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A B S T R A C T

No, but the paper argues that Bohr understood his correspondence principle, or at least an aspect of that principle expressed by the notion of rational generalization, 
as grounded in Hankel’s principle of permanence, adapted to new historical and theoretical contexts. This is shown to illuminate some otherwise obscure aspects of 
Bohr’s approach to quantum theory, as well as a seemingly strange criticism against this approach, due to Feyerabend and Bohm.
0. Introduction

My main goal is to analyze an application of Hankel’s Principle of 
Permanence (HP) to quantum theory, an application that unfolded, I ar-

gue, under the guise of Bohr’s more widely discussed Correspondence 
Principle (CP). I start by presenting HP in the context of 19th Century 
mathematics, as a methodological principle stipulating the preservation 
of rules as far as possible, but also as a metatheoretical principle con-

cerning the interpretability relations between theories. Then I briefly 
recall Bohr’s uses of CP, emphasizing some changes that occurred over 
time, from its emergence in the old quantum theory to its application 
in the articulation and defense of his approach to quantum mechan-

ics. After adducing some evidence that Bohr saw the shift from classical 
to quantum physics in the way Hankel, and Peacock before him, had 
understood the transition between mathematical theories, I argue that 
this illuminates not only Bohr’s understanding of CP, but also his ap-

proach to quantum mechanics. More specifically, it sheds light on his 
otherwise obscure remarks on quantum mechanics as a rational general-

ization of classical physics, and clarifies the sense in which he thought 
the rules of quantum mechanics determined its physical meaning. On 
the background of this reading of CP as grounded in HP, I explain why 
Feyerabend’s and Bohm’s criticism of Bohr’s doctrine of the necessity 
of classical concepts was well justified, and then I show how Howard’s 
more recent reconstruction of this doctrine can be backed without any 
tension with CP.

1. The principle of permanence in historical context

The precursor of HP was a principle first explicitly formulated by 
George Peacock in 1833, which he called the Principle of the Permanence 
of Equivalent Forms (PF):

Whatever equivalent form is discoverable in arithmetical algebra 
considered as the science of suggestion, when their symbols are gen-

eral in their form, though specific in their value, will continue to be 
an equivalent form when the symbols are general in their nature as 
well as in their form. (Peacock, 1833, 198sq, emphasis removed)

Arithmetical algebra, or what had been called “specious or universal 
arithmetic”, is a theory the language of which includes not only con-

stants and signs for operations, just like “elementary” or “common 
arithmetic” does, but also variables ranging over the domain of pos-

itive integers. This contrasted with Peacock’s symbolic algebra, the 
language of which further includes variables that are allowed to range 
over any domain of objects whatsoever, but most importantly over neg-

ative, rational, and imaginary numbers such as the “impossible” roots 
of equations of second or higher degree. As Peacock conceived of it, 
PF stipulates that some equivalent forms, i.e., at least the ones that can 
be discovered, which are expressed in the language of arithmetical al-

gebra, should be preserved as equivalent forms, when expressed in the 
language of symbolic algebra. A prime example of such forms are the 
“laws of combination”, what Peacock indiscriminately also called the 
principles or the rules of a theory. For instance, the arithmetically alge-

braic rule of distributivity, which he wrote as 𝑚𝑎 +𝑛𝑎 = (𝑚 +𝑛)𝑎, will be 
preserved in symbolic algebra as such. Peacock seems to have intended 
the notion of equivalent forms to be more general, so what is to be pre-

served in passing from one theory to another are not only such rules, but 
theorems as well. In any case, he clearly rejected the universal validity 
of PF, for he saw that there are equivalent forms of arithmetical algebra 
that are “essentially arithmetical” and these cannot be preserved when 
passing to symbolic algebra. Whenever PF could be applied, however, 
it was so useful for solving problems and proving theorems that other 
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mathematicians, such as De Morgan, came to regard it not merely as a 
heuristic principle, but as a necessary mathematical truth.1

The sense in which arithmetical algebra is to be considered as a 
“science of suggestion” seems, nevertheless, rather obscure, so an ex-

planation is needed. Peacock’s concern was the clarification of the na-

ture of the principles of symbolic algebra, which he thought had been 
misunderstood as being deduced from arithmetical principles – a mis-

understanding that he took to be responsible for the view of symbolic 
algebra as a generalization of arithmetical algebra and, thus, a gener-

alization of elementary arithmetic. PF, and in particular the notion of 
a science of suggestion, was intended to help with Peacock’s refutation 
of this view. On his own view, the principles of symbolic algebra are 
suggested by, rather than deduced from, the principles of arithmetical 
algebra and, as a consequence, symbolic algebra is something else than 
a generalization of arithmetical algebra. To say otherwise was, to him, 
an abuse of terminology, for the following reason:

The operations in arithmetical algebra can be previously defined, 
whilst those in symbolic algebra, though bearing the same name, 
cannot: their meaning, however, when the nature of the symbols is 
known, can be generally, but by no means necessarily, interpreted. 
The process, therefore, by which we pass from one science to the 
other is not an ascent from particulars to generals, which is properly 
called generalization, but one which is essentially arbitrary, though 
restricted with a specific view to its operations and their results ad-

mitting of such interpretations as may make its applications most 
generally useful. (Peacock, 1833, 194)

Peacock dismissed the view according to which one advances from 
arithmetical algebra to symbolic algebra by generalization, for this 
would entail that the operations of symbolic algebra (and their results) 
must admit of an interpretation over the domain of arithmetical al-

gebra. In contrast, on his view, one rather passes from arithmetical 
algebra to symbolic algebra by suggestion, which does not entail that 
those operations and their results must admit of such an interpreta-

tion. Indeed, he considered any particular interpretation, arithmetical 
or non-arithmetical, as in principle dispensable. But Peacock qualified 
this view in an important way: arithmetical algebra, he noted, “nec-

essarily suggests its principles”, i.e., the principles of symbolic algebra. 
However, this does not mean that arithmetical algebra is indispensable 
as a science of suggestion, for Peacock considered it simply the “most 
convenient”, though in principle not the only possible science of sugges-

tion for symbolic algebra.2 What he meant, I think, is that the relation

of suggestion is necessary.

On Peacock’s view, then, any “arbitrary assumptions” that are con-

sistent with the principles of arithmetical algebra, or as he put it, “as 
far as they can exist in common”, might be stipulated as principles of 
symbolic algebra. But since any useful application of symbolic algebraic 
operations and results requires their interpretation over the domain of 
the application, the arbitrary assumptions must be restricted such that 
symbolic operations and results can admit of such an interpretation. 
This restriction is satisfied by necessarily assuming some subordinate 
science of suggestion, like arithmetical algebra. Thus, if the principles 
of symbolic algebra are not entirely arbitrary, but they are both consis-

tent with and suggested by the principles of arithmetical algebra, then 
the operations of symbolic algebra and their results can be interpreted 
over the positive integers.

1 For De Morgan’s 1837 formulation of the principle of permanence, and for 
his discussion of this with Ada Lovelace, who questioned the validity of the 
principle and his insistence on “the necessity of its truth”, see Hollings et al., 
2017. For discussion of criticisms raised against the principle of permanence by 
Peano and Hahn, see Toader, 2021, 2023.

2 See, e.g., Gregory, 1840, which takes geometry as a science of suggestion 
for symbolic algebra. For more on Peacock and the history of British algebra, 
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Peacock’s view, as I understand it, was something like this: the prin-

ciples of symbolic algebra are such that although it is not the case 
that symbolic algebraic operations must admit of an arithmetical in-

terpretation, it must be the case that they can admit of an arithmetical 
interpretation. This is why one takes PF as the “proper guide” for the 
development of symbolic algebra, and arithmetical algebra as a science 
of suggestion, in the first place. The arithmetical interpretation is not nec-

essary; it is only necessarily possible. This is dictated by the requirement 
of usefulness in applications. Furthermore, if one takes PF as a proper 
guide for the development of symbolic algebra, then the latter’s prin-

ciples, albeit not deducible from the principles of arithmetical algebra, 
are taken by Peacock to be deducible from the conjunction of PF and 
the principles of arithmetical algebra. In this sense, PF is also acknowl-

edged as the “real foundation” of symbolic algebra, the principles of 
which are considered, on the one hand, as arbitrary assumptions, and 
on the other hand, as “necessary consequences” of PF.

An important question about Peacock’s view, as I have just described 
it, is the question about the meaning of symbolic algebra. If, as he 
maintained in the quotation above, its operations cannot be “previously 
defined”, i.e., if their meaning cannot be given before the principles or 
the rules of symbolic algebra are stipulated, then what is it that gives 
meaning to these operations? Peacock’s answer is as follows:

In arithmetical algebra, the definitions of the operations determine 
the rules; in symbolic algebra, the rules determine the meaning of 
the operations, or more properly speaking, they furnish the means 
of interpreting them (Peacock, 1833, 200).

This answer signifies a metasemantic revolution in 19th century mathe-

matics, insofar as it represents a radical change from a traditional view, 
according to which meaning is determined by definitions relative to a 
particular domain, to a novel view according to which meaning is deter-

mined by rules. One way to understand Peacock’s claim that the rules of 
symbolic algebra determine the meaning of its operations, in the sense 
that these rules “furnish the means of interpreting” these operations, is 
by taking the rules to determine the interpretation of operations. But 
if arithmetical algebra is considered as a science of suggestion, and if 
one understands this notion as I proposed above, then an interpretation 
over the positive integers of the operations of symbolic algebra is nec-

essarily possible, without being necessary. Thus, to say that the rules 
of symbolic algebra determine the meaning of its operations is to say 
that the rules determine the interpretability of operations, or more pre-

cisely, the interpretability of the results obtained by these operations. 
Interpretability is necessary, as already noted, because without it, there 
would be no useful applications of symbolical algebra.

Peacock’s view was famously endorsed by William Whewell:

The absolute universality of the interpretation of symbols is the fun-

damental principle of their use. This has been shown very ably by 
Professor Peacock in his Algebra. He has there illustrated, in a variety 
of ways, this principle: that ‘If general symbols express an identity 
when they are supposed to be of any special nature, they must also 
express an identity when they are general in their nature.’ And thus 
this universality of symbols is a principle ... of the greatest impor-

tance in the formation of mathematical science, according to the 
wide generality which such science has in modern times assumed. 
(Whewell, 1840, 143)

The universality of symbols, i.e., their ranging as variables over any 
domain of objects whatsoever, requires that the results of symbolic 
operations be interpretable over some particular domain, like that of 
arithmetical algebra. According to Peacock, as we have seen, this inter-

pretability was indispensable for the applications of symbolic algebraic 
results, and enough to render the symbolic algebraic operations mean-

ingful. Whewell’s comments reinforced Peacock’s view that PF is not 

only a methodological or heuristic principle, a useful guide or strategy 
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for the development of new mathematical theories, but also a metathe-

oretical principle that properly characterizes the interpretability rela-

tions between theories.

Hankel adopted Peacock’s view of the PF when he set up to develop 
the formal theory of complex numbers. He formulated his own version 
of the principle (HP) – “das hodegetische Princip der Permanenz der 
formalen Gesetze” (Hankel, 1867, vii) – as follows:

If two forms expressed in general signs of the universal arithmetic 
are equal to one another, they should remain equal if the signs cease 
to denote simple quantities and the operations thereby receive some 
different content as well. (Hankel, 1867, 11)

This corresponds, roughly, to Peacock’s own formulation of the PF. For 
example, the rule of (left and right) distributivity in universal arith-

metic, 𝑎(𝑏 + 𝑐) = 𝑎𝑏 + 𝑎𝑐 and (𝑏 + 𝑐)𝑎 = 𝑏𝑎 + 𝑐𝑎, where the quantities 
denoted by its variables are the positive integers, should be preserved 
when they denote any other objects, like the negative, rational, or 
imaginary numbers. Just what rules (or formal laws) are exactly to be 
preserved when extending the number domain is a question that Han-

kel carefully considered. Importantly, like Peacock, Hankel also warned 
against the universal application of HP, emphasizing that certain rules 
that hold for the real numbers cannot be extended to complex and 
hypercomplex numbers.3 This justified his initial characterization of 
HP as a methodological or heuristic (hodegetisches) principle. But as 
we will presently see, Hankel, again like Peacock, regarded HP also 
as a metatheoretical principle that characterizes the relations between 
theories. Furthermore, Hankel came to think of it as a “metaphysical” 
principle, a view that was suggested to him by his envisaged application 
of HP to the physics of mechanical quantities.

To make sense of HP, and then identify in Hankel’s writings the 
novel metasemantics noted above in Peacock’s, we will need an account 
of his view of numbers, especially imaginary numbers, the possibility of 
which Hankel understood in terms of logical consistency: numbers exist 
only if their concept is clearly and distinctly defined without any con-

tradiction. The question about the existence of numbers, he suggested, 
reduces to the question about the existence of the thinking subject or the 
objects of thought, since numbers represent the relations between such 
objects. He then distinguished, in Kantian terms, between two main 
types of numbers: on the one hand, what he called “transcendent, purely 
mental, purely intellectual or purely formal” numbers are those repre-

senting relations between objects of thought that cannot be constructed 
in intuition. On the other hand, actual numbers, or what Hankel called 
“actuelle Zahlen”, are those representing relations between objects of 
thought that are constructed in intuition. However, he considered this 
distinction to be “not a rigid, but a blurred distinction” (“kein starrer, 
sondern ein fliessender”, Hankel, 1867, 8). Indeed, he further charac-

terized as “potentielle Zahlen” those numbers that, although initially 
taken as purely formal, eventually become actual numbers, just as the 
complexes did after receiving a geometrical representation. Potential 
numbers formally represent relations between objects of thought, which 
are such that an intuitive construction of them turns out to be neverthe-

less possible.

With his classification of types of numbers in place, Hankel charac-

terized formal mathematics as a pure doctrine of forms (reine Formen-

lehre):

The condition for the establishment of a general arithmetic is there-

fore a purely intellectual mathematics, detached from all intuition, 

3 Cf. Hankel, 1867, 195. He also proved that there can exist no extension 
beyond the complexes that preserves the commutativity of basic operations 
(Detlefsen, 2005, 286). For recent discussions of Hankel’s philosophy of mathe-

matics, especially in connection to Frege’s criticism of it, see Tappenden, 2019
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a pure doctrine of forms, in which it is not quantities or their repre-

sentations [Bilder], the numbers, that are combined, but intellectual 
objects, objects of thought, to which actual [actuelle] objects or re-

lations thereof can, but do not have to, correspond. (Hankel, 1867, 
10)

Thus, Hankel’s formal mathematics stipulates rules of combination for 
potential numbers, i.e., for numbers representing relations an intuitive 
construction of which is possible, though not necessary. These rules are 
arbitrary to an extent limited solely by logical consistency, which Han-

kel thought could be established by their mutual independence. Nothing 
like Peacock’s relation of suggestion seems to be explicitly required to 
impose further restrictions on the rules of formal mathematics. Nev-

ertheless, Hankel believed that a system of operations obeying formal 
rules remains “empty”, if no applications of results are possible. An 
empty system allows no relations between objects of thought to be con-

structed in intuition. Thus, Hankel understood formal mathematics as a 
theory of potential numbers, conceived of as purely formal representa-

tions of relations, for which it must be the case that a construction in 
intuition – an interpretation – of its formal results can be given. While 
he also thought that no such particular interpretation was necessary, 
he took the interpretability (or, more exactly, constructibility) of for-

mal results to be a crucial requirement. He believed that it must be the 
case, for practical reasons, that formal mathematics can be interpreted 
over the domain of actual numbers. In this, Hankel closely followed 
Peacock’s view. Indeed, more traces of the latter can be identified in 
Hankel’s writings, including statements that endorse Peacock’s rejec-

tion of generalization:

The purely formal mathematics, whose principles we have stated 
here, does not consist in a generalization of the usual arithmetic; 
it is a completely new science, the rules of which are not proved, 
but only exemplified, insofar as the formal operations, applied to 
actual numbers, give the same results as the intuitive operations of 
common arithmetic. In the latter the definitions of the operations de-

termine their rules, in the former the rules [determine] the meaning 
of the operations, or to put it another way, they give the instruction 
for their interpretation and their use. (Hankel, 1867, 12)

Hankel also embraced Peacock’s novel metasemantics. One way to un-

derstand Hankel’s claim that the rules of formal mathematics determine 
the meaning of its operations, in the sense that they give instructions 
for their interpretation and application, is by taking the formal rules to 
provide instructions for the interpretation of formal operations over the 
domain of actual numbers, where these instructions include a condition 
of numerical identity. More specifically, formal operations are mean-

ingful only if the actual results obtained by interpreting the results of 
formal mathematics over the domain of common arithmetic are numeri-

cally identical with the actual results derivable by the actual operations 
of arithmetic. This view is similar to that expressed by Peacock. The 
interpretability of formal results is necessary for applications, and suf-

ficient to render the formal operations meaningful, provided that the 
numerical identity condition is generally satisfied.

But Hankel went, in fact, further than Peacock. He considered HP 
not only as a guide or a merely heuristic or methodological principle, 
and not only as a metatheoretical principle, characterizing the inter-

pretability relations between theories, either. Rather, Hankel came to 
think that it was a “metaphysical” principle (Hankel, 1867, 12), a claim 
that he attempted to justify by pointing to non-arithmetical interpreta-

tions of formal mathematics, e.g., geometrical and physical interpreta-

tions. Indeed, Hankel took mechanics to be a theory of actual relations 
between physical quantities that is, just like arithmetic, merely sub-

ordinate to his pure doctrine of forms. And he took HP to stipulate 
that the relations between physical quantities – the physical laws – 
must be as much as possible preserved in passing from mechanics to 

the pure doctrine of forms. The operations of the latter are meaning-
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ful only if the actual results derivable by means of the operations of 
mechanics are the same as the actual results obtained by interpreting 
formal results over the domain of physical quantities. On this ground, 
he criticized Peacock’s conception of the PF as “too narrow” (Hankel, 
1867, 15). Investigations in the natural science, Peacock had main-

tained, proceed in two directions: from principles to results, but also 
towards deeper principles, in a series that terminates only in the “mys-

tery of the first cause” (Peacock, 1833, 186). Since he thought that the 
first cause could not be understood as a set of ultimate natural facts, he 
believed that the deepest principles of the natural sciences could not be 
conceived of in relation to any formal principles. According to Hankel’s 
view, by contrast, mechanics, just like arithmetic, is another necessarily 
possible interpretation of the pure theory of forms. Without this possi-

bility, formal operations could have no physical meaning. As we will 
see presently, this view appears to have had an influence on Bohr’s con-

ception of the relation between classical and quantum physics.

2. The development of Bohr’s correspondence principle

The main point of this paper is to draw attention to a seemingly 
overlooked connection between HP and Bohr’s CP. Having looked at the 
historical and theoretical context of the former, I now want to revisit 
the latter. In particular, without attempting to provide an exhaustive 
analysis, I will recall the emergence of CP in the old quantum theory 
and some relevant changes that occurred in Bohr’s thinking until the 
application of CP in his approach to quantum mechanics.4 But I should 
note that it is not clear when Bohr actually became aware of HP: it is 
possible that he knew about it from the very beginning of his articu-

lation of CP, but it is also possible that he found out about HP only 
later, when as we will see he shared it with his students.5 It is quite 
remarkable, nevertheless, that the development of CP in Bohr’s think-

ing matches rather accurately the views about PF and HP that we have 
seen Peacock and Hankel to have, respectively, developed. In any case, 
let me stress here already the expected benefits of my point, in order 
to properly motivate this inquiry. If CP is understood as grounded in 
HP, then one can explain several aspects of Bohr’s thinking, including 
his claim that QM is a “rational generalization” of classical physics. As 
we will see, Bohr’s notion of rational generalization is based on Han-

kel’s notion of generalization, which was essentially based on Peacock’s 
concept of suggestion. Furthermore, if CP is understood as grounded in 
HP, then one can also explain a crucial element of Bohr’s approach to 
QM, i.e., his view that the meaning of QM is determined by its rules, a 
view rather tersely expressed in his reply to the EPR paper. As a bonus, 
we will also be able to make sense of a seemingly strange criticism di-

rected by Feyerabend and Bohm against this approach, and to show that 
Howard’s reconstruction of Bohr’s doctrine of the necessity of classical 
concepts can avoid any conflict with CP.

Bohr’s early use of CP was related to his analysis of radiation into 
harmonic components. The analysis was concerned with the descrip-

tion of the so-called quantum jumps, i.e., the kind of transitions an 
electron undergoes between stationary states, which unlike its motion 
in a particular stationary state, could not be accounted for by classical 
electrodynamics. The radiation emitted during such transitions allows, 
according to Bohr’s analysis, values of the frequencies in the harmonic 
components different from the classical values. But he noted an ap-

proximate agreement between quantum and classical frequency values 
and stipulated such an agreement between transition probabilities and 

4 For more comprehensive accounts of CP, see e.g. Darrigol, 1997, Tanona, 
2002, 2004, Bokulich & Bokulich, 2005, Bokulich, 2008, Jähnert, 2019, and 
Perovic, 2021. For a succinct account, see Bokulich & Bokulich, 2020.

5 I have been so far unable to search through the Bohr archive in Copen-

hagen. Doing so would obviously be important for the line of interpretation of 
CP pursued in this paper. One very plausible source on HP could have been 
Bohr’s brother, Harald, who would have been aware of this principle and its 
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the amplitudes of the harmonic components of the classical motion, in 
the limit of large quantum numbers. He also stipulated an agreement 
between transition probabilities and the amplitudes of the harmonic 
components, in the case of small quantum numbers. Bohr appears to 
have included all these possible relations in his early notion of corre-

spondence:

This correspondence between frequencies determined by the two 
methods must have a deeper significance and we are led to antic-

ipate that it will also apply to the intensities. This is equivalent to 
the statement that, when the quantum numbers are large, the rel-

ative probability of a particular transition is connected in a simple 
manner with the amplitude of the corresponding harmonic compo-

nent in the motion. This peculiar relation suggests a general law 
for the occurrence of transitions between stationary states. Thus we 
shall assume that even when the quantum numbers are small the 
possibility of transition between two stationary states is connected 
with the presence of a certain harmonic component in the motion of 
the system. (Bohr, 1920, 27–28)

As Bohr emphasized here clearly enough, however, the correspondence 
between transition probabilities and the amplitudes of harmonic com-

ponents, when quantum numbers are large, is anticipated on the basis 
of the correspondence between frequencies, and should be preserved 
even when the quantum numbers are small. Note that, as a general law, 
one that is valid for all quantum numbers, this correspondence is not de-

duced from, but is said to be suggested by the correspondence that holds 
for large quantum numbers. Thus, even though CP clearly emerged in 
Bohr’s thinking about radiation and his atomic model, as “a result of 
gradual bottom-up hypothesis-building from the experimental context 
within the confines of the model” (Perovic, 2021, 89), and even though 
it was concerned primarily with the relation between physical quan-

tities, it seems fair to say that here it was also assumed as a guide 
in the development of Bohr’s radiation theory, as a heuristic principle 
instrumental for his generalization to the case of all quantum num-

bers. Furthermore, the stipulated preservation of the relation between 
transition probabilities and the amplitudes of harmonic components un-

derscores a relation between the classical theory of radiation and Bohr’s 
own radiation theory, a metatheoretical relation that he denoted as a 
“formal analogy”, despite his suspicion that the idea of correspondence 
as formal analogy “might cause misunderstanding”. Indeed, it’s difficult 
to see how a formal analogy between the classical and the quantum the-

ory could be justified, if one took CP to concern exclusively a relation 
between physical quantities. But what he meant, I think, is that it is the 
stipulated preservation of this relation that justifies the formal analogy. 
Of course, it is a further question what else and precisely how much 
of the classical theory can be preserved in the transition to quantum 
theory, and I will return to this question below.

Now, if CP is also understood as stipulating the preservation of cer-

tain relations between physical quantities, and if it justifies Bohr’s claim 
of formal analogy, then it further justifies a conception of the quantum 
theory as a certain kind of generalization of the classical theory. Bohr, 
himself, implied as much at the third Solvay Congress in 1921, when he 
noted

on the one hand, the radical departure of the quantum theory from 
our ordinary ideas of mechanics and electrodynamics as well as, 
on the other hand, the formal analogy with these ideas. ... [T]he 
analogy is of such a type that in a certain respect we are entitled 
in the quantum theory to see an attempt of a natural generalisation 
of the classical theory of electromagnetism. (quoted in Bokulich & 
Bokulich, 2005, 348)

What did Bohr mean here by a “natural generalization” of a classi-

cal theory? And did he mean the same thing when he later referred 

to quantum mechanics (QM) as a “rational generalization” of classical 
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physics? After QM received a coherent mathematical formulation, did 
Bohr consider this as a generalization justified by a formal analogy be-

tween classical physics and QM, in turn justified by CP, understood to 
require the preservation of correspondences between physical quanti-

ties? An answer to such questions would require a detailed analysis of 
Bohr’s writings after 1925, and especially of the development of his 
conception of CP, which I need to defer to a subsequent paper. But I 
should, nevertheless, note that the view that there is a correspondence 
in the sense of formal analogy between classical mechanics and QM was 
expressed by Dirac:

The correspondence between the quantum and classical theories lies 
not so much in the limiting agreement when ℎ → 0 as in the fact 
that the mathematical operations on the two theories obey in many 
cases the same laws. (Dirac, 1925, 649)6

Dirac appears to have justified the formal analogy via the preservation 
of laws (many, though not all of them) rather than, like Bohr, via the 
preservation of correspondences between physical quantities. Despite 
differences in their views, such as they were, Bohr also came to charac-

terize the metatheoretical relation between classical mechanics and QM 
in terms of preservation of rules (many, though not all of them):

In this formalism, the canonical equations of classical mechanics 
... are maintained unaltered, and the quantum of action is only 
introduced in the so-called commutation rules... for any pair of 
canonically conjugate variables. While in this way the whole scheme 
reduces to classical mechanics in the case h = 0, all the exigencies of 
the correspondence argument are fulfilled also in the general case... 
(Bohr, 1939, 14)

Bohr clearly indicates that this characterization is in accordance with 
his CP, which suggests that, as recent commentators aptly put it, “Bohr 
is not simply saying that the quantum theory should ‘go over’ to the 
classical theory in the appropriate limit. Rather, he is maintaining that

quantum mechanics should be a theory that departs as little as possible 
from classical mechanics.” (Bokulich & Bokulich, 2005, 349, emphasis 
added) The suggestion is that CP, and more precisely the inherent no-

tion of generalization, should be understood as the requirement that 
QM should preserve as many classical rules as possible. It is this very 
notion of generalization, then, that Bohr thought characterized the re-

lation between classical physics and QM. Obviously, this does not imply 
that classical physics is just a particular case of QM, which would be im-

plied if QM were a mere or properly called generalization of classical 
physics.

Having focused on Bohr’s notion of rational generalization, I now 
want to suggest further that this is exactly the notion of generaliza-

tion that Peacock and Hankel had thought characterized the relation 
between arithmetic, on the one hand, and symbolic algebra or formal 
mathematics, on the other hand. If this is true, then it is only in part 
correct to say that “Through his rational generalization thesis, Bohr is 
offering us a new way of viewing the relationship between classical and 
quantum mechanics.” (Bokulich & Bokulich, 2005, 354) Bohr’s notion 
of a natural or rational generalization was new only in the sense that it 
had not been applied, before him, to the relation between classical and 
quantum physics. Although evidence for the connection between Bohr’s 
view and that of Hankel will be presented only in the next section, let 
me follow up a bit on my suggestion.

Recall that Peacock rejected the view that symbolic algebra is a 
generalization of arithmetical algebra, for he thought this would im-

ply that the principles of symbolic algebra could then be deduced from, 

6 Later, Dirac attempted to rigorously justify this view of the correspondence 
between classical mechanics and Heisenberg’s QM by setting up a general the-
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ory of functions of non-commuting variables (see Dirac, 1945).
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rather than just suggested by the principles of arithmetical algebra. He 
also thought that the relation of suggestion between these theories im-

plied that an arithmetical interpretation of symbolic algebraic results is 
not necessary, but only necessarily possible. Later, Hankel held a sim-

ilar view and maintained that the laws of formal mathematics cannot 
be proved by the rules of arithmetic, but must nevertheless be inter-

pretable in arithmetical language, in the sense that formal results must, 
when arithmetically interpreted, be numerically identical with the re-

sults of arithmetic. This shows that, on both of these 19th century views, 
their notion of generalization implied a certain interpretability relation 
between the theories they were concerned with. In order to test the 
viability of my suggestion to understand Bohr’s notion of rational gen-

eralization in the same vein, even before I adduce any evidence for 
the connection between his view and that of Hankel, one should ask 
whether Bohr’s notion also implies a certain interpretability relation be-

tween QM and classical physics. But the fact that it actually does so is, of 
course, well known. A crucial element of Bohr’s approach to QM, which 
will be discussed further below, is the requirement that any descrip-

tion of experimental results must be “essentially equivalent” to their 
classical description. This requirement was taken to have metasemantic 
implications: the necessarily classical description of experimental re-

sults settled, on Bohr’s view, the question about the meaning of QM, 
which became puzzling in the context of the measurement problem. As 
he put it in his reply to the EPR paper, “there can be no question of 
any unambiguous interpretation of the symbols of quantum mechan-

ics other than that embodied in the well-known rules which allow to 
predict the results to be obtained by a given experimental arrangement 
described in a totally classical way.” (Bohr, 1935, 701) This sounds a 
lot like Peacock and Hankel: rules determine the meaning of symbols, 
rather than the other way around. However, for the rules of QM to de-

termine, or “embody”, its meaning, Bohr demanded that experimental 
results must be classically interpreted. Here he deviated from Peacock 
and Hankel in a significant way, and this exposed him to criticism from 
Feyerabend and Bohm, as we will see. But before that, let me turn to 
the imminent question about textual evidence.

3. Correspondence as permanence of rules

Is there any textual evidence that Bohr understood CP as an expres-

sion of HP? If there is, then it has remained by and large unnoticed by 
Bohr scholars, so far as I have been able to determine. Max Jammer, 
who seems to have been the first commentator to read CP as a metathe-

oretical principle, though not also as a quantum law, mentioned HP in 
one of his “digressions” from a streamlined presentation of the concep-

tual development of QM:

[M]atrices, multidimensional vectors, and quaternions are exten-

sions of the concept of real numbers. Beyond the domain of complex 
numbers, however, extensions are possible only at the expense of 
Hankel’s principle of permanence, according to which generalized 
entities should satisfy the rules of calculation pertaining to the original 
mathematical entities from which they have been abstracted. Thus, while 
associativity and distributivity could be preserved, commutativity 
had to be sacrificed. It was the price which had to be paid to ob-

tain the appropriate mathematical apparatus for the description of 
atomic states. (Jammer, 1966, 217, emphasis added)

Jammer implied that the mathematical description of atomic states in 
QM, just like the extension of mathematics beyond the complexes, was 
possible only at the expense of HP, which suggests that he thought 
HP was invalidated by the development of QM. But this would assume 
that it is an universally valid principle, a view that we have seen both 
Peacock and Hankel had rejected. At the same time, Jammer thought 
that “there was rarely in the history of physics a comprehensive the-

ory which owed so much to one principle as quantum mechanics owed 

to Bohr’s correspondence principle.” (Jammer, 1966, 118) A proper un-
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derstanding of CP would show that there is a “logical rupture” between 
classical mechanics and QM, which he described in the following terms:

[T]he correspondence principle, while leading to numerical agree-

ments between quantum mechanical and classical deductions, af-

firmed no longer a conceptual convergence of the results but es-

tablished merely a formal, symbolic analogy between conclusions 
derived within the context of two disparate and mutually irreducible 
theories. It only showed that under certain conditions (for instance, 
for high quantum numbers or, in classical terms, for great distances 
from the nucleus) the formal treatments in both theories converge 
to notationally identical expressions (and numerically equal results) 
even though the symbols, corresponding to each other, differ strik-

ingly in their conceptual contents. (Jammer, 1966, 227)7

A logical connection or harmony (or whatever the opposite of logical 
rupture might be) between QM and classical mechanics would estab-

lish, Jammer believed, a conceptual convergence of their experimental 
results, by which he meant an identity of conceptual contents, rather 
than the numerical identity of results. He took CP to imply that only the 
latter must obtain between the two theories, while presumably think-

ing that HP would require the former. However, as we have seen above, 
Hankel had rejected this understanding of HP, when (following Pea-

cock’s view on symbolic algebra) he denied that formal mathematics 
is a generalization of universal arithmetic. Recall that, according to the 
reading I proposed, Hankel emphasized that HP implies only that formal 
mathematics must be interpretable in the language of arithmetic, and 
when thus interpreted, all formal results should be numerically identi-

cal with results derived in arithmetic. What Jammer wrote about CP is 
correct then, provided that one takes CP as a version of HP properly 
understood.

The fact that Bohr did take CP as a version of HP has been re-

ported by Paul Feyerabend, who reminisced that, some time between 
1949–1952, in some of his seminars,

Bohr ... talked about the discovery that the square root of two can-

not be an integer or a fraction. To him this seemed an important 
event, and he kept returning to it. As he saw it, the event led to an 
extension of the concept of a number that retained some properties of 
integers and fractions and changed others. Hankel, whom Bohr men-

tioned, had called the idea behind such an extension the principle of 
the permanence of rules of calculation. The transition from classical 
mechanics to quantum mechanics, said Bohr, was carried out in accor-

dance with precisely this principle. That much I understood. The rest 
was beyond me. (Feyerabend, 1995, 76-78, emphasis added)

Note that, according to Feyerabend, Bohr’s reading of HP did not as-

sume the universal validity of the principle. In accordance with Hankel’s 
own formulation, Bohr knew well that when domains are extended in 
mathematics, the rules of calculation are always preserved as far as 
this is possible. He also explicitly emphasized the significance of HP for 
the development of QM as he saw it: it was the very transition from 
classical mechanics that he saw carried out in accordance with HP, a 
significance that he typically attributed, in print, to CP. It is in fact ut-

terly remarkable that, in his published works, Bohr always maintained 
that this transition was carried out in accordance with CP, and as far as 
I have been able to determine, he never mentioned HP or Hankel at all. 

7 Others appear to have followed Jammer in making a similar point, that 
CP could not and was not meant to close the conceptual gap between classi-

cal physics and QM. To give just two examples: Olivier Darrigol claimed that 
“permanent formal schemes allow transfers of knowledge between successive 
theories even if their basic concepts appear to be incommensurable.” (Darrigol, 
1986, 198sq) Also, Hans Radder wrote: “Generally speaking, intertheoretical 
correspondence is primarily of a formal-mathematical and empirical but not of 
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In any case, as Feyerabend’s reminiscence indicates, Bohr also knew too 
well that, as in mathematics, classical rules are preserved in QM as far 
as this is possible. The same point is clearly made in his 1938 Warsaw 
conference talk, already quoted above:

In the search for the formulation of such a generalization [of the cus-

tomary classical description of phenomena], our only guide has just 
been the so-called correspondence argument, which gives expres-

sion for the exigency of upholding the use of classical concepts to the 
largest possible extent compatible with the quantum postulates. (Bohr, 
1939, 13; emphasis added)

After one seminar meeting, Feyerabend confessed his lack of under-

standing to Bohr’s assistant, Aage Petersen. In a decade or so, Feyer-

abend returned to that conversation:

As Aage Petersen has pointed out to me, Bohr’s ideas may be com-

pared with Hankel’s principle of the permanence of rules of calcula-

tion in new domains... According to Hankel’s principle the transition 
from a domain of mathematical entities to a more embracing domain 
should be carried out in such a manner that as many rules of calcu-

lation as possible are taken over from the old domain to the new one. 
For example, the transition from natural numbers to rational num-

bers should be carried out in such a manner as to leave unchanged 
as many rules of calculation as possible. In the case of mathemat-

ics, this principle has very fruitful applications. (Feyerabend, 1962, 
120)

What Bohr had surely explained to his students, Feyerabend now finally 
understood correctly: HP should not be taken to hold universally. It 
stipulates, just like Peacock and Hankel emphasized, that rules or laws 
are to be preserved to the largest extent possible. Thus, if applied to 
QM under the guise of CP, as I take it to have been the case, then HP 
allows that those classical laws that are essentially classical, like the 
commutativity of operations, can be given up.

As already noted in the previous section, this evidence, based on 
Feyerabend’s recollections of Bohr’s lectures and Petersen’s explana-

tions, does not tell us precisely when Bohr actually became aware of 
the connection between HP and CP: it is possible that he knew about it 
from the very beginning of his articulation of CP, in his theory of radia-

tion, but it is also possible that he found out about HP only later, maybe 
after 1925, or even later than that in the late 1930s or early 1940s. 
But I find it quite remarkable that Bohr’s characterizations of CP as a 
methodological principle or a guide – the “only guide”, as he specified 
in Warsaw in 1938 – as well as a metatheoretical principle concerning 
the “rational generalization” of classical physics in QM, match rather 
accurately the views about PF and HP that we have seen Peacock and 
Hankel to have, respectively, developed in 19th century mathematics. 
The evidence supports at least the claim that Bohr’s notion of ratio-

nal generalization was grounded in Hankel’s notion of generalization, 
which in turn was grounded, as we have seen, in Peacock’s notion of 
suggestion. This clarifies, I hope, what so far has been a rather enig-

matic detail in Bohr’s works.

In fact, more can be explained on the basis of my interpretation of 
the connection between HP and CP. For Feyerabend had, of course, a lot 
more to say about Bohr’s approach to QM. One particular weakness with 
this approach that he immediately identified was described as follows:

A complete replacement of the classical formalism seems therefore 
to be unnecessary. All that is needed is a modification of that formal-

ism which retains the laws that have found to be valid and makes 
room for those new laws which express the specific behavior of the 
quantum mechanical entities. ... [The new laws] must allow for the 
description of any conceivable experiment in classical terms – for 
it is, in classical terms that results of measurement and experimen-
tation are expressed; ... [this requirement] is needed if we want to 
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retain the idea... that experience must be described in classical terms. 
(Feyerabend, 1962, 120; emphasis added)

As Feyerabend correctly observed, Bohr insisted that the classical de-

scription of experimental results, i.e., presumably their interpretation in 
the language of classical physics, is necessary. But Feyerabend rejected 
this necessity claim, which might seem rather strange. His criticism, 
further elaborated in the same paper, emphasizes the point that in 
principle a different language could be developed at least as adequate 
for the description of experimental results as the language of classical 
physics. Feyerabend’s point, that a classical description is not neces-

sary, allows however that this may be necessarily possible. In light of 
the view articulated by Peacock and Hankel, Feyerabend’s criticism ap-

pears to be justified. It clearly emphasizes that Bohr’s view deviated 
from that of Peacock and Hankel, for whom interpretability, though 
no particular interpretation, was necessary. But it is this deviation pre-

cisely that exposed Bohr to Feyerabend’s criticism.8 This very criticism 
was later pressed by Bohm as well: “What is called for, in my view, is 
therefore a movement in which physicists freely explore novel forms of 
language, which take into account Bohr’s very significant insights but 
which do not remain fixed statically to Bohr’s adherence to the need 
for classical language forms.” (Bohm, 1985, 159; quoted in Bokulich & 
Bokulich, 2005, 368). That the description of experimental results must 
be given in a classical language, Bohm might have added, just because 
they are in practice presented in this language is not merely a static 
fixation, but a downright fallacy.

Having offered some evidence that Bohr understood CP as a version 
of HP, or at least that he (and some of his assistants and, eventually, 
Feyerabend) thought that a comparison of the former with the latter 
would be fruitful for understanding the transition from classical physics 
to QM, and having also admitted that this could only justify the neces-

sary possibility of interpreting experimental results in classical terms, 
rather than Bohr’s insistence on its necessity, I want to turn to the ques-

tion of what exactly Bohr meant by “classical”. Some commentators 
think that he took such concepts to be simply concepts of classical me-

chanics and electrodynamics (cf. Bokulich & Bokulich, 2005, 351), but 
others maintain that, for Bohr, a classical description meant “a descrip-

tion in terms of what physicists call ‘mixtures”’ (Howard, 1994, 203). 
I want to argue that, despite appearances, if the connection between CP 
and HP is taken seriously, then one can rather nicely accommodate the 
latter view.

4. Howard on Bohr’s essential equivalence

In his reconstruction of Bohr’s philosophy of physics, Don Howard 
emphasized that the doctrine of the necessity of classical terms was 
upheld by Bohr in an attempt to overcome a problem for objectivity 
that arises in QM. The problem is that what is generally considered 
a necessary condition for objectivity – the metaphysical independence 
of observer and observed reality, and more precisely their separability, 
which Einstein thought was indispensable to the very formulation and 
testing of physical laws – cannot be preserved when passing from clas-

sical physics to QM. As Howard presented it, Bohr’s doctrine was meant 
as a purported solution to this problem. Classical terms are necessary 
because they “embody” the separability condition, which despite being 
false in QM allows for an unambiguous communicability of experimen-

tal results.9

8 To be sure, Feyerabend’s opinions about Bohr’s approach to QM have also 
evolved over time (see Kuby, 2021).

9 Cf. Howard, 1994, 207. Note that separability is understood as state decom-

posability. To say that classical concepts “embody” the separability condition 
is taken to mean that separability is mathematically equivalent to Bohr’s doc-

trine of the necessity of classical concepts (see Landsman, 2006 for a proof of 
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this equivalence). This entails that separability and entanglement are incompat-
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Further, Howard distinguished two ways of understanding Bohr’s 
doctrine: one of them “leaves open the possibility that, as our language 
develops, we might outgrow this dependence” on classical concepts; the 
other, which is considered preferable, takes “the necessity of classical 
concepts to be an enduring one, not to be overcome at a later stage 
in the evolution of language.” (Howard, 1994, 209) However, barring 
the potential fallacy mentioned in the previous section, it is not clear 
why the latter view should be preferred. What exactly might explain 
Bohr’s insistence on the enduring character of classical language? What 
reasons did he have, and what reasons might anyone have, for exclud-

ing the possibility that other languages, as both Feyerabend and Bohm 
suggested, could at least in principle be developed to communicate 
quantum-mechanical results unambiguously and at least as adequately 
as the language of classical physics? If CP is understood as grounded 
in HP, as I have suggested, then it is the interpretability, rather than 
any particular interpretation, of experimental results that should be 
required by Bohr’s doctrine. This would leave open the possibility en-

visaged by Feyerabend and Bohm.10

More importantly, however, Howard argued that, in demanding a 
classical description of experimental results, Bohr’s doctrine does not re-

quire that a measuring instrument must be described entirely in classical 
terms. Rather, only some of its properties are to be described classi-

cally, i.e., those that are correlated with the properties of the quantum 
system undergoing measurement (Howard, 1994, 216). Howard took 
this to imply that what Bohr meant by a classical description should 
be most plausibly reconstructed as a description in terms of mixtures, 
rather than pure states; mixtures that must always be appropriate to 
a given experimental context. The reason for this is that, unlike pure 
states, mixtures are considered to “embody” the separability condition, 
in the sense that they allow the separability of measuring instrument 
and measured object with regard to exactly those properties of the ob-

ject one is looking to determine in a particular measurement.

What is the role of CP on this reconstruction of Bohr’s doctrine? 
As Howard noted, this doctrine requires an “essential equivalence”, 
i.e., an equivalence between, on the one hand, the QM description of 
the properties of the measuring instrument that are correlated with 
the measured properties of the system undergoing measurement and, 
on the other hand, the classical description of those properties of the 
measuring instrument. Indeed, the main goal of Bohr’s 1938 Warsaw 
conference paper was to discuss “certain novel epistemological aspects” 
involved in what he called “the observation problem” and, more specif-

ically, certain aspects regarding “the analysis and synthesis of physical 
experience.” (Bohr, 1939, 19) What were these aspects? The main out-

come of the analysis was an emphasis on the necessity of taking the 
whole experimental arrangement, i.e., measured object plus measuring 
instrument, into consideration. Without this, said Bohr, no unambigu-

ous meaning could be given to the QM formalism (Bohr, 1939, 20). The 
outcome of the synthesis was presented as follows:

In the system to which the quantum mechanical formalism is ap-

plied, it is of course possible to include any intermediate auxiliary 
agency employed in the measuring process. Since, however, all those 
properties of such agencies which, according to the aim of the mea-

surement, have to be compared with the corresponding properties 
of the object, must be described on classical lines, their quantum 
mechanical treatment will for this purpose be essentially equivalent 
with a classical description. (Bohr, 1939, 23sq)

ible. As Howard emphasized, this is precisely the reason Bohr’s solution to the 
problem of objectivity is unacceptable. But note also that separability, as Ein-

stein himself appears to have conceived of it, may be a weaker condition than 
state decomposability and, thus, compatible with entanglement (see Murgueitio 
Ramírez, 2020 for an argument to this effect).
10 It is of course also possible that Bohr had other unstated reasons, unrelated 

to CP’s grounding in HP, that he took to justify his doctrine (see Faye, 2017).
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Thus, Bohr’s insight was that giving a classical description of experimen-

tal results can only mean establishing the essential equivalence of the 
two descriptions of the relevant subset of properties of the measuring 
instrument. But establishing such an equivalence, Howard maintained, 
is at odds with Bohr’s CP:

[W]hat kind of “classical” description could be ... “essentially equiv-

alent” to a quantum mechanical description. In the sense intended 
by the correspondence principle, quantum mechanics might agree 
with Newtonian mechanics or with Maxwell’s electrodynamics in 
the limit of large quantum numbers, but that is not an “essential” 
equivalence. Moreover, the kind of convergence between quantum 
and classical descriptions demanded by the correspondence princi-

ple is a wholesale convergence, not an equivalence between selected 
sets of properties. ...

How can a classical description be ‘essentially equivalent’ to a 
quantum mechanical one? Bohr’s correspondence principle is what 
first comes to mind, but it cannot provide the answer, for two rea-

sons. First, the correspondence principle asserts that quantum and 
classical descriptions agree in the limit of large quantum numbers, 
that, is, in phenomena where the quantum of action is negligible. ...

Second, what the correspondence principle says about the re-

lationship between classical and quantum descriptions is that they 
give approximately the same predictions in the limit of large quan-

tum numbers. But approximate agreement is hardly essential equiv-

alence. The appropriate mixtures model gives a quite different an-

swer. A quantum mechanical description, in terms of a pure case, 
and a ‘classical’ description, in terms of an appropriate mixture, give 
exactly the same predictions for those observables measurable in the 
context that determines the appropriate mixture.11

As we have seen above, there is evidence (and an apparent consensus 
today) that CP should be read as asserting not merely an approximate 
agreement that holds in the limit of large quantum numbers, but an 
agreement that also holds more generally, for small quantum numbers 
as well. But I think that this poses no problem for Howard’s recon-

struction of Bohr’s doctrine of classical concepts. This is because my 
account of CP as grounded in HP entails that there is no conflict at all 
between CP and Bohr’s demand of an essential equivalence. Quite the 
opposite, this account can nicely accommodate the fact that a “whole-

sale convergence”, i.e., an equivalence between the QM description 
of all properties of the measuring instrument and their classical de-

scription, cannot be established, and that an essential equivalence, as 
reconstructed by Howard, is necessary for the classical interpretability of 
experimental results. This point can be succinctly clarified by appeal to 
Klaas Landsman’s Bohrification strategy.12 Quantum measurement re-

sults, considered as physically significant aspects of a noncommutative 
algebra of observables (NAO), are accessible only if they can be de-

scribed classically, i.e., only if they can be considered as aspects of a 
commutative algebra (CA). But NAO should be considered as a ratio-

nal generalization of CA, in Bohr’s sense. This kind of generalization 
requires exactly the essential equivalence that Bohr demanded, which 
can be established if and only if the elements of CA are a proper sub-

set of the elements of NAO – the subset determined by the particular 
experimental context. A wholesale convergence, which would require 
that CA and NAO be coextensive, is mathematically impossible.

11 Cf. Howard, 1994, 217-225. See also Howard, 2021, 166 for a more recent 
iteration of this view.
12 Cf. Landsman, 2017. Howard’s own formal explication of what it means for 
a classical description to be essentially equivalent to a QM description is based 
on his 1979 theorem concerning context-dependent mixtures. For details, see 
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Howard, 2021, 162-170.
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5. Conclusion

The significance of the principle of permanence for our understand-

ing of the correspondence principle is, I believe, undeniable. As inter-

preted by Bohr, QM turns out to be a rational generalization of classical 
physics in precisely the sense of generalization that had been articulated 
already by Peacock and Hankel in the 19th century. Bohr’s slight devi-

ation from Peacock’s and Hankel’s views exposed him to Feyerabend’s 
and Bohm’s criticism, which becomes intelligible enough when con-

sidered against the historical background presented in this paper. My 
analysis, I hope, goes some of the way towards placing “Bohr’s views 
on the role of classical concepts ... in their proper historical context, es-

pecially as regards the relevant philosophical context.” (Howard, 1994, 
227) As always, though, this is merely part of the whole story, more 
details of which await to be uncovered.
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