform
management tools and applications.
3. Open to integrate any cloud provider and on-premise SDK.

Drawbacks:
1. The BaaS platform should manage each Kubernetes cluster’s state and keep it in sync
with its actual state on the cloud provider.
2. Additional SDK is required to integrate a new cloud provider into the platform.

Alternatives:

1. IaC - Terraform: Infrastructure as Code manages and provides cloud infrastructure
using code. Terraform is the most known and widely used IaC tool. Many IaC
tools, including Terraform, provide a cloud development kit to enable using them in
different programming languages. They offer state management of the provisioned
infrastructure, easy-to-use declarative syntax, and reduce the complexity of the
whole infrastructure management.

2. KubeSpray: It is an automation tool that manages production-ready Kubernetes
clusters based on Kubeadm and Ansible. Despite being able to deploy clusters on
various cloud providers, it is limited to specific cloud providers which negatively
affects the BaaS platform’s ability to integrate any additional cloud provider. Besides
that, it does not offer any programming language SDKs.

3. Rancher: It is open-source for managing Kubernetes clusters with compelling
features like Service Mesh Integration, IaC, and Multi-Cluster Management. It
cannot be considered a solution for cluster management in the BaaS platform
because some advanced features are only available in the enterprise version.

Dependencies: Select the cloud providers to integrate into the platform and their
initial setup and SDKs.

References: [23, 15, 47, 13, 35]

40

3.3. Architectural Design Decisions

3.3.4. Architectural Design Decision: Clusters Integration and Connectivity

Decision ID: ADD-004
Context: A resilient, encrypted, and authenticated cross-cluster connectivity must

be established between the managed Kubernetes clusters by the platform to enable
deployment of multi-cloud, multi-region blockchain nodes.

Problem Statement: Enabling cluster-to-cluster communication is essential for
achieving multi-cloud blockchain applications. Once multiple clusters are connected,
it should be possible for any blockchain nodes deployed on two different clusters to
communicate securely as if they were in the same cluster. The communication must be
encrypted, secure, and authenticated. There are various ways and technologies to enable
cluster-to-cluster connectivity.

Considered Options:

1. Istio service mesh.

2. Cilium.

3. Rancher.

4. Custom Networking Implementation.

Decision: Use Istio service mesh to achieve cross-cluster connectivity.

Benefits:
1. Traffic Management and Load Balancing.
2. Observability and Monitoring: Istio integrates easily with monitoring tools like Pro-
metheus.
3. Cross-Cluster Communication: Achieve the required cross-cluster communication for
the platform seamlessly by configuring and deploying Istio manifests into the clusters.

Drawbacks: As Istio only offers some of the required features through its different
programming language SDKs, some operations not supported by the SDK may be invoked
by its CLI client, which introduces complexity and maintainability challenges.

Alternatives:

1. Custom Networking Implementation: Implement a gateway and proxy for each
cluster to enable connectivity. The gateway and proxy can be configured with
security, authentication, and all the required features for cross-cluster connectivity.
However, this approach requires complex networking configurations and high effort
to implement the required components on each cluster.

2. Cilium: A container network plugin offering multi-cluster service mesh. However,
Istio has existed for several years and has matured regarding features and use cases.
Besides that, istio has a vast community and is currently the leader in the service
mesh space, which makes Cilcium a less suitable solution when compared to Istio.

41

3. Design

3. Rancher: This option can be ignored, as it is justified in the ADD ADD-003 why
the Rancher option is unsuitable for the platform.

Dependencies:

1. Setup Istio configurations, manifests, and components to deploy into each cluster
whenever a user wants to leverage a multi-cluster, multi-region blockchain solution.

2. Automate the Istio setup process on a Kubernetes cluster to enable dynamic cross-
cluster connectivity.

References: [35, 47, 22, 10]

3.3.5. Architectural Design Decision: OpenID Connect Authentication
Protocol

Decision ID: ADD-005
Context: An effective authentication and authorization mechanism should be imple-

mented to secure access to the BaaS platform based on the microservices architecture.
Problem Statement: Securing the BaaS platform is critical to controlling user access

and privileges. Therefore, the different authentication mechanisms must be analyzed, and
the most suitable one must be applied.

Considered Options:

1. OAuth 2.0.

2. JWT Authentication Only.

3. OpenID Connect (OIDC).

Decision: Implement OpenID Connect as an authentication and authorization mechan-
ism for the platform.

Benefits:
1. API Gateway Compatibility: Integrating OIDC with an API Gateway enforces authen-
tication at the platform’s edge and acts as a single entry point.
2. OpenID Connect is a widely accepted standard protocol for authentication.
3. Centralized Identity Management.
4. Integration with External Identity Providers: This is an essential benefit as it al-
lows users to authenticate using the identity provider they want supported by the platform.

Drawbacks:
1. Infrastructure Overhead: Setting up an OIDC server introduces additional effort to
deploy, manage, and maintain an OIDC server like Keycloak.
2. Complexity: Integrating and configuring the OIDC server and its resource servers

42

3.3. Architectural Design Decisions

introduces additional complexity.

Alternatives:

1. OAuth 2.0: It is a standard for delegated access and authorization and does not
focus on authentication and identity management.

2. JWT Authentication Only: It is a token format that is a mechanism for transmitting
data between parties in a trusted way. However, it focuses on authorization and
lacks authentication and identity management.

Additional effort and complexity are required for implementing identity management and
authentication flow in the case of OAuth2.0 and JWT Authentication.

Dependencies:

1. Setup and configure OIDC Server.

2. Integrate the API Gateway for OIDC authentication and each microservice for
authorization.

References: [16, 39, 37]

3.3.6. Architectural Design Decision: Blockchain Resources Mangement

Decision ID: ADD-006
Context: In managing and deploying blockchain applications, whether on a single

Kubernetes cluster or multi-cloud connected clusters, the platform must support configur-
able blockchain deployments and specifically offer deployment policies and strategies.

Problem Statement: Implementing multiple deployment policies and plans requires
a very high level of control and flexibility. A deployment policy is simply a blockchain
configuration that enables users to specify where and how the blockchain nodes are
deployed and which clusters should exist or should not exist.
A deployment plan lets the user specify whether to deploy all the blockchain instance
nodes into a single or multiple connected clusters.

Considered Options:

1. Helm SDK.

2. Kubernetes SDK.

Decision: Use Kubernetes SDK to implement the blockchain nodes and application
deployment strategies and policies.

Benefits:
1. Fine-grained control: High control over Kubernetes resources and the ability to manip-
ulate each resource programmatically.

43

3. Design

2. Distributed Blockchain Nodes: Using this approach, we can define multiple deployment
policies (high control and customization where each resource must get deployed and on
which cluster in case of cross-cluster deployments.

Drawbacks:
Additional effort is required for programmatically implementing and realizing the deploy-
ment strategies and policiesd.

Alternatives:

1. Helm SDK: A tool for managing modules (charts) inside a Kubernetes cluster. Helm
treats multiple resources as a single release, which makes it unsuitable for complete
control over the nodes when the blockchain nodes are distributed among multiple
clusters in the case of multi-cloud deployment.

Dependencies:

1. Define deployment strategies and policies.

2. Implement the specified strategies and policies using Kubernetes SDK.

References: [35, 25]

3.4. Components and Services Description/Design/Interfaces

This section will provide a deeper understanding and description of each component/mi-
croservice and clearly state how it will behave based on its provided interfaces/APIs.

Before diving into each microservice and its specific description and functionality, there
are a set of standards that were applied when designing the microservices, which are:

1. REST -Representational State Transfer: An architectural style for designing web
and networked applications, it is known for its statelessness, simplicity, scalability,
and HTTP standardization by leveraging the existing HTTP protocol [20].

2. API-First Design: It is based on defining the set of APIs provided by a service
as its core foundation. This approach provides many advantages like clarity of
requirements, reduced duplication and redundancy, and client-server decoupling.

3. Pluggable Components: The components that each microservice communicates with
are loosely coupled, which means components like Kafka cluster (for event-driven
communication) and Keycloak identity and access management solution are loosely
connected to these services, which makes switching to another technology in the
future and simple a seamless process.

4. Leveraging Microservices Design Patterns: As the system is based on microservice
architecture, different design patterns were applied in the architecture to address
various challenges and ensure the platform’s reliability and effectiveness [40].

44

3.4. Components and Services Description/Design/Interfaces

a) Event-driven architecture: As discussed in the ADD ADD-002, event-driven
communication is selected for inter- service communication since this pattern
offers scalability, loose coupling, and real-time data flow.

b) API Gateway: Acts as the single entry point for the platform services by
the client and other external systems, which makes it suitable for different
cross-cutting tasks like authentication, routing, and rate limiting ADD-005.

c) Database Per Service: This pattern is widely applied when scalability and
reduced data coupling are desired.

d) Containerization: To enable scalability and seamless cloud deployment process.

e) Single Responsibility Principle (SRP): Separate each microservice by its busi-
ness capability, giving each of them a single responsibility to increase main-
tainability.

5. Layered Architecture Pattern [19]: Each microservice is designed based on this
pattern, which separates it into several horizontal layers that function as a single
unit. Each microservice is composed of three main layers following the Domain-
Driver-Design Layered-Architecture approach:

a) Application Layer: Accepts user commands and REST API calls, translate
DTOs, apply authorization, and request validation.

b) Domain Layer: responsible for the functionality of the business domain; it
contains the domain services.

c) Infrastructure Layer: responsible for managing the state of the microservice,
communication for external services and components like event streaming plat-
form, identity and access management component, cloud providers, Kubernetes
clusters, and third-party external systems.

3.4.1. Cluster Management Microservice

The cluster management microservice is responsible for provisioning, deleting, and con-
figuring Kubernetes clusters from different cloud providers. As discussed in the ADD
ADD-003 and based on the FR FR-002, this service will use the cloud provider’s specific
SDK to be able to manage Kubernetes clusters on it. Furthermore, it must take care of
the state of the managed and provisioned clusters in a database and act as a facade and
control plane layer for the different supported cloud providers.

45

3. Design

UML Class Diagram

Figure 3.2.: Cluster Management Microservice - UML Class Diagram.

As Figure 3.2 shows, the cluster management service is composed of three layers:

1. Application Layer: It contains the controller classes that are responsible for receiving
and handling REST API requests, including DTOs and DTO mapping classes.
Furthermore, this layer handles the syntax validation and authorization of requests.

2. Domain Layer: It contains the interfaces and classes that together form a generic
specification for managing different cloud providers’ Kubernetes clusters.

46

3.4. Components and Services Description/Design/Interfaces

3. Infrastructure Layer: We define concrete implementations for the specifications and
interfaces provided in the domain layer for integrating Google Cloud and Microsoft
Azure Cloud providers. Furthermore, this layer contains all the other classes and
interfaces for managing the application’s state using the NoSQL MongoDB database
and producing events for their target topics in Apache Kafka for loosely coupled
asynchronous inter-service communication.

API Reference

In the following, we describe each REST API endpoint the cluster management service
provides and explain generically each endpoint input/output and its purpose. A detailed
description of each endpoint’s different parameters, payload, different responses, and
authentication is present in the Git repository of this thesis in the cluster management
service OpenApi manifest file.

• GET /API/v1/providers
Description: Retrieve a list of supported cloud providers.
Retrieve a list of supported Kubernetes cluster cloud providers, including their
metadata (name, identifier, logo, meta-data) and configurations that can be applied
by the user when provisioning a new cluster. For example, using Google Cloud
provider, different regions and availability zones can be selected when provisioning
a Kubernetes cluster.

• POST /API/v1/providers/<providerIdentifier>/clusters
Description: Provision a Kubernetes cluster on a specific cloud provider.
Create a Kubernetes cluster asynchronously on a cloud provider; the user submits
the cluster name and configurations and returns an Operation DTO, which must
be continuously polled once the provisioning operation is in DONE state.

• DELETE /API/v1/providers/<providerIdentifier>/clusters/<clusterIdentifier>
Description: Clear resources of a Kubernetes cluster on a specific cloud provider.
Deletes a Kubernetes cluster on a cloud provider by cluster identifier; this endpoint
also returns an operation DTO that the user must continuously poll until the
operation status is in DONE state.

• GET /API/v1/clusters
Description: Retrieve a list of all the Kubernetes clusters owned by a specific user
on all the supported cloud providers.
Returns all the clusters the requesting user owns. These clusters can then be used
for deploying blockchain applications and being integrated to enable cross-cluster
multi-cloud communication.

• GET /API/v1/providers/<providerIdentifier>/clusters/<clusterIdentifier>/
operations
Description: Retrieve all currently running operations on a Kubernetes cluster.
Returns all the operations currently being applied for a specific Kubernetes cluster

47

3. Design

and their status. These operations are either CREATE Cluster, DELETE Cluster,
or UPDATE Cluster operation.

• GET /API/v1/providers/<providerIdentifier>/clusters/<clusterIdentifier>/
operations/<operationIdentifier>
Description: Retrieve a single operation for a Kubernetes cluster.
Returns the operation object for a Kubernetes cluster, which the user can use to
poll the operation status after creating, deleting, or updating a Kubernetes cluster.

Cloud Providers Integration

The supported cloud providers by this service are selected based on three criteria:

1. Academic Licence: Most cloud providers offer an academic license. However, in
most cloud providers, the academic license is limited and insufficient for the scope
of the thesis.

2. Kubernetes Cluster: The cloud provider must support Kubernetes Service.

3. SDK: The cloud provider must offer an SDK that covers all the required operations
to be done programmatically.

Therefore, the selected cloud providers are:

1. Google Cloud Platform: Offers GKE - Google Kubernetes Engine service,
including the necessary SDKs, allowing multiple academic licenses [14].

2. Microsoft Azure: Offers Kubernetes service with an SDK that covers most of the
required operations. Furthermore, access to the University of Vienna Azure portal
was granted [4].

For each supported provider by this microservice, the user has to provide at least a
cluster name that is unique among its account. Furthermore, the user must be able to
choose a specific region or availability zone to deploy the Kubernetes cluster, which is
an essential requirement to be able to give the platform the multi-region characteristic.

The microservice is designed considering maintainability and extendability characterist-
ics, which means it can integrate any additional cloud provider or on-premise Kubernetes
cluster with limited effort. Hence, integrating a cloud provider can be achieved by only
implementing two interfaces and one abstract class without needing modification in any
other place.

1 pub l i c i n t e r f a c e ClusterProviderManager {
2
3 List<BaasCluster> ge tA l lC lu s t e r s () ;
4 List<BaasCluster> getAllClustersByAccountOwner (St r ing accountOwner) ;
5 BaasCluster ge tC lus t e r (GetCluste rConf igurat ions ge tC lu s t e rCon f i gu ra t i on s) ;
6 ClusterOperat ion p rov i s i onC lu s t e r (Con f i gura t i ons con f i gu ra t i on s , S t r ing ownerAccount) ;
7 ClusterOperat ion d e l e t eC lu s t e r (De l e t eC lu s t e rCon f i gu ra t i on s d e l e t eC lu s t e rCon f i gu r a t i on s) ;
8 ClusterOperat ion c lu s t e rOpera t i onSta tu s (GetOperat ionStatusConf igurat ions c on f i g u r a t i on s) ;
9 Map<Str ing , Str ing> getClusterAuthData (GetCluste rConf igurat ions ge tC lu s t e rCon f i gu ra t i on s) ;

10 }

Listing 3.1: ClusterProviderManager

48

3.4. Components and Services Description/Design/Interfaces

1 pub l i c ab s t ra c t c l a s s C lu s t e rProv ide rDesc r ip to r {
2
3 pr i va t e f i n a l S t r ing providerName ;
4 p r i va t e f i n a l S t r ing p r o v i d e r I d e n t i f i e r ;
5 p r i va t e f i n a l S t r ing providerLogo ;
6
7 protec ted Clus t e rProv ide rDesc r ip to r (St r ing providerName , St r ing p r o v i d e r I d e n t i f i e r , S t r ing

providerLogo) {
8 t h i s . providerName = providerName ;
9 t h i s . p r o v i d e r I d e n t i f i e r = p r o v i d e r I d e n t i f i e r ;

10 t h i s . providerLogo = providerLogo ;
11 }
12
13 pub l i c abs t rac t BaasCluste rConf igurat ions ge tC lu s t e rCon f i gu ra t i on s () ;
14 }

Listing 3.2: ClusterProviderDescriptor

1 pub l i c i n t e r f a c e C lus t e rProv ide rCon f i gura t i onBu i lde r {
2 BaasCluste rConf igurat ions ge tC lu s t e rCon f i gu ra t i on s () ;
3
4 }

Listing 3.3: ClusterProviderConfigurationBuilder

The interface ClusterProviderManager shown in Listing 3.1 specifies creating and
deleting operations that can be applied on a Kubernetes cluster resource using a cloud
provider. Furthermore, it provides different options for querying existing Kubernetes
clusters and their status.

The Abstract class ClusterProviderDescriptor shown in Listing 3.2 provides the required
attributes and specification methods for describing a cloud provider through its metadata
(name, identifier, logo, description) and configuration that can be applied to it by the
client. The cloud provider configuration can be built by implementing the interface
ClusterProviderConfigurationBuilder shown in Listing 3.3, which will be used by the
implementation of the abstract class ClusterProviderDescriptor in Listing 3.2.

Extending the functionality and the operations in the future can be applied by intro-
ducing additional methods to the existing interfaces or introducing additional interfaces
into the generic specification and implementing it by each supported cloud provider. For
example, to support an automatic scheduled cluster upgrade, we could quickly introduce
a new method in the interface 3.1 and implement it in each cloud provider.

3.4.2. Cluster Integration Microservice

As discussed in the ADD - Clusters Integration and Connectivity ADD-004 and based on
the defined FR-Cluster Integration and Configuration FR-003, this service is responsible for
integrating multiple Kubernetes clusters and establishing cross-cluster encrypted, secure
and authenticated communication to enable the deployment and creation of multi-cloud
multi-region blockchain applications.

49

3. Design

UML Class Diagram

Figure 3.3.: Cluster Integration Microservice - UML Class Diagram.

As Figure 3.3 shows, the cluster integration service is composed of three layers:

1. Application Layer: It contains the controller classes that are responsible for receiving
and handling REST API requests, including DTOs and DTO mapping classes.
Furthermore, this layer handles the syntax validation and authorization of requests.

2. Domain Layer: It contains the interfaces and classes responsible for establishing
and removing cross-cluster communication by installing the necessary components
for each cluster to integrate. Furthermore, this layer defines interfaces each cloud
provider must implement in the infrastructure layer. However, these interfaces are
only used for constructing authentication credentials that can be used to access a
Kubernetes cluster. Besides that, it defines specifications for managing Kubernetes

50

3.4. Components and Services Description/Design/Interfaces

resources and cross-cluster communication resources that are implemented and
extended in the infrastructure layer

3. Infrastructure Layer: Defines concrete implementations for the specification and in-
terfaces provided in the domain layer for constructing Kubernetes cluster credentials
and managing Kubernetes and Istioctl resources for cross-cluster communication.

API Reference

• GET /API/v1/integrations
Description: Retrieve all integrated clusters a specific user owns.
Returns all the integrated clusters a specific user owns, including their integration
status. An integrated cluster is simply a set of connected Kubernetes clusters
treated as a single resource by the platform to deploy blockchain applications.

• POST /API/v1/integrations
Description: Create an integrated clusters resource.
Creates a new integrated cluster resource by establishing connections between
multiple Kubernetes clusters from various cloud providers. Other microservices can
later use this resource to deploy multi-cloud multi-region applications.

• DELETE /API/v1/integrations/<integrationIdentifier>
Description: Remove existing integrated clusters resource
Remove existing integrated cluster resources by terminating the communication
between all the included clusters and removing all the cross-cluster communication-
related resources.

Cross-Cluster Communication - multi-cloud Connectivity

Based on the ADD - Clusters Integration and Connectivity ADD-004, a service mesh
solution (Istio [22]) is applied to achieve cross-cluster connectivity and enable multi-cloud
blockchain applications deployment.

To reach the point of being able to establish and terminate the desired cross-cluster
communication dynamically, the different available resources, configurations, and deploy-
ment options of Istio Service Mesh must be analyzed.

Istio Network models
The Network model on Istio is offered in two options, The first one is Single network [22],
which is appropriate for workload instances on the same network with non-overlapping IP
addresses. The second option is Multiple networks [22], which is suitable for workload
instances not in the same network and cannot directly reach each other. As the platform is
meant to connect Kubernetes clusters across multiple cloud providers, which are, of course,
not on the same network and may have overlapping IP addresses, the Multiple networks
option was selected as the networking model for Istio in the context of cross-cluster
communication.

51

3. Design

Istio Control plane models
The Istio control plane maintains the communication configuration between the workload
instances inside a service mesh [22]. A cluster owning its control plane is called Primary
Cluster [22]. Meanwhile, in a Multi-Cluster deployment, a cluster that is using the
other cluster’s control plane that it is connected to is referred to as a Remote Cluster [22].

Following are the two different Control plane models:

1. Primary-Remote: Establish a multi-cluster service mesh by deploying a single
control plane on the first cluster. Other clusters will not have their control plane and
will use the one owned by the first cluster remotely, called Primary-Remote. This
option is simple to apply with minimal configurations. However, it forms a massive
single point of failure if the control plane fails. The cross-cluster communication is
terminated, and all the blockchain nodes and applications across these clusters are
affected [22].

2. Multi-Primary: Establish a multi-cluster service mesh by installing on each
cluster its control plane. This option provides high availability, and if any control
plane is down, only the resources inside it are affected. Furthermore, this option
enables isolated service mesh configuration [22].

The BaaS platform needs to provide high availability and decentralization; therefore,
the option Multi-Primary was selected [22] since it achieves high availability and
prevents a single point of failure for the multi-cluster (multi-cloud) blockchain application
and nodes by deploying a control plane for each Kubernetes cluster.

52

3.4. Components and Services Description/Design/Interfaces

Figure 3.4.: Multi-Primary Multiple Networks Architecture. Source: [22]

Figure 3.4 shows the architecture we end with when applying the Istio Multi-Primary
Multiple Networks deployment models. It comprises an Istio control plane and a dedicated
east-west gateway on each cluster. The east-west gateway is responsible for receiving
cross-cluster communication requests.

Identity and Trust Model
The previous Istio cross-cluster communication architecture must ensure an encrypted,
authenticated, and secure connection. Therefore, the mTLS authentication protocol will
be applied to achieve the desired secured service-to-service communication [22]. This
protocol can be achieved by creating a certificate authority and using it to create and
sign the certificates for each workload resource in the connected clusters to ensure that
services authenticate against each other when communicating. Finally, Istio resources
inside a mesh must be configured with mTLS, guaranteeing encrypted and authenticated
cross-cluster communication [22].

53

3. Design

Cross Cluster Communication between Google Cloud and Microsoft Azure

The supported cloud providers’ environments must be correctly created and con-
figured before starting with Kubernetes clusters provisioning and deploying cross-cluster
communication-related resources.

Microsoft Azure [4]:

1. Virtual Network: is an isolated network within Microsoft Azure. Multiple Azure
virtual networks must be created and configured to communicate with each other
privately by enabling virtual network peering to enable multiple regions since each
virtual network is bounded within a specific region.

2. Virtual Network Components: For each created virtual network, the subnets,
routing tables, network security groups, and IP address ranges must be
correctly configured to enable traffic coming from other cloud providers for multi-
cloud cross-cluster communication.

3. Azure service principal: Create an identity to be used by the Blockchain-as-a-
Service Platform to access the Azure resources and configure it with the required
roles.

Google Cloud [14]:

1. Virtual Private Cloud (VPC): It is an isolated virtual network within the
Google Cloud environment. A single VPC is sufficient as it is a global resource,
which means it is not bound to any specific region.

2. Subnets: Since a subnet is bounded to a specific region, multiple subnets must be
configured to enable multiple regions for Kubernetes cluster deployments.

3. VPC Components: Configure routing tables, IP address ranges and firewall
to enable communication from other cloud providers.

4. Service Account: Create the required service account and configure its roles to
enable the Blockchain-as-a-Service platform to authenticate against Google Cloud
resources.

After applying the cloud providers’ specific configurations and attaching the service
principles and accounts to the microservices, we provision the Kubernetes clusters on
both Google Cloud and Microsoft Azure using Cluster Management Microservice.
Once the cluster is successfully deployed and active, we can deploy Istio on each cluster
using cluster integration microservice to enable multi-cloud cross-cluster communication.
Once Istio resources are also deployed, we end up with this architecture that enables
multi-cloud, multi-region blockchain networks, and applications deployments.

54

3.4. Components and Services Description/Design/Interfaces

Figure 3.5.: Cluster Integration between Google Cloud and Microsoft Azure

Using the architecture shown in Figure 3.5, we can now establish multi-cloud, multi-

55

3. Design

region encrypted, and authenticated communication between two Kubernetes clusters
from different cloud providers. This solution will be managed as a resource in the BaaS
platform and used to deploy blockchain network instances.

3.4.3. Blockchain Management Microservice

Based on the following decisions and requirements ADD-006, FR-005 and FR-006, this
microservice will be responsible for creating and managing blockchain networks, applic-
ations, and nodes. This microservice supports Custom Blockchain framework, a
self-implemented private and consortium blockchain framework. However, this service
can be extended in the future to support more complex blockchain frameworks like
Hyperledger Fabric or Private Ethereum for Enterprise.

This microservice depends on the Cluster Management and Cluster Integration
microservices, which are responsible for provisioning and managing Kubernetes clusters
and creating multi-cloud multi-region deployment environments for the blockchain network
instances.

56

3.4. Components and Services Description/Design/Interfaces

UML Class Diagram

Figure 3.6.: Blockchain Management Microservice - UML Class Diagram.

As Figure 3.6 shows, the cluster integration service comprises three layers:

1. Application Layer: It contains the controller classes responsible for receiving and
handling REST API requests.

2. Domain Layer: It contains the interfaces and classes responsible for creating, man-
aging, and configuring blockchain network instances and their nodes and applications.

57

3. Design

One of the core functionalities of this service is deploying a blockchain network
either on a single Kubernetes cluster or on multiple connected Kubernetes clusters.
This functionality is defined in the BlockchainDeploymentService interface and
BlockchainResourceManager class. Furthermore, the domain classes and interfaces
provide the ability to create a new node, append it to an existing blockchain net-
work, and delete an existing node. Besides that, it allows the users to connect to
their nodes and interact with them by providing the required data to connect to a
blockchain node.

3. Infrastructure Layer: Defines concrete implementations for the specification and in-
terfaces provided in the domain layer for constructing Kubernetes cluster credentials
and managing Kubernetes resources on different clusters. Furthermore, it defines
the classes for consuming and producing events to Apache Kafka and repositories
to interact with the MongoDB database.

API Reference

• GET /API/v1/blockchains
Description: Retrieve all blockchain networks metadata that the calling user is
involved in.
Returns all the blockchain network metadata for the blockchain that the calling
user has already joined. A user is considered involved in a blockchain network when
he owns a node.

• POST /API/v1/blockchains
Description: Create a new blockchain network instance.
Creates a new blockchain network with the specified number of initial nodes,
including the required components for node discovery. The user specifies the number
of initial nodes and who owns them. Furthermore, the user can specify if the
blockchain must be deployed on a single Kubernetes cluster in SINGLE-CLOUD
mode or distributed on multiple Kubernetes clusters, MULTI-CLOUD mode.

• GET /API/v1/blockchains/<id>
Description: Retrieve blockchain metadata by id
This endpoint returns the blockchain metadata for the user.

• PATCH /API/v1/blockchains/<id>
Description: Create a new blockchain node in an existing blockchain network
instance
Given new node configurations like node name, owner account, email, and node
type, a new node will be deployed in the existing blockchain network.

• GET /API/v1/blockchains/<id>/nodes
Description: Retrieve the blockchain node that a user owns in a blockchain network
instance

58

3.4. Components and Services Description/Design/Interfaces

This endpoint returns the blockchain node with the defined ID the calling user
owns.

• GET /blockchains/<id>/nodes/<nodeId>/loadbalancer
Description: Poll the required data to access a blockchain node created in a
blockchain instance.
Once a new node is deployed in a blockchain network, it requires some time until
its IP address is available and ready for serving user requests. This endpoint is used
for actively polling the node metadata by the user until he or she gets valid access
data for the node.

Supported Blockchain Framework

This microservice supports the Private and Consortium Blockchain Framework, described
and documented in detail in the Custom Blockchain Framework section.
Extending this microservice to support additional blockchain frameworks like Hyperledger
Fabric is possible; however, the services in the domain layer must be refactored and
extended to provide the required support for additional blockchain applications.

Blockchain Deployment

This microservice offer different configurations when it comes to deploying blockchain
application. The two essential configurations are Deployment Plan and Deployment
Policy.

Deployment Plan:

1. Single Cloud: All blockchain resources will be deployed on a single Kubernetes
cluster located on a single cloud provider, therefore called a single cloud deployment
plan.

2. multi-cloud: The blockchain nodes and resources will be deployed in a multi-cloud,
multi-region, and highly available fashion by distributing them among multiple
Kubernetes clusters located on different cloud providers.
Using this approach will prevent vendor lock-in and increase blockchain availability.
If one Kubernetes cluster is down, then only the blockchain nodes and resources
inside it are affected, and other nodes deployed in the rest of the Kubernetes clusters
are unaffected.

Deployment Policy:

1. Round-Robin: In the case of a multi-cloud deployment plan, this deployment
policy distributes the blockchain nodes in a round-robin fashion among the existing
connected Kubernetes clusters. This approach is simpler as the user is not required
to bind a specific blockchain node to a specific Kubernetes cluster.

59

3. Design

2. Manuel-Assignment: In the case of a multi-cloud deployment plan, users must
specify which cloud provider they prefer their blockchain node to get deployed by
binding their node to a specific Kubernetes cluster. This policy is used in consortium
blockchains where multiple enterprises are willing to deploy their nodes on different
cloud providers.

As the example Figure 3.7 shows, the node destination cluster to be deployed is
decided based on the following formula:

N mod M = C

N: The nodes count in the blockchain instance (excluding the current node that is
being deployed).
M: The number of the connected Kubernetes clusters.
C: The target cluster index where the node is supposed to be deployed based on
the round-robin formula.
A new node must be scheduled to a cluster, based on the formula we have N =
6,M = 4, and therefore 6 mod 4 = 2, the cluster at index 2 is Cluster 3.

Figure 3.7.: Round-Robin Deployment Policy in Multi-Cloud Deployment Plan.

3.4.4. Notification Microservice

Based on the requirement FR-004, this microservice will be responsible for two function-
alities: the first is to send notifications to users whenever a specific event occurs in the
BaaS platform that they are involved in, and the second is to enable the users to configure

60

3.4. Components and Services Description/Design/Interfaces

their notification preferences like enabling or disabling notifications for specific events
categories.

UML Class Diagram

Figure 3.8.: Notification Microservice - UML Class Diagram.

61

3. Design

As Figure 3.8 shows, the notification microservice is composed of three layers:

1. Application Layer: It contains the controller classes that are responsible for receiving
and handling REST API requests, including DTOs and DTO mapping classes.
Furthermore, this layer takes care of the syntax validation and authorization of
requests.

2. Domain Layer: It contains the interfaces and classes responsible for managing
user notification preferences, starting with the UserService class which handles
notification preferences configuration requests. Furthermore, this layer defines
the interface UserDataOAuthService to interact with the identity and access
management component - Keycloak to sync the current platform users whenever
a new user registers into the platform, meaning that this service only maintains
user information that is necessary for notification management. Besides that, the
class NotificationServiceManager class is responsible for sending notifications
to users whenever the service consumes a new event.

3. Infrastructure Layer: Defines concrete implementations for the specification and
interfaces provided in the domain layer for interacting with the identity and access
management component, listening to Kafka events and interacting with the mail
server component.

API Reference

• GET /API/v1/notifications/users/<id>
Description: Fetch the user current notification configurations.
Returns the current user notification configurations, which consist of categories of
events that the user is interested in receiving notifications when they occur.

• PUT /API/v1/notifications/users/<id>
Description: Update the users current notification configurations.
Update the user’s current notification configurations. For example, a user could
send a request to enable notifications for blockchain node instantiation or cluster
provisioning.

Notification Method

The notification service is configured using the email notification method; however, it
can be extended to support additional notification methods like mobile SMS. The reason
behind selecting this notification method is because it is the simplest method to implement
and is sufficient for the scope of the thesis.

The configured mail server is Gmail SMTP Server since it is free to use when sending
500 emails per day or less, which is sufficient for the prototype and provides the required
performance for the platform.

62

3.5. Inter-Service Communication

3.5. Inter-Service Communication

As discussed in the ADD-002, the microservices communicate with each other using
the Event-Driven-Architecture [3] approach since it provides the highest scalability and
decouples the services from each other.

Figure 3.9.: BaaS Microservices Events Flow.

Figure 3.9 shows how the events are produced and consumed between each microservice
in the platform [36].

63

3. Design

3.6. BaaS Custom Blockchain Framework

On a high level, it is a private blockchain instance that is restricted to a single or multiple
individual groups/businesses/organizations. Only authorized people can participate in
it and view/create transactions. Those transactions are validated by nodes (validators)
following the PoA - Proof-of-Authority consensus algorithm, which is based on the
reputation/identity of a node.
This framework offers three types of nodes: wallet, validator, and full node.
Note: This blockchain framework will be used in the BaaS Platform. Its components
and nodes will be dynamically managed and deployed on the cloud providers’ Kubernetes
clusters.

3.6.1. Structure

Blockchain Model

The Account model [55, 49] is used in this framework. The state in the blockchain is
represented by the set of existing accounts and their state. The following accounts are
supported:

1. An account with a public and private key used to create and sign transactions.

2. An account with a contract code specifying when a transaction/transaction must
be created/confirmed (note: this feature is not implemented).

Blockchain Nodes

1. Wallet Node: Able to create and view transactions using its unique public and
private keys, it does not validate blocks.

2. Full Node: Responsible for maintaining the blockchain state (blocks, accounts). It
does not validate blocks and cannot create or sign transactions.

3. Validator Node: Wallet Node + Full Node also participates in the PoA consensus
algorithm by verifying transactions once it is selected as a validator for the next
block.

3.6.2. Consensus Algorithm

The used consensus algorithm is Proof-of-Authority - PoA [38]: Unlike other consensus
algorithms like PoW or PoS, PoA is based on the reputation and identity of a node for
validating transactions and blocks. A group of nodes will be selected, called validators,
responsible for verifying pending transactions and accounts and adding them to the
blockchain.

64

3.6. BaaS Custom Blockchain Framework

Advantages

• High transaction throughput.

• Fast block confirmation times.

• No need to perform computationally-intensive tasks like PoW.

• Well-suited for private or consortium blockchain networks.

Disadvantages

• More centralized than other PoW or PoS public blockchains.

• Security: The attacker can potentially control the network if a validator node is
compromised.

Consensus Algorithm Description

A new block must be validated and created on a scheduled basis(every N seconds); this
scheduled action is triggered simultaneously by all active validator nodes in the network.
Only one validator will be randomly selected based on the selection strategy shown in the
Listing 3.4; other validators will terminate the process since they are not selected and
wait till the next block must be validated.
Once a validator is selected, it will create a new block, add the pending transactions and
accounts, and broadcast it through the network.

Listing 3.4: PoA Consensus Algorithm - Validator Selection

Algorithm 1 PoA Consensus Algorithm - Validator Selection
validators← sortedCurrentActiveV alidatorsInNetwork
block ← previousV alidatedBlock
previousV alidator ← previousBlockV alidator
N ← n
if block is not present then ▷ If its the first block being validated

return validators[0]
end if
publicKeyAsInt← hashAndConvertToInt(previousV alidator.publicKey)
timeStampAsInt← hashAndConvertToInt(block.timeStamp)
return (publicKeyAsInt+timeStampAsInt) mod validators.length

As the Listing 3.4 shows, each validator node fetches the current active validators list
and sorts it ascendingly. After that, based on the previous block attributes (timestamp,
validator public key), each validator node calculates a hash and converts it to an integer,

65

3. Design

then applies the calculated integers modulo length of the current active validators list.
This calculation gives us the selected validator for the next block, which is the same
across all validator nodes that apply this calculation. In this way, we achieved a reliable
and synchronized validator selection across all the validator nodes across the network.

3.6.3. Architecture

Figure 3.10.: Custom Blockchain Framework Architecture.

Figure 3.10 shows the components of the custom blockchain framework and how they
communicate and interact with each other. The blockchain nodes communicate internally
using TCP protocol with each other. They also communicate with the node’s IP server
initially to get the available nodes (peers) in the network using HTTP protocol.
The clients (validator and wallet node owners) can communicate with their nodes using
REST API through the Web UI component.

3.6.4. Blockchain Entities Structure

Account Structure

1. Balance: Current account balance.
2. Public key: Used as an account identifier of a node and can also be used to verify if
the sender’s private key created and signed a specific transaction.
3. Private key: Used only by the node owner to sign transactions (stored privately in
each node).
4. Username: A unique username that belongs to the node owner.

66

3.6. BaaS Custom Blockchain Framework

5. Nonce: Incremental number to avoid duplicate transactions; whenever a user creates a
transaction, it gets incremented.

Transaction Structure

1. Transaction hash: The transaction identifier.
2. Sender public key.
3. Receiver public key.
4. Signature: The signed transaction by the sender’s private key.
5. Sender nonce counter: The sender’s nonce when applying this transaction.
6. Amount.
7. Timestamp: Transaction creation timestamp.

Block Structure

1. Block Hash: Block identifier.
2. Previous Block Hash: Previous block identifier.
3. Merkle Root: Calculated Merkle root for transactions verified in this block.
4. State Root: Calculated Merkle root for the state after applying the transactions in
this block.
5. Validator Public Key: Validator identifier.
6. Height: Height of block (initially 0).
7. Pending Accounts: Pending accounts set.
8. Transactions: Pending transactions set.
9. Timestamp: Block creation timestamp.

Merkle Tree

In this blockchain framework, the Merkle tree is applied in two different scenarios:

1. Transactions: The transactions act as the leaves in each block, and every two
elements (transactions) will be hashed together until we end up with a single hash
value, the Merkle root. After constructing the Merkle tree and Merkle root, it is
then possible for a node to ask if a transaction is confirmed to a block or not with
simple payment verification and trust the response.

2. Accounts and State Management: The Merkle tree is also used in the context
of accounts, which makes it easier for validators to verify the new calculated state
(accounts) after executing the pending transactions.

67

3. Design

3.6.5. Validation Rules

Transaction Validation Rules

A node only considers a transaction valid when more than 50 percent of the nodes
accept it. A node only accepts a transaction when the following rules are not violated:

• The Transaction hash must be correctly calculated.

• Amount is greater than zero.

• The transaction amount is equal to or less than the sender balance (including other
pending transactions in each node’s pending transactions pool).

• The Transaction nonce must be greater by one than the previously accepted or
pending transaction.

• The receiver account must exist.

• The transaction signature must be successfully verified.

Block Validation Rules

• The Block hash must be correctly calculated and validated against the received
block from other nodes.

• The Block height must be greater than the previous block height by one.

• The Calculated Merkle root must be verified against the received block.

• The calculated state root must be verified against the received block.

• The timestamp must be greater than the previously created block.

• The pending account’s initial balance must be correct.

3.6.6. API Reference

Node User API Reference

This section describes the APIs the wallet and validator nodes offer when deployed on
the cloud providers’ Kubernetes clusters. It comprises a set of REST API endpoints that
allow the users to use all the functionality provided by the blockchain framework.

• GET /accounts/wallet-account-status
Description: Fetch wallet account status.
Returns the wallet account data and can be used to poll the account status to check
if it is confirmed into the blockchain (is appended into a block and transitioned
from pending to confirmed status).

68

3.6. BaaS Custom Blockchain Framework

• POST /accounts
Description: Activate Account
Once a user gets an invitation into the blockchain, he/she must initially activate
his/her account by calling this endpoint, which will schedule this account to be
appended into the next block that will be validated and inserted into the blockchain.
By invoking this endpoint, the user can activate his account.

• POST /transactions
Description: Create and Sign a new transaction.
Creates a new transaction that specifies the receiver, amount, and nonce.

• GET /transactions
Description: Retrieve all transactions in a blockchain.
Returns all the created and pending transactions in a blockchain

• GET /accounts
Description: Retrieve all activated accounts
Returns all activated accounts in a blockchain, which can be later used to reference
them for sending transactions.

• GET /blocks
Description: Retrieve all blocks in a blockchain
Returns all blockchain block information, further information about transactions
and accounts accepted in each block, can be queried using GET /accounts and GET
/transactions endpoints.

Inter-Node Communication API Reference

This section describes the communication protocol between the blockchain nodes. The
blockchain nodes communicate with each other using a Peer-to-peer TCP network that
provides reliability and ensures message delivery.

Peer Discovery
It is implemented simply using an additional component Nodes-IP-Server, which is
used as a bootstrap endpoint for any node. A node can register its IP: Port pair in this
server, and on its startup, it receives all the available (registered) nodes in this server and
ping them to validate their availability.

TCP Message Structure
-Message-Id: An identifier that uniquely identifies a TCP message.
-Endpoint: To let the receiver know which function should be invoked.
For example,/create-block, /create-transaction .
-Source Identifier: Represents the ip and port of the sender.
-Destination Identifier: Represents the ip and port of the receiver.
-Message Type: REQUEST, RESPONSE, or PING.

69

3. Design

-Status Code: OK or ERROR.
-Error Message: Optional (only present when an error status code is returned.
-Payload: Payload of the request or the response in JSON.

TCP Endpoints (only for Inter-Node Communication)
1. /create-blocks: This is called by a validator once a new block is validated to send it to
other network nodes.
2. /block-by-height: Get a block by height.
3. /blocks: Get all blocks.
4. /create-account: Invoked by the user to activate its wallet account.
5. /get-account: Get user account data.
6. /accounts: Get all accounts in a network.
7. /account-state: Get account state.
8. /get-transactions-by-account-id: Get transactions that a specific account is involved in.
9. /transactions-state: Get all transactions state.
10. /transaction-state: Get transaction state by transaction id.
11. /create-transaction: Create a transaction.
12. /get-validator-metadata: It is used by validators to synchronize the current active
validators.
13. /validate-transaction: It is called by a wallet or validator node to verify a transaction
in blocks using the Merkle root and Merkle path.

3.6.7. Custom Blockchain Framework using BaaS multi-cloud Architecture

Deploying this blockchain framework using the previously done multi-cloud environment
decisions and setup would result in the following architecture shown in Figure 3.11.

70

3.6. BaaS Custom Blockchain Framework

Figure 3.11.: Custom Blockchain Framework Multi-Cloud Architecture.

71

3. Design

As Figure 3.11 shows, we deployed a blockchain instance in the multi-cloud environment.
It is done by dynamically creating multiple Kubernetes resources on top of the prepared
environment.
We create a Kubernetes namespace for the new blockchain with a generated ID as the
namespace name. After that, we create the required config maps and secrets followed
by creating a deployment for each node by pulling the blockchain framework image
from Docker Hub and expose this deployment internally using a Kubernetes service.
Then, we create a deployment and service Kubernetes objects for the Nodes-Ip-Server,
also using Docker Hub to pull the Nodes-Ip-Server image. This component is required to
enable peer discovery between each deployed node.
Finally, we expose the blockchain nodes to the clients by provisioning a Google Cloud
Load Balancer for each node service. The inter-node TCP traffic and HTTP node-to-
nodes-ip-server traffic are propagated authentically, encrypted, and securely between the
two cloud environments.

72

3.6. BaaS Custom Blockchain Framework

Figure 3.1.: BaaS Architecture Specification.

73

4. Implementation

This chapter gives an in-depth exploration of the technology stack used in the project,
followed by going through the implementation details of the different microservices and
components, and finally by providing a step-by-step guide to run the prototype.

4.1. Technology Stack

The technology stack outlined in Table 4.1 has been carefully chosen based on the
project’s functional and non-functional requirements, architectural design decisions, and
our expertise in different technologies.

Table 4.1.: Project Components and Descriptions
Component/Feature Description
Programming Language Java 17, JavaScript, HTML5 and CSS.
Framework Spring Boot 3.1.1 and Vue JS 3.
IDE IntelliJ IDEA 2023 and Visual Studio Code.
Build Management Tool Gradle 8.1.1 and NPM 9.8.1.
Source Code Management Gitlab.
Documentation JavaDoc.
Logging SLF4J API.
Persistence MongoDB 6.0.
Cloud Providers Google Cloud and Microsoft Azure.
Containerization Docker, Docker Hub and Kubernetes.
Network Communication Protocols TCP, REST API.
Inter-Cluster Communication Istio service mesh 1.18.
SDK Docker, Kubernetes, Google Cloud, Azure,

Keycloak, Apache Kafka, Java Mail API and
IstioCTL.

API Gateway Spring Cloud Gateway 2022.0.4.
Identity and Access Management keycloak 22.0.1
Event Driven Architecture Apache Kafka 2.8.1.
Kubernetes 1.27.3-gke.1700 and 1.26.6.

75

4. Implementation

4.2. Implementation

This section will describe the important implementation details of each component and
microservice on the BaaS platform.

4.2.1. API Gateway

The Spring Cloud Gateway framework is used as the API Gateway component for the
BaaS platform, and It is based on Spring WebFlux, designed to support fully non-blocking
reactive streams. It uses Netty as the built-in server to run reactive applications.
The gateway is used in the platform for various cross-cutting concerns.

Routing

The API Gateway effectively routes each received request by the client to its destination
microservices based on different defined routing rules. These rules are simply predicates
that either match a specific request or not. There are various predicates like path, header,
and domain predicates to match a specific request to a specific microservice. Listing 4.1
demonstrates how the routes are defined for each microservice.

1 route s :
2 − id : n o t i f i c a t i o n −s e r v i c e
3 u r i : ${NOTIFICATION_SERVICE_URL: http :// l o c a l h o s t :8080}
4 p r ed i c a t e s :
5 − Path=/api /v1/ n o t i f i c a t i o n s /∗∗
6 − id : c l u s t e r −manager−s e r v i c e
7 u r i : ${CLUSTER_MANAGEMENT_SERVICE_URL: http :// l o c a l h o s t :8080}
8 p r ed i c a t e s :
9 − Path=/api /v1/ prov ide r s /∗∗ ,/ api /v1/ c l u s t e r s /∗∗

10 − id : b lockchain−management−s e r v i c e
11 u r i : ${BLOCKCHAIN_MANAGEMENT_SERVICE_URL: http :// l o c a l h o s t :8080}
12 p r ed i c a t e s :
13 − Path=/api /v1/ b lockcha ins /∗∗ ,/ b lockcha ins /∗∗
14 − id : c l u s t e r −i n t eg ra t i on −s e r v i c e
15 u r i : ${CLUSTER_INTEGRATION_SERVICE_URL: http :// l o c a l h o s t :8080}
16 p r ed i c a t e s :
17 − Path=/api /v1/ i n t e g r a t i o n s /∗∗

Listing 4.1: API Gateway Request Routing

Security

The API Gateway performs OpenID Connect Authentication; only authenticated requests
can access the microservices. After correctly configuring the Keycloak Identity Provider,
the Web UI, API gateway, and microservices must be correctly configured according to
the applied configurations to the identity provider. The API Gateway will be responsible
for handling authentication and each microservice is responsible for authorization handling.

76

4.2. Implementation

Figure 4.1.: BaaS Platform Successful Login Authentication Flow.

Figure 4.1 shows how the different components interact with each other when the users
attempt to visit the BaaS platform dashboard page. Once the user enters the platform
domain into the browser, he/she will get forwarded to Keycloak if no authentication
session is present. The user enters his authentication data (username and password),
submits his input, and returns to the BaaS platform. After that, the BaaS platform uses
the received authorization code to request access, refresh, and ID tokens directly from
Keycloak. Once those tokens are received, the user requests (to view the BaaS dashboard
and profile) will be forwarded to the API Gateway components, including the access and
identity tokens, which the API gateway against keycloak will validate. If the token is
valid, the request will be forwarded to the correct microservice, which will then authorize
the request and return the response back to the client through the API gateway.

77

4. Implementation

Request And CORS Configurations

The API Gateway applies configuration regarding the requests configurations like the
connection and response timeout. Furthermore, it configures cross-origin resource sharing,
which is required for local development and cloud deployment.

4.2.2. Identity And Access Management Component

Keycloak is integrated into the platform by simply deploying it as a docker image; once
deployed, we configure it by creating a realm for managing users, applications, and OAuth
clients. After that, we configure a client with the required attributes like ID, protocol,
redirect URLs, login/registration pages, secrets, and other attributes.
Finally, the components that interact with Keycloak, which are the client (frontend
application) and API Gateway, will be configured with the previously defined client
configurations.

4.2.3. Event Driven Communication - Apache Kafka

As discussed in the design chapter, an event streaming platform is utilized for event-driven
communication between the BaaS microservices. Which is deployed using a docker image
and automatically registering the topics into the broker using the producers’ microservices.
Almost all of the microservices are producers and consumers at the same time.
Spring Cloud Stream, a framework for enabling loosely coupled event-driven commu-
nication between scalable microservices, is used in each microservice. Spring Cloud
Stream offers several advantages; one is making the event streaming platform a pluggable
component into the microservices using a binders layer, which eliminates the effort to
write code for a specific broker and simplifies the migration process to another event
streaming platform.

4.2.4. Data Store

NoSQL - MongoDB document database technology is used as the data store for each
microservice due to its flexibility. It does not require a schema definition, and it is known
for its high scalability and high read/write throughput.

In the BaaS platform, each microservice is supposed to have its own data store following
the database per service pattern in a microservices architecture. It is deployed by setting
up the MongoDB image, volume, and networking configurations.

4.2.5. Microservices

Clean Code Standards

All the implemented microservices follow the clean code standards regarding the code
directory and file structure. The code is also formatted using the IntelliJ IDE automatic
code formatting.

78

4.2. Implementation

Besides that, all the properties used in each microservice are dynamically injected, and
no hard coding is present. The naming convention is done following the Java standard
naming convention rules defined by Oracle.

To ensure delivering high-quality code, the implemented microservices follow SOLID
Design principles, Do not repeat your self - DRY, You are not going to need
it - YAGNI, Separation of Concerns - SoC, The Law of Demeter - LoD, Com-
position Over Inheritance, Law of Closure, and KISS software engineering principles.

Shared Dependencies and Requirements

• MongoDB: Each microservice requires a running NoSQL MongoDB component for
managing the persistence layer (Note: it is also possible to have the same MongoDB
server used for multiple microservices).

• Apacke Kafka: All microservices require a running Apache Kafka Cluster that
handles inter-service communication as asynchronous events.

• API Gateway: All microservices require a running API Gateway component,
which is the entry point for the BaaS Microservices.

API-first - REST API

The microservices API layer is implemented based on an API-first approach using OpenAPI
Specification, a format for describing and documenting APIs in different formats.
For each microservice, an OpenApi specification file in JSON is defined, including all the
rest of the endpoints, responses, parameters, payloads, and response codes. Listing 4.2
shows an example endpoint defined in the Cluster Management Microservice OpenApi
file.

1 openapi : 3 . 0 . 1
2 i n f o :
3 t i t l e : OpenAPI d e f i n i t i o n
4 ve r s i on : v0
5 s e r v e r s :
6 − ur l : http :// l o c a l h o s t :8080
7 d e s c r i p t i o n : C lus te r Management Mic ro s e rv i c e
8 paths :
9 / api /v1/ prov ide r s :

10 get :
11 tags :
12 − c l u s t e r −provider−c o n t r o l l e r
13 opera t i on Id : getCurrentSupportedProviders
14 re sponse s :
15 "200":
16 d e s c r i p t i o n : OK
17 content :
18 ’ app l i c a t i on / json ’ :
19 schema :
20 $ r e f : ’#/components/schemas/ Cluste rProv ider sDescr ipt ionDto ’

Listing 4.2: Cluster Management Microservice OpenAPI - GET /providers endpoint

Using the OpenAPI build management plugin, the REST API contract interfaces and
DTOs can be generated in each microservice, which later on can be defined with a concrete

79

4. Implementation

implementation.
Furthermore, request validation for payload and parameters can be defined in the OpenAPI
manifest file. However, it is limited for syntax validation like non-nullable fields and
specific input regex.

Cluster Management Microservice

The main functionality of this microservice is managing and provisioning Kubernetes
clusters from various cloud providers. As discussed in the design chapter, this is imple-
mented following the SOLID principles by defining interfaces and an abstract class each
new cloud provider must implement that the platform is willing to support.

1 package at . ac . un iv i e . baas . c lustermanager . prov ider . s p e c i f i c a t i o n ;
2
3 pub l i c c l a s s C lu s t e rProv id e r sSe rv i c e {
4
5 pr i va t e f i n a l Set<ClusterProv ider> c l u s t e rP r ov i d e r s ;
6 p r i va t e f i n a l BaasClus te rServ i ce baa sC lu s t e rSe rv i c e ;
7 p r i va t e f i n a l CreateClus te rVa l idato r c r e a t eC lu s t e rVa l i da t o r ;
8 p r i va t e f i n a l De l e t eC lu s t e rVa l ida to r d e l e t eC lu s t e rVa l i d a t o r ;
9

10 pub l i c List<BaasClusterProv iderDescr ipt ion> ge tProv ide r sDes c r i p t i on () {
11 return t h i s . c l u s t e rP r ov i d e r s . stream ()
12 .map(Clus te rProv ider : : g e tProv ide rDesc r ip to r)
13 .map(C lus t e rProv ide rDesc r ip to r : : g e tC lu s t e rProv ide rDes c r ip t i on)
14 . t oL i s t () ;
15 }
16
17 pr i va t e Clus te rProv ider g e tP rov i d e rBy Iden t i f i e r (S t r ing i d e n t i f i e r) {
18 return t h i s . c l u s t e rP r ov i d e r s . stream ()
19 . f i l t e r (prov ider −> prov ider . c l u s t e rP rov i d e r I d en t i f i e rEqua l sTo (i d e n t i f i e r))
20 . findAny ()
21 . orElseThrow (() −> new BaasClusterManagerException (St r ing . format ("The c l u s t e r

prov ider with ID : %s doesnt e x i s t " , i d e n t i f i e r) , HttpStatus .BAD_REQUEST)) ;
22 }
23
24 pub l i c List<BaasCluster> getClustersByAccountOwner (St r ing accountOwner) {
25 return t h i s . baa sC lu s t e rSe rv i c e . f i n dA l lC l u s t e r s ()
26 . stream ()
27 . f i l t e r (c l u s t e r −> c l u s t e r . getOwnerAccount () . equa l s (accountOwner))
28 . f i l t e r (c l u s t e r −> ! c l u s t e r . g e t I sDe l e t ed ())
29 . t oL i s t () ;
30 }
31
32 pub l i c ClusterOperat ion c r e a t eC lu s t e r (CreateC lus t e rCon f i gura t i ons

c r ea t eC lu s t e rCon f i gu ra t i on s , S t r ing ownerAccount) {
33 f i n a l S t r ing formattedClusterName = BaasCluster . buildFormattedClusterName (

c r e a t eC lu s t e rCon f i gu ra t i on s . getClusterName () , ownerAccount) ;
34 c r ea t eC lu s t e rCon f i gu ra t i on s . setClusterName (formattedClusterName) ;
35 t h i s . v a l i d a t e (t h i s . c r ea t eC lu s t e rVa l ida to r , c r ea t eC lu s t e rCon f i gu ra t i on s , ownerAccount) ;
36 Clus te rProv ider c l u s t e rP rov i d e r = th i s . g e tP rov id e rBy Iden t i f i e r (

c r e a t eC lu s t e rCon f i gu ra t i on s . g e tC l u s t e rP r o v i d e r I d e n t i f i e r () . t oS t r ing ()) ;
37 try {
38 return c l u s t e rP rov i d e r . c r e a t eC lu s t e r (c r ea t eC lu s t e rCon f i gu ra t i on s , ownerAccount) ;
39 } catch (Exception e) {
40 throw new BaasClusterManagerException (e . getMessage () , HttpStatus .

SERVICE_UNAVAILABLE) ;
41 }
42 }
43 }

Listing 4.3: ClusterProvidersService Specification Class

Listing 4.3 shows some methods of the class that provide a generic code to manage and
provision Kubernetes clusters. Each cloud provider is defined in its own ClusterProvider
instance, which contains the interfaces and classes and must be implemented and extended
using their SDK. Each cloud provider environment must be configured with the required
IAM credentials and roles, which will also be added to this microservice.

80

4.2. Implementation

Dependencies and Requirements

• All the shared dependencies mentioned at the beginning of this chapter.

• Google Cloud [14]: A Service Principle account must be created with the
required GKE roles, which can be imported into the application as key.json
file. Furthermore, all the required cloud components must be correctly configured
(creating VPC, subnets, and allowing public traffic through the firewall for cross-
cluster communication) before using the created service principle. The PROJECT
IDENTIFIER and SERVICE ACCOUNT FILE NAME environment variables
must also be defined to locate and use the service account correctly.

• Microsoft Azure [4]: A new App Registration must be created. After that,
the SUBSCRIPTION ID, TENANT ID, CLIENT SECRET, and CLIENT
ID environment variables must be injected into the docker image of the application
for correct usage of the App registrations. All the required Azure resources must be
correctly created and configured: VNets, Subnets, and Network Security Groups.

Cluster Integration Microservice

As the main functionality of this service is to establish connectivity between multiple
Kubernetes clusters and based on the ADD-004 which states that Istio Service Mesh [22]
- IstioCTL will be used to configure and deploy the required cross-cluster connectivity
resources into each Kubernetes [35] cluster, this section will give a deeper look into the
implementation of the Istio Client.

1 package at . ac . un iv i e . baas . c l u s t e r i n t e g r a t i o n . i s t i o . p roce s s ;
2
3 @Sl f4 j
4 pub l i c ab s t ra c t c l a s s C lu s t e r I n t e g r a t i onSe rv i c eP ro c e s s {
5
6 protec ted s t a t i c f i n a l S t r ing KUBECTL = " kubect l " ;
7 protec ted s t a t i c f i n a l S t r ing ISTIOCTL = " i s t i o c t l " ;
8 p r i va t e f i n a l Long timeoutInSeconds ;
9

10 pub l i c abs t rac t St r ing run (St r ing . . . a rgs) ;
11
12 protec ted St r ing abstractRunProcessAndReturnOutput (St r ing . . . commands) {
13 Proces sBu i lde r p roce s sBu i ld e r = new Proces sBu i lde r (commands) ;
14 p roce s sBu i ld e r . r ed i r ec tErrorSt ream (true) ;
15 Process getOSUsernameProcess = nu l l ;
16 boolean hasTerminated = f a l s e ;
17 St r ing processOutput = "" ;
18 try {
19 getOSUsernameProcess = proce s sBu i ld e r . s t a r t () ;
20 hasTerminated = getOSUsernameProcess . waitFor (t h i s . t imeoutInSeconds , TimeUnit .

SECONDS) ;
21 processOutput = th i s . readProcessOutput (getOSUsernameProcess . getInputStream ()) ;
22 } catch (Exception e) {
23 log . e r r o r (processOutput) ;
24 throw new RuntimeException (e) ;
25 }
26 i f (! hasTerminated) {
27 throw new RuntimeException (" i n t e r n a l p roce s s execut ion e r r o r − timeout occurred ") ;
28 } e l s e i f (! t h i s . p roce s sTerminatedSucce s s fu l l y (getOSUsernameProcess . ex i tValue ())) {
29 throw new RuntimeException (St r ing . format (" i n t e r n a l p roce s s execut ion e r r o r −

proce s s terminated with the e r r o r code %s , %s" , getOSUsernameProcess . ex i tVa lue () ,
processOutput)) ;

30 } e l s e {
31 return processOutput ;

81

4. Implementation

32 }
33 }
34 }

Listing 4.4: ClusterIntegrationServiceProcess Abstract Class

Since Istio doesn’t offer any SDK and IstioCTL is a command-line client that offers the
desired functionality, Listing 4.4 shows a generic process abstract class that multiple fine-
grained Istio processes can extend, each process has its own specific code and functionality
that will be executed. For example, Listing 4.5 shows the CreateIstioEastWestGate-
wayProcess class, which is responsible for creating a process that invokes the IstioCTL
to create the east-west gateway that enables receiving cross-cluster requests. All the
error and exception cases are handled in the service layer, which invokes the set of istio
processes. All the required process dependencies are installed during the image build time
of the microservice, which can be seen in the Dockerfile of this microservice.

1 package at . ac . un iv i e . baas . c l u s t e r i n t e g r a t i o n . i s t i o . p roce s s ;
2
3 pub l i c c l a s s CreateIst ioEastWestGatewayProcess extends C lu s t e r I n t e g r a t i onSe rv i c eP ro c e s s {
4
5 pr i va t e s t a t i c f i n a l S t r ing ISTIO_CTL_PATH_FORMAT = System . getenv ("HOME") . concat (" / .

i s t i o c t l / bin / i s t i o c t l ") ;
6 p r i va t e f i n a l S t r ing osUsername ;
7 p r i va t e f i n a l I s t ioFindAndReplaceServ ice i s t ioF indAndReplaceServ ice ;
8
9 @Override

10 pub l i c S t r ing run (St r ing . . . a rgs) {
11 try {
12 St r ing patchedIstioGatewayFileName = th i s . i s t ioF indAndReplaceServ ice .

findAndReplaceNetworkIdForEastWestGatewayManifest (n e two rk Id en t i f i e r) ;
13 St r ing [] COMMANDS = new Str ing [] {
14 ISTIO_CTL_PATH_FORMAT,
15 " i n s t a l l " ,
16 "−y" ,
17 "−f " ,
18 patchedIstioGatewayFileName
19 } ;
20 return t h i s . abstractRunProcessAndReturnOutput (COMMANDS) ;
21 } catch (IOException e) {
22 throw new RuntimeException (e) ;
23 }
24 }
25 }

Listing 4.5: CreateIstioEastWestGatewayProcess Class

Kubernetes

As Istio requires creating Kubernetes resources (namespace and secrets) [35] before
applying connectivity resources, the Kubernetes SDK is used the same as it is described
in the Blockchain Management Microservice Implementation Description.

Dependencies and Requirements

• All the shared dependencies mentioned at the beginning of this chapter.

• Command Line Clients: google-cloud-sdk, Kubectl, and Istioctl must be installed
during the docker image build time. these clients are required for correctly istioctl
cross-cluster resources setup.

• Root CA: A root certificate authority must be configured and created. After
that, these CA files must be added to the resource folder, and their name must

82

4.2. Implementation

be configured in the properties.yaml file. This certificate authority is required for
mTLS authentication between the cluster’s resources communicating with each
other.

• Google Cloud Service Account: As described in the cluster-management
microservice implementation description, the same configurations must be applied
for the correct usage of the Google Cloud Platform.

Blockchain Management Microservice

This microservice main functionality is managing and deploying blockchain frameworks
on a single or multiple cloud providers Kubernetes clusters, which is discussed in the
ADD-003 and in the blockchain-management microservice design chapter.

1 package at . ac . un iv i e . baas . blockchainmanagementservice . s e r v i c e ;
2
3 pub l i c c l a s s BlockchainResourcesManager {
4
5 pr i va t e f i n a l BlockchainMetaDataFactory blockchainMetaDataFactory ;
6 p r i va t e f i n a l BlockchainDeploymentService blockchainDeploymentService ;
7 p r i va t e f i n a l BlockchainMetaDataService blockchainMetaDataService ;
8 p r i va t e f i n a l List<NodeDeploymentPostAction> nodeDeploymentPostActions ;
9 p r i va t e f i n a l BlockchainDeploymentPostAction blockchainDeploymentPostAction ;

10 p r i va t e f i n a l BaasClus te rServ i ce baasC lu s t e rSe rv i c e ;
11 p r i va t e f i n a l DeployBlockchainNetworkValidator deployBlockchainNetworkVal idator ;
12
13
14 pub l i c BlockchainMetaData deployNewPrivateBlockchain (St r ing ownerAccount ,

BlockchainDeploymentRequestDto blockchainDeploymentRequestDto) {
15 BlockchainMetaData blockchainMetaData = th i s . blockchainMetaDataFactory .

buildBlockchainMetaData (blockchainDeploymentRequestDto) ;
16 t h i s . deployBlockchainNetworkVal idator . v a l i d a t e (t h i s . deployBlockchainNetworkVal idator ,

blockchainMetaData , ownerAccount) ;
17 BlockchainMetaData pers i stedBlockchainMetaData = th i s . blockchainMetaDataService . save (

blockchainMetaData) ;
18 List<BaasCluster> c l u s t e r s = th i s . f indClustersForScheduledDeployment (

pers istedBlockchainMetaData) ;
19 try {
20 BlockchainMetaData patchedBlockchainMetaData = th i s . b lockchainDeploymentService .

scheduleBlockchainDeployment (pers istedBlockchainMetaData , c l u s t e r s) ;
21 t h i s . b lockchainMetaDataService . save (patchedBlockchainMetaData) ;
22 patchedBlockchainMetaData . getBlockchainNodes () . forEach (node −> th i s .

nodeDeploymentPostActions . forEach (postAct ion −> postAct ion . apply (node))) ;
23 t h i s . blockchainDeploymentPostAction . apply (patchedBlockchainMetaData) ;
24 return patchedBlockchainMetaData ;
25 } catch (Exception e) {
26 e . pr intStackTrace () ;
27 throw new RuntimeException (e) ;
28 }
29 }
30
31 pr i va t e List<BaasCluster> f indClustersForScheduledDeployment (BlockchainMetaData

pers istedBlockchainMetaData) {
32 i f (pers i stedBlockchainMetaData . getDeploymentModel () == DeploymentModel .SINGLE_CLOUD){
33 return L i s t . o f (t h i s . baa sC lu s t e rSe rv i c e . f i n dC l u s t e rBy I d en t i f i e r (

pers istedBlockchainMetaData . ge tDep loymentEnt i ty Ident i f i e r ())) ;
34 } e l s e {
35 return t h i s . baa sC lu s t e rSe rv i c e . f i n dC l u s t e r s I n t e g r a t i o nBy I d en t i f i e r (

pers istedBlockchainMetaData . ge tDep loymentEnt i ty Ident i f i e r ())
36 . orElseThrow (() −> new RuntimeException (" C lu s t e r s I n t e g r a t i on Not found"))
37 . g e t In t eg ra t edC lu s t e r () ;
38 }
39 }
40
41 pub l i c Optional<BlockchainMetaData> getBlockchainMetaDataById (St r ing b lockcha in Id) {
42 return t h i s . blockchainMetaDataService . f indById (b lockcha inId) ;
43 }
44
45 }

Listing 4.6: BlockchainResourcesManager Class

83

4. Implementation

The class BlockchainResourcesManager shown in the Listing 4.6 acts as the entry
point for the offered functionality by this microservice. The listing shows the methods
deployNewPrivateBlockchain and getBlockchainMetaDataById responsible for
creating a new blockchain instance, including its initial nodes using the Custom Block-
chain Framework that is described in the design chapter and querying an existing
blockchain by its ID.

1 package at . ac . un iv i e . baas . blockchainmanagementservice . k8sapi . s e r v i c e s ;
2
3
4 pub l i c i n t e r f a c e BlockchainDeploymentService {
5
6 BlockchainMetaData scheduleBlockchainDeployment (BlockchainMetaData blockchainMetaData , List

<BaasCluster> baasClus te r s) ;
7 void deployNewNodeIntoBlockchain (St r ing namespace , BlockchainNodeMetaData metaData ,

BaasCluster baasCluster , S t r ing nodeIpServerBaseUrl) ;
8 Optional<Str ing> pol lNodeServ iceLoadBalancerIp (BlockchainNodeMetaData metaData , BaasCluster

baasCluster) ;
9 }

Listing 4.7: BlockchainDeploymentService Interface

Listing 4.7 shows the interface that defines the specification for a blockchain instance
provisioning, blockchain node provisioning, and pulling nodes status (load balancer IP).
This interface is implemented with the help of Kubernetes SDK, and it is utilized to
build fine-grained service classes that generate the creation and management process of
Kubernetes resources.

1 package at . ac . un iv i e . baas . blockchainmanagementservice . k8sapi . s e r v i c e s ;
2
3 pub l i c c l a s s KubernetesBlockchainDeploymentService implements BlockchainDeploymentService {
4
5 pr i va t e f i n a l NamespaceCreationService namespaceCreat ionService ;
6 p r i va t e f i n a l NodeResourcesService nodeResourcesServ ice ;
7 p r i va t e f i n a l NodesIpServerDeploymentService nodesIpServerDeploymentService ;
8 p r i va t e f i n a l KubeConfigService kubeConf igServ ice ;
9 p r i va t e f i n a l KubernetesApiConnectionFactory kubernetesApiConnectionFactory ;

10
11
12 @Override
13 pub l i c void deployNewNodeIntoBlockchain (St r ing namespace , BlockchainNodeMetaData

blockchainNodeMetaData , BaasCluster baasCluster , S t r ing nodeIpServerBaseUrl) {
14 try {
15 St r ing kubeConf igFi leContent = th i s . kubeConf igServ ice .

generateKubeConf igFi leContentFor (baasCluster . getProv ider () , baasCluster . getClusterAuthData
()) ;

16 CoreV1Api coreV1Api = th i s . kubernetesApiConnect ionFactory . getCoreVApiInstance (
kubeConf igFi leContent) ;

17 AppsV1Api appsV1Api = th i s . kubernetesApiConnect ionFactory . getAppsV1ApiInstance (
kubeConf igFi leContent) ;

18 t h i s . nodeResourcesServ ice . createNodeResources (blockchainNodeMetaData , namespace ,
coreV1Api , appsV1Api , nodeIpServerBaseUrl) ;

19 } catch (ApiException e) {
20 e . pr intStackTrace () ;
21 System . out . p r i n t l n (e . getResponseBody ()) ;
22 }
23 }
24
25 @Override
26 pub l i c Optional<Str ing> pol lNodeServ iceLoadBalancerIp (BlockchainNodeMetaData

blockchainNodeMetaData , BaasCluster baasCluster) {
27 try {
28 St r ing kubeConf igFi leContent = th i s . kubeConf igServ ice .

generateKubeConf igFi leContentFor (baasCluster . getProv ider () , baasCluster . getClusterAuthData
()) ;

29 CoreV1Api coreV1Api = th i s . kubernetesApiConnect ionFactory . getCoreVApiInstance (
kubeConf igFi leContent) ;

30 return t h i s . nodeResourcesServ ice . po l lNodeServ iceLoadBalancerIp (
blockchainNodeMetaData , coreV1Api) ;

31 } catch (ApiException e) {
32 e . pr intStackTrace () ;
33 }
34 return Optional . empty () ;
35 }

84

4.2. Implementation

36
37 pr i va t e Map<Str ing , Str ing> createNodesDeploymentPlan (BlockchainMetaData blockchainMetaData

, List<BaasCluster> c l u s t e r s) {
38 List<BlockchainNodeMetaData> blockchainNodeMetaDataList = blockchainMetaData .

getBlockchainNodes () . stream () . t oL i s t () ;
39 return IntStream . range (0 , blockchainMetaData . getBlockchainNodes () . s i z e ())
40 . boxed ()
41 .map(index −> new AbstractMap . SimpleEntry<>(blockchainNodeMetaDataList . get (

index) . getNodeId () , c l u s t e r s . get (index % c l u s t e r s . s i z e ()) . ge t Id ()))
42 . c o l l e c t (Co l l e c t o r s . toMap(AbstractMap . SimpleEntry : : getKey , AbstractMap .

SimpleEntry : : getValue)) ;
43 }
44
45
46 }

Listing 4.8: KubernetesBlockchainDeploymentService Class

The class KubernetesBlockchainDeploymentService shown in the Listing 4.8 implements
the interface on Listing 4.7, it define its methods using multiple generic templated services
that are shown in the listing: NamespaceCreationService, NodeResourcesService,
NodesIpServerDeploymentService, KubeConfigService and KubernetesApiCon-
nectionFactory.
The method createNodesDeploymentPlan contains the implementation of the Round-
Robin Deployment Strategy.

Dependencies and Requirements

• All the shared dependencies mentioned at the beginning of this chapter.

• Google Cloud Service Account [14]: As described in the Cluster Management
microservice Implementation Description, the same configurations must be applied
for the correct usage of the Google Cloud Platform. The reason for not requiring an
app registration account for Azure is that Google Cloud Kubernetes clusters require
gcloud command-line authentication to be able to use each cluster Kubectl file;
meanwhile, Azure doesn’t have any tools requirements for Kubectl authentication.

Notification Microservice

This service manages user notification preferences and notifies users when a specific event
occurs in the Platform.

1 package at . ac . un iv i e . baas . n o t i f i c a t i o n s e r v i c e . s e r v i c e ;
2
3 pub l i c c l a s s Not i f i ca t i onServ i c eManager {
4
5
6 pr i va t e f i n a l ClusterUpdateEmailMessageBuilder c lusterUpdateEmai lMessageBui lder ;
7 p r i va t e f i n a l C luste r Integrat ionEmai lMessageBui lder c lu s t e r In teg ra t i onEmai lMes sageBu i lde r ;
8 p r i va t e f i n a l BlockchainCreateEmai lMessageBui lder blockchainCreateEmai lMessageBui lder ;
9 p r i va t e f i n a l BlockchainNodeCreateEmailMessageBuilder

blockchainNodeCreateEmailMessageBuilder ;
10 p r i va t e f i n a l Emai lServ ice ema i lSe rv i c e ;
11 p r i va t e f i n a l UserServ i ce u s e rS e rv i c e ;
12
13 pub l i c void onClusterCreat ion (BaasCluster baasCluster) {
14 User user = th i s . u s e rS e rv i c e . findByUsername (baasCluster . getOwnerAccount ()) ;
15 i f (! user . i sEnab l eNot i f i ca t i onsOnClus te rEvent s ()) {
16 return ;
17 }
18 Email emai l = th i s . c lusterUpdateEmai lMessageBui lder . bui ldEmail (baasCluster , Constants .

EMAIL_EVENT_NAME_CLUSTER_CREATE) ;

85

4. Implementation

19 t h i s . ema i lSe rv i c e . sendSimpleMail (user . getEmail () , emai l . g e tT i t l e () , emai l . getBody ()) ;
20 }
21
22 pub l i c void onC lu s t e r In t eg ra t i on (St r ing c l u s t e r s I n t e g r a t i o n I d e n t i f i e r , S t r ing ownerAccount ,

S t r ing integrat ionMessage) {
23 User user = th i s . u s e rS e rv i c e . findByUsername (ownerAccount) ;
24 i f (! user . i sEnab l eNot i f i c a t i on sOnInteg ra t i onEvent s ()) {
25 return ;
26 }
27 Email emai l = th i s . c lu s t e r In teg ra t i onEmai lMes sageBu i lde r . bui ldEmai l (

c l u s t e r s I n t e g r a t i o n I d e n t i f i e r , ownerAccount , in tegrat ionMessage) ;
28 t h i s . ema i lSe rv i c e . sendSimpleMail (user . getEmail () , emai l . g e tT i t l e () , emai l . getBody ()) ;
29
30 }
31
32 pub l i c void onCreateBlockchainMetaData (BlockchainMetaData blockchainMetaData) {
33 User user = th i s . u s e rS e rv i c e . findByUsername (blockchainMetaData . getOwnerAccount ()) ;
34 i f (! user . i sEnableNot i f i cat ionsOnWorkloadsEvents ()) {
35 return ;
36 }
37 Email emai l = th i s . b lockchainCreateEmai lMessageBui lder . bui ldEmail (blockchainMetaData) ;
38 t h i s . ema i lSe rv i c e . sendSimpleMail (user . getEmail () , emai l . g e tT i t l e () , emai l . getBody ()) ;
39 }
40 }

Listing 4.9: KubernetesBlockchainDeploymentService Class

Listing 4.9 shows the class NotificationServiceManager, which acts as the entry point
for the notification functionality for all the Apache Kafka events consumers defined in this
class. It will send an email notification to the user whenever a new event is consumed,
and the user preferences include notifications for that event. This functionality is achieved
using the custom-defined email builder classes and the Java Mail API working behind the
used spring boot mail library.

Keycloak SDK

1 package at . ac . un iv i e . baas . n o t i f i c a t i o n s e r v i c e . s e r v i c e ;
2
3 pub l i c c l a s s UserDataOAuthServiceImpl implements UserDataOAuthService{
4
5 pr i va t e f i n a l Keycloak keyc loak ;
6 p r i va t e f i n a l S t r ing realm ;
7
8 @Override
9 pub l i c Optional<UserOAuthDto> getUserDataByUsername (St r ing username) {

10 return t h i s . keyc loak . realm (t h i s . realm)
11 . u s e r s ()
12 . searchByUsername (username , t rue)
13 . stream ()
14 .map(use rRepresentat ion −> UserOAuthDto . bu i l d e r ()
15 . id (use rRepresentat ion . get Id ())
16 . emai l (use rRepresentat ion . getEmail ())
17 . username (use rRepresentat ion . getUsername ())
18 . bu i ld ())
19 . findAny () ;
20 }
21 }

Listing 4.10: KubernetesBlockchainDeploymentService Class

This microservices synchronizes the created user data from the Identity and Ac-
cess Management component using the interface UserDataOAuthService and its
implementationUserDataOAuthServiceImpl shows in Listing 4.10, which returns the
required user data (email, username, and identifier) for notification management.

Dependencies and Requirements

86

4.3. Running The Prototype

• All the shared dependencies mentioned at the beginning of this chapter.

• Command Line Clients: google-cloud-sdk, Kubectl, and IstioCTL must be
installed during the docker image build time. these clients are required for correctly
IstioCTL cross-cluster resources set up.

Monitoring Microservice

The service is responsible for periodically checking the Kubernetes clusters’ health status
and producing an event for other microservices about the latest status of a specific cluster.
Depending on their responsibilities and boundaries, other microservices can take specific
actions on a failing Kubernetes cluster.

1 package at . ac . un iv i e . baas . c l u s t e rmon i t o r i ng . s e r v i c e ;
2
3 @Service
4 @Sl f4 j
5 pub l i c c l a s s ScheduledMonitor ingServ ice {
6
7
8 @Scheduled (f i x edRateSt r ing = "${monitor ing . ra t e }" , timeUnit = TimeUnit .MINUTES)
9 pub l i c void scheduleFixedDelayMonitor ing () {

10 System . out . p r i n t l n (" ScheduleFixedDelayMonitor ing s t a r t ed . . . ") ;
11 var baasClustersIdAuthDataMap = th i s . baa sC lu s t e rSe rv i c e . f i n dA l lC l u s t e r s () . stream ()
12 .map(c l u s t e r −> new AbstractMap . SimpleEntry<>(c lu s t e r , t h i s . kubeConf igServ ice .

generateKubeConf igFi leContentFor (c l u s t e r . getProv ider () , c l u s t e r . getClusterAuthData ())))
13 . c o l l e c t (Co l l e c t o r s . toMap(AbstractMap . SimpleEntry : : getKey , AbstractMap .

SimpleEntry : : getValue)) ;
14
15 f o r (var entry : baasClustersIdAuthDataMap . entrySet ()) {
16 t h i s . monitorCluster (entry) ;
17 }
18
19 }
20 }

Listing 4.11: ScheduledMonitoringService Class

Listing 4.11 shows the approach taken by this service, which schedules a monitoring
request that invokes a set of classes and methods that send health check requests to each
cluster and produce Kafka events regarding the cluster status.

4.3. Running The Prototype

4.3.1. Cloud Providers Prerequisite

All the supported cloud providers must be correctly configured, which are Google Cloud
and Microsoft Azure.

Google Cloud

1. Create a Google Cloud account, either activate billing or create the account with
the limited 3-month academic license.

2. Use the existing default project with its already created VPC, subnets, and other
networking components.

87

4. Implementation

3. Activate Kubernetes Engine API in the default project.

4. In the IAM And ADMIN page, create a service account and key credentials for
it. then add to the service account the following Roles:

a) Compute Admin

b) Kubernetes Engine Admin

c) Service Account User

5. Enable external traffic in the VPC firewall by creating a new high-priority firewall
rule that allows public IP Addresses to reach the resources inside the VPC, The
firewall rule must have the following properties

a) Type: Ingress

b) Targets: Apply to all

c) Action: Allow

d) Priority: 1000

Required output from this step: Google cloud project identifier and the service
account key.json file.

Microsoft Azure

1. Create an Azure account, either activate billing or create the account with the
limited 100-dollar academic license.

2. Create a subscription (any name) and a resource group named test.

3. Create an App registration account with a secret for enabling the BaaS platform to
access the Azure platform using the created account.

Required output from this step: Subscription ID, Tenant ID, Client ID, and Client
Secret.

4.3.2. Local Setup Prerequisites

To be able to run the platform locally, you need to fulfill the following prerequisites:

1. Install: Docker version 20.10.17 and Docker Compose version v2.6.1 or above.

2. Internet Connection.

3. Java 17

To start the BaaS platform, navigate to the implementation where the docker-
compose is located. The docker-compose file contains the following components and
microservices:

88

4.3. Running The Prototype

1. Event Streaming Platform - Apache Kafka

2. Data Store - NoSQL MongoDB

3. Identity and Access Management - Keycloak

4. API Gateway Component

5. Cluster Management Microservice

6. Cluster Integration Microservice

7. Blockchain Management Microservice

8. Monitoring Microservice

9. Notification Microservice

10. Frontend Server

Before starting the docker-compose file, update the defined environment variables with
the output of the Cloud Providers Prerequisite step.

Azure environment variables:

1. AZURE-SUBSCRIPTION-ID

2. AZURE-TENANT-ID

3. AZURE-CLIENT-SECRET

4. AZURE-CLIENT-ID

Google Cloud environment variables:

1. GOOGLE-PROJECT-IDENTIFIER

2. GOOGLE-KEY-FILE-PATH: key.json

3. GOOGLE-SERVICE-ACCOUNT

NOTE: The key.json file must be copied and placed in the following places:

• implementation/blockchainmanagementservice directory

• implementation/clusterintegrationservice directory

• implementation/clustermonitoring directory

• implementation/clustermanager/src/main/resources directory

89

4. Implementation

After that, run the command docker compose up, which will take 4-7 minutes
to create the images, and run the containers and start up the Blockchain-as-a-Service
platform.

Once all the components and microservices are running, Keycloak must be first con-
figured before being able to be used as an Identity and Access Management component
for the platform. The following steps show in detail how to configure Keycloak:

1. Navigate to the Keycloak dashboard on localhost:8086.

2. Login using the default credentials: Username: admin and password: admin.

3. Create a new realm with the name: baas

4. Navigate to realm settings, then select the login configuration tab and enable user
registration.

5. Navigate to Clients, then create a new client with the ID: baas, set * for Valid
Redirect URLs, Valid post logout redirect URIs, and Web Origins.

Finally, the BaaS platform is accessible on http://localhost:8080.

90

5. Evaluation and Discussion

The platform is evaluated based on a user experiment following the System Usability
Scale - SUS [6], a ten-item scale that gives a subjective usability assessment. The users
were given a user manual and asked to perform a set of tasks on the platform that covered
most of the platform functionality. After performing these tasks, the users were asked
to answer the System Usability Scale ten-item survey, which they ranked from Strongly
Disagree (1) and Strongly Agree (5) [6]. Furthermore, the users were asked to answer
three more questions that focused on the functionality perspective of the platform.

After that, the results of the SUS and custom-defined items were collected and cal-
culated by applying calculations on each item and then summing all of the 10 items’
calculations results. Items 1,3,5,7 and 9 are calculated by subtracting 1 from the scale
position, Items 2,4,6,8 and 10 are calculated by subtracting the scale position from 5, and
then the SUS overall value is obtained by multiplying the sum of the scores with 2.5 [6].
Furthermore, the results of the custom-defined questions were separately calculated by
averaging the user’s answers for all of the questions.
Regarding the user’s background, they all have a good knowledge of information techno-
logy, and 3 have already participated in blockchain-related projects.

The platform functionality and usability were improved based on the conducted user
experiments and feedback.

Besides that, a Non-Functional Requirements evaluation was done based on differ-
ent scenarios and use cases, focusing on the Decentralization, High Availability,
preventing Vendor Lock-in, Multi-Cloud and Performance.

5.1. User Experiment

5.1.1. System Usability Scale - Tasks

The users were asked to perform these tasks in the order they were defined with the
support of the user manual that helps them in each task. the tasks that the users we
asked to do cover most of the BaaS platform functionality:

1. Register into the platform.

2. Sign in.

3. Create two Kubernetes clusters on two different cloud providers.

4. Integrate the successfully created Kubernetes clusters.

91

5. Evaluation and Discussion

5. View the current Kubernetes clusters and clusters integration.

6. Switch to the Custom Blockchain Framework and deploy a new blockchain instance.

7. Activate your wallet account in the created blockchain instance.

8. Create a transaction.

9. View transactions and blocks state.

5.1.2. System Usability Scale - Survey

As discussed, this survey is composed of the defined standard System Usability Scale
items and three additional functional-related items [6]:

1. I think that I would like to use this system frequently.

2. I found the system unnecessarily complex.

3. I thought the system was easy to use.

4. I think that I would need the support of a technical person to be able to use this
system.

5. I found the various functions in this system were well integrated.

6. I thought there was too much inconsistency in this system.

7. I would imagine that most people would learn to use this system very quickly.

8. I found the system very cumbersome to use.

9. I felt very confident using the system.

10. I needed to learn many things before I could get going with this system.

11. No technical issues or problems occurred when doing each task.

12. The platform behavior matches the expected results in the user manual.

13. The platform maintains a consistent user interface and behavior throughout the
different tasks.

92

5.1. User Experiment

5.1.3. System Usability Scale - Results

Table 5.1.: System Usability Scale (SUS) Results

User Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

U1 5 1 5 1 5 2 5 1 5 2
U2 5 1 4 2 5 1 5 1 4 1
U3 4 1 5 1 5 1 5 1 5 1
U4 4 2 4 1 5 1 4 1 4 2
U5 5 1 4 2 5 1 5 2 4 2
U6 5 1 5 1 4 2 5 2 4 3
U7 4 2 5 2 5 1 4 1 5 2

Table 5.1 shows the plain results of the users (rows) evaluating each item/question
(column) on a scale from 1 to 5 where 1 stands for Strongly disagree and 5 stands for
Strongly agree.

User 1 User 2 User 3 User 4 User 5 User 6 User 7
0

20

40

60

80

100 95 92.5
97.5

85 87.5 85
90

User

SU
S

Sc
or

e

Figure 5.1.: System Usability Scale (SUS) Scores by User

Figure 5.1 demonstrates the SUS score for each user by aggregating the results of
each item and applying the standard calculations defined by the System Usability Scale
standards. This gives an overall SUS average of 90.3, which is clearly above the defined
SUS average, which is 68 [6].

93

5. Evaluation and Discussion

5.1.4. Funtional-Related Items Results

Table 5.2.: Functional Items Results

User Q11 Q12 Q13

U1 5 5 5
U2 5 5 5
U3 5 5 5
U4 5 5 3
U5 5 5 4
U6 5 5 5
U7 5 5 4

Table 5.2 shows the results of the functional-related items in the survey. Overall, most of
the users confirmed the correct and seamless functionality of the platform.

5.1.5. Overall Results

The SUS results exceeded the SUS average of 68, and the BaaS platform fulfilled all the
functional requirements for the results of the custom-defined question.

The users also provided feedback regarding the prototype functionality and usability:

1. Add expected waiting time for requests requiring a long time, like provisioning a
Kubernetes cluster.

2. Support asynchronous processing for cluster integration requests.

3. Explicitly provide successful processing messages when interacting with a blockchain
node.

The received feedback was discussed with the users and applied to the prototype.

5.2. Non-Functional Requirements Evaluation

Improving the decentralization and high availability of the BaaS platform blockchain
instances using the multi-cloud approach introduces different challenges and disadvantages
that the platform must take care of:

1. Complexity: It is a complex process to manage the different clusters and their
connectivity compared to managing a single Kubernetes cluster and deploying the
blockchain instances on it.

2. Resilience and Fault Tolerance: The platform must act on a failing Kubernetes
cluster by migrating the workloads deployed on it into other connected Kubernetes
clusters.

94

5.2. Non-Functional Requirements Evaluation

3. Observability: The platform must enable detailed observability for each Kuber-
netes cluster and each workload/blockchain node deployed on it.

5.2.1. Decentralization

A primary non-functional requirement of the BaaS platform is the decentralization and
high availability of the deployed blockchain instances. Having a blockchain instance
with N blockchain nodes deployed across M Kubernetes clusters in a Round-Robin
Deployment Strategy means:

Each cluster has
N

M
blockchain nodes deployed on it, which means the blockchain nodes

are decentralized by
1

M
across each cluster.

This demonstrates achieving a BaaS platform that hosts blockchain instances while
prioritizing and improving decentralization characteristics by not hosting all blockchain
nodes on a single cloud provider’s Kubernetes cluster.

5.2.2. High Availability

Since the BaaS platform uses Google Cloud and Microsoft Azure as cloud providers:

• The Google Kubernetes Engine Service Level Agreement for Zonal Cluster has a
Monthly Uptime Percentage of 99.5 Percent, which means a yearly downtime of
43.8 Hours.

• The Azure Kubernetes Service Level Agreement for AKS Clusters that do not use
Azure Availability Zone. has a Monthly Uptime Percentage of 99.95 Percent,
which means a yearly downtime of 4.38 Hours.

The results below can be obtained when using at least 3 connected Kubernetes clusters
(2 on Google Cloud and 1 on Microsoft Azure) with a blockchain instance with 6 nodes.

Two Google Cloud Kubernetes Cluster Availability

The probability of 2 Kubernetes clusters (2 Google Cloud Clusters) going down (4 block-
chain nodes go down out of 6) is calculated as:

Probability of failing both events = Q1 ×Q2

where
Q1 = 1− P1 = 1− 0.995 = 0.005

and
Q2 = 1− P2 = 1− 0.995 = 0.005

95

5. Evaluation and Discussion

Therefore,

Probability of both Kubernetes clusters failing = 0.005× 0.005 = 0.000025

which means the availability of both clusters increases (the nodes deployed on a specific
cluster) to 100− 0.0025 =99.9975 Percent.

One Azure Kubernetes Cluster and Two Google Cloud Kubernetes Cluster
Availability

This availability can be calculated in the same demonstrated way in the previous section,
which gives us the following results:

The probability of all 3 clusters failing is reduced to 0.00000125 Percent, which
means the global availability of the 3 Kubernetes cluster that hosts the blockchain instance
increases to: 99.99999875 Percent (which is approximately less than 3 minutes
of downtime in a year) .

Increasing the availability of a blockchain instance deployed (the nodes deployed on a
specific cluster) on 3 different Kubernetes clusters to 99.99999875 percent proves the high
availability characteristic that the BaaS platform offers in comparison to a single cloud,
single cluster blockchain instance deployments.

5.2.3. Multi-Cloud And Vendor Lock-In

Since the BaaS platform allows its users to freely select the suitable cloud provider and
the region/zone where they are willing to deploy their blockchain instances and resources,
this explicitly means that the platform prevents vendor lock-in and provides the required
level of flexibility for the user to host their resources on the cloud provider they want.

5.2.4. Performance

The platform performance was experimented with and tested by applying load tests on
various endpoints and services to verify that the platform can support the anticipated
number of concurrent users.

Test Environment

• Test Tool: Postman - Load Tester/Collection Runner and cURL

• Environment: Development/Local Deployment

• Network Conditions: Stable

• Concurrent requests count: 100

96

5.2. Non-Functional Requirements Evaluation

Client Request With Database Operation

Performance Metrics

• Total Requests: 100

• Total Errors: 0

• Average Response Time: 20 ms

• Minimum Response Time: 12 ms

• Maximum Response Time: 47 ms

Client Request With Cloud Provider SDK Read Request

Performance Metrics

• Total Requests: 100

• Total Errors: 0

• Average Response Time: 391 ms

• Minimum Response Time: 300 ms

• Maximum Response Time: 536 ms

Client Request With Cloud Provider SDK Create Request

Performance Metrics

• Total Requests: 10

• Total Errors: 0

• Average Response Time: 423 ms

• Minimum Response Time: 344 ms

• Maximum Response Time: 556 ms

97

5. Evaluation and Discussion

Multi-Cloud Connectivity

Performance Metrics

• Total Requests: 100

• Total Errors: 0

• Average Response Time: 85 ms

• Minimum Response Time: 82 ms

• Maximum Response Time: 91 ms

As the load test result shows, the BaaS platform successfully processed 100 concurrent
requests for different scenarios and use cases, verifying the ability to handle the anticipated
expected user number of the prototype.

98

6. Future Work and Conclusions

6.1. Future Work

Achieving the desired multi-cloud BaaS platform design and prototype and fulfilling all the
functional and non-functional requirements was challenging and full of complex milestones.
However, there are still many milestones to bring this prototype into a production-ready
Blockchain-as-a-Service platform:

1. Cloud Providers: Currently, the platform is limited to Google Cloud and Microsoft
Azure cloud providers. integrating additional cloud providers improves the platform
overall decentralization and vendor lock-in.

2. Blockchain Framework: The platform is currently only offering Custom Block-
chain Framework. However, introducing additional blockchain frameworks like
Ethereum and Hyperledger Fabric and providing the required functionality from
the deployment of the resources to providing developer tools like smart contracts
IDEs would make this platform a real alternative against the current commercial
BaaS platforms.

3. Clusters Connectivity/Integration Process Optimizations: Despite achiev-
ing the functional and non-functional requirements regarding clusters integration
and connectivity, the process can be further improved and optimized in future
research by:

a) Writing a custom SDK for the used Istio Service Mesh to achieve cross-cluster
connectivity rather than depending on the IstioCTL.

b) Optimize the provisioning of cluster connectivity resources, which is doing very
well when tested. However, the performance is reduced when tested against
many requests.

4. On-Premise: To further increase the platform’s flexibility and vendor lock-in
properties, it would be essential in future work and research to consider allowing
users to import their own on-premise Kubernetes Clusters.

5. Resiliency And Automatic Failover: In the current architecture, the blockchain
nodes can be distributed across multiple clusters, and in case one cluster fails, the
nodes would be online again once the cluster has restarted. A new component
or microservice can be introduced that automatically migrates all the deployed
resources on a Kubernetes cluster to another active cluster.

99

6. Future Work and Conclusions

6. Commerciality: To use this platform as a commercial product, additional
microservices and components are required for billing and invoicing management,
cost tracking, and payment services.

7. Identity and Access Management: The platform depends on the open source
identity and access management component Keycloak, which currently only offers
username and password-based registration and login. It would bring a huge benefit
and attract a big group of users to the platform when configuring Keycloak to
support external identity providers like Azure Active Directory or Google

8. User Interface: Since the current UI is only sufficient for successfully completing
the functional requirements, it is essential to create a new UI component designed
and implemented to meet the expected professional level of UI/UX.

6.2. Conclusion

In conclusion, this thesis provides a comprehensive overview of Blockchain-as-a-Service
and the current leading platforms that provide BaaS technology. It compares them
based on factors and characteristics like blockchain types and frameworks, use cases,
architecture, pricing, vendor lock-in, and multi-cloud/on-premise deployment ability. The
comparison shows that many top BaaS providers like Google and AWS don’t offer multi-
cloud or on-premise blockchain framework deployments, negatively affecting blockchain’s
decentralization, high availability, and resiliency characteristics.

The thesis also provides a comprehensive overview and compares the recent BaaS
academic systems and their architecture. The comparison shows that these systems work
on different areas that contribute to the adoption and utilization of BaaS systems, which
are simplifying the blockchain network deployment and management process, maintaining
blockchain characteristics, supporting and guiding the blockchain developers by providing
design patterns and development tools and enabling agnostic deployment whether on-
premises or multi-cloud deployment. The comparison shows that NBaaS, uBaaS, and
NutBaaS consider the multi-cloud characteristic by enabling the deployment of blockchain
nodes On-Premises, on a single cloud, or in a multi-cloud environment. However, these
academic system lacks a concrete specification of a multi-cloud blockchain architecture
and only discuss it on a very high-level approach.

Therefore, this thesis presents a specification and prototype implementation of a
Blockchain-as-a-Service platform, emphasizing the facilitation of multi-cloud blockchain
framework deployments through the utilization of entirely open-source technology and
microservices architecture. The specification, underlying concepts, and architectural
design decisions have been justified and elaborated on, and the prototype’s functional
and non-functional requirements and usability have been evaluated based on user experi-
ments, formal mathematical proof, and performance tests, which demonstrate significant
enhancements in the core attributes of this platform, specifically decentralization, high
availability, and non-vender lock-in.

100

6.2. Conclusion

Finally, this thesis discusses the future work and potential areas for further exploration
toward realizing a production-ready, open-source, multi-cloud, and multi-region BaaS
platform that hopefully impacts future research and contributes to the landscape of
blockchain technology.

101

Bibliography

[1] Elli Androulaki, Artem Barger, and Vita Bortnikov. Hyperledger fabric: a distributed
operating system for permissioned blockchains. 2018.

[2] Amazon Web Services (AWS). Amazon managed blockchain. 2020.

[3] Amazon Web Services (AWS). Event-driven architecture. 2023.

[4] Microsoft Azure. Azure kubernetes service (aks). 2023.

[5] Muhammad Nasir Mumtaz Bhutta, Amir A. Khwaja, Adnan Nadeem, and
Hafiz Farooq Ah. A survey on blockchain technology: Evolution, architecture
and security. 2021.

[6] J. B. Brooke. Sus: A ’quick and dirty’ usability scale. 1996.

[7] Huan Chen and Liang-Jie Zhang. Fbaas: Functional blockchain as a service. 2018.

[8] Jingxiao; X. Sean Chen, Yaoliang; Gu. A full-spectrum blockchain-as-a-service for
business collaboration. 2019.

[9] Lin Chen, Lei Xu, and Weidong Shi. On security analysis ofproof-of-elapsed-time
(poet). 2017.

[10] Cilium. Cilium. 2023.

[11] Alibaba Cloud. Alibaba cloud blockchain-as-a-service. 2020.

[12] Google Cloud. Google blockchain node engine. 10 2022.

[13] Google Cloud. Cloud sdk. 2023.

[14] Google Cloud. Google kubernetes engine (gke). 2023.

[15] Kubernetes community. kubespray. 2023.

[16] Ralf Küsters Daniel Fett and Guido Schmitz. The web sso standard openid connect:
In-depth formal security analysis and security guidelines. 2017.

[17] Stefan Dziembowski, Sebastian Faust, Vladimir Kolmogorov, and Krzysztof Pietrzak.
Proofs of space. 2015.

[18] Derar Eleyan, Samer Muneer Alshurafa, and Amna Eleyan. A survey paper on
blockchain as a service platforms. 10 2021.

103

Bibliography

[19] Eric Evans. Domain-driven design: Tackling complexity in the heart of software.
2023.

[20] Roy Thomas Fielding. Architectural styles and the design of network-based software
architectures. 2000.

[21] Linux Foundation and Hyperledger Sawtooth Community. Hyperledger sawtooth.
2018.

[22] IBM Google and Lyft. Istio. 2023.

[23] HashiCorp. Terraform. 2023.

[24] Red Hat. Openshift. 2020.

[25] Helm. Kubernetes - helm. 2023.

[26] Sinem Guney Hulya Vural, Murat Koyuncu. A systematic literature review on
microservices.

[27] IBM. Ibm blockchain platform. 2020.

[28] IBM. Ibm - blockchain benifits. 2021.

[29] IBM. Ibm blockchain platform - technical overview. 04 2022.

[30] Alsunaidi Shikah J, Alhaidari, and Fahd A. A survey of consensus algorithms for
blockchain technology. 2019.

[31] Markus Jakobsson, Tom Leighton, Silvio Micali, and Michael Szydlo. Fractal merkle
tree representation and traversal. 2003.

[32] ardalis JeremyLikness and erjain. Serverless apps: Architecture, patterns, and azure
implementation. 2023.

[33] Kaleido. Kaleido blockchain-as-a-service. 2021.

[34] Kostis Karantias, Aggelos Kiayias, and Dionysis Zindros. Proof-of-burn. 2019.

[35] Kubernetes. Kubernetes. 2023.

[36] Apache Software Foundation LinkedIn. Apache kafka. 2023.

[37] J. Bradley M. Jones and N. Sakimura. Json web token (jwt). 2015.

[38] Mpyana Mwamba Merlec Md. Mainul Islam and Hoh Peter. A comparative analysis
of proof-of-authority consensus algorithms: Aura vs clique. 2022.

[39] Microsoft. The oauth 2.0 authorization framework. 2012.

[40] Microsoft. Design patterns for microservices. 2023.

104

Bibliography

[41] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008.

[42] Tyron Ncube, Nomusa Dlodlo, and Alfredo Terzoli. Private blockchain networks: A
solution for data privacy. 2019.

[43] Oracle Cloud Infrastructure (OCI). Oracle blockchain platform service. 2021.

[44] Diego Ongaro and John Ousterhout. Raft. 2021.

[45] Md Mehedi Hassan Onik and Mahdi H. Miraz. Performance analytical comparison
of blockchain-as-aservice (baas) platforms. 2020.

[46] Weishan Zhang Qinghua Lu, Xiwei Xu Liming Zhu. ubaas: A unified blockchain-as-
a-service platform.

[47] Ranchor. Enterprise kubernetes management - ranchor. 2023.

[48] Jie Song, Mohammed Alkubati, Yubin Bao, and Ge Yu. Research advances on
blockchain-as-a-service: architectures, applications and challenges. 08 2022.

[49] Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger. 2017.

[50] Min Xu, Xingtong Chen, and Gang Kou. A systematic review of blockchain. 2019.

[51] Wei Yao, Junyi Ye, and Renita Murimi Guiling Wang. A survey on consortium
blockchain consensus. 2021.

[52] Weilin Zheng, Zibin Zheng, Xiangping Chen, Kemian Dai, and Peishan Li. Nutbaas:
A blockchain-as-a-service platform. 2019.

[53] Zibin Zheng, Hong-Ning Dai, and Shaoan Xie. An overview of blockchain technology:
Architecture, consensus, and future trends. 06 2017.

[54] Jinqing Yang Xianghua Lin Zhitao Wan, Minqiang Cai. A novel blockchain as a
service paradigm. 2018.

[55] Hong-Ning Dai Zibin Zheng, Shaoan Xie. An overview of blockchain technology:
Architecture, consensus, and future trends. 2017.

105

A. Appendix

A.1. Source Code

The git repository on https://git01lab.cs.univie.ac.at/thesis/2023ss/0152915
5_ismail_alhamzeh contains all the source code, documentation, and figures created for
this thesis.

A.2. Figures

This section contains a detailed version of the UML class diagram figures that describe
each microservice designed in this thesis.

107

https://git01lab.cs.univie.ac.at/thesis/2023ss/01529155_ismail_alhamzeh
https://git01lab.cs.univie.ac.at/thesis/2023ss/01529155_ismail_alhamzeh

A. Appendix

Figure A.1.: Cluster Management Microservice - UML Class Diagram.

108

A.2. Figures

Figure A.2.: Cluster Integration Microservice - UML Class Diagram.

109

A. Appendix

Figure A.3.: Blockchain Management Microservice - UML Class Diagram.

110

A.2. Figures

Figure A.4.: Notification Microservice - UML Class Diagram.

111

	Acknowledgements
	Abstract
	Kurzfassung
	List of Tables
	List of Figures
	List of Algorithms
	Listings
	Motivation
	Topic Motivation and Problem Description
	Goals
	Work Process and Used Methods

	Related Work
	Literature Background and Related Work
	Blockchain
	Blockchain Types
	Blockchain Node Types
	Blockchain Consensus Algorithms
	Blockchain Frameworks
	Blockchain-as-a-Services
	Commercial Blockchain-as-a-Service Providers
	Academic Blockchain-as-a-Service Systems

	Comparative Analysis - BaaS Commercial Providers
	Comparative Analysis - BaaS Academic Systems
	Summary and Transition

	Design
	Requirements
	Functional Requirements
	Non-Functional Requirements

	Design Approach and Overview
	Platform Components
	Platform Microservices

	Architectural Design Decisions
	Architectural Design Decision: Platform Architecture - Microservices
	Architectural Design Decision: Event-Driven Communication - Apache Kafka
	Architectural Design Decision: Clusters Management
	Architectural Design Decision: Clusters Integration and Connectivity
	Architectural Design Decision: OpenID Connect Authentication Protocol
	Architectural Design Decision: Blockchain Resources Mangement

	Components and Services Description/Design/Interfaces
	Cluster Management Microservice
	Cluster Integration Microservice
	Blockchain Management Microservice
	Notification Microservice

	Inter-Service Communication
	BaaS Custom Blockchain Framework
	Structure
	Consensus Algorithm
	Architecture
	Blockchain Entities Structure
	Validation Rules
	API Reference
	Custom Blockchain Framework using BaaS multi-cloud Architecture

	Implementation
	Technology Stack
	Implementation
	API Gateway
	Identity And Access Management Component
	Event Driven Communication - Apache Kafka
	Data Store
	Microservices

	Running The Prototype
	Cloud Providers Prerequisite
	Local Setup Prerequisites

	Evaluation and Discussion
	User Experiment
	System Usability Scale - Tasks
	System Usability Scale - Survey
	System Usability Scale - Results
	Funtional-Related Items Results
	Overall Results

	Non-Functional Requirements Evaluation
	Decentralization
	High Availability
	Multi-Cloud And Vendor Lock-In
	Performance

	Future Work and Conclusions
	Future Work
	Conclusion

	Bibliography
	Appendix
	Source Code
	Figures

