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Abstract: English

Essays on the Foundations of Axiom and Logic Selection is a collection of six interconnec-
ted works on the philosophical foundations of logic and mathematics. In particular, the
essays address the kinds of criteria one might apply when selecting one’s axioms or logic,
and the kinds of philosophical commitments about logic and mathematics which might
lead one to prefer one set of criteria over another.

Essays I-IV comprise the essays on axiom selection. They address the question of
which criteria mathematicians should apply when evaluating and deciding between com-
peting axiomatic theories, and the philosophical considerations which speak for one theory
of axiom selection over another.

Essays V and VI address logic selection. These essays defend the well known, though
frequently maligned, Carnapian account of logical correctness.

Three recurrent themes are present through the essays.

I am frequently motivated by an anti-metaphysical approach to philosophy. At several
points, perhaps most notably in essays II, III and VI, I argue against more metaphysically
loaded theories of axiom and logic selection. The details of this, in particular what I
mean by “anti-metaphysical”, are summarized to my satisfaction in the overview.

Instrumentalism is the second recurrent theme. I view the value of mathematics and
logic as tools for other forms of inquiry, not as the independent study of a particular
subject-matter.

Lastly, I defend various versions of pluralism throughout the thesis. In essays I, III and
IV I defend (several versions of) axiomatic pluralism. In essay V I defend logical pluralism.

Through these essays, I hope to have made a meaningful contribution to a series of
questions that I take to be central to current work in the philosophies of logic and
mathematics.



Kurzfassung: Deutsch

Die Aufsätze über die Grundlagen der Axiom- und Logik-Auswahl ist eine Sammlung von
sechs miteinander zusammenhängenden Beiträgen über die philosophischen Grundlagen
der Logik und Mathematik. Die Aufsätze befassen sich insbesondere mit den Kriterien,
die man bei der Auswahl der Axiome oder der Logik anwenden kann, sowie mit den
philosophischen Überzeugungen in Bezug auf Logik und Mathematik, die dazu führen
können, dass man eine Reihe von Kriterien einer anderen vorzieht.

Die Aufsätze I-IV beschäftigen sich mit der Auswahl von Axiomen. Sie befassen sich mit
der Frage, welche Kriterien Mathematiker*innen bei der Bewertung und Entscheidung
zwischen konkurrierenden axiomatischen Theorien anwenden sollten, und mit den philo-
sophischen Überlegungen, die für eine Theorie der Axiomen-Auswahl gegenüber einer
anderen sprechen. Die Aufsätze V und VI befassen sich mit der Auswahl der verwendenden
Logiken. Sie verteidigen die bekannte, jedoch häufig kritisierte Carnap’sche Theorie der
logischen Richtigkeit.

Drei wiederkehrende Themen ziehen sich durch die Aufsätze.

Ich werde häufig von einer anti-metaphysischen Herangehensweise an die Philosophie
motiviert. An mehreren Stellen, vor allem in den Aufsätzen II, III und VI, argumentiere
ich gegen metaphysisch aufgeladene Theorien der Axiom- und Logik-Auswahl. Die Ein-
zelheiten hierzu, insbesondere was ich unter "anti-metaphysisch" verstehe, sind in der
Übersicht für mich zufriedenstellend zusammengefasst.

Der Instrumentalismus ist das zweite wiederkehrende Thema. Der Wert von Math-
ematik und Logik liegt meines Erachtens in ihrer Funktion als Werkzeuge für andere
Formen der Forschung, nicht in unabhängig Erforschung ihres eigenen Wahrheitsbestands.

Abschließend verteidige ich in der gesamten Dissertation verschiedene Versionen des
Pluralismus. In den Aufsätzen I, III und IV verteidige ich (mehrere Versionen) des
axiomatischen Pluralismus. In Aufsatz V verteidige ich den logischen Pluralismus.

Durch diese Aufsätze hoffe ich, einen bedeutsamen Beitrag zu einer Reihe von Fra-
gen geleistet zu haben, die ich als zentral für die aktuelle Arbeit in der Philosophie der
Logik und der Mathematik betrachte.

(Mit Dank an DeepL und Marlene Valek für ihre Hilfe bei dieser Übersetzung)
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Overview of Essays on the Foundations of
Axiom and Logic Selection

Introduction

This thesis is a compilation of six essays: four on Philosophy of Mathematics and
two on the Philosophy of Logic. Whilst interconnected and presented together, the
Essays are intended as stand-alone works and should be evaluated as such.

This overview gives me the opportunity to explain the research context con-
necting these essays and to draw out and comment on some of the themes present
across the thesis as a whole.

I recommend, then, reading this overview twice. Once at the beginning to provide
context for the thesis. But then again at the end to summarize the project as a
whole.

Essays I-IV: Essays on Axiom Selection

The four essays on the Philosophy of Mathematics address the topic of axiom
selection. Mathematics needs axioms. Without assumptions, the only statements
one can prove are simple logical tautologies (e.g. ⊢ ϕ ∨ ¬ϕ). At least for first-order
logics, this is insufficient. In order to do anything that looks like modern mathe-
matics, one needs more substantial assumptions: The Axioms.

But in many areas of mathematics (in particular set theory), one faces a choice
between different axiomatizations. Should one, for instance, adopt the axiom of
choice?
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This leads to a number of questions central to the philosophy of mathematics:

1. What axioms should one use?

2. What criteria should be applied when deciding between axioms?

3. How are the answers to 1. and 2. affected by wider philosophical claims
about mathematics?

I do not aim to answer question 1 in this thesis. There has been a great deal of
literature dedicated to this question. For instance, the debate between category
theory and set theory as a foundation for mathematics1, or debates about additional
axioms in set theory2.

In my opinion, however, ongoing debates about which axioms to use frequently lack
clear criteria for axiom selection. And when such criteria were present, they were
frequently not uncontroversial and the kinds of philosophical claims underpinning
such views were not always made explicit3.

The belief behind this thesis is that progress on the first-order question of what
axioms to use will be helped by a more theoretical discussion of what the correct
theory of axiom selection is. In other words, before establishing what the correct
axioms are, one must establish what must be true of some axiom or axiomatic
theory for it to be correct; what are the criteria to be applied when selecting one’s
axioms?

Essay I: On Axiom Selection takes one further step of abstraction. Before argu-
ing for my preferred account of axiom selection, it was essential to understand what
the possible theories of axiom selection are. The purpose of Essay I is conceptual
geography. I hope to have mapped the possibility space of the kinds of theories
of axiom selection available, along with some limited comments on the kinds of
philosophical claims about mathematics that might lead one to adopting one theory
or another.

Essay II: Mathematics Needs No (Philosophical) Foundation and Essay III: Instru-
mentalism & Axiom Selection build on Essay I by arguing for and against particular
accounts of axiom selection. Essay II presents the negative case against "foun-
dationalist" accounts of axiom selection. Essay III presents my positive account,
greatly influenced by the work of Penelope Maddy.
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Essay III, in particular, I take to be perhaps the most crucial of the thesis. Two of the
collection’s wider themes, pluralism and instrumentalism, first seriously appear
within this essay (though Axiomatic Pluralism is also discussed in Essay I).

Essay IV: Proofs, Derivations and Axiomatic Pluralism stands a little further away
from essays I-III, which are all quite interrelated. Essay IV deals with a current
and ongoing debate in the Philosophy of Mathematics: the relationship between
proofs, in the mathematician’s not the logician’s sense, and formal derivations.
Given the looser relationship between proofs and derivations that has been argued
for in recent years4, I argue for a similarly loose relationship between proofs and
axiomatic theories.

This is not per se an essay on axiom selection. Rather, this is an essay on what
role axioms actually play in mathematical practice. Philosophers of Mathematics
tend to be quite conservative. They typically dislike philosophical positions that
are revisionary of the way mathematics is done, and reasonably so. Given this
conservatism, a great deal hangs on what role axioms play within mathematical
practice. Essay IV, then, is indirectly relevant to the general question of the correct
theory of axiom selection.

Essay IV also further develops the theme of pluralism, though in a manner quite
different to the pluralism advocated for in essay III. Essay III’s pluralism is norma-
tive - I argue that there are many axiomatic theories that mathematicians should
(or may) use. Essay IV’s pluralism is descriptive - I argue that, as a matter of fact,
proofs can be associated with multiple derivations from different axiomatic theories.

The aims of the four Essays are therefore as follows:

1. To clarify and taxonomize the possible theories of axiom selection available.

2. To explore some of the philosophical motivations behind differing theories of
axiom selection.

3. To make the case for an instrumentalist theory of axiom selection.

4. To make a preliminary case for axiomatic pluralism, the view that there are
many correct axiomatic theories.
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Essays V-VI: Essays on Logic Selection

My work on logic selection, logical correctness and logical pluralism began in
connection to my work on axiom selection, though the two gradually grew apart.

First, there is some crossover between logic selection and axiom selection with
respect to the use of non-classical logics in mathematics. Historically, the primary
example of this has been the role of intuitionistic logic within mathematics5. More
recently, there has been work on applying paraconsistent logics to mathematics6.
Earlier in my research, I suspected that I may need a combined account of axiom
and logic selection. This, I believe, turned out not to be the case.

Second, work on logical correctness and logic selection is far more extensive
and developed than its mathematical counterpart7. It was my hope that I could
build on insights from the philosophy of logic when developing my account of the
philosophy of axiom selection.

This bore out to a certain extent. The themes of pluralism and instrumental-
ism, which became central in my thinking about axiom selection, began squarely
within my work on the philosophy of logic. However, there is not, as I’d hoped to
find, any simple mapping between theories of logical and axiomatic correctness.

Early in my research into logic selection I became convinced by something adjacent
to the Carnapian account of logical correctness8, if not the Carnapian account
itself. The nature of truth and consequently valid inference is language-dependent.
Any student of intermediate logic classes learns how to construct languages with
non-classical properties. It’s a very simple matter, once one knows how, to define a
language where, say, disjunctive syllogism is invalid. Picking one’s logic is then
simply a matter of picking one’s language.

My view is not exactly the same as Carnap’s. Most notably, I do not accept
Carnap’s tolerance principle. I refer to the position I defend, Carnap’s account
of correctness without tolerance, as the Neo-Carnapian view. As an exegetical
aside, I happen to think that the importance of the tolerance principle is readily
over-stated in interpreting Carnap’s work. Carnap appears to violate this principle
in multiple places in his wider work, most notably in Empiricism, Semantics and
Ontology (Carnap, 1950). It might therefore be that my Neo-Carnapian view just is
Carnap’s real view.
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In future work, I hope to argue that this is the case and that we should downplay
the importance of the tolerance principle when reading Carnap. But such exegetical
questions are put aside in this thesis. This collection is systematic, not historical or
exegetical in nature.

Despite what I take to be its natural plausibility, Carnap’s account has suffered a
great deal of criticism over the last eighty or so years. Much of this criticism is
from Quine. Many have even taken the Carnapian position to be all but refuted
by Quine9. But reports of this position’s death have, in my opinion, been greatly
exaggerated.

In Essay V: Language, Truths & Logics, I defend my Neo-Carnapian position from
what I take to be the most common objections levied against it. I hope to have
shown that the position is in far better shape than is frequently reported; it therefore
is deserving of greater attention within present debates on logical correctness and
logical pluralism.

The name of this paper is also a small homage to A.J. Ayer (1936)’s book of
a similar name: Language, Truth and Logic. His book was one of the first philosophy
books I read, having picked up a second-hand copy, aged 17, for about £1 from the
local Oxfam bookshop. A small nostalgic nod, I hope, is forgiven.

Essay VI: Three Approaches to Logical Correctness provides a very general case
for the (Neo) Carnapian view of logical correctness. At a very broad level, I
consider three ways one might think about logical correctness: logical realism, what
I call the one-language view and the Carnapian tradition. I present the Carnapian
objections to the former two positions.

The generality of this essay comes out of two competing concerns. On the
one hand, I took it to be important that I provide a positive case for my view of
logic, not merely defend it. On the other hand, however, there are simply too
many views of logic out there to do justice to all the available positions in a short
space. This thesis is, primarily, a work on the philosophy of mathematics, not the
philosophy of logic. It would have been too great a tangent from the intended pur-
pose of the work to respond in detail to the vast span of positions presently defended.
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Essay VI, then, is a compromise. I don’t claim to have definitively argued for the
(Neo) Carnapian position. I hope, however, to have given a sense, a flavour, of the
kinds of arguments the (Neo) Carnapian would make in response to certain kinds
of positions.

Returning to the context of the thesis as a whole, adopting a Carnapian view
of logic had the ironic consequence of severing any strong connection between the
two parts of the thesis. A logical realist is, perhaps, compelled to use whichever
logic they take to be objectively correct within mathematics. My Neo-Carnapian is
under no such obligation. For me, selecting the correct logic for mathematics is
simply a pragmatic question of selecting the most functional language for mathemat-
ics. But this is then simply congruent with my account of axiom selection in general.

In summary, then, the aims of Essay V and Essay VI are as follows:

1. To outline and defend logical pluralism on the basis of a (Neo) Carnapian
account of logical correctness.

2. To defend the Carnapian account from nearly a century of sustained criticism.

3. To outline some of the benefits of the Carnapian view over some of its rivals.

Philosophical Themes across the Essays

Though the six essays of this thesis are intended to stand alone, there are several
themes which run through the thesis as a whole, connecting the the works together.
In this section, I provide some brief comments on each.

Anti-Metaphysical Motivations

In my MA Thesis, I defended epistemic nominalism about Mathematics. I argued
that even if there are objective mathematical truths, we could not have any knowl-
edge of them. I have also publicly defended nominalism by offering a nominalist
reply to Linnebo (2018)’s argument for abstract objects in Thin Objects (Pearce, 2022).

Earlier in my research, I had similar concerns regarding logical realism. These
concerns rested, to a certain extent, on an overly narrow conception of logical
realism.
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There are certainly versions of logical realism that do fall fowl of epistemic nominal-
ist worries but there are also versions of the view that do not. Maddy (2007)’s view
of logic, for instance, is realist but nominalist. I discuss the relationship between
nominalism and logical realism briefly in Essay VI, though leave a great deal unsaid.

Nevertheless, during my research, my nominalism grew into a more general
weariness of overly metaphysical philosophy. In particular, even if there are
objective metaphysical facts and we can have knowledge of them (both of which
I’m sceptical), I was unclear about the relevance of these facts to the actions of
logicians and reasoners.

Parallel arguments appear in Essays II and VI relating to this.

In Essay II I ask, even if there are mathematical facts, why should mathematicians
care? If we discovered, tomorrow, that actual continua are structured in just such
a way that makes CH true, why would that mean that set theorists should adopt CH?

In Essay VI I ask, even if there are logical facts, why should we care for the
purposes of our practical or scientific reasoning? Even if, fundamentally, the
world has Boolean structure, why should that mean that we dispense with fuzzy
predicates for our practical purposes?

These arguments are instances of my anti-metaphysical approach to theoretical
philosophy generally, which owes some degree of debt to the (ongoing) program
of conceptual engineering. When it comes to understanding most of the objects or
concepts of theoretical philosophy (knowledge, justification, explanation, ground-
ing, causation, etc), I am less concerned with finding objective answers to these
questions than I am with understanding what practical work these concepts need to
do as part of our inquiry, and adjusting our concepts to best fit the needs of that work.

That being said, I did not wish to premise my thesis on a nominalist or anti-
metaphysical worldview. These wider ideological commitments are a product of
the arguments present in this collection, not the groundwork for them.

Lastly, even if one disagrees with these commitments there is still, I hope, enough
of interest in the thesis. Essay I and Essay IV, in particular, stand apart from these
commitments.
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Instrumentalism about Logic and Mathematics

In the summer of 2022 I had a realization that changed, I think quite significantly,
how I think about axiom selection. I realized that a claim I had been making for
quite some time was, if not entirely wrong, at least subtly missing the mark.

During the early and middle stages of my research, I believed that one’s views on
the nature of mathematical truth and knowledge would all but determine one’s view
of axiom selection. I hoped to show, more or less, that Fregian-style realists were
committed to an epistemic theory of axiom selection ("Epistemic Foundationalism" in
Essay II’s terminology), Quine-style realists were committed to a descriptive theory
of axiom selection ("Ontic Foundationalism") and nominalists were committed to a
normative theory of axiom selection (like my own outlined in essay III, influenced
heavily by Maddy (2011)).

This is not entirely wrong and most realists of those types and nominalists will
accept something like those positions. What I struggled to explain were realists
who adopted normative theories of axiom selection. Maddy, in particular, was
difficult to categorize. She is a realist but has a normative theory of axiom selection.

I had the fortune that summer of attending three summer schools on the phi-
losophy of mathematics in Vienna, Düsseldorf and Konstanz in turn. This gave
me extensive opportunities to discuss my work with some exceptionally talented
individuals. In these conversations, I found myself more and more explaining my
views with reference not to my views on mathematical truth, but rather my views
on the purpose of mathematics.

This I now take to be perhaps the most major fault line in dividing theories
of axiom selection. Whilst Maddy is a realist, her realism is somewhat coincidental.
Finding true mathematics is secondary to finding useful mathematics. Truth, for
both Maddy and me, plays no role in understanding the value of mathematics. For
realists unlike Maddy, however, the purpose of mathematics is the discovery of the
objective mathematical truths.

I suspect there are more views about the function of mathematics than the instru-
mentalist vs descriptivist dichotomy that I outline. Maddy’s instrumentalism and
my own, for instance, differ quite substantially. But I hope to have identified, at
least, the two poles in this debate.
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Of course, there are going to be overlaps in one’s view of mathematical truth
and one’s view of the purpose of mathematics. My earlier view missed the mark
but was not entirely unreasonable. But it’s one’s view of the purpose, function or
value of mathematics that I now take to be most consequential in determining the
correct theory of axiom selection.

This is interesting for two reasons.

First, it shows that debates over theories of axiom selection don’t simply boil
down to traditional, well-trodden battle lines between nominalists and realists.
There’s a different sort of disagreement at play here.

Second, whilst there has been more written on mathematical truth than one
could read in a lifetime, there has been sparsely anything written, at least within
anglophone analytic philosophy, on the value, function or purpose of mathematics.
To my knowledge, there is no book-length discussion of this question.

This normative question about the purpose of mathematics I take to be the most
interesting point for future research arising from these essays.

Lastly, to connect this theme to the essays on logic selection, the Neo-Carnapian
view of logic selection is quite clearly instrumentalist in nature. Logical truth comes
easily - it’s just a matter of picking one’s language appropriately. The interesting
question is what’s most useful for our logical concepts or terms to do. But the value
of logic, then, is instrumental. It’s not about having a descriptively correct theory of
the logical facts, but rather having a useful logic that plays the role we’d like it to.

My instrumentalism about logic and mathematics, then, is closely tied to my
anti-metaphysical motivations outlined above.
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Pluralism in Logic and Mathematics

The final theme I wish to explain in this overview is pluralism. My interest in
finding the best account of logical correctness came out of my interest in logical
pluralism. In the early stages of this project, one of my research questions was if the
insights behind logical pluralism could be applied to theories of axiom selection to
motivate axiomatic pluralism.

This particular line of inquiry did not bear fruit to quite the extent that I’d
hoped. There was no simple story to tell where one could simply walk one’s
favourite theory of logical pluralism into the mathematical domain and, without
much adaptation, have an account of axiomatic pluralism.

Nevertheless, both my axiomatic pluralism, as defended in essays I, III and
IV and my logical pluralism, as defended in Essay V, do share common motivations.
Both, I think, are natural consequences of the Instrumentalism outlined above. The
descriptivist must concern themselves with finding the "One True Logic" or "One
True Axiomatic Theory". They can only be pluralist if reality itself turns out to be
pluralist (a puzzling proposition). But an instrumentalist has no such constraints.
Logic and mathematics are tools for certain kinds of representational activities.
There might be different representational tools appropriate for different purposes.
Consequently, one needs many logics and many axiomatic theories.

My pluralism, then, is a consequence of my instrumentalism.

Within my work, I’m very keen to stress that there are often very many types of
pluralism that can go by the same name. One should never claim to be a logical
pluralist, alethic pluralist, axiomatic pluralist or any suchlike without qualification.
One must always be a monist, pluralist or nihilist relative to a specific number-
question that asks how many of some kind of thing there is. Often, subtly different
formulations of the question can impact the outcome.

The question "how many logics are correct?" is a prime example of this. The
question itself is ambiguous as it doesn’t specify the relevant notion of correctness.
Different ways of specifying this will give different results. One might have very
different answers to the questions "How many logics are objectively correct?", "How
many logics are correct for some language?" and "Given some language, how many
logics could be correct?"
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It’s important when claiming to be a monist, pluralist or nihilist to be really
quite precise about the question to which one answers one, many or none.

There are two important points of differentiation between similar but distinct
number-questions that appear at multiple points in these essays.

The first is between descriptive and normative formulations of questions. "How
many logics are correct?" and "How many logics may we reason with?" are not
equivalent questions. It’s presumptive to assume that truth has pro-toto normative
force within a given context. This distinction plays an important role in Essay V in
relation to logical pluralism, but also in essay IV in relation to axiomatic pluralism.
I do not defend the same notion of axiomatic pluralism across all the essays. The
versions of axiomatic pluralism outlined in Essay I, one of which is defended in
Essay III, is normative. Essay IV’s axiomatic pluralism, however, is descriptive. It
asks how many axiomatic theories actually serve as foundations for mathematics.

The second point of differentiation is in specifying the domain or context within
which one evaluates. Carnap, for instance, thinks that there are no logics true of all
languages, many true of some, and precisely one true of any given language. How
one specifies the scope of the number-question turns Carnap into a nihilist, pluralist
or monist respectively. Similarly, it’s important to differentiate pluralism about the
general foundations of mathematics from pluralism about specific mathematical
domains. One might, I think reasonably, claim that individual mathematical
domains need singular axiomatic theories. Perhaps the role of these theories is
precisely to define the domain. But nevertheless one might reject the need for a
singular foundational theory in which to do meta-mathematics.

Lastly, on pluralism, there is often a tendency to search for the right kind of
pluralism. Certain pluralist views are disparaged because they do not get the right
kind of pluralism. I certainly don’t wish to say that all types of pluralism are
equally interesting, they are not, but several objections against Carnapian logical
pluralism involve saying that some particular version of pluralism is the right
notion of pluralism, then showing how the Carnapian is not pluralist in that regard.
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I encourage a little more pluralism about pluralism. Whilst different pluralist
thesies may be more or less interesting than one another, there’s no need to identify
the One True Pluralism. One can call oneself a pluralist about logic or axioms
without committing to pluralism about every number-question relating to that
topic. One might be pluralist in some ways, and monist or nihilist in others. One
might liberally call one’s self a pluralist if at least some of the number-questions
about which one is a pluralist are interesting and worthy of concern, but clarify in
more thorough contexts the exact ways in which one thinks pluralism is true.

Concluding Remarks

In these essays, I hope to have made meaningful progress on a number of questions
I take to be central to the Philosophy of Mathematics and Philosophy of Logic.
I hope, in particular, to have better clarified the kinds of criteria one might use
as part of a theory of axiom selection. I hope also to have clarified the kinds of
philosophical claims about mathematics, in particular the function of mathematics,
which might influence one’s account of axiom selection. Adjacently, I hope to have
put some life back into the typically disregarded Carnapian account of logic. I
have, I hope, addressed the major concerns regarding this position and provided
something of a positive account in its favour. Lastly, across both the essays on
logic and the essays on mathematics, I hope to have emboldened the prospects for
pluralism and instrumentalism within these two domains.
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Notes
1See Univalent Foundations Program (2013) and Corfield (2020) for formal introductions to

various versions of homotopy type theory. See Mac Lane (1986), Feferman (1977), Mayberry (1977),
Hellman (2003), Awodey (2004), McLarty (2004), Linnebo and Pettigrew (2011) and various works
by Ladyman & Presnell including Ladyman and Presnell (2016), Ladyman and Presnell (2019) and
Ladyman and Presnell (2020). More recently see several chapters in the edited collection Centrone
et al. (2019).

2Again, see the Centrone et al. (2019) collected volume. See Maddy (1993) and Maddy (2011),
the collected works of: Feferman (2000), Steel (2000), Maddy (2000) and Friedman (2000). See also
discussion of the multiverse program in Hamkins (2012) and Maddy and Meadows (2020).

3A notable exception to this is Maddy (2011)’s work in Defending The Axioms, also earlier in
Maddy (2007), Second Philosophy. To date, her work is the most developed on axiom selection and
has played a central role in the development of my thinking about these questions.

4See Azzouni (2004), Burgess and Toffoli (2022) Toffoli (2021), Hamami (Hamami (2014) and
Hamami (2022)), Hamami and Morris (ming), and Tanswell (Tanswell (2015) and Tanswell (2016)).

5Brouwer (1992) and Brouwer (1981), for the classical view. See Iemhoff (2020) and Bridges et al.
(2022) for an overview and discussion.

6See Weber (2010a), Weber (2010b), Weber (2012), McKubre-Jordens and Weber (2012), Meadows
and Weber (2016) and Badia et al. (2022). Also, see Weber’s book Paradoxes and Inconsistent
Mathematics (Weber, 2021).

7See Beall and Restall (2005), Shapiro (2006), Priest (2006), Field (2009) and Griffiths (2022). See
Russell (2021) and Cook (2010) for overviews.

8Carnap (1928), Carnap (1934), Carnap (1947) and Carnap (1950)
9Quine (1936) and Quine (1970)
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Essay I: On Axiom Selection

An enduring type of debate in the philosophy of mathematics, and in fact
within mathematics itself, is over which axioms ought be used. 18th and early
19th-century geometers debated the parallel postulate. The 19th century saw the
axiomatisation of group theory. The late 19th and early 20th centuries saw the
debate between classical and constructive mathematics. Early set theorists debated
the axiom of choice. Debates over the continuum, large cardinals or types of
determinacy continue to this day. Some have even suggested the adoption of a
set-theoretic multiverse. Outside of set theory, alternative foundations have been
proposed, most notably Homotopy Type Theory (Univalent Foundations Program,
2013).

Despite all this, there’s far less work outlining or defending criteria for axiom
selection; the conditions that an axiom system needs to meet in order to be correct.
The game of axiom selection is being played without a concrete understanding of
the rules. There has been insufficient discussion over the correct theory of axiom
selection. The purpose of this paper is to begin to address this gap.

I do not, however, try to do this by arguing for a particular theory of axiom
selection. Any case for one theory of axiom selection over another will be highly
non-neutral with respect to wider philosophical questions about the metaphysics,
epistemology, axiology and purpose of mathematics. What a nominalist like myself
with a very instrumental view of mathematics would say about a theory of axiom
selection would differ greatly from what a realist would say.

Instead, the aim is to complete what I’ve taken to calling a conceptual geogra-
phy of theories of axiom selection. Rather than argue for one theory over another,
this paper tries to map the logical space between theories; to understand the fault
lines and disagreements. Even if philosophers of mathematics are not of agreement
regarding the correct theory of axiom selection, my hope is that we can nevertheless
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clarify precisely where disagreement takes place.

A secondary conclusion is that axiom selection is not a philosophically neutral
activity. Any theory of axiom selection is woven with assumptions about the
nature and purpose of mathematics. There is a rich philosophy of axiom selection
that has not yet been properly mapped or understood. However, this is not so
much a conclusion that can be argued for, rather it needs to be shown. At several
points in the conceptual map, I identify how wider questions in the philosophy of
mathematics have an impact on one’s theory of axiom selection. Whilst there is no
section specifically dedicated to this thesis, it should nevertheless be a claim that’s
clear and present throughout the paper.

As a final introductory comment, this paper is not intended as a final and complete
mapping of the possibility space. In cartography, it is common to first draw a more
elementary map, before improving on it, adding details over time. So too with
conceptual geography. With time, important distinctions not raised in this paper
may become recognised and appreciated. Similarly, some distinctions within this
paper might become less relevant and important as our collective understanding of
the issues grows. My aim here is to draw the elementary map, to make meaningful
and productive progress towards understanding the possibility space, but certainly
not to give the final word.

§1 of this paper explains some preliminaries and background regarding axiom
selection: What are axioms? For what and in what contexts might axioms be
selected? This draws heavily on Dirk Schlimm’s work (Schlimm, 2013). §2 maps
and taxonomizes possible evaluation criteria for axiom systems. It draws out the
distinction between four types of evaluation criteria for axiom systems: ontic or
metaphysical, epistemic, conceptual and normative or pragmatic.

With the conceptual geography completed in §2, §4 considers a natural corol-
lary: the question of axiomatic pluralism. Despite the present popularity of
pluralist projects across philosophy, pluralism in the philosophy of mathematics
remains a comparatively underdeveloped topic. A natural way one might apply
pluralism to the philosophy of mathematics is to be a pluralist about the number of
correct axiom systems. Building on §2 as well as the literature on logical and alethic
pluralism, §3 considers a number of ways in which one might be an axiomatic
pluralist. Again, the aim here is not to argue for any particular kind of axiomatic
pluralism, but rather to map the space of the kinds of pluralist views available.
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In summary:

§1: What are axiom systems, what are they like and when do we pick them?

§2: Evaluation criteria for axiom systems

§3: Axiomatic Pluralism

1 What are axiom systems, what are they like and when
do we pick them?

1.1 What are axiom systems?

The account of axioms one will find in a standard logic textbook treats axioms
as a set of propositions. An axiom is an individual mathematical statement. An
axiomatic system (or theory) is simply a set of such statements. Often, this is
restricted to a set of finitely many axioms and axiom schema1.

A first possible point of philosophical disagreement is over the admissibility
of infinitary axiom systems, i.e. axiom systems that are not stateable via finitely
many axioms or axiom schemes2. Of course, one can have infinitary theories: Th(N),
for instance. But if such theories could take the honorific “axiomatic system” is
another question. For instance, Corcoran (1973) argues against the use of infinitary
axiom systems.

There are two options Corcoran might take here. First, he might bake into
the definition of an axiom system that axiom systems need to be finite. Second, he
might allow for the possibility of infinitary axiom systems, but reject them on the
evaluative level (see §2). The latter is probably closer to what he actually had in
mind.

1Axiom schema are an infinite set of procedurally generateable axioms. Typically, one might
iterate over all definable formulae with some property, e.g. a certain number of free variables. The
induction scheme for arithmetic, for instance, is really an induction axiom for each formula of one
free variable

2This is not to be confused with Finitism (Zach, 2023), the view relating mathematical truth to
the termination of certain finite procedures.
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The “sets of statements” definition is sufficient for the purpose of ordinary model
theory or mathematical logic. A slightly broader definition is needed for the present
philosophical context. Four ways the definition needs to be expanded: notion of
consequence, independence of axioms, language and interpretation.

First, the notion of consequence. Schlimm (2013) defines axiomatic systems
as sets of statements plus a logical consequence relation. A logical consequence
relation is a relation between sentences indicating which inferences are valid or
invalid. This will typically be a procedurally generated relation on the basis of a
number of basic inference rules, shown to be sound for some language.

The inclusion of a consequence relation in one’s notion of an axiomatic sys-
tem is very understandable, given certain historic debates on axiom selection.
The debate between classical and intuitionistic mathematics, for instance, is not
about the admissibility of one axiom over another, but rather the admissibility of a
particular type of proof (proof by contradiction). To capture disagreements such as
these, following Schlimm, logical consequence needs to be included as part of the
axiomatic system, and at stake in axiom selection.

There’s a complex question about the relationship between logic selection and
axiom selection. Does one’s logic need to be settled prior to one’s selection of
axioms? Do mathematical considerations weigh on matters of logic selection?
Does one’s logic for mathematics need to be one’s logic for day-to-day life or for
philosophy? Whilst interesting, these questions would require a large diversion
into the philosophy of logic and will consequently be avoided here. What mat-
ters for present purposes is that settling one’s notion of consequence is part of
axiom selection. The question of the relative priority of the two is left for another day.

Second, the independence of the axioms. A common at least desirable feature of
axiom systems is the mutual independence of the axioms themselves. Of course,
this is not a question that’s independent of one’s choice of a notion of consequence.
As with the question of infinitary axiomatic systems, one might choose to include
the requirement of independence within the definition of an axiom system, or one
might choose to exclude it, but take independence to be a desideratum applied at
the evaluative level.
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Something also at stake in one’s choice of axiomatic system is the language one
uses. Corfield (2020), for instance, argues that the language of homotopy type
theory (HoTT) has certain benefits over the language of first-order logic. Some-
times these advantages should really be understood via the consequence relation.
Adding higher-order variables and quantifiers to the language facilities using a
stronger, higher-order logic. The linguistic change facilitates an improvement of
the consequence relation. Other times this is not the case, for instance in Corfield’s
discussion of so-called donkey sentences. In this case, Corfield gives an example
of a natural language sentence more easily passed in the language of category
theory than first-order logic. Thus the language of one’s axiomatic system is also a
determinable of the system.

Finally, there’s a more philosophically laden possible feature of axiomatic systems:
the question of the interpretation of the symbols used in stating the axioms.

As the definition stands, it’s sufficient for something to be an axiomatic sys-
tem for it to be an uninterpreted set of statements with a consequence relation. This
kind of an axiomatic system would be ‘mere’ syntax, without any richer meaning.
But one might reasonably demand that this is not enough. The axioms cannot just
be syntactic, their symbols need an interpretation. For example, there might be
some independent, perhaps pre-mathematical, notion of membership to which the
’∈’ symbol refers. Similarly, one might think that there is some real object to which
‘∅’ refers.

Again, this brings up a number of philosophical questions:

First, do interpretations of the symbols used in one’s axioms need to be pro-
vided?

I think there are three natural responses to this question. I dub them the for-
malist, platonist and structuralist responses, but this is just to give a sense of the
kinds of views that might motivate these responses. I don’t mean to say that
formalism, platonism or structuralism, the metaphysical positions, entail these
responses; they’re responses in the style of the respective views.
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The three responses:

Formalist: The symbols need no interpretation, the syntactic information (e.g. arity
of the predicates) is enough. This is because mathematics is merely the
manipulation of these symbols by logical rules, interpretation plays no role

Platonist: The symbols need an independent interpretation. This is because axioms
need to be true and only interpreted sentences can be true.

Structuralist: The symbols need an interpretation, but the interpretation is provided by
the axioms themselves. In lattice theory, for instance, “<” is given the
interpretation by the axioms of an order relation, but needs no external
interpretation beyond that. Perhaps “<” is an arbitrary term for order
relations in general. Perhaps some reference-magnetism story can be told
and “<” ends up picking out a particular order, it’s just unknown which.

What’s interesting to note here is the direction of reasoning. In both the formalist
and platonist cases, claims about how axiomatic systems are to be evaluated is
influencing what the conception of an axiomatic system should be. The platonist,
for instance, desires their axioms to be true. In virtue of this, their axiomatic systems
need to be something truth-apt: interpreted, rather than uninterpreted, symbology.

Once again, though, there’s the option to handle these worries at the level of
evaluation, not definition. A platonist might allow a merely syntactic set of state-
ments to count as an axiomatic system (i.e. to adopt the formalist’s definition) but
to say that any uninterpreted axiomatic system will fail their evaluation criteria,
as truth is a necessary condition for selection and uninterpreted statements aren’t
truth-apt.

The second question arising out of the question of interpretation is what the
content of a possible interpretation would be. Above, I uncritically switch between
symbols being attached to concepts and attached to objects or relations. The
difference is quite substantial.

Concepts are cognitive objects. The concept of X does not entail the existence of X.
Even a nominalist might grant that the terms of an axiomatic system should be
interpreted with mathematical concepts, these are just concepts either without or
with no known extension.
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Objects and relations, however, exist in the world. A platonist might insist that
some term t in their axioms actually refers to some real mathematical object o. To
require this would very much be to bake one’s realism into one’s concept of an
axiomatic system from the ground up.

Thus, this is the first point of substantial possible disagreement about the na-
ture of axiomatic systems. Do systems need to be interpreted? If so, what are the
objects of their interpretation? Concepts or objects?

The following, then, are the determinables of an axiom system, with relevant
points of philosophical disagreement marked:

1. A set of non-logical statements (the axioms themselves)

• Do the statements need to be finitely many axioms and axiom schema?

• Do the axioms need to be independent?

2. A consequence relation

• What’s the relation between axiom and logic selection?

3. A language in which the axioms are stated

4. An interpretation of the axioms

• Is an interpretation necessary? Can uninterpreted sentences be axioms?

• With what are symbols interpreted: concepts or objects?

1.2 The ’classical’ definition of an axiom

The ’classical’ definition of an axiom is something like the following:

1. A statement or proposition which is regarded as being established, accepted,
or self-evidently true (Google-Oxford Languages)

2. An established rule or principle or a self-evident truth (Merriam-Webster #2)

3. A maxim widely accepted on its intrinsic merit (Merriam-Webster #3)
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This ’classical’ definition has three parts:

1. Axioms are true. (Metaphysical Claim)

2. Axioms are self-evident. (Epistemic Claim)

3. Axioms are accepted or established. (Group-Doxastic Claim)

It will not be controversial to say that most, if not all, philosophers of mathematics
and mathematicians have moved away from this definition3. Mayberry (1994) (see
also Mayberry (2000)) is the closest in recent years to endorsing something like this
definition, but even he backs off of it as an unrealizable ideal.

There is, however, one important difference worth pulling out between this paper’s
definition and the classical definition.

In the dictionary definitions, “axiom” is a success term. For something to be
an axiom it has to succeed by metaphysical, epistemic and doxastic criteria. The
evaluative claims that an axiom system is successful in these regards is packaged
into the definition of an axiomatic system from the start.

This is obviously unhelpful if the evaluative status of various axioms or ax-
iom systems is precisely what’s under discussion. As a result, I avoid using the
terms ’axiom’, ’axiom system’ or any other related conjugates as success terms.

This has bearing on some of the philosophical concerns raised in the previous
section. I don’t require axiom systems by definition to be finitary, independent or
interpreted. Now, these might nevertheless be important considerations when
evaluating axiom systems. But it’s unhelpful to pack the evaluation criteria into the
definition.

3The Oxford Dictionary of Philosophy, for instance, departs wildly from the ’classical’ definition:
“A proposition laid down as one from which we may begin; an assertion that is taken as fundamental,
at least for the purposes of the branch of enquiry in hand. The axiomatic method is that of defining
a set of such propositions, and the proof procedures or rules of inference that are permissible, and
then deriving the theorems that result.” This is, in fact, not too far from this paper’s definition.
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1.3 In which contexts does Axiom Selection take place?

Dirk Schlimm has an extensive paper detailing the role of axiomatisation in mathe-
matical practice. This section draws heavily on §1 and 2 of his paper. §4 of Schlimm
is relevant for the next section of this paper.

One feature of axiomatics Schlimm discusses that is not covered in this paper is
the diachronic role of axiomatisation in the epistemology of mathematics. One of
the main points Schlimm makes, which I entirely agree with, is the claim that ax-
iomatization plays a role in mathematical knowledge generation. Schlimm argues
against a prior view that axiomatization is merely the systematization of an already
well-formed and understood domain (Copi (1958), ?, Hanson (1958a) and Hanson
(1958b)). There’s no new knowledge generated at the point of axiomatization.
Another way to put this is that axiomatization really belongs in the context of
justification, not the context of discovery. Schlimm argues against this prior view.
For instance, in axiomatizing geometry, the independence of the parallel postulate
was discovered. This led to the discovery of non-Euclidian geometries.

I agree with Schlimm entirely on this matter, but it’s a point outside the scope of
this paper. This paper is about the possible criteria for deciding between axiomatic
systems, not about the relationship between axiomatization and mathematical
knowledge.

Within which contexts and for what ends are axioms chosen?

There are three distinctions which are worth drawing out here: pure vs im-
pure, descriptive vs prescriptive and local vs global. With the exception of the
descriptive vs prescriptive distinction, these terms are my own and are explained
below.

As a point of clarification here, these distinctions are distinctions between contexts
in which one might find one’s self choosing between rival axiom systems, not
between types of axiom systems themselves.
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The local vs global distinction, for instance, is the difference between selecting an
axiom system for some specific mathematical domain (e.g. geometry, group theory
or arithmetic) and selecting one as a foundation for the whole of mathematics.
This isn’t a property of an axiom system but rather how it is used. One could
take any axiom system and propose it as a foundation for mathematics or as an
axiomatization of its own specific domain.

What’s discussed below are a series of important properties of a particular context
in which one selects between axioms, not a property of the axiomatic systems
themselves.

1.3.1 Pure vs Impure Contexts

The first distinction is between what I call ‘pure’ and ‘impure’ contexts. Consider
the following three cases involving some mathematician M and their theorem T:

Case 1: M desires to formally verify T by means of a computer-assisted proof-finder.
In order to do this, they must select some axiomatic starting point that the proof-
finder will work from.

Case 2: M is writing a textbook for maths students, of which an axiomatic
proof of T will form a major part. They must select axioms for this textbook.

Case 3: M is in an abstract discussion with a philosopher, or especially dox-
astically conservative mathematician, who wishes M to justify T. M will need to
select (and perhaps justify) axioms for their proof of T.

Cases 1 and 2 involve extra-mathematical considerations. As a result, they are
called ’impure’. Case 1 involves considerations pertaining to the pragmatics of
computer languages and available proof-finders. For instance, if a great number of
the intermediate lemmas on the way to T have already been proven from some
axiom system, it might be practically sensible to use those results and prove T on
the same basis. In case 2, pedagogical considerations are relevant. M must consider
the intelligibility of their axioms and the proofs that follow from them. It matters
in that context that that proof can be easily understood.
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Case 3 is what I call a pure context. Here M axiomatises simply for the purpose
of doing mathematics. This is an idealised context of justification. The only
considerations relevant to axiom selection in this context are those demanded by
mathematics, or perhaps philosophy, in absolute abstraction.

To be clear, these purely mathematical/philosophical considerations might still be
relevant in impure contexts. It’s not as if, as soon as practical considerations arise,
purer considerations become irrelevant. It might be the case, for instance, that
there are many equivalent and objectively true axiom systems. In the pure context,
there is nothing to decide between them, but in the impure contexts, the pragmatic
considerations break the tie. The pure vs impure distinction should be seen as a
scale, not a binary.

For the rest of this paper, I restrict the discussion to pure contexts, unless noted
otherwise.

Philosophically, the pure contexts are more interesting than the impure ones.
Whilst it’s obviously interesting how one goes about coding, say, a proof-finder,
or how one best teaches mathematics to students, there’s nothing philosophically
complex going on there. Impure contexts involve some practical end. In case 1
this is the translation of normal proofs to strict derivations. In case 2 it’s teaching
mathematics. Axiom selection has consequences for those ends, so can be evaluated
relative to them. It’s simply a matter of means-ends reasoning towards these cases.

Investigating these cases is exceptionally interesting from a computer science
or pedagogical perspective, but there’s nothing philosophically novel going on
there.

However, the question of the right theory of axiom selection in a pure context is
exceptionally philosophically interesting. It connects to a great many questions
in the philosophy of mathematics about the nature of mathematical truth and
knowledge, or the purpose of mathematics. As such, I focus just on the pure
contexts, or the pure part of impure contexts.

One might object that, in practice, no pure context exists. Or, perhaps worse,
only exists as an artefact of philosophy seminars, not mathematical practice.
Practically, axiom selection always occurs with some non-mathematical consid-
erations in mind. If this is the case, focusing on pure contexts might be uninteresting.
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Even if, practically, there are no pure contexts, they are still worth attention.
First, they might still be a useful theoretical context to consider, even if never prac-
tically realised. Second, as discussed above, some impure contexts might have a
pure component. Understanding that pure component remains the philosophically
interesting part of a study of axiom selection.

Now, It might still be that the best theory of axiom selection in pure contexts
is just a null theory. Perhaps in mathematics, there are no morals and the only
reasons for ever picking one axiom system over another are for practical reasons
like pedagogy or proof verification. This hypothesis is very much on the table here.
But that doesn’t change the fact that establishing that this is the case is incredibly
philosophically interesting and hangs on a great many open questions in the
philosophy of mathematics.

In summary, there are two points to take away from this distinction. First, in
practice, Axiom selection is often tied up in a number of ‘impure’, non-mathematical
or practical matters that might have considerable weight on axiom selection in
practice. Second, it’s nevertheless worth isolating and focusing on the pure contexts,
or the pure parts of impure contexts, as this is the more philosophically contentious,
and interesting, area.

1.3.2 Descriptive vs Prescriptive Contexts

The second distinction, borrowing Schlimm’s terminology, is between descriptive
and prescriptive axiomatization. The difference between the two pertains to the
relationship between the axiomatic system and the body of mathematical knowl-
edge to which it relates. Descriptive axiomatization attempts to describe, and
perhaps even explain, a body of well-defined mathematical facts. Prescriptive
axiomatization fixes a body of facts. Arguably, it defines a type of mathematical
object or a mathematical concept.

Something like this distinction has gone by other names in the literature. Shapiro
(2005), Hellman (2003), Awodey (2004) and Fiferman’s contribution to Feferman
et al. (1999), for instance, have called all descriptive axiomatisation “assertory”
and prescriptive “algebraic”. There are some distinctions between the two, but
they track essentially the same concept. Mayberry (1994) has a similar distinction
between "classificatory" and "elementary" theories.
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This also relates to the interpretation of the terms of an axiomatic theory, as dis-
cussed above. The prescriptive axiomatization provides what I call a ‘structuralist’
interpretation of the terms. The descriptive axiomatisation will provide a "Platonist"
interpretation of the concepts.

As mentioned above, it’s important to note that the prescriptive vs descriptive
distinction is a property of how an axiomatic theory is being used not a property
of the theory itself. One might take any axiomatic theory and, successfully or
unsuccessfully, claim that it’s a descriptively correct theory of some structure.
Similarly, one might use the very same theory and use it to define a (structural)
mathematical concept4.

Moreover, the use of a particular axiom system might change over time. Take the
history of geometry. Geometry began as a descriptive theory of the mathematical
structure of real space. Euclid was engaged in a descriptive axiomatic project.
However, with the discovery of non-euclidean geometry, the function of geometry
changed. It ceased to be a study of real space and instead became a study of a
certain kind of mathematical structure. This meant that later axiomatizations of
geometry, in the knowledge of the independence of the parallel postulate, served
a partly prescriptive role. They settled what kinds of mathematical structures
counted as geometries. Hilbert, contra Euclid, was engaged in a prescriptive project.

As a final note, the kinds of descriptive axiomatic projects that are possible is
not a philosophically neutral matter. There are two ways one might think about
descriptive axiomatic projects.

4My comments here run contra to Shapiro and Schlimm’s analyses. Schlimm, interpreting but
concurring with Shapiro, states that all "assertory" (descriptive) theories need to be categorical
as they are intended descriptions of particular structures. "Algebraic" (prescriptive) theories do
not, as they are just defining a concept. Consequently, any assertory theory can be used in an
algebraic manner but not vice versa. However, Shapiro is wrong that because a theory is an intended
description of a fixed structure it needs to be categorical. Incomplete theories of fixed target
structures abound: statistical mechanics, meteorology and the entirety of social science. Given
this, there’s no reason why any "algebraic" (prescriptive) theory couldn’t be used in an "assertory"
(descriptive) manner
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First, one might think of descriptive axiomatization as an attempt to rigorize and
describe a body of mathematical knowledge settled out by pre-axiomatic mathe-
matical work. This is what Schlimm calls the ‘orthodox’ view of axiomatization.

Second, one might think of descriptive axiomatization as an attempt to accu-
rately describe a body of objective mathematical facts. If one believes, for instance,
in the objective, mind-independent existence of the natural numbers, then, one
might take PA to be an attempt to describe the facts about the natural numbers.
The facts about N are already "out there" and axiomatic theories, like scientific
theories, are just descriptive theories of those facts.

The possibility of the first kind of project is, I hope and suspect, relatively uncontro-
versial. Whatever one thinks about objectivity and mathematics, there have been
bodies of pre-axiomatic mathematical knowledge that lacked, at a point in time,
formal foundations. Regardless of one’s philosophical leanings, one can at least
make sense of the project of systematizing and clarifying the assumptions of said
project.

The second project, however, that attempts to use axiomatic systems to describe
some objective mathematical facts, should be controversial. It is not an uncon-
troversial nor settled matter that mind-independent mathematical objects exist.
Consequently, engaging in an axiomatic project that assumes their existence comes
with a degree of philosophical baggage.

1.3.3 Local vs Global Contexts

The final distinction is between what I’ll call local and global axiomatization. This is
the difference between attempting to axiomatize a specific part of mathematics (e.g.
geometry, group theory, arithmetic, etc) and attempting to axiomatize mathematics
as a whole (e.g. ZFC is often taken to perform this function). This latter has been
referred to as a foundation for mathematics, though this is a term I try to avoid as
it has quite a few varying meanings and I wish to avoid unwanted connotations.

There’s at least the theoretical possibility of an intermediate step: attempting
to provide an axiomatic ‘foundation’ for some parts of mathematics, but not the
whole. One might think of the axioms of, say, complex analysis as trying to provide
a foundation for real analysis and discrete arithmetic.
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There’s some relationship between this distinction and the prescriptive vs de-
scriptive distinction. Hellman (2003) has argued that global axiomatizations need
to have “assertory content”. In Schlimm’s terms, they need to be descriptive, not
prescriptive.

Whilst I don’t think Hellman is right that ‘foundations’ (global axiomatizations, in
my language) need to be descriptive, rather than prescriptive, Global axiomatic
projects are often more natural as descriptive, rather the prescriptive, endeavours.
If one attempts to provide an axiomatization for the whole of mathematics, one
will typically think there is such a thing as the ‘whole of mathematics’ and take
one’s axioms to be a descriptive theory of those objects.

This isn’t a hard rule. Global but prescriptive contexts exist. One might en-
gage in a prescriptive project that defines what counts as mathematics, and hence
what the entire mathematical universe is. There’s a way of thinking about a certain
kind of finitist project, comparable to Hilbert’s program, as doing exactly this. But,
typically, global axiomatization will mean descriptive axiomatization.

The converse inference doesn’t hold. There are many descriptive projects that are
not global. As discussed above, Euclid was engaged in a descriptive program qua
geometry, but this was only local, not global.

Two further points of note on this distinction.

First, one may employ different evaluation criteria in local axiom selection com-
pared with global axiom selection. One might have a descriptive theory of global
selection (discussed below in §2) that correctly captures the entire ontology of
mathematics but nevertheless have a normative theory of local axiom selection
(again, see §2) that aims to find the most practical or productive distinctions within
the universe of one’s global theory.

Second, the adoption of a global context is not without philosophical contro-
versy. It is a substantive assumption to make that all mathematics should adopt a
shared, unifying ’foundation’.
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Consider, for instance, the claim that ZFC should be the ultimate foundation for
mathematics. To put this in realist terms, this is the claim that all non-foundational
mathematics is about some sub-structure within the ’real’ model of ZFC. To put this
in more practical terms, all proofs need to take ZFC as their most basic assumptions.
One might challenge this on two grounds. First, one might agree that there needs
to be some theory that plays that ultimate unifying role but disagree that ZFC is
the theory that should do that. Second, and this is the point I wish to stress here,
one might reject the need for a unifying foundation altogether.

If one takes the latter option, then, in this paper’s terminology, one is oppos-
ing a global context. One might oppose a global context in many ways. One
might argue that it’s impossible to take up such a context. Perhaps all possible
mathematics is sufficiently broad as to make it impossible to find a single axiomatic
basis for all of it. Second, one might argue against the value of a global context. It
might be possible, but unhelpful, to argue for global axioms.

An example of someone who has arguably adopted something like this posi-
tion is Awodey. He argues in favour of category theory as a ’foundation’ for
mathematics, though he means something quite different by the term than most
others in the debate. What the category theorist is really advocating for, which
I think Corfield (2020) explains quite nicely, is the use of category theory as a
foundational language for mathematics. What different domains of mathematics
then do is specify the kind of ontology they need for their particular study without
any attempt to unify all of this into a single structure. There is no ’one true topos’
on their view. Awodey (2004) says the following:

"As opposed to [a] one-universe, ’global foundational’ view, the categorical structural one
we advocate is based instead on the idea of specifying, for a given theorem or theory, only
the required or relevant degree of information or structure, the essential features of a given

situation, for the purpose at hand, without assuming some ultimate knowledge,
specification or determination of the ’objects’ involved." (p56.)

What’s clear, then, is that the necessity of axiom selection for a global context is not
philosophically uncontroversial.
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1.4 Summary

In summary of the preliminaries, axiomatic systems comprise of a set of statements
in some language, a consequence relation and (possibly) an interpretation of the
non-logical symbols. Axiom selection always takes place within a particular context.
Theories of axiom selection are correct modulo some context. The context might be
pure and only have mathematical (or perhaps philosophical) ends, or it might be
mixed and contain certain impure, extra-mathematical ends. This paper focuses on
the former. Axiom selection might relate to a body of mathematical truths in one of
two ways. First, it might define said truths and be prescriptive. Second, it might
try to describe a pre-determined body of truths. Lastly, axiom selection can happen
at various levels of generality. Sometimes axioms are selected for singular parts
of mathematics (e.g. the axiomatisation of a particular domain) and sometimes
axioms are selected as part of a global or foundational project, though the necessity
or value of such is not a philosophically neutral matter.

2 Evaluation criteria for axiom systems

Having fixed the context in which axiom selection takes place, a theory of axiom
selection must explain the evaluation criteria to be employed to choose between
rival systems. The kinds of criteria available are quite diverse and there is, I suspect,
no philosophically uncontroversial ‘common ground’ on which to select one’s
evaluation criteria.

I do not argue here for any particular criteria over others. This section’s aim
is simply to provide a taxonomy of the kinds of criteria available and the kinds of
relations that might hold between them. I group criteria into four types: descriptive,
epistemic, conceptual and normative. Each are explained in turn.

An important note here is that even after fixing the evaluation criteria, one still does
not have a complete theory of axiom selection. There’s a gap between the claims
that “T is the best axiom system (in context C)” and “One ought select T and only T
for use (in C)”. The gap exists on two grounds. First, one needs to establish that one
can only select a single axiom system. At least theoretically, there’s the possibility
of plural foundations. Second, one needs to establish that some axiom system
needs to be selected at all. In other words, the ‘null foundation’ needs to be ruled out.
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The second part of the gap can be handled relatively easily by including the ‘null
foundation’ as a possible axiom system to be evaluated. It’s then clear if some
candidate axiom system is, in fact, better than nothing.

The possibility of a plural foundation, however, requires further discussion. Ax-
iomatic Pluralism, as it could be called, is a position I defend elsewhere. §3 discusses
three types of Axiomatic Pluralism, again aiming to categorise them, rather than
defend them. The question of pluralism is put aside till then.

2.1 Descriptive Evaluation Criteria

Descriptive evaluation criteria treat the relationship between axiom systems and
mathematical facts as analogous to the relationship between scientific theories and
scientific facts. The term analogous should not be here-understood as too strict a
relationship; there may be differences between the two. But, in essence, the two
relationships are treated similarly.

Examples of descriptive criteria on axiom selection include ontic conditions dis-
cussed by Ladyman and Presnell (2016), and the classical view’s requirement that
axioms be true, also reiterated in Mayberry (1994). Arguably, Hellman (2003)’s re-
quirement that axiom systems provide ‘assertory content’ also falls in this category,
though there are potentially some interpretive questions there.

A standard realist claim about scientific theories is that they should be true
generalisations of the scientific facts. For instance, Hooke’s Law, if it is to be a
correct theory of springs, should entail all and only the facts about springs.

This idea can be translated quite easily into a claim about axiom systems and
mathematical truth. An axiom system, if it is to be correct (or correct of some
domain), should entail all and only the mathematical facts (of that domain).

Something like this is, I think, a very natural idea to have of axioms. They
are, at least logically, the foundational truths of mathematics from which all further
knowledge is derived.
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Of course, the requirement that an axiom system should entail all the truths of
mathematics runs into immediate difficulties with Gödel’s first incompleteness
theorem. The first incompleteness theorem entails that, modulo some facts about
encoding arithmetic, there are no finite, consistent, complete first-order, classical
theories.

This potentially necessitates a slight weakening of the requirement that axiom
systems entail all and only the mathematical truths.

First, as discussed in §1.1, it might be necessary to allow for infinitary axiom
systems (in the sense of systems comprised of more than finitely many axioms and
axiom schema). It might then be that there are human limitations on our ability to
ever completely know what these systems are, but they would, nevertheless, be
the correct theory.

Even if this is the case and the completely correct axiom system is infantry,
it’s still useful to introduce the notion of an axiom system being more or less
correct than another. Even if there is no finitary axiom system that can entail all
the mathematical truths, some might nevertheless entail more, or more important,
truths than others.

A second option is to adopt an axiom system with a non-classical logic. This
could either be systems with higher-order axioms or perhaps with a non-classical
entailment relation. If one took the former route, there’s a question as to which
notion of entailment is relevant for the evaluation of axiom systems: semantic (⊨) or
syntactic (). Higher-order theories can be categorical but are not logically complete.

Returning to the question of descriptive evaluation criteria, there are other require-
ments one might place on laws of nature beyond descriptive accuracy. Often,
theories of laws have a nomological requirement. Laws do not merely describe the
natural facts, they explain them (Maudlin, 2007).

A similar condition could be put on axiom systems. Axioms should not merely
describe the mathematical facts but explain them. Unfortunately, it is an open
question what the correct notion of explanation within mathematics is, and even
if there is one at all. This is not to be confused with mathematical explanation in
science, about which there is perhaps more understanding but less agreement. See
D’Alessandro (2019) for an overview and Lange (2014) for an influential recent work.
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Elsewhere, Lange (2018) discusses the idea that parts of mathematics other than
proofs might explain. A natural option, though not one discussed by Lange, is that
axioms might explain certain mathematical facts. D?Alessandro (2018) considers
something close to this, though ultimately rejects "inter-level" explanations in
mathematics. If the idea of explanation in mathematics can be refined and extended
to the relationship between axioms and theorems, an explanatory criterion on
axiom selection could prove attractive.

One advantage of including an explanatory condition on axiom selection is that it
would allow one to choose between rival logically equivalent systems.

Choosing between rival systems might not be something strictly necessary. It might
not be the case, for instance, that one needs to work out which of the Axiom of
Choice and the Well Ordering Principle is really correct! Having to make such
judgements seems a little silly.

However, one could imagine finding a number of intermediate lemmas of ZFC that
taken together, it just so happens, are equivalent to ZFC. These lemmas are all a
little arbitrary and clearly less ‘primitive’, in a certain sense, than the axioms of ZFC.
It would likely be useful to have a way of ruling such theories out. Mere descriptive
criteria cannot do this. Explanatory criteria, however, could, as explanation is more
fine-grained than logical equivalence.

As a final note in this section, descriptive criteria will normally be adopted only
by mathematical realists. If axioms need to be true, or explanatory, or something
else which entails truth, there need to be mathematical truths. That, or one needs
to accept axiomatic nihilism, rejecting all axiomatic theories. But I take that to be
an extreme that no one is actually willing to take up. Baring this extreme, though,
only realists can adopt

Now, I don’t necessarily see this as a negative feature of descriptive criteria.
If one is a realist, then one’s realism should matter for mathematics, likely via
mattering for axiom selection. But it should be understood that their realism is
an assumption being made by employing descriptive evaluation criteria in axiom
selection. Descriptive criteria should not be uncritically presented as theory-neutral.
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2.2 Epistemic Evaluation Criteria

One of the most distinctive features of the classical concept of an axiom (or ax-
iom system) is self evidency. A reasonably well-known picture of mathematical
knowledge is typically outlined along with this. In mathematics, one starts with
knowledge of the axioms. These are statements that, upon reflection or understand-
ing of the concepts involved, are known for certain to be true. From these sure
foundations, the rest of mathematical knowledge is derived.

The person in recent years to have advanced a picture at all like this is May-
berry (1994), though even he admits that complete self-evident certainty is not
a reasonable requirement on axiom systems. Short of self-evidency, a common
idea is that axioms should play some kind of justificatory role in relation to the
rest of mathematical knowledge. Linnebo and Pettigrew (2011) talk of justificatory
autonomy: foundational axiom systems should be justified without reference to
other mathematical knowledge. Ladyman and Presnell (2016) discuss a number of
possible epistemic requirements, though don’t actively endorse any specific claim
in this regard.

Epistemic conditions can betake two forms. They can be about the level of
justification required of axioms, but they can also be about the epistemic link
between axioms and mathematical knowledge (call this ‘link strength’).

The level of certainty required of axioms is a relatively easy-to-understand variable.
Some epistemic conditions might require that axiom systems be known with
certainty, others that they merely be known. Within the latter, there’s a question
about what the bar of justification is. Different epistemic conditions might place
higher and lower bars.

Tied into this is not merely the strength but the kind of justification of the ax-
ioms allowed. The classical view requires not just that axioms are known but they
are known self-evidently. Linnebo & Pettigrew’s justificatory autonomy condition
requires that axioms are justified (perhaps not with certainty) without dependence
on other areas of mathematics.

Epistemic conditions can therefore demand that axiom systems not only be justified
to a certain degree, but justified in a certain way and to a certain degree.
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Moving on to link-strength, There are many possible views about the relationship
between axiomatic knowledge and normal mathematical knowledge to be. One
might hold, in decreasing strength, that: (1) axiomatic knowledge is essential for
ordinary mathematical knowledge. Only via derivations from the axioms can
a mathematical claim be known. Arguably, Mayberry (1994) has this view. (2)
Axiomatic knowledge contributes towards ordinary mathematical knowledge,
but not strictly necessary. It’s possible to have mathematical knowledge without
axiomatic knowledge, but perhaps more difficult. Lastly, (3) axiomatisation is
irrelevant, or only minimally relevant, to mathematical knowledge.

(1) and (2) lead to natural epistemic conditions on axiom selection. A propo-
nent of (1) might hold that one ought evaluate axiom systems on their ability to
provide this essential foundation. A proponent of (2) might hold the weaker claim
that axiom systems should contribute towards mathematical knowledge, but it’s
possible to have mathematical knowledge without it.

(3) might be held by individuals like Copi (1958), Weyl (1935) or Hanson (1958a),
as discussed in Schlimm (2013), who hold that axiomatisation merely involves the
systematisation of known mathematics, not the generation of any new knowledge.

As a counterpoint, one might also consider the reverse direction in which axioms
are epistemically dependent upon ordinary mathematical knowledge. Schlimm,
Maddy (2011) and Quine (1969) all defend views whereby axioms can be justified
on the basis that they either entail or explain known mathematics. In Schlimm
especially, a cyclical feedback loop is emphasised. Some ordinary mathematical
knowledge justifies axiomatic knowledge, which in turn justifies more ordinary
mathematical knowledge.

This cyclical conception of the relationship between ordinary and axiomatic math-
ematical knowledge is antithetical to stronger epistemic conditions on axiom
selection. The cyclical view is opposed to the view of axioms as an epistemic
foundation for mathematics.
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In summary, one might evaluate axiom systems on the basis of the following kinds
of epistemic conditions. One might require that they themselves are justified with
a certain degree of warrant, perhaps even restricting one’s self to certain kinds
of justification. Moreover, one might require that axioms are, in a certain sense,
epistemically prior to ordinary mathematical knowledge. Axiom systems might
then be essential to or contribute towards ordinary mathematical knowledge.

Two points of note here.

First, as with descriptive criteria, epistemic criteria are built on realist assumptions
about mathematics. Knowledge is typically understood as factive, it entails truth.
So in order for there to be knowledge there needs to be mathematical truths. This
is a claim that only a realist is entitled to5.

As with descriptive criteria, I don’t per se take that to be a positive or a neg-
ative feature of epistemic criteria on axiom selection. It is, again as with descriptive
criteria, an assumption that proponents of epistemic criteria should be open about
and they should not be presented as theory-neutral.

Second, to my knowledge, epistemic criteria have only ever been applied to
axiom selection in a global (i.e. foundational) context. Some epistemic criteria
would make little sense in a local context, e.g. Linnebo & Pettigrew’s epistemic
autonomy condition. Other criteria might make sense. One might require that
the axioms of, say, geometry play a certain role in the justification of geometric
knowledge.

2.3 Conceptual Evaluation Criteria

The penultimate type of criteria for axiom selection is conceptual criteria. Concep-
tual criteria evaluate axiom systems on the basis of their ability to define or aid in
the understanding of mathematical concepts.

5Of course, a non-realist is welcome to adopt both a non-factive account of knowledge and
epistemic criteria on axiom selection. But such accounts of knowledge are few and far between.
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There’s a structural parallel between the kinds of epistemic and conceptual con-
ditions that one might adopt. One might evaluate the concepts present in the
axioms themselves. For instance, Maddy’s “intrinsic” considerations or Linnebo &
Pettigrew’s conceptual-autonomy condition. And, again as with epistemic condi-
tions, one might consider the relationship between axiom systems and axiomatic
concepts (i.e. the concepts present in the axioms) and ‘ordinary’ mathematical
concepts. Both Mayberry, and Ladyman and Presnell have the relatively minimal
requirement that axiom systems should be able to define ordinary mathematical
concepts. For instance, many logical notions can be easily defined in homotopy
type theory.

Of axiomatic concepts themselves, one might require a number of things. Maddy
takes it to be a virtue of certain axioms if they are the natural explication of certain,
presumably pre-axiomatic, mathematical concepts; so-called ‘intrinsic consider-
ation’6. Linnebo Pettigrew’s conceptual autonomy condition evaluates axiom
systems based on if their concepts can be defined or understood independently
of other mathematical concepts. Though, as with the epistemic case above, this
doesn’t seem to be a criterion applicable to local contexts.

A crucial philosophical question here, returning to the discussion §1.1, is if a
purely logical or ‘structural’ understanding of axiomatic concepts is sufficient for
these kinds of criteria. Is it sufficient in order to understand some mathematical
concept that one merely knows the kinds of logical inferences one can make from it
(see discussions on inferentialist semantics in mathematics)? Or does one need some
richer, more philosophically loaded kind of understanding? Linnebo Pettigrew do
consider a stronger notion of understanding than mere ‘structural’ understanding,
though they don’t necessarily endorse such a requirement. One might endorse
conceptual criteria on axiom selection that require either.

6It is worth noting that she weighs intrinsic considerations far less heavily than extrinsic
considerations (see discussion in §2.4). There are passages later in the book where she can even be
read as dismissive of the value of intrinsic considerations altogether.
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Moving on to the relationship between axiomatic concepts and ordinary concepts,
the same kinds of things can be said as with the epistemic case. One might
require quite a strong link between one’s axiomatic concepts and one’s ordinary
concepts whereby the understanding of axiomatic concepts is entirely necessary
for understanding ordinary concepts. This would be, I think, really quite a strong
condition and it has not to my knowledge been defended. More likely, one would
require that one can get understanding of ordinary concepts via one’s axiomatic
concepts.

Most conceptual criteria around the link between axiomatic and ordinary concepts
that have been defended in the literature take an even weaker position still (May-
berry (2000), Ladyman and Presnell (2016)). One only needs formally equivalent
surrogates of ordinary mathematical concepts to be definable from one’s axiomatic
concepts. {x} ∪ x need not literally be the successor relation on the ordinals. It’s
sufficient that it captures the requisite formal structure.

I’ll note the possibility that this entire section is a red herring. I think it’s en-
tirely possible that conceptual criteria shouldn’t really be seen as criteria in their
own right, but rather as necessary conditions for other criteria. In Mayberry (2000),
for instance, it’s clear that definitional power is only valuable because one needs
to be able to do mathematics from one’s axioms. If you can’t define (surrogates
of) ordinary mathematical concepts, you can’t do ordinary mathematics with your
axioms. If one endorses basically any descriptive, epistemic or instrumental (see
§2.4 below) criteria, one’s probably committed to some relatively weak conceptual
criterion as a result.

2.4 Normative Evaluation Criteria

As noted above, descriptive and epistemic evaluation criteria come with realist
assumptions. What I call ‘normative’ evaluation criteria do not. They are intended
as value-based evaluations of axioms that don’t attempt to justify axiom systems
on the basis of their relation to any mathematical facts. Descriptive and epistemic
criteria are concerned with finding the correct axioms, normative criteria are con-
cerned with finding the best.
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That is somewhat of an open description because this is somewhat of an open
category. There are, I think, two sensible entries under this category: instrumental
considerations and simplicity. These are discussed below. However, there are a
great many more considerations that, whilst implausible, are certainly logical pos-
sibilities. Berkeley, for instance, opposed algebra on theological grounds (Moriarty,
2018). Theological considerations would certainly count as normative as normative
criteria. That a certain axiom is, say, beloved by God needn’t mean that God made
it true. Another example might be aesthetic considerations. Perhaps the beauty of a
particular axiomatic theory might count in its favour. Both of these considerations
likely aren’t good normative criteria, though this is where they would fit within my
conceptual framework if one were to defend them.

The best examples of an instrumental consideration in favour of some axiom
system are Maddy (2011)’s “extrinsic” reasons for axiom selection7. For Maddy,
the main basis for selecting one axiom over its rivals is its utility for mathematics.
Axioms need to entail the existence of interesting or deep mathematical structures.
They need to populate a mathematical universe with the kinds of objects worth
mathematical consideration. One can adjudicate between rival axioms based on
their ability to perform this task.

I discuss Maddy’s view extensively in Essay III: Instrumentalism & Axiom Se-
lection but a few quick comments are nevertheless in order here.

First, on Maddy’s view, rival axiom systems are to be judged on the basis of
their utility for mathematics. A natural variant of this view, one that I defend in
the aforementioned paper on Maddy, is to instead judge axioms on their utility
for science. Science needs modelling tools. Mathematics provides some of the
best formal modelling tools. Axiom systems should be judged on their ability to
provide said tools. More generally, one might consider the utility of mathematics
for all kinds of activities that make use of mathematics, science and mathematics
itself are just the most natural examples.

7See also Easwaran (2008)’s account.
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Second, an important consideration left out of Maddy’s account is the possibility
of axiom pluralism. In order to show that one ought adopt some axiom A, it’s
insufficient to show that A has more utility than its negation. If both A and its
negation entail the existence of interesting or fruitful structures, a pluralist approach
that investigates both the consequences of A and the consequences of not A is likely
more appropriate. I discuss this at length elsewhere.

Lastly, Maddy really only talks about the adoption of axioms in a global con-
text. She doesn’t consider local contexts. Nevertheless, her view generalises
quite easily to those contexts. The only difference is that whereas axioms in a
global context are judged on their ability to deliver a wide range of interesting
mathematical structures; a sandbox for all of mathematics, axioms in local contexts
are judged on their ability to produce a single interesting, deep or fruitful type of
structure.

To return to the metaphor of mathematics as a tool, in a global context the
instrumentalist wants an axiom system to be a good toolbox. It will be judged on
both the breadth and quality of its tools. In a local context, the instrumentalist
wants an axiom system to be like a good singular tool. Only the quality of that one
tool matters.

The second type of normative criterion I think is worth specifically mentioning is
a certain kind of simplicity-to-depth ratio that is of some kind of mathematical
value. Interesting mathematics is often characterised not merely by its depth but
by its depth despite the apparent simplicity of the definitions or axioms on which
it rests. Maddy has discussed this at some length. Group theory is, in my opinion,
one of the nicest examples of this. The definition of a group can be understood by
high school students; it’s a very simple algebraic concept. However, such a simple
notion has a wide range of interesting and powerful applications, from describing
certain kinds of geometric transformations to conservation laws in mechanics.

Now, properly understood, simplicity should never come at the cost of depth. It is
likely better to have bloated but effective axioms than slim but dysfunctional ones.
However, all else being equal, a more elegant, simple axiom system is a better one.
This analysis follows Schlimm (2013)’s.
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As a final note on normative conditions, it’s worth considering for a moment the
kinds of ‘impure’ contexts ruled out in §1.2.1. Largely, I ignore these contexts in
this paper. However, it’s worth briefly mentioning that the kinds of considerations
that become relevant in impure contexts would typically be classified as normative
criteria. Pedagogical value, for instance, would fall here.

2.5 A conscious omission: Logical Criteria

Schlimm discusses a range of criteria for axiom selection which he groups under the
heading "Meta-mathematical Properties" (§4.3). Criteria such as mutual indepen-
dence, consistency and categoricity have all been used as desiderata when deciding
between axiomatic theories. Those familiar with the history of axiomatics might
have been surprised by the absence of a discussion of categoricity or consistency
above, given their ubiquitous historical importance (see Schlimm for discussion).
One might expect them to be obvious candidate criteria for axiom selection.

However, I think these kinds of logical criteria are typically (perhaps even univer-
sally) advanced as secondary criteria, derived from other criteria of axiom selection,
not as basic considerations themselves. It’s clear to see the kinds of considerations
that might lead one to value the aforementioned logical considerations. If one
adopts descriptive criteria, the need for consistent theories follows. Inconsistent
theories have no models so cannot describe any structures. Similarly, there are de-
scriptive, conceptual and normative reasons to wish to unique categorise structures.
This would allow for a complete description of some real mathematical structure
(descriptive), a maximally precise concept (conceptual) or a fine fine-grained and
precise representational tool (normative). Categoricity would then be a derivatively
valuable property of axiom systems.

Dedekind (1888), for instance, took the concept of an arithmetical structure to be
precisely the structure N. An axiomatisation of arithmetic, in Dedekind’s eyes,
would only be successful if it could uniquely characterise that structure. In other
words, if all of its models were isomorphic to N. If it was categorical.
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Crucially, then, categoricity is not a fundamental criterion of axiom selection for
Dedekind. Instead, he employs a conceptual criterion: his desire for a unique
characterisation of a particular mathematical concept, in this case, the concept of an
arithmetical structure. From this conceptual criterion, she derives the categoricity
condition.

I believe that Dedekind’s case is typical for historical examples of logical criteria
on axiom selection. Logical criteria are infrequently defended as fundamentally
valuable but frequently defended as consequences of other criteria for axiom selection.
See Awodey and Reck (2002a) and Awodey and Reck (2002b) for a more thorough
discussion of the historical cases. For the sake of brevity, I will simply state my
claim that, as in Dedikin’s case, logical criteria on axiom selection like categoricity
are infrequently if ever fundamental criteria on axiom selection. A more thorough
analysis of the history of categoricity which demonstrates this claim is left for
future work, though readers are invited to check Awodey & Reck’s papers to check
this claim for themselves.

Consequently, I do not include logical criteria as types of evaluation criteria
for axiom selection, despite their obvious historical importance. I see logical criteria
as consequences of other evaluation criteria, not criteria in their own right. They
are therefore omitted.

This does, however, raise the question of exactly how these various logical criteria
are to be motivated, and on what basis. There has been a great deal of recent
work on categoricity and its philosophical consequences. For instance Meadows
(2013), Button and Walsh (2018) and Maddy and Väänänen (2023). I hope that
an analysis on the basis of this paper’s framework for thinking about theories of
axiom selection would be productive. It is a question I hope to return to in future
work, though for the sake of scope must be left unanswered in the rest of this paper.
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2.6 Summary

In summary, the following is my ’conceptual map’ of the possible evaluation criteria
used in axiom selection:

1. Descriptive Evaluation Criteria

• Merely descriptive criteria:

– How should the issue of incompleteness be handled?
– In logics where they come apart, which of categoricity or complete-

ness should be favoured?

• Explanatory criteria

– What’s the relevant notion of mathematical explanation here?

2. Epistemic Criteria

• Qua the axioms themselves:

– How well justified do the axioms need to be, if at all?
– What kinds of justification are permitted in justifying the axioms?
– What’s the relationship between axiomatic knowledge and ’ordinary’

mathematical knowledge?

• Qua the link between axiomatic knowledge and ordinary mathematical
knowledge:

– Do axioms need to contribute towards ordinary mathematical knowl-
edge?

– If so, is this necessary or merely contributory?

3. Conceptual Evaluation Criteria:

• Qua the axioms themselves:

– Do we need to understand the concepts used in our axioms?
– Is a mere ’structural’ understanding good enough?
– Can we rely on other mathematics in getting this understanding?

• Qua the link between axiomatic concepts and ordinary mathematical
concepts:

– Do axiomatic concepts need to contribute towards our understanding
of ordinary mathematical concepts?
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– If so, is this necessary or merely contributory?
– Are formally equivalent surrogates of ordinary concepts sufficient?

4. Normative Evaluation Criteria:

• Instrumental Criteria

– Instrumental value for maths, science or something else?
– Quality vs quantity of mathematical structures

• Simplicity and depth

• Other normative criteria not discussed (pedagogical value, aesthetic
considerations, etc)

These criteria are not exclusive. One is able to combine them in interesting and
novel ways, varying their relative weight and priority. A theory of axiom selection
should, for any particular context, identify which of these criteria are relevant for
evaluating one’s axioms, and how to weigh competing criteria against one another.

My hope is that this section clarifies two things. First, the kinds and the di-
versity of possible evaluation criteria that one could use. The present literature, I
hope it’s clear, has not mapped all the possibilities. Second, there are substantial
and controversial philosophical assumptions behind one’s choice of evaluation
criteria and, consequently, one needs to be open and explicit about one’s theory of
axiom selection and the philosophical assumptions behind it.
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3 Axiomatic Pluralism

The last section of this paper discusses a natural corollary of several points men-
tioned in both §1 and §2: the possibility of axiom pluralism. At several points in
this paper, I indicate opportunities for possible pluralist positions about axiom
systems. In this section, all of that is brought together and a number of possible
versions of “axiomatic pluralism” are outlined.

Axiomatic pluralism (of this sort) is a position that has been identified but not
seriously within the present literature. Michèle Friend has conducted the most
extensive research on pluralism in mathematics generally. She discusses "foun-
dational pluralism", but not in extensive depth (Friend (2013) and Friend (2019)).
Davies (2005), Hellman and Bell (2006), Koellner (2009) and Priest (2019) have all
discussed the application of logical pluralism to mathematics, but this is a very
particular kind of axiomatic pluralism and not representative of the position at large.

What exactly is “axiomatic pluralism”?

In response to the question “How many correct logics are there?” one must
give one of three answers: none (nihilism), one (monism) or many (pluralism).
Logical pluralism is the view that there are many correct logics. More generally,
when asked “How many correct theories of X are there?” one can, again, answer
none, one or many and be an X-nihilist, X-monist or X-pluralist respectively.

It’s natural to understand axiomatic pluralism in the same way. In response
to the question “How many correct axiom systems are there?” one might answer
none, one or many and be a nihilist, monist or pluralist respectively. Axiomatic
pluralism is therefore the view that there are many correct axiom systems.

Two comments here.

First, the term “correct” potentially has some realist connotations that I wish
to avoid. As is shown above, one needn’t have a realist theory of axiom selection
that requires axioms to be descriptively correct. I certainly don’t intend to bake
realist assumptions into the notion of axiomatic pluralism.
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The notion of “correct” at play here should be read neutrally. It might be read as
descriptively correct, if one’s background theory of axiom selection permits, but it
might also be read as normatively correct, in the sense of a correct choice or course
of action, if more appropriate.

Second, there’s a comparatively weak pluralism that it might be helpful to rule out.
This is briefly discussed in §2.1. It might be that one’s theory of axiom selection
is unable to decide between logically equivalent axiom systems. There might be,
for instance, no grounds to prefer Choice to Zorn’s lemma as an axiom, or vice
versa. This kind of axiomatic pluralism would be comparable to a kind of weak
logical pluralism that is pluralist on the grounds that one can’t decide between, say,
different but equivalent sets of inference rules or different basic connectives.

Now there have been logical monists who have argued that there are facts of
the matter about which connectives are really the basic ones (McSweeney, 2019). So
the option of defending the analogous position in the philosophy of mathematics
should be seen as a live one. I certainly don’t want to take weak pluralism as
a given. However, if one’s ‘pluralism’ only goes as deep as endorsing multiple
logically equivalent axiom systems, one isn’t a pluralist in any interesting sense.
If such a position should even count as pluralist at all I leave to the reader. It
would simply be a matter of amending the notion of “axiomatic pluralism” to mean
pluralism about the number of equivalence classes of correct axiom systems, rather
than pluralism about the systems themselves.

There are three types of axiomatic pluralism outlined in this section: multiverse plu-
ralism (I take the name from the set-theoretic multiverse project), domain-relative
pluralism (à la Pedersen (2014)’s domain-relative logical pluralism. See Shapiro
and Lynch (2019) for a nearby discussion. Criticised by Steinberger (2019)) and
theory pluralism.

The aim here is not to defend any of these kinds of pluralism, merely to identify
them for future work.
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3.1 Multiverse Pluralism

The first type of pluralism I call ‘multiverse pluralism’. The name is drawn from
a well-known project in set theory, and philosophy of set theory, the multiverse
program (Steel’s contribution to Feferman et al. (1999), Hamkins (2012), Steel (2014),
Antos et al. (2015), Maddy and Meadows (2020)). The core philosophical idea
behind the multiverse program is the claim that set theory is no longer, and should
not be, about a singular set-theoretic universe V . Instead, Set Theory is about a
family of possible models of various set-theoretic axioms; although, models of ZF
and its extensions form the backbone, if not the entirety of this family. Unlike,
arguably, arithmetic, Set Theory has no intended model.

Now one should be careful here. Adopting a multiverse view of set theory
doesn’t necessarily entail axiomatic pluralism. There have been many attempts to
provide multiverse axioms. In such case, it might be better to describe the result-
ing position as axiomatic monism with multiverse axioms, rather than pluralism.
Personally, I’d still see that as a pluralist view, given that the axioms just give
a systematic way of describing a plurality of set-theoretic universes. However,
there’s some reasonable disagreement to be had there.

It is, however, irrelevant. The point is that there are possible versions of the
multiverse program that achieve their ends simply by adopting a kind of axiomatic
pluralism. Instead of taking ZF or ZFC to be the axioms of set theory, a multiverse
pluralist instead holds that there are many different axiom systems for set theory.
Set theorists are interested in the consequences of many axiom systems, not merely
one.

Nothing said in the above paragraphs turns on the details of set theory as the case
in hand. One might just as easily say essentially the same thing about any area
of mathematics. In fact, essentially the same thing has been said in relation to
Homotopy Type Theory (Corfield (2020), Awodey (2004)), though other presenta-
tions differ (Linnebo and Pettigrew (2011) focus on the Elementary Theory of the
Category of Sets as a universe-like foundation for mathematics). More generally,
about any domain of mathematics one might reject the existence of a privileged or
intended model in favour of a multiverse view, whereby the domain considers a
class of possible models and a class of possible axiom systems characterizing these
models. For this domain, one could then be an axiomatic pluralist.
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The most famous example of a multiverse in mathematics, though it has not
gone by this name, is geometry. Since the discovery of non-Euclidean geometries,
geometers have not been interested in a single intended model of geometry. Instead,
they are interested in a range of models and the kinds of properties those models
might have.

Multiverse Pluralism generalises easily to mathematics as a whole. One sim-
ply holds that for mathematics in general, there is no privileged or intended model
and therefore no singular correct axiom system. Mathematicians are not or should
not interested in the consequences of one particular axiom system, but in the
consequences of a range of systems instead.

Now, a natural reply here by the axiomatic monist would be to take a supervalua-
tional approach: to claim, perhaps, that the correct axioms for a multiverse-domain
are some systematization of the statements true of all the models and that statements
true of only some models are to be understood as parts of conditionals.

This is certainly an interpretation of mathematical domains without intended
models. Its relative merits and virtues compared to the pluralist interpretation
shan’t be expanded upon here. As stated, my aim here is simply to sketch the kinds
of pluralist positions available, not to argue for them.

I will note, however, that the disagreement in part turns on an issue of the
correct theory of axiom selection. The monst, here, takes supervaluational truth to
be the relevant notion of truth for in axiom selection. The pluralist believes that
truth-in-a-model is more important.

3.2 Domain Relative Pluralism

The second type of axiomatic pluralism is comparable to domain-relative logical
pluralism, as defended by Pedersen (2014) and criticized by Steinberger (2019).

Domain relative logical pluralism holds that the correct logic can vary from
domain of discourse to domain of discourse. There might be different correct
logics for fundamental physics, social science, art, ethics, etc. The view is pluralist
because there are multiple logics correct for some domain.
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Interestingly, this is also a claim that some logical monists agree with. Priest (Priest
(2001), Priest (2005)), for instance, thinks that the correct logic might vary from
domain to domain. However, Priest is a logical monist because he takes there to be a
‘one true logic’ that’s the intersection of the correct logics for each domain. A natural
way to think of this is via a mereology of domains, with the general domain being
the universe, in the mereological sense. The one true logic is the logic of the universe.

What this means is that for one to be a domain-relative logical pluralist, at least
in any interesting sense, one has to hold not just that the correct logic can vary
from domain to domain, but that there’s no privileged or universal context whose
correct logic would be privileged.

How does this relate to axiomatic pluralism?

Now, there’s clearly no disagreement that different mathematical domains, or
different local contexts in this paper’s terms, have different correct axiom systems.
The correct axiomatization of geometry is different from the correct axiomatiza-
tion of arithmetic, is different from the correct axiomatization of set theory, etc.
This is something that the monist agrees to, they simply think that there’s a privi-
leged domain (the global context) whose correct axioms are the really correct axioms.

Returning to the mereological idea, it’s quite natural to think of mereological
relations between mathematical domains. Discrete analysis is, perhaps quite
literally, part of real analysis, which is part of complex analysis. Perhaps all of that
is part of set theory, still. The monist then believes that there’s a universal domain,
a general context in this paper’s terms. The properly correct axiom system is the
system for the general domain.

To clarify, I don’t want to overstate the monist’s commitments here. There’s
a very literal reading of the last section whereby numbers, say, are quite literally
sets. To my knowledge, only one person has actually defended that quite extreme
position (Steinhart, 2002). A more common position is that structurally equivalent
surrogates of, say, the natural numbers can be found in models of ZFC. The
existence of a general domain is then just the existence of a domain in which
surrogates of all mathematical structures can be found, which acts as a kind of
court of appeals for issues not resolvable in the lower-level theory.
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As discussed in §1.2.3, there’s a debate to be had as to if there is or should be a
single unifying domain for mathematics. To put this in more pragmatic terms, it’s
not a philosophically neutral matter as to if mathematics needs a single unifying,
general context.

The domain-relative pluralist simply rejects the need for a universal, general
domain. Of course, they acknowledge more or less ‘general’ domains, in the sense
that there are formally stronger and weaker theories that contain surrogates of other
theories. But they see stronger theories not necessarily as rivals, but as multiple
possible tools all of which can be used to do more abstract mathematics. They reject
the need for a foundation, in favour of a plurality and hierarchy of theories able to
do foundational work.

The domain-relative pluralist, for instance, sees no reason to choose between
homotopy type theory (or, rather, specific categories described in the language
of HoTT) and, say, ZFC. They see both of these as viable, useful and co-tenable
abstractions of their lower-order structures. Crucially, though, they take neither of
these to be the or even a universal domain. Both are simply other domains, which
happen to contain surrogates of logically weaker theories, not prioritised domains.
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3.3 Theory Pluralism

The final type of axiomatic pluralism is theory pluralism. The theory pluralist
believes there are multiple correct theories of axiom selection, perhaps each correct
relative to some view of the purpose or function of mathematics. Perhaps, for
instance, one might hold that there is no such thing as axiom selection in abstract,
but rather always for a particular task. What’s required of axioms might differ
greatly when picking axioms for automated proof checking, than when using them
to teach mathematics.

The monist might accept all this but reply that there’s nevertheless a privileged
function of axioms. Perhaps the task of truly justifying mathematics, or some such
similar highly-minded task. The theory pluralist simply rejects that there is any
such context that can be seen as privileged in the relevant way. I suspect this will
typically couple with a more practical and less philosophical view of what axioms
do. Certainly, if axioms are needed to justify mathematics, that seems sufficient for

A potentially helpful comparison here, to return to examples from logical pluralism,
is Beall and Restall (2005)’s consequence-pluralism. Beal & Restall grant that, given
a fixed consequence relation, there is a singularly correct logic. Similarly, they don’t
think that logical correctness varies from context to context. Nevertheless, there is
no privileged consequence relation, there are many. Consequently, there are many
correct logics; each correct modulo some consequence relation.

Just as Beall & Restall grant that for each consequence relation there is a sin-
gle correct logic, but that there is no privileged consequence relation, so too does
the Theory Pluralist grant that there might be a single correct axiomatic theory for
each set of evaluation criteria, but there is no single privileged set of evaluation
criteria.

A natural way to arrive at theory pluralism is via pluralism about the func-
tion of axiomatisation. If axiomatisation has many functions, some pedagogical,
some proof-theoretic, some philosophical, then there might be multiple correct
theories of axiom selection, modulo each of these functions. These different theories
might endorse different axiom systems. Consequently, there would be many many
correct axiom systems and one would be an axiomatic pluralist.
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Returning to my previous distinction between pure and impure contexts, the
Theory Pluralist might, with good cause, doubt the value of this distinction. Trying
to pick axioms devoid of their practical use in automated theorem checking or
proving, teaching, etc might reasonably be criticised for detaching axioms from a
number of the contexts in which they are so important. The Theory Pluralist would
very likely resist my previous (practical) decision to restrict the discussion only to
pure contexts.

4 Conclusion

This paper aims to fill a present gap, or perhaps partial gap, in the literature on
axiom selection. It aims to provide a conceptual geography of the kinds of theories
of axiom selection one might take up. My hope is that this map outlines and
clarifies some of the possible points of disagreement about axioms and how to
evaluate them. Following from this, I hope that it’s clear that axiom selection is not
a philosophically neutral matter. One’s theory of axiom selection will have to make
contentious claims in the philosophy of mathematics; claims about mathematical
truth, ontology, knowledge, and the value or function of mathematics. There
is, I believe, a rich philosophy of axiom selection not yet properly explored or
understood.
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Essay II: Mathematics Needs No (Philosophical)
Foundation

Introduction

In recent years there has been a lot of work arguing for or against one axiomatic
theory or another as a foundation for mathematics. Most notably, category theory has
been put against set theory as a possible foundation for mathematics1, though there
have also been discussions around extending set theory2. But does mathematics
need a foundation at all3? This paper argues that it does not.

The term foundation has not always been used consistently across this litera-
ture. There are many ways in which axiom systems might be thought of as a
foundation for mathematics, the term as it stands is a cluster concept. To slightly
clarify my earlier more provocative claim, in this paper I identify a series of ways
in which an axiom system might serve as a foundation for mathematics, and then
argue that mathematics has no need of such a foundation. I also clarify a number
of weaker senses of “foundation” that I take no issue with.

1See Univalent Foundations Program (2013) and Corfield (2020) for formal introductions to
various versions of homotopy type theory. See Mac Lane (1986), Feferman (1977), Mayberry (1977),
Hellman (2003), Awodey (2004), McLarty (2004), Linnebo and Pettigrew (2011) and various works
by Ladyman & Presnell including Ladyman and Presnell (2016), Ladyman and Presnell (2019) and
Ladyman and Presnell (2020). More recently see several papers in the edited collection Centrone
et al. (2019).

2Again, see the Centrone et al. (2019) collected volume. See Maddy (1993) and Maddy (2011),
the collected essays of: Feferman (2000), Steel (2000), Maddy (2000) and Friedman (2000). See also
discussion of the multiverse program in Hamkins (2012) and Maddy and Meadows (2020).

3Both Putnam (1967) and more recently Wagner (2019) have taken up a position by this name.
Both of them argue that mathematics has no need of a philosophical theory of its foundations. My
claim is slightly different, though certainly related in spirit: mathematics does not need its axioms
to perform certain philosophical tasks.
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In particular, I argue against the need for an ontic or epistemic foundation for
mathematics. At least, in any strong or philosophically loaded sense of the term.

Another way to put this in congruence with Essay I: On Axiom Selection and
Essay III: Instrumentalism & Axiom Selection is that I reject certain ontic or epistemic
criteria for axiom selection. The ontic or epistemic foundationalist4 argues that
for an axiom to be correct it must satisfy some epistemic or ontic condition. For
example, an axiom system must, say, correctly describe the objective mathematical
facts, or perhaps an axiomatic system must autonomously justify all of mathematics.
By arguing against the need for an ontic or epistemic foundation, this paper argues
against the adoption of these criteria as part of a theory of axiom selection.

Preminimaries

Three preliminaries.

First, I am not rejecting the need or use of foundational work in mathemat-
ics, or against an axiomatic system serving as a foundation for mathematics in this
purely formal mathematical sense. This is very important and productive work,
and not something I would wish to argue against.

In Essay III: Instrumentalism & Axiom Selection and Essay IV: Proofs, Derivations
and Axiomatic Pluralism, I question the need for a singular formal foundation for
mathematics, advocating for a plural foundation instead. But the merely formal
relationship between axioms and ordinary mathematical knowledge is not the
subject of this paper, which focuses merely on the (lack of) need for a philosophical
foundation for mathematics.

4Some terminology: An ontic or epistemic foundation is an axiomatic theory that plays some
particular ontic or epistemic role for mathematics. The details of what this role might be are
outlined in the relevant sections. Ontic/epistemic foundationalism is the view that mathematics
needs an ontic/epistemic foundation. An ontic/epistemic foundationalist is a person who endorses
ontic/epistemic foundationalism.
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Second, there is a distinction to be made between an axiomatic theory serving as a
global foundation and serving as a local foundation. For instance, Peano Arithmetic
might serve as a local foundation for arithmetic whereas the set theory-category
debate is about which axiomatic theory should serve as a global foundation for the
whole of mathematics.

Whilst this paper discusses only global foundations, the arguments made here
typically apply to local foundations as well, though perhaps there may be special
limiting cases. The claims made should primarily be taken as claims about global
foundations, not foundations for specific mathematical sub-disciplines. I welcome
these arguments being applied to local cases too, though due diligence should be
done to ensure that there aren’t exceptional factors that undermine the success of
my arguments in those cases.

Last, Penelope Maddy (2000) has pointed out that the term necessary might
be unnecessarily strong. Even if mathematics does not need a foundation, it might
nevertheless benefit from one. Maddy’s point is reasonable, and although I will
continue to use the term “need” rather than some weaker normative term, the
arguments I present here apply equally well to the claim that mathematics does not
benefit from a philosophical foundation as it does to the claim that it does not need
one. A reader is welcome to substitute other normative terms in place of “need” as
they desire. The argument should remain undisturbed.

Ontic Foundationalism

The first version of foundationalism to be discussed is ontic foundationalism.
The ontic foundationalist holds that axiomatic theories play an ontological role.
They entail the existence of any relevant facts about the mathematical objects.
In other terms, the ontic foundationalist argues for an ontological criterion on
axiom selection. An axiomatic theory is correct only if it correctly describes the
mathematical facts5.

There is a weak and a strong version of this position. I object only to the strong
version of ontic foundationalism.

5Maddy’s Robust Realist is an archetypal example of an ontic foundationalist (Maddy (2007)
and Maddy (2011)).
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Weak Ontic Foundationalism

A common distinction in the literature on the role of axioms in mathematics is
between what Schlimm (2013) calls the prescriptive and descriptive use of axioms.
This follows earlier similar distinctions by Hellman (2003), Shapiro (2005) and
others.

Used prescriptively, axioms define a (type of) structure. They determine the
kinds of mathematical objects that exist within a certain category. To use the
simplest example, the axioms of group theory define what it is to be a group. In
contrast, when used descriptively, an axiomatic theory systematizes and describes
a fixed body of mathematical facts. The axiomatisation of arithmetic, for instance,
can be thought of as a systematization of pre-axiomatic arithmetic.

Note that this distinction is not between axiomatic theories themselves but rather
how they are used; the sort of role that one wishes the axioms to play. One
might have the philosophical conviction that there really exist mathematical en-
tities called Groups and that Group Theory is the descriptively correct theory
of those objects. This would be a descriptive use of a typically prescriptive the-
ory. Similarly, in an alternative history with no pre-axiomatic arithmetic, the
axioms of Peano Arithmetic might have been introduced as the definition of a
number structure. This would be a prescriptive use of a typically descriptive theory.

There is a sense in which you can think of prescriptive axiomatisation as pro-
viding a kind of ontic foundation for their domain. They do, after all, populate a
theoretical space with the objects under consideration.

This would, however, be a very weak version of Ontic Foundationalism, and
a very minimal constraint on axiom selection6. It would not, for instance, actually
require that any mathematical objects really exist or that the axioms be true in a
non-definitional way.

A nominalist can accept that axiomatic theories define a certain kind of struc-
ture, populating said structure with objects, whilst holding that the structures
defined are merely possible or perhaps fictional.

6The very minimal constraint that axiomatic theories entail the existence of some objects, even if
those objects aren’t necessarily to be understood as literally real, has been advanced by Hellman
(2003) replying to Awodey (1996), who in turn replied in Awodey (2004).
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That’s not to say that only nominalists can be weak ontic foundationalists. The
position is both compatible and in the spirit of a number of realist positions. Classi-
cal constructivists like Brouwer (Brouwer (1975), Brouwer (1976), Brouwer (1981)
and Brouwer (1992)) or coherentists like Shapiro (1997a) or Rayo (2020) might
naturally adopt this kind of a view. The example of coherentism is instructive. The
coherentist holds that all logically possible mathematical structures exist. There
can then clearly be no axioms (save perhaps the rules of logic) which describe all
mathematical structures and the task of describing some mathematical structure
is rather trivial, just a matter of consistency. Instead, axioms can be thought of as
specifying a narrower class of abstract structures are for consideration, a practical
necessity given their multitude.

Weak Ontic Foundationalism is a very minimal position. It doesn’t require anything
philosophically substantial of axiomatic theories. It can be reconciled with almost
any view of the nature of mathematical truth. Consequently, this is not a version of
ontic foundationalism that I take any issue with.

Strong Ontic Foundationalism

In contrast to the weak view, a strong ontic foundationalist (henceforth just “ontic
foundationalist”) holds that an axiomatic theory is correct only if it is a correct
description of the mathematical facts or objects. The facts, or at least a portion
of them, are determined prior to axiomatization. Axiomatic theories are (in part)
descriptive theories of those facts.

A clear analogy here is with scientific theories. Scientific theories, at least ac-
cording to scientific realists, are descriptive theories of the natural facts. A scientific
theory is correct iff it is an accurate description (and perhaps explanation) of the
natural facts. For the ontic foundationalist, the relation between scientific theories
and natural facts is equivalent, or at least comparable to, the relationship between
axiomatic theories and the mathematical facts. An axiomatic theory is correct, or at
least correct as a foundation, only if (perhaps iff) it is an accurate description of the
mathematical facts.
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The first incompleteness theorem is a limiting factor here. No finite, consistent,
sufficiently powerful, first-order mathematical theory can describe all the math-
ematical facts. The ontic foundationalist might hold that this means that the
correct axiomatic theory is therefore infinite and that all we can know are partial
fragments of this theory. They might instead claim that the correct axiomatic
theory is second order. Or they might weaken the above requirement such that an
axiomatic theory is correct only if (perhaps iff) it is an accurate partial description
of the mathematical facts. Which option they might take isn’t relevant for this paper.

The clearest recent example of Ontic Foundationalism is Mayberry (Mayberry
(1994) and Mayberry (2000)) It is also discussed and rejected by Maddy: her
"Robust" Realist is a very clean example of Ontic Foundationalism (Maddy (2007)
and Maddy (2011)), and discussed agnostically by Ladyman and Presnell (2016).
Historically Frege (Frege (1879) and Frege (1884)) and Gödel (Gödel (1947) and
Gödel (1953)) are clear Ontic Foundationalists. Ontic Foundationalism is also
frequently tacitly assumed in a number of works by realist philosophers of mathe-
matics - Resnik (1997), Shapiro (1997b), Parsons (2007) and Linnebo (2018), to list
just a few examples. Linnebo is most explicit about this, devoting an entire chapter
of Thin Objects to a demonstration that his iterated abstraction principles produce a
model of ZFC.

Two objections to ontic foundationalism.

Objection 1: The Assumption of Realism

Ontic Foundationalism entails either mathematical realism or axiomatic nihilism
(the view that there are no correct axiomatic theories). If ontic foundationalism is
true, then there is a correct axiomatic theory iff there are at least some objective
mathematical facts that are correctly described by said theory.

I assume that axiomatic nihilism is an untenable consequence of any view. It
would always be better to change one’s theory of axiom selection than accept
axiomatic nihilism. What "correct" might mean will vary from view to view7 but
the answer to the mathematician’s question What axioms should I use? cannot be None.

7In particular, the term "correct" does carry some realist connotations. One might wonder if a
nominalist can talk of correct axioms. But there is a normative sense of "correct" present in the
phrase "the correct decision". This sense is available to the nominalist.
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Granting this, I hope, unproblematic assumption, ontic foundationalism entails
realism. If there is a correct axiomatic theory iff there are some objective mathemat-
ical facts described by said theory and there is, in fact, at least one correct axiomatic
theory (Nihilism is false), then there are some objective mathematical facts. But if
there are objective mathematical facts, mathematical realism is true.

This leads to a series of objections to ontic foundationalism.

First of all, ordinary nominalist8 objections to mathematical realism transfer to
ontic foundationalism.

If ontic nominalism is true, then there are no mathematical objects. But ontic
foundationalism entails that there are (modulo the rejection of axiomatic nihilism)
so if ontic nominalism is true, ontic foundationalism is unsurprisingly false.

The epistemic nominalist holds that if realism is true, there can be no mathe-
matical knowledge. But if there is an ontic foundationalism is true, then we
couldn’t know what the correct axiomatic theory is as we wouldn’t be able to know
if it correctly describes the mathematical facts or not. But we do have knowledge
of which axioms are correct, so ontic foundationalism is false.

That nominalists of various stripes reject ontic foundationalism is not all that
surprising. The case for nominalism is also not uncontroversial and the arguments
for and objections against nominalism have been well rehearsed, and there’s no
need for me to repeat them here.

As a member of the quarter of philosophers of mathematics that self-identify
as nominalists I, unsurprisingly, take these objections to be a serious issue for ontic
foundationalism. However, it would be unfortunate to tie the entire case against
ontic foundationalism up in a debate that shows no signs of being resolved any
time soon. Consequently, some more theoretically neutral arguments against ontic
foundationalism should be found.

8In some North American circles the term "nominalism" denotes a specific position outlined
by Field (1980). I use the term in line with Burgess and Rosen (1997)’s work. An ontic nominalist
rejects the existence of abstract objects. An epistemic nominalist rejects the possibility of knowl-
edge of abstract objects. Any North American readers are welcome to mentally substitute the
term "mathematical anti-realist" for "ontic nominalist" and "mathematical sceptic" for "epistemic
nominalist".
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Fortunately, there are ways to take and generalize the nominalist’s objections
such that they don’t rely on the controversial assumptions of ontic or epistemic
nominalism. There are ways to take these arguments and put them on some kind
of common ground or, at least, less controversial ground. The argument runs as
follows.

Mathematicians should not have to be concerned with philosophical questions
regarding realism. Mathematicians should be able to remain agnostic on philo-
sophical questions and this shouldn’t disrupt their work.

Easwaran (2008) has argued that one of the functions of axiomatization is to
shield mathematicians from philosophical questions. Mathematicians need not
answer whether or not their axioms are really true, or the objects described by their
theories really exist. They can simply point to their axioms as a particle starting
point and go from there.

Similar sentiments are described in Kenneth Kunen’s discussion of the philosophy
of mathematics in his well-known set theory textbooks. In his early 1980 book,
Kunen (1980) adopts platonism (Realism, in my terminology) as the “official”
philosophy of the book. By the 2011 version (Kunen, 2011), he had switched to
formalism. In both cases, though, Kunen advocates for these positions on pedagog-
ical grounds. These are simply the philosophical views that he takes to be most
effective in explaining certain crucial points to learners of Set Theory. He’s keen to
specify in both versions of the book that one can understand what’s going on in
Set Theory just as well from both of these (and other) perspectives. Mathematical
practice is independent of these philosophical debates and mathematicians don’t
need to take a philosophical stance in order to do mathematics.

But this leads to the following argument against ontic foundationalism. If on-
tic foundationalism is true and there’s an ontic condition on axiom selection,
then mathematicians need to make substantive philosophical commitments when
adopting a particular axiomatic theory. They need to accept that the axioms are
objectively true, and the objects entailed by them or contained within them in fact
really exist. But mathematicians do not need to make such commitments, pace
practical agnosticism, so there can be no ontic condition on axiom selection and
ontic foundationalism is false.
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Note the normative requirement here is in fact relatively light. One does not need
to make the claim that mathematicians must or even should remain philosophically
neutral. It is sufficient for this argument that mathematicians may remain agnostic
on metaphysical or philosophical questions whilst nevertheless adopting one axiom
system or another for their practical purposes.

If it’s even the case that mathematicians simply may remain neutral, then on-
tic foundationalism is false as it forces mathematicians to take a philosophical
stance during axiom selection where one is not needed.

Objection 2: Historical Examples of Axiom Selection

Ontic Foundationalism cannot account for how axiom selection actually progressed
in a number of key historical cases. If ontic foundationalism is true, then math-
ematicians have behaved in a very puzzling manner at a number of points in history.

To show this, consider the comparison with natural science more closely. Sci-
entific theories are descriptive theories of the natural world. Scientific theories
are correct because they describe and perhaps explain the natural facts. To justify
their theories, therefore, scientists must go out and collect data, and perform
observations and experiments. According to a simple picture, scientists make an
observation, use these observations to justify some general claim, and then defend
a theory on the grounds that it best explains these observations.

This picture is overly simplistic and the work on scientific explanation over
the last half century has shown that a more complex picture is required in practice.
For example, what an experiment is taken to signify is not theory-neutral. This is
the Duhem-Quine thesis (Duhem (1998) and Quine (1998)). Evidence is not theory-
neutral. Moreover, theory guides experimentation by suggesting experiments
to run. It is not simply an after-the-fact systematization of the natural facts and
regularities that have been discovered. Lastly, the exact methods of science differ
greatly from one domain to another. The “simple picture” outlined above is true
only at some level of abstraction when looking across the range of methodological
diversity within science.
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That notwithstanding, an essential component in the scientific method is the abduc-
tion from first-order natural facts established on the basement of experimentation
to some kind of general theory which explains those facts. None of the issues
outlined above disagree with that, they just point out that it’s not the entire picture.

If ontic foundationalism is true then, as discussed above, a strong analogy between
scientific theories and axiomatic theories holds. Axiomatic theories relate to math-
ematical facts in much the way scientific theories relate to natural facts. If ontic
foundationalism is true, one might expect historical cases of axiom selection to
follow this “simple picture” of the scientific method, at least at some appropriate
level of abstraction.

Some historical cases do seem to work like this. Both geometry and arithmetic
existed in some kind of pre-axiomatic form. The pre-axiomatic geometric or
arithmetic facts serve as the analogue to the experimentally identified natural fact.
An axiomatic theory is introduced as a way of systematizing, organizing, and
explaining these facts. Now, assuming there’s some kind of external justification for
these pre-axiomatic facts, for instance via their utility in science, then the analogy
holds very well.

However, these kinds of cases are of an exception and this does not general-
ize how axiom selection has proceeded more generally, and certainly not how
axiom selection has functioned within the last century or so.

The most detailed account of axiom selection in mathematical practice is pro-
vided by Penelope Maddy. According to Maddy, in practice, axioms are adopted
because they advance certain mathematical goals. For instance, the axiom of choice
was adopted because it had a number of productive and helpful consequences in a
wide range of domains and mathematics, advancing a number of mathematical
goals.

Maddy’s account generalizes to a number of cases. She discusses the current
case for large cardinal axioms at length (both Maddy (2007) §4.3 and Maddy (2011)),
but given that I take this to be an ongoing rather than resolved case, it’s best to
look for historic examples for present purposes.
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The adoption of Peano Arithmetic can be easily understood on Maddy’s account
as succeeding in advancing the goal of formalizing arithmetic. The adoption
of the axioms of group theory can be understood via the goal of developing an
exceptionally useful algebraic tool with a wide range of applications. The rejection
of the parallel postulate in geometry can be understood via the goal of moving
geometry from a synthetic to an abstract discipline.

In Essay III: Instrumentalism & Axiom Selection, I question Maddy’s account on a
number of grounds. I offer an alternative account in its place where axioms are
adopted based on the utility of the structures they produce. But this is a similar
enough account to Maddy’s and hers serves sufficiently for present purposes.

Assuming Maddy’s account of these cases is (more or less) correct, can the Ontic
Foundationalist explain the goal-directed method, if mathematical methods should
mirror the scientific method?

There is still some level of similarity between the goal-directed method and the
simple story of the adoption of scientific theories told above. Novel consequences
of particular axioms or axiomatic theories are identified. These consequences are
then evaluated on the basis of how well they advance certain mathematical goals.
If a critical mass of interesting goal-advancing consequences are identified, then
the axioms are adopted.

The explanation holds if evaluating the consequences of an axiom on the ba-
sis of its ability to advance certain mathematical goals can be seen as sufficiently
analogous to evaluating a scientific theory on the basis of its ability to describe,
predict and explain natural facts.

But this is, I think, a difficult comparison to take seriously. It’s unclear why
we should expect reality to be cooperative with our goals (or those of mathemati-
cians). Why should we expect objective mathematical facts to correspond nicely to
the goals of mathematicians?

It would not be acceptable for natural scientists to adopt theories on the ba-
sis that they advance certain internal scientific goals, for instance, certain aesthetic
considerations. String Theory, for instance, has been heavily criticized on exactly
these grounds.
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But if ontic foundationalism is true and the analogy between axiomatic theo-
ries and scientific theories holds, then one should react similarly to the use of
internal mathematical goals in deciding between axiomatic theories.

The ontic foundationalist must then do one of two things in reply to this ob-
jection.

First, they could argue that mathematicians have been mistaken in the kinds
of methods they have applied. I don’t take this to be an entirely unconscionable
move, though an exceptionally strong case for ontic foundationalism should be
made if it is to be this revisionary of mathematical practice. No such case is
forthcoming.

Second, they could explain why, in fact, the historical examples outlined are
contiguous with the scientific method, despite clear prima facie differences. There
are some potential ways to do this. Maddy’s discussion of thin realism in her
book Second Philosophy (§4.4) aims to explain how realism is consistent with
her acceptance of the methods. She draws a distinction between robust and thin
realism, arguing that only robust realism faces the problem outlined here.

I’m sceptical of the success of Maddy’s move, though won’t critique it here.
Suffice, for present purposes, to say that Maddy’s thin realist very clearly rejects
ontic foundationalism. Realism, for the thin realist, is an uninteresting byprod-
uct of the methods of mathematics. That there are mathematical objects is true
simply because the properly selected axioms entail that there are objects. But
not then that the thin realist, at least of Maddy’s sort, is not an ontic founda-
tionalist. Axiom selection for Maddy has nothing to do with realism, contra the
ontic foundationalist’s claims. None of this is an unwelcome consequence for
Maddy, who is quite clear in her adoption of a goal-based account of axiom selection.

Maddy’s thin realism, at best, reconciles the actual methods of axiom selection
with realism. It does not reconcile the actual methods of axiom selection with ontic
foundationalism. However, nothing I’ve said here entirely rules out the possibility
of a different kind of thin realism that can take on the stronger burden of reconciling
ontic foundationalism with the historical cases outlined. Such a view is neither
obvious nor forthcoming, I am certainly sceptical that it is possible, but I welcome
ontic foundationalist attempts to prove me wrong!
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Epistemic Foundationalism

A simple story of the epistemology of mathematics goes like this. Ordinary math-
ematical statements are justified by proofs. Proofs are, in essence, short-hand
descriptions of derivations from previously established theorems and lemmas,
or from the axioms themselves. One could take a proof of a theorem, take the
transitive closure of its citations (modulo a little tidying up), unpack the short-hand
of the resulting script and in order to reach a deductively valid derivation from the
axioms to the theorem.

Work by, amongst others, Azzouni (2004), Burgess and Toffoli (2022), Hamami
(2022) and Tanswell (2015) has questioned that such a direct link between proofs
and derivations exists. I discuss this further in Essay IV: Proofs, Derivations and
Axiomatic Pluralism, with particular emphasis on the relationship between proofs,
derivations and the axioms.

But even granting a more complex relationship between proofs and derivations,
it’s still true that whatever justification proofs provide for ordinary mathematical
claims, this is transmitted from the axioms.

For proofs to justify ordinary mathematical statements, the axioms must themselves
be justified in order to transmit that warrant via proofs9.

Epistemic foundationalism is the claim that mathematics needs an axiomatic
theory that plays this role - An autonomously or independently justified set of
statements from which one can transmit warrant via proof to the rest of mathematics.

9The nominalist, I note, does not deny this account of the epistemology of ordinary mathematics.
However, they think that mathematical facts have a kind of conditional structure. To say that a
mathematical statement ϕ is true is just to say that ϕ follows from some relevantly selected axioms,
or is true in all possible structures modelling these axioms, or is true in the fictional universe
described by these axioms, etc. Thus the nominalist accepts the account of ordinary mathematical
epistemology but without the need for a further justification of the axioms themselves.
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Weak Epistemic Foundationalism

As with ontic foundations, there are weaker versions of epistemic foundationalism
that I don’t wish to criticize.

First of all, the mere view that proofs need to be tracked back to the axioms
could, in a sense, be called a kind of epistemic foundationalism. Some axioms
are accepted by the mathematical community as being the basis of proofs. In this
practical sense, these axioms do serve as a kind of epistemic foundation. I call this
the formal sense of foundation.

I have no criticism of axioms playing this kind of minimal foundational role.
This is, again, a very minimal sense of foundation, if it could even be called a
foundation at all.

Second, a weak notion of an epistemic foundation that I take no issue with
is the idea that axiomatic theories contribute in some way to mathematical knowl-
edge. Dirk Schlimm (2013) has argued, for instance, that we shouldn’t think of
axiomatic theory as merely an after-the-fact systematization of an already estab-
lished body of knowledge, but rather axiomatic theories play a role in generating
new mathematical discoveries.

I agree with Schlimm’s analysis here. This is comparable to the way, for in-
stance, scientific theories might play a role in scientific knowledge generation:
identifying new research questions, clarifying important distinctions, etc.

I’m unsure if this should be called a foundation at all. I would describe this
more as a contributory epistemic role rather than a foundational one. However, if this
can be thought of as a kind of foundational role, it’s a weak notion of foundation
that I do not object to.
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Strong Epistemic Foundationalism

As mentioned above, strong epistemic foundationalism (henceforth just epistemic
foundationalism) holds that mathematics needs an axiomatic theory that is, in a
certain sense, independently justified that can transmit its justification to the rest of
mathematics, or at least to the domain that it serves as a foundation for10.

The most extreme example of epistemic foundationalism is the classical claim
that axioms are self-evident. I’ll note that there is no one that really holds this view
in practice now. Self-evidency is an exceptionally high bar and something that I
don’t think any axioms in practice would be able to meet.

I take self-evidency to mean not merely a priori demonstrability, but a very
immediate kind of a priori demonstrability. Self-evident statements should be
justified simply in virtue of understanding their content. There is no gap between
comprehension and justification.

This is simply too epistemically demanding. As an example, the Fregian tra-
dition in the philosophy of maths purports to offer a priori demonstrations of the
existence of structures modelling certain axioms (see Linnebo (2018) for a recent
example and Pearce (2022) for discussion). Even if they’re correct, they would
still fail to meet the requirements of self-evidency, as these a priori proofs are
very complex and certainly not immediate upon understanding the content of the
claims. If the most optimistic appraisals of the kind of epistemic access we have to
mathematical facts still fall short of self-evidency, then it’s clearly too demanding
a criterion. A useful example of epistemic foundationalism, but not to be taken
seriously.

A more reasonable version of an epistemic condition on axiom selection is Linnebo
and Pettigrew (2011)’s justificatory autonomy condition. They begin with a notion
of relative autonomy. An axiomatic theory is autonomous relative to another branch
of mathematics iff it can be justified without relying on the warrant transmitted
from that other branch. An axiomatic theory is autonomous simpliciter iff it is
autonomous relative to all branches of mathematics. Mayberry (1994) and Feferman
(Feferman (1999) and Feferman (2000)) have advocated for similar positions, though
in slightly stronger terms than Linnebo and Pettigrew.

10One might imagine a pluralist version of epistemic foundationalism with independently justified
foundations for different domains of mathematics.
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I’ll reply to Linnebo and Pettigrew’s weaker formulation of the position though all
arguments transfer equally well to the stronger version.

This condition fits with the picture outlined above. Ordinary mathematical state-
ments are justified on the basis of proofs (or derivations) from the axioms. Axioms,
however, cannot be justified that way on pain of circularity or a regress. A truly
autonomous justification of some axioms would provide just such a justification.

Note that there is a lot of flexibility within the span of this view. Ordinary
mathematics might have some degree of independent justification in addition to its
justification via the axioms. The level of warrant required of an axiomatic theory to
serve as an independent foundation might vary from theory to theory. But, at the
least, axioms have some kind of independent justification and they transmit that
justification to ordinary mathematical statements via proofs.

Two objections to epistemic foundationalism

Objection 1: The assumption of realism, again.

As with ontic foundationalism, the epistemic foundationalist must make an as-
sumption of realism, albeit indirectly. Justification is an indication of truth. So in
order for mathematical statements or axioms to be justified, there must at the very
least be the epistemic possibility of mathematical objects.

As with the above, I assume that axiomatic nihilism is not an acceptable po-
sition. Everyone must hold that there are at least some correct axioms.

Whatever the correct axioms are, the epistemic foundationalist holds that they are
(autonomously) justified in believing in those axioms. This is automatically incon-
sistent with epistemic nominalism, which holds that no mathematical statements
are justified (at least, not in the epistemic foundationalist’s sense).

Some but not all versions of epistemic foundationalism are inconsistent with
ontic nominalism.
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There are two important justificatory thresholds that a statement might cross based
on the strength of evidence in favour of it. First, a statement might be sufficiently
justified to the point where it is merely rationally permissible to believe it, but that
it’s also rationally permissible not to believe it (either to remain agnostic or actively
disbelieve). Second, a statement might be justified to the point rationality requires
belief in the statement. Disbelief is not rationally possible, if the strength of the
evidence is above the second threshold.

That such a distinction exists is not epistemically uncontentious, I’m merely
sketching a view one might hold.

If epistemic foundationalism only requires justification of the axioms to the first
threshold (mere permissibility), then it is consistent with ontic nominalism. For
a statement justified to the point of mere permission, it is consistent to reject the
claim whilst simultaneously holding that one would be justified in believing it.

If epistemic foundationalism requires that axioms be justified to the second thresh-
old (rational obligation), then it is inconsistent with ontic nominalism. One cannot
(rationally) claim that one is rationally required to believe X but nevertheless not X
is true11

So epistemic foundationalism is inconsistent at least with epistemic nominal-
ism and, in some versions, with ontic nominalism as well.

Additionally, nominalists of all stripes will hold that the epistemic foundationalist
has simply misunderstood the structure of mathematical statements (this was
Putnam’s objection to epistemic foundationalism).

11The sense of “rationality” used here is merely epistemic. There are other senses of rationality:
practical, ethics, etc, where it might be the case that it’s rational to believe false things. James
(1896)’s Ice Climber case is the classic example. But this is non-epistemic rationality and not the
subject of discussion here.
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Nominalists generally hold that mathematical statements have some kind of condi-
tional structure (see discussion above). If ϕ is some proven mathematical theorem,
Nominalists will not take ϕ itself to be justified. Rather, if T is the axiomatic theory
thatϕwas proven from, nominalists might hold that T ⊢ ϕ is what has been justified
(formalism), or that and possible T structure satisfies ϕ (modal structuralism) or
that T fictions all satisfy ϕ (fictionalism), or some other comparable position.

It’s these conditional statements, not the theorems themselves, which are justified
on the nominalist’s view. The epistemic foundationalist, then, simply misunder-
stands what the content of mathematical knowledge actually is.

As with the previous section, I won’t re-litigate the realism vs nominalism debate
here. If, like me, one is a nominalist, then these are additional grounds to reject
epistemic foundationalism. If one is not, the other arguments are for you. Again,
this line of objection can be put on more common ground, and in a similar way.

As argued above, it’s reasonable to claim that mathematicians should at the
very least be able to remain agnostic on philosophical questions about realism
or anti-realism. This is inconsistent with epistemic foundationalism, as it is with
ontic foundationalism. The value of justification is only ever as an indicator of
truth. Justification is never intrinsically valuable, only ever extrinsically valuable
because truth is valuable. If justification is relevant to axiom selection, then this
can only be because truth is relevant to axiom selection. But this then violates the
claim that mathematics should be neutral towards metaphysical issues, so as to
allow mathematicians to be agnostic. Hence epistemic foundationalism is also
inconsistent with the permissibility of agnosticism.

All this is largely a repetition of the arguments presented in the previous sec-
tion, so I simply provide the sketch here and refer back to that section for the
details.
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Objection 2: The Wrong Direction of Fit

For the epistemic foundationalist, axiomatic knowledge is (partly12) epistemically
prior to ordinary mathematical knowledge. Warrant flows from axioms to their
consequences and not vice versa.

Note that this is already an epistemically unusual situation. Typically theories
are justified in virtue of having accurate consequences. Explananda are epistem-
ically prior to the explanatia. Now mathematics is epistemically unusual in a
number of ways, so it is not especially surprising if this turns out to be another.
But this difference should, at the least, raise some prima facie suspicion of the ac-
count of mathematical epistemology committed to by the epistemic foundationalist.

These suspicions are further borne out again by looking at historical cases of
axiom selection.

Across a wide range of cases, axioms have been justified on the basis of their
consequences.

In set theory, the Axiom of Choice became widely accepted because of the wide
range of helpful consequences it yields (Zorn’s Lemma, all vector spaces have a
basis, etc). In geometry, the existence of interesting non-euclidean models was
sufficient for the parallel postulate not to be adopted. Peano Arithmetic was
justified on the grounds that it provided a good systematization of pre-axiomatic
arithmetic.

Above I explain Maddy’s interpretation of these kinds of cases. Axioms are
evaluated based on the extent to which their consequences advance mathematical
goals. As mentioned, elsewhere I’ve offered a comparable instrumentalist reading
where axioms are selected on the basis of their utility - If the structures produced
are interesting or useful tools for mathematics or science.

12As outlined, an epistemic foundationalist might hold that ordinary mathematical knowledge
has both an independent non-axiomatic justification (e.g. via utility and science) and an axiomatic
justification. The epistemic relationship between axiomatic knowledge and ordinary mathematical
knowledge is still from the axioms to the ordinary statement, even if that’s just a full picture of the
epistemology of mathematics.
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There’s also a realist reading of these cases. Comparable to the scientific method,
mathematicians begin with knowledge of ordinary mathematics. Perhaps via its
application to science (Quine, 1981), or perhaps via other means. From this, they’re
able to infer abductively to an axiomatic theory on the basis of its ability to explain
the truth of their established ordinary mathematical knowledge.

Fortunately, I don’t need to argue between interpretations and they all agree
on a central point relevant to epistemic foundationalism. All of these views agree
that the epistemic direction of fit runs from ordinary mathematics to the axioms,
contra the epistemic foundationalist’s claims. (Some) Ordinary mathematical
knowledge is epistemically prior to the axioms. Axioms and axiomatic theories, on
this view, are not justified autonomously from the ordinary mathematics they imply.

Note this is not to claim that all mathematical knowledge is epistemically prior to
that of axioms. An axiom might be adopted on the basis of some of its consequences,
but will then entail a number of other results that weren’t previously known. In
such a situation, an axiom is epistemically prior to some of its consequences but
epistemically posterior to others.

Moreover, as discussed above, I agree with Schlimm’s analysis that axiomat-
ics often play a productive epistemic role within mathematics.

But at the very least, in these cases, it seems as if axioms of axiomatic theo-
ries were justified on the basis of some ordinary mathematical knowledge, not
the other way around. This is contrary to the epistemic foundationalist’s claims.
Epistemic foundationalism, therefore, gets the epistemic direction of fit wrong
between axioms and at least some ordinary mathematical knowledge. Epistemic
foundationalism, as with ontic foundationalism, fails to give an accurate count of
historical cases of axiom selection.

The outlook for epistemic foundationalism is, I think, worse than ontic foun-
dationalism.

For both, I leave open the option of claiming that mathematicians have been
wrong in their historical methodology. They are welcome to make this case, though
given how radically revisionary this would be, an exceptionally strong case would
need to be made. Such a case is not forthcoming.
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For the ontic foundationalist, though, I also left open the option of “thin real-
ism” as a way of reconciling the actual methodology of axiom selection, as it exists
in mathematical practice, with ontic foundationalism. I’m sceptical about this,
but it is a possibility. No such option is available to the epistemic foundationalist,
though. Whilst historical examples of axiom selection are difficult to reconcile with
ontic foundationalism (I think terminally so), they refute epistemic foundationalism
in a far more direct way. The cases are quite literally examples of axioms being
justified because of ordinary mathematical knowledge which is directly contra to
the epistemic foundationalist’s claims.

Whilst I think the outlook for ontic foundationalism is bad, the outlook for epistemic
foundationalism is, I think, worse.

Conclusion

This paper argues against two forms of foundationalism in mathematics: ontic
foundationalism and epistemic foundationalism. Mathematics, so I argue, does
not need an axiomatic theory to fulfil certain tasks which I take to be merely
philosophical, not mathematical, in nature. To put this in other terms, this paper
argues against certain epistemic or ontic conditions on axiom selection. The ability
to serve as an ontic or epistemic foundation for mathematics should not be used as
criteria for axiom selection.
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Essay III: Instrumentalism & Axiom Selection

How should we select new axioms for mathematics?

One way is to think of axiomatic theories as descriptive theories of some fixed
body of mathematical facts. Just as scientific theories are correct iff they correctly
describe (and perhaps explain) the natural facts, axiomatic theories are correct iff
they correctly describe the mathematical facts (assuming there are such things).
An alternative is to treat axioms instrumentally. The function of an axiomatic
theory is not descriptive but productive. Axiomatic theories give mathematicians a
universe to work with, and the function of axioms is simply to provide the most
interesting or productive universe possible1.

The most well-known (arguably) non-descriptivist theory of axiom selection was
developed by Penelope Maddy across two books: Second Philosophy (Maddy (2007)
- SP) and Defending The Axioms (Maddy (2011) - DTA)2. On her view axiomatic
theories are evaluated on the basis of their ability to advance the goals of mathe-
maticians. Maddy’s account is, I think, very effective in application but theoretically
problematic. It typically gets the right results, but on grounds that are somewhat
questionable. The aim of this paper is to outline a theory of axiom selection that
behaves like Maddy’s in application but avoids its issues.

1This is not to say anything of the ontological status of the objects entailed by axioms. One of
the advantages of instrumentalism is that it’s neutral with respect to mathematical realism.

2Maddy is a philosopher whose views shift comparatively frequently in contrast with other
philosophers. This is something commendable though results in the challenge of identifying to
which version of her work one ought reply. At least on my reading, Maddy’s views on axiom
selection are stable across SP and DTA. In this paper, I’m responding to the Maddy in SP and DTA.
Her more recent work (Maddy, 2019) applies an approach certainly congruent with SP and DTA.
Though there is, I think, I a slightly more epistemic flavour to that work that takes it a little further
from my proposal, hence why it’s not discussed here.
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§1 outlines Maddy’s view, introducing two points of critique along the way. §2
raises two further more substantial objections to Maddy’s view (the Euthyphro
dilemma in §2.1 and my objection to Maddy’s Thin Realism in §2.2). My positive
proposal, an instrumentalist theory of axiom selection, is introduced in §3 and
shown to resolve the issues raised in the previous sections whilst retaining a theory
that is extensionally similar to Maddy’s. One notable point of divergence between
our accounts is in relation to axiomatic pluralism, the view that there are multiple
correct axiomatic theories. I am an axiomatic pluralist and Maddy is not. §3.2
discusses this point of divergence.

1 Peneolope Maddy’s Theory of Axiom Selection

1.1 Three Types of Consideration

Maddy’s view is best outlined in her own words. In SP she says the following:

...The Second Philosopher, in her effort to understand the world, may well turn to the
pursuit of pure mathematics, and that when she does so, her assessment of proper methods

rests on weighing their efficacy towards her mathematical goals.
(SP - IV.4, p361)

Mathematicians have a number of goals. Many of those goals relate to mathematics.
Mathematicians might wish to see a satisfactory formalization of their intuitive
mathematical concepts such as "number", "space" or "set". They might notice certain
structural similarities across mathematics and might have the goal of describing
these commonalities (see the developments of group and category theory). There
might be certain physical phenomena that they wish to model. Axiomatic theories
are judged on their ability to advance these goals.

In DTA Maddy continues with specific reference to set theory:

[The second philosopher] takes the proper methods for introducing sets, for adding new
axioms to our theory of them, to be methods of the sort we’ve been rehearsing: sets are

legitimately posited as effective means towards various mathematical goals (in analysis,
algebra, foundations and elsewhere); axioms are defended by a careful balance of detailed

considerations, both intrinsic and extrinsic.
(DTA - II, p56)

Two new characters have appeared in Maddy’s account: intrinsic and extrinsic
reasons.
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Both are discussed in greater detail below but, in brief, an intrinsic reason is
a reason to select an axiom based on features of the axiom itself whereas extrinsic
reasons are reasons based on what the axiom does.

An immediate exegetical question presents itself: What is the relationship be-
tween in/extrinsic considerations and goal-directed considerations? Are there three
types of considerations: goal, intrinsic and extrinsic? Or are intrinsic and extrinsic
reasons specific types of goal-directed considerations?

The latter reading is, I think, more natural. Mathematicians might have cer-
tain intrinsic goals, e.g. to explicate certain pre-formal concepts, and they might
also have extrinsic goals, goals to do certain things with their axioms.

There is a further question regarding what the mathematical goals actually are.
Mathematics is not a homogeneous community that can be assumed to have
unified aims and goals. Intellectual histories too often fall into the trap of whigism,
favouring romantic simple narratives about shared intellectual goals spanning
generations over the mess of discord and disagreement. All this is to say that
Maddy does not provide an account of how the potentially diverging goals of
individual mathematicians are to be aggregated into The mathematical goals that
can then be used to evaluate axioms.

This is, I think, a serious, though likely solvable, issue for Maddy’s position.
It’s an issue my proposal side steps.

Returning to clarifying Maddy’s position, what are intrinsic and extrinsic consider-
ations for adopting an axiomatic theory?

1.1.1 Intrinsic Considerations

Intrinsic considerations for adopting axioms are conceptual in nature. They are
about how axioms relate to pre-formal concepts. Axiomatic theories are often
intended as explications of pre-axiomatized mathematical concepts. Historically,
there have been many cases of mathematicians adopting the goal of formally
explicating a pre-mathematical concept.
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Note that it’s axiomatic theories that explicate pre-axiomatic mathematical con-
cepts, not individual axioms. Taking Peano arithmetic as an example, the axiom
"every number has a unique successor" does not itself exhaust the pre-axiomatic
concept of "number". Clock arithmetic, for instance, satisfies this axiom but is not
an example of (natural) number. Only together do the axioms of Peano arithmetic
(arguably) produce a formal explication of the concept of "number".

Individual axioms, however, are defended on the grounds that they are implicit in
the pre-axiomatic concept. Whatever an explication of the concept of "number"
looks like, it should at least entail unique successors, or else it would be too
dissimilar from the original concept and fail to be an explication.

Intrinsic considerations also include a weaker sense in which an axiom might
be implicit in a pre-axiomatic concept. Maddy gives the example of inaccessible
cardinals. Maddy begins by outlining the well-known iterative conception of sets
- the idea that sets are built up in layers. One starts with the empty set, builds
all the sets one can out of that (just the set of the empty set), then iterates this.
Whenever one approaches a limit, one can take a union at that limit and carry
on. A crucial part of the iterative conception of sets is the idea that this process is
unbounded and may go on forever. But if one denies the existence of an inaccessible,
then this is tantamount to putting an upper bound on the process (namely the
inaccessible itself). Maddy claims that therefore implicit in the concept of the
iterative conception of sets that there are inaccessible.

Now, I do think Maddy’s reasoning can be contested here. At the least, this
is a much weaker sense of "implicit in the concept of" than in the case of PA’s
successor axiom. No formal theory that doesn’t contain or entail the successor
axiom could ever be a successful explication of the notion of "natural number".
It would just be too different from the original concept. A theory which doesn’t
contain or entail large cardinals could still be a successful explication of the pre-
axiomatic concept of set; though perhaps an explication inferior in other ways. A
better way to put it, I think, is that adopting large cardinals is in the spirit of the
pre-mathematical concept of a set, even if not directly implicit in it. The extent to
which one ought care about that whilst explicating a concept I leave as an open
question.
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1.1.2 Extrinsic Considerations

Extrinsic considerations justify axioms on the basis of what they do. The Axiom of
Choice is the paradigmatic case of an axiom justified on extrinsic grounds. Choice
faced an uncertain reception upon introduction into the mathematical world (Moore,
1982). Choice was certainly not an essential part of the pre-axiomatic concept
of a set, else it would have been accepted. When Choice was accepted, it was a
result of the myriad of useful consequences of Choice discovered by mathematicians.

To put this in terms of goals, there were a series of goals set theorists had re-
lating to what they wanted their set theory to do. This included some element of
explication of a pre-axiomatic concept but this didn’t exhaust the mathematical
goals at play. Set theorists wanted set theory to do certain work for them. Choice is
adopted because it helps do that work.

Extrinsic considerations, Maddy admits, are diverse. There seems to be more
than a little appetite on Maddy’s part for future work clarifying what different
types of extrinsic reasons might be. She says the following:

At this point, even with this limited sampling, it should be clear that a number of different
kinds of justifications are being collected together as ’extrinsic’. We have some idea of

what’s intended by ’intrinsic’... but ’extrinsic’ is being applied willy-nilly to any
compelling justification that isn’t clearly intrinsic.

(DTA - V, p130)

My positive account provides just such a unifying story. What are some examples
of different kinds of extrinsic considerations?

A recurring motif in Maddy’s examples of extrinsic considerations is depth. It’s im-
portant that new axioms reveal deep connections between mathematical structures.
A general type of mathematical goal, according to Maddy, is finding instances
of and exploring mathematical depth. An example given later in the book is the
connection between ADL(R) and the existence of Woodin Cardinals. These are
two different statements independent of ZFC that appear at first sight to have no
connection to one another. It turns out that they are, in fact, deeply interconnected.
This novel connection is an example of depth that speaks in favour of ADL(R),
according to Maddy.
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Second, axioms might resolve statements independent of the system they’re
added to. For instance, some axiom of set theory might resolve the continuum
hypothesis. There are two possible sub-variants of this kind of reason.

First, Maddy is keen for set theory as a whole to decide as many statements
as possible. Of course, a formally complete and consistent set theory is impossible,
due to Gödelian constraints. But, as far as possible within those constraints, Maddy
desires a Set Theory that is as decisive as possible. So, on Maddy’s view, resolving
independent statements seems to be a virtue of an axiom, tout court.

But in other cases, it matters not just that an independent statement is resolved but
that it is resolved in a desirable manner. For example, Maddy considers a number
of reasons against V = L (See both the discussion in SP (§IV.3, p234-261) and earlier
in Maddy (1993)). Now, V = L resolves a great many indeterminate statements.
One gets the generalized continuum hypothesis (GCH) and the axiom of choice. It
gives a very neat and well-behaved model of set theory. It was for these reasons
that Quine liked it. However, amongst other reasons given,(1) V = L resolves
GCH the ’wrong’ way (many set theorists including Gödel believe it to be false,
despite its independence from ZFC) and (2) V = L provides an ad hoc restriction
at its conception on the possible subsets ofω, considering only the definable subsets.

Note also that it’s not just that V = L is ad hoc, it’s that the structures it rules
are interesting in certain ways. The structures are interesting in a certain way, they
instantiate certain mathematical virtues

There’s an interesting relationship here between resolving indeterminate statements
and providing interesting mathematical structures. Resolving any indeterminate
statement is a double-edged sword. Any previously indeterminate statement
that is resolved by a new axiom will throw certain models out of consideration,
allowing mathematicians to focus on what remains. This can be a good thing if the
models thrown out misbehave in a certain way, or were in some other sense faulty
or ’non-standard’. Choice, for instance, throws out such models. The resulting
theory allows one to say more about the structures one’s left with as one doesn’t
have to contend with aberrant counter-examples (e.g. baseless vector spaces or
uncountable unions of countably many countable sets). But, on the other hand,
models thrown out might contain interesting structures worth exploring. So-say
aberrant counter-examples that are thrown out might, in fact, not be aberrant but
have interesting properties. V = L is too restrictive; it throws out too much.
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There’s then a balance to be found. Selecting one’s axioms involves a careful
process of inclusion and exclusion. One wishes to exclude as many aberrant models
as possible, whilst not discarding interesting structures.

An analogy I find helpful here is with gardening. When pruning a shrubbery one
needs to be careful. With insufficient pruning, the shrubbery becomes overgrown
with undesirable weeds or overgrown plants but over-cutting risks discarding
healthy, beautiful plant life. The good horticulturalist knows how to cut back just
the right amount; to trim weeds or overgrown plants but leave healthy shrubs and
flowers intact.

The development of non-euclidean geometry is a nice and well-known exam-
ple of this point. When faced with the independence of the parallel postulate,
geometers had two choices. They could adopt the parallel postulate as a new
axiom and explicitly narrow the sphere of consideration to Euclidean models or
they could reject the parallel postulate and contend with the wide range of possible
models that this allowed. They did the latter because the non-euclidean models
were incredibly rich and interesting with all sorts of utility inside and outside of
mathematics.

All of the above are examples of justifying axioms on the basis of their conse-
quences within mathematics. There are also extrinsic considerations that motivate
axioms based on their utility outside of mathematics.

A paradigm case, as before, is non-euclidean geometry. One of the main dif-
ferences between Newtonian and Einsteinian physics is the shift from treating
space as Euclidean to non-euclidean. If the geometer’s choice to exclude the
parallel postulate on the grounds that non-euclidean geometries are mathematically
interesting was insufficient, then the fact that they are physically interesting as well
should add further weight to the case.

That being said, Maddy’s very clear that she puts much more weight on mathe-
matical reasons (both intrinsic and extrinsic) than on reasons of scientific utility.
This is where she breaks from Quine (1981). But she’s also clear that utility for
science is an important goal of mathematics, and in fact the very reason her second
philosopher becomes interested in mathematics in the first place. This is certainly a
type of reason for Maddy, but not an especially strong one.
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Another question is if any open debates in axiomatics could actually be resolved via
considerations of utility for science. Systems much weaker than ZFC are already
enough for modern science. Perhaps there’s some possible result in Physics that
requires or can be better explained given some number with specific properties
inconsistent with CH, but I’m unaware of one if there is.

1.1.3 In Summary...

Maddy claims the following about axiom selection:

1. Axioms or axiomatic theories are adopted on the grounds that they advance
certain mathematical goals.

2. These can be divided into intrinsic and extrinsic grounds.

3. Intrinsic: The axiom is implicit in some pre-axiomatic mathematical concepts.

(a) This type of goal is most relevant when mathematicians are involved in
a project of explication of a pre-axiomatic concept.

(b) Sometimes the axiom is essential to the reasonable explication of the
concept (e.g. the successor axiom in PA).

(c) Sometimes the axiom is inessential but in the spirit of the concept to be
explained (e.g. inaccessible cardinals)

4. Extrinsic: The axiom has helpful consequences which help to advance the
various mathematical goals.

(a) Mathematical: This is a consequence inside mathematics. Typically this
means entailing the existence of mathematically interesting structures
(whilst not eliminating structures of equal or greater interest). (E.g. the
axiom of choice)

(b) Non-Mathematical: This is a consequence outside mathematics, presum-
ably in science (e.g. the rejection of the parallel postulate, though there
were also mathematical reasons for this).
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1.2 Intrinsic vs extrinsic reasons

How should intrinsic and extrinsic reasons be balanced against one another?
At the very end of DTA, quite literally in the final subsection, Maddy argues against
Feferman’s view (Feferman (1999) and Feferman (2000)) that intrinsic justifications
are either (1) the only proper justifications for axioms or (2) better justifications than
extrinsic. Maddy argues for quite the opposite. She argues that really its extrinsic
justifications (though she might be including goals here) provide the fundamental
normative force for axiom selection. Intrinsic justifications are only instrumentally
valuable towards extrinsic reasons.

She provides two reasons for this.

One reason is that having a clear mathematical concept gives one evidence that
the axioms formalizing that concept are consistent. Consistency is an important
mathematical goal3. However, this virtue of intrinsic reasons can’t explain the
value of intrinsic reasons in a number of apparently good cases. The inference
from the iterative conception of sets to small large cardinals can’t easily be un-
derstood in this way. ZFC is of strictly weaker consistency strength than ZFC
plus an inaccessible. Adding inaccessibles decreases one’s confidence in consistency.

The second, and I think more important, explanation of the priority of extrin-
sic reasons is their role in shaping the development of mathematical concepts.

Concepts, in general, can change. Mathematical concepts are no different and
there are many instances of mathematical concepts forming and changing. The
most famous example is from the development of set theory itself. Amongst the
many changes in mathematics that occurred during that period, the concept of a set
shifted. Fregean set theory was built on a naive conception of a set, that sets were
just extensions of concepts. But the discovery of Russell’s paradox lead not just to
the rejection of Fregean Set Theory, but to the rejection of the naive conception of
sets, in favour of the iterative conception. Another example is, again, geometry.
The discovery of non-euclidean geometries lead to a change in the conception of
what a geometric space is.

3The value of consistency can also be understood in extrinsic terms. Inconsistent theories are not
mathematically interesting, as they are trivial
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Going further, given that mathematical concepts can change, intrinsic consider-
ations look suspect when in conflict with extrinsic considerations. If an intrinsic
reason speaks for or against an axiom, this could just as easily be reason to adopt or
reject the axiom, rather than reason to simply change the mathematical concept in
question. Intrinsic reasons can therefore only support an axiom if there are grounds
to think that the underlying concept, from which the reason is derived, is a good
one. To justify the concepts, one needs extrinsic reasons4.

Now, of course, intrinsic considerations have often been historically important. In
particular, they are important in cases where a well-developed but pre-axiomatic
mathematical concept is formalized. In these cases, it’s already known that some-
thing like the pre-explicated concept will be incredibly extrinsically useful. It’s
worth in this context trying to explicate the pre-axiomatic concept in order to have
an axiomatic theory that (1) has all the benefits of being a formal and precisely
stated theory whilst (2) retains the interesting consequences of the original concept.
But then the intrinsic considerations are valuable only instrumentally towards the
extrinsic virtues of the original concept5.

But if, upon axiomatization, one finds that there are formal options that (1)
are less faithful to the original concept but (2) nevertheless lead to more interesting
structures, the extrinsic reasons have priority.

4This is one instance of my general objection to conceptual explication as a philosophical method.
See a parallel discussion in relation to logic in Essay IV: Three Approaches To the Philosophy of Logic

5A short historical tangent. Historically, there seems to have been two ways in which axiomatic
theories have developed. On one hand, axiomatizations of Arithmetic and Geometry were attempts
at explicating very well developed as pre-axiomatic concepts. This is strange to note in relation to
geometry, given that Euclid’s Elements was published circa 300BC, but this is simply testament to
hold old geometry is. Euclid was still building on 3 millennia of pre-axiomatic geometry. On the
other hand areas like Group Theory or Homotopy Type Theory developed as formal tools with an
intended use in mind. They were pure creations, not explications. Clearly, intrinsic considerations
are applicable in the first type of axiomatization but not in the second. This distinction I think also
loosely tracks Schlimm (2013)’s distinction between descriptive and prescriptive uses of axioms,
which I discuss in Essay I, On Axiom Selection. Set Theory is interesting as a case because it sits
somewhere between the two. There was so pre-axiomatic Set Theory, i.e. uses of an intuitive
notion of set prior to the explicit axiomatization of the concept. But there was not nearly so much
pre-axiomatic Set Theory as there was pre-axiomatic mathematics or geometry. The pre-axiomatic
concept of a set is not precise enough to answer many questions about the foundations of Set Theory.
It doesn’t appear to resolve choice, or the continuum hypothesis, for instance. The Axiomatization
of Set Theory is then torn between these two competing programs: (1) The descriptive goal of
explicating the pre-axiomatic concept of a set and (2) the prescriptive goal of creating a new
mathematical concept that does certain kinds of foundational work.
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Maddy says the following:

What’s striking is that all these perfectly reasonable ways of proceeding are in fact
grounded in their promise of leading to the realization of more of our mathematical goals, to

the discovery of more fruitful concepts and theories, to the production of more deep
mathematics. Ultimately we aim for consistent theories, for effective ways of organizing
and extending our mathematical thinking, for useful heuristics for generating productive
new hypotheses, and so on; intrinsic considerations are valuable, but only insofar as they

correlate with these extrinsic payoffs. This suggests that the importance of intrinsic
considerations is merely instrumental, that the fundamental justificatory force is all

extrinsic. This casts serious doubt on the common opinion that intrinsic justifications are
the grand aristocracy and extrinsic justifications the poor cousins. The truth may well be

the reverse! (DTA - V, p136)

So whilst §1.1 represents Maddy’s views as outlined in SP and Chapters I-IV of
DTA, Chapter V of DTA gives a subtly different account which puts primacy on
extrinsic considerations. This is prima facie difficult to reconcile with her previous
claims about axiom selection being a matter of advancing mathematical goals.
Mathematicians can, after all, have the kinds of explicatory goals that give rise to
intrinsic considerations. What Maddy has to claim is that, as a matter of contingent
fact, explication is only ever done for the sake of extrinsic payoff, never for its own
sake.

But one wonders what role mathematicians and their goals are now playing
at this point in Maddy’s picture. If extrinsic payoff in the form of the discovery of
some interesting mathematical structure is what’s ultimately of interesting, why
not simply say that whatever makes these structures interesting (what I later call
mathematical virtues) are the goods of axiom selection?

Tying the good of mathematics to the goals of mathematicians embroils one’s
account in difficult questions about aggregating goals and desires (outlined above)
or in the Euthyphro dilemma (§2.1). An account that, so say, "cuts to the chase"
therefore seems preferable in virtue of its comparative elegance and simplicity.

Of course, on charge of being ad hoc, a story as to why these particular fea-
tures of mathematical structures are good is owed. My positive proposal aims to
provide just such an account.
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2 Issues with Maddy’s view

Maddy’s view does a lot right. In particular, her analyses of particular cases are
frequently thorough and insightful. A view that ends up looking, more or less, like
hers, especially in how it deals with a lot of these cases, is likely going to be a good
one.

My issue is more with the groundwork, the theory behind Maddy’s view. My aim
is to build a view that’s extensionally similar to Maddy’s view but avoids issues
with the background theory.

Two objections are raised above: (1) Maddy has not provided us with an ac-
count of how the goals of individual mathematicians across different time periods
aggregate into the singular, unified mathematical goals she needs for her theory (2)
Given that a particular goal of finding and understanding interesting mathematical
structures seems to be fundamental, why not cut out the middle man and simply
claim that whatever makes these structures interesting (what is below called "math-
ematical virtues") is what’s mathematically valuable?

I’ll raise two further issues in this section: The Mathematical Euthyphro Dilemma
and my issues with Maddy’s Thin Realism.

2.1 The Mathematical Euthyphro Dilemma

A common type of theory across all normative domains is what I’ll call the "ideal
agent" approach to normativity. On this approach, one defines the good of that
domain in virtue of the aims and goals of certain ideal agents. In the ethical domain,
the Good might be understood as that which the virtuous value or aim for (or
perhaps that which God values or aims for). Similarly in the ettiquetical domain,
one might understand the good of etiquette as that which an ideally well-mannered
agent would aim for. Similarly, one might understand the good of rationality as
that which rational agents aim for or that which a rational agent would do. The
common feature in all of these cases is that the fundamental normative facts are
the facts about the goals and actions of an ideal agent. From these facts, all other
normative facts are derived. This is a well-known approach to normativity that
dates back at least to Aristotle6.

6I avoid using the term "virtue" or "virtue theory" here as it’s ambiguous. Virtue theories can
be read as an ideal agent theory but it’s not the only way. One can also read Aristotle as being, in
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All ideal agent approaches to normativity run into variants of the Euthyphro
Dilemma. If a particular X is good within a domain because the idea agents value
it, then the theory is arbitrary. There is no reason why this particular contingent set
of goals that the ideal agent has are the goals that they either must or should have.
The ideal agent theorist has one of two options. First, bite the bullet and accept
this consequence. Second, concede that facts about the ideal agent are, in fact, not
normatively fundamental and there are some other normative facts that explain
why the ideal agent’s goals are the right ones.

Additionally, there’s nothing in this account of ideal agent approaches to nor-
mativity that hangs on the agent being singular. The "agent" could be a group of
agents instead. One might imagine a polytheistic divine command ethics where
the Good is the aggregate opinion of some Council of Gods; the same objection
would apply. Is the council’s aggregate opinion on X the way it is because X is
good, or is X good because of the council’s aggregate opinion? Taking the former
undermines the ideal agent approach by rejecting the normative fundamentality of
the agential facts. Taking the latter makes goodness arbitrary.

If one takes goal-based reasons for axiom selection seriously, this is effectively a
grouped ideal agent theory of the norms of axiom selection. The (group) agent is
the mathematical community as a whole. The good of the normative domain of
axiom selection is that which is aimed at by this ideal agent, i.e. by their goals.

But then, by familiar reasoning, the view falls into a Euthyphro variant. If a
feature of an axiom is good simply because it accords with the goals of mathematics,
then at least this dimension of this goodness is arbitrary. But if if the goals of
mathematics are the way they are because those goals are good (i.e. because mathe-
maticians are sensitive to the good-making features of axioms), then accordance
with a goal of mathematics is not something that’s per se a good of a particular
axiom or axiomatic system.

Of course, Maddy is welcome to bite the bullet and accept some degree of abitrarity
in her view. Whilst a comparative disadvantage of a theory, arbitrarity is not
terminal. A reading of Maddy that wishes to take her claims about the fundamental
value of advancing mathematical goals seriously should likely take this horn of the
Euthyphro.

essence, a eudaimonia consequentialist.
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Nevertheless, something of a reply can be found in SP that indicates that Maddy
might be inclined in the other direction. Maddy considers the worry that if mathe-
maticians, for whatever reason, adopted strange goals, Maddy would be committed
to go along with them. Like Barkley, one might imagine them allowing theological
considerations to play a role in mathematics (See Moriarty (2022) and Moriarty
(2023) for discussion). This is obviously not the Euthyphro dilemma but is parallel.
It still considers how Maddy’s commitments modally co-vary with the goals of
mathematicians.

Maddy says the following:

There’s nothing in this strange tale told so far to determine whether or not the practice of
these wayward souls would continue to be called ’mathematics’, and of course the word

doesn’t matter. What is clear is that the new practice, whatever it’s called, wouldn’t play
the same role in [my] investigation of the world as the discipline we call ’mathematics’ now

plays. Presumably the evolved practice would end up more or less comparable to ’pure
astrology’ or ’pure theology’ and [I] would have no interest beyond the sociological,

anthropological, biological, etc.
(SP - IV.4 p350-351)

One is reading between the lines a little, but Maddy seems to say here that it’s
not that what she’s interested in is advancing the goals of mathematicians per se,
rather she thinks that actual mathematicians, who are not "wayward souls", have
identified something valuable to Maddy’s inquiries and have pursued that. In the
context of Maddy’s wider work, presumably that something is mathematical depth
or related notions. In places, when pushed, Maddy seems willing to abandon her
ideal-agent account in favour of simply looking to maximize the discovery of deep
connections, or other interest-making features of mathematical structures. In other
words, taking the second horn of the Euthyphro dilemma. This would, though, be
a departure from her position as it appears in the bulk of SP and DTA.

If Maddy wishes to make this move, as mentioned above, we are owed an
account of why mathematical depth or related notions are valuable. Why is this
something an enquirer should care about?

I’m going to take the second horn of the Euthyphro dilemma here and attempt to
meet this challenge head-on, giving an account of why mathematical depth and
related notions are valuable, with references to Instrumentalism about mathematics.
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2.2 A Nominalist Reply to Maddy’s Thin Realism

A final issue with Maddy’s view is its reliance on Maddy’s Thin Realism (to be
explained below). There are, I think, reasons to be sceptical of Thin Realism and it
is therefore preferable to motivate an account of axiom selection without relying
on Thin Realism. In this section, I provide a brief nominalist reply to Maddy’s Thin
Realism.

Maddy is interested in explaining the reliability of her methods of axiom se-
lection. This is the subject of Chapter IV.4 in SP and Chapter III in DTA. She wishes
to show that the goal-directed methods she advocates for do, in fact, lead to true
mathematical beliefs.

Note, especially in relation to the discussion in Essay I: On Axiom Selection, that
Maddy is adopting a descriptive condition on axiom selection. This is strange given
that the account of axiom selection given thus far has taken goal-advancement (a
normative criterion) to be the sole criterion of axiom selection. It’s unclear why
Maddy feels she needs to meet the challenge of showing why her methods are
reliable indicators of truth, instead of simply dropping the descriptive criterion on
axiom selection.

Maddy is aware that demonstrating the reliability of her methods is not nec-
essary for adopting her account of axiom selection. In both SP Chapter IV.4 and
DTA Chapter IV Maddy outlines a possible "Arealist" position that has a great deal
in common with my Nominalist. The Arealist rejects both (1) the need to show that
their mathematical methods are reliable; the methods are useful and that’s enough
and (2) Maddy’s Thin Realism. The Arealist position, Maddy acknowledges, is
a viable one that has full access to her account of axiom selection. She says the
following:

On [the correct methods of axiom selection] the Arealist and [I] will completely agree; the
difference only comes in the way the word ‘true’ is then applied: [I] find in [my methods]
good evidence for truth, while the Arealist takes talk of ‘truth’ as inessential and sticks to
the methodological facts unadorned. As far as the practice of set theory is concerned, it is

hard to see what’s lost on the Arealist’s approach.
(SP - IV.4, p384)

So nothing is at stake here regarding the appropriacy of various set-theoretic
methods. Both Maddy’s Arealist/my Nominalist and Maddy agree (more or less)
on the correct methods of axiom selection. They disagree on if these methods are
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to be justified by adopting a descriptive criterion on axiom selection along with
(thin) realism or by rejecting both and providing an alternative justification.

Maddy grants that traditional realism, what she calls "robust realism" will not
demonstrate the reliability of her methods. If mathematical objects are external
objects, independent of our conceptualization of them or methods relating to them,
to be investigated in a manner more akin to the traditional scientific method, then
the reliability of Maddy’s goal-directed methods cannot be explained. Traditional
"Robust" Realism will not do.

Instead, Maddy opts for what she calls Thin Realism. She says the following:

[sets are taken to have the properties ascribed to them by set theory and to lack the
properties set theory and natural science ignore as irrelevant. There is nothing more to be

said about them. Such posits are sometimes called ‘thin’, so let’s call this Thin Realism
(SP - IV.4, p369)

Maddy also quotes Steel who says the following:

To my mind, Realism in set theory is simply the doctrine that there are sets . . . Virtually
everything mathematicians say professionally implies there are sets. . . . As a philosophical

framework, Realism is right but not all that interesting.
(FOM posting 15 Jan. 1998. Printed in SP - IV.4, p368 with Steel’s permission..)

‘there are sets’ . . . is not very intriguing. ‘There are sets’ is, by itself, a pretty weak
assertion! Realism asserts that there are sets, and hence . . . that ‘there are sets’ is true.
(FOM posting 30 Jan.1998. Printed in SP - IV.4, p368 with Steel’s permission.)

So all it takes for a mathematical object to be real is that its existence follows from
the methods and practices of mathematics. Similarly, all it takes for a mathematical
object to have a certain property is that it’s ascribed that property by the methods
and practices of mathematics.

My nominalist replies that Maddy has passed the buck. Precisely what was
to be proved was that the methods and practices of Mathematics are reliable, Thin
Realism simply asserts this fact. But to establish Thin Realism one therefore must
establish precisely the point under contention, the reliability of these methods.

What evidence does Maddy have that her Thin Realism is true?
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Maddy takes different approaches in SP and DTA.

In SP Maddy embraces a certain level of circularity. She knows that Thin Re-
alism is true because her set theoretic methods have shown her that what is true of
sets is all and only those things the methods of set theory say about them. This
circularity, though, she takes to be acceptable.

In SP (IV.4, p370) she draws a comparison with her reply to general philosophical
scepticism. When attempting to establish the reliability of her (non-mathematical)
scientific methods, Maddy similarly embraces a level of circularity. She justifies
the reliability of her scientific methods using her scientific methods. The sceptic,
she holds, is asking her to provide a special kind of "philosophical", non-scientific
justification for her methods. Maddy grants that this is something she can’t do, but
simply rejects that it’s something she needs to (SP, Chapter I.2). She sees no reason
to meet the sceptic on their terms.

Maddy holds that my nominalist’s line of criticism makes the same mistake
as the sceptic7. I am asking her to justify her mathematical methods in a special
philosophical way. She grants that this is something she can’t do but rejects the
need to. But this is not an accurate characterization of my nominalist’s reply. My
nominalist is not asking Maddy to justify her methods to special philosophical
standards, but merely to ordinary (non-mathematical) scientific standards using
ordinary (non-mathematical) scientific methods. Maddy accepts in her discussions
relating to the use of mathematics in science that scientific methods don’t justify
belief in mathematical objects (SP IV.2 and IV.4, and DTA III)8.

Later Maddy seems to acknowledge this in her comparison of the Arealist (who
is similar to my nominalist) and Thin Realist positions. Citing a discussion with
Rosen (1999) she states that this comes down to a question of if mathematics is
what Rosen called an "authoritative":

7Maddy has this objection delivered by a Robust Realist rather than a Nominalist, though the
objection is the same.

8Of course, an option here is for Maddy to revise her claim that the utility of mathematics in
science doesn’t provide evidence for the existence of mathematical objects. Maddy would then
likely be a Robust Realist. She would then face the (likely insurmountable) challenge of explaining
the reliability of her methods, given Robust Realism.
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A practice is authoritative if, whenever we have reason to accept a statement given the
proximate goal of the practice, we thereby have reasons to believe that it is true. (Rosen,

1999, p. 471)

But Maddy and my Nominalist agree that the existence of mathematical objects
cannot be established on ordinary scientific grounds. Her methods cannot be
justified as reliable in an ordinary scientific science. The question is if notions such
as "true" or "exists" should be expanded so as to include mathematical statements
(read literally as opposed to nominalistically) and mathematical objects.

I’m not opposed to semantic revision tout court. I discuss semantic revision
in the context of logic extensively in Essay V: Language, Truths & Logics and Essay
VI: Three Approaches to the Philosophy of Logic. I defend semantically revisionary
programs in logic against a series of objections.

But what Maddy needs to do is explain why these semantic revisions are useful.
It’s clear the sorts of downsides it might incur: the expansion would be ad hoc;
truth and existence would become disjunctive concepts. Two clear downsides.
Given that Maddy accepts that nothing here is at stake for mathematical practice,
it’s unclear what benefits this semantic revision would bring to outweigh these
negatives.

Maddy, I think, summarizes the disagreement well:

In our rough-and-ready terms, we might describe this contrast in yet another way: the
Arealist holds that mathematics is distinguished from other extra-scientific enterprises by
its role as a handmaiden to science; this very handmaiden role prompts our Thin Realist to

assume that mathematics is a science, alongside the various natural sciences.
(SP - IV.4, p386)

But Maddy acknowledges that we can account for the role of mathematics in science
without recourse to realism. But on those grounds, the move from the utility of math-
ematics for science to mathematics being a science (in the relevant sense) is mistaken.
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Thin Realism is then, I think, unjustified. Maddy, by her own admission, cannot
justify Thin Realism on ordinary scientific grounds but also, I argue, fails to explain
why one should accept the purely mathematical grounds as evidence of their own
reliability. Her case comes down to arguing that mathematics should be held as an
"authoritative discipline" but the case for this is unclear and might rely on a move
that Maddy rejects from the utility of mathematics to mathematical realism.

Returning to the broader question of the paper, if Thin Realism is false and
Maddy shouldn’t adopt descriptive criteria for axiom selection, a positive proposal
of how to justify the sort of account that both Maddy and myself want is owed.
This paper’s positive proposal aims to provide just that.

3 An Instrumentalist Theory of Axiom Selection

I’ve made several promises about what my positive proposal will do and how it
will improve on Maddy’s position. For reference, here’s a brief summary of what
my account of axiom selection aims to do:

1. Provide an account that’s extensionally similar to Maddy’s.

2. Avoid the problem of aggregating individual goals into collective goals.

3. Explain why depth, or similar mathematical virtues, are valuable for inquiry.

4. Avoid the Euthyphro dilemma.

5. Avoid relying on Thin Realism.

I’ll sketch the positive proposal in brief, then go into details. We abandon Maddy’s
Thin Realism in favour of Instrumentalism about mathematics (explained in §3.1).
The Instrumentalist takes a lot of inspiration from Maddy’s Arealist. In particular
when Maddy says "the Arealist holds that mathematics is distinguished from other
extra-scientific enterprises by its role as a handmaiden to science" (SP - IV.4, p386), she
describes a sentiment that the Instrumentalist takes to heart. On the Instrumentalist
view, the (main) purpose of Mathematics is as the handmaid of the sciences. The
ultimate function of mathematics is to build formal tools for scientific inquiry.
Algebra, geometry, calculus, group theory and more are all examples of tools
mathematics has built over the years. These tools have been invaluably useful. The
details of how these tools are used is discussed in §3.1.
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The axiomatic method builds the sharpest (most precise and logically rigorous)
tools. Axiom systems are evaluated on the basis of their efficacy in producing
tools. Sometimes, they are introduced to define a single tool (e.g. the axioms
of group theory). Sometimes, they provide a playground for mathematicians to
tinker, build many tools and understand their consequences (e.g. Set Theory).
New axioms are to be adopted if they facilitate the building of quality tools. This
consideration generates a landscape of extrinsic reasons for adopting axioms. The
kinds of structures that an axiomatic system entails are the metric by which it is
evaluated.

An important consequence of the view, as advertised, is axiomatic pluralism.
There is no reason for the Instrumentalist to limit themselves to a single axiomatic
system. They are not laissez-faire about this, there are some axiom systems that are
not productive nor worth the time of mathematicians. But they see no reason to
decide indeterminate statements simply for the sake of deciding them. Interesting
structures might exist in both branches extensions could take. This is discussed in
§3.2.

Going through the aims for the account, Thin Realism is avoided by adopting an
Instrumentalist account of mathematics. There is no need to demonstrate that my
methods reliably produce true claims if truth isn’t relevant to mathematics. The
aggregation problem and the Euthyphro dilemma are similarly avoided because,
unlike Maddy, I avoid an agent-based account of value in mathematics. If I can
explain why depth, or similar virtues, are valuable for inquiry, then recovering an
account extensionally similar to Maddy’s should follow, given the discussion of
§1.2. Mathematical virtues like depth are, I argue, an indicator that what one has is
a well-developed tool. That doesn’t necessarily mean that this tool has a real-world
application but, if it does, it’ll be an effective one. Interesting mathematical struc-
tures won’t necessarily be applicable in a real-world case but, if it is applicable, it
will reveal a lot about the phenomenon it’s being used to model.

3.1 Mathematical Instrumentalism

3.1.1 The basic ideas...

Instrumentalism claims that the main purpose of mathematics is to build formal
tools for the sciences. That this is a function of mathematics is not controversial but
that it’s the main function is explicitly rejected by, amongst others, Maddy.
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This is also not to say that this is the only function mathematics plays. There may
be other secondary functions. For the present argument to work, though, I need to
at least claim that (1) tool building is the primary function of mathematics and (2)
tool building is the function of mathematics relevant to axiom selection.

Moreover, this claim needs to be understood at the social, not the individual
level. Mathematics, aside from being a body of thought, is a social institution. It is
a collection of individuals, organizations, journals, archives, pedagogical, financial
and administrative structures, and more. The Instrumentalist claims that the reason
why we should have this kind of social structure is (primarily) because it builds
formal tools that are exceptionally useful for science.

What are alternatives to Instrumentalism?

In the philosophy of science, Scientific Realism is often framed as the alterna-
tive to Scientific Instrumentalism. The same won’t do here. As I discuss below, one
can be a Mathematical Realist and nevertheless be an Instrumentalist.

Instrumentalism is a claim about why mathematics ought be pursued. It doesn’t
say anything about the nature of mathematical truth or objectivity. One thing that,
incidentally, there are objective mathematical facts, but that the reason why it’s
worth doing mathematics has nothing to do with these facts.

The counterpoint to Instrumentalism, then, is not Realism but the view that
mathematical facts, understood in a suitably Realist way, are worth knowing for
their own sake and the primary function of mathematics is simply to uncover
those facts, with secondary concern at best for their application. We might call this
Descriptivism about mathematics.

3.1.2 Why be an Instrumentalist?

Sadly, a full justification of Instrumentalism is too large a task for this paper. All
that’s claimed here is that adopting Instrumentalism leads to an account of axiom
selection which satisfies the success conditions outlined above. That being said, a
few brief comments in favour of Instrumentalism.
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If one is a nominalist, like myself, then one is most likely going to be an Instru-
mentalist. For nominalists, then there’s not really much else one might take the
purpose of mathematics to be. It couldn’t be to uncover the mathematical facts, if
no such facts exist.

But Instrumentalist is not simply a position for nominalists. As discussed in
Essay II: Mathematics Needs no (Philosophical) Foundation, one might wish to hold that
mathematicians should not need to make substantive metaphysical claims in order
to adopt certain axioms. In that essay, I call this practical agnosticism. If one thinks
this, one cannot be a Descriptivist about mathematics. For a Descriptivist, adopting
an axiomatic theory would involve taking a stance on the nature of objective
mathematical facts. But that would be a metaphysically substantial position, which
mathematicians should be able to avoid if they wish.

Instrumentalism is a more appropriate view of Mathematics if one wishes to
keep Mathematics neutral with respect to substantive philosophical questions.

All this being said, whilst arguments from Nominalist or Agnostic to Instru-
mentalism are clear, one can be nevertheless a realist and an Instrumentalist.

Suppose one thinks that the purpose of mathematics is to build tools for sci-
ence. It remains to be seen if those tools work, how well they work and if they are
essential or simply useful. The Instrumentalist-Realist is then surprised to find
that they work exceptionally well, unreasonably well even. Moreover, science
doesn’t look like it could be done without these tools. On these grounds, and
following Quine (1981)’s familiar reasoning9, the Instrumentalist-Realist concludes
that there must really be mathematical facts out there that play an essential role in
the workings of the universe.

But the Instrumentalist-Realist is still an Instrumentalist. It’s a potentially in-
teresting conclusion that there really are mathematical objects, but learning about
these objects was never the reason for doing Mathematics. That Quine has con-
vinced them that mathematical objects really exist changes nothing about why they
care about mathematics.

9See also SP IV.2 for a broad discussion not just of Indispensability Arguments but a broader
array of arguments from the utility of Maths in science to Mathematical Realism.
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The Instrumentalist-Realist, then, disagrees with Quine on axiom selection.
Quine is a Descriptivist. For Quine, axiomatic theories are descriptive theories of
the mathematical facts. They are motivated as a way of describing or explaining
said facts. Quine is limited to adopting a relatively minimal system that merely
explains the mathematics needed for science. The Instrumentalist-Realist disagrees
thoroughly. The purpose of axiomatic systems is to provide a workspace for
mathematicians to build and investigate kinds of tools. Consequently, they need
not restrict their axioms to a comparatively minimal system for unifying and
explaining the truth of certain parts of mathematics. They are realists about many
parts of mathematics, but their realism is subsequent to and not a restriction on
mathematical practice.

3.1.3 What kinds of tools does mathematics produce? How is this useful for
science?

The Instrumentalist claims that the function of mathematics is the production of
formal tools for the sciences. But tools are an exceptionally diverse category. What
kinds of tools does mathematics produce?

Mathematics produces tools for abstracted and idealized representational of physi-
cal phenomena10. Physical structures are represented by mathematical analogues
that are formally or logically similar with respect to certain important features.
Spacetime can be represented as a 4D coordinate system, for instance, because spa-
tial and temporal relations are (at least in Newtonian cases) transitive, asymmetric,
irreflexive, have four degrees of freedom, etc. The logical structure of spacetime is
similar to the logical structure of the mathematics used to represent it.

Of course, idealization is made. Spacetime might be discrete, but at a small
enough scale that it can be represented using continuous geometric spaces. Part of
applying some mathematics to science is understanding the idealizations being
made and if, or the extent to which, that might impact the outcome.

Representational tools are an important part of modelling. Modelling is an
important part of making scientific predictions.

10My account is influenced both by Leng (2021)’s discussion of the explanatory role of mathematics
and also Maddy’s discussion in SP IV.2.
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Now the nature and role of modelling in science is an intensely discussed topic
within the philosophy of science. In particular, if all models are representational
or how models justify is a hot topic. I certainly wish to avoid making any overly
strong claims about what models are or what they do. Suffice for present purposes
to make the following claims: (1) There are at least some, in fact many, scientific
models that are representational (2) Some of them are representational because they
are mathematical models wherein some of the mathematics is used to represent,
with idealization, their intended target (3) Some of these still make inferences
about their targets by making inferences about the mathematical structures used to
represent the target and applying the result back by analogy.

There might be exceptions to this story but it’s sufficient for present purposes that
something sufficiently like this happens frequently.

A nice, though well-worked, example of how mathematics can be used as a
representational tool is the Lotka–Volterra model of population dynamics. The
model has three variables (time, predator-population, prey population), two dif-
ferential equations governing the relationship between these variables and some
initial conditions.

The differential equations link change in prey population over time to preda-
tor size, and vice versa. Let prey be the variable for the prey population and pred
for the predator.

d − prey
dt

∝ pred−1 d − pred
dt

∝ prey

It’s very clear how the mathematics in this model is representational. The variables
have clear real-world interpretations and the equations represent a causal relation-
ship between the three quantities at play. The initial conditions will represent some
contingent facts about a case being studied.

Idealizing assumptions are made here. Population is discrete, not continuous.
Predator-prey interactions are probabilistic in nature, meaning there will be some
random noise. Some prey can also kill their predators. There are external conditions
such as the seasons (perhaps the prey is better at hiding in winter) that are not
factored into the model. Both the predators and prey have evolutionary pressures
that will change the coefficients of the differential equations.

24



Nevertheless, there are sufficient similarities between the mathematical model and
the physical system it represents that some reasonable inferences can be drawn,
within sensible bounds.

I have picked a case friendly to the Instrumentalist here. Lotka-Volterra model is a
nice basic example, but it is simplistic. The way in which more complex models
represent is far more abstract. Something like a neural net might end up with a
highly non-representational internal structure (e.g. where the individual node
values have no clear interpretation). One might imagine an AI weather model
that takes real-world data as an input, processes this in a way that’s not humanly
understandable, and then outputs weather probabilities. This would only be
representational at the input and output stage and not representational through
the middle. Its representational nature should be understood holistically, at the
level of the structure, not necessarily atomistically at the level of the components of
the model.

There’s certainly a lot more to say here. Scientific models are incredibly di-
verse and I’m certainly not saying that how mathematical representation works in
the case discussed is how it will work in all cases. I don’t wish to over-extrapolate
here. But my hope is that upon inspecting a wider range of models a similar
relationship between mathematics and physical structures, perhaps realized in a
different way, will be found.

As a final tangential comment here, one can see here a relationship between
Structuralism about Mathematics and Instrumentalism. I understand Structuralism
as the claim that mathematical statements do not have particular content, but rather
are generic or structural in nature. ∈ is not some particular binary relation satisfying
the axioms of set theory but is a stand-in for any relation that happens to satisfy
that property. Similarly, < is not some particular ordering relation but a stand-in
for any order.

If Instrumentalism is true, it’s clear why one might want Mathematics to be
structural. Instrumentalists value mathematics because of its utility as a repre-
sentational tool. They want to be able to apply these tools as widely as possible.
By having structural, rather than particular, content, mathematics can be applied
to any target phenomena which, modulo sufficient idealization, are particular
instances of general structures.
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In summary, modelling is an incredibly important part of knowledge genera-
tion within science. Mathematics is incredibly useful for modelling so mathematics
should be pursued as a means of developing the kinds of representational tools
needed for science. So claims the Instrumentalist, this is the reason why mathemat-
ics, as a whole, is worth doing.

3.1.4 Returning to axiom selection

A naive Instrumentalist position would simply say that axiomatics should follow
the needs of science. An axiomatic theory is good iff it defines or in some other
way helps produce mathematical structures which are useful for the modelling or
representational needs of the science of the day.

This would be, I think, more than a little short-sighted. Perhaps paradoxically, it
seems as if the best way to get mathematicians to produce useful tools for science
is to give them some degree of free reign to pursue the mathematics that they find
interesting.

There’s something also to be said for letting a thousand flowers bloom. Let
the pure mathematicians build and explore scores of formal tools to their heart’s
content, then let the applied mathematicians or scientists pick from and adapt these
where appropriate. A particular tool might look mathematically interesting and
be worth investigating on these grounds but only prove its value in application later.

That’s not to say that any mathematics goes. As Maddy discusses (DTA II)
there are criteria that mathematicians apply when evaluating how interesting a
piece of mathematics is. There are certain virtues that make particular structures
more or less interesting (where "interesting" should here be read as something like
"worthy of investigation").

What I want to suggest is a degree of removal on the part of the Instrumen-
talist. A series of mathematical virtues (depth, simplicity, novelty, etc) are identified.
In the long run, the Instrumentalist holds that these virtues are good indicators
that a bit of mathematics will serve as a useful representational tool. But (pure)
mathematicians don’t need to worry about possible future applications. They just
need to continue as they are, guided by these virtues. In the long run, then, useful
tools will be produced.

26



To slightly clarify the above statement, for at least some of the virtues, it’s not that
they necessarily indicate a higher likelihood that a mathematical structure will be
useful in application but rather that if such an application is found, it’ll be a very
useful one which reveals interesting and unexpected features of the structure being
modelled. Maddy calls this the "more out than in" miracle (SP IV.2).

How does this relate to axiom selection?

Clearly, the Instrumentalist wants axiomatic theories which maximize these virtues,
but this is a slightly over-simplistic picture. Different sorts of axiomatic theories are
used in different ways. It’s worth drawing a distinction between two types of cases.

In some cases, axioms are used to define a singular kind of structure. Group
theory, for instance, defines a particular sort of structure - the group. The same
is true of something like arithmetic as well, the axioms of which define number-
systems. These axiomatic theories are akin to singular tools (or perhaps tool types).
They represent a frequently occurring or especially interesting type of pattern or
structure. In this case, the Instrumentalist simply wants the structure described by
the axioms to possess the kinds of virtues mentioned above.

To continue with the example of group theory, there are multiple ways in which
groups instantiate the mathematical virtues. One of the nicest examples is the way
in which it connects seemingly distant parts of mathematics. For instance, it’s used
to study symmetry and transformations on ordinary objects but, via Noether’s
theorem, is also deeply connected to conversation laws in mechanics. Finding
unexpected connections between different parts of mathematics is an archetypal
example of mathematical depth.

In other cases, axiomatic theories do not necessarily define a singular structure
which is itself useful but rather is used to build and analyze a range of different
structures. Set theory is the archetypal example of this. It’s tempting to think of
these types of axiomatic theories like toolboxes: their function is simply to contain
as many useful tools as possible. But this is not the whole picture.
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It’s true that a useful feature of set theory is that it allows one to build a wide
range of mathematical structures, many of which instantiate the virtues mentioned.
But this is not its only function. Set theory can also be used to analyze the structures
they contain. There are facts about N which can be proven in ZF but not in PA.

So these kinds of "toolbox" theories (I’m deliberately avoiding the term "founda-
tional") don’t just contain a number of interesting structures which possess the
kinds of virtues discussed, they also help better understand those structures.

These two categories are not mutually exclusive. Geometry, for instance, ar-
guably does a little of both. Geometric spaces are, themselves, interesting structures
but contain things like triangles or other shapes which are (obviously) useful
structures. Arguably models of ZF are also, in and of themselves, interesting
structures and ZF is a good axiomatic theory not simply because of its "toolbox"
role but also in the more direct sense, like in the case of Group Theory.

Thus, granting the Instrumentalist’s claim that the kinds of mathematical virtues
mentioned do, in fact, indicate useful applicability, axiomatic theories are to be eval-
uated on three basies: (1) their ability to directly define structures that, themselves,
possess the virtues (2) their ability to provide a "toolbox" of interesting structures
possessing the virtues and (3) their ability to contribute towards investigations of
the aforementioned structures contained within the "toolbox".

The only thing left to do, then, is to justify the Instrumentalist’s claim about
the mathematical virtues.

3.1.5 On Depth

I don’t attempt to offer either a list of all the possible mathematical virtues or defend
each of their connections to the possibility of useful application. I expect there will
be a little heterogeneity here. Different virtues might connect to useful application
in different ways, and even the way in which a particular representation might be
useful might vary from case to case. I certainly don’t wish to claim that the account
of the value of depth given here can be applied to other cases with little change.
Perhaps it can, but that’s left to future work.
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As proof of principle, this section outlines an Instrumentalist account of the
value of mathematical depth. In Maddy’s account of axiom selection, depth plays
a central role as one of the primary goals of mathematical investigation. Given my
above-stated aim of recovering an extensionally-similar account of axiom selection
to Maddy’s, demonstrating the value of depth is important.

Even still, I must further clarify exactly what I achieve here. Since DTA there has
been a moderate but thorough discussion on the nature of mathematical depth.
Arana (2015), Lange (2015), Stillwell (2015) and Urquhart (2015) together formed a
special issue of Philosophia Mathematica on the topic. See also Weisgerber (2023) for
a more recent discussion in particular of Maddy’s account. I only engage in the
concept of depth as it appears in SP and DTA.

This restriction is justified on two grounds. (1) As I’m trying to recover an
account of axiom selection extensionally similar to Maddy’s, it’s Maddy’s notion of
depth that matters (2) this section is in part intended more as proof of principle
than a complete and final account of the Instrumentalist’s theory of axiom selection.
Reappraising depth (and other mathematical virtues) would form part of future
work to turn this promissory note into a fully worked-out account.

Clarifications aside, what value does mathematical depth have, according to
the Instrumentalist?

Depth, in Maddy’s sense, is not per se a property of mathematical structures
but rather involves the discovery of unexpected or novel connections between
typically distant parts of mathematics.

The example discussed above of the relationship between conservation laws
and geometry symmetry via groups is, I think, a clear example, though not the one
that Maddy gives.

An example that appears in both SP and DTA, also discussed above, is the
relationship between large cardinals and the claim that the axiom of determinacy
holds in the smallest inner model of ZF containing the reals (ADL(R)). Large
cardinals imply ADL(R).

It’s surprising that the structure of L(R) would be related to the presence of
large cardinals. That such a connection exists is an example of depth.
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Why would unexpected connections indicate useful application?

As noted above, I’m not claiming that the presence of deep connections makes it
more likely that some mathematics has any application. What I’m claiming is that,
conditional on there being any application at all, this application is more likely to
be useful.

Because depth involves unexpected connections between seemingly separate
parts of mathematics the discovery of depth reveals a lot of information about
the connected structures. It allows for the application of different methods and
theorems not previously known to be applicable. The solution to Fermat’s Last
Theorem, for instance, was only possible because it could be re-described in terms
of elliptical curves. The discovery of a deep connection goes hand-in-hand with
new discoveries and understanding of the target structure.

A mathematical structure deeply connected to other areas of mathematics is
likely, therefore, to (1) be comparatively well understood and (2) have unexpected
or non-obvious features.

If a physical system can be well represented by just such a structure, the anal-
ogous facts hold. Via the modelling process, and assuming that any idealizing
assumptions do not get in the way, a potentially large number of unexpected or
non-obvious conclusions can be drawn.

In SP IV.2, for instance, Maddy discusses what she called the "more out than
in" phenomenon, the phenomenon where the application of well-chosen mathe-
matics leads to new physical discoveries. A nice example she gives is that of the
Dirac equations in Quantum Mechanics.

The Dirac equations came out of the desire to reconcile relativistic time with
a quantum mechanical account of electromagnetism. This was not a purely mathe-
matical concern but it turns out that the mathematics was possible only if at each
spacetime point there are four wave functions, not two. This entails the existence
of particles with the same mass as electrons but opposite charge (positrons). These
particles were theorised as a consequence of the mathematics used but only discov-
ered later.
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Here surprising and novel features of the mathematics (the required number
of wave functions at each point) lead to a discovery about the nature of the physical
systems being modelled.

Depth then seems to display the desired features. A mathematical structure
with deep connections to other parts of mathematics, when successfully applied,
yields surprising new information about the target structure. Depth, then, is a
mathematical virtue because it helps mathematics fulfil its function of producing
formal representational tools for modelling that are useful for science.

3.1.6 Taking stock...

Five things were promised of the Instrumentalist’s account:

1. An account that’s extensionally similar to Maddy’s.

2. That avoids the problem of aggregating individual goals into collective goals.

3. That explains why depth, or similar mathematical virtues, are valuable for
inquiry.

4. That avoids the Euthyphro dilemma.

5. That avoids relying on Thin Realism.

(1) and (3) follow from the previous two sections. The value of the kinds of
mathematical virtues that are the objects of the (more fundamental) goals of math-
ematicians can be explained on the Instrumentalist’s account. These virtues are
valuable because mathematical structures instantiating them are, if successfully
applied, more informative and hence useful tools. In the case of depth, they reveal
a great deal about the target physical structure.

(2) and (4) are met by avoiding any reliance on the goals of mathematicians.
Instead, I rely on the function of mathematics as the guiding normative principle11.

(5) is met due to the theory-neutrality of Instrumentalism, as discussed in §3.1.2.
One can be a Realist, Agnostic or Nominalist whilst still being an Instrumentalist.

11In meta-ethical terms, I’m using a telic rather than an agential theory of (mathematical) value,
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I’ve shown, I hope, that an Instrumentalist theory of axiom selection does
all that was advertised of it. It retains the positive parts of Maddy’s theory (its
functionality in application) whilst fixing many of its theoretical issues.

3.2 Corollary: Axiomatic Pluralism

There is, I think, one difference between my Instrumentalist account of axiom
selection and Maddy’s account: Axiomatic Pluralism12.

The Instrumentalist account of axiom selection entails that there are many correct
axiomatic theories, not simply one (relative to particular domains).

Maddy claims that one of the goals of set theory is to describe a singular set-
theoretic universe13. Maddy might be wrong about this. One could definitely read
this section not as outlining a difference between my Instrumentalist and Maddy
but as explaining, on Maddy’s terms, why she should be an Axiomatic Pluralist.

As is, though, I’ll take it that Maddy has a better understanding of the conse-
quences of her own position than I do and present this as a point of difference
between the two views.

3.2.1 Instrumentalism entails Axiomatic Pluralism

To see why the Instrumentalist is an Axiomatic Pluralist, consider cases where both
some prospective axiom ϕ and its negation have interesting consequences. That is,
to put it more exactly, they both entail the existence of structures either of practical
application or containing the kinds of hallmark mathematical virtues that indicate
it might one day be of use (depth, interest, etc). The two might not be interesting in
equal measure, but both are interesting.

12Axiomatic Pluralism is not a position that has been extensively discussed or defended in the
literature. Michèle Friend has discussed "foundational pluralism" as part of her extensive discussion
of pluralism in (the philosophy of) Mathematics (Friend (2013) and Friend (2019)). Axiomatic
Pluralism on the basis of Logical Pluralism has been discussed by Davies (2005), Hellman and Bell
(2006), Koellner (2009) and Priest (2019).

13Maddy’s view might have changed on this given recent work by her and Toby Meadows
(Maddy and Meadows, 2020). At the least, her view at the time of SP and DTA was a monist.
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Something like CH is a good example of this. ¬CH models are often more inter-
esting. There are frequently properties of cardinals bound that are bigger than ℵ0

but are at most 2ℵ0 . There might be some property P such that ¬P(ℵ0) but P(2ℵ0).
The interesting mathematical question is what the smallest P cardinal is. Or if the
smallest P cardinal must be greater or smaller than the smallest cardinal satisfying
some other similarly bound property.

In CH models these all just collapse upwards into 2ℵ0 but ¬CH models allow
for far more versatility. But this doesn’t mean that CH models aren’t also interesting.

Because Maddy wants a decisive set theory, she is forced to choose. She must
throw out interesting structures whichever option she takes. Naturally, she takes
the lesser of two evils and keeps the more interesting structures in, but she is forced
to pick some evil.

The Instrumentalist, on the other hand, sees no need to choose. They consider the
consequences of both CH and ¬CH and flit between them for different purposes.
Interesting tools can be built in both kinds of model. For this reason, both ZFC+CH
and ZFC + ¬CH are correct systems to adopt.

In short, Axiomatic Monists, like Maddy in DTA, will adopt an axiom iff it
is better qua their evaluation metrics than its negation. This forces them to throw
out interesting structures. Axiomatic Pluralists, like the Instrumentalist, will only
accept an axiom if its negation fails to yield any interesting structures. In the case
where both an axiom and its negation are interesting, the Monist chooses and the
Pluralist takes up both.

Conclusion

This paper outlines an alternative to Maddy’s account of axiom selection based
on Instrumentalism about mathematics. §1 describes Maddy’s view in Second
Philosophy (Maddy, 2007) and Defending the Axioms (Maddy, 2011). Two issues
are identified during §1 but the more substantial issues are identified during §2:
the Euthyphro Dilemma and my objections to Thin Realism. §3 then presents my
positive account, showing how it avoids the issues of Maddy’s position outlined
in §1 and §2, but keeps the virtues of the account. §3.2 then outlines a (potential)
difference between my position and Maddy’s, namely Axiomatic Pluralism.
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Essay IV: Proofs, Derivations and Axiomatic
Pluralism

Recent work in the philosophy of mathematical practice by Azzouni (2004),
Burgess and Toffoli (2022) Toffoli (2021), Hamami (Hamami (2014) and Hamami
(2022)), Hamami and Morris (ming) and Tanswell (Tanswell (2015) and Tanswell
(2016)) and others1 has explored the relationship between mathematical proofs and
derivations.

The term "proof" should be here understood as the kinds of things one finds
in mathematics journals or books; written in natural languages, though perhaps
with some formalization where appropriate, perhaps also containing diagrams
(Toffoli, ming) or other kinds of non-formal reasoning. The term "derivations"
should be understood as a logically valid sequence of statements, written in a
formal language, proceeding from some choice of axiomatic theory; the kinds of
things many of us ask our students to produce in our introductory logic classes.

Trends in this work support a greater gap between proofs and derivations than what
was previously been thought. Proofs are indicators of the existence of a derivation
(Azzouni, 2004), but not strict instructions for producing one.

That a proof can be faithfully unpacked into multiple different derivations is
not a new claim within this literature. What is new, and what I draw attention to
here, is that proofs can be faithfully unpacked into multiple different derivations
proceeding from different axiomatic theories.

1See also Kitcher (1981), Fallis (2003), Detlefsen (2008), Leitgeb (2009), Marfori (2010) and
Andersen (2020)
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If this is true, then there are potential ramifications for the philosophy of axiom
selection. I argue that it makes a kind of axiomatic pluralism more plausible.

§1 clarifies some definitions. §2 discusses the relationship between proofs and
derivations. §3 considers ramifications for the philosophy of axiom selection.

1 Some definitions

As mentioned above I use the term "proof" to indicate the kinds of things that
mathematicians write that appear in mathematics journals. Modular elliptic curves
and Fermat’s Last Theorem (Wiles, 1995) or The Independence of the Continuum Hypothesis
(Cohen, 1963) are both examples of proofs. For more examples, one may open
the latest edition of Annals of Mathematics and encounter dozens. Finding the best
definition proof in this sense is an open problem in the philosophy of mathematical
practice. Azzouni (2004) is right that they are derivation indicators, but this is
a necessary not a sufficient condition. Suppose I read an article in a reliable
news outlet reporting on a recently published proof. That is also an indicator of
a derivation but is not a proof. Suffice for present purposes to say that proofs
typically have the following features:

1. They are typically written in natural languages, often English, likely aug-
mented with technical vocabulary and some formalism where appropriate.

2. They frequently have the form of a series of declarative statements (lemmas
and theorems) connected by instructions in the imperative mood for navigat-
ing between them. E.g. "Let A and B be spheres. Construct a line C tangential
to both A and B..."

3. Steps of the proof are not immediate logical consequences of one another.
It requires a level of mathematical understanding to connect the steps of a
proof.

4. Proofs infrequently explicitly state their axioms.

5. Proofs might contain diagrammatic elements.

This is to be contrasted with derivations, which are called "proofs" in most intro-
ductory logic books that philosophically educated readers are more likely to be
familiar with.
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Derivations are a sequence of declarative statements, written in a formal lan-
guage and constrained in their order by certain logical inference rules. There might
be certain statements allowed in a proof as a result of them being logical axioms.
Other statements that appear in a derivation which neither follow from previous
statements via inference rules nor are logical axioms are the mathematical axioms
(or just axioms) of the derivation.

I will use the verb "unpack" to relate a proof and a derivation that are related in the
appropriate way. Hales’ "A proof of the Kepler conjecture" (Hales, 2005) is a proof
which unpacks to the derivation presented in "A formal proof of the Kepler conjecture"
(Hales et al., 2017) as produced by the Flyspeck project.

Whilst not every derivation from some axioms to the conclusion of a proof is
an unpacking of that proof, I’ll be somewhat liberal in my use of the term "unpack".
Any derivation that could at all reasonably construed as a rational reconstruction of
the derivation indicated by a proof can be considered an unpacking of that proof.

Of course, there are a number of normative standards one might apply when
relating a proof to a derivation. A derivation might be more or less faithful an
unpacking of a proof based on how well it captures some combination of (1) what is
written in the proof (2) what the author(s) had in mind and (3) the social-epistemic
context in which the proof is produced.

(3) is important to note. Proofs do not exist in a social vacuum. They rely
on theorems, definitions, ideas and methods present in the social-epistemic context
in which are presented.

This paper’s main claim should therefore be clarified. It is not simply enough
to show that there are proofs which unpack to derivations with different axioms,
that is easy to show. Rather, I wish to claim that there are proofs which faithfully
unpack to multiple derivations with different axioms. The question is then what
the appropriate notion of faithfulness is.
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2 How to unpack proofs into derivations

2.1 The relationship between proofs and derivations

I want to think of the relationship between proofs and derivations a little like the
relationship between higher-order programming languages and machine code2.
In a computer, a CPU takes instructions in some form of machine code. This
is a highly basic programming language which would be utterly impractical to
code in on a day-to-day basis. In practice, programmers code in higher-level
programming languages such as Python, Ruby, Java and C#. These are languages
which allow for more abstracted, simple descriptions of processes which might
be quite complex at the level of machine code. This allows programmers to sim-
ply get on with coding without needing to worry about orthogonal base-level issues.

Higher-level code is connected to machine code via a compiler3. Compilers
are effectively an algorithm for taking instructions written in a higher-level lan-
guage and translating them into machine code, which the processor can read. The
majority (but not all) of this amounts to a series of definitions connecting procedures
in the higher-level language to procedures in the lower-level language.

For instance, take the following simple Python script:

if a*b==c:
print(str(c))

This script compares three variables - a,b and c. If a times b is c, then the
computer prints the value of c.

This is easy enough to understand even if one has never encountered the language
of Python before. A compiler would take this and turn it into something like the
following. I describe it in English as neither I nor the vast majority of my readers
can read ML code.

2Yacin Hamami should be credited for this particular analogy. I had the fortune of attending
his work-in-progress talk whilst working on an earlier version of this paper and his analogy with
programming languages has proven a useful way of framing their relationship.

3For this paper, I ignore the distinction between compilers, interpreters, IDEs, etc. For present
purposes, the term "compiler" is used in its more generic social meaning.
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Take the memory addresses of a and b. Going to those, perform a multiplication
algorithm, saving the result at a third memory address. Compare that memory
address with c. If they are the same, go to a fourth memory address and write the
code of the text representation of the characters in the value of c. Send instructions
to the monitor to display the text stored at the fourth memory address.

A compiler is then, effectively, a translator between the higher-level languages of
day-to-day coding and machine code.

A similar story can be given of the relation between proofs and derivations.

Proofs are written in augmented versions of natural languages. New specialised
words are added to the base language and some ordinary words are redefined in
more precise manners (e.g. consider the difference between the ordinary English
and Mathematical senses of "similar"). Derivations are written in formal languages.
Just as a processor couldn’t understand instructions fed to it in Python or C#,
someone only familiar with the formal languages used in derivations would not be
able to understand a mathematical proof.

In order to connect proofs to derivations, something must play the role of the
compiler.

One part of this is (relatively) easy. There are usual and known methods for
translating natural languages into formal languages. We have our undergradu-
ate students do this as part of their logic exams all the time! Perhaps the only
challenging element consists in translating the imperatives frequently found in
mathematical proofs into the declaratives of formal languages. But this is relatively
unproblematic when one sees that imperatives are typically higher-level descrip-
tions of which inference rules to apply to the statements one already has, rather
than declarative statements in disguise.

The more challenging part of unpacking a proof into a derivation comes in
translating the higher-level concepts of a proof into the lower-level concepts of
the derivation. For example, consider the concept of prime factorization. This is a
common enough mathematical concept, but one that cannot be (directly) found
in the formal languages used in derivations. The language of arithmetic, for
instance, contains things like the successor relation, the functions + and ×, etc. The
higher-level concept must be defined from lower-level building blocks.
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For instance, a prime factorization of X can be defined as a factorization of X
where all the elements are prime. A factorization of X can be defined as a sequence
of natural numbers such that their product is X. A prime number is a number
whose only factorizations are sequences containing itself and arbitrarily many 1s.
Sequences might then be defined in set theory as ordered tuples, which in turn
are defined from sets. Natural numbers can be defined in set theory in familiar ways.

Three things to note here.

First, there’s a degree of layering present here (and this is again similar to pro-
gramming languages). There are not merely two levels of language at play: the
formal language of derivations and the non-formal language of proofs. Going "up"
from the language of derivations, there are increasingly abstract concepts defined
from previous concepts. In the above definition of a prime factorization, there are
six levels of definition: sets, tuples and numbers, sequences, factorizations, prime
numbers, and prime factorizations.

Second, there’s no unique way of defining higher-level concepts. For one, the
notion of a sequence is redundant in the above definition of prime factorization. I
could have used the term "tuple" from the start and saved an entire definitional
stage. But more radically, I could have used alternative, perhaps non-set theoretic,
definitions of the higher-level concepts.

I could have defined a sequence of natural numbers as a function from an initial
segment of N into N. I could have defined a factorization of X not as a sequence
but as a f function from N into N ∪ {0} such that x = ∏

x∈N
x f(x). Similarly, I could

have avoided set theory and used higher order arithmetic to define the otherwise
set-theoretic notions, though leaving N as basic. To put this in terms of the analogy,
there are multiple possible compilers which unpack proofs into different derivations.

There is a point of intersection here with mathematical structuralism. When
providing a lower-level definition of a higher-level mathematical concept all that
matters is the relevant inferential features of the higher-level concept is preserved.
One does not need to find the real meaning of, say, a sequence (whatever that would
even mean). It suffices to find something definable in one’s base language which
behaves like a sequence behaves.
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None of what’s been said here breaks from the programming analogy. Pro-
gramming languages have a more complex hierarchical structure than the one
presented here and, even within a program written in a particular language, there
will often be additional processes defined within the code. Moreover, there are fre-
quently new, different or better compilers produced which can unpack higher-level
code either (1) more efficiently or (2) into more efficient ML.

The last point of note interacts with the question of pluralism. In the case above,
the different ways that the concept of "prime factorization" unpacks into a more
fundamental concept changes the axioms that would be required, were the concept
used in a proof. Three different definitions were suggested: the set-theoretic
definition given in the example, the functional definition and the higher-order
arithmetic definition. If one wished to derive something about prime factor-
ization, e.g. say its uniqueness, the axioms required would be very different
based on the way in which one represents the higher-level concepts present in the
proof. In the first case set theoretic axioms would be required. In the second per-
haps some type-theoretic axioms. In the third something like finite order arithmetic.

In a sense, the choice of axioms doesn’t really have much to do with the proof of
the theorem itself. All the important features of the proof take place at the level of
higher-order concepts. All the axioms do, in this case, is provide a mechanism for
making the higher-order concepts rigorous. It matters that there is some possible
choice of axioms which lead to a derivation of the theorem; but, in this case, it
doesn’t matter all that much which.

This is then a version of the type of pluralism advertised. Any ordinary proof
unpacks into multiple derivations. Based on one’s representational choices, this
includes derivations from different axioms.

This is perhaps a little unsurprising. I could have shown this simply by pointing
to examples. Take Thomas Hales’ proof of the Kepler Conjecture. Due to some
controversy surrounding the status of Hales’ then-purported proof, Hales set out
to use new innovations in computing to produce a formal derivation of his proof.
This was the Flyspeck project. The project was successful and a formal derivation
of the Kepler conjecture is now available.
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Flyspeck used a combination of the digital proof finders HoL Light and Isabelle,
with HoL Light forming the basis and background of the derivation and Isabelle
performing some heavy combinatorial work over a class of possible counterexam-
ples to the Conjecture, eventually imported back into HoL Light. HoL Light is of
interest here as it covered the foundational portion of the proof. The axiomatic
theory used was a version of Church’s Type Theory, augmented with axioms of
choice and functional extensionality (Call this CTT+). The derivation was not a
derivation from the axioms of standard set theory: Zermelo Frankel with Choice
(ZFC).

Now the reasons for this were, to my understanding, purely computational.
Type theories work well from a computational perspective. CTT+ is a very prac-
tical, functional choice of axiomatic theory, in this context. Hales has not, to my
knowledge, expressed any deeper philosophical support for CTT+. This appears
to be a very utilitarian choice.

That being said, there’s no principled reason why a derivation couldn’t have
been found from the axioms of ZFC. In fact, it’s relatively easy to interpret Church’s
Type theory in ZF. Functional extensionality and choice follow from ZFC. It would
only be a matter of adding a few more definitions and the derivation from CTT+
could be converted into one from ZFC.

Thus there are clear examples of major proofs which can be unpacked into deriva-
tions with different axioms. What this section does, I hope, is explains why this
happens. When providing lower-level formulations of higher-level concepts, one
only needs to preserve the appropriate formal or inferential structure. But there are
multiple ways of doing this in different kinds of formal languages with different
axioms. This is comparable to how there are many compilers of higher-level
computer code which produce different ML code given the same input. Thus
ordinary proofs unpack to multiple derivations with different axioms.

That being said, as discussed in §1, different derivations might be more or less
faithful unpackings of a particular proof. The interesting pluralist claim isn’t that
ordinary proofs unpack into multiple derivations with different axioms, rather it’s
the claim that there are multiple faithfull unpackings into derivations from different
axiomatic theories.
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Put differently, one might think of derivations as rational reconstructions of what
goes on in a proof. A faithful unpacking is a good rational reconstruction. The
interesting pluralist claim is that proofs can be rationally reconstructed using
different axiomatic starting points.

Of course, the open question here is what the relevant understanding of "faithful" is.
Is there a way of identifying one particular derivation as the privileged derivation?

In §2.2 and §2.3 I consider a range of ways of understanding "faithfulness",
showing that each is either unattractive or leads to the kind of derivation-pluralism
discussed.

2.2 The Bibliographical approach

Continuing with the example above, whilst both the unpacking of Hales’ proof
into a derivation from CCT+ and into a derivation from ZFC might be perfectly
reasonable unpacking, one of these has the advantage of being the derivation that,
in a certain sense, was already "out there". One could take Hales’ proof and do
something like the following: (1) replace any (essential) citations with the relevant
parts of the text they are citing (2) repeat until there are no more citations (i.e. take
the transitive closure of the "cites" relation) (3) Go through and convert the resulting
extensive natural-language text into a relevant formal language which formalises
the claims and axioms of the proof. The resulting string of claims is, hopefully, a
valid derivation. The axioms on which that derivation is based are then the actual
axioms of the proof. Call this the bibliographical approach.

It’s worth noting that this is very much not what Flyspeck did. Flyspeck in-
volved a great deal of clarifying and re-working definitions and foundations to fit
the demands of HoL Light and CTT+. It’s likely, though I have not checked the
transitive closure of Hales’ original proof, the resulting derivation would be Set
Theoretic, carving a path through known definitional work by Bourbaki.

There’s a prima facie compelling reason to think of derivation picked out by
the bibliographical approach as the privileged. After all, it is quite literally tracking
the work on which a proof was based.

There are, I think, three reasons to be sceptical of this approach.
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First, I think it’s quite likely that, in practice, this approach would result in
very hybridised derivations, using broad and inefficient axiomatisations. For exam-
ple, suppose a proof both cites relevant work by Peano and Bourbaki. The resulting
derivation, taken from the transitive closure of the citations, would contain both
the axioms of Peano Arithmetic and ZFC. This would then be an unnecessarily
baroque derivation, given that it’s possible to define N in a model of ZFC and prove
the validity of the axioms of PA for that structure.

A more faithful unpacking would involve ignoring what the citation history
actually says, in favour of "cleaning up". Given that Boubaki has given us a way of
avoiding commitment to the axioms of PA in addition to the axioms of ZFC, this
should be taken advantage of. Finding the correct unpacking of a proof involves
some level of idealization.

The second issue is that many published proofs contain mistakes. Of course,
there are examples of major mistakes, faux-theorems that were accepted for a
non-trivial period of time before being shown to be false (e.g. Goldfarb (1984)
refuted a result published by Gödel (1933) some 50 years prior). But what I have in
mind are more minor mistakes. Small inferences that don’t seriously undermine
the proof, the kinds of things that a mathematician knowledgeable in a particular
area likely knows about, but also knows how to work around.

In practice, this is no great worry. Mathematicians know how to work around these
kinds of errors, whilst taking away the relevant, more abstract, methodological
insights. The idea or broad structure behind a proof is often more important than
the literal words that were written.

But when applying the bibliographical approach, these mistakes are not filtered out.
Again, the "correct" derivation is found by applying some degree of idealization
and know-how.

My final objection to the bibliographical approach is from a particular case study:
Andrew Wiles (1995)’s proof of Fermat’s Last Theorem, his use of Grothendieck
universes and McLarty (2010)’s "new" proof of Wiles’ result.

A quick summary of the case: in the summer of 1993 Andrew Wiles proved
Fermat’s Last Theorem, a result eluding over three centuries of mathematicians.
The proof was accepted and Andrew Wiles won countless awards and even Royal
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patronage for his work. Interestingly, from a foundational perspective, Wiles makes
use of a type of mathematical structure called Grothendieck universes (henceforth,
simply "universes). The existence of universes is not provable in ZFC as it implies
the existence of a strongly inaccessible cardinal.

If one applied the bibliographical approach to Wiles’ proof, one would, even
modulo the aforementioned issues, reach a derivation from the stronger Tarski-
Grothendieck Set Theory, not ZFC.

This was discovered by Colin McLarty who also showed how to complete Wiles’
proof without using the full apparatus of universes. Now what McLarty did was, I
think, rather interesting. He didn’t take Wiles’ proof and provide a workaround
that avoided the use of universes. Instead, he showed how a weaker ZFC−friendly
definition of universes could perform all the work that Wiles needed universes to do.

McLarty’s amendment to Wiles’ proof really amounts to the simple adjustment
of an unnecessarily powerful definition. With the new definition implemented,
Wiles’ proof continues with no real alternations. This is not to trivialize McLarty’s
contribution. Whilst it’s a simple matter to change a definition, it is certainly not a
simple matter to demonstrate that Wiles’ proof really can proceed untroubled by
the new, weaker definition.

Mclarty (2020) has actually gone further and proven the more general result
that the entirety of Grothendieck’s main work, Séminaire de Géométrie Algébrique du
Bois Marie (SGA)4, can be founded in finite order arithmetic (a theory stronger than
PA but weaker than ZFC). Again, as with Wiles’ proof, McLarty shows that the
proofs in SGA itself go through given a weaker notion of universes. He’s showing
that the original proof used unnecessarily strong axioms, not producing a new
proof from a more conservative starting point.

Who proved Fermat’s last theorem: Wiles or McLarty?
Wiles. Obviously.

4The SGA was published in eight volumes. To avoid gratuitous citations, a combined edition
can be found online here: http://library.msri.org/books/sga/
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McLarty’s work here is exceptionally interesting, especially to those of us with more
"philosophical" interests in mathematics but his discovery that Wiles was using
universes, and his production of a work-around, doesn’t take the proof away from
Wiles. However, if one applies the bibliographical approach, it’s McLarty’s proof,
not Wiles’, which unpacks to a derivation from a commonly accepted foundation.
The bibliographical approach seems to get the wrong answer to the question "Who
proved Fermat’s last theorem?"

Of course, one reply here could be that this case shows that Tarski-Grothendieck
set theory is now just an acceptable foundation for one’s proofs. That wouldn’t
be an entirely unreasonable claim. There’s a strong case for large cardinal ax-
ioms. But if this was the case, one would have expected a little more conscious
acknowledgement by the mathematical community, perhaps even some level of
controversy. Whilst McLarty’s results are widely known in proof-theory and related
circles, the work has not received exceptionally wide-ranging attention beyond that.

What I think is a more plausible reading of the situation is that McLarty has
shown how Wiles’ actual proof can be unpacked into a derivation from more
traditional foundations. Nothing major has changed in the best current version of
the proof as a result of McLarty’s contribution. What he’s done is show how to
shave down the present proof.

Returning to the programming analogy, I like to think of McLarty’s contribu-
tion a little like a coder who’s written a more efficient compiler. Wiles, the
higher-level programmer, has written an exceptionally important algorithm which,
using the compilers available at the time, needed a supercomputer to run. McLarty
has written a compiler which can take the very same code but turn it into a much
less computationally demanding ML script. McLarty’s contribution is very helpful,
but the algorithm is still Wiles’.

My explanation of this case, however, requires a rejection of the bibliographi-
cal approach to unpacking proofs. As with the cases of mistakes and multiple
foundations, correctly unpacking a proof into a derivation requires some element
of idealization. One can’t just read the correct derivation from the bibliography.

So which derivation is the correct unpacking of Wiles’ proof of Fermat’s last
theorem: The derivation via McLarty from finite order arithmetic or the derivation
without his contribution from Tarski-Grothendieck set theory?
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I don’t believe either can be thought of as the correct unpacking. Both are perfectly
good rational reconstructions of what’s going on in the proof. But this would
then be exactly what the pluralist is looking for: a proof which can be reasonably
unpacked into multiple derivations with different axiomatic basies.

2.3 The Psychological & Counterfactual Approaches

An alternative approach to identifying a privileged derivation is a psychological
approach. One might choose to privilege not necessarily what’s "out there" but
rather how the mathematician who wrote the proof actually thinks about their
proof. Again, there’s some prima facie plausibility to the claim that this particular
unpacking should lead to a privileged derivation. After all, that derivation would
be the derivation that the mathematician had in mind.

Two issues here:

First of all, many mathematics papers have multiple authors. There are two
cases here: series and parallel.

In the parallel case, multiple authors work on the entire paper. In this case,
perhaps those authors disagree about exactly which derivation is the one they had
in mind. They might, for instance, disagree about how they’d want to represent
higher-level mathematical concepts at lower levels. In this case, which derivation
would be the preferred one?

In the series case, different mathematicians work on different sections of the
paper. Again, if the mathematicians disagree on how to represent their proof at
a lower level, it might not be possible to "daisy chain" together the derivations
corresponding to different sections of the proof.

It’s therefore unclear how to apply the psychological approach to multi-author
papers whilst maintaining a single privileged derivation.

The second issue is that the psychological states of mathematicians likely aren’t
sufficiently detailed to uniquely determine a derivation.
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The vast majority of mathematicians, especially those not working on foundational
issues, do not know how to turn their proofs into derivations. It took Hales the best
part of 20 years and a large research team to go from a proof of the Kepler conjecture
to a full derivation. This was not merely a matter of getting down on paper what
was already in his head (or perhaps in his notebooks, etc). It takes a lot of work
and knowledge to unpack a proof into a derivation. Individual mathematicians
likely haven’t thought through the exact details of a derivation corresponding to
their proofs. It’s unlikely, then, that there’s a single particular derivation that a
mathematician might have in mind when producing a proof.

The psychological approach can potentially be adapted to avoid this concern.
Perhaps what’s worth considering is not the derivation that a mathematician
actually had in mind but rather the one that they would produce if, like Hales, they
decided to produce one.

This counterfactual approach would still encounter the problem of multiple au-
thors: Different authors might give different derivations even under these ideal
conditions. But the counterfactual approach at least avoids the (initial) issue of
under-determination. It doesn’t matter if a mathematician’s actual psychological
states under-determine which derivation is right, the counterfactual approach
considers the facts of a world where they bothered to think through the details of a
derivation, not the actual world.

That being said, the counterfactual approach might still lead to under-determination
if there is not a single closest possible world where the mathematician completes
a full derivation of their proof. It might be that the facts of the actual world are
insufficient to determine exactly which of two possible derivations is the closest. It
might be that the possible world where our hypothetical mathematician unpacks
their proof into a derivation from CTT+ is equidistant to the world where they do
it in ZFC.

This is the known question of Stalnaker’s Axiom, as discussed by Lewis (1973):
Is it always the case that either X� Y or X� ¬Y?
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Even if there are grounds to decide which world is close, a worry is that these are
then irrelevant grounds for determining the most faithful unpacking of a proof.
Suppose, for instance, that the reason why our mathematician would choose to
use ZFC is something relatively benign. Perhaps they are slightly better friends
with a Set Theorist than a Type Theorist and would choose on those grounds which
foundations to use, so as to be able to collaborate with a friend. Those are good
grounds to prefer one counterfactual scenario to another but strange grounds to
prefer one unpacking of a proof over another.

As such, there’s also good reason to be sceptical of the counterfactual approach.

2.4 In Summary

This section explains how the same proof can be unpacked, and I think unpacked
reasonably and faithfully, into multiple different derivations, many of which would
have different axioms. Three ways of privileging certain derivations over others are
considered and dismissed. This is then, I hope, grounds not merely for claiming
that proofs can be unpacked into derivations with different axiomatic basies, but
that these different derivations are still honest, faithful unpackings of what’s going
on in the proof.

With the exception of proofs that have explicit axiomatic starting points, the
relationship between ordinary proofs and axioms is clarified. The relationship is
fuzzy. Proofs exist in a higher-level concept space without a singular axiomatic
specification. It is rare that any particular axiomatic theory can be thought of as the
axioms of a given proof. Instead, they should be thought of as a possible basis for
an unpacking of the proof, but certainly not a unique basis.
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3 Consequences for the Philosophy of Axiom Selection

Over recent years, a not inconsiderable amount of attention has been given to the
question "Does Mathematics need new Axioms?"
This is discussed in Essay I: On Axiom Selection, but see Feferman et al. (1999) and
the recent debate regarding the suitability of Category Theory as a foundation for
mathematics5.

Parties concerned seem happy to agree that (1) at present ZFC is the founda-
tion for mathematics but disagree on whether (2) ZFC should continue to be the
foundation for mathematics. Dissenters to (2) have or might propose extending ZFC
(e.g. with the addition of some large cardinal axiom), reducing it (e.g. by moving to
an intuitionistic logic or weakening choice), amending it (e.g. by replacing Choice
with Determinacy, Maddy’s the discussion of the Cabal seminar: Maddy (1988a)
and Maddy (1988b)) or by taking an entirely non-set theoretic approach (e.g. the
Univalent Foundations Program (2013)).

There has been, to my knowledge, no published disagreement with (1). There
seems to be widespread acceptance at least within the published literature that
ZFC is the actual present foundation of mathematics. Nevertheless, the conclusion
of §2 casts some doubt on (1).

Exactly what does it take for some axiomatic theory to be the actual founda-
tion for mathematics? Actual, as opposed to the foundation in some more idealized
philosophical sense.

There are lots of ways an axiomatic theory might be the actual foundation for
mathematics. Perhaps because it is widely regarded by mathematicians of all stripes
as the foundation. Perhaps mathematicians could meet and take a vote! Perhaps
the fact that an axiomatic theory frequently appears as the official foundation of
prominent textbooks (e.g. many axiomatic set theory textbooks are explicit about
their foundations). Perhaps there is a certain amount of delegation and that the
relevant, specialist subdisciplines working on foundational mathematics come to
one of the above kinds of agreement.

5SeeHellman (2003), Awodey (2004), Linnebo and Pettigrew (2011) and Ladyman and Presnell
(2016), amongst others.
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All that notwithstanding, one way that a particular axiomatic theory might be the
actual foundation of mathematics is if it’s the axiomatic basis of the majority of
mathematical proofs. As discussed in §1, proofs themselves infrequently specify
their axioms. Proofs need to be unpacked into derivations, which do explicitly
state their axioms. But as §2 argues, most proofs can be (sufficiently faithfully)
unpacked into derivations with different axiomatic basies. This means that for the
majority of the mathematical literature, obviously excluding works in axiomatic
mathematics that are explicit about their foundations, its possible to unpack them
both to derivations from ZFC and to derivations from other axiomatic theories as
well. But if that is true, then it’s unclear that ZFC is the singular actual foundation
for mathematics.

I suggest that the actual foundations of mathematics might be thought of in
more pluralist terms. Instead of one foundation, perhaps there are many. Not a
single axiomatic theory underneath it all but rather a cluster of distinct but often
related axiomatic theories, connected to ordinary proofs by known definitions,
tricks and methods, and a substantial amount of know-how by those concerned
with foundational issues. When mathematicians need to do foundational work,
they may pick any member of this cluster on the basis of their own preferences or
practical needs safe in the knowledge that in all but the most marginal cases, they
could have used any other.

This is, given the analysis of §2, at least the correct account of the actual foundations
of the mathematical literature. Exactly what this means for the actual foundations
of mathematics, as a whole, requires a discussion that I only hint at here.

Suffice for present purposes to say the following. My analysis of the relationship
between proofs and axioms, if correct, provides some ground to be sceptical that
there is a singular actual foundation for mathematics. Instead, a plural foundation
is more plausible with mathematicians free to choose between a range of plausible
and well-regarded axiomatic theories. I have no means demonstrated this com-
pletely. A great deal hangs on exactly what one means by the actual foundations
of mathematics. But this analysis does provide some prima facie motivation for
scepticism about a singular actual foundation for mathematics.
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As a final point of comment, it should be noted that none of this speaks directly to
the normative question of what the foundations of mathematics should be. Even if,
in practice, there is no singular foundation for mathematics, that does not mean
that there shouldn’t be. That is a very different question, one addressed in Essay
III: Instrumentalism & Axiom Selection.

That notwithstanding, there is a tendency in the philosophy of mathematics
to be a little conservative. All else being equal, a philosophy of mathematics that is
less disruptive of mathematical practice is better than one that is. If one adheres to
that rule, then clearly my claims about the actual foundations of mathematics have
significant philosophical upshot. They would shift the burden of proof onto the
axiomatic monist. If the actual foundations of mathematics are plural, and granting
this conservative approach, then it falls to the party wishing to adopt a singular
foundation to explain why this change is warranted.

4 Conclusion

This paper builds on previous work on the relationship between mathematical
proofs and derivations by considering the relationship between proofs and axioms.
It argues that not only can proofs be unpacked to multiple derivations, but that this
includes derivations from different axiomatic theories. In this sense, no singular
axiomatic theory can be thought of the axioms of a proof, except in the case of
proofs in axiomatic mathematics where the axioms are explicitly stated.

The reason for this result is explained. Mathematical proofs are written in a
higher-level language, comparable to a higher-level computer language, which
can be unpacked into lower-level formal languages in much the same way that
higher-level computer code is compiled into machine code. But just as there are
many possible computer compilers which return different ML script from the same
code, there are different ways of unpacking proofs into more fundamental, formal
languages. This pluralism is strong enough to even allow for different axiomatic
theories to form the basis of derivations unpacked from the same proof.
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Some initial consequences of this for the foundations of mathematics are outlined
(though not entirely defended). This suggests, I believe, that mathematics actually
has a plural foundation. There is not one singular axiomatic theory that is the basis
for all of modern mathematics. Rather, there are many theories, all of which are
sufficient to do foundational work. Mathematicians are free to choose whichever
best suits their needs, when there is foundational work to be done.
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Essay V: Langauge, Truths & Logics:
A Defence of (Neo) Carnapian Logical Pluralism

Introduction

Carnap’s logical pluralism is a well know, though not highly regarded, version of
logical pluralism. The view is mentioned in almost all extended discussions of
logical pluralism but is quickly dismissed as either (1) the victim of one or multiple
devastating objections or (2) obviously true but entirely uninteresting and besides
the point.

In this paper, I argue that Carnapian logical pluralism survives all the major
objections against it. Moreover, it is an interesting type of pluralism that is relevant
to important questions about logic.

At certain points, the view I defend is not necessarily exactly Carnap’s view.
If Carnap’s actual view survives all the objections put to it rests on some exegetical
questions that I won’t attempt to resolve here. The view that I defend is very much
in the spirit of Carnap’s logical pluralism, but (potentially) breaks from it at certain
critical moments. Crucially, my view abandons Carnap’s tolerance principle. I
distinguish between a logic being descriptively correct for some language and its
normative status as a viable logic for actual reasoning. I refer to my view (without
Tolerance) as the Neo-Carnapian view and Carnap’s view (with Tolerance) as the
classical Carnapian view and refer to both of them together as the Carnapian views.

§1 and §2 set out the groundwork. §1 clarifies precisely which kind of plu-
ralism the Carnapian views are committed to. §2 then explains both the Carnapian
views, discussing their differences in §2.2.
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§3, by far the most substantial, discusses what I take to be the four main objections
to Carnapian Logical Pluralism, defending the Neo-Carnapian position, and
sometimes the classical Carnapian position to boot. The objections considered are
as follows. The "Wrong type of Pluralism" objection (§3.1), which claims that the
(Neo) Carnapian logical pluralism is an uninteresting, irrelevant or insubstantial
version of logical pluralism (Cook, 2010). Prior (1960)’s and Belnap (1962)’s Tonk
objection (§3.2). Next, I consider the meaning objection, originally from Quine (1970)
but later re-introduced into the modern debate by Restall (2002) and discussed in
Griffiths and Paseau (2022) (§3.3). Lastly (§3.4), a class of objection, which I call the
Meta-Logic Objections, which includes Quine (1936)’s argument against logical
truth by convention (§3.4.1) and what I call the mismatch in Griffiths and Paseau
(2022), amongst other places (§3.4.2).

1 The Carnapian Approaches to Logical Correctness

1.1 Logical Pluralism via Alethic Pluralism via Semantic Pluralism

Both the Neo and classical Carnapian views are examples of inter-linguistic logical
pluralism. They hold that there are many correct logics because there are many
logics correct for some language.

A logic is correct for a language L iff it is sound and complete1 with respect
to truth-in-L. Conversely, I say that a language L satisfies a logic iff that logic is
correct for L. However, different languages have different semantic features with
give rise to different notions of truth.

1An exception will need to be made for higher-order logics which might not admit complete
logics. In this case, some condition short of completeness should be applied.
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Consider the following example.

In classical logic a predicate’s extension (the things that make it true) and anti-
extension (the things that make it false) are both (1) disjoint and (2) jointly exhaustive
of the domain2. In conjunction with the fact that all names refer, this means that
all atomic sentences are either true or false, but never both. In familiar ways,
connectives can be defined truth functionally and the familiar inference rules of
classical logic can be shown to be valid.

However, the exclusion and exhaustion of the extension and anti-extension is
not a necessary semantic fact. It’s possible to build languages where either (1) the
extension and anti-extension can overlap but are jointly exhaustive (2) they cannot
overlap but are not jointly exhaustive or (3) they neither need to overlap nor be
jointly exhaustive. (1) leads to truth-value gluts, (2) to truth-value gaps and (3) to
both. Again, truth-functional connectives can be defined. Familiar non-classical
inference rules will be true of these connectives.

Both Carnapian views then tell a similar, simple story. Logics are true of a language
iff they are sound and complete for truth in that language. But the nature of truth in
a language depends upon linguistically contingent facts, such as the rules governing
of admissible extensions and anti-extensions of predicates. So the correct logic is a
linguistically contingent matter. There are different logics correct for some language.

For both Carnapian views, there is nothing more to say about the correctness
of a logic than this. There’s no language-independent notion of truth or constraint
on logical correctness beyond correctness for some language.

This is important as it distinguishes the Carnapian claim from the functionally
trivial claim that there are many logics, in the sense of many definable mathemati-
cal structures which satisfy whatever structural constraints it takes to be a logic.
They’re making a substantive and contested claim about what facts are relevant for
deciding if a logic is correct.

2This is a slightly atypical presentation of classical logic. Orthodox presentations typically don’t
differentiate between an extension and anti-extension in classical logic, as the anti-extension is just
the complement of the extension in the relevant nth Cartesian product of the domain. However, the
atypical presentation is useful for present comparison.
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As a final remark here, I don’t intend the Neo-Carnapian view to be restricted
to artificial languages. I include natural languages too. This is consequential
in response to Quine’s Conventions argument (§3.4.1). I don’t know if Carnap
intended to restrict his inquiry to artificial languages or not. If he did, then this is a
point of difference between the Neo and classical Carnapian views.

What makes a semantic theory the correct semantic theory for a language?
At the least, it should play the appropriate role in a descriptively accurate theory of
speaker utterances and inferences. But such a theory would also need an account
of pragmatics, conversational norms, the psychology of speakers, speaker beliefs
and much more. Linguistics is complicated and the role of semantics in predicting
speaker behaviour is somewhat abstracted, but certainly present.

From a correct semantic theory, which will undoubtedly be more baroque than its
formal cousins, one can extract the (or perhaps merely a) correct theory of truth for
a natural language. The (or a) correct logic of this natural language will then be the
one sound and complete for truth in that language.

Now, I’m very sympathetic to Shapiro’s version of logical pluralism arising here.
There might be multiple different semantic theories which can play the appropriate
role in a descriptively accurate linguistic theory. This is in no small part because
speaker behaviour might radically underdetermine key data points. I doubt there’s
all that much uniformity, for instance, on how actual speakers deal with the Liar
paradox, though this is armchair linguistics.

But if there are many semantic theories correct for some language, then there
can be many theories of truth correct for some language and consequently many
logics. This is a very carnapianized version of Shapiro (2014)’s logical pluralism. I
think it’s plausible, but I won’t defend it any further here. It’s worth noting that
this is another point of difference between me and Carnap, who rejected this claim.
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1.2 Carnap’s Tolerance Principle

One of the most notable, and so far unmentioned, parts of Carnap’s philosophy of
logic3 is his tolerance principle. In Carnap LSL he states the following:

“In logic there are no morals. Everyone is at liberty to build up [their] own logic, i.e.
[their] own language. All that is required of [them] is that, if [they] wishes to discuss it,

[they] must state [their] methods clearly, and give syntactical rules instead of philosophical
arguments." (Carnap, 1934, p52)

He continues saying that: “It is not [the business of philosophy of logic] to set up
prohibitions, but to arrive at conventions”.

There are two ways of reading this, one quite far from the Neo-Carnapian position
and one quite close to it.

On the first reading, Carnap is making a claim about the kinds of logic one
is entitled to use when reasoning. He’s claiming that the only restriction on the
kinds of logic one may use when reasoning is that it’s true in some language.
Presumably, also, that one adopts this language. On this reading, there are no
grounds on which to choose between languages. This is just a matter of practical
convention setting. As he says, in logic there are no morals.

An analogy here would be between deciding which side of the road to drive
on when designing traffic laws. There’s no objectively correct answer to this.
Road systems function perfectly well in both cases. There aren’t even any serious
normative considerations in favour of one choice or the other. It’s simply a mat-
ter of settling which of a set of equally good options we’re going to go forwards with.

Call this the non-normative reading of Carnap.

3This paper discusses the Logical Syntax (Carnap, 1934) and Empiricism, Semantics and Ontology
(Carnap, 1950), but see also Carnap’s Aufbau (Carnap, 1928) and Meaning and Necessity (Carnap,
1947).
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In contrast, the second reading puts a bit more normativity into Carnap. In his later
work, Carnap (1950) discusses choosing between nominalist and non-nominalist
languages. In the closing lines of Empiricism, Semantics and Ontology he says the
following:

"The acceptance or rejection of abstract linguistic forms, just as the acceptance or rejection
of any other linguistic forms in any branch of science, will finally be decided by their

efficiency as instruments, the ratio of the results achieved to the amount and complexity of
the efforts required."

Here Carnap clearly is applying normative criteria to language (and hence logic)
selection. Logic has a function, a purpose. This is not to be understood metaphys-
ically but very practically. Logics can be decided upon, though perhaps not up
to uniqueness, on practical, normative grounds. Whilst there are no descriptively
correct or incorrect logics, provided one can find a language which satisfies them,
there are normatively better or worse logics. Contra the first Carnap, when it comes
to use, it’s not simply that any logic goes.

Call this the normative reading.

This second Carnap, the normative Carnap, is much closer to the Neo-Carnapian.
The Neo-Carnapian takes the normative reading and builds on it.

The Neo-Carnapian differentiates between the question of whether a logic is
correct (for some language) and whether they should use it. That a logic is correct
for some language might as much be a reason to not use that language as it is
permission to use the logic.

The Neo-Carnapian is unashamedly instrumental in their approach to language
selection. They see logic as a tool and will pick whichever language gives them
the most useful tool. They see a web of reasons, both practical and theoretical,
for using particular logics in particular contexts and for particular tasks. For
the Neo-Carnapian, this is the crux of the philosophy of logic: the very practical
question of the benefits and drawbacks of using this logic or that.

For the Neo-Carnapian, in logic there are only morals.
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2 Pluralism Classified

For any given subject, there are often many different kinds of pluralism one might
adopt. A pluralism of pluralisms. When being exact, it’s not enough to simply say
"logical pluralism" or "alethic pluralism" or suchlike. There are typically many differ-
ent independent positions all of which can reasonably go by the name "X Pluralism".

With respect to logical pluralism, the following are all positions that could go by
the name "logical pluralism":

• There are many logics

• There are many correct logics

• There are many correct theories of inference

• There are many logics correct for some language

• For some languages, there are many correct logics

• There are many logics with which one may reason

Whilst these different notions of logical pluralism are certainly interconnected and
typically if one is a pluralist about some of this, one will be a pluralist about many
more, they should be understood as separate views which can come apart, at least
in principle. This is similarly so for monism and nihilism.

This section clarifies in exactly which ways the Carnapian views are pluralist.

As a more general point, I hope this section also shows that these kinds of
subtle distinctions raised above are highly consequential. They do come apart and
they come apart in important moments. On the basis of this, I hope that we stop
thinking of logical pluralism (and monism, and nihilism) as a singular position,
but rather a family of connected but strictly independent views.
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2.1 The Scope Question

As mentioned above, on the Carnapian views logics are only ever correct with
respect to a particular language, in much the same way that things like theories
of grammar are only correct with respect to a particular language. The question
"How many theories of grammar are correct?" is ambiguous and only makes sense
upon clarification. One might ask:

1. Wide scope question: How many grammars are correct for all languages?

2. Medium scope question: How many grammars are correct for some language?

3. Narrow scope question: For a given language, how many grammars are
correct?

4. Objective question: How many grammars are objectively correct?

And for each of these questions one might answer "none" and be a nihilist, "exactly
one" and be a monist or "many" and be a pluralist.

The question "How many logics are correct?" is ambiguous in the same way.
One might ask:

1. Wide scope question: How many logics are correct for all languages? (None)

2. Medium scope question: How many logics are correct for some language?
(Many)

3. Narrow scope question: For a given language, how many logics are correct?
(Me: many, Carnap: one)

4. Objective question: How many logics are objectively correct? (Carnap: None,
Me: see other work)

Both the classical and Neo-Carnapian answers are given in the brackets above.
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Note that this scope distinction holds for other related kinds of pluralism too.
The question "How many correct alethic/semantic theories are there?" is ambiguous
and could mean:

1. Wide scope question: How many alethic/semantic theories are correct for all
languages?

2. Medium scope question: How many alethic/semantic theories are correct for
some language?

3. Narrow scope question: For a given language, how many alethic/semantic
theories are correct?

4. Objection question: How many alethic/semantic theories are objectively
correct?

In fact, the Carnapian views defend medium-scope logical pluralism on the basis
of medium-scope alethic pluralism, which is in turn defended on the basis of
medium-scope semantic pluralism.

Now I don’t want to claim that any one of these precisifications of the initial
question "How many logics are there?" is the correct version of the question, or even
the best or most interesting. I resist efforts by, e.g., Cooke to narrow the question
of logical pluralism simply to the narrow scope question. I see logical pluralism
not as a singular position, but as a family of interconnected but strictly distinct
positions, united by the fact that they give a pluralist answer to some reasonable
precisification of the question "How many logics are there?".

Both the classical and Neo-Carnapian views defend medium-scope logical plural-
ism. They hold that logical pluralism is true because there are many logics correct.
This actually puts them apart from most contemporary versions of logical pluralism,
which typically focus on the narrow-scoped question. Both Beall and Restall’s, and
Shapiro’s versions of logical pluralism are narrow-scoped, for instance.
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2.2 Correctness Pluralism vs Validity Pluralism

Another important distinction to be made is between correctness pluralism and
validity pluralism. This is important when contrasting the Carnapian views with
Beall and Restall (2005)’s, and also for the reply to the Meaning Objection (§3.3).

The correctness pluralist claims that there are many correct logics. Perhaps
many correct for all languages, for some language, for a given language, perhaps
objectively. The Carnapian views are correctness pluralists.

The validity pluralist claims that there are many correct theories of valid in-
ference. In other words, there are many correct theories of which sentences follow
from which others.

These might, at first sight, appear to come together. Perhaps validity pluralism
is true iff correctness pluralism is true. After all, logics are theories of valid inference.

The claims come apart, however, because information about which language
one is working in is encoded in sentences themselves. Consider the validity of the
following informal arguments:

1. All men are mortal. Socrates is a man. So Socrates is mortal.

2. Alle Menschen sind sterblich. Sokrates ist ein Mensch. Also ist Sokrates
sterblich.

As should be obvious, the lexicon of the sentences restricts, and in these cases
determines, the language in which the arguments are to be evaluated.

In the case of German and English, this is inconsequential to the evaluation
of the argument as the two languages share a logic. In the case of languages
satisfying different logics, the difference is consequential. Consider the following
case. There are two formal languages. One is classical. The other is a language
with truth value gluts and the connectives of the logic of paradox. The languages
are unambiguously delineated in their lexicon. In particular, the subscripts CL
and LP are applied to the traditional symbols for the connectives to indicate if the
connective belongs to the first or the second language. So →CL is the conditional
from the first language and →LP the conditional from the second.
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Consider the following two arguments:

1. ϕ ∨CL ψ, ¬CLϕ ⊢ ψ

2. ϕ ∨LP ψ, ¬LPϕ ⊢ ψ

Despite their prima facie similarity, the first statement is true whilst the second
is false. Disjunctive syllogism is invalid in LP. But here we can see that the
connectives tell us which language the sentences come from. This tells us the
underlying theory of truth that should be used to determine the validity of the
argument, and consequently which logic.

Returning to the difference between validity and correctness pluralism, only
one theory of validity is needed to capture this case. This is the hybrid theory
which says from classical statements use classical logic to infer classical conclusions,
but from LP statements use LP inferences to infer LP conclusions. For the (medium
scope) correctness pluralist, there are two correct logics. Classical logic is correct
for the first language and LP is correct for the second.

In this case, validity pluralism is false but correctness pluralism is true.

Now, again, I don’t wish to say that either correctness pluralism or validity
pluralism is the correct notion of logical pluralism. As stated above, logical plural-
ism is a family of views not a singular view. Beall and Restall’s pluralism is a kind
of validity pluralism. They believe that there are multiple interpretations of the
consequence relation, with different logics correct given different interpretations.
Their view is certainly a plausible approach to logical pluralism, though one I do
express some scepticism towards4. Validity pluralism is one amongst many ways
one might be a pluralist. But it’s certainly not the Carnapian approach to pluralism.

4In particular I’m sceptical that: (1) The widest scope consequence relation can’t simply be
treated as the correct consequence relation and (2) Even if our actual notion of consequence in, say,
English is ambiguous between different interpretations, this might just be a reason to conceptually
engineer a more precise consequence relation, rather than sit with the ambiguity. They need to show
me the value of keeping multiple consequence relations in the language, rather than adapting our
language to clarify the ambiguity. Both of these are points on which I could be convinced otherwise.
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2.3 Descriptive Pluralism vs Normative Pluralism

The final distinction to be made relates to the tolerance principle (§1.2) as well as to
the Tonk objection (§3.2). The Neo-Carnapian stresses a distinction between the
descriptive question of if a logic is correct (for some language) and the practical,
normative question of if one may therefore reason with it.

A disagreement already exists within the literature as to whether logics are norma-
tive theories of reasoning or descriptive theories of truth (See Blake-Turner and
Russell (2018) and Russell (2020) for discussion). The disagreement, I think, is
misplaced. Logics are not inherently either. Logics are simply formal systems.
Logics can, however, be used as normative theories of reasoning or descriptive
theories of truth. Typically the former in virtue of the latter, as Russell notes. But
this is not a property of logics themselves, it’s a feature of how we use them.

The distinction between the two comes apart in cases of poorly designed lan-
guages. Consider, for instance, a classical language but without a complete set of
connectives. Suppose, for instance, the language only has conjunction, disjunction
and a conditional but not negation. There will be some sub-classical logic correct
for this language. Should one reason with this logic?

No. There’s no practical benefit to removing negation from the system. It
would clearly be much better to add it back in and move to classical logic proper.
Nevertheless, one can’t deny that the logic is correct for some language, just not a
very useful language.

The distinction between descriptive and normative correctness should then be
thought of like this, at least within the context of the Carnapian’s medium-scoped
pluralism5. There are a number of languages. Each of these languages satisfies at
least one logic. However, these languages are not normatively equal. They can be
evaluated and compared along a number of possible dimensions.

5The distinction can easily be adapted to other versions of logical pluralism. Take Shapiro
(2014)’s model pluralism. Even if there are many descriptively correct models, these might not all
be normatively on a par. Some might be better models than others. The challenge is, I think, quite
cutting against Beall and Restall’s logical pluralism. Even if there are many entailment relations, it
seems very plausible that only one of these will be relevant to the norms of reasoning.
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What it means for a logic to be normatively correct is for it to be descriptively correct
for some language which is appropriately normatively endorsed. Exactly what
"appropriately normatively endorsed" means will depend on the exact normative
structure applied to the languages. But to give the simple binary case, the logic
must be descriptively correct for a language with which one may reason.

Normative logical monism, pluralism and nihilism are then simply monism,
pluralism or nihilism about normative logical correctness.

Within this paper, I largely discuss descriptive, rather than normative, correctness.
An exception to this is §3.2 which discusses the Tonk objection. Here both are
discussed.

The classical Carnapian is definitely a normative logical pluralist. The toler-
ance principle means that there are many logics with which one may reason.

The Neo-Carnapian view is compatible with normative logical monism. Nothing
said in this paper rules that position out. That being said, I am a normative logical
pluralist. I believe there are many useful logics with which one may reason, but
perhaps not that many. I also believe that’s the more natural position to take as a
Neo-Carnapian, but more because it’s in keeping with the general attitude of the
view, not because of any strict argument connecting one to the other.

All that notwithstanding, the type of pluralism that the Neo-Carnapian commits to
is descriptive, not normative, pluralism.
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3 Objections

3.1 Objection 1: The Wrong Type of Pluralism?

In his well-known survey of logical pluralism, Cook (2010) draws a distinction
between logical pluralism, in general, and what he calls "substantial" logical
pluralism. Whilst Cook agrees with my analysis in §2 that there are many differ-
ent views that might go by the name "logical pluralism" Cook takes one of these
questions in particular to be privileged, the "substantial" version of logical pluralism.

For Cook, substantial logical pluralism is a kind of narrow-scope descriptive
correctness pluralism where the fixed language in question is some natural lan-
guage.

The classical Carnapian view is then dismissed as insubstantial as its plural-
ism is medium rather than narrow scoped. Note, the Neo-Carnapian view does
not differ from the classical view in this regard so, if Cook is right, both Carnapian
views are at risk.

Cook is not all that explicit about why narrow-scoped logical pluralism is sub-
stantial but medium-scoped logical pluralism is not. He simply applies the term
"substantial" to the narrow-scoped version without all that much in the way of
justification.

Now cook is writing a survey article, not an argumentative piece. It’s perhaps
unfair to expect too much in the way of justification, especially if it were to get in
the way of exposition. However, I think there are two arguments which can be
extracted from the paper.

The first of these is that Carnapian logical pluralism should really be seen as
relativism, not pluralism. As the worry goes, the Carnapian does not think that
there are many correct logics. For any one reasoner at any one time, there is only
one correct logic, but this is a function of the language they are using. Logical
correctness is then singular but language relative.
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If this is Cook’s objection, it confuses the type of logical pluralism that the Carnapian
commits to. All that analysis amounts to is the claim that the Carnapian is not a
narrow-scoped monist. But the Carnapian never claims to be, their pluralism is
medium-scoped. One can be a monist about one version of pluralism but a pluralist
about another.

The second argument that Cook might have been making is that Carnapian
logical pluralism is insufficiently controversial; it gets logical pluralism "on the
cheap", to use his phrase. Cook is keen that logical pluralism be a controversial
thesis. Cook might be concerned that the Carnapian view is an overly easy or
cheap version of pluralism.

Three replies to this.

First, historically, the Carnapian view has been taken to be all but refuted. See,
for instance, commentary by Soames (2003), Sider (2011) and Benacerraf (1973),
discussed below in §3.3. If it’s controversy Cook is searching for, defending a
Carnapian view against half a century of orthodoxy would certainly achieve that!

Second, as I stress in §1.1, the Carnapian views are committed to more than
just the claim that there are many languages which satisfy different logics. That
claim would not amount to much more than what Cook calls mathematical logical
pluralism, the claim that there are many logics, in a purely mathematical sense.
The Carnapian views commit to the more substantive claim that there’s no more
to logical correctness than correctness for some language. That is a substantive claim.

Consider, for instance, the debate between Logical Realists like Tahko (2021)
and McSweeney (2019) who think there are objective language-independent logical
facts. Tahko, in particular, acknowledges that there are many languages which
satisfy different logics, he just thinks that the relevant notion of logical correctness
is correctness with respect to the objective logical facts, not correctness with respect
to the semantic facts.

The Carnapian and the Logical Realist, therefore, agree on the claim that there are
many languages which satisfy many logics. What the logical realist demands of a
logic in addition to this is that the logic is correct with respect to some objective
logical facts, whatever those might be.
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The Carnapian’s claim that all there is to logical correctness is correctness for
some language is by no means a trivial part of their view.

See Essay VI: Three Approaches to Logical Correctness for more discussion.

Finally, controversy or contentiousness is not an especially good measure of
philosophical consequence. As an example it is, I take it, relatively uncontroversial
to claim that Gettier (1963) problems refuted the classical tripartite conception of
knowledge. Nevertheless, this is (and was) an immensely consequential fact. So
even if medium-scoped Pluralism turns out to be uncontroversial, that doesn’t
mean it’s not highly consequential.

Continuing this line of thought, and closing out this section, I want to meet
Cook’s challenge positively and explain why I think we should care about medium-
scoped pluralism. In other words, why the Carnapian views are consequential.

Now I’m not claiming this to the exclusion of the narrow-scoped question, which
I also take to be interesting and consequential. As I think the latter part of
Cook’s paper shows, there are some immensely interesting narrow-scoped views
that have been outlined in recent years. I’m just objecting to what I take to be an
unwarranted narrowing of the debate to only considering narrow-scoped pluralism.

Why does Carnapian logical pluralism matter?

Carnapian logical pluralism matters for the very practical and important question
of what logics we may use when reasoning. When reasoning we are not locked
into a single language. We can choose to revise our language as part of a debate,
discussion or chain of reasoning. When faced with an unclear or ambiguous
concept, we might clarify it. When faced with a concept that is dysfunctional, we
might choose to re-engineer it all together. This is the idea behind conceptual
engineering as an approach to philosophy. In philosophy, our concepts are not
fixed, they can be revised on the basis of a whole host of considerations. The
ultimate extension of that is what you could call "logic engineering". Just as we
can revise more local parts of our language, we choose to re-engineer the entire
structure of our language, perhaps to the extent that we have moved into an entirely
new language altogether.

For instance, suppose we discover, as is likely the case in most natural languages,
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that our language contains vague predicates. Suppose that for the purposes at hand
a fuzzy logic is not helpful; we have reasons to prefer classical logic in this context.
It would be very sensible in this context to change our language by applying some
procedure for collapsing the vague predicates into Boolean ones, e.g. applying
arbitrary cut-offs to the predicates. But note then that our linguistic re-engineering
results in a change of logic. Within the scope of conceptual engineering, there’s
nothing special or sacred about logical rules. They can be changed as readily as
any other part of language.

But this note that a crucial observation in order for this kind of procedure to
be valid is the observation that logical correctness is really only a matter of which
language one chooses to work in. It is only possible to "logic engineer" in this
way if one accepts (1) that logical truths are semantic and that (2) logical rules are
semantically contingent, they can be changed by changing the language.

Now this leaves out the most interesting question. Just because we can re-engineer
our logic during an inquiry, doesn’t mean that we should. When should we, if
at all? Is there one logic that is the best one to use in all circumstances or many
(normative logical pluralism)? On these questions, nothing is presently said. But
for these questions to even make sense in the way outlined here, one has to first
adopt Carnapian logical pluralism.

But note, returning to Cook (2010)’s objection, that it’s medium-scope pluralism
that’s relevant to these questions, not narrow-scope pluralism. If these questions
are worth answering, Cook’s narrowing of the debate is unjustified.

3.2 Objection 2: The Tonk Objection

3.2.1 The Objection Explained

A famous objection to Carnapian logical pluralism is Prior (1960)’s Tonk objection.

Prior reads Carnap as claiming that any definable logic, in the sense of any
clearly stateable set of inference rules, may be used in reasoning, providing that
one is clear about the rules one uses.
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Looking at Carnap’s "In logic there are no morals" quote in isolation, it’s under-
standable to see why prior things this. Carnap says the following:

“In logic there are no morals. Everyone is at liberty to build up [their] own logic, i.e.
[their] own language. All that is required of [them] is that, if [they] wishes to discuss it,

[they] must state [their] methods clearly, and give syntactical rules instead of philosophical
arguments." LSL P52

If by "syntactical rules" one takes Carnap to mean inference rules, then Prior’s
reading of Carnap is accurate. All that is required is to be allowed to use a logic is
to clearly state the inference rules.

In response to this, Prior defines the so-called nonsense connective "Tonk". Tonk
is a binary connective with the classical introduction rule of or and the classical
elimination rule of and. Let ⋆ be the tonk connective.

Formally: ϕ ⊢ (ϕ ⋆ψ) and (ϕ ⋆ψ) ⊢ ψ

But logics containing Tonk are (typically) trivial.
Let ⊺ be some theorem. Then:
⊺ ⊢ (⊺ ⋆ϕ)
(⊺ ⋆ϕ) ⊢ ϕ
So together: ⊺ ⊢ ϕ.

If a logic containing Tonk has even one theorem, then all formulae are theo-
rems and the logic is trivial. This is, according to Prior though I agree, not an
acceptable consequence. One may not reason with Tonk-logics.

One possible reply came quickly from Belnap (1962). A simple adjustment to
the Carnapian position, in fact, one in line with how I present Carnap’s view, is
to substitute syntactic rules for semantic rules within the principle. Instead of
allowing any syntactically definable logic to be used, instead one may only use a
logic if one can define a semantic structure (i.e. a language) in which the rules are
sound.
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This is just my non-normative reading of Carnap. Despite the above quote, I
think there’s good reason to think that this is what Carnap had in mind all
along. In the logical syntax, Carnap doesn’t yet have a fully formed notion of
the syntax-semantics distinction. Kouri (2019) even calls this reading the "stan-
dard interpretation". Bellnap’s reply to Prior was really just Carnap’s view all along.

All of this is a little beside the point, though. One can define languages which
satisfy Tonk logics. Take, for instance, a language with only one truth value, which
is designated. If every sentence is true in some language, then tonk logics would
be sound and complete for this language. So Bellnap’s reply doesn’t escape the
objection.

3.2.2 The Reply

The Neo-Carnapian reply (also available to my normative reading of Carnap) is
to accept that Tonk logics are the correct logics for certain languages but to reject
the inference to the normative claim that one may therefore reason with Tonk. As
outlined above (§1.2 and §2.3), the Neo-Carnapian makes a distinction between the
descriptive correctness of a logic (i.e. the correctness of a logic for some language).

That a language satisfies some logic does not mean that one may use that logic in
reasoning. It is not a consideration in favour of a logic that it is satisfied by some
language. Instead, that some language satisfies some undesirable logic is simply a
reason not to adopt the language.

Because they are trivial, tonk logics are not practically useful logic. There is,
I suspect, no situation in which reasoning with Tonk would be helpful. Conse-
quently, the discovery that some languages satisfy Tonk logics is simply reason to
avoid those languages.

The Neo-Carnapian, therefore, accepts the consequences of the Tonk argument on
the descriptive level but rejects it on the normative level. Tonk logics are correct for
some languages, but that does not mean we can reason with them.
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3.3 Objection 3: The Meaning Objection

A very popular objection to Carnapian logical pluralism is the meaning objection.
It originates in Quine (1970) but can be found more recently in a paper by Greg
Restall (2002) and as one of the two replies to Carnapian logical pluralism given in
Griffiths and Paseau (2022).

In brief, the objection claims that Carnapian logical pluralism is only based on
ambiguity in the language expressing an inference, not on real pluralism about the
validity of the rules themselves.

The argument proceeds as follows.

Carnapian logical pluralism relies on variation of the correctness of logical rules be-
tween languages. Disjunctive syllogism, for instance, is valid in classical languages
but invalid in languages with truth-value gluts. Given any sentence, if one knows
to which language it belongs, it is always clear which other statements follow from
it and which do not6.

But, so contends the objection, either a sentence is ambiguous or we know to
which language it belongs. Suppose that there are some sentences that exist in two
languages but with different implications in each. For instance (ϕ ∨ ψ) and ¬ϕ
might exist in both a classical and a glutty language, but only entail ψ in the former.
The implications of these sentences are different because they have different truth
conditions in these languages. But if they have different truth conditions they are,
in fact, not the same statements. They are different statements expressed using the
same signs. The apparent pluralism is really just a result of an ambiguity relating
to the signs used7. As soon as the meanings of ∨ and ¬ are clarified, the apparent
pluralism falls away.

6As a side note, the Neo-Carnapian is comfortable combining their view with various kinds of
narrow-scope pluralism so might not grant this. But, if this argument is successful, it then would be
this additional commitment which is doing all the important work.

7As a side note, It’s interesting that Greg Restall has made this argument against Carnapian
logical pluralism, given that his entire account of logical pluralism rests on the purported ambiguity
of the ⊢ sign. If pluralism arising from ambiguity is problematic, Restall’s own position falls foul of
an analogue objection. As soon as the meaning of "entails" is clarified, any apparent pluralism falls
away.
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This connects back directly to the discussion in §2.1 on validity and correctness
pluralism. The sentences in some entailment relation contain information about
which language they belong to. The meaning objection simply takes this further
arguing that they always contain enough information to completely determine the
language and hence the validity of the inference.

There are two key claims in this objection worth highlighting:

1. For a view to be pluralist, it needs to be pluralist about which inferences are
valid.

2. If an inference is valid in one language but invalid in another it is a result of
different truth conditions in some of the premises.

Both of these claims can be challenged.

First of all, the meaning objection simply misunderstands the kind of plural-
ism that the Carnapian (Neo or classical) is arguing for. They don’t claim to be
a validity pluralist. They’re a correctness pluralist. It wouldn’t undermine the
Carnapian’s position in the slightest to accept that any apparent instances of validity
pluralism are really just instances of linguistic ambiguity. It would still be the case
that there are many different languages that satisfy different logics.

On the second point, there are many instances of differences in the validity
of the logical rules that do not result in a difference in the truth conditions of the
premises involved. Two examples.

First, consider a language which allows for models with empty domains, but
which is otherwise classical. Compare this to a classical language. Consider the
statement ∀xϕ(x) ⊢ ∃xϕ(x). This is invalid in the first language but valid in the
second, modulo certain assumptions about how to treat quantification over empty
domains8.

8I’m assuming that any universal statement over an empty domain is true whilst the correspond-
ing existential statements will be false. Other ways of handling quantification over empty domains
will result in other differences in validity. For instance if universal statements get truth value gaps
in empty models, then ¬∃xϕ(x) ⊢ ∀x¬ϕ(x) is invalid in the language with empty models but valid
in the classical language.
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Here, the difference in the validity of the rule is not a result of the meanings of
the terms involved. The quantifiers function exactly the same in both languages.
The difference is that one language admits a greater range of logical possibilities
than the others. It allows for models that the second language does not. It’s this
difference which gives rise to the difference in validity, not any difference in the
meanings of the premises.

Second, consider the invalidity of identity introduction in free languages. The
semantics of identity is identical in both of these languages. a = b is true iff the
referent of a is the referent of b. Using standard semantics of definite descriptions,
if there is an object that is a referent of a and a referent of b and there are no other
objects that are referents of a or b. In classical languages terms must always refer,
and to exactly one object. So a = a is always valid because there is always exactly
one referent of a, and a obviously co-refers with itself. But in free languages, there
are empty terms. Terms are allowed to have to referent. On the assignment where
a is empty, a = a is false. There is no object that is the unique referent of a and a.
Thus, there’s a difference in the validity of the rule.

Nevertheless, this difference is not a difference in the semantics of identity. It’s a
difference in the admittance of models where terms do not refer. The difference
occurs at the level of the language as a whole, not at the level of the semantics of
particular logical objects. Thus there is a difference in the correctness of the rule
without a difference in the meaning of the premises.

More generally, even the cases that prima facie seem to work in favour of the
meaning objection can be re-examined. Now, if one compares ordinary classical
disjunction to the disjunction of LP it’s clear that there are differences in truth
conditions. They have different truth tables. But consider a language CL∗ which
contains the connectives of LP but where predication is defined in the classical way,
with disjoint and exhaustive extensions and anti-extensions of predicates. Classical
logic will be the correct logic for this language, even though, strictly speaking,
its connectives are those of the language of LP. The connectives contain some
redundancy, but this is still a perfectly intelligible language. Here, it’s far less
clear that ϕ ∨CL∗ ϕ has different truth conditions than ϕ ∨LP ϕ. It’s simply that the
language CL∗ rules out some models which are allowed in the language of LP. The
difference in the validity of disjunctive syllogism is a result of the differences in the
models allowed by the two languages, not a difference in the truth conditions of
the premises of the argument.
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Overall, then, the meaning objection is unsuccessful against both Carnapian
views. It misunderstands the kind of pluralism to which the Carnapian is com-
mitted. Moreover, it misses a number of possible reasons why there might be
differences in valid inference between languages.

3.4 Objection 4: The Meta-Logic Objections

3.4.1 Quine’s Conventions Argument

One of the most historically consequential replies to Carnap’s view of logic was
Quine (1936)’s argument in Truth by Conventions, which I call the Conventions
Argument. For decades the argument met with almost universal acclaim. Benacerraf
writes:

"Quine, in his classic paper on the subject, has dealt clearly, convincingly, and decisively
with the view that the truths of logic are to be accounted for as the products of [linguistic]

convention." (Benacerraf, 1973, p676)

And if one finds one’s self-drawn to the Carnapian position one should:

"pop a couple of aspirins, re-read your Quine (1936). . . and report back." (Sider, 2011,
p216)

Despite 70 years of broad acclaim, I now take this argument to be sufficiently
refuted within recent literature. In particular, Warren (2017) provides a reply that I
take to be entirely sufficient9. The reply to the argument presented here mirrors
many (though not all) aspects of his reply.

Quine’s argument goes as follows.

Quine claims that Carnap holds that logical rules are a product of linguistic
conventions.

9See a number of related works by Warren: The Possibility of Truth by Convention (Warren, 2015a),
Talking with Tonkers (Warren, 2015b), Change of Logic, Change of Meaning (Warren, 2018), Logical
Conventionalism (Warren, 2023) and his book Shadows of Syntax: Revitalizing Logical and Mathematical
Conventionalism (Warren, 2020)

23



This is a slightly different presentation from this paper’s, but if one views linguistic
conventions as the mechanism by which the semantic properties of a language are
determined (a highly plausible claim) then my presentation of Carnap and Quine’s
come together. Conventions determine the semantic properties of a language which
in turn determine the nature of truth in the language, which in turn determine the
correct logic.

For instance, a classical language might have the convention to only admit terms
as grammatical that have a referent, e.g. via a successful baptism. This conven-
tion leads to the semantic property that all terms have a single referent, which
in turn yields the truth of t = t for all terms t and the validity of identity introduction.

But conventions require a logical framework in which to operate. Conventions have
consequences only in relation to a logic. The example of conventions around terms
in classical languages, for instance, requires universal instantiation and modus
ponens.

A more modern way to put this is that conventions are given in a meta-language
but this meta-language will have its own logic.

But then what’s to account for the logical rules of the meta-language?
If it’s linguistic conventions again, there is a regress.
If it’s not linguistic conventions, then the Carnapian view is false.

Warren’s reply to Quine is to distinguish between conventions which are ex-
plicit and implicit. A convention is explicit if it’s overtly introduced during the
definition of a language. When building new formal languages, explicit conven-
tions are always used.

The definition of the object language’s semantic rules in the meta-language is
prescriptive. It defines the conventions which determine the semantic properties of
the object language. The validity of the logical rules in the object language therefore
depend upon the prescription of the conventions in the meta-language. But the
conventions depend upon the logic of the meta-language.
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Diagrammatically, this is what Quine thinks is going on. Arrows indicating depen-
dence.

Logical rules in the object language

Prescription of conventions in the meta-language

Logical rules of the meta-language

Given this picture, it’s clear to see how a regress forms if the logical rules of the
meta-language are to be given by a prescription in a meta-meta-language. But this
argument assumes a particular relationship between the object language and the
meta-language. It’s exactly this relationship that Warren’s implicit conventionalist
targets.

Whilst the conventions and rules of a logic can be given explicitly and prescriptively
in a meta-language, and for all artificial languages are, they do not need to be given
in this way. In natural languages, the semantic properties of the language simply
exist as a result of the implicit behaviour and dispositions of the language users.
Whilst one can use a meta-language to describe how the speakers of a language
behave, the meta-language description of the conventions is merely descriptive,
not prescriptive. It states what the conventions and rules of the object language are,
but the object language is prior to its meta-linguistic description. The conventions
themselves do not depend upon the meta-language in any way.
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The implicit conventionalist sees the relationship between the meta-language and
object language like this:

Logical rules in the object language

Description of
conventions in the

meta-language

Behaviour of language users

Described by

But on this model, there is no regress. One can, of course, inspect the logic of one’s
meta-theory in a meta-meta-theory, or the logic of that in a meta3-theory, and so on.
But the object language doesn’t depend on the meta-language on this view.

As an aside, there might also be multiple possible meta-languages with different
logics in which we can successfully describe the linguistic conventions and log-
ical rules of some natural language. If there is, this is just Shapiro’s logical pluralism.

A natural reply by the Quinian, at this point, is to argue that ordinary linguistic
behaviour must be governed by some logic and that in order to learn a language and
follow that behaviour one must first understand certain logical notions. This is the
adoption problem as discussed by Carroll (1895), Kripke(Kripke (1974a) and Kripke
(1974b), Padró (2015), Finn (2019), Cohnitz and Nicolai (2023) and Hattiangadi
(2023), amongst others. It’s also closely related to Chomsky (1986)’s paradox
regarding the acquisition of grammar and Wittgenstein (1953)’s rule-following
paradox. But note that the adoption problem is a puzzle regarding how we come
to learn logic, not about what the grounds of logical facts are. It’s a tangential issue
and, though interesting, does not need to be dealt with here.
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An important note here is that the Neo-Carnapian does not think that every
language relates to its meta-theory(s) in the way that Warren’s implicit convention-
alist describes. Natural languages certainly do. But most artificial languages relate
to their meta-theories in the way that Quine describes. The meta-language is used
prescriptively; to define the correct rules for the object language. All that is needed
to stop Quine’s regress, though, is that at some point one can fall back on a natural
language whose logical rules are governed by implicit conventions, and hence not
subject to Quine’s regress.

As a final comment and in continuation from the last point, I wish to clarify
a small difference between my own position (the Neo-Carnapian’s) and Warren’s.
Warren uses his solution of Quine’s Conventionalism argument as grounds for
his general belief in logical inferentialism, the view that the meanings of logical
connectives are determined by the inference rules governing them.

The Neo-Carnapian must both express sympathy and disagreement with this
view. They acknowledge, pace Warren, that some languages have their logical rules
determined by implicit conventions. In those languages, inferentialism is likely
true. It’s the linguistic community’s inferential behaviour which determines the
correct analysis or analyses of the logical rules of the language. In constructed
languages, though, one typically (though not necessarily) starts by defining the
semantic rules and deriving the valid logical rules from there. Clearly, in this case,
inferentialism is false. The meanings of the connectives are given and the logical
rules follow.

3.4.2 Logical mismatch between the object and meta-logics

A class of objections near to Quine’s are those expressing some kind of displeasure
about cases where some language satisfying one logic is either described or defined
using a language which satisfies a different logic. This typically occurs when
non-classical logics are introduced using a classical meta-theory (Priest, 2008), but
in principle, the reverse could happen. This very paper is an example of this
phenomenon! I call this logical mismatch, or simply mismatch.

There are many variants of this kind of argument. Space constraints limit the
discussion to only a handful. I discuss three that I find most interesting and
where I think the replies are most illuminating for the kinds of things that the
Neo-Carnapian would say in reply to other variations on this argument.
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First, I consider the argument that logical mismatch is simply downright hypocriti-
cal. One cannot stand by one set of logical rules one minute and switch to another
when it suits.

Second, I consider Griffiths and Paseau (2022)’s variant of this argument, that
logical pluralists are committed to an exceptionally weak meta-language.

Lastly, I consider the argument that the meta-language should be, in some sense,
privileged with respect to the object language. The logic of the meta-language is,
perhaps, more foundational.

The first argument, as discussed by Bacon (2013), is that it’s infelicitous, or at
the very least embarrassing, to have mismatch10. This motivated Bacon’s well-
known paper on the use of non-classical meta-theory in describing non-classical
logics. Strictly, what Bacon shows from a classical meta-meta-theory is that there
exists a non-classical meta-theory for non-classical logics. This means that there
is still mismatch in Bacon’s work. However, with developments in non-classical
mathematics over the past decade11, I take it that there’s little doubt to be had that
one could use a non-classical language to give the meta-theory for its own logic,
though I know of no work explicitly doing this.

The objection then is not at non-classical logics per se, as is presented in Ba-
con’s work, but at the logical pluralist who might have a different logic for their
meta and object languages. I discuss this from the Neo-Carnapian perspective, but
much of what I say also functions as a reply on behalf of logical pluralists more
generally.

10As an interpretive note, I don’t think this version of the argument is quite as prevalent as Bacon
thinks. The two main examples he gives, Williamson (1994) and Field (2000), only explicitly oppose
mismatch in the very special and specific case of vagueness. I have as of yet been unable to find
someone actually advocating for this version of the argument.

11This work has mostly been due to Zach Weber, frequently working with other authors: Weber
(2010a), Weber (2010b), Weber (2012), McKubre-Jordens and Weber (2012), Meadows and Weber
(2016) and Badia et al. (2022). Also see Weber’s book Paradoxes and Inconsistent Mathematics (Weber,
2021).
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The objection, though, only makes sense if one is a logical monist. If one believes
that endorsing a logic means endorsing it in all contexts and, crucially, for all
languages (or perhaps simply refusing to adopt languages which don’t satisfy the
one true logic), then it makes sense to be concerned at the presence of mismatch.
But without this assumption, it’s unclear how the aforementioned discomfort could
be motivated. The Carnapian is a logical pluralist. Consequently, they are not
worried about using different logics for different circumstances.

A more specific nearby argument is presented by Griffiths and Paseau (2022).
This is the argument that Griffiths and Paseau give as a general reply to all pluralist
positions, not simply Carnapian pluralism. They contend that if one is a logical
pluralist, then one is committed to an exceptionally weak meta-theory. So their
argument goes, the meta-theory must be the intersection of all accepted logics.
An inference is acceptable in the meta-language iff it is accepted in all correct
logics. But as the logical pluralist accepts many logics, their meta-theory will be
exceptionally weak.

But Griffiths and Paseau have simply misunderstood what the Carnapian takes the
relationship between the object languages and the meta-theory to be. They seem to
view the meta-language as a kind of neutral common ground. A domain where
users of all logics can come together and unanimously agree on the conclusions.
This simply isn’t the view of the meta-theory that the Carnapian, or any logical
pluralist for that matter, is committed to.

The Neo-Carnapian uses many different logics for many different tasks. They might
use a classical logic in mathematics, a constructive logic in computer science, a
fuzzy free logic in day-to-day life and quantum logic when discussing fundamental
physics. Logics are simply tools for the Carnapian, tools to be picked as appropriate
for the task at hand. One such task is studying other logics. The logic best suited
for that task might be different from the logic suits to others.

The Neo-Carnapian, then, rejects Griffiths and Paseau’s claim that there meta-theory
must be the intersection of all correct logics.

29



This leads directly to the final version of the mismatch objection. Even if the
meta-theory does not need to use the intersection of all accepted logics, at the very
least the logic of the meta-theory is in some way privileged. The meta-language
acts like a judge, passing judgement on what logics can do and what they can’t.
There’s presumably something special about that role.

The Neo-Carnapian gives a perhaps surprisingly sympathetic response to this.
They agree that meta-theoretic work is exceptionally important. Whilst the job of a
meta-language is usually thought of in terms of the kinds of meta-theorems it can
prove about some object logic and language (soundness, completeness, etc) another
task to be performed in a meta-language is that of determining the appropriateness
of a logic for a particular task. Given the Neo-Carnapian’s instrumental attitude
towards logics, the theory in which they decide which logic (which tool) they use
for a particular task is exceptionally important. A craftsperson can have the best
tools in the world but if they don’t know which to use and when, that’s no use.
The Neo-Carnapian is then more than happy to accept that the meta-language is
exceptionally important, perhaps the most important, language.

This does not, however, undermine their pluralism (either their descriptive plu-
ralism or a corresponding normative pluralism). It’s still true that (1) there are
logics other than the one correct for their meta-language that are satisfied by other
languages and (2) there are logics other than the one correct for their meta-language
which are appropriate for use in some context or to some end. Thus the privileged
place that the Neo-Carnapian gives their meta-theory is not one that undermines
their pluralism.

As a final comment, I talk of the meta-language when, in fact, there are many. There
are many meta-languages which could perform the task of adjudicating which
logic should be used in which situation. One of two things is the case: (1) even
if there are many languages which could function as the right language for logic
selection, there is one that is the best. The Neo-Carnapian would use that one.
(2) There are many languages which are equally best suited to the task of logic
selection, in which case the Neo-Carnapian is happy with anyone using any of
these, even if they yield differing results12.

12There is also a possible third option if there are many orthogonal dimensions of evaluation for
theories of logic selection. There might be some languages/logics best under some dimensions of
evaluation but others best qua others. If that is the case, I don’t know what the Neo-Carnapian
should say, though I’d take that to be an exceptionally interesting case if it were to arise.
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4 Conclusion

This paper defends the much-maligned Carnapian account of logical correctness
and Logical Pluralism. In particular, I outline two possible Carnapian accounts
(§1): The classical Carnapian account and my own Neo-Carnapian view. After
clarifying the type of Logical Pluralism that the Carnapian is committed to (§2),
four well-known and influential objections to the position are outlined and my
Neo-Carnapian’s replies explained (§3). In particular, I reply to Cook (2010)’s
objection that Carnapian logical pluralism is insubstantial (§3.1), Prior (1960)’s
Tonk objection (§3.2), Quine (1970) and Restall (2002)’s meaning objection (§3.3)
and various meta-logical objections, including Quine (1936)’s famous conventions
objection (§3.4.1) and the mismatch objections from, amongst others, Griffiths and
Paseau (2022) (§3.4.2). I’ve shown, I hope, that a version of the Carnapian view, my
Neo-Carnapian view, survives the standard objections levied against it.
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Essay VI: Three Approaches to Logical
Correctness

Introduction

This paper outlines three different ways one might think about logical correctness:
the Realist approach, the One-Langauge approach and my own Neo-Carnapian
view. The realist and one-language views have dominated the philosophy of logic in
recent years. I argue against these approaches and in favour of the Neo-Carnapian
approach.

The Realist view holds that logical correctness is language and mind-independent.

They hold the following:

OBJ: There are logical facts and they are objective, in the sense that they are mind
and language-independent.

REL: These facts matter for logical correctness. The interesting notion of logical
correctness is correctness with respect to the logical facts.

I have in mind individuals like Frege (Frege (1879) andFrege (1893)), the early
Wittgenstein (1922); Tahko (Tahko (2014) and Tahko (2021)) and McSweeny (Mc-
Sweeney (2018) and McSweeney (2019)), from whom I take the term term ’logical
realist’, along with naturalists like Quine (Quine (1960), Quine (1970) and Quine
(1981)) and Maddy (Maddy (2007) and Maddy (2012)).

The One-Language view takes logical correctness to be semantic and hence
not language-independent. However, what they take to be interesting for the
philosophy of logic is correctness for some fixed language.

SEM: Logical truths are semantic in that they are mind but not language-independent.
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OL: The semantic truths, given some fixed language, are what matter for logical
correctness. The interesting sense of logical correctness is correctness with
respect to the semantic facts of some fixed language.

I have in mind individuals like Dummett (1991), Wright (1992), Pedersen (2014),
Beall and Restall (2005), Shapiro (2014), Cook (Cook (2010) and Cook (2023)) and
Griffiths and Paseau (2022). Cook, in particular, has been quite vocal in calling
versions of logical pluralism which don’t fix a language "insubstantial".

Within One-Language views, I also include individuals like Lewis (Lewis (1986)
and Lewis (1998)) who engage in linguistic explication. This is discussed below.
Others on the above list could also be categorized along with Lewis as explicators.

Lastly, the Neo-Carnapian. This view is my own and, whilst inspired by Carnap
(1934)’s view and sharing many similarities, breaks from it at a crucial juncture.
The Neo-Carnapian approach agrees with SEM but rejects OL. They are interested
in how logics can be correct across a range of languages, not simply their own.
Moreover, the Neo-Carnapian takes there to be a complex web of reasons speaking
for or against the adoption of one language or another. They see this web of reasons
as of great importance to the philosophy of logic. The Neo-Carnapian has two
notions of logical correctness. First, a logic can be descriptively correct for some
language iff it captures the truth-preserving inferences of that language. Second,
logics can be normatively correct if they are descriptively correct for a language
one has reason to adopt.

The Neo-Carnapian approach claims the following:

SEM: Logical truths are semantic in that they are mind but not language-independent.

ML: The semantic truths across many languages are what matter for descriptive
logical correctness. A logic is descriptively correct for some language iff it
captures the valid inferences in that language.

NORM: There exists a complex web of reasons for and against adopting one language
over another. A language is normatively correct iff it is descriptively correct
for a language those reasons speak in favour of.

Here I have in mind my own view, though this is greatly inspired by Carnap’s view.

§1 clarifies some preliminaries. §2 presents Carnap’s view, then contrasts it
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with my own Neo-Carnapian view. §3 outlines the realist approach and gives two
reasons against it. A third reason is mentioned in passing but not discussed in
detail. §4 outlines the one-language approach, gives two reasons against it and
defends the Neo-Carnapian view from an objection.

1 Preliminaries

1.1 Logic as the normative laws of reasoning?

There’s a fourth possible approach to logical correctness that can be found in the
work of, amongst others, Frege and Priest (Priest (1987), Priest (2006) and Priest
(2010), amongst other places): the normative approach.

On this view logic is the study of the laws of reasoning. Now, what’s meant
here is not the descriptive laws of reasoning, that would be Psychologism and is,
I think, close to universally rejected. Logic is the study of the normative laws of
thought, i.e. the study of how we should reason, the kinds of inferences we may or
ought make. On this view, a logic is correct iff it correctly describes the normative
laws of reasoning.

Some version of this view is obviously true. Clearly, something logics needs
to do is adjudicate the success of arguments. Philosophy of logic must include the
philosophy of that adjudication.

However, accepting this claim doesn’t speak for or against any of the three
views discussed in this paper. Language and reasoning are clearly connected.
Language is typically the vehicle for reasoning or, at least, the way in which reasons
are expressed. It makes sense, then, for language to be the direct object of critique
of logic, as linguistic inferences can actually be evaluated in a way pure thoughts
cannot, even if this is just a proxy for "proper" reasoning.
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Blake-Turner and Russell (2018), and Russell (2020) as a solo author, have replied
to this view, arguing that logic should be thought of as the descriptive study of
truth-preserving inference rather than the normative study of reasoning. Given
that reasoning is concerned with truth preservation, a descriptively true theory of
truth preservation is also a normatively true theory of reasoning.

I’m convinced by their explanation for two reasons.

First, most logic textbooks don’t discuss normativity but do discuss truth. For
example, Halbach (2010)’s "Logic Manual" contains the word "truth" 254 times but
fails to use the word "norm" or any co-conjugations thereof even once. Even Priest,
an advocate of the normative view of logic, never uses the word "normative" in
his non-classical logics textbook (Priest, 2008). The word "norm" appears once,
though not in connection to reasoning. "Truth" appears 64 times. This doesn’t
speak decisively in favour of Russell’s claim. It might just be that truth talk is more
pedagogically useful than norm talk. But this at least provides some prima-facie
evidence that logic is really about truth-preserving inference and merely used as a
normative tool.

Second, there are many norms of reasoning that aren’t of interest to logic. One
might have obligations to one’s friends or loved ones to believe certain things
about them. One might have duties to one’s self to believe in a way that promotes
what’s best for you (James (1896)). One might have obligations not to believe racist
beliefs (See the collection by Kim and McGrath (2019), in particular, Basu and
Schroeder (2019)). All of these are norms of reasoning but none are of interest to
logic. Russell’s account explains why only some norms of reasoning are relevant to
logic.

Given, then, that the normative view of logic collapses into Russell’s descriptive ac-
count, what matters for logic is truth preservation. Logical monism/pluralism/nihilism
is then true iff there are is one/many/no correct theory/theories of truth preservation.

But one might be a realist about truth, claiming that there are language- and
mind-independent facts about the nature of truth (Wittgenstein (1922),Armstrong
(1997) and Maddy (2007), amongst others). Alternatively, one might think truth
is semantic (Tarski (1931), Tarski (1943) and Field (2001)). But if truth is semantic,
should one be concerned with truth in some fixed language or how truth differs
across languages?
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Whichever answers one agrees with, one arrives at one of the three positions
outlined above.

1.2 What do the three approaches disagree on?

I don’t believe that there’s an objectively correct notion of logical correctness. The
disagreement between the three approaches outlined is not about which notion of
logical correctness, and hence which versions of logical monism, pluralism and
nihilism, is correct, in some objective sense. All three approaches make perfectly
intelligible claims about the relationship between logics, languages and reality. It’s
uninteresting if the ordinary notion of "logical correctness" is closer to Realism, the
One-Language view or the Neo-Carnapian view.

The disagreement about the relative importance of these three competing no-
tions. The three approaches might grant that each other’s notions of correctness
are perfectly intelligible, whilst rejecting that this is interesting or important for
logic or the philosophy of logic.

Suppose for instance that the following is the case:

1. A logic L1 perfectly captures the logical structure of reality.

2. A logic L2 perfectly captures the semantics of our actual language.

3. A logic L3 is the most advantageous logic to work with, in a given context.

The logical realist, one-language theorist and Neo-Carnapian all know these facts.

The logical realist takes (1) to speak decisively for L1. After all, L1 is objec-
tively right. The world is the way L1 says it is.

The one-language theorist takes (2) to speak decisively for L2. It doesn’t mat-
ter that L1 is ’right’ in some objective sense. We don’t reason in the pure concepts of
the universe, we reason in our actual potentially flawed language. Consequently
what matters is if our actual language endorses an inference.
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The Neo-Carnapian takes (3) to speak decisively for L3, within this context. (1)
might be interesting; there are certainly some contexts where capturing the logical
structure of reality is important. (2) is just irrelevant. We can change our language
quite easily; there’s no good reason for conservatism for conservatism’s sake. If L2

is sub-optimal, our language should just be changed to satisfy a better logic. What
matters is understanding what a context requires our logic to do (which might
include capturing the logical structure of reality) and picking a logic that best meets
those requirements. L3 is that logic.

What this means is that the disagreement between the three approaches isn’t
per se about which logics relate to which kinds of linguistic or metaphysical
structures in which ways, but rather about what those relations mean for the
adoption of a particular logic. The disagreement is about the philosophical upshot
of potentially agreed-upon facts, not necessarily the facts themselves.

Now, they might also disagree on these facts. In particular, there are plausi-
ble objections to Logical Realism that deny that there is even such a thing as the
objective logical structure of reality, or that we could know about it. §3.2 briefly
discusses these objections. The point is that one can just as easily object to logical
realism on the grounds that objective logical facts are irrelevant as one can that
there are no objective logical facts1.

1Even if one were to show that there are no objective logical facts, that wouldn’t necessarily
mean that logical realism is wrong. It might just mean that logical nihilism is true - logics are correct
iff they are descriptively true theories of the objective logical facts. There are no objective logical
facts. So there are no correct logics.
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2 The Carnapian & Neo-Carnapian approaches to Log-
ical Correctness

2.1 Carnap’s Philosophy of Logic

Carnap agrees with SEM and ML. He takes logics to be correct relative to a lan-
guage. Logical facts are mind but not language-independent. The majority of LSL
is devoted to showing how a first-order logic and a type theory could be true of
two different languages.
For example, one might define a language where predication is Boolean or a
language where it allows for predication gluts or gaps. This would then yield a
difference in the validity of certain logical rules. Disjunctive syllogism, for instance,
is valid in two-valued logics but not glutty three-valued logics2. One might define a
language where all terms refer or where they may be empty terms. These semantic
choices lead to different correct logics in that language.

However Carnap, at least in some places, appears to disagree with NORM.
His tolerance principle states the following:

“In logic there are no morals. Everyone is at liberty to build up [their] own logic, i.e.
[their] own language. All that is required of [them] is that, if [they] wishes to discuss it,

[they] must state [their] methods clearly, and give syntactical rules instead of philosophical
arguments." LSL P52

He continues saying that: “It is not [the business of philosophy of logic] to set up
prohibitions, but to arrive at conventions”.

On Carnap’s view, that a logic is correct for some language is sufficient to reason
with it, provided one is clear about one’s choice of language. There’s little to no
grounds to choose between competing logics, just a matter of convention. There’s
certainly not the Neo-Carnapian’s web of reasons as outlined in NORM.

2Consider the logic LP. There are three truth values: T, F and B. T and B are designated. ϕ ∨ψ
takes the maximum value of ϕ and ϕ on the order T > B > F. ¬ϕ behaves classicalls for T and F and
takes B to itself. Now consider the assignment where ϕ is F and ψ is B. ϕ ∨ψ and ¬ψ are B, both
designated, but ϕ is F, undesignated. Thus disjunctive syllogism is invalid in this logic.
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There are, I believe, some parts of Carnap’s wider work that perhaps suggest
a more nuanced view here. ESO is all about choosing between nominalist and
non-nominalist languages, so Carnap clearly does think there are some grounds
on which one might choose between rival languages3. Moreover, one might hope
that the process of arriving at conventions is not arbitrary; it should have some
structure or rules. On this reading of Carnap, the gap between Carnap and the
Neo-Carnapian might be smaller than I present it here, or even non-existent. I
leave it to more able Carnap scholars than myself to clarify this point.

For present purposes, I’m going to take Carnap’s view to be his view in LSL,
which accepts SEM and ML but rejects NORM. He does not take there to be reasons
in favour of or against adopting one logic over another. The Neo-Carnapian sees
an interesting and complex network of reasons pertaining to language, and hence
logic, selection.

To put this more simply: Carnap accepts his tolerance principle so cannot ac-
cept NORM. The Neo-Carnapian agrees with Carnap about the nature of logical
truth (SEM and ML) but rejects the tolerance principle in favour of NORM..

2.2 The Neo-Carnapian view explained

Like Carnap, the Neo-Carnapian takes logical correctness to be a language-relative
matter. A logic is correct only if it’s sound. Typically, a logic will be correct iff it is
sound and complete, but this requirement will obviously have to be weakened in
the context of higher-order logics.

However, soundness and completeness depend on the nature of truth and the
nature of truth varies from language to language. Languages might differ in the
connectives they use, the number of truth values they have, the nature of identity,
predication or quantification, or any other number of determinables. Consequently,
which logic is correct varies from language to language.

3In the concluding remarks of ESO Carnap says the following: "The acceptance or rejection of
abstract linguistic forms, just as the acceptance or rejection of any other linguistic forms in any branch of
science, will finally be decided by their efficiency as instruments, the ratio of the results achieved to the amount
and complexity of the efforts required."
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The relevant question, then, is how to decide which language one ought work in.
For Carnap, at least as I’m presenting him, there’s not much to say here. It’s simply
a matter of arriving at a convention, there are no stronger normative considerations
which determine which language one really should work within.

For the Neo-Carnapian, however, this is where one of the most interesting parts of
the philosophy of logic begins. The Neo-Carnapian sees a complex web of reasons
speaking for or against one language or another. There are questions about how one
might want predication or naming to function, or what truth, falsity or other truth
values should signify about the true statement. There are questions about what we
want our logics to do or how we want our language to go about carving up the world.

One of the central tasks of the philosophy of logic, according to the Neo-Carnapian,
is to map and understand these reasons and how they relate to one another. Lan-
guage selection, for the Neo-Carnapian, is then a complex and philosophically rich
issue.

To return momentarily to §1.1, I think it’s helpful to consider how the Neo-
Carnapian view thinks about the norms of reasoning to understand their view. The
Neo-Carnapian has a two-tiered view of the norms of reasoning. On the higher
tier, there are norms relating to language selection. There are reasons that speak for
or against the use of one language or another. There are then lower-tier reasons
that say, given some choice of language, how one ought reason. These lower-tier
reasons are, to use Kant’s terminology, hypothetical imperatives.

In summary, then, the Neo-Carnapian makes the following claims:

SEM: Logical truths are semantic in that they are mind but not language-independent.

ML: The semantic truths across many languages are what matter for descriptive
logical correctness. A logic is descriptively correct for some language iff it
captures the valid inferences in that language.

NORM: There exists a complex web of reasons for and against adopting one language
over another. A language is normatively correct iff it is descriptively correct
for a language those reasons speak in favour of.
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2.3 A brief comment on reasons pertaining to logic selection

Having stated that there the primary difference between Carnap’s view and the
Neo-Carnapian view is the acceptance of a network of normative reasons counting
or against one choice of logic or another, it’s important to provide a little more
detail as to what these reasons look like.

I do not wish to give an exact theory of the reasons pertaining to logic selec-
tion here. Different neo-Carnapian views might differ on exactly what the correct
normative theory of logic selection is. I personally haven’t settled on a singular
account. It would therefore be unhelpful to commit the Neo-Carnapian approach
to a singular normative theory at this stage. That being said, it’s worth considering
the kinds of considerations that might appear in these sorts of theories.

Context must play a large role in any good normative theory of logic selec-
tion. Contexts, amongst other things, often contain certain goals or aims. The
context of fundamental physics, for instance, might have the goal of capturing the
structure of reality as closely as possible. Consequently, the kinds of metaphysical
consideration outlined below in §3 might be more important within this context.
Many social contexts might need to track many types of identity across time and
might therefore benefit from the inclusion of non-rigid designators. Many contexts
in the macroscopic world do not need to specify every vague boundary and hence
might benefit from adopting a fuzzy logic.

It might even be the case that all of the norms of logic selection come from
contextual factors. There might be no “universal” norms of logic selection. I remain
neutral on this question. There’s certainly something to be said for it, but I don’t
think a decisive case can be made in favour of it.

Other considerations might be pragmatic. Some logics might simply be eas-
ier or more productive to reason with. For instance, all else being equal, a stronger
logic is likely better. If a logical rule could be unproblematically adopted within a
context without undermining some other beneficial feature, then it likely should
be.

Whilst this is far from a full normative theory of logic selection, this hopefully
clarifies the kinds of considerations that the Neo-Carnapian takes to be relevant to
logic selection.
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3 The Realist approach to Logical Correctness

3.1 Logical Realism Explained

Logical Realism holds that there are objective logical facts. Logic is the descriptive
study of those facts. It’s modern defenders include the likes of Tahko (Tahko (2014)
and Tahko (2021)), McSweeny (McSweeney (2018) and McSweeney (2019)) and
Maddy (Maddy (2007) and Maddy (2012)). Historic defenders include but are
certainly not limited to Frege (Frege (1879) and Frege (1893)), the early Wittgenstein
(1922) and Quine (Quine (1960) and Quine (1981)).

I take Logical Realism to amount to the following two claims:

OBJ: There are logical facts and they are objective, in the sense that they are mind
and language-independent.

REL: These facts matter for logical correctness. The interesting notion of logical
correctness is correctness with respect to the logical facts.

What are logical facts and what are they like?

Exactly what one wants to say about logical facts will depend on one’s meta-
physical views. Tahko, for instance, is a committed Neo-Aristotelian and would
likely have something quite different to say than, say, Wittgenstein. It would be
more than a little impractical to enumerate all the possible metaphysical posi-
tions and how they might go about adopting the metaphysical approach. what
I present instead is an example position that serves as an exemplar of this kind
of position, a dummy model that captures the essence of the metaphysical approach.

Although the arguments of this section are presented in response to the exemplar,
this is only for ease and brevity of explanation. The arguments will generalise
quite naturally to other versions of logical realism as well, though I want to leave
open the option that especially well-crafted versions of logical realism might find
inventive ways of avoiding one, many or all of my objections.

For the exemplar, I use a factive ontology, which has elsewhere been called a
truthmaker ontology or an assertory ontology. On this view, the world is, at least
in part, composed of facts. By facts, here, I do not simply mean true sentences.
No one denies that there are facts in the sense of true sentences. What the factive
ontologist asserts is that there are language-independent things called facts.
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Exactly what those facts are will differ between different versions of this view, but
a natural view would be that they’re abstract objects. Sentences are about facts,
perhaps some sentences about many facts. They are true iff the fact(s) they are
about exists4.

Facts stand in certain relations to one another. A fact ϕ might be the nega-
tion of a fact ψ. A fact ρ might be the conjunction of the facts ϕ and ϕ.

A basic category of facts are what we might call first-order facts. These are
simple descriptive facts about the world5. These include atomic facts, which
predicate a relation of some objects, truth-functional combinations of first-order
facts, such as conjunctions, disjunctions, etc, and quantified statements about the
world, such as "all men are mortal" or "there are some critics who only admire one another".

There are also facts about facts, I’ll call these higher-order facts. For instance,
there might be the fact that, necessarily, it’s never the case that both a fact and its
negation exist. This is the metaphysical formulation of the law of non-contradiction
-LNC.

Logical facts are higher-order facts about what possible facts can exist along-
side others. For instance, if it might say that if the fact that ϕ exists then the fact
ϕ ∨ψ exists as well. Logical facts take the form "If the facts x1, x2, x3, etc do/don’t
exist; then the facts y1, y2, y3, etc do/don’t exist".

On the simplest version of logical realism, a logic is correct iff it’s a correct
descriptive theory of the logical facts6. So if the existence of facts x1, x2 and x3 ne-
cessitate the existence of fact y then it should be the case that x1,x2,x3 ⊢ y in the logic.

4There’s an alternative version of this view where all facts exist necessarily but contingently
have the properties of true, false or whichever other truth values there might be.

5This is not to be confused with first-order in the quantificational sense. I’m contrasting facts
about the world with facts about facts, not different types of quantification.

6Or at least as many of them as possible, given completeness constraints in higher order logics
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There are more fined-grained versions of logical realism that are even more de-
manding. McSweeny (McSweeney (2018) and McSweeney (2019)), for instance,
argues that there are certain privileged sets of logical operators. Universal quan-
tification might be more basic than existential quantification, for instance. On a
factive view, this would correspond to a fundamentality relation between facts.
The universal fact that∀xϕ is more fundamental than the existential fact that ¬∃x¬ϕ.

Resolving the argument between McSweeny and more modest logical realists
isn’t necessary for this paper and the point at hand. What’s worth noting for
present purposes is that this debate essentially amounts to an argument about what
the logical facts are. The view presented here is just concerned with what facts exist.
McSweeny argues that the logical facts also include facts about quite fine-grained
dependence between logical facts and that these also need to be reflected in the
logic. The outcome of this debate isn’t necessary for this paper, though, so no
more is said on it in the main paper. A few comments are made in footnote, however7

How does this work in practice when considering debates between rival log-
ics? Here are two examples: fuzzy vs classical logic, and free vs classical logic.

7I do think McSweeny’s version of logical realism is less plausible than more modest
views. McSweeny needs to establish two things: (1) There are facts about the objective
priority between logical connectives, e.g. which complete sets of connectives are really funda-
mental and which are really derived (2) That we should actually care about these facts, if they do exist.

On (1), I confess some level of confusion. I’m honestly unsure what the world would
have to be like in order for, say, existential quantification to be objectively more fundamental than
universal quantification. What are the ways the world could be that would make either of these true?

There’s also an epistemological objection to (1). Even if one of the answers is true, how
could we know? But McSweeny is open to these being facts that we could never know, so I won’t
push further here.

A more pressing objection, though, is (2). Even if there’s an objective priority between
connectives, for instance, it’s not obvious why one should care about that when selecting one’s logic.
It’s unclear how we’re better equipped to understand the world by using a logic which respects the
objective priority between, say, the logical operators.
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Consider the debate over fuzzy logic. On non-fuzzy views, predication is binary.
Objects satisfy a predicate or they don’t. Metaphysically, this amounts to the claim
that there exist full facts about some objects satisfying the predicate (or negative
facts about them failing to). In fuzzy logic, objects can partially satisfy predicates.
It can be, say, 20% true that P(a). Metaphysically, this could amount to the claims
that (1) there exist partial facts - i.e. facts about partial states of affairs or (2) full
facts can partially exist.

But these are both claims about the logical facts. The question about which
logic is correct reduces to a set of claims about the nature of these facts.

Similarly so in the debate between classical various types of free logic. Free
logics break from classical logics in that they allow for terms which don’t refer, e.g.
when the referent doesn’t exist. Free logics can be negative if atomic sentences con-
taining empty terms get false truth values or gappy if atomic sentences containing
empty terms get no truth value.

There’s some question as to how classical logic should handle non-existence.
Terms in classical logic have to refer. Certainly, if we have classical logic with rigid
designators, necessitism follows, i.e. everything that possibly exists necessarily
exists. Assume for the present case that names do have to be rigid designators,
though an analogous case challenging this is considered in §3.3.

If necessitism is true, then classical semantics for terms are correct. For any
object o, o exists in every world, so the fact that o = o exists in every world, so
classical identity introduction is valid.

If necessitism is false, again assuming names have to be rigid designators, then the
classical semantics for identity cannot be true. There are contingent objects o which
don’t exist in some worlds. In those worlds the fact o = o doesn’t exist. So classical
identity introduction is invalid.

Exactly which free logic would be correct depends on if the fact that o ≠ o ex-
ists in worlds where o does not. And, more generally, if negations of atomic facts
about o exist in non-o worlds. If they do, negative free logic is true. If they don’t,
gappy-free logic is true.
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The crux, though, is that all of these are questions about the logical facts which,
according to logical realism, determine logical correctness.

In summary, the logical realist claims the following:

• There are objective (i.e. language and mind-independent) logical facts.

• The logical facts are higher-order facts about the relationship between other
kinds of facts

• A logic is correct iff it correctly describes the logical facts. There are some
different options available as to which facts are the logical facts.

• Given this, logical questions are resolved by metaphysical questions.

I discuss three objections.

3.2 Standard Nominalist Objections

Familiar nominalist objections against this kind of position can be raised. Following
Burgess and Rosen (1997), there are three types of familiar nominalist objections:
Semantic, Ontic and Epistemic.

The semantic argument, following someone like Ayer (1936), might argue that talk
of strange metaphysical objects called facts is, simply put, non-sense.

Similarly one might argue for a world where there are no abstract metaphysi-
cal facts, just ordinary concrete objects.

Lastly, one might argue that even if there are things called facts, one could
never know about them (Benacerraf (1965) and Benacerraf (1973)).

Each of these three objections provides a different way to reject OBJ.

This is, though, all rather well-trodden ground, at least with respect to the analogous
issue of mathematical realism.

15



To take the epistemic objection to the metaphysical view, for instance, one might
reply to the objection that logic plays an indispensable role in our best current
science (Quine, 1981) or best scientific explanations (Lange, 2016). This would give
us knowledge of the logical facts. But perhaps the role of logic in explanation is
instrumental, part of an idealization (Leng (2021)). In this case, scientific knowledge
would not give us logical knowledge.

Perhaps the epistemic objection is based on a faulty causal theory of knowledge
(Liggins, 2006). Perhaps any theory of knowledge should take logical knowledge as
a known data point and hence any epistemic objection must rely on a false theory
of knowledge (Lewis, 1993).

To add an extra level of complexity here, not all of these arguments will gen-
eralize to all versions of logical realism. These arguments are really arguments
against abstract objects, so work as well as they always do against the factive
ontology I present here, but might entirely miss their mark with something like
Tahko’s Neo-Aristotelian logical realism.

So for four reasons, I’m not going to discuss this line of objection any further:

1. These are well-trodden debates about which I couldn’t hope to briefly say
anything novel

2. I don’t think these objections generalize to all versions of logical realism,
or at least they will vary in detail so heavily that I couldn’t approach them
uniformly.

3. These arguments involve highly contentious claims about the nature of
knowledge, language and reality. I don’t want to hang the case against the
metaphysical approach on such contentious assumptions.

4. Even if there are no facts (in the metaphysical sense) or we can’t know
about them, that doesn’t rule out logical realism. Logical nihilism or logical
scepticism might be true.

That’s not to say the standard nominalist arguments aren’t good arguments, they
might even be sound. They’re just not the ones most useful for present purposes.
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Instead, I give two hopefully less contentious and perhaps more novel arguments
against logical realism. I target REL rather than OBJ. First, even taking logical
realism at its strongest, there are debates in the philosophy of logic which aren’t
resolved by objective logical facts. This means that logical correctness can’t merely
be a matter resolved by the logical facts. Metaphysics might play a role, but it
requires a little help. Second, even if there are logical facts, it’s unclear why they are
always relevant to logic selection and a notion of logical correctness not relevant to
logic selection is less relevant than one that is.

3.3 Logical facts don’t resolve every debate between logics

This section argues that even taking logical realism at its strongest, there are still
questions about the validity of certain logical rules which are not resolved by the
logical facts alone. For the sake of argument, grant, contra the previous section,
that there are logical facts and that we have perfect epistemic access to these facts.
Nevertheless, there are some questions about the validity of logical rules which are
not fully resolved.

Consider the logical rule that allows for the substitution of identity inside modal
operators. Call this the MSR for the modal substitution rule.

The prima facie grounds for accepting or rejecting MSR are clear for the logi-
cal realist. Assume, as in the case of free vs classical logics above, that names are
rigid designators.

MSR is true iff if two terms refer to the same thing in some world, they re-
fer to the same thing in all worlds (where either refers at all). Assuming that terms
are rigid designators, this is true iff objects that are identical in one world are
identical in all worlds (necessity of identity). This is a substantive metaphysical
claim that might be true or false, but what matters is that the status of MSR is
determined by the logical facts about the necessity of identity.

The issue with this argument is that the assumption that names are rigid des-
ignators does a lot of work. Names certainly don’t have to be rigid designators.
One can make perfectly good sense of languages containing non-rigid designators.
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An example of a name that might quite naturally be understood as a non-rigid
designator is a name like ’Spiderman’. To illustrate a point, I ignore the distinction
between fictional and non-actual names. I’ll assume that everything that takes
place within the fictional story of Spiderman takes place in some possible world
and consider the semantics of the name ’Spiderman’ within that world.

’Spiderman’ is not a rigid designator. At some times in some worlds, ’Spiderman’
refers to Peter Parker. At other times in other worlds, ’Spiderman’ refers to Miles
Morales. There are some worlds where it refers to neither. It changes its reference
and is therefore a non-rigid designator.

Of course, one could still work in a language where names are rigid designa-
tors and accommodate for ’spiderman’ in known ways. There are two options: (1)
When the apparent reference change happens, one could hold that this is actually
the baptism of a new name. There are the two distinct names Smm and Spp (2) One
could hold that “Spiderman” is really just a (definite) description in disguise, akin
to designators like “The King of France”.

I’m certainly not claiming that a name like ’Spiderman’ can only function as
a non-rigid designator. I’m simply claiming that it would be perfectly possible
to have a language where ’spiderman’ is a non-rigid designator. I think it’s even
likely that English is one such language, but that’s contentious.

Why does this matter for logical correctness?

MSR is invalid in languages with non-rigid designators. Necessarily, Spider-
man is Spiderman. Contingently, Spiderman is Miles Morales. It would follow by
MRS that necessarily Miles Morales is Spiderman, but this would be false.

Note that the presence of non-rigid designators is a sufficient but not neces-
sary condition for MSR failing. If necessity of identity, the metaphysical law, is
false, MSR fails either way. MSR only holds when (1) necessity of identity is true
and (2) all names are rigid designators.

What does this mean for logical realism?
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It’s a semantic not a metaphysical matter whether names can be non-rigid designa-
tors in some particular language. The logical facts do not determine if a language
contains non-rigid designators. But MSR depends on the claim that names are
rigid designators. So MSR depends, at least in part, on something other than the
logical facts. This means that the correctness of a logic containing MSR is not
entirely determined by the logical facts.

Three objections on behalf of the logical realist.

Objection 1: We know from Kripke (1980) that names have to be rigid desig-
nators.

Reply 1: Kripke’s arguments largely rely on case intuitions meaning that at
best he shows that languages containing non-rigid designators are unintuitive.
Perhaps that’s a reason not to adopt those languages. Moreover, even if Kripke’s
right and names have to be rigid designators, that’s a semantic fact, not a logical
one. It would still be the case that logical correctness is not entirely settled by the
logical facts. See Ahmed (2007) for further discussion of Kripke’s work.

Objection 2: the correctness of the inclusion or exclusion of non-rigid desig-
nators is determined by the logical facts. There are objective facts about identity.
The identity predicate in a language needs to describe these facts. If the necessity of
identity is true, then terms need to rigidly designate so that it does not. If necessity
of identity is false, then non-rigid designators need to be allowed.

Reply 2: I’m sceptical of objective facts about identity, even granting the exis-
tence of metaphysical facts more broadly. Identity seems to have more to do with
the co-reference of names (i.e. something semantic) than anything metaphysical.
Identity is really just an object-language expression of the meta-linguistic facts of
co-reference. But even granting that there are, languages with non-rigid designa-
tors can still successfully describe the facts about identity, provided that they also
contain rigid designators. The rigid designating part of the language succeeds in
capturing an important metaphysical structure and the non-rigid part serves the
practical utility of having non-rigid designators.
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Objection 3: Logical realists frequently conceded that it’s possible to define lan-
guages in which certain objectively incorrect rules are valid or objectively incorrect
rules are valid. They distinguish between logical rules being semantically and
metaphysically correct (e.g. in Tahko (2021)). This is just another instance of
that. You can define a language where MSR is semantically incorrect, but its
metaphysical correctness is an objective fact.

Reply 3: The case is not like cases of mere semantic, but not metaphysical,
correctness of a logical rule. The point is that what decides MSR is, in part, a fact
about the nature of terms. There is no metaphysical fact that entirely determines
MSR. There is no fact of the matter about MSR simply on the metaphysical level,
because MSR depends on semantics facts as well as metaphysical ones.

In summary, then, at best, the logical facts do not resolve all logical disputes.
Many contain semantic elements that are not resolved on entirely metaphysical
grounds. This means that logical correctness is not entirely determined by the
logical facts, even granting that such facts exist.

3.4 Why care about the logical facts at all?

This argument is an adaptation of an argument against ethical realism first pre-
sented in Korsgaard (1996) and more recently discussed in Peterson and Samuel
(2021). Their argument goes as follows. Suppose that there are objective ethical
facts. E.g. certain actions take on a special property if they are good and lack
that property if they aren’t. Why, ethically, should we care about this property?
What makes this property really something worth having? Even if the realist can
establish that there are so-called ‘ethical’ facts, they still have the task of establishing
why those ‘ethical’ facts are actually relevant to ethics, why they’re something that
should guide our actions.

The ethical realist needs to establish two claims: (1) that there are objective
ethical facts which can be described by ethical theories and (2) that these facts are
relevant to the question of which ethical theory one ought use. Korsgaard (1996)
and later Peterson and Samuel (2021) argue that even if (1) is true, (2) doesn’t
automatically follow.

20



The same argument can be made with respect to logical realism. The logical realist
has to establish two claims: (1) that there are objective logical facts (OBJ) and (2)
that these facts are relevant to logical correctness (REL). This section targets this
second claim.

Suppose, using the example of §3.1, that fuzzy predication is objectively false.
Properties in reality really are boolean and there are no partial facts about some
object o having the property P. The use of any fuzzy predicate would be, strictly,
incorrect. It would fail to describe the objective structure of reality. But this doesn’t
mean that we should therefore abandon the use of fuzzy predicates. They are
incredibly useful in contexts where undue precision is unnecessary and either
difficult or actively unhelpful to achieve.

Take something like the distinction between a hill and a mountain. Suppose
that reality is Boolean and either (1) there is a crisp cut-off somewhere between
hills and mountains or (2) there’s no objectively tenable distinction between the
two. All there is from objective reality’s point of view are blocks of rock standing
at particular heights.

I think it would be impractical to care too much about reality here. If (1) is
true, that doesn’t mean that the concept of "mountain" should be fixed to the
objective boundary. The concept might be used more practically to indicate, say,
the need for warmer clothes or to expect a longer hike. It might be intentionally
misapplied to draw out certain important considerations. If someone primarily
familiar with the Alps asks if England has mountains "sort of" is probably the best
reply, to indicate a level of contextually appropriate nuance, irrespective of where
the objective boundary between hills and mountains sits.

If (2) is true, logical realism might lead one to think that the concepts of "hill" and
"mountain" should be abandoned, or at least arbitrarily precisified in a manner
that serves no practical purpose beyond ensuring that our languages models the
One True Logic. But that would clearly be impractical. Just because no objective
boundary for vague terms exists doesn’t mean that they don’t serve practical use.
The terms, for instance, might indicate the kinds of clothing or equipment one
should bring when hiking. This is not something a reality’s eye view perspective
would necessarily care about, but it’s certainly something we should.
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The upshot is that, in this case, the inclusion or exclusion of a particular semantic
object from the language (fuzzy predicates) should be a pragmatic matter; the
metaphysics is only of limited relevance. But this has the upshot that the correct
logic to use is also a pragmatic choice in some contexts not a strictly metaphysical
one. Logic selection does not always care about metaphysics.

Moreover, there’s nothing special about hills and mountains here, or even vague-
ness for that matter. The more general idea is that there are frequently cases where
pragmatic concerns are more important than metaphysical ones.

Interestingly, some logical realists have been quite open to this kind of argu-
ment. They distinguish between the semantic and metaphysical correctness of a
logical rule. Something like dialetheism, for instance, might offer the best account of
the semantics of natural language liar sentences and hence be semantically correct
for those languages, or be the most useful account of the liar and hence worth
adopting, whilst nevertheless being metaphysically false (Again see Tahko (2021)).
Moreover, the logical realists don’t necessarily advocate for adopting languages
whose logics are metaphysical correct. They might concede that objectively false
logics are useful in some contexts. But these logics would nevertheless not be
correct, merely a helpful falsehood.

Surprisingly, the Neo-Carnapian and the logical realists find a fair amount of
agreement here. The Neo-Carnapian concedes to the Metaphysician that there are
could be contexts where what the metaphysician calls ’logical facts’ would matter
(assuming such facts exist)8. When doing fundamental physics, for instance, this is
might the case. Both agree that there are also contexts where those considerations
take a back seat in favour of other kinds of consideration. They very plausibly
agree on which contexts are which.

Where’s the disagreement, then?

There are two important parts to Tahko’s comments worth separating. First,
the claim that there is a distinction to be made between semantic and metaphysical
correctness. I don’t think anyone’s doubting that. Second, the claim that sometimes
it’s permissible to use objectively false but situationally helpful logic.

8Here my Neo-Carnapian breaks from Carnap quite sharply. Carnap could not acknowledge
this as he believes metaphysical claims of this sort are framework-independent and hence pseudo
questions. My Neo-Carnapian is not committed to Carnapian frameworks, though.
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Logical realists could easily reject this second claim. One could do this out-
right, though that would be a little extreme. A more plausible route is to claim
that in our most serious or important contexts, certainly any scientific context, it’s
unacceptable to use an objectively false logic. Though perhaps day-to-day contexts
have more relaxed rules.

At this point, the Neo-Carnapian and the logical realist have essentially reached an
agreement. The Neo-Carnapian is not claiming that there couldn’t be certain logics
that stand in some special relationship to certain logical facts, provided such facts
exist. The Neo-Carnapian is also happy to admit that there might be contexts where
the objective logical structure of reality, if such a thing exists, might be relevant
for logic selection. Fundamental physics, for instance. They simply claim that this
isn’t uniform across all contexts. Any logical facts that do exist are only sometimes
relevant to logic selection. The logical realist provides the correct account of logical
correctness for some contexts, but only for some.

The logical realist might push back on this and insist on a difference between
metaphysical logical correctness and normative logical correctness. A logic is
metaphysically correct iff it correctly describes the structure of the logical facts (i.e.
the logical realist’s notion of correctness) but is normatively correct iff one may
reason with this logic (in a given context). The logical realist might clarify that
what they mean by correctness is metaphysical correctness. They were making no
claims about what logics one can reason with.

If this is the case, then the only disagreement between the Neo-Carnapian and
the logical realist is over what to apply the label "logical correctness" to. Both
grant that there’s a normative notion of correctness and the Neo-Carnapian. Now,
this is clearly an entirely semantic dispute. It’s merely a matter of where to apply
the particular label "correctness". But nevertheless, the Neo-Carnapian’s use of
"correctness" has an advantage over the logical realist’s: normative upshot. As
discussed in §1.1, something I assume the concept of "correctness" is supposed to
do is tell us which logical rules we may reason with. If the logical realist’s notion of
"metaphysical correctness" does not achieve this. The Neo-Carnapian’s "normative
correctness" does.
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In summary, then, even if the logical realist can establish the existence of logical
facts and show how they, in principle, determine a ’correct’ logic, they are still left
with the more challenging task of establishing why these metaphysical facts matter
for the philosophy of logic and for logic selection. This secondary point, so this
section argues, is where the metaphysical approach to the philosophy of logic falls
short.

4 The One-Language Approach to the Logical Correct-
ness

The One-Language Approach approach holds that:

SEM: Logical truths are semantic in that they are mind but not language-independent.

OL: The semantic truths, given some fixed language, are what matter for logical
correctness. The interesting sense of logical correctness is correctness with
respect to the semantic facts of some fixed language.

Amongst the major progenitors of this position is Dummett. He’s certainly not the
first or the only person within this context to advocate for this kind of view, but
there’s a relatively tangible intellectual history to be told that puts him in a central
position within the last fifty years or so.

He says the following:

My contention is that all these metaphysical issues turn on questions about the correct
meaning-theory for our language. We must not try to resolve the metaphysical questions

first, and then construct a meaning-theory in the light of the answers. We should
investigate how our language actually functions, and how we can construct a workable

systematic description of how it functions; the answers to those questions will then
determine the answers to the metaphysical ones. (Dummett, 1991, p338)
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Amongst these metaphysical issues are questions in the philosophy of logic. This
can be broken apart into two claims:

1. Many metaphysical, including logical, issues " turn on questions about the
correct meaning-theory for our language" - This is SEM.

2. "We should investigate how our language actually functions, and how we can
construct a workable systematic description of how it functions; the answers to those
questions will then determine the answers to the metaphysical ones." - This is OL
where the fixed language is the actual language.

The later Wittgenstein arguably holds a similar position, Wright attributes Wittgen-
steinian influences to Dummett, but there are also ways of reading Wittgenstein’s
work that are more Carnapian9.
Dummett’s approach to the philosophy of logic (and theoretical philosophy gen-
erally) influenced his PhD student Crispin Wright. Whilst Wright and Dummett
disagreed on a great deal, Truth and Objectivity (Wright, 1992) is in part Wright’s
reply to Dummett. The two agree on OL, though. In Truth and Objectivity Wright
argues for a specific kind of Alethic pluralism. Crucially, Wright is interested in
showing that within the same language it’s possible to have multiple truth predicates10.
On this basis, Wright does establish a kind of logical pluralism, but this isn’t a
major part of the work.

Wright’s work went on to be a cornerstone of the modern alethic pluralism debate,
with Lynch providing the next influential book. Probably the most notable trend
since Truth and Objectivity is the shift towards domain-relative views. Wright argues
for multiple truth predicates correct for the entire language. Most modern alethic
pluralists argue for many truth predicates singularly correct for some domain
within the language.

The step from any kind of alethic pluralism to a corresponding logical plural-
ism is not a complex one. Pedersen (2014) has presented the clearest outline of
logical pluralism on the basis of a Wright-Lynch style alethic pluralism. Steinberger
(2019) has criticised this view.

9If one interprets language games as, essentially, Carnapian frameworks, then the two start to
look quite similar

10In Essay V: Language, Truth & Logics I call this ’narrow scope alethic pluralism’, contrasted with
the (Neo) Carnapian claim that there are many theories of truth correct for some language, the
’medium scope’ claim
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Crucially, though, throughout this entire debate, the alethic pluralists, and those
like Pederson who wish to base their logical pluralism on their alethic pluralism,
there is the assumption that monism or pluralism about both truth and logic needs
to be defended within a given language.

They’re not interested in showing that there can be many truth predicates, and
subsequently many logics, true of one language.

There are more one-language theorists than merely those directly following Dum-
mett via Wright. Most major versions of logical pluralism within the modern
debate aim to show how logical pluralism is true within the same language, i.e.
holding one’s language fixed.

Beall and Restall (2005), for instance, are pluralists about the notion of entail-
ment. They take there to be many different relations all of which are perfectly
sensible entailment relations. There are many logics that are correct for some
entailment relation. Again, this is all taking place within a given language. Beall
and Restall show how logical pluralism could be true, given both a fixed language
and without alethic pluralism.

Shapiro (2014) is another example. He takes logics to be models of truth-preserving
inference within some language. He’s a pluralist because he thinks there are
multiple different, but all correct, ways of modelling truth within some language.

Lastly in Cook (2010)’s generally well-received overview of contemporary logical
pluralism he explicitly endorses OL. He describes language-relative versions of
logical pluralism as "insubstantial", though gives no real argument as to why that
is the case11. He outlines what he calls substantial logical pluralism which is
explicitly logical pluralism, given some fixed language (and a fixed notion of the
logical/non-logical divide). See also Cook (2023).

11Cook also rules out Varzi (2002)’s logical pluralism, a version of pluralism based on pluralism
about the logical/non-logical divide, on the same grounds. This is puzzling given that he thinks Beall
& Restall’s pluralism is substantial and the two views are similar in the kind of logical pluralism they
argue for. Beall & Restall’s view, for reference, is pluralism about the notion of "all possible cases" in
the definition of validity. Both argue that there’s a particular part of the definition of validity that
is ambiguous and this allows for logical pluralism on the basis of different precisifications of this
ambiguity. One might go further and say that Varzi’s pluralism about the logical/non-logical divide
is a mechanism by which one could have pluralism about the range of possible cases. If this were
the case, then Varzi’s view would be a proper sub-view of Beall & Restall’s.
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I also wish to include the project of linguistic explication within this group. Unlike
pure one-language views, explicators like Lewis (Lewis (1986) and Lewis (1998)) or
Tarski (1931) are willing to revise their languages to some extent, but not much.
Lewis, talking about philosophy generally, accepts that natural languages might
not be consistent. The job of philosophy is to tidy natural languages up causing
as little disruption as possible; to find the formally consistent nearest neighbour
to our natural languages. Tarski (1931), at least on the common reading, sets out
similar goals in relation to truth.

Whilst the explicators allow for some linguistic change so are not, in the strictest
sense, One-Language theorists, a fixed language (typically our natural language)
plays a very central role in what they’re trying to achieve. Explicators have more in
common with "pure" One-Language theorists than they do with Neo-Carnapians.
My objection to One-Language theorists also applies to the explicators.

4.1 The Possibility of Linguistic Revision

The main argument against the one-language approach comes from the possibility
of linguistic revision. Given that languages can be changed, the semantic rules of
any particular language are not especially important in determining with which
logic one should reason. Suppose, for instance, one’s fixed language contains fuzzy
predicates. It does not necessarily follow that one should reason with a fuzzy logic,
as this might just mean that one should amend the fixed language (i.e. unfix it) in
order to remove (or precisify) the fuzzy predicates.

Both the one-language theorist and the Neo-Carnapian accept SEM. Logical facts
are determined by linguistic facts. They also agree that there is logical variation
across languages. The one-language theorist does not deny that there are possible
rival languages that could be constructed, modelling logics different from their
own. What they deny is the importance of this for logical correctness.
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One reason to think this connects back to the discussion in §1.1. Something logics
are supposed to be able to do is provide us with norms for reasoning12. Ultimately,
it’s the validity of a rule in one’s actual language, or the language one adopts
within some more rigorous scientific context, that matters for the permissibility
of reasoning by that rule. It is, after all, that language in which one reasons.
Consequently, what matters for the philosophy of logic is logical correctness within
the language one will actually be reasoning in.

The mistake here relates to the discussion of §2.2. It assumes that there are
no norms relating to language selection relevant to the philosophy of logic. As
discussed in §2.2, the Neo-Carnapian has a two-tier view of the norms of reasoning.
There’s an array of norms relating to language selection and then an array of
conditional norms (hypothetical imperatives, to use a classical term) that state
which inferences are permissible, given a particular choice of language.

That a particular inference is valid in some particular language is only suffi-
cient for the conditional norm that if one uses that language, then one may reason
by that rule. But the Neo-Carnapian’s point is that one’s choice of language is
not forced and not beyond the scope of critique in the philosophy of logic. But
this means that what’s relevant for determining the rules one should reason by is
not just a study of validity in one’s own language (or some fixed language) but in
a range of possible languages, along with a study of why one might choose one
language over another.

As an example, suppose that it’s the early 20th century and one’s privileged
language is the language of pre-quantum science. Suppose the correct logic for this
language is classical logic. Suppose, then, that quantum phenomena are discovered
and it turns out that a quantum logic would have certain beneficial features for
describing this domain. This is obviously a contested point13, but grant this for the
sake of the example.

12This is a variation on the normativity argument against logical pluralism as discussed by Russell
(2020) alone, Blake-Turner and Russell (2018). The version presented here makes the weaker claim
that something logics should do is contribute towards the norms of reasoning. I don’t claim that
logics are normative theories of reasoning.

13see Putnam (1968) and Gibbins (1987) for an introduction to this topic.
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Clearly what should happen is the adoption of quantum logic, at least within the
confines of theoretical physics. But the one-language theorist can’t endorse this
move. They’re interested only in the correct logic for their fixed language. They
don’t recognise the norms of linguistic revision, the kinds of norms that speak in
favour of Quantum Logic within the example.

As a second example, suppose that English is the privileged language, that it
has fuzzy predicates and that this is an undesirable result. For the one-language
theorist, fuzzy logic is correct, and that’s all there is to say of the matter. It is the
correct logic of an English reasoner’s language, so it is the logic that constrains what
inferences they are allowed to make. The Neo-Carnapian sees another option. The
reasoner might choose to change their language, moving into, say, some language
English*. This is English, but with boundaries, perhaps arbitrarily, specified for
each fuzzy predicate. By moving into English*, they are no longer bound by the
logical rules correct for English. They are free to adopt whichever non-fuzzy logic
is correct for English*.

Interestingly, the logical realist can also level a similar objection against the
one-language theorist. Whilst they grant that one’s language might fix the norms of
reasoning in that language, that’s entirely moot if the language doesn’t model the
objectively correct logic. Upon discovering, as in the Quantum case, that the logic
of a language is false, one should change the language. The difference between
the Neo-Carnapian and the Metaphysician here is simply that the Neo-Carnapian
has a more expanded conception of the kinds of inter-linguistic norms that bear on
language and logic selection.

This option fails because the one-language theorist fails to consider the possi-
bility of linguistic, and hence logical, revision. It’s not enough for the one-language
theorist to simply show that a logical rule, in fact, does hold within some privileged
language. They need to show, in addition, why this language shouldn’t simply be
changed.

Another option for the one-language theorist is to take a similar stance to the
logical realist positions discussed in §3.4 which distinguishes between metaphysi-
cal and normative correctness. They can reject that when they talk about logical
correctness, they mean anything to do with logic selection. The notion of "correct-
ness" they have in mind is simply a relation between a logic and some fixed language.
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They’re not making any claim about how one should go about picking one’s
language or logic.

If the one-language theorist wishes to take this line, there’s again some level
of agreement between the one-language view and the Neo-Carnapian view. As
with the discussion of metaphysical correctness in §3.4, a distinction might be
drawn between correctness-for-a-given-language and normative correctness. The
one-language theorist simply wishes to investigate how a given language can relate
to a or many logics. Then they use the term "correctness" they mean correctness-
for-a-given-language..

But the notion of correctness relevant to deciding how one ought reason is not
correctness-for-a-given-language, given that linguistic change is possible. Thus,
if the One-Language theorist makes this move, they all but concede that the Neo-
Carnapian’s notion, not their own, is the more important one for both practical and
theoretical reasoning.

Note, as well, that all of this applies equally well to the explicator. The ex-
plicator is willing to change their language a little, but only for the purpose of
ensuring internal consistency. The examples of reasons for linguistic change given
all fall well outside that remit.

4.2 Reply: A change of subject?

There are a remarkable number of parallels between this debate and the debate
between conceptual engineers and conceptual analysts. Conceptual analysts hold
that when doing philosophical work on concepts, the aim is to understand our con-
cepts as they are. The conceptual engineer, on the other hand, wishes to understand
what they want particular concepts to do and to amend these concepts to better
suit their purposes14.

14Conceptual Explicators sit somewhere between the two. They allow for some degree of linguistic
change, but only a minimal amount. In my view, this only gets the worst of both worlds. They are
subject to the change of subject objection like the conceptual engineer but are lumbered with any
consistent but undesirable features of their language like the conceptual analyst.
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An analogue of the debate in §3.1 can take place between the conceptual analyst
and the conceptual engineer. The conceptual engineer asks why they should care
about their actual concepts. The conceptual analyst replies that it’s because these
are the concepts that they do, in fact, have. The conceptual engineer is unmoved,
they are used to changing their concepts frequently so don’t feel especially bound
by the contingent features of their actual concepts, unless those features can be
motivated as useful. A common reply by the conceptual analyst at this point is the
so-called change of subject objection.

Consider, for instance, the question “Is being a stay-at-home parent a job?” Very
plausibly, on the traditional meaning of the word “job” this is false. A job is
paid economic labour, typically via an employment contract with a business. The
production of goods or the provision of economic services in exchange for money.
Stay-at-home parenting is, so say, not economic labour, in that it does not result in
the production of goods or economic services, and is not typically paid.

For the conceptual analyst, that’s all there is to say. For The conceptual engi-
neer, however, this is just the beginning of the story. The concept “job”, understood
in a way that excludes domestic labour, has a meaning that encodes or promotes
certain negative social values. It devalues the importance of domestic labour.
They argue that, therefore, the concept of “job” should be changed to include
stay-at-home parenting, and other forms of domestic labour.

A major reply to the conceptual engineering program is the change of subject
objection. The change of subject objection holds that the conceptual engineer has
done something invalid. They are no longer answering the question “Is being a
stay-at-home parent a job?” but rather the question “Is being a stay-at-home parent
a job*?”, where “job*” is the concept job plus the conceptual engineer’s modifi-
cations. The conceptual engineer hasn’t changed the concept of “job”, they’ve
simply adopted a new concept job* and stuck the old label on it. They then haven’t
answered the question “Is being a stay-at-home parent a job?”, they’ve just changed
the subject.

This argument has interesting similarities to Quine (1970)’s and Restall (2002)’s
meaning objection to Carnapian logical pluralism, an argument which also applies
to my Neo-Carnapian view.
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Here I present a slightly adjusted version of their argument to better fit the topic of
linguistic revision. See my work elsewhere for a more faithful rendering of their
argument and a more detailed and thorough reply.

Consider the question "Does ϕ ⊢ ϕ ∨ ψ?" Grant that, for our actual language,
or for the privileged language, it does. The Neo-Carnapian is not moved by
this fact alone. They could, for instance, adopt a three-valued language where
disjunctive syllogism is false. What they’re interested in is understanding the
merits of adopting each of these languages over the other. But Quine and Restall
object that they’re simply changing the subject. The question was phrased in the
original language, so it’s a question about ∨, the disjunction of the original language.
What the Neo-Carnapian does is try and answer the question "Does ϕ ⊢ ϕ ∨∗ ψ?"
where ∨∗ is disjunction in their new language. They’ve simply changed the subject,
not answered the question.

The conceptual engineer has a number of replies to the change of subject ob-
jection, three are presented here. See Belleri (2021) for a more detailed discussion of
the various historic and prospective replies to the objection by conceptual engineers.
Each reply has a natural counterpart for the Neo-Carnapian.

First, the conceptual engineer can argue that concepts can have their content
changed without changing their numerical identity. In short, they argue that
job=job*.

For the Neo-Carnapian to take this line, they would have to reject traditional
truth-conditional semantics. I’m sympathetic to this option. I don’t think truth-
conditional semantics are appropriate when discussing languages with different
notions of truth. However, that claim is more than a little controversial and I don’t
have a sufficiently worked-out alternative to present at present. I therefore won’t
advance this option at present.

Alternatively, the conceptual engineer can argue that whilst job and job* are
not identical, subjects of discussion or inquiry are sufficiently coarse-grained as to
allow for some level of conceptual change (Cappelen, 2018).

This is a potentially interesting approach and it would be interesting to see
the details of this view born out in the specific context of logical inquiry. I won’t
develop this reply here, though.
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The last option is to accept that there’s a change of subject but argue that this is a
dialectically permissible move. They accept that they’re not answering the question
“Is being a stay-at-home parent a job?”, but that doesn’t matter because it’s an
irrelevant question. It’s a question formed with a faulty concept, one that they’re
abandoning, so it can be dismissed.

Analogously, the Neo-Carnapian could accept that they are answering the question
"Does ϕ ⊢ ϕ ∨

∗ ψ?" rather than "Does ϕ ⊢ ϕ ∨ ψ?", but they don’t care. ∨ is a
connective in a language that they’ve now abandoned. Rules about ∨ are no longer
relevant for their reasoning.

To tie this back to the discussion of normativity, the Neo-Carnapian is inter-
ested in knowing what norms should govern their reasoning. Having established
that they should reason in a language with ∨

∗ rather than ∨, the conditional imper-
atives which follow ∨’s inference rules become irrelevant. This means that not only
is the change of subject acceptable to the Neo-Carnapian, it’s also required by their
aims.

In summary, then, the Neo-Carnapian responds to the change of subject ob-
jection by accepting that there’s a change of subject but denying that this is an issue.
The change of subject is a feature, not a bug, of their view. It’s baked into their
two-tier conception of the norms of reasoning.

Conclusion

This paper outlines three approaches to logical correctness: logical realism, the
one-language approach and the Neo-Carnapian approach. It outlines the Neo-
Carnapian view, contrasting it with Carnap’s classic view (§2). It then explains the
logical realist (§3) and one-language (§4) views, and gives an objection to each on
behalf of the Neo-Carnapian view.

The Neo-Carnapian approach to correctness is ultimately preferred on the grounds
that it is the only view with normative upshot. If the concept of "correctness" is
supposed to entail something normative, i.e. that one may reason with a correct
logic, only the Neo-Carnapian’s view does this appropriately. The logical realist
misses that there are contexts in which metaphysical considerations are not relevant.
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The one-language theorist misses that linguistic change is possible.
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