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ABSTRACT: The ability to determine and predict metabolically labile atom
positions in a molecule (also called “sites of metabolism” or “SoMs”) is of
high interest to the design and optimization of bioactive compounds, such as
drugs, agrochemicals, and cosmetics. In recent years, several in silico models
for SoM prediction have become available, many of which include a machine-
learning component. The bottleneck in advancing these approaches is the
coverage of distinct atom environments and rare and complex biotransfor-
mation events with high-quality experimental data. Pharmaceutical companies
typically have measured metabolism data available for several hundred to
several thousand compounds. However, even for metabolism experts,
interpreting these data and assigning SoMs are challenging and time-
consuming. Therefore, a significant proportion of the potential of the existing
metabolism data, particularly in machine learning, remains dormant. Here, we
report on the development and validation of an active learning approach that identifies the most informative atoms across molecular
data sets for SoM annotation. The active learning approach, built on a highly efficient reimplementation of SoM predictor FAME 3,
enables experts to prioritize their SoM experimental measurements and annotation efforts on the most rewarding atom
environments. We show that this active learning approach yields competitive SoM predictors while requiring the annotation of only
20% of the atom positions required by FAME 3. The source code of the approach presented in this work is publicly available.

■ INTRODUCTION
Xenobiotic metabolism can determine the efficacy and safety of
bioactive small organic compounds, such as drugs, agro-
chemicals, and cosmetics. Today, powerful experimental
approaches for determining the biotransformation of small
organic molecules are in place but remain resource-intensive
and time-consuming. Therefore, in silico models for the
prediction of xenobiotic metabolism are of great interest to
researchers involved in the design and optimization of
bioactive compounds.1 In particular, predictors of sites of
metabolism (SoMs), i.e., the atom positions in a molecule
where metabolic reactions are initiated (“metabolic hotspots”),
continue to draw significant attention. Once the (likely) SoMs
in a molecule are identified, medicinal chemists can often
devise strategies for optimizing the metabolic properties while
maintaining the compound’s bioactivity on the biomacromo-
lecular target. Likewise, some metabolite structure predictors
(including GLORYx,2 Meteor,3−5 and XenoNet6,7) use
predicted SoMs to filter and rank predicted metabolites.
Several SoM predictors are available today, most of which

involve machine learning components: ADMET Predictor
Metabolism module,8 FAME,9 MetaSpot,10 MetaSite,11 the
P450 SoM Predictor of the Schrödinger platform,12

SMARTCyp,13 SOMP,14 the StarDrop P450 Metabolism
Prediction module,15 and the XenoSite platform.16,17

On holdout data (i.e., compounds with annotated SoMs),
the leading SoM predictors typically rank at least one
experimentally observed SoM among the two top-ranked
atom positions (“top-2 metric”) for at least 80% of the test
compounds. Note that the data used for model testing usually
represent a similar chemical space to the training data. Hence,
the performance of the models on data representing innovative
chemical spaces will likely be overestimated by these tests.
However, recent studies9,18 show that the applicability domain
of SoM predictors is broader than that of many molecular
property predictors. The broad applicability of SoM predictors
is related to the fact that metabolic liability is a function of the
proximate atom environment and these local environments are,
to some extent, redundant across chemical spaces.
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Most noncommercial SoM predictors are trained on the
same set of 680 drugs and drug-like compounds with
experimentally determined, expert-curated SoMs: the Zaretzki
data set.16 Although of enormous value to the scientific
community, the Zaretzki data set covers only cytochrome P450
(CYP)-mediated metabolism. While CYPs certainly are the
most relevant xenobiotic-metabolizing enzymes, there are
many other phase 1 enzymes (e.g., reductases and hydrolases)
and also phase 2 enzymes (mainly transferases) that are of high
relevance to small-molecule research.19 One of the few SoM
predictors with comprehensive coverage of phase 1 and phase
2 metabolism is FAME 3, which was developed by some of us.
FAME 3 is trained on 1733 parent compounds with
experimentally determined, expert-curated SoMs for phase 1
and phase 2 metabolic enzymes (i.e., the MetaQSAR
database20).
Significant advances in the accuracy and applicability of SoM

predictors will depend on the availability of additional
measured metabolism data on distinct atom environments,
particularly those involved in rare complex biotransformation
events. However, the costs associated with generating
metabolism data are substantial. Typically, the identification
of SoMs involves liquid chromatography−mass spectrometry
(LC−MS) experiments and experts’ diligent and time-
consuming work to interpret the data and deal with uncertainty
about the exact atom position of some biotransformations
(Figure 1). Therefore, it is unlikely that the rate at which
measured data become available in the public domain will
improve dramatically over the next few years.
Pharmaceutical companies, where most drug metabolism

research is conducted today, typically have access to measured
raw data on the metabolism of several hundred to several
thousand (mostly) proprietary compounds. However, we are
unaware of any research institution having tasked experts with

systematically interpreting their measured raw data to annotate
SoMs. In this context, a computational method that cherry-
picks, across molecular data sets, the most informative atoms
for experts to annotate (or measure) could be a game-changer
for SoM predictor development. It could reduce the need for
measuring and annotating the metabolic stability of the atoms
of as many compounds as possible into the need for selectively
measuring and annotating only the most informative atoms
across sets of molecules.
One powerful approach for cherry-picking the most

informative data samples in machine learning is active learning.
During active learning, a machine learning model guides the
acquisition of additional data for model training in an iterative
process. More specifically, a machine learning model is trained
on a small portion of the available data. Then, the model
iteratively selects the most informative sample (or batch of
samples) to acquire in preparation for the next cycle of model
training. Recent successful applications of active learning
strategies in cheminformatics include high-throughput dock-
ing,21 as well as the ligand-based prediction of physicochemical
and biological properties.22−24

In this work, we show that active learning requires only 20%
of the SoM/non-SoM labeled atoms used by classical
approaches (in this case, FAME 3) to reach competitive
performance. In other words, the active learning approach
enables researchers to fully benefit from their raw metabolism
data (i.e., 100% of their parent compounds with measured
metabolism data) while requiring expert SoM annotations for
only 20% of the atoms in their data set. The active learning
approach also enables experimentalists to focus their
experimental data acquisition on the most informative atom
positions across a set of compounds.

Figure 1. Visualization of the results of a representative mass spectrometry study of a drug-like compound, published in ref 25. The blue circles
indicate areas in the molecules where metabolic reactions are experimentally observed. Several of these areas span across two or more atoms,
reflecting the uncertainty in the measured data about the exact location of SoMs.
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■ METHODS
The active learning approach builds on FAME 3 and the
observations made during its development and validation. The
data processing workflow, atomic descriptor calculation, and
machine learning procedure employed in FAME 3 were refined
in preparation for active learning, as summarized in Table 1
and discussed in the following sections.

Data Sets and Structure Processing. SoM data were
extracted from the MetaQSAR database,20,26 composed of
2314 parent compounds with annotated SoMs. Any compound
violating at least one of the following criteria was removed
from the data set:

• Compound has at least one experimentally confirmed
SoM annotated.

• Compound is composed exclusively of the following
element types: C, N, S, O, H, F, Cl, Br, I, P, B, and Si.

• Compound has a molecular weight between 100 and
1000 Da.

• Compound can be successfully parsed with RDKit27

The molecular structures were standardized and salt
components were removed with the ChEMBL Structure
Pipeline.28,29 After the removal of any stereochemical
information, duplicate molecular structures were identified
and merged based on their InChI representations. As part of
the deduplication process, SoM annotations were merged by
using the GetSubstructMatches function of RDKit, taking
topological symmetry into account. This procedure resulted in
a processed data set of 1926 compounds (Table 2).
The processed data set was split into a training and a test set

(Figure 2A). To support the comparability of this work with
the previously published validation study on FAME 3,9 we
maintained the identical split of the training and test data.
However, because of a refined data merging procedure, which
accurately detects any topologically equivalent molecules and
combines the SoM annotations of topologically identical atoms
within molecules without information loss, the numbers of
compounds in the training and test data sets differ from those
published for the FAME 3 validation study (Table 2).

Descriptor Calculation. A set of 15 atomic descriptors
was calculated with CDPKit31 (“CDPKit FAME descriptor
set”). This set comprises one Sybyl atom type descriptor
(discriminating 24 combinations of element types and
hybridization states; Table S1) and 14 electronic and
topological descriptors (Table S2). The descriptor set is
similar to that used in FAME 3. However, in FAME 3, the

descriptors are calculated with CDK30 instead of CDPKit, and
CDK’s stabilizationPlusCharge descriptor is used instead of
CDPKit’s inductive effect descriptor. In addition to this set of
15 atomic descriptors, the FAME fingerprint,9 which is a
circular, atom-based binary fingerprint, was reimplemented in
CDPKit and used in one instance of data set splitting (see the
section “Active Learning”).

Generation of a Baseline Model. A random forest
classifier for SoM prediction was built with scikit-learn.32 For
this classifier, the hyperparameters were adopted from FAME 3
(see Table 1), except for the decision threshold, which was
reduced from 0.4 to 0.3 (the value of 0.4 originates from the
work on FAME 2,18 which is based on a different SoM data set
with a different class balance; meanwhile, we found that for
MetaQSAR-derived models a value of 0.3 produces slightly
better results). Furthermore, random forests were utilized
instead of extremely randomized trees (FAME 3).

Active Learning. Active learning was performed on the
training data within a 5-fold cross-validation (CV) framework
using the identical modeling algorithm (i.e., random forest),
hyperparameters, and descriptors as we used for the baseline
model (Figure 2). Two methods for generating the folds
(which form the active learning and validation sets) based on
atoms were explored: StratifiedKFold (as implemented in
scikit-learn), which preserves the ratio of SoMs and non-SoMs
in each fold, and clustering by atom similarity, which uses

Table 1. Comparison of Key Technical Facts of the Models Presented in This Work and FAME 3

FAME 3 this work

primary programming
language

Java Python

software libraries CDK, scikit-learn CDPKit, RDKit, scikit-learn
data MetaQSAR database MetaQSAR database
descriptors 15 atomic descriptors

calculated with CDK
15 atomic descriptors calculated with CDPKit (Table S2), 14 thereof identical with those from CDK;
stabilizationPlusCharge descriptor replaced with CDPKit’s inductive effect descriptor

bond path length of the
atomic descriptors

5 1, 3, 5, 7a

machine learning
algorithm

extremely randomized
trees

random forest

number of estimators 250 250
class weight balanced_subsample balanced_subsample
decision threshold 0.40 0.30
aFor the baseline model, a bond path length of 5 was used.

Table 2. Composition of the Data Sets Used in this Work
and the FAME 3 Validation Study

no.
substrates

no.
heavy
atoms

no.
SoMs

average
no. SoMs
per

molecule

fraction of
SoMs
among

heavy atoms

preprocessed
data set
(total)

1926 43 418 4976 2.58 0.11

training set
(subset)

1505 33 994 3930 2.61 0.12

test set
(subset)

421 9424 1046 2.48 0.11

FAME 3 P1 +
P2 data seta
(total)

2167 49 045 6307 2.91 0.13

training seta
(subset)

1733 39 131 n/a n/a n/a

test seta
(subset)

434 9914 n/a n/a n/a

aValues obtained from ref 9.
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Butina clustering33 of atom environments (represented by
FAME fingerprints with a bond path length of 5) to generate
five folds between which no atom pair exceeds a Tanimoto
similarity threshold of 0.80. This approach ensures that no
highly similar atoms are present between two folds.
Before splitting the data set into the active learning set and

the validation set, a deduplication routine was executed that
merges atoms for which the values of all descriptors are
identical. The deduplication resulted in a training set of 30 509
atoms. No class label conflicts were observed. All relevant
duplicate instances represent topologically symmetric atoms.
Following related work on active learning,22 the initial

training set for active learning, T1, is generated by the random
pick of a single SoM and a single non-SoM from the active
learning set. All of the remaining data points from the active
learning set serve as the pooling set, P1, and every atom in the
pooling set is assigned a prediction value calculated with the
model. Next, the most informative batch of annotated atoms
[a1; atom(s) selected based on the distance of the prediction
value from the decision threshold, without regard for the label]
and the atoms contained in T1 are joined to form the next
training set, T2. Likewise, P2 is formed by removing a1 from P1.
This step is followed by the next training cycle, which uses T2
as the training set and P2 as the atom pool to select the next
most informative batch of atoms. The process is iterated until
all atoms from the pooling set have been selected and used for
training. During each iteration, the model’s performance is
evaluated on the validation set. Selected models are also
evaluated on holdout data (the test set).

Model Performance Metrics. The Matthews correlation
coefficient (MCC) served as the primary metric for model

performance assessment and optimization. It is one of the most
robust and informative measures for evaluating binary
classifiers because it is a balanced measure considering the
proportion of all classes in the confusion matrix. Note that the
MCC ranges from −1.0 to +1.0, with a value of 1.0 indicating
an excellent classification performance.
In addition, the area under the receiver operating character-

istic curve (AUC), which, in this context, quantifies the ability
of a model to correctly rank SoMs and non-SoMs (based on
the probabilities reported by the binary classifier), and the
top-2 success rate, which, in this context, quantifies the
proportion of molecules for which at least one known SoM is
listed among the two top-ranked atom positions in a molecule
(ranking according to the predicted probabilities of an atom to
be a SoM), were calculated. Furthermore, recall (quantifying
the proportion of SoMs that are corrected predicted),
precision (indicating the proportion of true SoMs among all
predicted SoMs), and Jaccard score (i.e., the ratio of the
number of correctly predicted SoMs to the number of SoMs
and the number of wrongly predicted non-SoMs; the higher
the Jaccard score, the higher the accuracy of the classifier) were
also evaluated.

■ RESULTS AND DISCUSSION
SoM Prediction Performance of the FAME 3

Reimplementation − Baseline Model. To confirm the
proper working of the reimplementation of FAME 3 with
CDPKit descriptors and to establish a baseline for the
evaluation of the active learning approach, we run tests with
training and test data that are as closely as possible related to
the training and test sets used in the FAME 3 validation study.9

Figure 2. Overview of the (A) data sets and (B) active learning process employed in this work. (A) All compounds in the MetaQSAR database and
annotated with SoM labels were split (by molecule) into a training set and a test set. These two subsets of the MetaQSAR database were used to
train the baseline model and compare its performance with that of FAME 3. For active learning, the training set was further split (by atom) into an
active learning set and a validation set. (B) During the iterative active learning process, the most informative n atoms (where n is greater than or
equal to 1) are selectively added to the active learning, while all remaining ones serve as the data pool for later iterations of the selection process.
The validation set was used to evaluate the performance of every generated model, whereas the test set was utilized to evaluate the performance of
selected models only.

Table 3. Comparison of the Prediction Performance of FAME 3 with Reimplementation with CDPKit

model MCC AUC top-2 (%) average prediction time [s per molecule]a

CV test set CV test set CV test set

FAME 3 P1 + P2b 0.51 0.50 0.89 0.90 82 82 ∼13.2
reimplementation with CDPKit 0.50 0.50 0.88 0.89 81 82 ∼0.1

aAveraged computing time per molecule with a single thread on a Linux workstation equipped with an AMD Ryzen 9 7950X 16-core CPU and 128
GB of RAM. bValues are taken from ref 9.
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Figure 3. Performance progression of the active learning approach (orange) and the random selection approach (blue) as more data are used for
model training. The five runs within the 5-fold CV framework are shown in each panel. (A,B) Performance progression when generating the data
folds with StratifiedKFold; (C,D) performance progression when generating the data folds using clustering by atom similarity.

Table 4. Performance of Models as a Function of the Data Sampling Method and Training Set Size

data sampling method % data used for model traininga data setb MCCc AUCc top-2 (%)c recallc Jaccard scorec

Mean std mean std mean std mean std mean std

active learning 20/25 VS 0.49 0.01 0.84 0.00 n/ad n/ad 0.53 0.02 0.37 0.01
active learning 20/25 TS 0.48 0.00 0.83 0.01 81 1 0.52 0.01 0.37 0.00
active learning 40/50 VS 0.51 0.02 0.88 0.01 n/ad n/ad 0.55 0.03 0.39 0.02
active learning 40/50 TS 0.50 0.01 0.88 0.00 82 1 0.55 0.01 0.38 0.01
active learning 60/75 VS 0.50 0.01 0.89 0.00 n/ad n/ad 0.56 0.03 0.39 0.01
active learning 60/75 TS 0.49 0.01 0.89 0.00 83 1 0.54 0.01 0.38 0.01
random selection 20/25 VS 0.40 0.02 0.85 0.01 n/ad n/ad 0.43 0.03 0.30 0.02
random selection 20/25 TS 0.40 0.02 0.85 0.00 74 2 0.43 0.01 0.30 0.01
random selection 40/50 VS 0.46 0.02 0.88 0.00 n/ad n/ad 0.49 0.04 0.35 0.02
random selection 40/50 TS 0.45 0.01 0.87 0.00 78 1 0.49 0.02 0.34 0.01
random selection 60/75 VS 0.48 0.01 0.89 0.00 n/ad n/ad 0.52 0.02 0.37 0.01
random selection 60/75 TS 0.47 0.01 0.88 0.00 79 1 0.52 0.01 0.36 0.01
n/ae 80/100 VS 0.50 0.02 0.90 0.01 n/ad n/ad 0.55 0.03 0.39 0.01
n/ae 80/100 TS 0.49 0.01 0.89 0.00 81 1 0.54 0.01 0.37 0.01
n/af 100/n/af TS 0.50 n/af 0.89 n/af 82 n/af 0.56 n/af 0.38 n/af

aof the training set for the baseline model/of the active learning set. For active learning, the training set used for generating the baseline model was
further divided into an active learning set and a validation with a ratio of 80:20. bVS: validation set; TS: test set. cPerformance averaged over five
runs, each using a different fold as the validation set. dBecause splitting is performed on a per-atom basis and not on a per-molecule basis (meaning
that for a given molecule, not all atoms may be represented in the validation set), top-2 success rates cannot be calculated. eThe complete active
learning data set is used for model training. fThe complete training set for the baseline model; hence, the results are the performance of the baseline
model on the test set.
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More specifically, we preserved the data set split, but because
of a refined data processing procedure (which corrects minor
insufficiencies of the previously employed approach for the
detection of identical molecules and topologically symmetric
atoms), the subsets are similar but not identical (see Methods
for details). The generated model is equivalent to the FAME 3
model covering phase 1 and phase 2 metabolism (referred to in
the original publication as “FAME 3 P1 + P2 model”).
As reported in Table 3, the prediction performance of the

new implementation is comparable with that of FAME 3 for
both 10-fold CV and the test set. The results indicate that on
average for more than 80% of the annotated compounds (from
the validation set and the test set), at least one known SoM is
found among the two highest-ranked atom positions in a
molecule.
Importantly, the reimplementation of FAME 3 with CDPKit

is much faster than the original implementation, with an
average prediction time per molecule of approximately 0.1 s
compared to 13.2 s (measured on an AMD Ryzen 9 7950X
CPU with a single thread of execution).

Active Learning. We performed active learning using the
identical machine learning setup we employed for building the
baseline model (Table 1). The performance of the active
learning approach was assessed by a 5-fold CV and with
holdout data (test set). Two different methods for generating
the individual CV folds were explored, using atoms as
instances: a stratified splitting method, which ensures identical
ratios of SoMs and non-SoMs across the individual folds, and a

clustering method, which ensures that the atom environments
represented in the individual folds are dissimilar (see Methods
for details). It is expected that the latter splitting method
produces more challenging data sets. Note that molecule-based
splitting strategies were also explored but yielded inferior
models and were not further pursued (Figure S1).

Model Performance Progression. Active learning led to
steep increases in model performance as more atoms were
selected and used for model training (Figure 3). After
approximately 6100 iterations (meaning the use of approx-
imately 6100 atoms or 20%, of the data available for model
building), the MCC reached 0.48 on the test set (Table 4),
which is comparable to the MCC obtained by the baseline
model (0.50). Also, the top-2 success rate, Jaccard score, and
precision approached those of the baseline model when using
just 20% of the training data (top-2 success rate 81 vs 82%;
Jaccard score 0.37 vs 0.38; precision 0.55 vs 0.55; Tables 4 and
S3). The AUC values and recall values approached equal levels
for the test set (0.88 and 0.55, respectively) at a rather late
stage of active learning, when approximately 40% of the data
were used for training.
The maximum MCC values recorded for the individual

active learning runs were between 0.50 and 0.55 for the
different validation sets (generated by the 5-fold split of the
training set). For the test set, the MCC values were between
0.48 and 0.50 for the five repeats of active learning, meaning
that the performance of the models generated with the active
learning approach is comparable to that of the baseline model
(MCC 0.50). The active learning approach did, under no
circumstances, produce models superior in performance but
generated competitive models with substantially less labeled
data. For all approaches, performance was positively correlated
with the size of the training or active learning set (Figure S2
illustrates this correlation for the active learning approach).
The standard deviations for the MCC maxima during the

five repeats of active learning were just 0.01 when stratified
random splitting was used to generate the five data folds and
0.02 when using the clustering approach. Because the stratified
split method showed better stability during the active learning
process, further discussion will focus on the results obtained
with this data splitting method.
We compared the curve progression for the two sample

selection strategies to confirm the added value of active
learning over random sample selection (where a random atom
instead of the most informative atom is added to the training
set during each iteration). Figure 3 and Table 4 show that with
smaller data sets active learning indeed produces better
models: When using 6100 data points (i.e., 25% of the active
learning data or 20% of the training set of the baseline model),
the MCC values of the models generated with the two
approaches were 0.49 and 0.40 for the validation sets,

Figure 4. Variance in the performance progression of the active
learning approach as different randomly selected pairs of atoms are
used as a starting point for active learning. The graph shows five
repeats of the complete active learning process as an example. The
horizontal dashed line indicates the MCC obtained using the
complete active learning set for model training.

Table 5. Stability of MCC Values when using Different Initial Training Samples

% data of the active learning set used in active learning
assessment
intervala

MCC for
repeat 1

MCC for
repeat 2

MCC for
repeat 3

MCC for
repeat 4

MCC for
repeat 5

mean std mean std mean std mean std mean std

≥12.5 3050 to 24 406 0.49 0.02 0.50 0.02 0.49 0.02 0.50 0.02 0.50 0.02
≥25 6100 to 24 406 0.50 0.01 0.50 0.01 0.50 0.01 0.51 0.01 0.51 0.01
≥50 12 202 to 24 406 0.50 0.01 0.51 0.01 0.50 0.01 0.51 0.01 0.51 0.01
≥75 18 304 to 24 406 0.50 0.01 0.51 0.01 0.50 0.01 0.51 0.01 0.51 0.01

aInterval of iterations (from, to) for which the mean MCC and standard deviations are calculated.
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respectively, and 0.48 and 0.40 for the test set, respectively.
The top-2 success rates, recall, Jaccard scores, and precision
followed the same trend as the MCC values on the test set;
only the performance improvement progression of the AUC
values was comparable between the active learning and the
random selection approach.
A further interesting curve progression to analyze is the

positive label ratio. The positive label ratio quantifies the
proportion of positive data (i.e., SoM data) among the samples
selected for model training. SoM data sets have in common
that the positive class is the minority class. In the case of the
(processed) MetaQSAR data set, the fraction of SoMs is
approximately 0.11 (Table 2). For the active learning
approach, after an initial sharp peak, the positive label ratio
quickly reaches a temporary equilibrium, just below the
threshold value of 0.30. This equilibrium lasts for approx-
imately 4000 iterations before gradually declining toward a
value of 0.10. In contrast, the random selection approach
maintains, again after an initial sharp peak, a positive label ratio
of around 0.11. These observations show that the active
learning approach’s data efficiency and performance advantage
are not based solely on data balancing. When 20% of the atoms
selected from active learning are utilized for model training, the
positive label ratios are around 0.24. Still, on the validation
sets, the predicted positive ratios were around 0.11, which
aligns with the proportions of SoM atoms in the validation sets
(Table S3).

Robustness of the Approach with Respect to the
Starting Points of Active Learning. To test the stability of
the active learning approach with respect to the initial pair of

atoms (one SoM and one non-SoM) selected for starting the
iterative modeling process, we repeated the model building
process five times (keeping fold 1 as the validation set for all
five runs). As expected and shown in Figure 4 and Table 5, the
differences between the individual runs with different initial
atom pairs were marginal and became even smaller as further
data were added to the training set. After approximately 6100
iterations already (representing 25% of the active learning data
or 20% of the training set of the baseline model), the standard
deviations of the MCC values were smaller than 0.01 in all
cases.
The high stability of the active learning approach is also

reflected by the fact that a substantial proportion of the atoms
present in the active learning set were picked for training
during each of the five repeats. For example, at the point when
25% of the atoms in the active learning set were selected for
training, the number of atoms consistently selected during each
of the (five) repeats of the experiment corresponded to 55% of
the samples in the training data (Figure 5). The percentage of
atoms consistently selected for training increased further with
the progress of the active learning process. Based on these
observations, we conclude that the active learning protocol is
highly robust and yields consistent, good results largely
independent of the starting conditions.

Influence of Different Descriptor Bond Path Lengths
on Model Performance. The performance of the active
learning approach may be influenced by the size of the atom
environments (defined by maximum bond path lengths) used
to represent SoMs and non-SoMs with CDPKit FAME
descriptors. Using the same experimental setup above, we

Figure 5. Number of times a specific atom was selected for model training during the five repeats of the complete active learning process at the time
when (A) 25, (B) 50, and (C) 75% of the atoms in the active learning set were selected for model training.
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explored how the active learning approach behaves using
CDPKit FAME descriptors with bond path lengths of 1, 3, 5,
and 7.
As shown in Figure 6, the active learning approach benefits

slightly from using larger atom environments (meaning bond
path lengths of 5 or 7). These resulted in steeper MCC curves
with also a slightly higher MCC plateau (MCC of

approximately 0.52 when using a bond path length of 7 vs
0.48 with a bond path length of 1 or 3). Regarding stability, a
bond path length of 5 seems preferable over a bond path
length of 7 (cp. Figures 6C,D), for which we conclude the
optimum bond path length to be 5. This conclusion is
consistent with the observations made for FAME 3.9

Figure 6. Performance of the active learning approach using descriptors with bond depths of (A) 1, (B) 3, (C) 5, and (D) 7 for five repeats of the
complete active learning process. The averages of these five repeats with different bond path lengths are compared in (E). The horizontal dashed
lines indicate the average MCC reached by the models after 10 000 iterations.
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Influence of Different Batch Sizes and Methods on
Model Performance. On an AMD Ryzen 9 7950X CPU, one
complete active learning run with the MetaQSAR data set
takes approximately 1 day with eight threads of execution. To
increase the computational efficiency of the approach, we
investigated the use of larger batch sizes during active learning
(the batch size used thus far is one atom). We explored two
strategies to generate larger batches: mini-batch, which
produces a batch from a defined number of most informative
atoms and diverse mini-batch,34 which composes a batch from
a defined number of diverse, most informative atoms
(identified by k-means35 clustering). For mini-batch, we
explored batch sizes of 5, 10, 25, and 100 atoms; for a diverse
mini-batch, we explored batches generated from the 5 most
diverse atoms selected from the 25 most informative atoms
and from the 10 most diverse atoms selected from the 100
most informative atoms. Following the identical active learning
setup as in the previous experiments, batch sizes of up to 100
showed similar trends for the performance progressions
(Figure 7). The diverse mini-batch sampling did not offer an
advantage (e.g., a steeper performance increase) over the
standard mini-batch approach. From this, we conclude that
adding small batches of atoms instead of single atoms is well-
tolerated, leading to a substantial speedup of the active learning
process.

■ CONCLUSIONS
Methods and models for SoM prediction have come a long
way. The performance and applicability of the leading SoM
predictors surpass those of many predictors of other molecular
properties. Furthermore, substantial progress in the field will
depend on additional high-quality data on small-molecule
metabolism. Given the considerable demands in experimental

resources and expertise, a theoretical approach enabling
researchers to focus their resources for measurement and
annotation on the most informative atom environments is
urgently needed.
We have devised an active learning approach that reaches

competitive performance (MCC of 0.48 on holdout data)
while using 80% less data than FAME 3 for model training.
The active learning approach is robust with regard to
initialization and model parameters. Its efficiency can be
further increased by adding small batches of annotated atoms
rather than a single atom during each iteration of active
learning.
Researchers with access to raw metabolism data on small

molecules can use the active learning approach to prioritize
SoM annotation of cherry-picked atoms, whereas experts with
access to HPLC-MS will benefit from the approach’s capacity
to cherry-pick the most informative molecules and atoms for
experimental testing. The active learning approach can
transform the task of measuring and annotating the atoms of
as many molecules as possible into a task involving the
investigation of only the most informative and, hence, most
rewarding atom positions.
We hope that our active learning approach, for which we

release the complete source code, will stimulate the generation
of metabolism data and their release into the public domain.
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