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Abstract

The field of experimental quantum information can be traced back to the pioneering tests
of Bell’s theorem carried out by Clauser and Aspect in the 1970s. These experiments
explored the foundations of quantum theory and ruled out local hidden-variable models
of quantum mechanics. Decades later Bell tests would find a practical use in establishing
the security of quantum key distribution, remarkably enabling fully device-independent
security. Today, as quantum information technologies stand poised to transform society,
it is worth noting that many of the concepts core to their workings originated out of
studies driven by fundamental curiosity.

This thesis presents several experimental works within the field of quantum informa-
tion motivated by a similar curiosity and fascination by the unique and counter-intuitive
aspects of quantum theory. Like the first experimental violations of Bell’s inequality
mentioned above, the experiments all made use of quantum states encoded in single
photons. The first of the experiment is an experimental realisation of what is known
as counterfactual communication, in which one party can communicate information to
another party without directly transmitting any information-carrying particles. In par-
ticular, we present the first realisation of such a task in which the so-called weak trace
of the information carrying particles vanishes in the laboratory of one party.

The second experiment deals with the question of how to reverse the time evolution
of a quantum system. In classical systems this can be done by simply recording the
evolution and undoing it step by step, but in the quantum domain the destructive nature
of measurements forbids this. Time-reversal of quantum systems is nevertheless possible,
and we present a realisation of a time-rewinding protocol for two-level quantum systems
that works even under very weak assumptions on the nature of the time evolution and
the ways in which one can interact with the system in question.

In the third experiment we study the utility of time-reversed processes in quantum
information tasks. Taking inspiration from previous work on superpositions of temporal
orders of quantum operations, we implement a superposition of temporal directions of
quantum processes and show, in a semi-device independent way, that this leads to a
quantifiable advantage in a tailored quantum information processing task. This advan-
tage is relative to the circuit model of quantum computation, and suggests that this
model does not fully capture the scope of information processing allowed by quantum
theory.

The last experiment concerns the realisation of a process known as the quantum
SWITCH, which is the most well-known example of a process with an indefinite causal
order. Like the superposition of temporal directions discussed above, the quantum
SWITCH can also provide an advantage over the quantum circuit model in performing
certain tasks. Here we present a realisation of a quantum SWITCH that solves the issue
of phase instability that plagued most previous implementations. The novel design of the
quantum SWITCH was facilitated by development of a family of polarization rotators
with unique properties under counterpropagation. We believe that these devices may
also prove useful in other photonic quantum information contexts.
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Zusammenfassung

Der Bereich der experimentellen Quanteninformation lässt sich bis zu den bahnbrechen-
den Tests des Bell’schen Theorems durch Clauser und Aspect in den 1970er Jahren
zurückverfolgen. Diese Experimente untersuchten die Grundlagen der Quantentheo-
rie und schlossen lokale Modelle der Quantenmechanik mit verborgenen Variablen aus.
Jahrzehnte später fanden die Bell-Tests praktische Anwendung bei der Etablierung der
Sicherheit von Quantenschlüsseln und ermöglichten auf bemerkenswerte Weise eine völlig
geräteunabhängige Sicherheit. Heute, da die Quanteninformationstechnologien im Be-
griff sind, die Gesellschaft zu verändern, ist es erwähnenswert, dass viele der Konzepte,
die ihrer Funktionsweise zugrunde liegen, aus Studien hervorgegangen sind, die von
grundlegender Neugierde getrieben waren.

In dieser Arbeit werden mehrere experimentelle Arbeiten auf dem Gebiet der Quan-
teninformation vorgestellt, die durch eine ähnliche Neugier und Faszination für die einzi-
gartigen und kontraintuitiven Aspekte der Quantentheorie motiviert waren. Wie die
oben erwähnten ersten experimentellen Verletzungen der Bell’schen Ungleichung wur-
den bei allen Experimenten Quantenzustände verwendet, die in einzelnen Photonen
kodiert sind. Das erste der Experimente ist eine experimentelle Umsetzung der so
genannten kontrafaktischen Kommunikation, bei der eine Partei einer anderen Partei
Informationen mitteilen kann, ohne direkt informationstragende Teilchen zu übertragen.
Insbesondere stellen wir die erste Realisierung einer solchen Aufgabe vor, bei der die
sogenannte schwache Spur der informationstragenden Teilchen im Labor einer Partei
verschwindet.

Das zweite Experiment beschäftigt sich mit der Frage, wie man die zeitliche Entwick-
lung eines Quantensystems umkehren kann. In klassischen Systemen kann man dies tun,
indem man die Entwicklung einfach aufzeichnet und Schritt für Schritt rückgängig macht,
aber im Quantenbereich verbietet die zerstörerische Natur von Messungen dies. Die Zei-
tumkehr von Quantensystemen ist dennoch möglich, und wir stellen eine Realisierung
eines Zeitumkehrprotokolls für Zweizustandssytem vor, das sogar unter sehr schwachen
Annahmen über die Art der Zeitentwicklung und die Möglichkeiten der Interaktion mit
dem betreffenden System funktioniert.

Im dritten Experiment untersuchen wir den Nutzen von zeitumgekehrten Prozessen
bei Quanteninformationsaufgaben. In Anlehnung an frühere Arbeiten über Überlagerun-
gen zeitlicher Ordnungen von Quantenoperationen implementieren wir eine Überlagerung
zeitlicher Richtungen von Quantenprozessen und zeigen auf halb-geräteunabhängige
Weise, dass dies zu einem quantifizierbaren Vorteil bei einer maßgeschneiderten Quan-
teninformationsverarbeitungsaufgabe führt. Dieser Vorteil ist relativ zum Quantenschal-
tungsmodell und deutet darauf hin, dass dieses Modell den Umfang der von der Quan-
tentheorie erlaubten Informationsverarbeitungsweisen nicht vollständig erfasst.

Das letzte Experiment betrifft die Verwirklichung eines Prozesses, der als Quanten-
SWITCH bekannt ist und das bekannteste Beispiel für einen Prozess mit unbestimmter
kausaler Ordnung darstellt. Wie die oben beschriebene Überlagerung zeitlicher Rich-
tungen kann auch der Quanten-SWITCH bei der Erfüllung bestimmter Aufgaben einen
Vorteil gegenüber dem Quantenschaltungsmodell bieten. Hier stellen wir eine Real-
isierung eines Quanten-SWITCHs vor, die das Problem der Phaseninstabilität löst, das
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die meisten früheren Implementierungen plagte. Das neuartige Design des Quanten-
SWITCHs wurde durch die Entwicklung einer Familie von Polarisationsrotatoren mit
einzigartigen Eigenschaften bei Gegenausbreitung erleichtert. Wir glauben, dass sich
diese Geräte auch in anderen Bereichen der photonischen Quanteninformation als nüt-
zlich erweisen könnten.
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Introduction

The development of quantum theory in the early 20th century was motivated by a
need to explain seeming contradictions, such as the wave-particle duality implied by the
photoelectric effect, and the ability for electrons to stay bound to a positively charged
atomic nucleus. While quantum mechanics was successful in providing a framework for
how to understand these effects, it did not demystify them. In fact, quantum mechanics
soon provided new puzzles, such as the concept of entanglement, first identified by
Einstein, Podolsky and Rosen in their famous thought experiment [1].

In the decades that followed there was little interest within the field to seriously
explore these concepts and related open questions within the foundations of quantum
mechanics such as the measurement problem. This was in part due to how disconnected
these topics were from the unanswered questions in experimental physics at the time.
However, beginning with the discovery of Bell’s theorem in 1964 [2], and the experimental
tests thereof performed in the decades that followed [3], the possibility of testing and
even exploiting more of the unique features of quantum mechanics began to emerge.

Motivated by theoretical discoveries and realisations about the potential utility of
quantum systems in information processing tasks, such as Feynman’s proposal for quan-
tum simulators [4], Bennett and Brassard’s quantum key distribution [5], and Shor’s
algorithm for integer prime factorization [6], the field grew. In span of a few decades the
experimental level of control over isolated quantum systems progressed rapidly, with
many landmark demonstrations along the way, including the first experimental telepor-
tation of a quantum state [7] and the demonstration of quantum supremacy [8].

The development of experimental methods for creating and controlling quantum
states has at the same time enabled studies of concepts of a more fundamental nature
in quantum theory, such as the quantum zeno effect in which repeated measurement of
a system freezes it in time [9], the nonlocality of single quantum particles [10], and more
recently the causal structure of quantum processes [11]. While such studies may have,
and in some cases have had, technological applicability, this is not what motivated them.
These types of studies were instead motivated by a fundamental interest in exploring
the full riches of quantum theory.

In this thesis I present four works on quantum information that continue in this
spirit, and that focus on the experimental realisation of various tasks that do not have
a classical analogue.

The thesis begins with a chapter giving an introduction to quantum information,
outlining the description of quantum states and their transformations, as well as some
of the theoretical tools used to describe and analyse the presented experiments. Common
to all these experiments is that they were realised using single photon states as carriers
of quantum information. The second chapter therefore provides an overview of the
quantum theory of light, and methods for both the generation and manipulation of
single-photon states, with particular attention being devoted to the latter. All but one of
the experiments made partial use of the polarization degree of freedom of single photons
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to encode quantum information, and in the third chapter a detailed examination of the
properties of polarization rotators, used to manipulate the polarization states of single
photons, is presented. A set of hitherto unknown polarization rotators are introduced,
their properties are studied mathematically, and proofs of universality are written down
where applicable. The chapter concludes with a discussion of some of the potential
applications of these devices.

The fourth chapter presents background detail on an experiment on counterfactual
communication, which is included in Chapter 8. This experiment was implemented using
a programmable nanophotonic waveguide, and the chapter discusses the experimental
characterisation of the device, the mapping of the communication protocol onto the
waveguide, as well as the relevant aspects of the protocol itself.

In the fifth chapter the second publication, presented in Chapter 9, is discussed.
This article concerns the realisation of a time-rewinding protocol that works for two-level
quantum systems. The chapter gives a description of the protocol from a theoretical per-
spective, and places it in the context of other similar protocols. A detailed description of
the experimental setup and implementation of the protocol is then presented, concluding
with an extended analysis of the data taking into account experimental imperfections.

The sixth chapter discusses the experimental realisation of a superposition of time
directions for two quantum channels, which was the subject of the article included
in Chapter 10. The chapter begins with a discussion of non-quantum-circuit-model
processes, and introduces a specific example of such a process: the quantum time flip.
It then presents how the quantum time flip can outperform a broad class of quantum
processes in a certain task, before moving on to discuss how the concepts introduced in
Chapter 3 can be used to experimentally realise this advantage. Finally, the details of
the implementation are presented, together with an analysis and interpretation of the
data.

In the seventh chapter the final publication, included in Chapter 11, is discussed.
This article focused on demonstrating the applicability of the devices presented in Chap-
ter 3 to the photonic realisation of a specific quantum process: the quantum SWITCH.
The chapter opens with an introduction to the quantum switch, and presents an overview
of its previous photonic realisations. It is then shown how the devices from Chapter 3
can simplify and improve such realisations, and the specific device employed in the ex-
periment is re-examined. The experiment deign and device characterisation is presented,
and main results of the article are discussed. Finally, the potential applicability of the
novel polarization rotators to quantum switch experiments with more than two parties
is explored.



1
Quantum Information

This chapter will give a largely self-contained introduction to most of the concepts
in quantum information needed to understand the experiments presented in this thesis.
It begins with a discussion on qubits and how to manipulate them, before moving on
to some of the theoretical tools used to describe and characterise quantum states and
processes. Finally, the chapter concludes with a discussion on counterfactual communi-
cation and weak measurements relevant to Publication 1.

1.1 Introduction
The field of quantum information centres on studying how the laws of quantum

mechanics allow for information to be encoded, manipulated and distributed. The con-
nection between information and physics is not an entirely obvious one. It traces its
roots back to Claude Shannon, who in the 1940s began to formulate a theory of informa-
tion, and in a seminal paper defined what is now known as Shannon entropy [12]. As the
name suggest, this concept is closely related to the concept of entropy in statistical me-
chanics and in 1961 Rolf Landauer showed that, in analogy to how irreversible processes
necessarily increase the entropy of a system, there is an energy cost associated with the
irreversible manipulation of information [13]. The deep connection between information
and physics fundamentally rests on the fact that all information is ultimately encoded
in the degrees of freedom of some physical system. From this perspective, the idea of
quantum information emerges naturally when one considers ever smaller information
carriers, and go from quantities that can be described macroscopically, such as the volt-
age across a transistor, to states that require a quantum mechanical description, for
instance the spin of an electron. Since the states of the latter behave in a fundamentally
different way from classical states, so will the information encoded in those states.

1.1.1 The qubit
The fundamental unit of information of quantum information is the eponymous

quantum bit, or qubit [14]. In analogy with so-called classical information, which is made
up of binary states b ∈ {0, 1} called bits, the qubit is a two level quantum mechanical
system:

|Ψ〉 = α |0〉+ β |1〉 , (1.1-1)

where α and β are the complex probability amplitudes of the two states |0〉 and |1〉, and
obey the normalization condition

|α|2 + |β|2 = 1. (1.1-2)
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Figure 1.1: Bloch sphere. Pure single-qubit states can be thought of as unit vectors in 3D
with polar angle θ and azimuth ϕ. The corresponding unit sphere is known as the Bloch sphere.
This picture omits the global phase γ, and the reason for this is that this phase does not have
any physical meaning when only considering a single qubit; it does not affect any measurement
outcomes and is therefore not measurable. Mixed states correspond to vectors with a length less
than unity, and the maximally mixed state is the zero vector. The x-, y-, and z-axes are chosen
as the positive eigenvectors of the corresponding Pauli matrices (c.f. (1.1-15)).

Since a qubit is an element of C2 the kets |0〉 and |1〉 can equivalently be written as
vectors:

|0〉 =
[
1
0

]
, |1〉 =

[
0
1

]
. (1.1-3)

From (1.1-1) it is already evident that the qubit differs significantly from a classical
bit, since it can take on values between 0 and 1. The probabilities for a measurement
of the qubit to reveal the outcomes 0 and 1 are given by the square of their respective
probability amplitudes. The phenomenon of quantum systems inhabiting combinations
of discriminable states is called superposition, and is a key resource in quantum infor-
mation processing. Combining the normalization condition in (1.1-2) with (1.1-1) we
see that the qubit state can also be written the following way:

|Ψ〉 = eiγ
[
cos

(
θ

2

)
|0〉+ eiϕ sin

(
θ

2

)
|1〉
]
. (1.1-4)

This description suggests that a qubit state can be represented as a unit vector in 3D
space with polar angle θ and azimuth ϕ, while the factor eiγ , which does not have
a geometric interpretation, is needed to encode the global phase of the state. The
corresponding unit sphere, illustrated in Fig. 1.1, is referred to as the Bloch sphere and
is a powerful tool for thinking about qubit states. The vector v⃗ ∈ R3:

|Ψ〉 =

[
cos
(
θ
2

)
eiϕ sin

(
θ
2

)] ↔ v⃗ =

cos(ϕ) sin(θ)sin(ϕ) sin(θ)
cos(θ)

 (1.1-5)

is known as the Bloch vector.
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1.1.2 The density operator
For a more general description of qubit states it is necessary to introduce the density

matrix, or density operator. States on the form of (1.1-1), which are unit vectors on the
Bloch sphere, have a density matrix given by

ρ = |Ψ〉〈Ψ| (1.1-6)

where 〈Ψ| = |Ψ〉†, while a general density matrix can be written

ρ =
∑
i

pi |Ψi〉〈Ψi| =
∑
ij

ρij |i〉〈j| . (1.1-7)

The prefactors pi correspond to the probability of observing the quantum system in the
state |Ψi〉. States that obey

Tr
[
ρ2
]
= 1 (1.1-8)

are called pure states, and correspond to states which can be written as a state vector.
States for which the purity P = Tr[ρ2] is less than 1 are called mixed states, and can
only be described by a density matrix. Such states have a Bloch vector with a length
less than one; more specifically

‖v⃗‖2 = 2Tr
[
ρ2
]
− 1. (1.1-9)

The probabilities pi in (1.1-7) can be thought of as representing ignorance of which state
the system is actually in, as opposed to a fundamental uncertainty in the state itself, as
in the case of a quantum superposition state. A density matrix describing a physical
state has to obey

Tr[ρ] = 1 (1.1-10)
ρ† = ρ (1.1-11)
ρ ≥ 0 (1.1-12)

where the condition (1.1-10) is equivalent to the probabilities pi summing to 1, (1.1-11)
ensures that the probabilities are real, and (1.1-12) guarantees that the probabilities are
non-negative.

1.1.3 Pauli matrices
For the description of qubits it is helpful to introduce the so-called Pauli matrices [15],

which are a set of three Hermitian and unitary 2 × 2 matrices named after Wolfgang
Pauli. The matrices are

σx = X =

[
0 1
1 0

]
, σy = Y =

[
0 −i
i 0

]
, σz = Z =

[
1 0
0 −1

]
. (1.1-13)

The Pauli matrices obey
σiσj = δijI + i

∑
k

ϵijkσk, (1.1-14)
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where I is the identity operator and ϵijk is the Levi-Civita symbol.1 Using these matrices
it is possible to describe the manipulation and measurement of qubits. The eigenvectors
and eigenvalues of the Pauli matrices are

X :

|x+〉 =
|0〉+ |1〉√

2
= |+〉 ,

|x−〉 =
|0〉 − |1〉√

2
= |−〉 ,

λ+ = 1

λ− = −1

(1.1-15)

Y :

|y+〉 =
|0〉+ i |1〉√

2
= |L〉 ,

|y−〉 =
|0〉 − i |1〉√

2
= |R〉 ,

λ+ = 1

λ− = −1

(1.1-16)

Z :
|z+〉 = |0〉 = |H〉 ,
|z−〉 = |1〉 = |V 〉 ,

λ+ = 1

λ− = −1.
(1.1-17)

The right-hand labels {+,−, L,R,H, V } are the ones commonly used for qubits encoded
in photon polarization. The eigenvectors with positive eigenvalues correspond to the x-,
y- and z-axes of the Bloch sphere, respectively. The density matrix of a general qubit
state can be decomposed in terms of the Pauli matrices as

ρ =
1

2
(I + nxX + nyY + nzZ) =

I + n⃗ · σ⃗
2

, (1.1-18)

where n⃗ =
[
nx ny nz

]
and σ⃗ =

[
X Y Z

]
is called the Pauli vector.

1.1.4 Measuring qubits
Measurements in quantum mechanics are described by operators called observables.

The eigenvalues of an observable determine the possible measurement outcomes, and in
order to ensure real-valued measurement outcomes every operator associated with an
observable is required to be Hermitian. The most straightforward type of measurement
is called a projective measurement, and can be written as

M =
∑
i

λiPi =
∑
i

λi |ψi〉〈ψi| (1.1-19)

where M is the observable, λi are its eigenvalues and Pi are orthogonal projectors that
sum to identity, meaning they obey

P 2
i = Pi (1.1-20)

PiPj = δijPi (1.1-21)∑
i

Pi = I. (1.1-22)

A measurement of the observable M on the state |Ψ〉 projects it onto the state |ψi〉 with
a probability given by

p(λi) = 〈Ψ|Pi|Ψ〉 = |〈Ψ|ψi〉|2, (1.1-23)
1The notation I and 1 will be used interchangeably.
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and the property (1.1-22) is necessary to guarantee that the probabilities of the different
possible measurement outcomes add up to unity. If the state is described by a density
operator the measurement probabilities are given by

p(λi) = Tr
[
P †
i Piρ

]
. (1.1-24)

This is known as the Born rule, after Max Born. Immediately after the measurement,
the post-measurement state of the system is no longer |Ψ〉, but rather the state |ψi〉
that was projected onto. The act of measurement itself therefore changes the state of
the system. An important consequence of this is that it is impossible to extract all the
information about a quantum state, since even the simple qubit state in (1.1-4) has two
parameters, while the measurement only reveals a single one. More generally, given two
observables M and N describing two properties of a quantum state, it is only possible
to measure these properties simultaneously if the observables commute: [M,N ] = 0,
since this condition guarantees the existence of a simultaneous eigenbasis for the two
operators. If the observables do not commute ([M,N ] 6= 0) it means that the order in
which the measurements are performed affects the measurement outcome.

In addition to the probabilities of individual measurement outcomes, it is often useful
to speak about the expected, or average value of a measurement with respect to a state.
The expression from this follows immediately from (1.1-19) and (1.1-23):

〈M〉Ψ =
∑
i

λip(λi) = 〈Ψ|M |Ψ〉. (1.1-25)

For a state described by a density matrix the corresponding equation is

〈M〉ρ = Tr[Mρ]. (1.1-26)

The expectation value of an observable does not reflect the average value obtained
by repeated measurement on a single quantum state, since the projective nature of the
measurements ensures that repeated ones always yield the same result. Instead it should
be thought of as the average measurement outcome of identical measurements on a set
of identically prepared quantum states.

The Pauli matrices from (1.1-13) are Hermitian, and are therefore valid observables.
Measurements of these observables correspond to projecting a qubit state onto the x-,
y- or z-axes of the Bloch sphere and the expectation value of a given operators can be
understood as the geometric projection of the Bloch vector onto the axis defined by the
eigenstates of the observable. For this reason we can also write the Bloch vector of a
general qubit state ρ as

v⃗ =

Tr[Xρ]Tr[Y ρ]
Tr[Zρ]

 . (1.1-27)

This is exactly the vector n⃗ in the density matrix composition (1.1-18).
The measurement bases defined by the Pauli operators occur frequently in quantum

information, and in particular the one corresponding to the Z operator is often referred
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to as the computational basis, since it projects any qubit state onto {|0〉 , |1〉} and
therefore reveals either a logical 0 or 1.

Many physical properties of quantum states are hard to measure directly. Take for
example the spin of an electron; because of its small magnitude it has an exceptionally
small influence on the macroscopic world and is therefore very challenging to detect. A
way around this is to couple the spin, or some other quantity to be measured, to another
degree of freedom, commonly the path or position of the particle. A canonical example
of this is the famous Stern-Gerlach experiment, in which a magnetic field is used to
deflect an electron in different directions depending on its spin magnetic moment [16].
A measurement of the electron’s position then reveals its spin, since the two quantities
have become correlated. This type of measurement is referred to as a Von-Neumann
measurement [17].

1.1.5 Single qubit gates
The time evolution of quantum states is described by unitary operators, something

which is a consequence of the Hermiticity of the Hamiltonian H in the Schrödinger
equation governing the evolution of quantum states:

iℏ
d

dt
|Ψ(t)〉 = H |Ψ(t)〉 . (1.1-28)

Let U(t, t0) be a state-independent time-evolution operator2 from time τ = t0 to τ = t
under the Hamiltonian H, then

U(t, 0) |Ψ(0)〉 = |Ψ(t)〉 , (1.1-29)

iℏ
d

dt
U(t, 0) |Ψ(0)〉 = HU(t, 0) |Ψ(0)〉 . (1.1-30)

Since (1.1-30) holds for any state |Ψ〉 it follows that the time-evolution operator also
obeys the Schrödinger equation:

iℏ
d

dt
U(t, 0) = HU(t, 0). (1.1-31)

Taking the adjoint of this equation we find

−iℏ d
dt
U(t, 0)† = U(t, 0)†H†. (1.1-32)

We now use these two equations to show that U(t, 0)†U(t, 0) is time independent:

iℏ
d

dt
U(t, 0)†U(t, 0) = iℏ

(
−U(t, 0)†H†U(t, 0) + U(t, 0)†HU(t, 0)

)
= iℏU(t, 0)†(H −H†)U(t, 0)

= 0.

(1.1-33)

2The Schrödinger equation for the time-evolution operator can also be derived without explicitly
assuming the state independence of the operator, by instead taking the Hamiltonian as the generator of
time translations [18].



1.1. INTRODUCTION
7

(a) X-gate (b) X−Y√
2

Figure 1.2: Visualization of qubit unitaries. Qubit unitaries can be thought of as rotations
on the Bloch sphere, where the axis of rotation is given by the eigenvectors of the unitary and
the rotation angle is the difference between the complex arguments of the eigenvalues. In (a)
the simple case of an X-gate is shown, which rotates any state about the x+ axis by 180° in a
counter-clockwise direction. Similarly, in (b) a rotation about the axis between x+ and y− is
shown. The blue dots indicate the initial states, and the green and blue traces illustrate the
trajectory of the states as the rotation angle is continuously varied.

Since U(0, 0) = I and therefore U(0, 0)†U(0, 0) = I, the time independence of this
quantity then imples that U(t, 0)†U(t, 0) = I for every time t, showing the unitarity.

If the Hamiltonian H is time independent then the time evolution of a system can
be written down directly, and is given by the operator

U = e−
i
ℏHt. (1.1-34)

Unitary operations can be thought of as rotations in rotations in the space of state
vectors, and for qubits in particular they can be thought of as rotations on the Bloch
sphere. For state vectors, these operators act directly:

U |Ψ〉 = |Ψ′〉 , (1.1-35)

while for density matrices they ‘sandwich’ the state:∑
i

U |Ψi〉〈Ψi|U † = UρU † = ρ′. (1.1-36)

Since the Pauli matrices are unitary in addition to being Hermitian, they also represent
valid time evolutions of quantum states. In the context of information processing and
computing these time evolutions are often referred to as gates, in analogy to operations
acting on classical bits. The X gate, as an example, effects a bit flip in the computational
basis:

X (α |0〉+ β |1〉) = α |1〉+ β |0〉 . (1.1-37)
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On the Bloch sphere this represents a rotation by 180° around the x-axis (see Fig. 1.2a).
The other Pauli operators similarly correspond to 180° rotations about their respective
axes. A rotation about one of the coordinate axes by an arbitrary angle can be achieved
by exponentiating the Pauli operators. For instance, a rotation around Z by an angle θ
can be written as

Rz(θ) = e−i
θ
2
Z = cos

(
θ

2

)
I − i sin

(
θ

2

)
Z. (1.1-38)

More generally, a rotation around an axis n⃗ on the Bloch sphere (see Fig. 1.2b) is given
by

Rn⃗(θ) = e−i
θ
2
n⃗·σ⃗ = cos

(
θ

2

)
I − i sin

(
θ

2

)
n⃗ · σ⃗. (1.1-39)

Such rotations belong to the special unitary group of 2 × 2 matrices,3 abbreviated as
SU(2), and the operators {iσx, iσy, iσz} are said to be the generators of the group. Since
they correspond4 to rotations in 3D space, any rotation about an arbitrary axis can be
decomposed in terms of three rotations about a set of fixed axes, either using the Euler
angle decomposition

Rn⃗ = Ri(θ)Rj(ϕ)Ri(γ), (1.1-40)

or the Tait-Bryan decomposition

Rn⃗ = Ri(θ)Rj(ϕ)Rk(γ), (1.1-41)

where i, j, k are three orthogonal axes. In addition to the rotation in (1.1-39) an arbitrary
qubit unitary can also contain a global phase factor:

U = eiϕRn⃗(θ). (1.1-42)

1.1.6 Multi-qubit states
While single-qubit states are elements of C2, multi-qubit states live in spaces that

can be decomposed as tensors products of single-qubit spaces. A trivial example of a
two-qubit state is

|0〉 ⊗ |0〉 = |0〉 |0〉 = |00〉 ∈ C2 ⊗ C2. (1.1-43)

While the space of a two-qubit state can be written as a tensor product of single-qubit
spaces, the same is not always true for the states themselves. For example, the state

|Φ+〉 = |00〉+ |11〉√
2

, (1.1-44)

cannot be factored as |Ψ1〉 ⊗ |Ψ2〉, and states of this type are called entangled, whereas
states that can be factored are called separable. The state in (1.1-44) is one of the four

3This group consists of all 2× 2 unitary matrices with determinant 1.
4The group of rotations in 3D is called SO(3), and is technically not isomorphic to SU(2), but instead

there exists a two-to-one group homomorphism from SU(2) to SO(3). Loosely speaking, this is due to
the fact that for example Z and −Z are distinct elements in SU(2), since a qubit can have a global
phase, but in SO(3) they describe the same rotation. In other words, for qubits rotating 180° clockwise
and counter-clockwise is not the same.
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so-called Bell states, the other three being

|Φ−〉 = |00〉 − |11〉√
2

(1.1-45)

|Ψ+〉 = |01〉+ |10〉√
2

(1.1-46)

|Ψ−〉 = |01〉 − |10〉√
2

. (1.1-47)

The corresponding density matrices are

|Φ+〉〈Φ+| = 1

4
[I +X ⊗X − Y ⊗ Y + Z ⊗ Z] (1.1-48)

|Φ−〉〈Φ−| = 1

4
[I −X ⊗X + Y ⊗ Y + Z ⊗ Z] (1.1-49)

|Ψ+〉〈Ψ+| = 1

4
[I +X ⊗X + Y ⊗ Y − Z ⊗ Z] (1.1-50)

|Ψ−〉〈Ψ−| = 1

4
[I −X ⊗X − Y ⊗ Y − Z ⊗ Z] . (1.1-51)

These states form a basis for C2⊗C2 and are maximally entangled, which quantitatively
means

TrA[ρA,B] =
1

2
IB. (1.1-52)

Here, A and B label the two constituent subsystems, and TrA refers to the partial trace
over the system A:

TrA[ρA,B] =
∑
j

〈j|A ρA,B |j〉A . (1.1-53)

This can be understood as the local description of the system B, without any information
about the system A. What (1.1-52) says then is that the local description of one half of
a maximally entangled state is that of the maximally mixed state, for which

Tr[MI] = 0, M = n⃗ · σ⃗, (1.1-54)

meaning that the expectation value of Pauli any observable is zero, and any measure-
ment on the maximally mixed state gives a random result.5 The inseparability of a
maximally entangled state therefore means that a description of the component subsys-
tems is not possible, in the sense that one cannot make predictions about the outcomes
of measurements on the local subsystem. On the other hand, as (1.1-48)–(1.1-51) sug-
gest, it is possible to make predictions about the correlations between the measurement
outcomes of the local subsystems. In the case of the state |Ψ−〉, for instance, every
measurement of the form: M = n⃗ · σ⃗⊗ n⃗ · σ⃗, i.e. measurements in the same basis for the
two subsystems, will give anti-correlated measurement outcomes for the two subsystems.

5A qubit observable can also contain an I term, which shifts the expectation value away from zero.
In this case the expectation value of the observable on a maximally mixed state is the average of the
eigenvalues, but the measurement outcomes are still random.
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This property persists over arbitrarily large distances, and is one of the key features of
quantum systems that allow them to outperform classical ones in certain information
distribution and processing tasks [19, 20]. Interestingly, while the state |Ψ−〉 is anti-
correlated in every basis, there is no two-qubit state that is correlated in every basis,
since the corresponding density matrix

ρc =
1

4
[I +X ⊗X + Y ⊗ Y + Z ⊗ Z] , (1.1-55)

has a negative eigenvalue. One reason for this is that the gate which takes |Ψ−〉 to
the maximally correlated state is I ⊗ UNOT, where UNOT is the universal-NOT gate
for a single qubit. This gate has the effect of transforming a state into its orthogonal
complement, which for a density matrix can be expressed as

ρ 7→ I − ρ. (1.1-56)

On the Bloch sphere this corresponds to negating the Bloch vector: v⃗ 7→ −v⃗. It’s
easy to see that given three vectors on the Bloch sphere, for example ones aligned with
the coordinate axes, negating all of them does not preserve their handedness, and the
transformation can therefore not be described by a rotation. Consequently it is not
unitary, and is hence not allowed [21].6

1.1.7 Two-qubit gates
The simplest way to manipulate a two-qubit system is to act locally on the compo-

nents subsystems:
Ua ⊗ Vb(|Ψ〉a ⊗ |Φ〉b) = Ua |Ψ〉a ⊗ Vb |Φ〉b , (1.1-57)

however such operations cannot take a separable state to an entangled one, or vice versa.
An example of a gate that can generate an entangled state is the controlled-NOT gate

UCNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , (1.1-58)

here written in the basis {|i〉 ⊗ |j〉}:

|0〉 ⊗ |0〉 =


1
0
0
0

 , |0〉 ⊗ |1〉 =


0
1
0
0

 , |1〉 ⊗ |0〉 =


0
0
1
0

 , |1〉 ⊗ |1〉 =


0
0
0
1

 . (1.1-59)

This gate has the property of flipping the second qubit, called the target, conditional on
the first qubit, known as the control, being in the state |1〉:

UCNOT |0〉 |0〉 = |0〉 |0〉 (1.1-60)
UCNOT |1〉 |0〉 = |1〉 |1〉 , (1.1-61)

6A second reason is that if one considers the qubits to be represented by a physical system, for example
spin- 1

2
particles, and measures the spin operator S2, one finds: Tr[S2ρc] = 3ℏ2 which is unphysical since

S2 has eigenvalues s(s+ 1)ℏ2.
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By initializing the control qubit in a superposition of |0〉 and |1〉 an entangled state can
be produced:

UCNOT
|0〉+ |1〉√

2
|1〉 = |0〉 |0〉+ |1〉 |1〉√

2
= |Φ+〉 . (1.1-62)

The C-NOT gate cannot be written as a tensor product between two local operations,
instead it must be expressed through an interaction Hamiltonian

UCNOT = eiπHCNOT , (1.1-63)

where
HCNOT =

1

4
(I + Z ⊗X − I ⊗X − Z ⊗ I). (1.1-64)

The term Z ⊗ X describes the interaction between the two subsystems, and is what
enables the two qubits to become correlated, while the other three terms correspond
to local operations that are needed to generate the right entangling gate. Since they
commute with the interaction term they can be factored out:

UCNOT = eiπ/4
[
e−i

π
4
Z ⊗ e−i

π
4
X
]
ei

π
4
Z⊗X . (1.1-65)

1.2 Methods in quantum information
Although the basic constructs of quantum information, such as encoding informa-

tion in complex valued vectors, are relatively straightforward, they have nevertheless
yielded a rich field of research with a number of surprising and striking results. The
last few decades have also seen the development of a large set of both theoretical and
experimental methods for studying and manipulating quantum information. A few of
these results and methods will be summarised here.

1.2.1 The quantum circuit model
While the laws of quantum mechanics implicitly impose limitations on what kind of

information processing tasks can be carried out in nature, they do not define a structure
for how these tasks must be formulated or performed. Consequently, a host of different
models for quantum information processing have been developed, often being inspired
by or tailored to specific physical realisations of quantum states. Two widely used
paradigms are Adiabatic Quantum Computation [22], in which the solution to a problem
is gradually encoded in the ground state of a Hamiltonian, and One-Way Quantum
Computation [23], also known as Measurement-Based Quantum Computation (MBQC),
in which a computation is realised through measurements on a large entangled resource
state [24]. The most widely used model, however, is the quantum circuit model, the
basic constructs of which are the ones outlined in the previous section, namely qubits,
qubit gates and measurements of qubit states [15]. Additionally, the quantum circuit
model allows for operations that are conditioned on classical functions of measurement
outcomes, and assumes the ability to efficiently initialize any computational basis state⊗n

k=1 |jk〉.



CHAPTER 1 • QUANTUM INFORMATION
12

Computations in the circuit model are often drawn using circuit diagrams, in which
horizontal lines represent qubits, and vertical lines denote gates that are conditioned
on the state of a qubit (controlled operations). As an example, the preparation of a
maximally entangled state using the C-NOT gate in (1.1-58), followed by measurements
in the computational basis is drawn as

|0〉 H

|0〉

where H is the so-called Hadamard gate

H =
X + Z√

2
. (1.2-1)

An important concept within the circuit model is the idea of universality. A given set
of gates is said to be universal if they can be used to approximate, to an arbitrarily
high precision, any n-qubit unitary. Quite remarkably, this can be achieved using as
primitives only a single two-qubit gate, the C-NOT, as well as arbitrary single-qubit
gates [25].

It is important to note, however, that this notion of universality does not imply
that any limits within the circuit model are necessarily the same as the ones imposed by
quantum mechanics. For instance, the circuit model always deals with finite-dimensional
Hilbert spaces, whereas infinite-dimensional ones appear naturally in quantum mechan-
ics. These can also be used for information processing, and the related field is known
continuous-variable quantum information [26]. Even in finite dimensions there are ex-
amples of tasks not possible within the circuit model that nevertheless admit physical
realisations, and one such task is the focus of Publication 3.

1.2.2 The no-cloning theorem
A key property of classical information is the fact that it can be copied an arbitrary

number of times. This is important for being able to provide redundancy in information
storage, but also leads to problems for example in the context of data rights management.
Quantum information, on the other hand, has the property that it cannot be copied, or
cloned, as was proven in 1982 [27, 28]. The result is a consequence of the linearity of
quantum mechanics, and the proof is the following: consider a quantum state cloning
device copying a state from system C to the system T :

(α |0〉C + β |1〉C) |Ψ〉T = α |0〉C |Ψ〉T + β |1〉C |Ψ〉T
7→ α |0〉C |0〉T + β |1〉C |1T 〉 .

(1.2-2)

Now, suppose that |0〉C + β |1〉C = |Φ〉C . Then

|Φ〉C |Ψ〉T 7→ |Φ〉C |Φ〉T
= α2 |0〉C |0〉T + αβ |0〉C |1〉T + αβ |1〉C |0〉T + β2 |1〉C |1〉T .

(1.2-3)
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(1.2-2) and (1.2-3) are in contradiction with each other even though they describe the
same process. We can therefore conclude that copying an arbitrary quantum state is
not possible. Note that this is only true for unknown quantum states, since if one knows
how a given state was prepared, then performing an identical preparation on a second
quantum state naturally produces another copy of the first state.

1.2.3 Quantum teleportation
Even though it is not possible to copy a quantum state, it is nevertheless possible

to perfectly transfer a quantum state from one physical system to another [7, 29, 30].
This process has, somewhat misleadingly, been dubbed quantum teleportation, because
the two systems between which the quantum state is transferred do not need to be
in physical proximity to each other, and can in fact be separated by arbitrarily large
distances. The idea behind quantum teleportation is to exploit the fact that entangled
states have correlated measurement outcomes. If one wishes to teleport a state |ψ〉A
one first entangles it with a second system B, which is in turn entangled with a third
system C. A measurement on system A will now not reveal the initial state |ψ〉A, but
will instead yield a random outcome that is correlated with the system BC. Similarly,
a measurement of system B will be random but correlated with AC. Consequently, the
measurement outcome for system C will be correlated with the initial state in system
A. This hand-waving argument can be formalised. Consider the initial quantum state

|ψ〉A |Φ+〉BC . (1.2-4)

This state can equivalently be expressed in the Bell basis for the system AB:
1

2
(|Φ+〉AB |ψ〉C + |Φ−〉AB Z |ψ〉C + |Ψ+〉AB X |ψ〉C + |Ψ−〉AB XZ |ψ〉C). (1.2-5)

Measuring the state (1.2-4) in the AB Bell basis therefore projects the system C onto the
state |ψ〉, modified by a local operation that depends on the measurement outcome. As
long as the measurement outcome is known this local operation can be undone and the
initial state recovered, however since each of the four measurement outcomes are equally
likely the local description of the system C prior to receiving the measurement outcome
is that of the maximally mixed state. This is what prevents quantum teleportation from
enabling superluminal signalling.

The process of quantum teleportation of the state |Ψ〉 can be illustrated by the
following circuit:

|ψ〉A H

|0〉B H

|0〉C X Z |ψ〉C

The first two gates prepare the maximally entangled state |Φ+〉BC , while the two gates
before the measurements have the effect of changing the measurement basis from the
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computational one to the Bell basis. This follows from the fact that the CNOT and
Hadamard gate transform any Bell state into a computational basis state:

UA,BCNOT(H ⊗ I) |Φ+〉AB = |0〉A |0〉B
UA,BCNOT(H ⊗ I) |Φ−〉AB = |1〉A |0〉B
UA,BCNOT(H ⊗ I) |Ψ+〉AB = |0〉A |1〉B
UA,BCNOT(H ⊗ I) |Ψ−〉AB = |1〉A |1〉B .

(1.2-6)

Finally, the thick wires represent conditional feed-forward operations that undo the local
unitaries in (1.2-5). Quantum teleportation is a key building block for a multitude of
different quantum protocols, including superdense coding [19] and entanglement swap-
ping [31]. Interestingly, it is also possible to teleport a quantum state through a gate [32]:

|ψ〉A H |k〉

|0〉B H |l〉

|0〉C U UX lZk |ψ〉C

In other words, the teleported state |ψ〉 has the gate U applied to it (up to a local
unitary), even though the gate was applied on a different state before the teleporta-
tion. When the outcome of the Bell measurement is the |Φ+〉 state the exact gate U
is teleported. For certain gates the other measurement outcomes can also be used by
exchanging the order of the teleported gate and the local unitary, while modifying the
latter.7 An example of such a gate is the so-called T -gate, defined as an Rz(π/4) rota-
tion, which plays an important role in quantum error correction [33, 34, 35]. This gate
can actually be teleported using a simpler circuit [36,37]:

|A〉

|Ψ〉 S T |Ψ〉

where |A〉 = TH |0〉 and S = Rz(π/2). The state |A〉 can be seen as a resource that
contains the information about the gate T , allowing it to be applied without access
to the gate itself. This is widely exploited in the context of quantum error correcting
codes, which do not support the direct application of certain gates [38], but nevertheless
allow for the approximate preparation of resource states encoding those gates [35], com-
monly referred to as magic states. More generally, the different forms of teleportation of
both states and gates discussed above play an important role in proposals for photonic
quantum computation [23,24,39].

7This is possible for gates in the set {U |UC1U
† ∈ C2}, where C1 is the Pauli group and C2 is the

Clifford group.
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1.2.4 Fidelity
It is often useful to define a distance measure that quantifies how similar two quantum

states |Φ〉 and |Ψ〉 are, and a natural choice for such measure is the overlap of the
respective state vectors

F = |〈Ψ|Φ〉|2. (1.2-7)

This quantity is referred to as the fidelity of the state with respect to another state. In
case one of the states is a mixed state represented by a density matrix the corresponding
expression is

F = 〈Ψ|ρ|Ψ〉, (1.2-8)

and finally the fidelity between two density matrices ρ and σ is

F = Tr

[√√
ρσ

√
ρ

]
. (1.2-9)

The fidelity is exactly 1 when the two states are equal, and 0 when the two states are
orthogonal. For quantum gates a common measure of the fidelity is [40]

F =

〈
Tr

[√√
E(ρ)U(ρ)

√
E(ρ)

]〉
ρ

. (1.2-10)

where E and U are the experimental and ideal gates, respectively and the average is
taken over all states in order to remove the state-dependent nature of the quantity. In
practice it is typically averaged over a large number of different states randomly chosen
using for example the Haar measure [41].

1.2.5 Quantum state tomography
An important task in experimental quantum information is the characterisation of

quantum states. This can involve the estimation of certain properties of the state, for
example whether or not the state is entangled [42], or direct estimation of the quantum
state itself [43] as in the case of quantum state tomography. The destructive nature of
measurements in quantum mechanics, combined with the impossibility of copying quan-
tum information that follows from the no-cloning theorem, means that it is not possible
to reconstruct a quantum state from a single copy, or even to infer certain properties
of the state. In practice, measurements are instead performed on sets of independently
and identically prepared states. In quantum state tomography one tries to find the den-
sity matrix of an unknown quantum state by performing a set of measurements whose
outcomes completely characterise the state. In the case of a qubit state ρ1 this amounts
to estimating the expectation values

Tr
[
Xρ1

]
, Tr

[
Y ρ1

]
, Tr

[
Zρ1

]
(1.2-11)

and therefore three measurement settings are sufficient to characterise the state. For
multi-qubit states the number of measurement settings needed scales with the dimension
of the state, which grows exponentially in the number of qubits, and quantum state to-
mography is therefore an inefficient method for characterising large quatum states. This
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has spurred investigation into more efficient methods of quantum state tomography [44],
and state verification in general [45]. Quantum state tomography nevertheless remains
a useful experimental tool for smaller quantum systems.

The expectation values in (1.2-11) can be estimated by performing measurements
on a finite number of copies of the quantum state:

Tr[σiρ] ≈
N+λ+ +N−λ−

2
. (1.2-12)

A consequence of the finite number of measured copies is that this estimate will invariably
be noisy, with the number of events N± of the positive and negative eigenvalues of the
observable λ± following a Poisson distribution:

P (N±) =
mN±e−m

N±!
, (1.2-13)

where m is mean of the distribution. The noise in the expectation values means that an
explicitly reconstructed density matrix such as

ρexp =
1

2
(I +X〈X〉exp + Y 〈Y 〉exp + Z〈Z〉exp) (1.2-14)

will often be unphysical, with Tr[ρ2exp] > 1 and ρexp ≱ 0. To get a good estimate of the
density matrix one therefore generally needs to fit the acquired data to a physically valid
parameterisation of the density matrix [46]. One such parameterisation is the following:

ρ =
T †T

Tr[T †T ]
, (1.2-15)

where T is a matrix of the same dimension as ρ. This parameterisation yields a matrix
of with trace 1 that is clearly Hermitian, and also positive semidefinite since

〈Ψ|T †T |Ψ〉 = 〈Φ|Φ〉 ≥ 0. (1.2-16)

Through the Cholesky decomposition any density matrix can be written on the form
(1.2-15) with T being a lower triangular matrix with real and positive diagonal entries.
In the case of a qubit state

T (⃗t) =

[
t1 0

t2 + it4 t3

]
, t⃗ ∈ R4. (1.2-17)

This is convenient in practice because it allows (1.2-15) to be inverted, and an initial
guess for a density matrix can be mapped to the vector t⃗ and fed to a numerical optimizer.

A common way of fitting a density matrix to the acquired data is using the maximum
likelihood technique [47, 48], which is a method for finding the density matrix that has
the highest probability of having produced the experimental data. To this end, one
needs to define a likelihood function expressing this probability. If the number of events
Ni,s of a certain outcome i for the observable σs is sufficiently high, then the Poisson
distribution of these events can be approximated by a Gaussian distribution thanks to



1.2. METHODS IN QUANTUM INFORMATION
17

the central limit theorem. The probability of getting N events with a certain outcome
for a given observable therefore obeys the following proportionality:

P (Ni,s, t⃗) ∝ exp

[
−(N i,s(⃗t)−Ni,s)

2

2σ2i,s

]
, (1.2-18)

where N i,s(⃗t) is the number of expected events for the density matrix ρ(⃗t), Ni,s is the
number of recorded events, and σi,s is the standard deviation of the number of events,
which due to the underlying Poisson statistics can be approximated by

√
N i,s(⃗t). The

total probability that a given density matrix produced the measured data can then be
expressed, up to a normalization constant A, as

P (⃗t) =
1

A

∏
i,j

exp

[
−(N i,s(⃗t)−Ni,s)

2

2N i,s(⃗t)

]
. (1.2-19)

This function needs be maximized numerically, however in practice it is more convenient
to instead maximize the log of the function, or equivalently its negation

L(⃗t) =
∑
i,s

(N i,s(⃗t)−Ni,s)
2

2N i,s(⃗t)
, (1.2-20)

where the normalization constant was disregarded since it does not affect the location
of the minimum.

To estimate the effect of the counting statistics, as well as other experimental imper-
fections, on some quantity that is a function of the reconstructed state, it is common to
perform a so-called Monte-Carlo simulation of the measurement. This involves defining
a probability distribution for the various experimental parameters, repeatedly sampling
from them, constructing a new density matrix using the maximum likelihood method
described above at each step, and then calculating the relevant function, for example
the fidelity F . This is repeated until a convergence condition is met. One way to define
this is through a confidence, for example one may want to keep running the Monte-Carlo
simulation until one is 95% confident that the uncertainty in mean value of the fidelity
is below a certain threshold.

According to the central limit theorem, if n samples are drawn from a distribution
with mean and variance µ and σ, respectively, and the mean of the samples is Fn, then
the quantity

Z =
Fn − µ

σ/
√
n

(1.2-21)

follows a standard normal distribution for sufficiently large n, i.e. a normal distribution
with zero mean and unity standard deviation. The variable Z is called the standardised
version of Fn and can be used to express the confidence in the estimate of µ. For
example

P (|Z| < z) = p (1.2-22)
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means that the probability of the error in the estimate of the mean, |Fn − µ|, being
more than z in units of σ/

√
n is p. The standard deviation σ can be estimated from the

samples by

Sn =

√√√√ 1

n− 1

n∑
k

(
Fk −Fn

)2
. (1.2-23)

Substituting in the estimate of the standard deviation, the 95% confidence condition is

P

(∣∣∣∣Fn − µ

Sn/
√
n

∣∣∣∣ < 1.96

)
= P

(∣∣Fn − µ
∣∣ < 1.96

Sn√
n

)
= 0.95. (1.2-24)

where the value 1.96 comes from the fact that for a standard normal distribution

1√
2π

∫ 1.96

−1.96
e−x

2/2dx ≈ 0.95. (1.2-25)

The condition for being 95% confident that
∣∣Fn − µ

∣∣ < ϵ can now be expressed as

1.96
Sn√
n
< ϵ. (1.2-26)

1.2.6 Generalized measurements
The projective measurements described in Section 1.1.4 are not the only kind of

measurements allowed in quantum mechanics. An example of a more general type of
measurement is a positive operator-valued measurement, or POVM for short. A POVM
is defined by a set of Hermitian positive semidefinite operators {Em}, called the POVM
elements, that sum to identity: ∑

m

Em = I. (1.2-27)

The number of POVM elements, and by extension possible measurement outcomes, can
be arbitrarily high. Projective measurements are a special case of POVMs, for which the
POVM elements are projectors, i.e. E2

m = Em. In analogy with projective measurements,
the probability of a given outcome m of a POVM on a state ρ is straightforwardly given
by

Pm = Tr[Emρ]. (1.2-28)

Unlike in the case of projective measurements, the post measurement state of a POVM is
not well defined, but instead depends on its decomposition into measurement operators
Mm:

Em =M †
mMm, (1.2-29)

which is not unique since UMm, where U is any unitary, is also a measurement operator
describing the same POVM element. Given a fixed choice of measurement operators
though, the post measurement state can be expressed as

MmρM
†
m

Tr[M †
mMmρ]

. (1.2-30)
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In practice the operators Mm are a function of the physical realisation of the POVM. In
the event that the POVM elements are rank-1 they are proportional to pure quantum
states, and the measurement outcome m can be understood as revealing that the state
before the measurement was not one orthogonal to Em, since those are the only states
which would never yield the outcome m.

1.2.7 Quantum channels
While closed quantum systems always follow a unitary time evolution the same is not

true for open quantum systems, i.e. systems that interact with an external environment.
Consider, as an example, the state

|Ψ〉env,a = |+〉env |0〉a , (1.2-31)

evolving under the Hamiltonian
H =

π

4
Z ⊗X, (1.2-32)

for a time 0 ≤ t ≤ 1. The action of this Hamiltonian is to entangle the system a with
the ‘environment’ system env. The time-evolved state is

e−it
π
4
Z⊗X |Ψ〉env,a =

1√
2

(
e−it

π
4
Xa |0〉env |0〉a + eit

π
4
Xa |1〉env |0〉a

)
. (1.2-33)

Using the shorthand notation cos(π4 t) = ct and sin(π4 t) = st (1.2-33) can be expanded
as

|Ψ(t)〉env,a =
1√
2

(
ct |0〉env |0〉a − ist |0〉env |1〉a + ct |1〉env |0〉a + ist |1〉env |1〉a

)
. (1.2-34)

The local description of the system a, also referred to as the reduced dynamics, is given
by tracing out the environment:

ρa(t) = Trenv
[
|Ψ(t)〉〈Ψ(t)|env,a

]
= c2t |0〉〈0|+ s2t |1〉〈1| . (1.2-35)

Substituting λ = 2s2t this can be rewritten as

ρa = (1− λ) |0〉〈0|+ λ
I

2
. (1.2-36)

The time evolution therefore has the effect of interpolating the system b between its
initial state and the maximally mixed state. This process is called depolarization, and
the corresponding map is referred to as a depolarizing map.8 The fact that these sorts
of non-unitary transformations emerge naturally when a system interacts with an envi-
ronment motivates the study of more general maps, referred to as quantum channels.
The generic form of such a map E is

E(ρa) = Trenv
[
U(ρenv ⊗ ρa)U

†
]
. (1.2-37)

8Technically the Hamiltonian used here does not generate a depolarizing map, because it only has this
effect for the computational basis states {|0〉 , |1〉}. However, by adding another qubit to the environment
a depolarizing map for any input state can be achieved: e−itπ

4
Z⊗I⊗Xe−itπ

4
I⊗X⊗Z |+〉b |0〉c |Ψ〉a has the

effect of depolarizing the system a when taking the trace over b, c.
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Here U is the unitary evolution of the joint system consisting of the environment and
the local system a. Taking, without loss of generality, ρenv = |ϕ〉〈ϕ|env and evaluating
the partial trace:

E(ρa) =
∑
j

〈j|env U
[
|ϕ〉〈ϕ|env ⊗ ρa

]
U † |j〉env

=
∑
j

EjρE
†
j

(1.2-38)

one obtains the so-called operator-sum representation of the map E, which turns out to
often be a more convenient representation. Here, the operators Ej = 〈j|U |ϕ〉, referred to
as the Kraus operators of map, act on the system a. Since the map E is trace preserving9

it follows that that ∑
j

EjE
†
j = I. (1.2-39)

The physical interpretation of this description is that the operation Ej is applied with
probability Tr[EjρEj ] [15]. As an example of a quantum channel in this picture, the
aforementioned depolarizing channel has an operator-sum representation given by10

E1 =

√
1− 3

4
λI, E2 =

√
λ

2
X, E3 =

√
λ

2
Y, E4 =

√
λ

2
Z. (1.2-40)

To be a quantum channel the map E has to satisfy the following conditions:

1. (Trace preserving) Tr
[
E(ρ)

]
= Tr

[
ρ
]

(1.2-41)
2. (Linearity) E(αρ1 + βρ2) = α E(ρ1) + β E(ρ2) (1.2-42)
3. (Completely Positive) ρab ≥ 0 =⇒ (Ia ⊗ Eb)(ρab) ≥ 0 (1.2-43)

and such transformations are often referred to as Completely Positive Trace Preserving
(CPTP) maps. The three above conditions are equivalent to a map being able to be
expressed as the reduced dynamics using (1.2-37), and this equivalence is a consequence
of the Stinespring dilation theorem [49,50]. The condition of complete positivity means
that even if E only acts on a subsystem of a composite system the density operator of
the subsystem remains positive semidefinite. There are several equivalent descriptions
of CPTP maps, one being using the so-called χ matrix. In this description, instead of
using the Kraus operators Ej one decomposes them in terms of a fixed set of operators
{Ẽm} that form a basis for the set of operators in the space Ej acts on:

Ej =
∑
m

ejmẼm. (1.2-44)

Inserting this into (1.2-38) one obtains

E(ρ) =
∑
jmn

ejme
∗
jnẼmρẼ

†
n =

∑
mn

χmnẼmρẼ
†
n (1.2-45)

9The local dynamics have to conserve probability. One can also consider evolutions where probability
is not conserved, for example if a particle disappears from the local system. In this case (1.2-39) can be
relaxed to an inequality.

10The fact that this representation consists of four operators is why the channel cannot be realised
through an interaction with a two-dimensional environment system.
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where the coefficients
χmn =

∑
j

ejme
∗
jn (1.2-46)

are the matrix elements of the positive semidefinite and Hermitian matrix χ. This
representation is particularly convenient when experimentally reconstructing a quantum
channel, as will be discussed in Section 1.2.9. Yet another equivalent representation is
given by the Choi matrix, defined as

CE = (I ⊗ E)(|Ω〉〈Ω|), (1.2-47)

where |Ω〉〈Ω| is the unnormalized maximally entangled state

|Ω〉〈Ω| =
∑
ij

|i〉〈j| ⊗ |i〉〈j| . (1.2-48)

In other words, the Choi matrix can be thought of as the density matrix one obtains
after applying the map E to one half of a maximally entangled state. The Choi matrix
uniquely defines the map E, and its action on a given state can be found as

E(ρ) = TrA
[
(ρTA ⊗ IB)CE

]
. (1.2-49)

This can be seen by inserting (1.2-47) and (1.2-48) into (1.2-49):

E(ρ) =
∑
ij

TrA
[(
ρTA ⊗ IB

) (
|i〉〈j|A ⊗ E(|i〉〈j|B)

)]
=
∑
ijk

〈k|A
(
ρTA ⊗ IB

)(
|i〉〈j|A ⊗ E(|i〉〈j|B)

)
|k〉A .

(1.2-50)

Since only the terms for which j = k are non-zero, this reduces to

∑
ij

〈j|ρTA|i〉E(|i〉〈j|B) = E

∑
ij

ρij |i〉〈j|B


= E(ρ).

(1.2-51)

The Choi representation is a consequence of the Choi–Jamiołkowski isomorphism, which
is a one-to-one map between quantum states and linear maps [51]. This correspondence
has many practical uses, as properties of the map get transformed into properties of
the state, that are often easier to study. For example, completely positive maps corre-
spond to positive Choi operators, the completely depolarizing channel corresponds to
the maximally mixed state, unitary transformations get mapped to pure states and so
on [52].

One way to interpret (1.2-49) is as gate teleportation through an entangled state
using an auxiliary system C, as described in Section 1.2.3. More concretely, consider a
state ρA being teleported through the channel, together with an unnormalized maximally
entangled state:

ρA ⊗ |Ω〉〈Ω|CB , (1.2-52)
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and then apply the map E to the system B:

ρA ⊗ [(I ⊗ E)(|Ω〉〈Ω|CB)] = ρA ⊗
∑
ij

|i〉〈j|C ⊗ E(|i〉〈j|B)

= ρA ⊗ CE.

(1.2-53)

To perform the gate teleportation one projects the system AC onto the state |Ω〉AC :

〈Ω|AC ρA ⊗ CE |Ω〉AC =
∑
ij

〈i|A ρA |j〉A ⊗ 〈i|C CE |j〉C

=
∑
ij

ρij 〈i|C CE |j〉C .
(1.2-54)

Multiplying by 〈j|j〉C inside the sum yields∑
ij

ρij〈j|j〉C 〈i|C CE |j〉C =
∑
ij

〈j|C ρij |j〉〈i|C CE |j〉C

=
∑
j

〈j|C (ρTC ⊗ I)CE |j〉C

=TrC
[
(ρTC ⊗ I)CE

]
= E(ρ).

(1.2-55)

This interpretation also highlights the fact that state is mapped from one Hilbert space
L(HA) to a second one L(HB):

E : L(HA) → L(HB) (1.2-56)

and the two systems A and B are often referred to as the input and output spaces of the
map, respectively. Here L(HA/B) denotes the space of linear operators on the spaces
HA/B, meaning that

|Ψ〉A ∈ HA, |Ψ〉〈Ψ|A ∈ L(HA). (1.2-57)

The use of the unnormalized entangled states guarantees that the projection onto |Ω〉
always succeeds, and the gate is teleported without any additional local operations.

The fact that the Choi matrix of CP maps can be thought of as an unnormalized
density matrix motivates a notation using state vectors in the underlying state space.
To distinguish them from regular state vectors they are written using a double ket. For
example, the identity operator can be written [53]

|1〉〉 =
∑
j

|j〉 ⊗ |j〉 , (1.2-58)

which is the same as the entangled state in (1.2-48). More generally, any map whose
Choi matrix corresponds to a pure state, for example a unitary transformation

T (ρ) = UρU †, (1.2-59)
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can be written as a double ket:

|T 〉〉 = I ⊗ T |1〉〉. (1.2-60)

If T is described by a matrix then (1.2-60) has the simple interpretation of |T 〉〉 being
a column vector consisting of the stacked columns of the corresponding matrix. For
instance

U =

[
a b
c d

]
, |U〉〉 = I ⊗ U |1〉〉 =


a
c
b
d

 . (1.2-61)

Naturally, the Choi matrix corresponding to the map T is given by the outer products
of the state vectors:

C = |T 〉〉〈〈T |. (1.2-62)

In the most general case, when C is not pure, one simply recovers (1.2-47) with |Ω〉〈Ω| =
|1〉〉〈〈1|.

1.2.8 Process matrices
The quantum channel formalism outlined in the previous section is sufficient to

describe any quantum CPTP map. For characterizing such maps, however, it is useful
to introduce additional structure, of which so-called process matrices are an example.
Process matrices describe the causal relations within a quantum channel, and were
introduced to study processes with an indefinite causal order [54]. Formally, a process
matrix

W ∈ L(HAin ⊗HAout ⊗HBin ⊗HBout) (1.2-63)

is a positive semidefinite Hermitian matrix that obeys the normalization condition

Tr
[
W (P TA ⊗ T TB )

]
= 1, (1.2-64)

where
PA ∈ L(HAin ⊗HAout), TB ∈ L(HBin ⊗HBout) (1.2-65)

are any Choi matrices describing CPTP maps. A process matrix encodes the joint
probability distribution for local operations performed in the laboratories A and B,
and the measurement probabilities for these operations can be expressed through a
generalization of the Born rule:

P (P i
A, T

j
B) = Tr

[
W (P iA ⊗ T iB)

T
]
. (1.2-66)

Here, P i
A, T j

B are completely positive, but not necessarily trace preserving maps, and P iA,
T iB are their corresponding Choi matrices. A set of CP maps {P i

A} with the property
that the sum

∑
i P i

A is a CPTP map is called an instrument. The concept of instruments
encompasses both channels and measurements, and can be used to describe either or a
combination of both. The maps P iA = P iAinAout do not necessarily map states from Hibert
spaces with the same dimension. For instance, an instrument for which dim(Aout) = 1
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represents a measurement after which the post-measurement state is discarded, and
where P i are the corresponding POVM elements.

The utility of process matrices lies in their ability to express the causal relation
between the operations performed in local laboratories, which are in turn represented
by instruments. The most simple case is one in which the operations in the laboratories
A and B have a fixed causal order, such as A being able to signal to B but not vice versa.
This is denoted by A ≺ B, and any process WA≺B can be expressed by an ordinary
quantum circuit. A straightforward example of this is a process in which Alice sends
a quantum state ρ to Bob through a shared channel C, which can be expressed in the
following way [54]:

WA≺B = ρAin ⊗ CAoutBin ⊗ 1Bout , (1.2-67)

where CAoutBin is the Choi matrix of the channel. The necessary conditions for a matrix
W to describe a causally ordered process A ≺ B are [53]

W ≥ 0 (1.2-68)
Tr[W ] = dAoutdBout (1.2-69)

1Bout

dBout
⊗ TrBout [W ] =W (1.2-70)

1Aout

dAout
⊗ TrBoutBinAout [W ] = TrBoutBin [W ], (1.2-71)

where d{·} is the dimension of the indicated system. It’s easy to see that the process
matrix in (1.2-67) satisfies the first and third conditions, while the third follows from
the fact that for a map E : L(A) → L(B) with Choi operator CA,B one has

Tr[CA,B] = dA. (1.2-72)

Note that in (1.2-67) Aout is the input system of the Choi operator. The fourth and last
condition is equivalent to

1Bin ⊗ 1Aout ⊗ Tr[CBinAout ] = dAoutTrBin [CBinAout ], (1.2-73)

which is always satisfied when C is a CPTP map. This is easy to see by writing the Choi
matrix using the Kraus operators Em:

TrAout [CBinAout ] =
∑
ijk

〈k|Aout |i〉〈j|Aout |k〉Aout ⊗
∑
m

Em |i〉〈j|Ain
E†
m

=
∑
km

Em |k〉〈k|Ain
E†
m

=
∑
m

EmE
†
m = 1Ain .

(1.2-74)

Process matrices can also be used to describe processes which quantum circuits cannot,
and which do not have a definite causal structure. The most well known example of this
is the quantum switch [55], whose corresponding process matrix cannot be written as
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a mixture of causally ordered process matrices, and is said to have an indefinite causal
structure. While the quantum switch has seen experimental realisations [11, 56] it is
not the most general causal structure that can be described in this formalism. There
also exists valid process matrices that violate so-called causal inequalities, analogous to
how entangled states can exhibit non-locality and violate Bell inequalities [54, 57]. At
the moment, however, it is not fully known whether such processes are allowed within
quantum mechanics [58,59].

1.2.9 Quantum process tomography
In analogy with quantum state tomography discussed in Section 1.2.5, quantum

process tomography is a method for reconstructing quantum channels. The Choi rep-
resentation of quantum channels suggests that this can be done by sending one half of
an entangled state through a channel, and then performing quantum state tomography
on the full state [60]. This is indeed possible and has been demonstrated for small
systems [61], however the requirement of a maximally entangled state makes the tech-
nique experimentally challenging. A more practical method is to instead send several
different states through the channel, and to perform quantum state tomography on the
resulting output states. The set of input states must be chosen such that the map is
fully determined by the input-output relations for those states, and such sets are called
tomographically complete.

If the channel can be assumed to be unitary, which is often the case experimentally,
the process tomography can be simplified, since a unitary transformation only has d2 free
parameters, as opposed to the d4 − d2 free parameters of the χ matrix. Since the global
phase of a unitary transformation is not directly measurable, process tomography on a
unitary in practice only involves determining d2−1 parameters. This can be done by first
sending d− 1 computational basis states through the channel and performing quantum
state tomography on the output states, thereby yielding the columns of the unitary
matrix up to a relative phase. The phases between the columns can be determined by
sending an additional d− 1 states from a superposition basis.

For two-dimensional unitary transformations there is a straightforward geometric
approach for reconstructing the corresponding matrix. Consider the initial and final
state vectors |H〉, |+〉 and U |H〉 = |H ′〉, U |+〉 = |+′〉 on the Bloch sphere. Let the
corresponding Bloch vectors be v⃗H , v⃗H′ , v⃗+ and v⃗+′ , then construct the two difference
vectors

∆v⃗H = v⃗H − v⃗H′ , ∆v⃗+ = v⃗+ − v⃗+′ . (1.2-75)

The rotation axis n⃗ of the unitary is then simply the normal of the plane spanned by
∆v⃗H and ∆v⃗+:

n⃗ =
∆v⃗H ×∆v⃗+

‖∆v⃗H ×∆v⃗+‖
(1.2-76)

This is illustrated in Figs. 1.3 and 1.4. The rotation angle θ can be determined from
the input-output relations of either state by first projecting the initial and final Bloch
vectors into the plane of rotation:

p⃗H = v⃗H − (v⃗H · n⃗)n⃗ p⃗H′ = v⃗H′ − (v⃗H′ · n⃗)n⃗, (1.2-77)
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(a) U |H⟩ (b) U |+⟩

Figure 1.3: Reconstruction of a unitary. The rotation axis of a unitary can be experimentally
reconstructed by first constructing the difference between the initial and final probe states under
the unitary transformation. These difference vectors are shown in red for initial states |H〉 and
|+〉 in (a) and (b) respectively. The difference vectors lie in two parallel planes, indicated by the
shaded regions, whose normal defines the rotation axis of the unitary.

and then finding the angle between these two vectors (see Fig. 1.4):

θH = cos−1

(
p⃗H · p⃗H′

‖p⃗H‖ ‖p⃗H′‖

)
n⃗ · (p⃗H × p⃗H′)

‖n⃗ · (p⃗H × p⃗H′)‖
. (1.2-78)

The second term in the expression above corrects the sign of the angle θ to match
the definition of n⃗. By calculating the corresponding angle for the second input state
and interpolating between them to maximize the fidelity for both states one typically
obtains a sufficiently good matrix that any further numerical optimization is redundant.
In the case where either difference vector ∆v⃗H or ∆v⃗+ is small it can suffer from a large
uncertainty, however this does not affect the direction of the normal n⃗, since the small
difference vector will be approximately confined to a plane orthogonal to the second
difference vector. The corresponding rotation angle θ will exhibit a similar uncertainty,
but a good estimate of this angle can always be found from the complementary state.
In the event that both difference vectors are small the direction of the normal will be
very unstable, but this is expected since this condition implies that the transformation
is close to the identity map, which does not have a well defined rotation axis.

In the case of a more general channel acting on a d-dimensional Hilbert space one
needs to probe it with d2 states whose corresponding density matrices form a basis for
the space of d×d matrices. Perhaps surprisingly, such a basis does exist and an example
for qubit states is

|H〉〈H| , |V 〉〈V | , |+〉〈+| , |L〉〈L| , (1.2-79)
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Figure 1.4: Rotation angle. The eigenphase θ : U |λ±〉 = e∓iθ/2 |λ±〉 of the unitary U can be
found as the angle between the initial and final Bloch vectors projected into the plane of rotation.
The blue arrow indicates the rotation axis of the transformation, which is normal to the two
shaded planes. Experimentally the angle θ cannot be distinguished from 2π − θ by performing
tomography on the unitary alone.

with the off-diagonal elements in the computational basis being given by

|1〉〈0| = |+〉〈+| − i |L〉〈L|+ 1− i

2
(|H〉〈H|+ |V 〉〈V |),

|0〉〈1| = |+〉〈+|+ i |L〉〈L| − 1 + i

2
(|H〉〈H|+ |V 〉〈V |).

(1.2-80)

Since quantum channels are linear, the input-output relations for the basis states com-
pletely determine the map. More concretely, if {σj} is the aforementioned matrix basis
with which the channel is probed, then any densiy matrix can be written

ρ =
∑
j

pjσj , (1.2-81)

and the action of the map on the basis states is

E(σj) =
∑
k

λjkσk. (1.2-82)

Consequently, the action on a generic state ρ can be expanded as

E(ρ) = E

∑
j

pjσj

 =
∑
jk

λjkσk. (1.2-83)

The coefficients λjk can be found by projecting |E(σk)〉〉 onto the vectorized basis. In
the general case this vectorized basis of the matrices can be non-orthogonal, and the
decomposition in such a basis can be computed as

λk =

λ1k...
λdk

 = (BTB)−1BT |E(σk)〉〉, (1.2-84)



CHAPTER 1 • QUANTUM INFORMATION
28

where the matrix B is simply the matrix containing the vectorized basis elements:

B =
[
|σ1〉〉 . . . |σd〉〉

]
. (1.2-85)

The form of the χ-matrix (1.2-46) depends on the choice of operators Ẽj used to represent
it. After these have been fixed, one can also decompose the action of them on the probe
states {σj}:

ẼmσjẼ
†
n =

∑
k

βmnjk σk. (1.2-86)

The coefficients βmnjk can be obtained in analogy with (1.2-84) and can be represented
as a matrix

β =



β1111 · · · β1d11 β2111 · · · β2d11 · · · βd111 · · · βdd11
...

...
...

...
...

...
β111d · · · β1d1d β211d · · · β2d1d · · · βd11d · · · βdd1d
β1121 · · · β1d21 β2121 · · · β2d21 · · · βd121 · · · βdd21

...
...

...
...

...
...

β112d · · · β1d2d β212d · · · β2d2d · · · βd12d · · · βdd2d
...

...
...

...
...

...
β11d1 · · · β1dd1 β21d1 · · · β2dd1 · · · βd1d1 · · · βddd1

...
...

...
...

...
...

β11dd · · · β1ddd β21dd · · · β2ddd · · · βd1dd · · · βdddd



. (1.2-87)

By combining the decompositions (1.2-83) and (1.2-86) with the definition of the map
(1.2-45) one gets

E(σk) =
∑
mn

χmnẼmσkẼ
†
n =

∑
lmn

χmnβ
mn
kl σl =

∑
l

λklσl, (1.2-88)

and since the matrices {σl} are linearly independent by virtue of being a basis the
expression above has to hold separately for each l:∑

mn

χmnβ
mn
kl = λkl ⇐⇒ β|χ〉〉 = |λ〉〉. (1.2-89)

The matrix elements of χ can then be found by inverting the matrix β:

|χ〉〉 = β−1|λ〉〉. (1.2-90)

The explicitly constructed matrix χ is not guaranteed to be Hermitian or positive
semidefinite. To address this, the Hermitian part of the matrix can be found by taking

χH =
χ+ χ†

2
. (1.2-91)

Diagonalizing χH and setting all the negative eigenvalues to zero:

D = U †χHU, χ+
H = UD+U †, (1.2-92)

then ensures a Hermitian and positive semidefinite matrix χ+
H , which can be used as

the initial guess for a maximum likelihood optimization in analogy with quantum state
tomography.
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1.3 Quantum communication
Due to the impossibility of fully characterizing a single copy of a quantum state

discussed in Section 1.2.2, two parties wanting to exchange quantum information with
each other cannot use a classical transmission channel, but instead need to exchange
quantum states. This naturally leads to the idea of communicating using quantum bits
instead of classical bits, and this is the field of quantum communication. Allowing two
parties to exchange qubit states opens up a host of surprising applications, not only in the
transmission of unknown quantum states through for example the previously described
quantum teleportation [7, 29, 30], but in the transmission of classical information as
well. An example of the latter is superdense coding [19,62], which allows two parties to
exchange two bits of classical information by only exchanging a single qubit.

1.3.1 Quantum key distribution
The most important communication task enabled by using quantum states is quan-

tum key distribution (QKD), which is a family of methods for two parties to establish a
secure cryptographic key without an eavesdropper being able to gain information about
the key. It was first described in a 1984 paper by C.H. Bennett and G. Brassard and
the associated protocol is known as BB84 [5]. The protocol works by one party, com-
monly referred to as Alice, generating a random bit, which is then randomly encoded
either in the X or Z basis of a quantum state. She then transmits this state to Bob,
who randomly picks one of the two bases to measure it in. If Alice and Bob pick the
same basis the bit Alice encoded will be revealed to Bob with certainty, and if they pick
different bases Bob’s measurement result will be uncorrelated with Alice’s encoded bit.
After many states have been sent and measured Alice and Bob openly share their bases
for each round, and discard all events where they picked different bases. Alice and Bob
now share a random string that can be used as a basis for secure communication, for
example using a one-time pad encoding [63]. Any eavesdropper attempting to measure
the particles before they reach Bob will be unable to re-prepare the same state again
after the measurement with unity probability, and will therefore induce imperfect cor-
relations between Bob’s measurement results and Alice’s encoding in the rounds where
they picked the same measurement basis. By revealing part of the shared random string
they can find errors stemming from this imperfect correlation and thereby detect the
presence of an eavesdropper.

1.3.2 Counterfactual communication
While many quantum communication schemes are studied for their potential applica-

tions in real-world scenarios, there are also ones that serve to push our understanding of
quantum mechanics; counterfactual communication (CFC) is an example of the latter.
At a fundamental level, all forms of communication involve the encoding of informa-
tion in some degrees of freedom of a collection of particles, which are then transmitted
from one party to another. Classically, a particle carrying a single bit of information
can only be used to transmit that same amount of information, whereas in quantum
mechanics superdense coding allows a single bit particle to transmit two bits of informa-
tion. In contrast, counterfactual communication is a form of communication in which
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(a) Mach-Zehnder interferometer (b) Elizur-Vaidman bomb tester

Figure 1.5: Interaction-free measurement (a) A photon entering a balanced Mach-Zehnder
interferometer from the lower left port will exit in the upper right port with probability 1. (b) If
an object blocks one of the paths, a photon entering the interferometer has a 25% chance to exit
the interferometer in either port. Detection of a single photon in the upper output port thereby
signals the presence of an object in one of the arms, without the photon having ever interacted
with the object in question. This phenomenon has been termed interaction-free measurement.

no particles are exchanged between the two parties communicating. The basis for coun-
terfacutal communication are so-called interaction-free measurements, first illustrated
by the Elizur-Vaidman bomb tester thought experiment [64], in which they imagined
a bomb which explodes if touched by a single photon. They posed the question if the
presence of such a bomb could be detected using light, without detonating the bomb in
the process, and went on to describe a method of accomplishing just that.

Consider the Mach-Zehnder interferometer pictured in Fig. 1.5a; a photon entering
the interferometer from the bottom left, always exits in the upper right mode due to
the destructive interference of the two photon paths leading to the upper port. If the
bomb is placed in one arm of the interferometer the situation changes. As illustrated
in Fig. 1.5b, there is a 50% chance that the photon will be transmitted through the
first beamsplitter and detonate the bomb, however there is an equal probability that
the photon is reflected upwards and when it hits the second beamsplitter it now has a
50% probability of exiting the interferometer in the upper port, since the wavefunction
in the lower part of the interferometer is blocked by the bomb and the photon does not
interfere with itself. If a detector placed in the upper output port of the interferometer
detects a photon that implies that the bomb was present in the interferometer, and
moreover that the photon traversed the upper path and therefore did not interact with
the bomb. Consequently, 25% of the time this device successfully detects the presence
of the bomb without detonating it. This process of indirectly detecting an object has
been dubbed interaction-free measurement [65].

From this setup a simple communication protocol can be realised, illustrated in
Fig. 1.6. Both beamsplitters reside within Alice’s laboratory, but one arm of the inter-
ferometer passes through Bob’s laboratory. If Bob does nothing the detector D0 will
always click, but if he blocks his path there is a 25% probability of the detector D1

clicking. Bob can therefore deterministically transmit a logical 0 by leaving the path
unblocked, and probabilistically transmit a logical 1 by blocking his path. While this
method of communication is very noisy, with a 50% error probability for the logical
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(a) Transmission of a 0-bit (b) Transmission of a 1-bit

Figure 1.6: Interaction-free communication. Using a Mach-Zehnder interferometer a basic
communication protocol can be realised, in which Bob transmits a classical bit to Alice without
Bob ever sending a particle to Alice. The two shaded areas denote the laboratories of Alice and
Bob, and the remaining space constitutes a transmission channel. Depending on whether not
Bob blocks the photon path through his laboratory he can, probabilistically, transmit a 0- or a
1-bit to Alice. (a) If Bob leaves his mirror unblocked, the photon sent by Alice will always cause
a click in the detector D0. (b) Whenever Bob blocks the photon path through his lab there is a
25% probability that the photon will leave the second beamsplitter in the upper port, and make
detector D1 click.

1, it is nevertheless remarkable that Bob is able to transmit information to Alice with-
out directly sending any particles to her. However, since the photon does enter Bob’s
laboratory and then propagates back to Alice, it can be argued that the protocol is
not truly counterfactual even though Bob never interacts with the particle. Salih et al.
showed that by considering a more complex interferometer consisting of several nested
Mach-Zehnder interferometers, illustrated in Fig. 1.7, it becomes possible to perform
counterfactual communication with an arbitrarily high probability of success [66]. Some
authors have however questioned the counterfactuality of the protocol, sparking a long-
running debate over the issue [67, 68, 69, 70, 71, 72]. The disagreement stems from the
presence of a so-called weak trace in Bob’s laboratory, and the difficulty in elucidating
exactly what the past of a quantum particle is [73].

1.3.3 Weak measurements
The weak trace of a particle is related to the concept of weak measurements, which

are a kind of measurement that only induce a minimal perturbation on the system
being measured [74]. This is in contrast to projective measurements, sometimes called
strong measurements in this context, that maximally disturb the system being measured,
collapsing it into an eigenstate of the measurement operator. A weak measurement can
be performed on a system by letting it weakly interact with a probe, or pointer system,
for a limited amount of time, and then measuring the probe. Consider a probe system
M with a normal distribution in the position basis [75]:

ϕ(x) =
1

4
√
2πσ2

e−
x2

4σ2 . (1.3-1)
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Figure 1.7: Salih CFC protocol. In Ref. [66] Salih et al. proposed a protocol for direct
counterfactual communication that consists of several nested Mach-Zehnder interferometers. The
grey shaded area in the figure represent the transmission channel that separates the laboratories
of Alice and Bob. The idea of the protocol is the following: the inner set of N chained MZIs
are balanced such that any photon entering them will always generate a click in one of the M
detectors labelled D2, whenever Bob does not block his mirrors. That means that when the
mirrors are unblocked, the inner chained MZIs effectively work to block the upper path through
the outer chain of M MZIs. However, given that the reflectivity of the outer beamsplitters is
sufficiently high the photon will, in this scenario, travel to detector D0 with near certainty. On the
other hand, when Bob blocks his mirrors the photon will be confined to the lower part of the inner
MZI chain, which also has high reflectivity beam-splitters. By choosing the reflectivities of both
sets of beamsplitters carefully, one can ensure that the outer path and lower inner path interfere
destructively in the D0 port, and constructively in the D1 port, ensuring that the detector D1

clicks with near certainty when Bob blocks his mirrors.

The state vector of the probe in the position basis is then given by an intergral over the
wavefunction:

|ϕ(x)〉M =

∫ ∞

−∞
ϕ(x) |x〉M dx. (1.3-2)

Let, as an example, the state to be measured be a spin-12 system:

|Ψ〉S = α |↑〉S + β |↓〉S , (1.3-3)

written in the eigenbasis of 1
2Z, and where the eigenvalues are λ↑ = 1

2 and λ↓ = −1
2 .

To perform the weak measurement the two systems are coupled through the interaction
Hamiltonian

H(t) = g(t)
1

2
ZS ⊗ PM , (1.3-4)

where g(t) is an envelope function for the interaction that satisfies∫ T

0
g(t)dt = 1, (1.3-5)

and
P = −iℏ ∂

∂x
(1.3-6)

is the generator of translations for the probe system [18,76]:

exp
[
−a i

ℏ
P
]
|ϕ(x)〉 =

∑
n=0

1

n!

(
−a ∂

∂x

)n
|ϕ(x)〉

= |ϕ(x− a)〉 .
(1.3-7)



1.3. QUANTUM COMMUNICATION
33

Since the Hamiltonian (1.3-4) is time dependent, the corresponding time-evolution op-
erator from t = 0 to t = T is given by [18]

U(0, T ) = exp

[
− i

ℏ

∫ T

0
H(t)dt

]
= exp

[
−i
∫ T

0
g(t)

1

2
ZS ⊗ 1

ℏ
PMdt

]
= exp

[
−i1

2
ZS ⊗ 1

ℏ
PM
]
.

(1.3-8)

Then, using the notation
1

2
Z |λ〉 = λ |λ〉 , (1.3-9)

the effect of the time evolution under the Hamiltonian in (1.3-4) for a time T on a state
|λ〉S ⊗ |ϕ(x)〉M is that of translating the position of the probe by an amount λ:

U(0, T ) |λ〉S ⊗ |ϕ(x)〉M = |λ〉S ⊗ |ϕ(x− λ)〉M . (1.3-10)

This can be seen by, as in (1.3-7), Taylor expanding the time evolution:

U(0, T ) |λ〉S ⊗ |ϕ(x)〉M =exp
[
−i1

2
ZS ⊗ 1

ℏ
PM
]
|λ〉S ⊗ |ϕ(x)〉M

= |λ〉S ⊗ |ϕ(x)〉M − λ |λ〉S ⊗ ∂

∂x
|ϕ(x)〉M

+ λ2 |λ〉S ⊗ 1

2

(
− ∂

∂x

)2
|ϕ(x)〉M + · · ·

= |λ〉S ⊗
∑
n=0

1

n!

(
−λ ∂

∂x

)n
|ϕ(x)〉M

= |λ〉S ⊗ |ϕ(x− λ)〉M

(1.3-11)

In the literature, these types of interactions are frequently presented in the Heisenberg
picture, in which one can reach the same conclusion by starting from the fact that the
change in the time-dependent position operator X is given by

X (T )−X (0) =

∫ T

0

d

dt
X (t)dt. (1.3-12)

Then, using Heisenberg’s equation of motion

d

dt
X =

i

ℏ
[H,X (t)], (1.3-13)

and the fact that X and P are conjugate operators that satisfy

[X ,P] = iℏ (1.3-14)
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(1.3-12) can be expanded as∫ T

0

d

dt
X (t)dt =

∫ T

0

i

ℏ
[g(t)

1

2
Z ⊗ P , I ⊗X (t)]dt

=

∫ T

0

i

ℏ
g(t)

1

2
Z ⊗ [P,X (t)]dt

=

∫ T

0

1

2
g(t)Zdt =

1

2
Z.

(1.3-15)

Taking the expectation value of (1.3-12) for an initial state |λ〉 ⊗ |ϕ(x)〉 it then follows
that the change in the position operator is once again a translation by λ:

〈λ, ϕ(x)|I ⊗ [X (T )−X (0)]|λ, ϕ(x)〉 = 〈λ, ϕ(x)|1
2
Z ⊗ I|λ, ϕ(x)〉

= 〈λ, ϕ(x)|I ⊗ λI|λ, ϕ(x)〉,
(1.3-16)

and we have
X (T )−X (0) = λ. (1.3-17)

Returning to the superposition state in (1.3-3) and including the pointer system:

|Ψ〉S ⊗ |ϕ(x)〉M =
(
α |↑〉S + β |↓〉S

)
⊗ |ϕ(x)〉M , (1.3-18)

we now see that the action of the Hamiltonian on this state is to entangle the position
of the pointer with the state of the system S:

U(0, T ) |Ψ〉 ⊗ |ϕ(x)〉 = α |↑〉 ⊗ |ϕ(x− 1

2
)〉+ β |↓〉 ⊗ |ϕ(x+

1

2
)〉 . (1.3-19)

If the variance σ of the pointer’s position is large compared to the induced shift, then
the two position distributions correlated with the |↑〉 and |↓〉 states largely overlap, and
a projective measurement of the probe’s position only minimally influences the state
of the spin system. This is what justifies calling the measurement weak. In the other
extreme, when the variance σ is small and the position distributions do not overlap, the
state (1.3-19) becomes maximally entangled; the position is fully correlated with the
spin state, and a strong, von Neumann measurement is recovered. By construction, a
weak measurement does not reveal much information about the system under scrutiny.
To resolve the shift in the pointer it is therefore necessary to repeat the measurement a
large number of times.

1.3.4 Weak traces in counterfactual communication
Weak measurements have been proposed as a method for analysing the past of

quantum particles [73, 77]. More concretely, if a weak measurement performed on a
particle in a given region of space results in a resolvable pointer shift, then the particle
is said to have left a weak trace there. It has been argued that the presence of a
weak trace of a particle along a trajectory implies that the particle travelled along said
trajectory, however this remains a point of contention [78, 79, 80, 81, 82]. A convenient
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✔

(a) Keeping which-path information

✔

(b) Erasing which-path information

Figure 1.8: Weak trace in the TSV formalism. Wheeler’s delayed choice experiment is a
thought experiment that probes the nature of particle-wave duality. In (a) a photon impinges
on a beamsplitter, and is subsequently detected, forcing the photon to ‘decide’ which path it
took, suggesting that it behaved as a particle at the time. By placing a second beamsplitter
before the detector, as shown in (b), the photon will no longer behave like a particle, but will
instead interfere with itself. Therefore the nature of the photon, particle or wave, is not decided
at the first beamsplitter, but at the point of measurement. The trajectory of the photon can be
analysed using the two-state-vector formalism, which includes not only the forwards propagating
wavefunction shown in red, but also the post-selected backwards propagating wavefunction, shown
in blue. The photon has a weak trace only in the regions where the forwards and backwards
propagating are both present. In (a) this happens only along one arm of the interferometer, and
the photon therefore has a definite trajectory, as one would expect. When the second beamsplitter
is added, however, there is a weak trace of the photon in both arms of the interferometer.

method for analysing whether or not a weak trace of a photon in an interferometer is
present is given by the so-called two-state vector formalism [83, 84]. In this framework
a quantum state is described, in the time between two measurements at an initial time
ti and a final time tf , by a two-state vector:

〈Φ| |Ψ〉 , (1.3-20)

where |Ψ〉 is the pre-measurement state from time t = ti evolving forwards in time,
and 〈Φ| is the post-measurement state at time t = tf evolving backwards in time. A
particle leaves a weak trace in a region of space if the forwards and backwards evolving
components have a non-zero overlap in that region of space:

〈Ψ|Φ〉 6= 0, (1.3-21)

no matter how small. This gives a visual method for evaluating the weak trace inside
an interferometer, by drawing the particle trajectories from the initial and final states;
in the regions where both the forward and backward particle paths are present the weak
trace is non-vanishing. An example of this for Wheeler’s delayed choice experiment is
shown in Fig. 1.8. A similar analysis applied to the Salih protocol for counterfactual
communication reveals that when Bob transmits a 0 bit there is a weak trace of the
photon inside his laboratory, as illustrated in Fig. 1.9. A protocol for counterfactual
communication that does not leave a weak trace was proposed by Arvidsson-Shukur
and Barnes in [85]; its experimental realisation was the subject of Publication 1. This
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Figure 1.9: Weak trace in the Salih CFC protocol. Applying the two-state-vector formalism
to the Salih et al. CFC protocol reveals the fact that even though no photon ever travels from
Bob to Alice when he leaves his mirrors unblocked, both the forwards and backwards propagating
wavefunctions are present in Bob’s laboratory, meaning that there is a weak trace of the photon
there. The backwards propagating wavefunction from the post-selected state at D0 is shown in
blue, while the forwards propagating wavefunction is shown in red.

protocol differs in its notion of counterfactuality in that particles travel from Alice to
Bob, and particles are therefore exchanged. However, no particles that enter Bob’s
laboratory ever travel back to Alice. The Arvidsson-Shukur and Barnes protocol is
sometimes referred to as a type-II protocol, to distinguish from the type-I protocols in
which Alice and Bob never exchange particles.

1.3.5 QKD using counterfactual communication
While counterfactual communication does not offer any apparent advantage over

more traditional forms of communication, both quantum and classical, the property of
the photon remaining in Alice’s laboratory can be used to establish a secure key [86].
This is due to the simple fact that if the photon does not travel to Bob’s laboratory then it
cannot be intercepted by an eavesdropper. It’s possible to perform QKD with both type-
I and type-II counterfactual communication protocols. In the case of type-II protocols
the QKD method consists of two counterfactual communication channels and works by
Alice randomly sending the photon into one of the channels. Bob simultaneously and
independently picks one of the channels to block. If they both pick the same channel,
and Bob blocks the mirrors in the channel Alice sent the photon into, then the photon
never enters Bob’s laboratory and returns to Alice. All the rounds where the photon
went to Bob are disregarded in analogy with the BB84 protocol, and in the remaining
rounds Alice and Bob know that their guesses were correlated without revealing what
those guesses were.



2
Photonic quantum information

processing

In this chapter some important concepts in the quantum theory of light will be in-
troduced. This includes both the description of quantum states of light as well their
transformation using various optical devices. Particular focus will be given to the manip-
ulation and measurement of polarization-encoded qubit states, as well as the description
of single-photon sources based on spontaneous parametric down-conversion

2.1 Introduction
There are a multitude of different physical systems that have been investigated as po-

tential candidates for quantum information processing, all with their different strengths
and weaknesses. The challenge of finding a suitable physical platform consists in reconcil-
ing two contradictory criteria, namely that the system should have very long coherence
times, which requires it to be very well isolated from its classical environment, while
at the same time allowing for strong interactions between the qubits themselves. The
problem lies within the fact that a strong interaction between the qubits in most cases
leads to strong interactions with the environment as well. As an example, qubits en-
coded in the nuclear spin of individual silicon atoms exhibit very long coherence times,
exceeding several tens of milliseconds [87], due to the nuclear spins being extremely
well isolated from their environment. However, this same property makes the imple-
mentation of qubit-qubit interactions challenging, with the best gate fidelities being in
the mid 90s [88]. On the other hand, architectures based on quantized flux or charge
in a superconducting circuit, often simply referred to as superconducting qubits, strug-
gle to achieve coherence times even two orders of magnitude shorter than the ones in
silicon [89], but have enabled demonstrations of high two-qubit gate fidelities [90,91].

Photons are quite different from the matter based systems discussed above in that
they, for all intents and purposes, do not interact with one another. In classical elec-
trodynamics this is a direct consequence of the linearity of Maxwell’s equations. When
moving to a quantized description of light using quantum electrodynamics, photon-
photon scattering becomes possible through the creation of virtual electron-positron
pairs [92]. However, being a fourth order process, the corresponding scattering cross
section is negligible and is further suppressed by the condition of energy conservation
when the photon energies are far away from the rest mass of the electron. For low-energy
photons this interaction is therefore unobservable in practice. This poses a challenge for
photonic quantum information processing as a nonlinear photon-photon interaction is
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required to generate entanglement. On the other hand the interactions between photons
and macroscopic objects is generally not sensitive to the microscopic properties of the
object in question, meaning that photons suffer little to no decoherence. For instance,
the reflection of a photon off a mirror is caused by a collective response in the mirror
and does not depend on microscopic and hard to control effects such as stray surface
charges, and while the photon does impart some momentum to the mirror the two do
not become entangled since the phonons in the mirror will have a warm thermal distri-
bution, and a tiny perturbation to this state results in a new distribution with almost
unity overlap with the initial one. The state of a mirror is therefore left unchanged by
a photon reflecting off it.1

The strong coherence properties of photons led them to be the platform used for
many pioneering experiments in quantum information, including the violation of Bell
inequalities [3, 95], superdense coding [19], quantum teleportation [7, 30], entanglement
swapping [31] and measurement-based quantum computation [96]. Particularly in the
case of quantum communication protocols photons are the only viable information car-
rier, since matter-based ones are infeasible to transmit or transport. Thanks to ultra-low
loss optical fibers single photon are able to coherently transmit quantum information
over distances upwards of a hundred kilometers. These fibers have such remarkably
low absorption that they beat most state-of-the-art quantum memories in terms of stor-
age time and extraction efficiency [97]. These unique properties ensure that photonic
quantum information will play a key role in future quantum technologies.

The rest of this chapter will introduce theoretical tools and experimental methods
used in photonic quantum information processing, beginning with how quantum states
of light are described, before moving on to how they can be generated and manipulated.

2.2 A quantum description of light
While there are many physical scenarios in which the interaction between quantum

objects, such as atoms, and light can be described in a semi-classical way by treating light
as a classical electromagnetic wave altering the Hamiltonian of the system in question [98,
99], there are also many effects that only become apparent when the full quantized nature
of the electromagnetic field is considered. These quantum effects are most apparent for
very weak intensities of light, as states with more photons are akin to macroscopic
objects in which the quantum effects quickly wash out.

2.2.1 Second quantization
Any multi-particle quantum system can be described by a many-body wavefunction

expressed in terms of products of single-particle wavefunctions of the form

Ψ(r⃗1, . . . , r⃗N ) =
N∏
k=1

ψak(r⃗k). (2.2-1)

1In the field of quantum optomechanics one specifically endeavours to engineer systems in which a
single photon can dramatically change for example the vibrational modes of a macroscopic object, and
become entangled with phonons inside the material [93,94].
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According to the spin-statistics theorem, such many-body wavefunctions must be either
symmetric or anti-symmetric under particle exchange [100,101]:

Fermions : Ψ(r⃗1, . . . , r⃗i, . . . , r⃗j , . . . , r⃗N ) = −Ψ(r⃗1, . . . , r⃗j , . . . , r⃗i, . . . , r⃗N ) (2.2-2)
Bosons : Ψ(r⃗1, . . . , r⃗i, . . . , r⃗j , . . . , r⃗N ) = +Ψ(r⃗1, . . . , r⃗j , . . . , r⃗i, . . . , r⃗N ) (2.2-3)

Since photons are bosons any multi-photon wavefunction has to be symmetric under
particle exchange. The correct symmetry can be achieved by taking a superposition
of permutations of the wavefunction in (2.2-1). For states consisting only of a few
particles the symmetrised wavefunction is easy to write down explicitly; for example,
the wavefunction of a two-photon state can be written as

Ψ(r⃗1, r⃗2) =
ψa1(r⃗1)ψa2(r⃗2) + ψa2(r⃗1)ψa1(r⃗2)√

2
, (2.2-4)

however for higher numbers of particles this quickly becomes impractical as the number
of permutations in the wavefunction rapidly grows. For this reason it becomes necessary
to introduce a new formalism that more succinctly describes many-body systems, and
this formalism is called second quantization. Instead of using a wavefunction that is
written in terms of which identical particle occupies which identical state, one instead
condenses this information by only counting the number of identical particles in a given
state. In analogy with the quantum harmonic oscillator this is done by introducing the
creation and annihilation operators â† and â, respectively. These operators have the
effect of adding or removing a single quanta of light in a given mode. One can show that
in order to preserve the correct symmetry of the wavefunction, these operators need to
obey the following commutation relations [18,101]

[âi, â
†
j ] = δij , (2.2-5)

[âi, âj ] = [â†i , â
†
j ] = 0, (2.2-6)

where the subscript indicates the mode, and modes with different indices are orthogonal.
The space on which the creation and annihilation operators act is called the Fock space,
whose basis states are states with a definite photon number. On such states the creation
and annihilation operators have the following effect:

â† |n〉 =
√
n+ 1 |n+ 1〉 (2.2-7)

â |n〉 =
√
n |n− 1〉 . (2.2-8)

The creation and annihilation operators are not Hermitian and do therefore not corre-
spond to any measurable quantity, nor can they be physically realised despite claims
to the contrary [102, 103]. It is, however, possible to construct observables using these
operators. One example of such an observable is the number operator, which measures
the number of photons in a given mode:

N̂ = â†â (2.2-9)
N̂ |n〉 = n |n〉 . (2.2-10)
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In this formalism it is possible to write down anti-symmetric states, for example the
singlet Bell state, expressed here in terms of horizontal and vertical photon polarization:

1√
2

(
â†H b̂

†
V − â†V b̂

†
H

)
|0〉 = |HV 〉 − |V H〉√

2
, (2.2-11)

however the corresponding wave-functions are nevertheless guaranteed to be symmetric,
since they are compositions of symmetric wave-functions.

2.2.2 Classical states of light
Classically there are essentially two different kinds of light, the first one is thermal

light emitted from a black body, and the second one is coherent light, such as the
light generated by a laser. The difference between the two is that in thermal light the
different frequency components do not have a well defined phase relationship between
one another, whereas coherent light, as the name suggests, does have a well defined
phase, with the degree of coherence depending on the specifics of the light. Both of
these types of light can be described in the formalism of second quantization as well. In
the case of a thermal state, the lack of coherence is reflected in the state being a mixture
of different Fock states [104]:

ρth =
∞∑
n=0

P (n) |n〉〈n| , (2.2-12)

where
P (n) =

〈N〉n

(1 + 〈N〉)n+1
, (2.2-13)

is the probability to detect n photons. The thermal state can equivalently expressed as

ρth = (1− ξ)
∞∑
n=0

ξn |n〉〈n| , (2.2-14)

where
ξ = exp

[
− ℏω
kBT

]
, (2.2-15)

is related to the temperature of the emitting black body.
The second kind of classical light is coherent light, usually generated by a laser. In an

idealized picture coherent light is perfectly monochromatic and is an infinitely extending
sine wave. In the framework of second quantization coherent states are the eigenstates
of the annihilation operator:

â† |α〉 = α |α〉 . (2.2-16)

It is easy to verify that the following photon number distribution describes exactly these
eigenstates:

|α〉 = e−
1
2
|α|2

∞∑
n=0

αn√
n!

|n〉 . (2.2-17)

Here |α|2 is the mean photon number.
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2.2.3 Photon statistics
Since the states of light in the previous section were written in the Fock basis, and

therefore in terms of their photon number distributions, it is natural to investigate these
distributions, and in particular their variances. For the coherent state, the variance
is easy to calculate from the photon number probability distribution, which in turn is
found by taking the expectation value of the projector onto the n-th Fock state:

P (n) = 〈α|(|n〉〈n|)|α〉

=
|α|2n

n!
e−|α|2

=
〈N〉n

n!
e−⟨N⟩.

(2.2-18)

This is a Poissonian distribution, and coherent light is for this reason sometimes referred
to as Poissonian light. The variance of the photon number distribution is

∆N2 = 〈N〉. (2.2-19)

This variance in the photon number is the origin of the square-root scaling of shot noise
in laser light. For thermal light, the probability to detect n photons can be found from
(2.2-14) as

P (n) = Tr
[
|n〉〈n| ρth

]
= (1− ξ)ξn. (2.2-20)

This is known as a geometric distribution, and it has a mean and variance of

〈N〉 = ξ

ξ − 1
(2.2-21)

∆N2 =
1− ξ

ξ2
. (2.2-22)

Inverting (2.2-21) to express ξ in terms of 〈n〉:

ξ =
〈N〉

1 + 〈N〉
, (2.2-23)

and inserting this into (2.2-22) one finds, after some manipulation

∆N2 = 〈N〉2 + 〈N〉. (2.2-24)

This variance in the photon number is qualitatively different from coherent light, since
the relative uncertainty in the photon number does not increase with the intensity of
the light. More quantitatively, a coherent light source has a signal-to-noise ratio (SNR)
given by

SNRcoherent =

√
〈N〉2
∆N2

=
√
〈N〉, (2.2-25)

while for a thermal light source the signal-to-noise ratio is

SNRth =

√
〈N〉2
∆N2

≈ 1. (2.2-26)
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This approximation is valid for warm thermal states where 〈N〉2 � 〈N〉. The two
classical types of light discussed above both have a variance in the photon number equal
to or greater than 〈N〉, however it is self-evident that the photon number states have
zero variance:

|n〉 : ∆N2 = 0, (2.2-27)

since they are per definition definite photon number states. This is a signature of non-
classicality, and states that exhibit a variance below 〈N〉 cannot be described by classical
electrodynamics [105]. Note that the vanishing variance for the Fock states does not
imply that these states can be used to achieve an infinite signal-to-noise ratio, since any
process continuously encoding information in the photon number will invariably create
a state described by a photon number superposition, which does have a variance.

2.2.4 Second-order coherence
For classical fields of light one can quantify the coherence in terms of a correlation

function [104,106]:
g(1)(τ) =

〈E∗(t)E(t+ τ)〉
〈|E(t)|2〉

, (2.2-28)

where τ is a time delay with respect to the time t. This function, known as the first-
order correlation function, describes the visibility of interference between a light field
and a time delayed version of itself. In the case of for example coherent light, one
finds that |g(1)(τ)| = 1, since the light perfectly interferes with itself even at arbitrary
delays, and has infinite coherence length. It is also possible to define related functions
involving higher powers of the electric field, for example the second-order correlation
function [104]:

g(2)(τ) =
〈E∗(t)E∗(t+ τ)E(t+ τ)E(t)〉

〈E∗(t)E(t)〉2
=

〈I(t)I(t+ τ)〉
〈I(t)2〉

, (2.2-29)

where I is the intensity of the light. In analogy to how the g(1) function quantifies how
correlated the phases of a field are at different points in time or space, the second-order
correlation function quantifies how correlated the intensities are. To measure this quan-
tity one typically employs a so-called Hanbury-Brown-Twiss interferometer [107], which
transforms the problem of measuring the correlation between intensities at two different
times, to a problem of measuring correlations between intensities at two different points
in space and time.

A second-order correlation value of g(2)(τ) = 1 indicates that there is no correlation
between the intensity fluctuations in the two detectors, and coherent light has exactly
this property. Thermal light, on the other hand, shows a positive correlation at zero
delay, more specifically

g(2)(0) = 2, (2.2-30)

and these intensity correlations gradually vanish as the time delay is increased, at a rate
that depends on the coherence time of the light.
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Figure 2.1: Examples of photon statistics. The figure illustrates three different types of
photon statistics, by showing their distribution in time. Thermal states (blue dots), also known
as bunched states, have the property that the detection of one photon increases the conditional
probability of detecting another one shortly thereafter. Coherent states (red dots), on the other
hand, show no such correlation, and the photon detection probability at any given time is in-
dependent of whether a photon was detect recently. Finally, anti-bunched light in the form of
single photons (yellow dots) has the property that the detection of a photon ensures that another
one will not be detected immediately thereafter.

In the quantum picture the second-order correlation function can be defined as [104,
108]

g(2)(τ) =
〈â†(t)â†(t+ τ)â(t+ τ)â(t)〉

〈â†(t)â(t)〉2
, (2.2-31)

written in the Heisenberg picture where the operators are time dependent. In the photon
picture the second-order correlation function can be thought of as describing how likely
one is to detect a photon at time t + τ , given that one was that one was detected at
time t. For coherent light the fact that g(2)(τ) = 1 means that the probability to detect
a photon at time t+ τ is independent of whether or not a photon was detected at time t.
However, for thermal light the intensity correlation implied by g(2)(0) = 2 means that
the probability to detect a photon at t+τ for a small τ is greater when one was detected
at time t. In other words, the photons tend to bunch together. For example, if one does
a non-destructive measurement on a thermal state that reveals that there are photons
present:

(I − |0〉〈0|)ρth(I − |0〉〈0|)
Tr[|0〉〈0| ρth]

= ρ′th, (2.2-32)

the effect is that the expectation value of the photon number increases:

〈N〉ρ′th = 〈N〉ρth + 1, (2.2-33)

since
ρ′th =

1

1− P (0)

∞∑
n=1

〈N〉n

(1 + 〈N〉)n+1
|n〉〈n|

=
∞∑
n=1

〈N〉n−1

(1 + 〈N〉)n
|n〉〈n|

=

∞∑
n=0

〈N〉n

(1 + 〈N〉)n+1
|n+ 1〉〈n+ 1| .

(2.2-34)

This is a reflection of the bunched nature of the light. For classical light it is straight-
forward to show that [104]

g(2)(0) ≥ 1, (2.2-35)
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however the same is not true for quantum states of light. The quantum second-order
correlation function (2.2-31) can be expanded at τ = 0 as

g(2)(0) =
〈â†â†ââ〉
〈â†â〉2

=
〈â†(ââ† − 1)â〉

〈N〉2
=

〈N2 −N〉
〈N〉2

= 1 +
∆N2 − 〈N〉

〈N〉2
. (2.2-36)

Taking for example the single-photon state |1〉 and inserting the variance and photon
number one finds

g(2)(0) = 0, (2.2-37)

and in general the Fock states obey [104]

g(2)(0) = 1− 1

n
. (2.2-38)

Photon-number states are anti-bunched, and in a Hanbury-Brown-Twiss interferometer
this means that the detection of a photon in one arm lowers the probability of another
photon simultaneously being detected in the other arm. For a pure single-photon states
in particular this probability reduces to zero. Different kinds of light, bunched, coherent
and anti-bunched, are figuratively illustrated in Fig. 2.1. Due to the aforementioned
fact that only quantum states of light can exhibit a second-order correlation value of
less than one, this is often used as a metric for non-classicality of light. Similarly, when
characterising sources of single photons the g(2)(0)-value is often a proxy for the quality
of the single photons, since the state |1〉 is the only one for which g(2)(0) = 0.

2.2.5 Phase-space representation
While any state of light can be represented as either a coherent superposition, or a

mixture of Fock states, alternative representations can often provide new insights. One
alternative quantum description of light is the so-called phase-space representation. Let
us first introduce the quadrature operators [26,109]

x̂ =
1√
2
(â† + â), p̂ =

i√
2
(â† − â). (2.2-39)

These operators, analogous to the position and momentum operators of the harmonic
oscillator, represent the in- and out-of-phase components of the electric field, respec-
tively. Or, equivalently, the real and imaginary parts of the complex amplitude of the
annihilation operator. Since they are Hermitian operators they correspond to observ-
able quantities, and can be measured for example using a technique called homodyne
detection (see Fig. 2.2) [110]. These operators have (improper) eigenstates

x̂ |x〉 = x |x〉 , p̂ |p〉 = p |p〉 . (2.2-40)

Using these eigenstates as a continuous basis, we can now write down a transformation
between a density matrix ρ in the Fock space and its phase-space representation:

W (x, p) =
1

2π

∫ ∞

−∞
〈x− 1

2
q|ρ|x+

1

2
q〉eipqdq. (2.2-41)
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Figure 2.2: Balanced homodyne detection. The quadratures of the electric field of a quan-
tum state can be measured using a method called balanced homodyne detection. It consists of
interfering the quantum state in question with a strong coherent beam, referred to as the local
oscillator (LO) on a balanced beam-splitter. Since the local oscillator can be treated classically
the effect of the beamsplitter is simply to add a displacement of αLO = |αLO|eiθ to the creation
operator of the input quantum mode (a 1/

√
2 scaling factor has been omitted in the figure).

The photodiodes then generate a photocurrent proportional to the number operators of the two
modes I± ∝ N± = (α∗

LO ± â†)(αLO ± â)/2. Subtracting the two photocurrent yields a quadrature
operator: I+ − I− ∝ α∗

LOâ+ αLOâ
† = |αLO|(âe−iθ + â†eiθ).

The above map is called the Wigner transformation, after Eugene Wigner, and the
function W (x, p) is known as the Wigner function or Wigner quasiprobability distribu-
tion [111, 112, 113]. The reason for the latter name is the fact that the function can
take on negative values, which cannot be interpreted as probabilities. Classical states
of light always have positive Wigner functions, and negativity of the Wigner function is
therefore an indicator of non-classicality [112]. However, the converse statement is not
true, and there exist non-classical states of light exhibiting non-local correlations, that
nevertheless have positive Wigner functions. The Wigner function does, however, have
positive marginal distributions, and these correspond to the probability distributions for
the x̂ and p̂ quadrature operators [114]:

P (x) = 〈x|ρ|x〉 =
∫ ∞

−∞
W (x, p)dp (2.2-42)

P (p) = 〈p|ρ|p〉 =
∫ ∞

−∞
W (x, p)dx. (2.2-43)

In the phase-space description, the vacuum state |0〉 is a Gaussian minimum uncertainty
state, with ∆x2 = ∆p2 = 1

2 . The coherent states can be represented as displacements
of the vacuum state, effected by the displacement operator

D̂(α) = eαâ
†−α∗â, (2.2-44)

where α = x+ip is a complex number. The displacement operator acting on the vacuum
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Figure 2.3: Phase-space displacement. The displacement operator D̂(α) = exp[αâ† + α∗â]
has the effect of displacing the Wigner function of a state by an amount |α| along a direction
defined by the complex argument of α = |α|eiθ. The figure shows the action of the displacement
operator on the vacuum state. The resulting state is a coherent state with average photon number
|α|2.

has the following effect:
D̂(α) |0〉 = |α〉 . (2.2-45)

In the phase-space picture this corresponds to displacing the vacuum by an amount |α|,
along a direction defined by the complex argument of the same variable, hence the name.
This is illustrated in Fig. 2.3.

The photon-number states, in contrast to the coherent states, have a characteristic
negativity. Their Wigner functions are given by a Gaussian function weighted by a
Laguerre polynomial [115,116]:

Wn(x, p) =
(−1)n

π
e−(x2+p2)Ln(2(x

2 + p2)), (2.2-46)

where Ln is the n-th order Laguerre polynomial. A few Fock-state Wigner functions for
low photon numbers are shown in Fig. 2.4.

2.2.6 Squeezed states
As mentioned in the previous section, there are states which cannot be described

by classical electrodynamics, which nevertheless have strictly non-negative Wigner func-
tions. An important example of such states are the squeezed states. Consider the
so-called single-mode squeezing operator [117]

Ŝ(ζ) = exp
[ζ∗â2 − ζ(â†)2

2

]
, (2.2-47)

where ζ = reiθ is the squeezing parameter. The name comes from the fact that this
operator compresses the Wigner function along one axis, and stretches it along another.
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(a) |1⟩-state (b) |2⟩-state (c) |3⟩-state

Figure 2.4: Wigner functions of Fock states. The Wigner functions of Fock states, shown
here for the first three non-vacuum states, display a characteristic negativity, arising from the
Laguerre-polynomial factor. The number of zero-crossings of the Wigner function is equal to the
photon number.

The axis along which the state is squeezed is given by the parameter θ. Setting for
example θ = 0 yields an operation that transforms the quadrature operators in the
following way:

x̂ 7→ e−rx̂, p̂ 7→ erp̂. (2.2-48)

The squeezing transformation also alters the variances of the quadrature operators:

∆x2 7→ ∆x2

R2
, ∆p2 7→ R2∆p2, (2.2-49)

where R = er. If the initial state is in a minimum uncertainty state, then the squeezing
operator preserves this property since the products of the variances in the quadratures
remains unchanged. However, squeezing can be used to decrease the variance in a single
quadrature below the Heisenberg limit. This fact has enabled precision sensing below
the shot-noise limit, and squeezed vacuum was recently employed in the gravitational
wave detector LIGO to increase its sensitivity [118, 119]. The effect of the squeezing
on the variance of the quadrature operators is quite easily understood visually, since
the variance in the quadrature operators is simply the width of the Wigner function
projected onto the corresponding coordinate axis. Applying the squeezing operator on
the vacuum state |0〉 one obtains the single-mode squeezed-vacuum state [117]

|SV〉 = 1√
cosh r

∞∑
n=0

(−e−iθ tanh r)n
√
(2n)!

2nn!
|2n〉 . (2.2-50)

The Wigner function of this state is illustrated in Fig. 2.5. As can be read out from
(2.2-50), only even photon numbers occur in the state; a consequence of the fact that
the lowest order of the creation operator in the Taylor expansion of (2.2-47) is two.
Also note that in the limit of infinite squeezing, i.e. r → ∞, the mean photon number
diverges, meaning that the state has infinite energy. A closely related state to the single-
mode squeezed vacuum is the two-mode squeezed vacuum, which is defined as the state
one gets when the vacuum is acted on by the two-mode squeezing operator

Ŝ2(ζ) = exp
[ζ∗âb̂− ζâ†b̂†

2

]
. (2.2-51)
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(a) |ζ| = 0 (b) |ζ| = 0.7 (c) |ζ| = 1.2

Figure 2.5: Squeezed vacuum states. The Wigner function of a squeezed vacuum state can
be expressed as W (α, ζ) = 1/π exp

[
− 2|α cosh r+α∗eiθ sinh r|2

]
, where ζ = reiθ is the squeezing

parameter and α = x+ ip [120]. This corresponds to a 2D-Gaussian that is compressed along the
axis of squeezing, and stretched along the other axis. This is illustrated above, for three different
states with progressively more squeezing. The first state from the left, with |ζ| = 0, is a normal
vacuum state, while the last two have squeezing parameters of |ζ| = 0.7 and |ζ| = 1.2, repectively.

The resulting state is

|TMSV〉 = Ŝ2(ζ) |0〉 =
1

cosh r

∞∑
n=0

(−e−iθ tanh r)n |n, n〉 . (2.2-52)

This state is entangled in the photon number, since this quantity is perfectly correlated
between the two modes. It is also entangled in the field quadratures. Setting θ = 0 for
simplicity, the quadrature operators of the squeezed modes obey [117]

x̂a(r)± x̂b(r) = (x̂a(0)± x̂b(0))e
±r, (2.2-53)

p̂a(r)± p̂b(r) = (p̂a(0)± p̂b(0))e
∓r. (2.2-54)

In the limit of infinite squeezing the position quadratures become perfectly correlated,
while the momentum quadratures become perfectly anti-correlated:

x̂a(∞)− x̂b(∞) = 0 (2.2-55)
p̂a(∞) + p̂b(∞) = 0. (2.2-56)

States with these correlations are referred to as EPR states, after the famous paper by
Einstein, Podolsky and Rosen describing a thought experiment in which two particles
become entangled in position and momentum [1,26].

A natural consequence of the entanglement between the two modes is that the local
description of either mode yields a mixed state. Tracing out one mode of the two-mode
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squeezed vacuum one finds

ρa = Trb[ρTMSV]

=
∞∑
m=0

〈m|b
(

1

cosh2(r)

∞∑
n=0

tanh2n(r) |n, n〉〈n, n|ab
)
|m〉b

=
1

cosh2(r)

∞∑
n=0

tanh2n(r) |n〉〈n|a

= (1− tanh2(r))
∞∑
n=0

tanh2n(r) |n〉〈n|a .

(2.2-57)

Making the identification tanh2(r) = ξ it is easy to see that this is the same state as in
(2.2-14). Locally, the two-mode squeezed vacuum therefore looks like a thermal state,
with a temperature that depends on the degree of squeezing.

2.2.7 Linear optics
Most of the optical devices commonly used to manipulate light, such as lenses, mir-

rors, beamsplitters etc. are linear devices. Classically this means that their response
to the electric field is linear, and does not depend on the intensity of the light. In the
quantum picture these devices are described by Hamiltonians that are bilinear in the
creation and annihilation operators [121]:

H =
∑
jk

Ajkâ
†
j âk. (2.2-58)

Let
Ntot =

∑
l

â†l âl, (2.2-59)

be the total number operator for the system. Then consider the commutator between
this number operator and a single term in the Hamiltonian (2.2-58):

[â†j âk, Ntot] =
∑
l

â†j âkâ
†
l âl − â†l âlâ

†
j âk. (2.2-60)

Using the identity
âkâ

†
l = â†l âk + δlk, (2.2-61)

this can be simplified to

[â†j âk, Ntot] =
∑
l

â†j(â
†
l âk + δlk)âl − â†l (â

†
j âl + δjl)âk

=
∑
l

δlkâ
†
j âl − δjlâ

†
l âk + â†j â

†
l âkâl − â†l â

†
j âlâk

=
∑
l

δlkâ
†
j âl − δjlâ

†
l âk.

(2.2-62)
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Evaluating the sum reduces this to

[â†j âk, Ntot] = â†j âk − â†j âk = 0. (2.2-63)

This shows that the number operator commutes with every term in the Hamiltonian
and therefore with the Hamiltonian itself:

[H,Ntot] = 0. (2.2-64)

This in turn means that the photon number is conserved, and this can be seen as the
defining feature of linear optics. Formally, all linear-optical transformations are gener-
ated by Hamiltonians of the form (2.2-58). For example, the action of a beamsplitter is
generated by the Hamiltonian [26,121]

HBS = θ(eiφâ†b̂+ e−iφâb̂†), (2.2-65)

where θ is a real parameter that determines the splitting ratio of the beamsplitter and
φ is a relative phase shift between the two modes. The corresponding unitary operator
obtained by exponentiating the Hamiltonian:

UHBS = e−iHBS , (2.2-66)

acts on the infinite-dimensional Fock space, and does therefore not have an exact ma-
trix representation. To find how this unitary acts, consider a state generated by some
polynomial of the creation operator acting on vacuum:

|Ψ〉 =
∑
n

αn(â
†)n |0〉 . (2.2-67)

Using the fact that
U †
HBS

|0〉 = |0〉 , (2.2-68)
the state after the beamsplitter can be written

UHBS |Ψ〉 = UHBS

∑
n

αn(â
†)nU †

HBS
|0〉

=
∑
n

αn(UHBS â
†U †

HBS
)n |0〉 .

(2.2-69)

Hence, the action of the beamsplitter on the creation operator of the mode a is given by

â† 7→ UHBS â
†U †

HBS
. (2.2-70)

Using the Baker–Campbell–Hausdorff lemma [18]

eABe−A =
∑
n

[(A)n, B]

n!
, [(A)n, B] ≡ [A, · · · [A, [A︸ ︷︷ ︸

n times

, B]] · · · ] (2.2-71)

this can be expanded as

â† − i[HBS , â
†] +

i2

2!
[HBS , [HBS , â

†]]− i3

3!
[HBS , [HBS , [HBS , â

†]]] + . . . (2.2-72)
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It is straightforward to verify that

[HBS, â
†] = θe−iφb̂†, [HBS, b̂

†] = θeiφâ†, (2.2-73)

and using these commutator relations (2.2-72) simplifies to

â† 7→ â†
(
1 +

(iθ)2

2!
+

(iθ)4

4!
+ · · ·

)
−b̂†e−iφ

(
iθ

1!
+

(iθ)3

3!
+

(iθ)5

5!
+ · · ·

)
.

(2.2-74)

These infinite series are just the Maclaurin series of the cosine and sine functions respec-
tively, and the transformation can therefore be written in a succinct way as

â† 7→ cos θ â† − ie−iφ sin θ b̂†. (2.2-75)

Performing the same calculation for the second mode gives

b̂† 7→ −ieiφ sin θ â† + cos θ b̂†. (2.2-76)

This transformation can now, in contrast to (2.2-66), be described by a simple 2 × 2
matrix:

UBS =

[
cos θ −ie−iφ sin θ

−ieiφ sin θ cos θ

]
, (2.2-77)

written in the basis
â† =

[
1
0

]
, b̂† =

[
0
1

]
. (2.2-78)

Similar derivations can be done for other linear-optical operations and elements, such
as the phase shift. The fact that these operations can be represented using matrices
greatly simplifies calculations involving higher photon number states, since

(â†)n 7→ (UHBS â
†U †

HBS
)n = (UBSâ

†)n. (2.2-79)

This means that the behaviour of a multi-photon state in a linear-optical circuit is
encoded in the description of single photons in the same circuit.

Returning to the beamsplitter and setting θ = π/4 in (2.2-77) one obtains the
balanced, or 50 : 50-beamsplitter, for which the convention φ = π/2 is usually picked:

UBS =
1√
2

[
1 i
i 1

]
. (2.2-80)

This operator is commonly written in a form with only real entries, which can be done
with the following transformation:

1√
2

[
1 0
0 i

] [
1 i
i 1

] [
1 0
0 i

]
=

1√
2

[
1 1
1 −1

]
, (2.2-81)
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the physical meaning of which is applying a phase shift to one input and one output
mode. The balanced beamsplitter is one of the most commonly used optical devices,
and is the basic building block of interferometers.

Another frequently occurring optical element is the polarizing beamsplitter (PBS),
whose input-output relations are given by

â†H 7→ â†H ,

b̂†H 7→ b̂†H ,

â†V 7→ b̂†V ,

b̂†V 7→ â†V ,
(2.2-82)

where the subscripts H/V denote the photon polarization. This transformation corre-
lates the output spatial mode with the input polarization state, and can therefore be
used to perform a Von Neumann measurement on the photon polarization. This will be
discussed in greater detail in Section 2.3.2.

2.2.8 Simulating linear optics
According to (2.2-79) a linear-optical circuit will transform any creation operator into

a polynomial of creation operators over all the modes, and in general an n-photon state
described by a product of n creation operators acting on the vacuum will be transformed
into a state acted on by some n-th order polynomial of the creation operators on all
the modes. This gives an explicit way of calculating the output amplitudes of any
linear-optical circuit for any Fock-state input. However, this symbolic manipulation
of polynomials is inconvenient in a numerical setting. An alternative but equivalent
way of computing the output amplitudes of any linear-optical circuit was shown in
Ref. [122]. There the authors proved that the transition amplitude from some Fock
state to another is given by the permanent of the matrix describing the single-photon
input-output relations. The permanent of a matrix A = (ai,j) is defined as

Per(A) =
∑
σ∈Sn

n∏
i=1

ai,σ(i), (2.2-83)

where Sn is the set of all permutations of all the numbers 0, 1, . . . n. From this definition
one can see that the permanent is very similar to the determinant, but does not include
alternating signs.

Given a unitary U that describes the single-photon input-output relations of a linear
circuit, the transition amplitude

〈S|φ(U)|T 〉 (2.2-84)

from an initial Fock state T :
|T 〉 = |t1, . . . , tn〉 , (2.2-85)

to a final state S:
|S〉 = |s1, . . . , sn〉 , (2.2-86)

is given by
〈S|φ(U)|T 〉 =

Per(US,T )√
s1! · · · sn!t1! · · · tn!

. (2.2-87)
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Here US,T is a matrix constructed from U by repeating columns and rows from U , and
φ(U) is the unitary acting in the 2n-dimensional n-photon space, which does not need
to be explicitly constructed. The matrix US,T is found by first building the matrix UT
by taking ti copies of the i-th column of U . US,T is then obtained by taking si copies of
the i-th row of UT . As an example, consider the matrix

U =

1 0 0
0 0 1
0 1 0

 , (2.2-88)

and the input/output states

|T 〉 = |1, 1, 2〉 , |S〉 = |1, 2, 1〉 . (2.2-89)

The matrix UT is then

UT =

1 0 0 0
0 0 1 1
0 1 0 0

 , (2.2-90)

and US,T is

US,T =


1 0 0 0
0 0 1 1
0 0 1 1
0 1 0 0

 . (2.2-91)

Finally, the transition amplitude is given by

Per(US,T )√
1!2!1!1!1!2!

=
2√
2 · 2

= 1. (2.2-92)

In this simple example the transition amplitude is 1 because the matrix U only swaps the
modes 2 and 3 and therefore does not create a superposition state. Note that the action
of repeating rows and columns of U commutes, meaning that one can equivalently begin
by creating the matrix US through taking si copies of the i-th row of U. The matrix
US,T can also be constructed through direct matrix multiplication:

US,T = ITS UIT , (2.2-93)

where the superscript denotes the transpose, and where IS (IT ) is a matrix consisting of
si (ti) ones in each row, preceded by

∑i−1
k=0 sk (

∑i−1
k=0 tk) zeros. For the example above

these matrices are

IS =

1 0 0 0
0 1 1 0
0 0 0 1

 , IT =

1 0 0 0
0 1 0 0
0 0 1 1

 . (2.2-94)

In general, the full output state given a Fock-state input is obtained by evaluating
(2.2-87) for every possible output state containing the same number of photons as the
input. For a system with n photons and m modes the total number of possible output
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states is
(
m+n−1

n

)
[122], which quickly becomes large even for a modest number of photons

and modes. In practice, however, one is often only interested in particular types of
output states, for example ones in which all the photons are anti-bunched and end up in
different modes. This makes the approach using the permanent particularly convenient,
since one can directly compute the relevant amplitudes, which is a simpler problem than
the full evolution of the input state.

The approach also lends itself well to simulations of non-trivial input states, such
as entangled states, due to the fact that amplitudes of different input states can be
coherently added after they’re calculated. For example the input state

|Ψ〉 = |1, 0, · · · , 0〉+ |0, · · · , 0, 1〉√
2

, (2.2-95)

can be decomposed as
|Ψ〉 = a1 |T1〉+ a2 |T2〉 (2.2-96)

The transition amplitudes can be calculated for each term separately:

〈Si|φ(U)|Tj〉 = αij =
Per(USi,Tj )√

s1! · · · sn!t1! · · · tn!
, (2.2-97)

and the transition amplitude of the full input state is then simply recovered through the
linearity of the inner product:

〈Si|φ(U)|T 〉 = a1〈Si|φ(U)|T1〉+ a2〈Si|φ(U)|T2〉 =
∑
ij

αijaj , (2.2-98)

φ(U) |Ψ〉 =
∑
ij

αijaj |Si〉 (2.2-99)

Similarly, for mixed states
ρ =

∑
i

pi |Ti〉〈Ti| , (2.2-100)

one can calculate the transition amplitudes for each state vector |Ti〉 and add their
squared norms, giving the output mixture

ρ 7→
∑
ij

pj |〈Si|φ(U)|Tj〉|2 |Si〉〈Si| . (2.2-101)

The discussion in this section has implicitly assumed that all the photons input into
the linear optical circuit are fully indistinguishable in every degree of freedom except
for the explicitly included ones, represented by the indexed modes. In practice this
assumption is rarely fully justified, as independently produced photons tend to exhibit
small variations in various degrees of freedom, for example their frequency. One way to
include the effects of partial indistinguishability is to explicitly include more degrees of
freedom [123]. For example, in the case of two photons in two modes one can include an
additional two modes per photon that model distinct internal degrees of freedom of the
two photons. If these modes do not couple, then photons in the auxiliary modes never



2.2. A QUANTUM DESCRIPTION OF LIGHT
55

interfere, and by choosing an input state that is a superposition over the original and
auxiliary modes the degree to which the two photons interfere can be controlled.

As the number of photons increases, however, the number of these auxiliary modes
quickly grows, as one needs to consider every possible combination of interfering and
non-interfering input photons. This motivates the development of more efficient simula-
tion techniques that do not explicitly consider these degrees of freedom, and a significant
amount of literature exists on this subject [124, 125, 126, 127]. One drawback that all
methods operating with a reduced dimensionality suffer from is the inability to simulate
entangled input states. This is a consequence of the fact that these methods produce
the output probabilities, rather than the output amplitudes. This, in turn, is neces-
sary because a given Fock-state vector specifying the number of photons in each mode
is not a well defined quantity in the case where the photons are partially distinguish-
able. Instead, these methods effectively compute the partial trace over the hypothetical
auxiliary modes, and the corresponding output states are then no longer pure.

2.2.9 Hong-Ou-Mandel interference
Armed with the knowledge of how to model linear-optical systems we can now con-

sider a simple scenario of two indistinguishable photons in two different spatial modes,
both incident on the same balanced beamsplitter:

|Ψ〉 = â†b̂† |0〉 = |1, 1〉 . (2.2-102)

The beamsplitter transforms the creation operators as

â† 7→ 1√
2
(â† + b̂†), b̂† 7→ 1√

2
(â† − b̂†), (2.2-103)

and the state after the beamsplitter can therefore be written as

|Ψ〉 = 1

2
(â† + b̂†)(â† − b̂†) |0〉

=
1

2
(â†â† − â†b̂† + b̂†â† − b̂†b̂† |0〉

=
1

2
(â†â† − b̂†b̂†) |0〉

=
|2, 0〉+ |0, 2〉√

2
.

(2.2-104)

This simple calculation suggests that two indistinguishable photons always bunch on a
beamsplitter. This effect, pictured in Fig. 2.6, is called Hong-Ou-Mandel (HOM) inter-
ference [128,129]. The bunching can be seen as a reflection of the bosonic nature of pho-
tons. If one were to perform the same experiment with fermionic particles, the opposite
behaviour would be seen. Indeed, the anti-symmetric state |Ψ−〉 = (|H,V 〉−|V,H〉)/

√
2

will always anti-bunch on a beamsplitter, and more generally the beamsplitter acts as a
symmetry sorter through which all symmetric two-qubit states bunch. Hong-Ou-Mandel
interference is a purely non-classical effect and cannot be observed with thermal or co-
herent states. It is worth noting that HOM-interference does not depend on the phase
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Figure 2.6: Hong-Ou-Mandel interference. Visual representation of the four amplitudes
after the beamsplitter, corresponding to all the ways that the two photons can be reflected
and transmitted. If the two photons are indistinguishable then the amplitude corresponding to
both of them being reflected interferes destructively with the amplitude for both of them being
transmitted. This in turn leads to only the first and last amplitudes remaining, and consequently
the photons always bunch.

of the photons, since any phase in (2.2-102) would simply be a global phase. While
HOM-interference is not a true two-photon interaction, it is nevertheless a critical ingre-
dient in photonic quantum information processing and underlies all of the linear-optical
two-photon operations discussed in Section 2.3.3. The interference between the two am-
plitudes corresponding to both photons being reflected or transmitted relies on these
two outcomes being indistinguishable, which in turn requires the photons to be indis-
tinguishable. For example, if the two photons have orthogonal polarizations then the
second line in (2.2-104) instead reads:

1

2
(â†H â

†
V − â†H b̂

†
V + b̂†H â

†
V + b̂†H b̂

†
V |0〉 , (2.2-105)

and no cancellation occurs. Ensuring a high degree of indistinguishablility between pho-
tons is therefore of great importance in photonic quantum information. In practice,
photons produced by a single-photon source exhibit some partial degree of distinguisha-
bility in one or more degrees of freedom. In practice, photons are also localized to
within their coherence length, and need to arrive at the beamsplitter with a time differ-
ence much smaller than this coherence length. When scanning the relative time delay
between two photons the photons continuously transition from being distinguishable to
being indistinguishable in time. By plotting the rate of coincidence detection events
between the two output ports of the beamsplitter one gets what is known as a Hong-Ou-
Mandel dip, and the visibility of this curve corresponds to the indistinguishability of the
photons in the remaining degrees of freedom. More realistic models of HOM-interference
will be discussed in Section 2.4.5.

2.3 Single-photon quantum information
Within the field of photonic quantum information there are two distinct approaches

to encoding the actual quantum information [130]. One utilizes the continuous degrees
of freedom of the electric field quadratures, often referred to as a continuous variable
(CV) encoding [26, 114], while the second approach uses discrete degrees of freedom of
single photon states, and this is called a discrete variable (DV) encoding [131,132]. Both
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approaches have their own advantages and disadvantages. The former has the strength
that a simple balanced beamsplitter can act as a deterministic maximally entangling
operation, and this simplicity has enabled the experimental realisation of exceptionally
large entangled states [133,134,135]. While CV quantum information tries to exploit the
intrinsically bosonic nature of the photon, this approach suffers from the problem that
one almost always wants to encode discrete information in the system. This is possible
through the use of so-called GKP states [136], which are states with periodic Wigner
functions that mimic qubit states. These states, however, are unphysical, requiring
infinite energy, and while finite energy approximations of GKP states can be shown
to be a useful computational resource [137], they nevertheless remain challenging to
produce and have not been realised in a photonic system to date.

The discrete variable encoding takes the opposite approach, ignoring the bosonic na-
ture of the photons by directly constructing qubits out of them. This, however, presents
a new problem, namely that manipulations of photons do not necessarily preserve the
qubit states. For example, two photons impinging on different ports of a beamsplitter
might exit in the same port, and the resulting state is typically not a qubit state. An
additional challenge is that of realising two-qubit gates, since photons do not interact.
In the CV approach the entanglement that can be generated deterministically is photon-
number entanglement. While maximally entangled states in the photon number can in
some cases be deterministically generated in the discrete variable paradigm as well [138],
the photon number turns out to be an impractical degree of freedom to work with. For
example, a measurement in a diagonal photon-number basis cannot conserve photon
number, and consequently it cannot be performed using only linear optics [10].

In practice the most commonly used discrete degrees of freedom of single photons
are the polarization [96, 139, 140], path [141, 142, 143], time [144, 145] and oribital an-
gular momentum (OAM) [146, 147], though more encodings exist [148, 149]. Several
degrees of freedom can be combined to encode higher-dimensional states in a single pho-
ton, and these are often easier to entangle [150, 151, 152, 153]. For instance, a simple
polarizing beamsplitter does a controlled-NOT operation between the polarization and
path, and therefore acts as an entangling operation between the two degrees of freedom.
An OAM encoding offers the advantage of an infinite-dimensional Hilbert space that
is purely internal to the photon [154], and this has enabled the realisation of several
highly entangled high-dimensional states [155, 156, 157]. However, a major drawback is
that OAM states are comparatively fragile, and are not preserved in standard optical
fibers. Consequently the first three encodings are by far the most common in practical
applications, with polarization and time encodings seeing significant use in quantum
communication technologies, while path encodings are currently being pursued in pho-
tonic quantum computation due to its inherent compatibility with integrated photonic
devices [158,159].

The experiments presented in this thesis primarily use polarization encoded states,
with occasional uses of the path and time degrees of freedom. Photon polarization is a
particularly appealing degree of freedom due to its high robustness to noise and ease of
manipulation. The robustness of the encoding comes from a fact that the polarization
basis states can only be rotated, or acquire relative phases, by propagating through bire-
fringent media. Many optical components exhibit small or negligible birefringence, and
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components that are birefringent do not display a significant time-dependence, meaning
that their influence can be pre-corrected. This is of course only approximately true,
as there are effects which induce decoherence in polarization states as well. For exam-
ple, propagation through sufficiently long optical fibers will introduce a stochastic time
dependent polarization rotation that acts as depolarizing noise, strongly birefringent
materials introduce temporal walk-off that can decohere a polarization state when the
walk-off is on the order of the coherence time of the light, and very broadband photons
can experience decoherence arising from wavelength dependent birefringence.

2.3.1 Manipulating polarization qubits
As discussed in Section 1.1.5 a general qubit rotation can be decomposed as three

rotations about some fixed axes on the Bloch sphere. For a polarization qubit, such a
rotation is realised by propagating through a birefringent material, where the axis of
rotation is set by the orientation of the optical axis of the medium, and the rotation
angle is set by the total birefringent phase shift acquired by propagating through the
material. In practice there are therefore three different approaches for manipulating
polarization qubits: one can either use devices with a tunable birefringence but with
fixed optical axes, devices with fixed birefringence but whose optical axes can be rotated,
or a combination of the two. Materials with tunable birefringence can be realised using
for example the Pockels effect, or using liquid crystals. The approach using elements
with fixed birefringence often turns out to be the most practical and cost-effective one.
Abundantly available materials such as quartz exhibit linear birefrigence, and can be
manufactured with small tolerances.

Since qubit rotations are typically parameterised in terms of Euler- or Tait-Bryan-
rotations, which map to tunable birefringence, it is not entirely obvious how one would
generate arbitrary rotations from elements with fixed birefringence, or how to optimally
pick these optical elements. In a series of papers in the late 1980’s, R. Simon and N.
Mukunda proved that there exists a three-component gadget consisting of fixed linear
retarders that is both optimal and universal for SU(2) [160, 161]. The device uses two
linear retarders with a total birefringence of π/2, called quarter-wave plates, and one
linear retarder with a phase-delay of π, called a half-wave plate. These components can
be described in matrix form as2

H(θ) = UHWP(θ) = e−iπ/2
[
cos θ − sin θ
sin θ cos θ

] [
1 0
0 −1

] [
cos θ sin θ

− sin θ cos θ

]
= e−iπ/2

[
cos 2θ sin 2θ
sin 2θ − cos 2θ

] (2.3-1)

Q(θ) = UQWP(θ) = e−iπ/4
[
cos θ − sin θ
sin θ cos θ

] [
1 0
0 i

] [
cos θ sin θ

− sin θ cos θ

]
= e−iπ/4

[
cos2 θ + i sin2 θ (1− i) cos θ sin θ
(1− i) cos θ sin θ i cos2 θ + sin2 θ

]
,

(2.3-2)

2The exact form of these matrices depends on the convention used to represent the polarization states.
The matrices here use the convention defined in (2.3-3).
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(a) HWP (b) QWP

Figure 2.7: Visual representation of the action of a HWP and a QWP. The two figures
show examples of how a half-wave plate (HWP) and quarter-wave plate (QWP) rotate a state on
the Bloch sphere. In these examples, the initial state is a left-handed circularly polarized state
and the rotation axis is parallel to the vector [1 0 2]. The HWP in (a) rotates the initial state
|L〉, indicated by a faint arrow, by 180° to |R〉, while the QWP in (b) rotates |L〉 by 90° such that
it ends up in the plane spanned by the linear polarizations. This happens independently of the
rotation axis and therefore the physical orientation of the wave plate, although the exact linear
state that the QWP rotates |L〉 to does depend on the rotation axis.

where θ is the angle between the horizontal axis and the fast axis of the wave plate.
In their paper, Simon and Mukunda used algebraic methods to relate the angles of

the wave plates to an Euler-angle decomposition of an arbitrary rotation [161]. This
approach offers little physical insight, and here a visual method for determining the
correct wave-plate angles will be presented. The following convention for the polarization
states and Pauli matrices will be used:

|0〉 = |H〉 |+〉= |H〉+ |V 〉√
2

|L〉 = |H〉+ i |V 〉√
2

|1〉 = |V 〉 |−〉= |H〉 − |V 〉√
2

|R〉 = |H〉 − i |V 〉√
2

(2.3-3)

Z |H〉 = |H〉
Z |V 〉 = − |V 〉

X |+〉 = |+〉
X |−〉 = − |−〉

Y |L〉 = |L〉
Y |R〉 = − |R〉 .

(2.3-4)

In other words, the horizontal and vertical polarization states are the computational
basis states, diagonal polarization states are real superpositions of the former and the
circular polarization states are complex superpositions of the horizontal and vertical
polarizations. In this convention, half- and quarter-wave plates are rotations around an
axis that lies in the X − Y -plane of the Bloch sphere, with aotation angles of 180° and
90° respectively, and the direction of the axis is determined by the physical orientation
of the optical axis. In other words, they are rotations of the form

UWP = cos
θ

2
I − i sin

θ

2
(nxX + nzZ), n2x + n2z = 1 (2.3-5)
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(a) Initial state |H⟩ (b) Initial state UHWP(12.25°) |H⟩

Figure 2.8: Image of a QWP for two linearly polarized states. The green curves show
the image of a QWP, i.e. the curve traced out as the angle of the wave plate is rotated from
0° to 180°, for two different initial states in the plane of linear polarization. Consequently these
curves contain all the possible final states that can be reached from the respective initial states
using a single quarter-wave plate. Equivalently, a QWP can bring any state on the green curves
back to the initial state in each figure. Rotating the initial state in the linear plane has the effect
of rotating these green curves about the axis defined by the circular polarizations. It is therefore
clear that by choosing an appropriate initial state in the linear plane, one can find a curve that
intersects any point on the Bloch sphere.

with
θHWP = π, θQWP =

π

2
. (2.3-6)

This is visually illustrated in Fig. 2.7. We now turn to the problem of realising general
qubit rotations using wave plates. Consider an arbitrary unitary U ∈ SU(2). The
problem of implementing U can equivalently be thought of as implementing the inverse
of a unitary V = U †. Suppose V acts on the states |H〉 and |L〉 as

V |H〉 = |Ψ〉 , V |L〉 = |Φ〉 . (2.3-7)

Implementing U is then equivalent to finding some unitary that maps

|Ψ〉 → |H〉 , |Φ〉 → |L〉 . (2.3-8)

To this end, it is useful to first note two facts about wave plates: firstly, that a HWP
always maps circularly polarized states to circularly polarized states with the opposite
handedness (see Fig. 2.7b), and secondly that a QWP can take any state on the Bloch
sphere and map it to the linear plane. The second property is less obvious, but can be
understood by thinking of the inverse process, that is, a QWP acting on a state in the
linear plane. This is illustrated in Fig. 2.8, which shows all the possible states that a
QWP can map a given linearly polarized state to. Two identical linear retarders can
always be made to implement an identity transformation by orienting them at 90° to
each other, since this configuration ensures that there is no net birefringence. It follows
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(a) Initial state V |L⟩ (b) Initial state V |H⟩

Figure 2.9: First QWP of a universal three-component gadget. The first step of imple-
menting an arbitrary unitary U is to map the state |Φ〉 = U† |L〉 = V |L〉 to the linear plane
using a quarter-wave plate. This is shown in (a) where the grey arrow indicates the initial state
|Ψ〉 = V |L〉 and the solid arrow shows the resulting state in the linear plane. (b) shows the
seemingly arbitrary action of the same QWP on U† |H〉. As for all linear retarders, the rotation
axis, indicated by the blue arrow, lies in the plane of linear polarization.

that:
Q(θ + 90°) = Q(θ)−1. (2.3-9)

Therefore the curves in Fig. 2.8 show all the initial states which a QWP can map back
to a given linearly polarized state. It is easy to see visually that the set of all such
curves for all linearly polarized states covers the whole Bloch sphere. Therefore, given
an arbitrary state on the Bloch sphere, there is always some initial linear state which a
QWP can map to the desired state, and consequently a QWP can bring any state back
to the linear plane. Returning to the problem of implementing the map in (2.3-8) using
wave plates, one begins by using a QWP to map the state |Φ〉 to some linearly polarized
state |ΦL〉:

Q(θ) |Φ〉 = |ΦL〉 = a |H〉+ b |V 〉 , a, b ∈ R. (2.3-10)
This is illustrated in Fig. 2.9. In Appendix A it is shown that the angle θ is given by

θ =
1

2
atan2

(
Tr[X |Φ〉〈Φ|],Tr[Z |Φ〉〈Φ|]

)
. (2.3-11)

As illustrated in Fig. 2.10, a second QWP can be used to map |ΦL〉 to |R〉:

Q(φ) |ΦL〉 = |R〉 , (2.3-12)

where the angle φ can be found as

φ =
1

2
atan2

(
Tr[X |ΦL〉〈ΦL|],Tr[Z |ΦL〉〈ΦL|]

)
+ 45°. (2.3-13)

Since the states
|Ψ〉 = V |H〉 , |Φ〉 = V |L〉 . (2.3-14)



CHAPTER 2 • PHOTONIC QUANTUM INFORMATION PROCESSING
62

(a) Initial state Q(θ)V |L⟩ (b) Initial state Q(θ)V |H⟩

Figure 2.10: Second QWP of a universal three-component gadget. The second quarter-
wave plate in the universal SU(2) three-component polarization gadget maps the states in the
figure to linear and circular polarizations. (a) The QWP angle is chosen such that the state
Q(θ)V |L〉, which lies in the linear plane and should ultimately get mapped to |L〉, gets mapped
to |R〉. (b) This choice of QWP angle simultaneously ensures that Q(θ)V |H〉 gets mapped to
the plane of linear polarization.

are orthogonal on the Bloch sphere, and

Q(φ)Q(θ) |Φ〉 = |R〉 , (2.3-15)

it follows that
Q(φ)Q(θ) |Ψ〉 = |ΨL〉 , (2.3-16)

is a linearly polarized state. The transformation in (2.3-8) can therefore be completed
using a HWP:

H(γ)Q(φ)Q(θ) |Φ〉 = H(γ) |R〉 = |L〉 (2.3-17)
H(γ)Q(φ)Q(θ) |Ψ〉 = H(γ) |ΨL〉 = |H〉 . (2.3-18)

This last rotation is shown in Fig. 2.11. Since the HWP will map |R〉 to |L〉 independently
of its angle, the angle only depends on the linearly polarized state |ΨL〉 and can be
expressed as

γ =
1

4
atan2

(
Tr[X |ΨL〉〈ΨL|],Tr[Z |ΨL〉〈ΨL|]

)
. (2.3-19)

With these angles the three wave plates realise the desired transformation:

H(γ)Q(φ)Q(θ) = U = V †, (2.3-20)

up to an irrelevant global corresponding to a 2π rotation on the Bloch sphere. The
order of the three wave plates does not affect the universality of the gadget, however a
re-ordering of the wave plates leads to a different set of angles. These can be calculated
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(a) Initial state Q(φ)Q(θ)V |L⟩ (b) Initial state Q(φ)Q(θ)V |H⟩

Figure 2.11: HWP in a universal three-component gadget. The action of the HWP in
the Simon Mukunda gadget, which acts last, after the two QWPs. This wave plate has the effect
of (a) mapping Q(φ)Q(θ)V |L〉 = |R〉 to |L〉, and (b) mapping Q(φ)Q(θ)V |H〉 to |H〉, thereby
completing the desired transformation.

using the following permutation identities:

Q(α)H(β) = H(β)Q(2β − α) (2.3-21)
H(β)Q(α) = Q(2β − α)H(β). (2.3-22)

2.3.2 Measuring polarization qubits
The ease of manipulating polarization qubits also carries over into measuring them.

While some photo-detection processes exhibit a polarization dependence, the most straight-
forward way to measure a polarization state is with a Von Neumann measurement. This
is done by coupling the polarization basis states to different spatial modes, since mea-
suring which spatial mode the photon occupies then also reveals its polarization [46].
As mentioned in Section 2.2.7, such a Von Neumann measurement can be implemented
using a polarizing beamsplitter (PBS), which typically transmits horizontally polarized
light and reflects vertically polarized light (see Fig. 2.12). A bare PBS therefore effects a
measurement in the computational basis, corresponding to the observable Z. Detecting
a photon in the transmitted port of the PBS reveals the eigenvalue +1, and detecting
one in the reflected port reveals −1. Measurements of other single-qubit observables can
be implemented by performing single-qubit rotations before the PBS. Given an observ-
able A with eigenstates |a±〉 and corresponding eigenvalues ±1 one needs to perform an
operation U such that

U |a+〉 = |H〉 , U |a−〉 = |V 〉 . (2.3-23)

In other words, the eignstate with the positive eigenvalue should be mapped to |H〉, and
the state with the negative eigenvalue should get mapped to |V 〉. The logic behind this
is simple: a Von Neumann measurement of the observable A is one where the positive
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Figure 2.12: Polarization qubit measurement. A Von Neumann measurement of a polar-
ization qubit can be realised using a polarizing beamsplitter that reflects vertically polarized
light and transmits horizontally polarized light. This correlates the polarization and path of the
photon: |ψ〉 = α |H〉1+β |V 〉1 7→ α |H〉1 |0〉2+β |0〉1 |V 〉2. A measurement of the photon position
then reveals the polarization state. Using a quarter-wave and half-wave plate before the PBS any
qubit measurement basis can be selected.

eigenstate |a+〉 is always transmitted through the PBS, since this is the path associated
with the positive eigenvalue, and vice versa for |a−〉.

The problem of mapping an arbitrary state to |H〉 is simpler than performing a
general qubit rotation, since the relative phase of the basis states does not matter. It
is therefore sufficient to use only a single quarter-wave plate and one half-wave plate
together with a PBS to realise any qubit observable. In analogy with the method for
general unitaries presented in the previous section, a QWP first rotates the state |a+〉
to the linear plane:

Q(θ) |a+〉 = α |H〉+ β |V 〉 , α, β ∈ R, (2.3-24)

and a half-wave plate rotates the resulting state in the linear plane to |H〉:

H(φ)Q(θ) |a+〉 = |H〉 . (2.3-25)

The angles θ and φ can be found using the methods outlined in previous section. It is
worth noting that for some observables these angles are not unique, even when disre-
garding the natural periodicity of wave-plate rotations. For implementing the commonly
used Pauli observables one set of possible angles is shown in Table 2.1.

Although generalized measurements remain more challenging and significantly less
widely used than straightforward projective measurements, photons also admit rela-
tively simple implementations of single-qubit POVMs in comparison to other physical
systems. This is due to the fact that they are easy to place in spatial superpositions, and
an appropriate superposition over two or more modes can be used to realise aPOVM.
The photonic realisation of a POVM can be understood using a simple constructive
method [162]. Firstly, note that it suffices to consider general implementations of rank-
1 POVMs, as any higher rank POVM can be realised using a rank-1 POVM with more
outcomes. Then consider a general rank-1 POVM M with POVM elements

Em = pm |Ψm〉〈Ψm| . (2.3-26)

Let |Ψ⊥
m〉 be the state orthogonal to |Ψm〉:

〈Ψ⊥
m|Ψm〉 = 0. (2.3-27)
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Wave-plate angles
Observable QWP angle HWP angle
X 45° 22.5°

-X 45° 67.5°
Y 0° 67.5°

-Y 0° 22.5°
Z 0° 0°

-Z 0° 45°

Table 2.1: Qubit-tomography wave-plate angles. Single-qubit tomography can be per-
formed using six (three) different wave-plate settings when using a polarizer (PBS). When using
a PBS the positive and negative eigenvalues of the observables are measured in parallel. The
table shows one possible set of wave plate angles to implement the three Pauli observables.

Then clearly
Tr[Em |Ψ⊥

m〉〈Ψ⊥
m|] = 0. (2.3-28)

In other words, given that the state being measured is |Ψ⊥
m〉 the outcome m will never

be observed. This is a sufficient condition for the realisation of a POVM and motivates
a simple algorithm for its implementation: consider a circuit with as many modes as the
N outcomes of the POVM. Suppose the state |Ψ⊥

1 〉 is input into the circuit in modes
N − 1 and N . Then perform a local operation U1 that maps this state to mode N :

|Ψ⊥
1 〉 = a1 |N − 1〉+ b1 |N〉 , U1 |Ψ⊥

1 〉 = |N〉 , (2.3-29)

where |N〉 = â†N |0〉 represents a single photon in the N -th mode. This choice of U1 also
ensures that

U1 |Ψ1〉 = |N − 1〉 . (2.3-30)

Next, apply a unitary V1 that couples modes N − 1 and 1 with a strength given by p1:

V1 |N − 1〉 = √
p1 |1〉+

√
1− p1 |N − 1〉 . (2.3-31)

Associating a photo-detection event in mode 1 with the outcome m = 1 then ensures
that the following conditions for the POVM are satisfied:

Tr[E1 |Ψ1〉〈Ψ1|] = p1, Tr[E1 |Ψ⊥
1 〉〈Ψ⊥

1 |] = 0. (2.3-32)

For the second POVM outcome, one considers projections of the propagated states

V1U1 |Ψ⊥
2 〉 , (2.3-33)

V1U1 |Ψ2〉 , (2.3-34)

onto the modes N − 1 and N :

(〈N − 1|+ 〈N |)V1U1 |Ψ⊥
2 〉 = |Ψ⊥

2,proj〉 , (2.3-35)
(〈N − 1|+ 〈N |)V1U1 |Ψ2〉 = |Ψ2,proj〉 (2.3-36)
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Figure 2.13: Four-outcome POVM on a path qubit. A four-outcome POVM can be realised
using only the path degree of freedom of a single photon. As described in the main text, the
unitary U1 ensures that the state |Ψ⊥

1 〉 is never detected in mode 1, which is equivalent to the
corresponding POVM element having the correct orientation on the Bloch sphere. The unitary
V1 couples the modes 1 and 3 in a way that ensures Tr[E1 |Ψ1〉〈Ψ1|] = p1, thereby giving the
correct magnitude of the POVM element E1.

and performs the same procedure, mapping

U2 |Ψ⊥
2,proj〉 ∝ |N〉 , (2.3-37)

and
‖|Ψ2,proj〉‖2V2 |N − 1〉 = √

p2 |2〉+
√

‖|Ψ2,proj〉‖2 − p2 |N − 1〉 . (2.3-38)

In general Uk is a two-mode unitary that satisfies

Uk

k−1∏
m=0

VmUmP |Ψ⊥
k 〉 ∝ |N〉 , k = 1 . . . N − 1 (2.3-39)

U0 = 1, (2.3-40)

where

‖|Ψk,proj〉‖2Vk |N − 1〉 = √
pk |k〉+

√
‖|Ψk,proj〉‖2 − pk |N − 1〉 , k ≥ 1 (2.3-41)

|Ψk,proj〉 = P

k−1∏
m=0

VmUmP |Ψk〉 (2.3-42)

V0 = 1, (2.3-43)

and
P = 〈N − 1|+ 〈N | . (2.3-44)

Note that N−1 unitaries Uk and N−2 unitaries Vk suffice due to the completeness of the
POVM elements. A circuit implementing a four outcome POVM obtained through this
constructive method is illustrated for a path-encoded qubit in Fig. 2.13, as this encoding
is easy to understand. Polarization qubits can be measured by such a circuit by placing
a PBS at its input, thereby mapping the polarization state to a path-encoded state.
However, a POVM on a polarization qubit can also be realised in a more direct way,
with a combination of path and polarization modes. In such a scheme, the unitaries Um
and Vm act on the polarization degree of freedom, and control the coupling to the spatial
modes. Typically this is done using beam displacers, which are birefringent pieces of
glass that physically displace one polarization component with respect to another one,
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Figure 2.14: Four-outcome POVM on a polarization qubit. Using beam-displacers and
wave plates POVMs can be directly realized on a polarization qubit by coupling it to multiple
paths. Similarly to the path implementation, the unitary Uk ensures that the state |Ψ⊥

k 〉 gets
mapped to |H〉, and is not displaced by the beam displacer. The unitaries Vk, in conjunction
with the beam displacers realize the tunable coupling to the path degree of freedom. The X
gates are necessary when using beam displacers that all displace in the same direction, and this
configuration ensures there is no decoherence due to temporal walk-off.

but leave the two propagating in parallel directions. However, it can also be performed
using tunable partially-polarizing beamsplitters.

In Fig. 2.14 a path-polarization realisation of the unitary V1U1 is shown. Initially
the photon is in a polarization state

|Ψ⊥
1 〉 = a1 |H〉1 + b1 |V 〉1 , (2.3-45)

where the subscript denotes the spatial mode. A set of wave plates implements the
polarization unitary U1 that maps:

U1 |Ψ⊥
1 〉 = |H〉1 . (2.3-46)

The above state is entirely transmitted through the subsequent beam-displacer:

|H〉1 7→ |H〉2 , (2.3-47)

after which a second polarization unitary effects the transformation

V1 |V 〉1 =
√
p1 |V 〉1 +

√
1− p1 |H〉1 . (2.3-48)

Finally, the second beam-displacer couples the polarization state above to two different
paths: √

p1 |V 〉1 +
√
1− p1 |H〉1 7→

√
p1 |V 〉1 +

√
1− p1 |H〉2 . (2.3-49)

This approach has been utilized in several experiments [163,164,165], however it presents
two challenges. The first is that the lateral displacement produced by birefringent crys-
tals is typically limited to a few mm, due to low birefringence and constraints on the
crystal size. This small beam separation complicates the implementation of the polar-
ization rotation Vm that acts on only one of the two spatial modes. A second challenge
is that the two beam displacers act as a Mach-Zehnder interferometer, and while the
parallel-path geometry is phase insensitive to displacements of either crystal, the in-
terferometer does nevertheless not have full passive stability. An alternative approach
using a partially-polarizing beamsplitter (PPBS) is shown in Fig. 2.15. In this scheme
the unitary Um, as before, acts on the polarization state in a single spatial mode, and
the polarization-path coupling unitary Vm is part of the PPBS itself. The realisation of
a passively phase-stable PPBS is discussed in Chapter 3.
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Figure 2.15: Four-outcome POVM using tunable PPBSes. Given access to tunable PPB-
Ses the construction of a POVM on a polarization qubit can be simplified. As in the case of the
beam-displacer based scheme in Fig. 2.14 the unitaries Uk act directly on the polarization using
wave plates, but the path-polarization coupling unitaries Vk are the tunable PPBSes themselves.

2.3.3 Two-photon operations
As previously mentioned, the kind of bilinear Hamiltonians in (2.2-58) that charac-

terise linear optics do not allow for deterministic entangling gates between degrees of
freedom other than the photon number. This is because such Hamiltonians do not de-
scribe interactions between photons, and therefore cannot realise conditional operations.
As an example, consider the controlled-phase gate

UC-Phase =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 . (2.3-50)

This is a maximally entangling two-qubit gate:

UC-Phase |+,+〉 = 1

2
UC-Phase(|H,H〉+ |H,V 〉+ |V,H〉+ |V, V 〉)

=
1

2
(|H,H〉+ |H,V 〉+ |V,H〉 − |V, V 〉)

= 1⊗ UHad
|H,H〉+ |V, V 〉√

2

= 1⊗ UHad |Φ+〉 ,

(2.3-51)

where UHad = (X + Z)/
√
2 denotes the Hadamard operator. To realise this gate one

needs a Hamiltonian of the form

HC-Phase = ϕâ†V âV b̂
†
V b̂V , (2.3-52)

however a linear-optical phase shift is local to each mode:

Hlinop = ϕa â
†
V âV + ϕb b̂

†
V b̂V , (2.3-53)

and the resulting unitary operator is therefore simply a tensor product of two local phase
shifts on modes a and b, and clearly does not generate any entanglement.



2.3. SINGLE-PHOTON QUANTUM INFORMATION
69

Figure 2.16: Linear-optical C-Phase gate. A linear-optical controlled-phase gate for polariza-
tion can be realised using three partially-polarizing beamsplitters that fully transmit horizontally
polarized light, and transmit vertically polarized light with a probability of 1/3. The two half-
wave plates exchange the H and V polarizations, and therefore effectively swap the transmission
coefficients of the second two PPBSes. The gate succeeds whenever exactly one photon is de-
tected in the transmission ports of the last two PPBSes, and this occurs with probability 1/9.

While deterministic entanglement generation is not possible with linear optics alone,
it is nevertheless possible to generate entanglement probabilistically. In general terms,
this is done by preparing a state that contains a set of amplitudes that constitute an
entangled state in such a way that the rest of the state, that contributes to making it
separable, can be removed using a projective measurement. A simple polarizing beam-
splitter is capable of probabilistically entangling two photons in polarization. Consider
the state:

1

2
(â†H + â†V )(b̂

†
H + b̂†V ) |0〉 , (2.3-54)

incident on a PBS. The state after the PBS is

|ψ〉 = 1

2

(
(â†H b̂

†
H + â†V b̂

†
V + â†H â

†
V + b̂†H b̂

†
V

)
|0〉 . (2.3-55)

The two last terms represent amplitudes where both photons exited in the same spatial
mode. Projecting on exactly one photon being in each mode gives a two-photon Bell-
state, with probability 1/2:

1

2

(
〈H,H|+ 〈V, V |+ 〈H,V |+ 〈V,H|

)
|ψ〉 =1

2

(
|H,H〉+ |V, V 〉

)
=
1

2
|Φ+〉 .

(2.3-56)

Since non-destructive measurements of the photon number are challenging to realise,
direct photo-detection is normally used instead. This has the consequence that the
entangled state is destroyed in the same instant it is created, and this is referred to
as entanglement by post-selection. In other words, non-classical correlations can be
observed by disregarding certain measurement outcomes.
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Figure 2.17: Linear-optical Bell measurement. Using linear optics a probabilistic Bell
measurement can be realised, shown here for a polarization state |ψ〉1,2. It consists of one balanced
beamsplitter and two polarizing beamsplitters. The anti-symmetric state |Ψ−〉 = 1√

2
(|H,V 〉 −

|V,H〉) has the property that it never bunches on a beamsplitter, and it is the only two-qubit state
with this property. Detecting exactly one photon in mode 1 and one in mode 2 therefore projects
the input state onto |Ψ−〉1,2. The remaining three Bell states all bunch on the beamsplitter, but
the state |Ψ+〉 = 1√

2
(|H,V 〉+ |V,H〉) will bunch on either PBS. A detection in both D1

H and D1
V ,

or D2
H and D2

V , therefore projects the input state onto |Ψ+〉1,2. By performing local polarization
operations before the beamsplitter it is possible to project onto the other Bell states, however for
any given configuration the setup is only capable of projecting onto two of them.

While the PBS interaction described above can generate a maximally entangled two-
qubit state, it does not correspond to a gate in the circuit model even after post-selection,
since there are certain input states such as |H,V 〉 that never yield a qubit state as output,
because the photons are guaranteed to bunch. Using slightly more complicated schemes,
however, it is possible to build valid gates [39]. One example of this is the linear-
optical C-Phase gate [166], consisting of three partially-polarizing beamsplitters, shown
in Fig. 2.16 [167]. The last two PPBSes balance the amplitudes of the terms that bunch
less frequently or not at all, with the |V, V 〉 term that bunches more frequently. This gate
has a success probability of only 1/9, which is in fact optimal [168], however in certain
specific situations, such as when generating a four-qubit cluster state, it is possible
to remove the last two PPBSes and balance the output amplitudes by intentionally
preparing an imbalanced input state, and thereby boost the success probability to 1/4.
Despite yielding a well defined circuit model gate, the need for post-selection nevertheless
means that multiple instances of these gates generally cannot be concatenated, since the
state after the gate is only known to be a valid qubit-state if the photons are measured.

A related idea to the probabilistic entangling gate is the projection of a state onto an
entangled basis. When the basis is the two-qubit basis formed by the Bell states this is
known as a Bell measurement. A probabilistic Bell measurement can be realised using
a single balanced beamsplitter [62, 169], which has the property that it sorts two-qubit
states according to their symmetry: anti-symmetric states always anti-bunch, meaning
one photon exits in each mode, and symmetric states always bunch, i.e. both photons
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Figure 2.18: Heralded C-NOT gate. A heralded linear-optical C-NOT gate can be con-
structed using polarizing beamsplitters. It consists of two parts, the first one shown in (a) is
a destructive C-NOT that succeeds whenever one and only one photon is detected in the two
photodetectors at the output of the second PBS. The two half-wave plates change the basis of
the PBS from the H/V basis to the +/− basis. The control and target qubits of the gate are
indicated by the subscripts C and T respectively. The second part shown in (b) is called a
quantum encoder, and also succeeds whenever one and only one photon is detected. The gate
has the effect of copying the state in mode a into two different photons, as described in the main
text, and it requires a maximally entangled |Φ+〉 state as a resource. Combining these two parts,
as shown in (c), leads to the realisation of a heralded linear-optical C-NOT gate that succeeds
whenever exactly one photon is detected in both the upper and lower sets of photodetectors,
which happens with probability 1/4.

exit in the same mode. Detecting one photon in each mode therefore projects the state
before the beamsplitter onto the |Ψ−〉 state, under the assumption that a valid two-qubit
state was input. If the qubits are encoded in the polarization, performing a polarization
resolving measurement in each output arm of the beamsplitter can furthermore distin-
guish the state |Ψ+〉 from the remaining two Bell states, as this is the only symmetric
Bell-state that is anti-correlated in the H,V basis. This is shown in Fig. 2.17. The
last two states, |Φ+〉 and |Φ−〉, are both symmetric and correlated in the H,V basis,
meaning that they both lead to photon bunching at the beamsplitter and at either PBS,
and can therefore not be distinguished. Formulated as a discrimination task between
the different Bell states, this scheme based on a single beamsplitter only succeeds 50%
of the time, and it can be shown that this is in fact optimal for a two-photon Bell
measurement using only linear optics [170,171].

By giving an experimenter more resources in the form of additional photons that
are consumed in the process, commonly referred to as ancillas, it becomes possible to
boost the success probability up to 75% [172]. This approach can also be applied to
two-qubit logic gates. The ancilla photons can not only boost the success probability,
but can crucially be used herald the successful application of the gate, removing the
need for destructive post-selection [39, 173]. An example of such a gate is the heralded
C-NOT gate, which has a success probability of 1/4 and has seen multiple experimental
realisations [174,175,176]. This gate, illustrated in Fig. 2.18, uses a two ancilla photons
in a maximally entangled Bell-state, and consists of two different parts. The first part,
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shown in Fig. 2.18a, is a destructive C-NOT gate that is heralded, but consumes the
control qubit in the process and succeeds with probability 1/2. To preserve the control
qubit state, a second part that entangles this state with one of the ancilla photons is
needed. This heralded entangling operation, shown in Fig. 2.18b, is called a quantum
encoder, and also consumes one photon. The quantum encoder realises the following
transformation:

α |H〉a + β |V 〉a → α |H〉a′ |H〉2 + β |V 〉a′ |V 〉2 , (2.3-57)

where the modes are labelled according to Fig. 2.18b. Note that this copying is not equiv-
alent to quantum cloning. It is, however, probabilistic, by virtue of relying on a specific
parity check outcome and succeeds with probability 1/2 [173]. Combining the quantum
encoder with the destructive C-NOT allows the control qubit to be preserved, and since
both constituent elements of the gate are heralded, the full gate is as well. When al-
lowing for feed-forward operations to correct heralding-outcome-dependent phase shifts
this gate succeeds with a probability of 1/4, dropping to 1/16 when no feed-forward is
used.

In the context of linear-optical quantum computation several other types of gates also
exist. Of particular interest are so-called fusion gates, which as the name suggests are
used to fuse different states into a large cluster state that can be used as a computational
resource [177]. It has been shown that fusion gates with a success probability exceeding
certain bounds can enable deterministic quantum computation [159,178,179,180].

2.4 Single-photon generation
Since the photon statistics of classical light sources such as black bodies and lasers

do not approach those of the single-photon state even in the limit of low average photon
numbers, it is not possible to produce single photons simply by attenuating traditional
light sources, and a different method is needed. The best way, on paper, to generate
a single-photon state is using an idealized two-level system. By driving such a system
with a laser it can be deterministically excited to the upper level. Once in the excited
state it will start to undergo spontaneous decay, emitting exactly one photon in the
process. Such idealized two-level systems are, unfortunately, hard to find or engineer
and real-world single-photon sources have many trade-offs.

A perfect single-photon source should emit one and only one photon, into well de-
fined spatial, frequency and momentum modes, and do so on demand with 100% ef-
ficiency [181, 182]. One could imagine using an optical transition of single atom as a
single-photon source, but already there the difficulties begin. A single atom is very sensi-
tive to its surroundings, and unless carefully isolated will therefore exhibit time-varying
characteristics that can reduce the spectral purity of the light. Another problem is
that spontaneous emission is spatially isotropic, meaning that the photon will be emit-
ted in a random direction. Additionally, no atom is a two-level system and unwanted
decay paths can alter the emission spectrum, among other things. Despite these chal-
lenges, great strides have been made towards realising true on-demand single-photon
sources [181,182,183,184,185].

While neutral atoms have been used to generate photons [186,187], they are far from
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the only physical platform that has been explored. Other examples include trapped
ions [188,189], single molecules [190,191], color centers [192,193,194,195] and quantum
dots [196,197,198,199]. Common to all these physical systems is that they are generally
placed inside optical cavities in order to enhance the emission into a particular mode
through the Purcell effect [200, 201], and require cooling to cryogenic temperatures in
order to operate. Although quantum-dot sources in particular have in recent years begun
to show performance approaching that of an ideal single-photon source, due to their high
cost and technical complexity they are nevertheless not the preferred way to generate
single photons in all situations. Instead, by far the most common way to generate
approximate single-photon states is by using bulk nonlinearities in various crystals, using
what is known as parametric fluorescence [129, 202, 203, 204]. While this process is
facilitated by a matter system, the response of the medium is a collective one and the
microscopic internal degrees of freedom do not couple to the generated light, a fact which
greatly reduces the experimental complexity and allows for high reproducibility. How
this fluorescence phenomenon can be used for single-photon generation will be explored
in the following sections.

2.4.1 Nonlinear optics
While most bulk materials are approximately linear, they do in fact generally have a

small but non-negligible nonlinear response to external electric fields. What this means
more concretely is that an oscillating electric field will perturb the electrons in the solid
and cause them to oscillate, and that this oscillation will not only occur at the driving
frequency, but will have small contributions from other frequency components as well.
As the electrons’ positions inside the material are perturbed the material itself becomes
polarized and a net dipole moment is induced. This is described by the polarization
density, which is the induced electric dipole moment per unit volume. In classical
electrodynamics, this polarization density as a function of the external electric field
is usually expanded in a Taylor series [106,205]:

P = ϵ0χ
(1)E+ ϵ0χ

(2)E2 + ϵ0χ
(3)E3 + · · · (2.4-1)

where ϵ0 is the vacuum permittivity, χ(n) is the n-th order susceptibility tensor that de-
scribes the response of the medium, and the boldface indicates a vector-valued quantity.
χ(n) is a tensor with n+1 Cartesian components, which means that the linear response
is simply described by a matrix. The notation ϵ0χ

(n)En is shorthand for the sum

P
(n)
j = ϵ0

3∑
k...l=1

χ
(2)
jk...lEk · · ·El. (2.4-2)

For example, the third-order term is

P
(3)
j = ϵ0

3∑
klm=1

χ
(3)
jklmEkElEm. (2.4-3)

If the external field is oscillating at some frequency ω then nonlinear terms describe a
polarization density that oscillates at higher harmonics of this frequency, and the time-
varying dipole moment in the solid can therefore emit light at these other frequencies.
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A common way to estimate the magnitude of χ(n) is by noting that one would expect
the size of the nonlinear terms to be comparable to the linear response when the external
electric field strength is on the order of the atomic electric field strength, which can be
estimated as Eatom = e/(4πϵ0a

2
0), where e is the electron charge and a0 is the Bohr

radius [206,207]. In a homogeneous, non-dispersive and isotropic dielectric medium χ(1)

is a scalar and
ϵ

ϵ0
= n2 = 1 + χ(1), (2.4-4)

where n is the refractive index of the medium. This implies that χ(1) is of order unity,
and consequently the nonlinear terms can be estimated as

χ(n) ≈ 1

Enatom
≈ (2× 10−12Vm−1)n. (2.4-5)

This simple estimate is surprisingly accurate for the low order nonlinear response, and
it also suggests that the nonlinear response of dielectric materials will typically be very
small.

The dynamics of an electromagnetic field inside a medium are governed by Maxwell’s
equations:

∇ ·D = ρ, (2.4-6)

∇×E = −∂B
∂t
, (2.4-8)

∇ ·B = 0, (2.4-7)

∇×H = J+
∂D

∂t
, (2.4-9)

where J is a vector describing the free current density inside the material and ρ is the
density of free charges. If the medium is non-magnetic then the H and B fields are
proportional: H = B/µ0, where µ0 is the vacuum permeability.

From this set of equations one can derive a single differential equation describing the
propagation of waves inside a medium [106,208]. We begin by taking the curl of (2.4-8):

∇× (∇×E) = − ∂

∂t
(∇×B), (2.4-10)

where the curl can be moved inside the time derivative because the fields are sufficiently
continuous that the partial derivatives commute. Using the vector identity ∇×(∇×E) =
∇(∇ ·E)−∇2E and assuming that the medium is non-magnetic, this can be rewritten
as

∇(∇ ·E)−∇2E = − ∂

∂t
(∇× µ0H) (2.4-11)

Assuming further that the free current density is zero and inserting (2.4-9) the equation
becomes

∇(∇ ·E)−∇2E = −µ0
∂2D

∂t2
. (2.4-12)

For dielectric materials ∇ · D = 0, and if the medium is isotropic then the E- and
D-fields are proportional meaning that ∇ · E = 0. In most applications of nonlinear
optics the medium in question is not isotropic, however under the assumption of weak
birefringence ∇ ·E ≈ 0 still holds, simplifying the equation to

∇2E = µ0
∂2D

∂t2
. (2.4-13)
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In a dielectric medium, the relationship between the displacement field D and electric
field E is given by

D = ϵ0E+P (2.4-14)

and inserting this into (2.4-13) finally yields

∇2E = ϵ0µ0
∂2E

∂t2
+ µ0

∂2P

∂t2
. (2.4-15)

From this equation one can see that the polarization of the medium acts as a source for
the electric field, and that an oscillating polarization density will generate propagating
electric waves. In processes that involve fields that all propagate in the same direction,
called a collinear process, and in which these fields can be approximately described by
plane waves, the vector-valued equation can be replaced by a one-dimensional version:

∂2E

∂z2
= ϵ0µ0

∂2E

∂t2
+ µ0

∂2P

∂t2
. (2.4-16)

To see what kind of dynamics arise from this equation, we will examine a nonlinear
process called difference-frequency generation (DFG). The quantum analogue of this
process can be used to generate single photons. Consider a monochromatic electromag-
netic wave:

E(t) = E0Re
[
ei(−ωt+kz+ϕ)

]
=

1

2

(
Aei(−ωt+kz) +A∗ei(ωt−kz)

)
, (2.4-17)

where A = E0e
iϕ is a complex electric field amplitude. Since we are interested in the

nonlinear dynamics we need to evaluate nonlinear terms of the polarization density. In
the case of DFG, the process is described by the second-order nonlinear response, which
for the scalar equation is

P (2) = ϵ0deffE
2
tot, (2.4-18)

where deff is an effective scalar nonlinear susceptibility along axis in question [207,208],
and Etot is the total electric field. In the DFG process there are three interacting fields
with different frequencies, and thus

Etot = E(ωp) + E(ωs) + E(ωi), (2.4-19)

where the subscripts are shorthand for ‘pump’, ‘signal’ and ‘idler’, which are the conven-
tional names for these fields. Substituting the corresponding complex amplitudes into
(2.4-18) gives

P (2) =
1

4
ϵ0deff

(
Ape

i(−ωpt+kpz) +Ase
i(−ωst+ksz) +Aie

i(−ωit+kiz) + c.c.
)2
, (2.4-20)

where c.c. denotes the complex conjugate of the preceding terms. In DFG, the pump
and idler fields combine to create photons in the signal field:

ℏωp + ℏωi 7→ ℏωi + ℏωi + ℏωs, (2.4-21)
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where due to energy conservation ωp = ωi + ωs. For this reason, it suffices to consider
terms in the expanded square of (2.4-20) that oscillate at the frequency ωs = ωp − ωi.3
These are

P (2)(ωs) =
1

4
ϵ0deffApA

∗
i e
i(−ωst+(kp−ki)z) +A∗

pAie
i(ωst+(ki−kp)z). (2.4-22)

Neglecting higher-order terms, the total polarization density at ωs is

P (ωs) =
1

2
ϵ0χ

(1)(Ase
i(−ωst+ksz) + c.c.) + P (2)(ωs). (2.4-23)

This expression, together with (2.4-17), can now be substituted into the one-dimensional
wave equation (2.4-16). The left-hand term of this equation becomes

∂2

∂z2
E(ωs) =

1

2

∂2

∂z2

(
Ase

i(−ωst+ksz) +A∗
se
i(ωst−ksz)

)
(2.4-24)

=
1

2

(
− k2sAs + 2iks

∂As
∂z

+
∂2As
∂z2

)
ei(−ωst+ksz) + c.c. (2.4-25)

The second-order spatial derivative in this expression is usually neglected. This is known
as the slowly varying envelope approximation, and it is justified whenever |∂2zA| �
|k∂zA|. In practice this approximation holds when the envelope does not vary signifi-
cantly within a wavelength. The right-hand side of the wave equation can be expanded
as

∂2

∂t2
E(ωs) =

1

2

∂2

∂t2

(
Ase

i(−ωst+ksz) +A∗
se
i(ωst−ksz)

)
= −1

2
ω2
sAse

i(−ωst+ksz) + c.c.
(2.4-26)

∂2

∂t2
P (ωs) = −ω2

s

(1
2
ϵ0χ

(1)Ase
i(−ωst+ksz) + ϵ0deffApA

∗
i e
i(−ωst+(kp−ki)z)

)
+ c.c. (2.4-27)

These expressions can now be substituted into the one-dimensional wave equation (2.4-16),
giving

1

2

(
− k2sAs + 2iks

∂As
∂z

)
ei(−ωst+ksz) + c.c

= −ω2
s

(1
2
ϵ0µ0(χ

(1) + 1)Ase
i(−ωst+ksz) + ϵ0deffApA

∗
i e
i(−ωst+(kp−ki)z)

)
+ c.c.

(2.4-28)

Grouping all the terms oscillating at positive (negative) frequencies the differential equa-
tion becomes C+e

iωst+C−e
−iωst = 0. It’s clear that this equation only has the solution

C+ = C− = 0, which means that the equality in (2.4-28) holds even if one discards
the complex conjugate terms. Using the relations n =

√
1 + χ(1), 1/c =

√
ϵ0µ0, and

k = ωn/c the As terms can, after some manipulation, be cancelled and wave equation
reduces to

∂As
∂z

= i
ωs
nsc

deffApA
∗
i e
i(kp−ks−ki)z. (2.4-29)

3Processes corresponding to other terms might still occur, depending on whether or not they satisfy
energy and momentum conservation conditions.
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Similar differential equations can be derived for the pump and idler amplitudes Ap andAi
leading to a system of coupled differential equations. However, if the interaction is weak
the pump and idler fields can be treated as constant. The ordinary differential equation
for the signal field can then be solved by integration, and the solution reads [209]

As = i
ωs
nsc

LdeffApA
∗
i e
i∆kL/2 sinc

(∆k
L

)
, (2.4-30)

where L is the length of the spatial region in which the interaction takes place and
∆k = kp − ks − ki is the momentum mismatch between the three fields. Two things
worth noting about this solution are, first of all, that if the amplitude in the idler field
is zero then the signal amplitude remains zero as well, which as will be discussed in the
next section is in contradiction with the quantum description. The second important
property of the solution is the dependence on the momentum mismatch and interaction
length, which prevents the signal field from growing monotonically, and also influences
the spectral properties of the light generated in the process. This will be explored in
more detail in Section 2.4.3.

2.4.2 Spontaneous Parametric Down-Conversion
Spontaneous parametric down-conversion, or SPDC, is a process in which a single

photon spontaneously decays into a pair of photons with lower frequency:

|1〉ωp
7→ |1〉ωs

+ |1〉ωi
. (2.4-31)

This process is constrained by the energy and momentum conservation conditions

ωp = ωs + ωi (2.4-32)
k⃗p = k⃗s + k⃗i. (2.4-33)

The spontaneous decay of a pump photon into a pair of photons corresponds to a
difference-frequency-generation process where the amplitude of the idler field is zero.
Classically this is forbidden, as discussed in the previous section, but in a semi-classical
model SPDC can be thought of as being seeded by vacuum fluctuations that get ampli-
fied by the pump field [208]. In the quantized picture the SPDC process is described by
a Hamiltonian of the form

H = H0 +HI , (2.4-34)
with

H0 = ℏωm
∑
m

(̂
a†mâm +

1

2

)
, (2.4-35)

HI = κâpâ
†
sâ

†
i + κ∗â†pâsâi. (2.4-36)

The H0 term is the Hamiltonian of the free electric field, and HI is the Hamiltonian de-
scribing the interaction between the fields. The first term in the interaction Hamiltonian
describes the actual down-conversion process, while the second term, necessary to make
the Hamiltonian hermitian, describes the time-reversed process called sum-frequency
generation.
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In most cases one is only interested in the interaction Hamiltonian, and it is there-
fore common to describe the process in the so-called interaction picture. This picture
corresponds to a rotating reference frame in which the free evolution of the state is
baked into the creation and annihilation operators, while the state vector evolves under
the interaction Hamiltonian. More formally, let time-evolution operator under the free
Hamiltonian be [18,110]

U(t, t0) = exp

[
− i

ℏ

∫ t

t0

H0dτ

]
, (2.4-37)

and let T = U †(t, t0). The state vector in the interaction picture is then

|ΨI(t)〉 = T |ΨS(t)〉 , (2.4-38)

where |ΨS(t)〉 is the Schrödinger-picture state vector. We are interested in the time
evolution of the state in the interaction picture. Using the fact that

∂

∂t
T =

i

ℏ
H0T, (2.4-39)

together with the Schrödinger equation

iℏ
∂

∂t
|ΨS(t)〉 = H |ΨS(t)〉 , (2.4-40)

the time evolution of the state can be written

∂

∂t
|ΨI(t)〉 =

(
∂

∂t
T

)
|ΨS(t)〉+ T

∂

∂t
|ΨS(t)〉

=
i

ℏ
H0T |ΨS(t)〉+ T

1

iℏ
(H0 +HI) |ΨS(t)〉 .

(2.4-41)

Multiplying both sides with iℏ and using the fact that TH0 = H0T the equation becomes

iℏ
∂

∂t
|ΨI(t)〉 = (−TH0 + TH0 + THI) |ΨS(t)〉

= THIT
† |ΨI(t)〉 .

(2.4-42)

We see that the time evolution in the interaction picture obeys the Schrödinger equation
with the interaction Hamiltonian in the rotating frame:

H ′
I = THIT

†, (2.4-43)

and the free time evolution does not need to be taken into account explicitly. The
transformed interaction Hamiltonian can be written on the same form as (2.4-36) with
the transformed creation and annihilation operators

â† 7→ T â†T † (2.4-44)
â 7→ T âT †, (2.4-45)

and this will be done implicitly for the remainder of this chapter where necessary.
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In SPDC the signal and idler intensities are intentionally kept low, and a strong
coherent pump field remains, for all intents and purposes, unaffected by the process.
The pump field can therefore be described classically, which amounts to replacing the
annihilation operator of the pump mode with a complex classical variable [210]:

âp → αp ∈ C. (2.4-46)

In the regime where this is valid, the SPDC interaction Hamiltonian (2.4-36) simply
becomes the squeezing operator from (2.2-47)

H = καâ†sâ
†
i + κ∗α∗âsâi. (2.4-47)

When the signal and idler fields occupy two different modes this is a two-mode squeez-
ing Hamiltonian, and if they occupy the same mode it corresponds to the single-mode
squeezing operator. Instead of solving the dynamics exactly, SPDC is usually treated
perturbatively in the aforementioned interaction picture, where one considers a scenario
in which the interaction is switched on for some time t, after which the state evolves
freely:

|Ψ〉t = T exp

[
1

iℏ

∫ t

0
H(τ)dτ

]
|Ψ〉0 . (2.4-48)

In this case the time-ordering operator T can be neglected since the Hamiltonian in
(2.4-47) does not have a time dependence. Taylor expanding (2.4-48) applied to an
initial state with zero photons in the signal and idler modes one gets:

|Ψ〉t = exp

[
1

iℏ

∫ t

0
H(τ)dτ

]
|0, 0〉s,i

=

[
1 +

1

iℏ

∫ t

0
H(τ)dτ +

1

2!

(
1

iℏ

∫ t

0
H(τ)dτ

)2

+ · · ·
]
|0, 0〉s,i

=

[
1 +

t

iℏ
H +

1

2!

(
t

iℏ
H

)2

+ · · ·
]
|0, 0〉s,i .

(2.4-49)

SPDC is usually operated in a regime where the interaction strength, governed by the
nonlinear coefficient of the material, the optical power of the pump light and the total
interaction time, is very weak. Therefore the Taylor series can be truncated to the first
two terms:

|Ψ〉t = exp

[
1

iℏ

∫ t

0
H(τ)dτ

]
|0, 0〉s,i ≈

[
1 +

t

iℏ
H

]
|0, 0〉s,i

= C0 |0, 0〉s,i + C1 |1, 1〉s,i .
(2.4-50)

In the regime where this approximation is valid C0 � C1, which means that the above
state contains mostly vacuum, and as described in Section 2.2.6, the local description
of each mode corresponds to a weak thermal state. However, due to the strong photon-
number correlation arising from the pair creation process, detection of a photon in one of
the modes projects the other mode onto the Fock state |1〉. Even though the probability
to project one of the modes onto this Fock state is typically low, the ability to herald
the creation of a single-photon state in the second mode can be used to overcome the
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probabilistic creation process by employing feedforward operations [211,212,213]. This
can be done by, for example, simultaneously pumping processes in several independent
modes, such that the probability that at least one of them produces a photon pair is
high. The effective single-photon-generation probability of SPDC sources can therefore
be increased.

While the toy-model Hamiltonian in (2.4-47) gives a qualitative description of the
SPDC process and is sufficient for understanding how it can be used to generate single-
photon states, many applications of SPDC require a more quantitative description of
the process. Such a description begins with the interaction Hamiltonian of the process,
which can be derived from a classical starting point. More concretely, by finding an
expression for the total energy of the electromagnetic field inside a dielectric.

The energy of an electric field can be expressed many different ways. One way is in
terms of the potential of the field, which by definition is the amount of energy, per unit
charge, required to add electric charge at a given point. Consider an electric field with
a potential ϕ(r⃗), to which a small amount of charge dρ(r⃗) is added. The total change
in the electric energy WE is then [214]

dWE =

∫
ϕ(r⃗)dρ(r⃗)d3r, (2.4-51)

where the integration is taken over all space. Using the relation ∇ ·D = ρ from (2.4-6)
this can be rewritten as

dWE =

∫
ϕ∇ · dDd3r

=

∫
∇ · (ϕdD)d3r −

∫
∇ϕ · dDd3r.

(2.4-52)

The first integral can be rewritten as a surface integral using Gauss’ theorem:

dWE =

∫
ϕdD · dS−

∫
∇ϕ · dDd3r. (2.4-53)

When the integration is taken over all space the surface integral vanishes under the
condition that the potential goes to zero at infinity, which is the case when considering
a medium with a finite extent [215]. By substituting in E = −∇ϕ the change in the
total energy can be written as

dWE =

∫
E · dDd3r. (2.4-54)

The total energy can then be found by continuously increasing the strength of the
displacement field from D = 0 to its final value D, and integrating the change in energy
during this process:

WE =

∫
d3r

∫ D

0
E · dD. (2.4-55)

A similar derivation can be performed for the magnetic contribution to the total energy:

WM =

∫
d3r

∫ B

0
H · dB =

1

2µ0

∫
B ·Bd3r, (2.4-56)
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where the second step assumes a non-magnetic material. Integrating (2.4-55) is less
straightforward since we assume that the medium is nonlinear, however it can be per-
formed by, as before, Taylor expanding the nonlinear response. First, note that the
integrand in (2.4-55) can be rewritten as [216]

E · dD = E ·
(
dD

dE

)
dE, (2.4-57)

where (
dD

dE

)
ij

=
∂Di

∂Ej
(2.4-58)

is a Jacobian. Recalling that:
D = ϵ0E+P, (2.4-59)

The integrand becomes

E · dD = ϵ0E · dE+E ·
(
dP

dE

)
dE, (2.4-60)

where, as before

Pi = ϵ0χ
(1)
ij Ej + ϵ0χ

(2)
ijkEjEk + ϵ0χ

(3)
ijklEjEkEl + . . . (2.4-61)

and where repeated indices are summed over. The first-order contribution from the
polarization density is simple to evaluate since(

dP(1)

dE

)
ij

=
∂

∂Ej

(
ϵ0χ

(1)
ik Ek

)
= ϵ0χ

(1)
ij , (2.4-62)

and hence
E ·
(
dP(1)

dE

)
dE = ϵ0Eiχ

(1)
ij dEj , (2.4-63)

For the second-order term the Jacobian can be expressed as(
dP(2)

dE

)
ij

=
∂

∂Ej

(
ϵ0χ

(2)
iklEkEl

)
= ϵ0χ

(2)
ikl

(
2δjkδjlEj + (1− δjk)δjlEk + δjk(1− δjl)El

)
.

(2.4-64)

In the above expression the terms with two delta functions cancel. Under the assumption
that the medium is lossless, nondispersive and uniform the susceptibility tensors are real
and symmetric [217], and this can be used to further simplify the expression above by
grouping the remaining terms through a permutation of the indices. This assumption is
justified when the fields are detuned far away from the resonances of the medium [207].
After re-labelling the indices one finds(

dP(2)

dE

)
ij

= 2ϵ0χ
(2)
ijkEj (2.4-65)

E ·
(
dP(2)

dE

)
dE = 2ϵ0Eiχ

(2)
ijkEjdEk. (2.4-66)
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Although not necessary for SPDC, an expression for the n-th order term can be found
by noting that

∂

∂Ej

(
χ
(n)
In+1

∏
i∈In

Ei

)
= χ

(n)
In+1

∑
i∈In

δij
∏
k ̸=i

Ek, (2.4-67)

where In is the set of the n last indices of the susceptibility tensor. Using the permutation
symmetry of the indices once again all the products on the right-hand side can be made
equal and

χ
(n)
In+1

∑
i∈In

δij
∏
k ̸=i

Ek = nχ
(n)
In+1

∏
j ̸=k

Ek, (2.4-68)

where l ∈ In can be chosen freely. Consequently

E ·
(
dP(n)

dE

)
dE = ϵ0nEiχ

(n)
In+1

dEl
∏
k ̸=i,l

Ek. (2.4-69)

To find the total energy it remains to evaluate the integrals∫
E ·
(
dP(n)

dE

)
dE. (2.4-70)

These integrals should be understood as path integrals over the trajectory along which
E is continuously varied. Let this path be parameterised by the variable τ , and consider
the integral of the first-order term:

ϵ0

∫
Eiχ

(1)
ij dEj = ϵ0

∫ t

0
Ei(τ)χ

(1)
ij

dEj(τ)

dτ
dτ

= ϵ0Ei(τ)χ
(1)
ij Ej(τ)

∣∣∣∣τ=t
τ=0

− ϵ0

∫ τ

0

dEi(τ)

dτ
χ
(1)
ij Ej(τ)dτ.

(2.4-71)

Taking Ei(0) = 0 and Ej(t) = Ej , and using the permutation symmetry on the right-
hand integral gives

ϵ0

∫ t

0
Ei(τ)χ

(1)
ij

dEj(τ)

dτ
dτ = ϵ0

1

2
Eiχ

(1)
ij Ej . (2.4-72)

The integral of the first right-hand term in (2.4-60) also follows from this by taking
the susceptibility tensor to be the identity tensor. The integral above can alternatively
be evaluated directly by making use of the permutation symmetry of the susceptibility
tensor:

ϵ0

∫
Eiχ

(1)
ij dEj = ϵ0

1

2

(∫
Eiχ

(1)
ij dEj +

∫
Ejχ

(1)
ji dEi

)

= ϵ0
1

2

∫
d
[
χijEiEj

]
= ϵ0

1

2
χijEiEj ,

(2.4-73)
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where the second step used the product rule for differentials. This approach simplifies
the evaluation of the second-order term as well:

2ϵ0

∫
Eiχ

(2)
ijkEjdEk = ϵ0

2

3

(∫
Eiχ

(2)
ijkEjdEk +

∫
Eiχ

(2)
iklEkdEj +

∫
Ejχ

(2)
jkiEkdEi

)

= ϵ0
2

3

∫
d
[
Eiχ

(2)
ijkEjdEk

]
= ϵ0

2

3
Eiχ

(2)
ijkEjEk.

(2.4-74)
More generally: ∫

E ·
(
dP(n)

dE

)
dE = ϵ0

n

n+ 1
χ
(n)
In+1

∏
i∈In+1

Ei. (2.4-75)

The total energy is given by the sum of the electric and magnetic contributions:

H =WE +WM , (2.4-76)

which can finally be expressed as

H =
ϵ0
2

∫ (
c2B2 +E2 + χ(1)E2 + 2

∑
n≥2

n

n+ 1
χ(n)En+1

)
d3r. (2.4-77)

The interaction Hamiltonian for the SPDC process will be given by the second-order
term in (2.4-77):

H(2) = ϵ0
2

3

∫
χ
(2)
ijkEiEjEkd

3r. (2.4-78)

Note that while the Hamiltonian was derived for electrostatic fields, the field energy is
the same for time-varying fields. More concretely, one can arrive at the same expression
for the energy density by using Lorentz’s force law to express the rate of work done on
the free charges in a volume V [215]:

dW

dt
=

∫
V
E · Jd3r =

∫
V

(
1

µ0
E · (∇×B)−E · ∂D

∂t

)
d3r

= −
∫
V

(
E · ∂D

∂t
+

1

µ0
B · ∂B

∂t

)
d3r − 1

µ0

∫
V
∇ · (E×B)d3r,

(2.4-79)
where the first step used (2.4-9) for a non-magnetic medium, and the second step used
(2.4-8) together with the vector-calculus identity ∇· (E×B) = B · (∇×E)−E · (∇×B).
By rewriting the term as a surface integral using Gauss’ theorem one recovers Poynting’s
theorem. The first integral in the bottom r.h.s. can be identified as the time derivative
of the energy density, and using the same methods as for the electrostatic energy density
it can be brought back to a familiar form. For the electric-field term we have

E · ∂D
∂t

= ϵ0E · ∂E
∂t

+E ·
(
dP

dE

)
∂E

∂t
. (2.4-80)
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Evaluating, as an example, the second-order term gives

E ·
(
dP(2)

dE

)
∂E

∂t
= 2ϵ0Eiχ

(2)
ijkEj

∂Ek
∂t

= ϵ0
2

3

∂

∂t
χ
(2)
ijkEiEjEk. (2.4-81)

Performing the same steps for all terms in the Taylor expansion of P and moving the
time derivative outside the integral recovers (2.4-77).

To obtain the quantum description the Hamiltonian needs to be quantized, which
amounts to replacing the classical electric-field terms with field operators. The quanti-
zation of the electromagnetic field inside a nonlinear dielectric is a non-trivial problem,
and a common approach is to simply use the operators obtained by quantizing the free
electric field [104,210,218,219]. This approach is generally justified when the nonlinear-
ities in question are small, and there are not multiple interacting processes. While the
remainder of the discussion on SPDC will use of the free electromagnetic field, some of
the issues with this approach are explored in greater detail in Appendix C.

The free field we wish to quantize obeys Maxwell’s equations (2.4-6)-(2.4-9) with
vanishing free charge and current densities: ρ = 0, J = 0. To perform the quantization
it is convenient to first introduce the vector potential A, through which the magnetic
field can be expressed:

B = ∇×A. (2.4-82)

Using (2.4-8) we can also express the electric field in terms of potentials:

∇×E = −∂B
∂t

= − ∂

∂t
∇×A = −∇× ∂A

∂t
. (2.4-83)

Using the distributive property of the curl we find

∇×
(
E+

∂A

∂t

)
= 0, (2.4-84)

and, since the curl of a gradient is always zero, we can identify the scalar potential ϕ as

−∇ϕ = E+
∂A

∂t
. (2.4-85)

The electric field can then be written as

E = −∇ϕ− ∂A

∂t
. (2.4-86)

Defined in terms of these potentials the electric and magnetic fields satisfy (2.4-7) and
(2.4-8). The potentials themselves are constrained by the remaining two Maxwell equa-
tions (2.4-6) and (2.4-9). Since we are considering the fields in vacuum we have D = ϵ0E
and µ0H = B. Inserting the expression for the electric field in terms of the potentials
introduced above into (2.4-6) gives

∇ ·E = ∇ ·
(
−∇ϕ− ∂A

∂t

)
= 0

⇐⇒ −∇2ϕ−∇ · ∂A
∂t

= 0,

(2.4-87)



2.4. SINGLE-PHOTON GENERATION
85

and similarly for the magnetic field and (2.4-9):

∇× (∇×A) = −µ0ϵ0
∂

∂t
∇ϕ− µ0ϵ0

∂2

∂t2
A

⇐⇒ ∇(∇ ·A)−∇2A+
1

c2
∂

∂t
∇ϕ+

1

c2
∂2

∂t2
A = 0,

(2.4-88)

where √
ϵ0µ0 = 1/c was used. These two equations don’t uniquely determine the po-

tentials however, and if A and ϕ are a solution then one can show by direct insertion
that

A′ = A+∇ψ (2.4-89)

ϕ′ = ϕ− ∂ψ

∂t
, (2.4-90)

where ψ(r, t) is some function, is also a solution. This indefiniteness in the potentials
is known as gauge freedom [104]. It turns out that it is always possible to choose the
gauge function ψ such that

∇ ·A = 0, ϕ = 0, (2.4-91)

and this is known as the Coulomb gauge [214].4 In this gauge (2.4-87) vanishes, and
(2.4-88) reduces to the wave equation

∇2A− 1

c2
∂2

∂t2
A = 0. (2.4-92)

To proceed with the quantization one considers a finite volume of space outside of which
the electromagnetic field is vanishing. More specifically, let this region be a cube with
side lengths L on which periodic boundary conditions are imposed. This volume of
space is referred to as the quantization volume, and the periodic boundary conditions,
like those found in an optical cavity, give rise to a discrete set of modes. The basis
functions for this cavity are of the form

uk(r) = êk,αe
ik·r, (2.4-93)

where
ki =

2πmi

L
, mi ∈ Z, (2.4-94)

and êk,α is a unit vector; the subscript α will later index the polarizations of the field.
The basis functions are orthogonal and can be used to express any time-independent
function inside the quantization volume, and together with the time-dependent ampli-
tudes Ak,α(t) they can be used to decompose the vector potential A:

A(r, t) =
∑
k

∑
α=1,2

êk,αAk,α(t)e
ik·r + êk,αA

∗
k,α(t)e

−ik·r. (2.4-95)

4The Coulomb gauge more generally corresponds to the condition −∇2 = ρ/ϵ0, but in the absence
of free charges the trivial potential is a solution to this equation.
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The expansion above ensures that the vector potential is real valued, and is possible
since the wave equation can be solved by separation of variables. Because we chose the
Coulomb gauge the potential must satisfy ∇ ·A = 0, and this condition can be met by
choosing the polarization vectors êk,α to be perpendicular to k:

∇ · êk,αeik·r = k · êk,αeik·r = 0. (2.4-96)

The two polarization components will also be chosen to be orthogonal:

êk,αêk,β = δα,β , (2.4-97)

where δα,β is the Kronecker delta. Since the modes in the expansion are orthogonal they
independently satisfy (2.4-92):

1

c2
∂

∂t2
Ak,α(t)e

ik·r −∇2Ak,α(t)e
ik·r = 0

⇐⇒ 1

c2
∂

∂t2
Ak,α(t) + k2Ak,α(t) = 0,

(2.4-98)

where k = |k|. Using the relation ωk = ck the solutions to this equation can be written

Ak,α(t) = Ak,αe
−iωkt, A∗

k,α(t) = A∗
k,αe

iωkt (2.4-99)

and the full vector potential becomes

A(r, t) =
∑
k,α

êk,αAk,αe
ik·r−iωkt + êk,αA

∗
k,αe

−ik·r+iωkt. (2.4-100)

We now want to use this solution to find expressions for the electric and magnetic fields.
Using ∇ϕ = 0 in (2.4-86) the electric field is

E = −∂A
∂t

=
∑
k,α

iωkêk,α

[
Ak,αe

ik·r−iωkt −A∗
k,αe

−ik·r+iωkt
]
.

(2.4-101)

The magnetic field is found using its definition in terms of the vector potential (2.4-82):

B = ∇×A

=
∑
k,α

ik× êk,α

[
Ak,αe

ik·r−iωkt −A∗
k,αe

−ik·r+iωkt
]
. (2.4-102)

For the free electric field the integral (2.4-55) is simple to evaluate, and the total energy
inside the box is

WL =
ϵ0
2

∫
V

(
c2B2 +E2

)
d3r. (2.4-103)

The expressions for the electric and magnetic fields inserted into (2.4-103) result in a
set of integrals on the form: ∫

V
ei(k−k′)·rd3r = V δk,k′ , (2.4-104)
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which can be used to cancel all cross terms between different momenta. After some
manipulation [104], one then finds the total energy as

WL = ϵ0
∑
k,α

ω2
kV (Ak,αA

∗
k,α +A∗

k,αAk,α), (2.4-105)

written in this unsimplified form to facilitate a comparison with the Hamiltonian for a
set of quantum harmonic oscillators:

H =
∑
k,α

ℏωk
(̂
a†k,αâk,α +

1

2

)
=

1

2

∑
k,α

ℏωk(âk,αâ†k,α + â†k,αâk,α). (2.4-106)

Noting that the raising and lowering operators of the harmonic oscillator obey the
bosonic commutation relations, this comparison motivates promoting the amplitudes
of the vector potential to operators:

Ak,α →

√
ℏ

2ϵ0ωkV
âk,α, A∗

k,α →

√
ℏ

2ϵ0ωkV
â†k,α. (2.4-107)

The operator for the electric field can then be found the same way as in the classical
case (2.4-101):

E(r, t) = i
∑
k,α

√
ℏωk
2ϵ0V

êk,α

(
âk,αe

i(k·r−ωkt) − â†k,αe
−i(k·r−ωkt)

)
. (2.4-108)

Finally, we need to account for the fact this description will be used with the Hamiltonian
for fields inside a dielectric. A comparison between (2.4-77) and (2.4-103) together with
the relation 1 + χ(1) = n2 motivates the operator [110]

Eα(r, t) = i
∑
k

√
ℏωk

2ϵ0n2V
êk,α

(
âk,αe

i(k·r−ωkt) − â†k,αe
−i(k·r−ωkt)

)
. (2.4-109)

where n is the refractive index of the dielectric. Taking the limit of the quantization
volume being infinitely long along one dimension and only considering linearly polarized
plane waves along this direction allows the electric field operator to be expressed as [104,
220,221]:

Eα(z, t) = i

∫ ∞

0
dω

√
ℏω

4πϵ0n2cA

(
âα(ω)e

i(kz−ωkt) − â†α(ω)e
−i(kz−ωkt)

)
, (2.4-110)

where A is the quantization cross section area and we labelled the modes in terms of
their frequency instead of their wavenumber. Note that the seeming discrepancy in the
units of (2.4-110) comes from the fact that the dimension of âα(ω) changes due to the
substitution

âω,α →
√

2πc

L
âα(ω) (2.4-111)
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when replacing the sum with an integral [104, 110], which is motivated by maintaining
the standard form of the bosonic commutation relations [222, 223] (see Appendix C.1).
It is often more convenient to decompose the electric-field operator in terms of operators
that only contain the positive (negative) frequency components:

Eα(z, t) = E+
α (z, t) + E−

α (z, t), (2.4-112)

where
E+
α (z, t) = ±i

∫ ∞

0
dωE âα(ω)ei(kz−ωkt),

E−
α (z, t) = ±i

∫ ∞

0
dωE â†α(ω)e−i(kz−ωkt),

(2.4-113)

and
E =

√
ℏω

4πϵ0n2cA
. (2.4-114)

Substituting (2.4-113) into the Hamiltonian 2.4-78 gives

H =
2ϵ0
3

∫
χ
(2)
ijk(E

+
i + E−

i )(E
+
j + E−

j )(E
+
k + E−

k )d
3r. (2.4-115)

Here the implicit sum only runs over two Cartesian components, since the problem
has been reduced to collinear propagation along one direction with two polarization
components. Expanding the product of the electric-field operators gives a total of eight
different terms that describe different nonlinear interactions. Which of these processes
actually occur is governed by the energy and momentum conservation conditions (2.4-32)
and (2.4-33). In practice, more than one process (and its time reversal) rarely fulfils
these conditions at any one time, except in situations explicitly engineered to facilitate
this. Therefore it is sufficient to only consider one term and its Hermitian conjugate,
and neglect the terms that are not of interest. In the case of SPDC the relevant terms
are:

Hspdc =
2ϵ0deff

3

∫
(E+

p E
−
s E

−
i + E−

p E
+
s E

+
i )d

3r, (2.4-116)

where deff is the effective nonlinear susceptibility for the process [207, 208],5 and the
indices label the pump, signal and idler field respectively. The first term in the Hamilto-
nian above describes the down-conversion process, and the second term its time reversal
(sum-frequency generation). Given that the pump field is strong enough to be treated
classically, the corresponding field operators can be replaced by classical fields:

E+
p → Ap

∫ ∞

0
α(ωp)e

i(kz−ωpt)dωp.

E−
p → Ap

∫ ∞

0
α∗(ωp)e

−i(kz−ωpt)dωp,

(2.4-117)

5The effective nonlinear susceptibility deff has to be calculated for a specific process, since it depends
not only on the medium in question, but also on the polarizations of the interacting fields.
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where Ap is the pump amplitude, and α(ωp) is called the pump envelope function, and
describes the spectral amplitude of the pump light. This is commonly a Gaussian or
similar function. Introducing the shorthand notation

∆k = kp − ks − ki, ∆ω = ωp − ωs − ωi, (2.4-118)

the Hamiltonian can be written as

Hspdc = −2ϵ0deff
3

∫
d3r

∫∫∫ ∞

0
ApEsEiα(ωp)ei(−∆ωt+∆kz)â†sâ

†
idωpdωsdωi + c.c.,

(2.4-119)
and the state generated by the SPDC process can, as before, be expressed as

|Ψ〉 = exp

[
− i

ℏ

∫ t

0
Hspdc(t)dt

]
|0, 0〉s,i

≈
(
1− i

ℏ

∫ t

0
Hspdc(t)dt

)
|0, 0〉s,i ,

(2.4-120)

Here the effects of time ordering have been ignored, even though the Hamiltonian does
not necessarily commute with itself at different times. This can be justified as long as the
nonlinear interaction is relatively weak, and the generated photons do not co-propagate
with the pump for an extended amount of time [224, 225]. If the process is pumped by
a pulsed laser the integration limits can be taken to infinity, since the pump amplitude
is vanishing at long times. Therefore the integral over time reduces to∫ +∞

−∞
e−i∆ωtdt = 2πδ(∆ω), (2.4-121)

which is simply the energy conservation condition. Together with the fact that the
sum-frequency-generation term vanishes when acting on vacuum, the state reads:

|Ψ〉 = |0, 0〉+ i4πϵ0deff
3ℏ

ApEsEi
∫
d3r

∫∫ ∞

0
α(ωs + ωi)e

i∆kzâ†sâ
†
idωsdωi |0, 0〉 , (2.4-122)

with ∆k = ∆k(ωi, ωs) = k(ωs + ωi) − k(ωs) − k(ωi). This step also made use of the
assumption that the bandwidth of the pump field is sufficiently small that Ei(ωi) and
Es(ωs) are slowly varying functions in the frequency range of interest, allowing them to
be moved outside the integral. Since the Hamiltonian does not have a radial dependence
the integral over the transverse quantization area is trivial, and only the integral along
the propagation direction needs to be evaluated. The effect of a nonlinear crystal of finite
length L can be modelled by multiplying the nonlinear Hamiltonian with an envelope
function g(z) that is zero outside the interval [0, L]:∫ +∞

−∞
ei∆k(ωs,ωs)zg(z)dz =

∫ L

0
ei∆k(ωs,ωi)zg(z)dz = ϕ(ωs, ωi). (2.4-123)

The function ϕ(ωs, ωi) is called the phase-matching function. Substituting this function
in simplifies the expression for the state to

|Ψ〉 = |0, 0〉+ C

∫∫ ∞

0
α(ωs + ωi)ϕ(ωs, ωi)dωsdωi |0, 0〉 , (2.4-124)
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where C = i4πϵ0deffAApEsEi/3ℏ. The state in (2.4-124) is the general form of a two-
photon state generated by down-conversion, where the spectral properties depend on
the pump envelope function and the phase-matching function. This will be explored in
more depth in the next section.

2.4.3 Phase matching
Phase-matching is the process of satisfying the momentum conservation condition

(2.4-33) in a nonlinear optical process. The name comes from the fact that fields with
different propagation constants gradually dephase as they propagate. In the case of
down-conversion, this can mean that the two-photon amplitude generated at one point
of a nonlinear crystal is out of phase with the amplitude generated at another point,
causing them to destructively interfere, and this interference effect is simply another
way to understand the momentum conservation condition. Since any nonlinear medium
exhibits at least some degree of absorption, the Kramers-Kronig relations imply that it
will necessarily be dispersive as well [106], and this means that in general

k(ωp) 6= k(ωs) + k(ωi). (2.4-125)

The most straightforward way of satisfying the momentum conservation condition is
called birefringent phase matching, in which one exploits the fact that a uniaxial crystal
has two different propagation constants for the ordinary and extraordinary axes of the
crystal. In such a crystal an ordinarily polarized ray always sees the refractive index no,
but an extraordinarily polarized ray sees the refractive index nθ, which varies continu-
ously between the ordinary and extraordinary refractive indices no and ne, and which
is a function of the angle θ between the ray and the optical axis of the crystal. This
behaviour can be quantified by considering the so-called index ellipsoid

x21
n2o

+
x22
n2o

+
x23
n2e

= 1, (2.4-126)

where xi are coordinates the crystal axes. This ellipsoid, illustrated in Fig. 2.19, can
be used to find the refractive index for a ray propagating through the crystal. More
specifically, for a ray propagating along the vector û = (x1, x2, x3) the refractive index
is given by the distance from the origin to the surface of the ellipsoid along a direction
orthogonal to û defined by the polarization. This is equivalent to the magnitude of a
vector orthogonal to û with components that satisfy (2.4-126). To find the refractive
index experienced by a ray propagating along û, consider a circle with radius nθ that
lies in the plane spanned by û and the optical axis x̂3:

(x′2, x3) = nθ(cos θ, sin θ), (2.4-127)

where x′2 is the coordinate along the axis that lies in the plane spanned by x̂1 and x̂2.
As illustrated in Fig. 2.20, the radius nθ is the one for which this circle intersects the
index ellipsoid at a point θ degrees from the x̂3 axis. The intersection can be found by
choosing x2 = x′2 and inserting (2.4-127) into the equation for the ellipsoid (2.4-126):

n2θ cos
2 θ

n2o
+
n2θ sin

2 θ

n2e
= 1, (2.4-128)
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Figure 2.19: Index ellipsoid. In a birefringent crystal the refractive index depends on both the
polarization and the propagation direction of the light. This dependence can be illustrated as an
ellipsoid, with the refractive index being the distance from the origin to the surface. Here this is
shown for a uniaxial crystal, with the propagation direction indicated by the vector û which lies
at an angle θ to the optical axis, and in the plane spanned by x3 and x′2. The refractive indices
of the ordinary and extraordinary polarized rays, no and nθ respectively, are indicated by the red
arrows. When û is parallel to the optical axis nθ = no, and when û is orthogonal to the optical
axis nθ = ne.

which can be inverted to give

1

n2θ
=

cos2 θ

n2o
+

sin2 θ

n2e
. (2.4-129)

To find the refractive index nθ one typically solves this equation numerically.
The ability to tune the refractive index by choosing the angle θ can be used to satisfy

the phase-matching condition, the exact form of which depends on the polarizations of
the fields in the process. In terms of the polarizations there are two kinds of processes
enabled by birefringent phase matching [226]:

e→ o+ o, o→ e+ e (2.4-130)
e→ e+ o, o→ e+ o (2.4-131)

The first kind of process, in which the signal and idler have the same polarization but
are orthogonal to the pump, is called a type-I process, while the second kind of process,
where the signal and idler photons have orthogonal polarizations, is called a type-II
process. Consider, as an example, a collinear type-I process. For this process the phase-
matching condition can be written:

nθ(λp)

λp
=
no(λs)

λs
+
no(λi)

λi
, (2.4-132)
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Figure 2.20: Extraordinary refractive index. The extraordinary refractive index nθ for a
ray travelling along û can be found as the radius of the circle that intersects the index ellipsoid
at the point (nθ cos θ, nθ sin θ). The ellipse in the figure is a cut of the index ellipsoid in the plane
spanned by û and the axis x3.

which in the case where the signal and idler are degenerate reduces to

nθ(λp) = no(λs). (2.4-133)

An example of phase matching for this process is shown in Fig. 2.21. By considering non-
collinear geometries one can also achieve phase matching for a wider set of parameters,
as several of the refractive indices in the process can be tuned independently.

Birefringent phase matching is usually achieved in a uniform bulk crystal, with
a constant nonlinearity. For such crystal the envelope function g(z) in the phase-
matching function ϕ(ωs, ωi) from (2.4-123) is a simple rectangular function, and the
phase-matching function can be found explicitly:

ϕ(ωs, ωi) =

∫ L

0
ei∆kzdz =

ei∆kL − 1

i∆k

=
2

∆k
ei∆kL/2

ei∆kL/2 − e−i∆kL/2

2i

=
2

∆k
ei∆kL/2 sin

(
∆kL

2

)
= Lei∆kL/2sinc

(
∆kL

2

)
.

(2.4-134)

The sinusoidal dependence on the crystal length L means that signal intensity is not a
monotonic function of the interaction length, and for a crystal of length L = 2π/∆k the
probability to generate a pair of photons will be exactly zero. The length of the crystal
also affects the bandwidth of the generated light, as it will set the width of the sinc
function in terms of ∆k. Due to dispersion, this in turn implies a limit on the spectral
bandwidth.

It is often desirable to have a phase-matching function that grows monotonically
with the length of the crystal, since this allows for a higher interaction strength in an
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Figure 2.21: Birefringent phase matching. By tuning the angle θ between the light and
the optical axis of the nonlinear crystal momentum conservation can often be achieved. The
figure shows a degenerate, collinear SPDC / SFG process in KDP, where λs = λi = 694 nm and
λp = 347 nm. This process is phase matched for θ = 50.5°.

otherwise very weak nonlinear process. This can be achieved by an appropriate choice
of envelope function g(z). More concretely, by adding a modulation to the rectangular
envelope. Such a modulation amounts to changing the magnitude or sign of the effective
nonlinear coefficient deff. The utility of such a modulation can be understood visually, by
considering the integrand in (2.4-123) as a vector in the complex plane, called a phasor.
Without any modulation the addition of infinitesimally small phasors that the integral
represents will lead to the tracing out of a circle in the complex plane, and this is why
the phase-matching amplitude periodically returns to zero. A modulation can remedy
this by redirecting the phasors as they begin to decrease the phase-matching amplitude.
This is illustrated in Fig. 2.22.

The perhaps mathematically most simple modulation is a periodic one using a com-
plex exponential:

g(z) = rect

(
z − L/2

L

)
e−i2πz/Λ = r(z)f(z), (2.4-135)

where r(z) = rect((z−L/2)/L) is a rectangular function that is zero outside the interval
[0, L] and f(z) = e−i2πz/Λ. Here 1/Λ is the spatial frequency of the modulation. The
phase-matching function for this choice of envelope is, as before, given by its Fourier
transform:

ϕ(ωs, ωi) =

∫ +∞

−∞
r(z)f(z)ei∆kzdz

=

∫ L

0
ei(∆k−2π/Λ)zdz.

(2.4-136)

Direct comparison with (2.4-134) shows that

ϕ(ωs, ωi) = Lexp

[
i
L

2

(
∆k − 2π

Λ

)]
sinc

[
L

2

(
∆k − 2π

Λ

)]
. (2.4-137)

The same result can be found by taking convolution of the Fourier transformed functions:

ϕ(ωs, ωi) = r̃(∆k) ∗ f̃(∆k), (2.4-138)
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Figure 2.22: Quasi-phase-matching. The figure shows how the phase-matching function
ϕ(ωs, ωi) grows throughout the length of a quasi-phase-matched crystal with a square-wave mod-
ulation. The red arrows are called phasors, and are vectors that indicate the relative phase
between the down-conversion process at different points in the crystal. In this discrete picture
they are given by f(z)ei∆k(x+∆x). The phase-matching amplitude, indicated by the black arrow,
is given as the sum of the phasors. When the momentum mismatch ∆k is nonzero the phasors
trace out a circle that gradually brings the phase-matching amplitude back to zero. In a QPM
crystal this is avoided by periodically alternating the sign of the nonlinear coefficient, which ro-
tates the phasors by 180°. This leads to a phase-matching amplitude whose magnitude grows
monotonically throughout the crystal.

where the tilde denotes the Fourier transformed function, and using the shift property
of the delta function:

h(x) ∗ δ(x− y) = h(x− y), (2.4-139)
since

f̃(∆k) = δ
(
∆k − 2π

Λ

)
. (2.4-140)

If the spatial frequency Λ is chosen to be
1

Λ
=

∆k

2π
, (2.4-141)

the sinc term in (2.4-137) vanishes and the phase-matching amplitude grows linearly
with the crystal length. This way of cancelling the momentum mismatch by way of a
periodic structure is called quasi-phase-matching (QPM) [206, 227]. The idea of QPM
dates back further than birefringent phase matching, but took longer to be realised due
to the challenge of making the required structures. In practice it is hard to engineer a
continuous modulation of the effective nonlinearity in a crystal, and one therefore uses
a square-wave modulation instead, for which precision manufacturing techniques exist.
Assuming that the square wave is an odd function with unity amplitude it can be written
as the exponential Fourier series:

sw(z) =
∑

m=odd

2i

πm
e−i2πmz/Λ. (2.4-142)

Performing the same steps as for the continuous modulation the phase-matching function
becomes:

ϕ(ωs, ωi) =
2iL

πm

∑
m=odd

exp

[
i
L

2

(
∆k − 2πm

Λ

)]
sinc

[
L

2

(
∆k − 2πm

Λ

)]
, (2.4-143)
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(a) |ϕ(ωs, ωi)| (b) |α(ωs, ωi)|

Figure 2.23: Phase-matching function and pump envelope. Figure (a) shows an example
of a phase-matching function for a quasi-phase-matched crystal. The process in question is
degenerate type-II SPDC in periodically-poled KTP at λs = 1560 nm, in a crystal with a poling
period of λ = 46.06 µm and a temperature of T = 52 °C. The phase-matching function exhibits
a distinctive decaying oscillatory behaviour originating from the sinc-function. In figure (b) the
pump envelope function, taken to be a hyperbolic secant with a pulse duration of 2.5 ps, is shown.
This function is constant along the lines λi − λp = λ, representing points with the same energy,
and has the hyperbolic secant shape along the transverse lines given by λi = λs.

and the phase-matching condition is

kp − ks − ki −
2πm

Λ
= 0. (2.4-144)

Generally it is only possible to satisfy this equation for one choice of m, and since the
higher-order terms in the Fourier series are suppressed one typically chooses Λ so that the
process is phase matched for m = 1. Crystals with this kind of square wave modulation
in the effective nonlinearity are called periodically poled crystals. The use of QPM
allows for phase matching in many more scenarios than birefringent phase matching
would, and can also enable so-called type-0 processes in which the pump, signal and
idler all have the same polarization:

o→ o+ o, e→ e+ e. (2.4-145)

These processes can often have higher nonlinear response, leading to very bright down-
conversion sources [228,229,230].

The joint spectral amplitude (JSA) of the two-photon state generated by the down-
conversion process is given by the product of the pump envelope function and the phase-
matching function:

JSA = α(ωs, ωi)ϕ(ωs, ωi). (2.4-146)

The absolute square of this function is known as the joint-spectral intensity, or JSI:
JSI = |JSA|2. Engineering the two-photon spectrum is a critical part of the design
of SPDC sources. An example of QPM phase-matching and pump envelope functions
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(a) |α(ωs, ωi)|+ |ϕ(ωs, ωi)| (b) |JSA| = |α(ωs, ωi)ϕ(ωs, ωi)|

Figure 2.24: Phase matching and joint-spectral amplitude. The two figures display the
same process as Fig. 2.23. Figure (a) shows the sum of the pump envelope and phase-matching
functions. To create a separable joint-spectral amplitude, and therefore uncorrelated two-photon
spectrum, these functions should intersect each other at 90° [209]. In (b) the joint-spectral
amplitude is shown. This function is the product of the pump envelope function and the phase-
matching function from Fig. 2.23. The process achieves a nearly circular central two-photon
spectrum, however the side lobes originating from the higher-order maxima of the sinc functions
give rise to spectral correlations between the signal and idler photons.

is shown in Fig. 2.23. For sources intended for multi-photon experiments the ideal
two-photon spectrum is one that is factorizable into two single-photon spectra. This
condition implies that the two photons are separable in frequency, and conversely a two-
photon spectrum that cannot be factored means that the photons have some degree of
entanglement in frequency. If two photons from two independent frequency-correlated
sources interfere then the local description of both photons is that they are in spectrally
mixed states, and this decreases the visibility of the Hong-Ou-Mandel interference. More
concretely, the visbility can be expressed in terms of the spectral purities Pa and Pb of
the two photons as [231,232]

V =
Pa + Pb − ||ρa − ρb||2F

2
, (2.4-147)

where ||·||2F is the Frobenius norm and ||ρa−ρb||2F is a measure of the indistinguishablility
of the two photons. The visibility above corresponds to the following definition in terms
of observed photon counts N :

V =
Nmax −Nmin

Nmax
. (2.4-148)

When using a periodic modulation the spectral purity is limited to around P ≈ 0.82 for
photons with nearly indistinguishable marginal spectra, due to fact that the sinc function
gives rise correlated side lobes in the two-photon spectrum [233]. This is illustrated in
Fig. 2.24. For states with these spectral side lobes the reduced interference visibility
between two SPDC sources has an intuitive explanation, since the two-photon spetrum



2.4. SINGLE-PHOTON GENERATION
97

can be approximated by a central uncorrelated peak, and a maximally entangled two-
frequency state:

|Ψ〉 = α |ω0, ω0〉+ β
|ω1, ω2〉+ |ω2, ω1〉√

2
. (2.4-149)

Hong-Ou-Mandel interference between two different sources can therefore, when post-
selecting on the frequency modes in the side lobes, be understood as entanglement
swapping in frequency, and since entanglement swapping is probabilistic the photons
will display imperfect bunching. However, this means that if two photons from indepen-
dent spectrally correlated sources bunch, then the remaining two photons will be pro-
jected onto a frequency entangled state and will exhibit perfect interference [234, 235].
Unfortunately this phenomenon is hard to observe due to terms arising from double-
pair emission from either SPDC source, which can also give rise to four-fold coincidence
events that cannot be distinguished from cases where one pair was generated by each
source. HOM interference between frequency entangled photons will be discussed in
more detail in Section 2.4.5.

The ∼ 82% visibility bound of periodically poled crystals can be overcome by using
more complicated nonlinearity profiles, and sources of this type have demonstrated near
unity spectral purity [236,237,238,239]. The downside is that these structures are more
challenging to manufacture, and additionally exhibit a lower phase-matching amplitude
overall, leading to lower source brightness [240].

2.4.4 SPDC sources
The design of SPDC sources varies depending on the intended application of the

single photons. For example, as mentioned in the previous section, sources of single
photons intended for complex multi-photon tasks are required to generate spectrally
uncorrelated photon pairs, while in other contexts frequency correlated photons can be
considered a resource [241,242]. In many applications the heralded single-photon purity
g(2)(0) is an important figure of merit, despite the fact that measurements of heralded
g(2)(0) do not fully quantify the second-order coherence of the heralded state, but is
mainly a measure of the correlations between the signal and idler photons [243, 244].
In SPDC sources g(2)(0) is increased when the probability of creating more than one
photon pair increases, and the Taylor expansion in (2.4-49) can no longer be truncated
after the first-order term. A factor in the source design is the lack of dependence of the
g(2)(0) on loss. In a linear optical system loss can be modelled by a beamsplitter with
transmission and reflection coefficients T and R respectively [104]:

â† 7→ T â† +Rb̂†, (2.4-150)

and tracing out the loss mode b. In this model it’s easy to see that loss does not affect
the g(2)(0):

g(2)a (0) =
〈â†â†ââ〉
〈â†â〉2

7→ 〈T ∗â†T ∗â†T âT â〉
〈T ∗2â†T 2â〉2

=
|T |4〈â†â†ââ〉
|T |4〈â†â〉2

. (2.4-151)

The g(2)(0) therefore only depends on the SPDC process itself, and one cannot com-
pensate high losses by pumping the process harder. As consequence, the efficiency



CHAPTER 2 • PHOTONIC QUANTUM INFORMATION PROCESSING
98

(a) Emission cones

Laser

(b) Top-down view

Figure 2.25: Type-II BBO source. (a) In a non-collinear type-II BBO source the single photon
emission occurs along two cones, each one containing photons with a definite polarization, either
H or V . At the intersection points of the two cones photons of both polarizations are created. By
collecting only the emission from these two intersection points the polarization in both spatial
modes becomes undetermined, but is anti-correlated since there is always one H and one V
photon produced. The result is the entangled state |Ψ〉 = (|H,V 〉 + eiφ |V,H〉)

√
2. (b) shows a

top-down view of a typical source, which in addition to the main BBO-crystal of length L contains
two compensation crystals with half the length of the first one (see main text and Fig. 2.26).

of the single-photon collection in the source is of high importance. Optimizing the
collection efficiency of SPDC sources is a non-trivial problem that has been studied
extensively [245, 246, 247, 248, 249]. Interestingly, there is often a trade-off between the
absolute brightness of a photon source and the correlated coupling efficiency, or herald-
ing efficiency, meaning the conditional probability to collect say the idler photon given
that the signal photon was collected [250, 251]. This effect can be qualitatively under-
stood in terms of momentum correlations: a collimated pump beam has a well defined
momentum, and consequently the down-converted photons exhibit strong momentum
correlations. A collection geometry that attempts to mode match the pump will sim-
ilarly only collect photons with well defined momenta, and this acts as a filter on the
momentum distribution of the photons. However, the momentum correlations mean
that if one photon is transmitted through this filter the partner photon will be too, and
thus the coupling is highly correlated. In the case of a focused pump the situation is
the opposite: the momentum of the pump photons is less well defined, erasing the mo-
mentum correlations in the signal-idler pair, and while a similar focusing geometry for
the collection optics will allow for a broad momentum bandwith, and therefore higher
photon rates overall, the coupling for the signal and idler will be largely uncorrelated.

SDPC sources can broadly speaking be classified in terms of their spectral properties:
degenerate / non-degenerate, their geometry: collinear / non-collinear, their type: type-
0 / type-I / type-II, and whether or not they generate photon pairs that are entangled
in some degree of freedom. One of the most commonly used SPDC sources is a non-
collinear degenerate type-II polarization entangling source using a beta-Barium Borate
(BBO) crystal, first proposed and demonstrated in Ref. [252], illustrated in Fig. 2.25.
The phase-matching condition leads to single-photon emission along two cones, one
containing H-polarized photons and the other one V -polarized ones. By tilting the
optical axis of the crystal with respect to the pump beam these cones can be made to
overlap. In the two overlap regions photons of both polarizations are generated, and by
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Figure 2.26: Temporal walk-off compensation. In a birefringent crystal photons with differ-
ent polarizations propagate at different speeds and their wavepackets gradually separate in time.
In SPDC the single photons are created coherently over the entire length of the nonlinear crystal,
and the total amount of temporal walk-off will be different for photon amplitudes corresponding
to down-conversion at different points in the crystal. The figure shows how this can be corrected
with the use of a second birefringent crystal half the length of the first one, but that is otherwise
identical. The top row of the figure shows photons created in the middle of the crystal, with
the colors indicating two orthogonal polarizations. After propagating through half the crystal,
a half-wave plate exchanges the two polarizations, and the second crystal applies exactly the
same temporal delay to the initially undelayed photon. The second and third rows show pairs
of photons created symmetrically around the centre of the crystal. For these wavepackets the
second crystal does not fully cancel the walk-off, however it still erases the information about
the photon polarization in the arrival time of the photons, as in every time bin there is an equal
probability amplitude for each polarization.

balancing the coupling of both polarizations a |Φ±〉 state can be obtained directly from
the source.

Inside the BBO crystal the extraordinarily polarized photons in the pump or the
signal/idler experience both transverse and temporal walk-off. The transverse walk-off
negatively affects the simultaneous coupling of both polarizations, an effect which can
be partially corrected with a second crystal with half the length of the main crystal. The
transverse walk-off also affects the transverse mode of the down-converted photons, and
gives rise to an asymmetric broadening of the angular photon distributions [253]. The
use of elliptic pump modes can help compensate for the mode distortion caused by the
walk-off [254]. More problematic, however, is the temporal walk-off that occurs inside
the crystal, since this has the effect of labelling the photons by their arrival time:

|H, t0〉 |V, t0〉 7→ |H, t1〉 |V, t2〉 , (2.4-152)

and this destroys the entanglement that would otherwise be generated by the source:

|H, t0〉 |H, t,0〉+ |V, t0〉 |V, t0〉√
2

7→ |Ψ〉 = |H, t1〉 |H, t,1〉+ |V, t2〉 |V, t2〉√
2

. (2.4-153)

Or, more precisely, the state is entangled in polarization and time, and if ∆t = t1 − t2
is too short to be resolved by the detectors, the temporal modes are traced over in
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detection and the polarization state becomes

ρpol = Trt
[
|Ψ〉〈Ψ|

]
=

|H,H〉〈H,H|+ |V, V 〉〈V, V |
2

, (2.4-154)

which is not a pure state. In practice the single photons are created coherently over
the entire length of the crystal and are therefore in a superposition of many temporal
modes. Somewhat surprisingly the temporal walk-off can, in contrast to the transverse
walk-off, be exactly cancelled by a second crystal with half the length of the main
one [252, 255]. This process is illustrated in Fig. 2.26. Photons created in the middle
of the crystal experience half a crystal’s worth of temporal walk-off, and the second
crystal applies the same walk-off to the initially undelayed photon. Pairs of photon-pair
amplitudes created symmetrically around the center of the crystal do not have their
walk-off fully cancelled, however they still interfere pairwise. This intuitive argument
is slightly misleading because it does not explicitly consider the delay of the pump,
something which becomes clear when making the argument more concrete. Consider
photon pairs created at the beginning as well as at the end of the crystal. The pair
created at the beginning sees one polarization delayed by 2τ :

|H, 0〉x=0 7→ |H, 0〉x=0 , |V, 0〉x=0 7→ |V, 2τ〉x=0 , (2.4-155)

while a pair created at the end of the crystal does not acquire any relative delay between
its polarization components, however it does have an initial delay given by the pump
delay through the crystal τp:

|H, τp〉x=L , |V, τp〉x=L . (2.4-156)

The second crystal delays the opposite polarization component by τ :

|H, 0〉x=0 7→ |ψ1〉 = |H, τ〉x=0 ,

|H, τp〉x=L 7→ |ψ2〉 = |H, τp + τ〉x=L ,
|V, 2τ〉x=0 7→ |ψ3〉 = |V, 2τ〉x=0 ,

|V, τp〉x=L 7→ |ψ4〉 = |V, τp〉x=L .
(2.4-157)

The pairs of amplitudes that should, according to the argument, interfere in the diagonal
basis are |ψ1〉 and |ψ4〉, as well as |ψ2〉 and |ψ3〉. However, it is clear that this only
happens if τ = τp, meaning that pump delay through the main crystal needs to be equal
to the single-photon delay through the half-length crystal. For a degenerate source,
meaning λp = 2λs = 2λi, this turns out to actually be the case, since the phase-matching
condition implies:

np
λp

=
ns
λs

+
ni
λi

⇐⇒ np =
ns + ni

2
, (2.4-158)

which means that, for weak birefrigence, the pump propagates as the center of mass of
the two-photon wavepacket and experiences the average delay, which is indeed τ . This
argument assumes dispersion is small enough that the group velocity of the photons
equals the phase velocity.

Type-II sources of this ilk have been iterated on many times, and continue to see
use in state-of-the-art experiments [139, 256]. One notable derivative is the so-called
beam-like source in which the phase-matching condition is engineered such that the two
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Laser

Figure 2.27: Probabilistically entangling type-II source. A QPM collinear type-II source
generating the state |H,V 〉 can also produce post-selected entanglement with the help of a single
balanced beamsplitter. The state after the BS is |Ψ〉 = 1/2(â†H b̂

†
V + â†V b̂

†
H + â†H â

†
V + b̂†H b̂

†
V ) |0〉.

Post-selecting on one photon exiting in each port of the BS therefore generates a |Ψ+〉 Bell state
with 50% probability. While less efficient than directly entangling sources, the simplicity of this
scheme can allow for high fidelity entanglement.

emission cones collapse down to a single line [257, 258]. This leads the single-photons
being emitted into a Gaussian mode, which can significantly increase the collection effi-
ciency of the source [259]. The process is still non-collinear, and since the signal and idler
emissions do not spatially overlap in this configuration the source does not directly gener-
ate entanglement, however this kind of source can still be made to generate polarization
entanglement by combining two crystals in a so-called sandwich configuration [260].

As mentioned in Section 2.4.3, down-conversion sources using birefringent phase
matching in bulk crystals have many limitations in terms of brightness and spectral
properties, since for a given crystal there is a fixed set of processes and geometries
that are phase matched. The use of quasi-phase matching, in contrast, offers much
greater flexibility in the source design. Sources based on QPM are generally collinear,
although exceptions exist [261]. Similarly to the beamlike sources, collinear sources do
not directly generate polarization entanglement. The simplest way to generate entangled
photon pairs in such a source is to do it post-selectively, by placing a single beamsplitter
after the source [262]. This type of geometry is shown in Fig. 2.27.

More common, however, is to place the nonlinear crystal inside a Sagnac interferom-
eter, and superpose two propagation directions of the pump through the crystal. This
superposition of down-conversion processes can then be used to directly produce a two-
qubit entangled state, and the inherent stability of the Sagnac geometry ensures that
the entangled state has a well defined phase. The use of this geometry also removes the
need for walk-off compensation. The first proposed source of this kind used a Sagnac
interferometer with a regular balanced beamsplitter [263]. This source configuration
generates entanglement post-selectively when the two photons exit in different ports of
the beamsplitter, which, in rather anti-climactic fashion, happens with the same 50%
probability as the source in Fig. 2.27, thereby negating the entire point of the interfer-
ometer. Later designs remedied this by using a polarizing beamsplitter for the Sagnac
interferometer [264,265]. This configuration is illustrated in Fig. 2.28, and was used for
all the experiments in this thesis.

Sagnac sources can also be used in configurations with more than one crystal. This
can for example facilitate frequency-degenerate polarization entanglement in type-0
sources [266], or non-degenerate polarization entanglement without the need for walk-off
compensation [267]. The SPDC sources discussed above all generate discrete variable
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Figure 2.28: Type-II polarization entangling Sagnac source. A nonlinear crystal phase
matched for type-II collinear SPDC can be made to produce polarization entangled states by
placing it inside a Sagnac interferometer based on a polarizing beamsplitter. The two figures
show the photon generation process for two different, orthogonal pump polarizations. (a) The H-
polarized pump is transmitted through the PBS, and produces an |H,V 〉s,i photon pair. A HWP
then flips the polarization of both photons, after which they are separated on the PBS. Finally,
the dichroic mirror separates the signal photon from the pump beam. (b) The V -polarized pump
is reflected by the PBS, and is converted to horizontal polarization by the HWP to ensure phase
matching. An |H,V 〉s,i photon pair is then produced, which as before is separated into two
spatial modes by the PBS, but for this pump direction the polarization of the two single photons
after the PBS is the opposite of that in (a). By pumping the source with a diagonally polarized
pump |α〉H + |α〉V the two diagrams above are coherently superposed, giving the output state
|Ψ−〉 = (|H,V 〉s,i − |V,H〉s,i)/

√
2. The inherent phase stability of the Sagnac geometry ensures

the coherence of the process, and in practice the phase in the entangled state above depends
on the phase in the pump superposition and is therefore tunable. Note that the temporal walk-
off between the two polarizations inside the crystal is cancelled by the half-wave plate, since it
ensures that the signal and idler always end up in the same ports, independently of the pumping
direction.

entanglement between the two down-converted photons. This entanglement generation
is enabled by the fact that the process is coherent, and two different emission processes
can be superposed. Since entanglement is a highly useful resource in quantum infor-
mation, and one which cannot be deterministically generated using linear optics alone,
the ability to directly generate entangled states is one of the key advantages of SPDC
over most current solid-state-emitter-based sources. A good question to ask then is if
SPDC sources can be used to efficiently generate entanglement between more than two
photons, through some clever optical arrangement. It’s quite easy to understand that
this is in fact not possible, since any terms containing more than two photons will be of
the form:

Hn |0〉 =
[
poly2(â

†, . . . , b̂†)
]n |0〉 , n ≥ 2, (2.4-159)

which directly implies that these states can be factored. This problem can also be
understood as arising from the fact that the emission of two independent photon pairs
is uncorrelated. Direct generation of higher-dimensional qubit states therefore requires
higher-order nonlinear processes. For example, a superposition of three different third-
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order processes can be used to generate maximally entangled three-qubit states:

H = â†H b̂
†
H ĉ

†
V + â†H b̂

†
V ĉ

†
H + â†V b̂

†
H ĉ

†
H + c.c. 7→ |H,H, V 〉+ |H,V,H〉+ |V,H,H〉√

3
.

(2.4-160)
While such processes have been investigated theoretically [268, 269, 270, 271, 272, 273],
they remain experimentally challenging and have not been observed. This is largely due
to the difficulty of achieving phase matching for four different fields simultaneously, and
at a larger frequency separation than in second-order SPDC. Additionally, the much
smaller third-order nonlinear susceptibility also poses a challenge, however this can to
some extent be compensated for by using higher pump power, or potentially by using
more exotic materials [274].

An alternative to third-order nonlinearities is cascaded down-conversion. In this
type of process a down-converted photon is sent to a second nonlinear crystal in which
it undergoes down-conversion, generating a three photon state. If the state from the
first-stage down-conversion is for example a Bell-state:

â†H b̂
†
H + â†V b̂

†
V√

2
|0〉 , (2.4-161)

then acting on this state with the SPDC-Hamiltonian:

H = ĉ†H b̂
†
H b̂H + ĉ†V b̂

†
V b̂V + c.c., (2.4-162)

directly generates the three-qubit GHZ-state

|H,H,H〉+ |V, V, V 〉√
2

. (2.4-163)

These types of sources have been experimentally demonstrated [275, 276], however due
to the almost vanishing probability of a given photon undergoing down-conversion the
achievable count rates are prohibitively low. It should furthermore be noted that cas-
caded down-conversion is fundamentally different from a true third-order process, and
cannot be used to directly generate maximally entangled three-qubit states such as the
W -state in (2.4-160).

Similar to how linear-optical gates can be used to probabilistically entangle photons,
it is possible to construct source geometries that produce heralded entangled states [277],
for example Bell states [278, 279]. The drawback of these schemes is that they are
resource heavy in terms of the total amount of needed photons. For instance, to herald
the generation of a single Bell state a total of six photons is needed. Generation of
larger entangled states then requires operation in a regime where the gain is sufficiently
strong for the probability of unwanted higher-order emission terms to be comparable
to, or greater than the generation probability for the desired process order, leading to
states that do not well approximate single-photon states. Finally, SPDC sources can
also be made to directly generate post-selected (unheralded) entanglement. This is done
by arranging multiple sources in such a way that the emission from one source passes
through a second source, and ultimately erases the information about which source
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Figure 2.29: Entanglement by path identity. Four independent SPDC sources are arranged
in such a way that the photons generated by the top-left source propagates through the sources
on the anti-diagonal, and one photon from both of these two sources in turn propagates through
the source in the bottom right. This arrangement ensures that there are only two possible
emission patterns that generate one photon in four modes a, b, c, d, and these are that either
the two sources on the diagonal generate one pair of photons each, or the two sources on the
anti-diagonal generate photon pairs. The first emission pattern gives the state |H,H,H,H〉 while
the second one generates |V, V, V, V 〉. Coherent pumping of all four sources therefore generates
the four-qubit GHZ state when post-selecting on detection of one photon in each mode.

fired. The most trivial example of this is a collinear source consisting of two crystals
where one emits for example the state |H,V 〉 and the second one |V,H〉, and if the
emission modes of the two sources are identical the state (|H,V 〉 + eiφ |V,H〉)/

√
2 is

produced. This particular example is of course equivalent to the entangling sources
already discussed, however the concept, dubbed entanglement by path identity [280,
281, 282], can be extended to more complex scenarios. An example of this is shown in
Fig. 2.29, where an arrangement of four crystals can be made to generate a four-qubit
GHZ state, post-selected on exactly one photon being each spatial mode. That this is
in fact the case is easy to understand visually. Mathematically, it comes from the fact
that when squaring the Hamiltonian6

HGHZ = â†H b̂
†
H + ĉ†H d̂

†
H + â†V d̂

†
V + ĉ†V b̂

†
V , (2.4-164)

the only terms containing one operator in each spatial mode are the products of the first
(last) two terms:

â†H b̂
†
H ĉ

†
H d̂

†
H + â†V d̂

†
V ĉ

†
V b̂

†
V . (2.4-165)

The conventional way to generate a four-qubit GHZ state using linear optics is to take
two independent Bell-pair sources, and interfere one photon from each source on a
polarizing beamsplitter. A consequence of (2.2-79) is that the unitary transformation
describing the PBS can be applied on the Hamiltonian itself. The Hamiltonian for the
two Bell-pair sources is

H = â†H b̂
†
H + â†V b̂

†
V + ĉ†H d̂

†
H + ĉ†V d̂

†
V . (2.4-166)

6The conjugate terms describing SFG have been omitted.



2.4. SINGLE-PHOTON GENERATION
105

A PBS acting on the modes b and d implements the transformation:

b̂†H 7→ b̂†H ,

d̂†H 7→ d̂†H ,

b̂†V 7→ d̂†V

d̂†V 7→ b̂†V ,
(2.4-167)

which means that the transformed Hamiltonian is

H 7→ â†H b̂
†
H + â†V d̂

†
V + ĉ†H d̂

†
H + ĉ†V b̂

†
V = HGHZ . (2.4-168)

The source using ‘entanglement by path identity’ is therefore formally equivalent to two
standard SPDC sources combined with a simple linear-optical transformation. It can,
however, be argued that the entanglement-by-path-identity source is conceptually differ-
ent, and the theoretical simplicity of these types of source designs has allowed the study
of sources capable of generating high-dimensional entangled states [283, 284, 285], that
would otherwise be difficult to engineer. While these SDPC sources see photons from
one crystal propagating through a second one, there is no actual interference between the
down-conversion processes. Such interference is possible though, and the coherent can-
cellation of the emission between two different has been observed [286]. Unfortunately,
interference between photon amplitudes from different SPDC sources cannot be used to
improve the efficiency of entanglement generation. This is because while such nonlinear
interferometers can give cancellations in the Hamiltonian, the resulting Hamiltonian is
still that of a χ(2) process.

2.4.5 HOM interference with SPDC photons
The discussion of Hong-Ou-Mandel interference in Section 2.2.9 used a single-mode

description of the light, specifically a spectrally single-mode description. In practice
single photons are never monochromatic, and a more realistic model of the phenomenon
can be obtained by taking into account the multi-mode structure of the light. This leads
to photons that are localized in space, and the amount of photon bunching will depend
on the relative time-delay between the two wavepackets that undergo interference. A
spectrally pure single-photon wavepacket can be written as

|1〉a,ϕ =

∫ ∞

0
dωϕ(ω)â†(ω) |0〉a . (2.4-169)

In the frequency domain a time-delay τ of such a wavepacket is described by a frequency-
dependent phase shift:

â†(ω) 7→ e−iωτ â†(ω). (2.4-170)

A relative time-delay between the photons in a spectrally non-separable two-photon
wavepacket generated by SPDC can be described the same way:∫∫ ∞

0
dω1dω2f(ω1, ω2)â

†(ω1)b̂
†(ω2) |0〉a,b

7→
∫∫ ∞

0
dω1dω2f(ω1, ω2)â

†(ω1)b̂
†(ω2)e

−iω2τ |0〉a,b ,
(2.4-171)
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where f(ω1, ω2) = α(ω1 + ω2)ϕ(ω1, ω2) is the joint spectral amplitude, which, since the
state is normalized, is also normalized to one:∫∫ ∞

0
dω1dω2|f(ω1, ω2)|2 = 1. (2.4-172)

In a Hong-Ou-Mandel scenario the state in (2.4-171) is the input state to a balanced
beamsplitter acting on the modes a and b. Assuming that this beamsplitter is frequency
independent, the state after the beamsplitter can be written as

|Ψ〉 =
∫∫ ∞

0
dω1dω2f(ω1, ω2)

(
UBSâ

†(ω1)
)(
UBSb̂

†(ω2)
)
e−iω2τ |0〉a,b

=
1

2

∫∫ ∞

0
dω1dω2f(ω1, ω2)e

−iω2τ

×
[
â†(ω1)â

†(ω2)− â†(ω1)b̂
†(ω2) + b̂†(ω1)â

†(ω2)− b̂†(ω1)b̂
†(ω2)

]
|0〉a,b .

(2.4-173)

From this state the coincidence probability, meaning the probability to detect one photon
in each mode, needs to be calculated. Following [287], this can be done by taking the
expectation value of a frequency-independent projector onto the state |1, 1〉a,b. This
projector is simply the tensor product of the projectors

Pa =

∫ ∞

0
dωaâ

†(ωa) |0〉〈0|a â(ωa), Pb =

∫ ∞

0
dωbb̂

†(ωb) |0〉〈0|b b̂(ωb). (2.4-174)

The coincidence probability is then

Pcc = 〈Ψ|Pa ⊗ Pb|Ψ〉

= 〈Ψ|
∫∫ ∞

0
dωadωbâ

†(ωa)b̂
†(ωb) |0〉〈0|a,b â(ωa)b̂(ωb)|Ψ〉

=
1

4

∫∫∫∫∫∫ ∞

0
dω′

1dω
′
2dωadωbdω1dω2f

∗(ω′
1, ω

′
2)e

iω′
2τf(ω1, ω2)e

−iω2τ

× 〈0|a,b
(
â(ω′

1)â(ω
′
2)− â(ω′

1)b̂(ω
′
2) + b̂(ω′

1)â(ω
′
2)− b̂(ω′

1)b̂(ω
′
2)
)

× â†(ωa)b̂
†(ωb) |0〉〈0|a,b â(ωa)b̂(ωb)

×
[
â†(ω1)â

†(ω2)− â†(ω1)b̂
†(ω2) + b̂†(ω1)â

†(ω2)− b̂†(ω1)b̂
†(ω2)

]
|0〉a,b .

(2.4-175)

This expression can be simplified by noting that terms on the form

〈0|â(ωi)â(ωj)â†(ωk)b̂†(ωl)|0〉, (2.4-176)

with three operators acting on one mode, vanish, since these expressions turn into inner
products between orthogonal Fock states. All the remaining terms contain one cre-
ation and one annihilation operator per mode, and these evaluate to products of delta
functions:

〈0|â(ωi)b̂(ωj)â†(ωk)b̂†(ωl)|0〉 = δ(ωi − ωk)δ(ωj − ωl). (2.4-177)
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Figure 2.30: Hong-Ou-Mandel dip. The probability for two photons to anti-bunch on a
beamsplitter as a function of their relative delay. This curve is known as a Hong-Ou-Mandel dip.
The triangular shape of the curve is caused by the sinc function in the phase-matching amplitude.
The dip was calculated for the joint-spectral amplitude pictured in Fig. 2.24b and has a visibility
slightly over 0.99.

Substituting this in, the coincidence probability can be written

Pcc =
1

4

∫∫∫∫∫∫ ∞

0
dω′

1dω
′
2dωadωbdω1dω2f

∗(ω′
1, ω

′
2)f(ω1, ω2)e

i(ω′
2−ω2)τ

×
[
δ(ω′

2 − ωa)δ(ω
′
1 − ωb)− δ(ω′

1 − ωa)δ(ω
′
2 − ωb)

]
×
[
δ(ω2 − ωa)δ(ω1 − ωb)− δ(ω1 − ωa)δ(ω2 − ωb)

]
.

(2.4-178)

Using the relation ∫
δ(x1 − x)δ(x2 − x)dx = δ(x1 − x2) (2.4-179)

to integrate over ωa and ωb the coincidence probability reduces to

Pcc =
1

2

∫∫∫∫ ∞

0
dω′

1dω
′
2dω1dω2f

∗(ω′
1, ω

′
2)f(ω1, ω2)e

i(ω′
2−ω2)τ

×
[
δ(ω′

1 − ω1)δ(ω
′
2 − ω2)− δ(ω′

2 − ω1)δ(ω
′
1 − ω2)

]
.

(2.4-180)

After integrating over the primed frequencies the coincidence probability can finally be
written as

Pcc =
1

2

∫∫ ∞

0
dω1dω2

(
|f(ω1, ω2)|2 − f(ω1, ω2)f

∗(ω2, ω1)e
i(ω1−ω2)τ

)
=

1

2
− 1

2

∫∫ ∞

0
dω1dω2f(ω1, ω2)f

∗(ω2, ω1)e
i(ω1−ω2)τ ,

(2.4-181)

where the last step used the normalization condition from (2.4-172). For joint spectral
amplitudes that cannot be factored as f(ωs, ωi) = fs(ωs)fi(ωi), meaning for frequency
entangled states, the integrals in (2.4-181) need to be evaluated numerically. Doing this
for the JSA pictured in Fig. 2.24 gives the HOM-dip shown in Fig. 2.30.
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(a) HOM dips
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(b) HOM interference sensitivity

Figure 2.31: HOM dip sensitivity. Hong-Ou-Mandel interference can be used to measure
short time delays. The sensitivity of such measurements depends on the particular shape of the
HOM dip. (a) shows two different HOM dips arising from different photon spectra. The blue
curve shows a triangular HOM dip while the yellow curve shows a Gaussian dip with the same
FWHM. (b) illustrates the measurement sensitivity the two different dips achieve along different
points of the respective curves. Due to the almost fully linear slope, the triangular HOM dip can
achieve a higher sensitivity close to the minimum of the dip. Note that the blue curves have been
calculated using a joint-spectral amplitude that is filtered by a 50 nm Gaussian filter to remove
the Gibbs oscillations that would otherwise be present.

As can be seen, the indistinguishability at zero time delay is high even though the
two-photon spectrum is entangled. The triangular shape of the HOM dip is caused by
the sinc term in the phase-matching function. Loosely speaking, the HOM-dip is similar
to a convolution of the single-photon wavepackets, and since the Fourier transform of
a sinc spectral function is a rectangle function in time, the convolution between the
wavepackets produces a triangle function. This shape of the HOM dip is interesting
from a quantum metrology perspective. Hong-Ou-Mandel interferometry has recently
attracted attention for its ability to measure small time delays [288], and has also been
proposed as a way to probe the interface between quantum mechanics and general rela-
tivity [289]. One advantage of HOM interference over regular phase interference is the
increased dynamic range, without the need for counting interference fringes. More signif-
icantly, HOM interference can exhibit group-velocity dispersion cancellation [226, 290],
an effect that is particularly pernicious in optical coherence tomography [291]. The
aforementioned dispersion cancellation properties of HOM interference can be used to
overcome these limitations in what is known as quantum optical coherence tomogra-
phy [292,293,294], and has been used to image 3D biological samples [295].

In HOM metrology, such as in Ref. [288], the point of highest sensitivity is determined
by a trade-off between the slope of the HOM dip and the background photon rate. A
simple estimate of the sensitivity is given by the ratio:∣∣∣∣d〈Ncc〉

dτ
/
√
〈Ncc〉

∣∣∣∣, (2.4-182)

where τ is the time delay between the photons, 〈Ncc〉 is the expected number of detected
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Figure 2.32: Spectral filtering in HOM interference. The triangularly shaped HOM dips
in Fig. 2.30 and Fig. 2.31a approach a triangular shape in the limit of infinite spectral bandwidth.
In practice, however, various effects limit the achievable bandwidth and these need to be taken
into account. The two figures above show the effect of spectral filtering on the sensitivity of the
triangular HOM dip as well as its slope for two different Gaussian filter bandwidths. In (a) it
can be seen that a filter bandwidth of ∆λ = 10nm has a significant effect on the sensitivity, even
though the single-photon spectral bandwidth, defined as the FWHM of the marginal distributions
of the joint-spectral intensity, is only about ∆λs = ∆λi = 1.2 nm. (b) shows the derivative of the
two HOM dips with respect to the time delay between the two photons. The spectral filtering
removes the higher Fourier components, smooths out the square wave and thereby reduces the
sensitivity.

coincidence events, which is directly proportional to the coincidence probability Pcc, and√
〈Ncc〉 is the uncertainty arising from the photon counting noise. The intuition behind

this is that an absolute change in signal, or photon rate, corresponds to a bigger relative
change in signal when the initial signal is small.

However, due to the fact that the coincidence probability cannot cross zero the slope
of the signal necessarily decreases as the probability approaches zero. The triangularly
shaped HOM dip is therefore interesting because it exhibits a linear slope almost down
to zero coincidence probability. A comparison between the sensitivity for a triangularly
shaped HOM dip and a typical Gaussian-shaped one with the same visibility and full
width at half maximum (FWHM) is shown in Fig. 2.31.

In theory the triangularly shaped HOM dip can achieve much higher sensitivity
close to the bottom of the dip, due to the fact that the slope does not vanish. In
practice however, the sharpness of the discontinuities in the triangular HOM dip is set
by the spectral bandwidth, and the highest Fourier components. This is illustrated
in Fig. 2.32, where the sensitivity and derivative of the dip is shown for two different
spectral bandwidths. The sensitivities therefore have to take the bandwidth into account,
and spectrally Gaussian photons with an equivalent bandwidth could likely achieve
a higher sensitivity, albeit with smaller dynamic range. A second problem with the
triangular HOM dip is the fact that the optimal measurement point being so close to
the minimum of the dip necessitates a very high HOM dip visibility. In practice one of
the main contributors to a degraded HOM interference visibility is multiphoton events
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Laser

Figure 2.33: Frequency entangling SPDC source. A source consisting of two identical non-
linear crystals phase matched for non-degenerate type-II SPDC can be used to generate frequency
entangled photon pairs by orienting the two crystals at 90° from each other and pumping the two
crystals with a polarization that lies between the two crystals’ optical axes. The polarization-
frequency entanglement can be mapped to path-frequency entanglement by means of a polarizing
beamsplitter (not pictured), and the phase in the entangled state can be controlled by the relative
phase of the two polarization components of the pump light, with respect to the basis defined by
the two crystals.

from the SPDC process. This therefore means that the pump power of the source needs
to be kept low, which in turn reduces the detected photon rate. Precision metrology
using single photons suffers from an intrinsically poor square-root noise scaling due
to the Poissonian counting statistics of single-photon detection, and the total number
of detected photons is one of the most important factors determining the achievable
sensitivity.

While the triangularly shaped HOM dip discussed above results from a non-separable
two-photon spectrum, this is in fact not a necessary condition, and a similarly shaped
HOM dip can be produced by two spectrally pure photons as long as their individual
spectra are sinc shaped. However, there are features in Hong-Ou-Mandel interference
that only emerge as a consequence of two-photon frequency entanglement. In particular,
a HOM dip between two photons in a frequency-entangled state will be modulated by
a beat note whose oscillation frequency depends on the frequency difference between
the two modes in the entangled state [296]. Such frequency entanglement can, unlike
entanglement in many other degrees of freedom, be produced in a fairly straightforward
manner.

Consider the collinear SPDC source pictured in Fig. 2.33 consisting of two crystals
producing the frequency non-degenerate states:

|Φ1〉 = |H〉ωs
|V 〉ωi

(2.4-183)
|Φ2〉 = |V 〉ωs

|H〉ωi
, (2.4-184)

where ωs 6= ωi are the centre frequencies of the signal and idler. Coherently pumping
both crystals produces a superposition of both states

|Ψ〉 =
|H〉ωs

|V 〉ωi
+ eiφ |V 〉ωs

|H〉ωi√
2

, (2.4-185)

where φ is the relative phase between the two polarization components of the pump
field. The state can equivalently be written

|Ψ〉 =
|ωs〉H |ωi〉V + eiφ |ωi〉H |ωs〉V√

2
, (2.4-186)
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Figure 2.34: Frequency entanglement in HOM interference. (a) Two non-degenerate
joint-spectral amplitudes can be added together by coherently pumping two different nonlinear
crystals. This leads to a highly entangled two-photon spectrum. The non-degeneracy can be
tuned either through the crystal temperature, or by detuning the pump light. In the figure above
the ppKTP crystal is at 86.5 °C, while the other parameters are the same as in Fig. 2.24b. (b)
The frequency entangled two-photon spectrum gives rise to a beat note in the HOM dip. The
relative phase φ between the two down-conversion processes determines the phase of this beat
note.

to highlight the frequency entanglement. For multi-mode states the result is similar.
Assuming the two crystals are oriented at 90° to one another, but are otherwise identical,
the state after the second crystal is

|Ψ〉 = 1√
2

∫∫ ∞

0
dωsdωif(ωs, ωi)â

†
H(ωs)â

†
V (ωi) |0〉

+
eiφ√
2

∫∫ ∞

0
dωsdωif(ωs, ωi)â

†
H(ωi)â

†
V (ωs) |0〉 .

(2.4-187)

By exchanging the indices in the second integral the state can be written as

|Ψ〉 = 1√
2

∫∫ ∞

0
dωsdωi

(
f(ωs, ωi) + eiφf(ωi, ωs)

)
â†H(ωs)â

†
V (ωi) |0〉 , (2.4-188)

and fs(ωs, ωi) = f(ωs, ωi) + eiφf(ωi, ωs) becomes an effective joint-spectral amplitude
that can be plugged into (2.4-181). An example of such a JSA and the corresponding
HOM dip is shown in Fig. 2.34. This type of source has been used to perform tempera-
ture sensing [297], and has the potential to significantly outperform unmodulated HOM
interference such as the one in [288]. In particular, since the amount of non-degeneracy
in the down-conversion process can be continuously tuned, either by varying the crystal
temperature, or offsetting the pump wavelength, the frequency of the bi-photon beat
note can be tuned to produce an optimal trade-off between the dynamic range and the
measurement precision. This tuning is illustrated in Fig. 2.35.
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Figure 2.35: Temperature tuning of HOM beat note. The phase-matching amplitude in
SPDC depends on the temperature of the nonlinear crystal, due to both thermal expansion of
the crystal as well as the thermo-optic effect. This can be used to control the frequency detuning
between the signal and idler, and therefore in turn the frequency of the Hong-Ou-Mandel beat
note. (a) shows a HOM dip with the same parameters as in Fig. 2.34b, which corresponds to
a wavelength detuning ∆λ = 6.5 nm. (b) shows the HOM dip for a crystal at 116.5 °C with a
detuning of ∆λ = 14.2 nm. Finally, the HOM dip in (c) is plotted for a crystal with a temperature
of T = 146.5 °C and a corresponding detuning of ∆λ = 23.7 nm.

2.5 Integrated photonics
The previous sections described the generation and manipulation of quantum light

using bulk optical components, such as mirrors, lenses and birefringent crystals. Optical
devices constructed out of these components are generally resource inefficient, in that
they typically have a large footprint, are time consuming to construct and operate, and
have a high price tag. In applications that aim to scale up the size of the quantum
systems being manipulated, it is therefore necessary to miniaturize the optical devices
used to generate and control the light. Such miniaturized devices that incorporate mul-
tiple optical elements are known as integrated photonic devices, and have applications
outside the realm of quantum information processing as well, particularly in optical
communication systems [298,299] and display technologies [300,301].

Integrated photonic devices rely on waveguides, which are material structures with
boundary conditions engineered such that the solutions to Maxwell’s equations are prop-
agating modes confined within the structure. By far the most common example of this
is silica optical fibers [302], which form the backbone of the global optical communica-
tions network. Such fibers exhibit extremely low loss per unit length, down to as little
as 0.16 dBkm−1. Another widely used material is LiNbO3 (Lithium Niobate) [303].
This material is transparent in the telecom C-band (1535 - 1565 nm) and can exhibit
waveguide loss as low as 0.5 dB cm−1 [304,305], while offering a high χ(2) response. The
latter property has led to its widespread use in electro-optic modulators for classical
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information transfer [306], with integrated devices achieving modulation frequencies of
up to 100GHz at low voltages [307, 308]. The nonlinear response of the material also
makes it useful in optical frequency conversion [309], which is further facilitated by the
ability to employ QPM structures [310]. LiNbO3 can also be used to construct inte-
grated lasers [311], ring-laser gyroscopes [312] and various other devices. One of the
main drawbacks of LiNbO3 is the comparatively low refractive-index contrast, resulting
in a weak confinement of the light, thereby necessitating larger structures with longer
bend radii [313]. In recent years there have been efforts to overcome this problem by
embedding the Lithium Niobate waveguides in other structures [314,315].

In addition to Lithium Niobate, other widely studied material platforms include
GaAs (Gallium Arsenide) [316, 317, 318], SN (Silicon Nitride) [319, 320], Silicon-on-
Insulator (SOI) [321, 322, 323], as well as so-called femtosecond laser direct written
waveguides in various glasses and polymers [324, 325, 326]. Out of these, the SOI plat-
form is the one which by far the most research effort has been dedicated towards. The
main reason for this is that SOI photonic devices are compatible with the complemen-
tary metal-oxide-semiconductor (CMOS) process [327], and can therefore leverage the
huge investments and technological progress this process has seen. Like LiNbO3, Sili-
con is transparent for telecom wavelengths and can exhibit propagation losses as low as
0.3 dB cm−1 [328]. Due to its very high index contrast, SOI waveguides can be made
very small and typically have a cross-section of 220× 450 nm2 [329,330], enabling bend
radii as small as 2µm [331]. One of the main drawbacks of the SOI platform is that
silicon has a centro-symmetric crystal structure, which in turn means that the material
only has a vanishingly small second-order nonlinear response [332]. Direct electro-optic
modulation of light is therefore infeasible in silicon [333,334], and other methods such as
thermo-optic phase shifters [335,336] or the plasma dispersion effect and free carrier ab-
sorption [337,338,339] have to be used instead. Additionally, the low 1.1 eV bandgap of
Silicon can lead to two-photon absorption in the near-infrared wavelength range, which
places limits on the optical power that can be used in nonlinear processes [340,341].

2.5.1 Integrated quantum photonics
For all the same reasons that integrated photonics revolutionised classical optics and

vastly expanded the potential of optical information processing, integrated quantum
photonics holds the promise of moving quantum photonic information processing from
tabletop experiments to large scale, commercially relevant applications. As a result, the
field has attracted considerable research attention over the past 20 years [342, 343, 344,
345,346,347], and has enabled many experiments that would have been infeasible using
bulk optics, such as studies of complex quantum walks [348,349,350] and the generation
of very large entangled states [351].

There are, broadly speaking, four engineering goals for integrated quantum photonic
circuits: (1) the generation of quantum light through nonlinear processes, (2) the ma-
nipulation of quantum states of light using linear optical elements, (3) high efficiency
detection of quantum light, and (4) the realisation of photon-photon interactions me-
diated by a nonlinear element. Although this final goal is the most challenging one,
it has seen experimental progress in the last few years [352, 353, 354, 355]. Progress
towards the other three goals is comparatively far along, and the largest challenge is
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(a) Mode coupling. (b) Power transfer.

Figure 2.36: Directional coupler. (a) A schematic view of a directional coupler, with light
travelling from left to right. The transverse mode of the waveguide extends into the cladding,
and if the separation between two different waveguides becomes small enough the corresponding
modes begin to couple. This manifests as a power transfer between the two waveguide modes.
(b) The power transfer has a periodic behaviour that depends on the mode overlap between the
waveguides and the interaction length. By choosing these parameters properly, a beamsplitter
with the desired splitting ratio can be realised.

to integrate all these technologies in a single device. Single photons are for exam-
ple routinely made in waveguides using both spontaneous three-wave [356] and four-
wave mixing [357], and in more recent years integration of solid-state emitters such
as quantum dots [201, 358] and various color centres have been successfully demon-
strated [359,360]. Meanwhile, in the realm of continuous-variable quantum information
the strong mode confinement of waveguides has enabled the demonstration of extremely
broadband and highly squeezed light in single-pass configurations [361]. High efficiency
single-photon detection has also approached a mature stage. In some material platforms,
photo-detection can be performed using single-photon avalanche diodes [362], however
both single-photon superconducting nanowire detectors [363] and transition-edge sen-
sors [364] have been demonstrated integrated in waveguide structures. Finally, various
techniques exist for performing linear optical operations in integrated photonics. While
there have been demonstrations of control over the polarization degree of freedom of
photons in waveguides [365,366,367] this approach is generally not pursued, since most
integrated photonic platforms exhibit birefringence that is too strong and furthermore
hard to control dynamically. Instead most integrated photonic quantum information
processing schemes rely on a so-called dual-rail encoding, where the computational ba-
sis states of a qubit or qudit are encoded in two or more different waveguides. This
approach will be discussed in the next section.

2.5.2 Manipulating path encoded states
The two basic primitives for controlling the path of photon through a waveguide network
are phase shifters and directional couplers. As discussed in the previous section, phase
shifters can be made using a multitude of physical principles [334], such as the thermo-
optic effect [335], Pockels effect [368] or various carrier injection or depletion methods.
The latter tends to be problematic in quantum application due to the loss that it intro-
duces, however attempts have been made to mitigate these effects by combining carrier
injection with thermo-optic phase shifters in the same device [369].

Directional couplers, being completely static devices, are easier to manufacture.
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Figure 2.37: Waveguide Mach-Zehnder interferometer. In a waveguide a Mach-Zehnder
interferometer (MZI) can be constructed using two directional couplers as beamsplitters. An
internal tunable phase shifter enables the MZI to realise any Rx rotation. Combined with a
phase shifter in one of the input modes and one of the output modes, both implementing Rz

rotations, any U ∈ SU(2) can be realised on the path degree of freedom of a single photon. The
two external phase shifters are drawn in opposite physical modes here, due to the fact that the
identity operation of the MZI, Rx(0), performs a mode swap.

Since the evanescent electric field of a waveguide mode extends outside the waveguide
itself and into the cladding material, two different waveguide modes can be made to in-
teract if the waveguides are sufficiently close to each other. The interaction between two
such waveguides along the z-direction can be modelled by a pair of coupled differential
equations [106,370]:

dA1

dt
= −iC21e

i∆βzA2(z) (2.5-1)
dA2

dt
= −iC12e

−i∆βzA1(z), (2.5-2)

where Ak is the amplitude of the corresponding waveguide mode, ∆β = β1 − β2 is
difference between the propagation constants of the two modes, and C21 and C12 are
the coupling constants between the two waveguides that are given by overlap integrals
of the two modes. Assuming that the coupling between the modes is symmetric, i.e.
C21 = C12 = C , that the modes have the same propagation constant, and that there
is initially no light in the second waveguide, the system of differential equations has the
solution

P1(z) = P1(0) cos
2
(
Cz
)

(2.5-3)
P2(z) = P1(0) sin

2
(
Cz
)
, (2.5-4)

where Pk = |Ak|2 is the optical power in the corresponding waveguide mode. By choosing
the length of the interaction region a beamsplitter with arbitrary reflectivity can be
realised. This is illustrated in Fig. 2.36.

Two directional couplers with a balanced splitting ratio can be combined to create
a Mach-Zehnder interferometer (MZI), and placing a phase shifter in one of the arms of
the MZI lets the interferometer work as a reconfigurable beamsplitter. More concretely,
the balanced directional couplers realise Hadamard operations, and the phase shifter
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effects an Rz rotation. The action of the MZI can therefore be written

UMZI = UHadRz(ϕ)UHad

=
X + Z√

2

(
cos

ϕ

2
1− i sin

ϕ

2
Z

)
X + Z√

2

= cos
ϕ

2
1− i sin

ϕ

2
X

= Rx(ϕ).

(2.5-5)

Putting a phase shifter before and after the MZI, as shown in Fig. 2.37, therefore allows
any U ∈ SU(2) to be realised on the path degree of freedom:

Rz(θ)Rx(ϕ)Rz(γ), (2.5-6)

as this is an Euler angle decomposition. As was shown in Ref. [371], any higher dimen-
sional unitary acting on the path degree of freedom can be decomposed in terms of such
2 × 2 unitaries, and this decomposition is known as the Reck encoding. Surprisingly,
only a single phase shifter external to each MZI is required. Similarly to the method
for decomposing qubit unitaries using wave plates presented in Section 2.3.1, the Reck
decomposition can be found by creating the inverse of an N ×N unitary U(N) step by
step, by multiplying it from the right with unitaries of the form

Tjk(θ, ϕ) = Rz(ϕ)Rx(θ), (2.5-7)

acting on the modes j and k, and whose physical interpretation is an MZI followed by a
phase shifter. The decomposition proceeds by first using N − 1 unitaries to null all the
elements in the last row of U , except the element on the diagonal:

U(N)TN,N−1TN,N−2 · · ·TN,1 =
[
U(N − 1) 0

0 eiφ

]
. (2.5-8)

Note that the order in which the elements in the row are nulled is arbitrary. In the next
step the same procedure is repeated for U(N − 1), using N − 2 multiplications from the
right. The total number of 2-mode unitaries Tjk required in the decomposition of an
N ×N unitary can be found as

N∑
k=2

k − 1 =
N−1∑
k=1

k =
N(N − 1)

2
. (2.5-9)

After the matrix U(N) has been diagonalized the identity matrix can be obtained
through multiplication with a diagonal matrix D, that corresponds to a single phase
shifter in every mode:

1 = U(N)TN,N−1TN,N−2 · · ·T2,1D. (2.5-10)

The desired unitary is found by multiplying this expression by the inverse of the decom-
position:

U(N) = D†T †
2,1 · · ·T

†
N,N−2T

†
N,N−1, (2.5-11)
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Figure 2.38: Reck encoding. Visual representation of the Reck decomposition into operations
on spatial modes for a 4 × 4 unitary. The large boxes represent MZIs as in Fig. 2.37, but with
only the first external phase shifter, and the αk boxes represent single-mode phase shifts. Since
the identity operation of an MZI exchanges the two spatial modes, the mode labels get permuted
throughout the circuit and this naturally facilitates what would otherwise be operations between
non-adjacent modes.

where
Tjk(θ, ϕ)

† = Rx(−θ)Rz(−ϕ), (2.5-12)

or in other words an MZI with a phase shifter acting on the input, and with both phases
inverted. A schematic representation of the Reck decomposition for a 4 × 4 unitary is
shown in Fig. 2.38.

Since each of the N(N − 1)/2 two-mode unitaries has two free parameters the total
number of free parameters in the decomposition is

N(N − 1) +N = N2, (2.5-13)

where the second term on the left-hand side comes from the last N phase shifts. This
means that the decomposition is optimal, since an arbitrary unitary U(N) also has
exactly N2 free real parameters.

As an example of how the decomposition is performed, consider the three-dimensional
quantum Fourier transform:

F3 =
1√
3


1 1 1

1
− 1 + i

√
3

2

− 1− i
√
3

2

1
− 1− i

√
3

2

− 1 + i
√
3

2

 . (2.5-14)

To null the matrix element
(
F3

)
3,1

the rotation angle ϕ3,1 should be chosen such that:

arg
[(

F3

)
3,3

]
− arg

[(
F3

)
3,1

]
=
π

2
. (2.5-15)

This comes from the fact that the diagonal and off-diagonal elements in

Rx(2θ) =

[
cos θ −i sin θ

−i sin θ cos θ

]
, (2.5-16)
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Figure 2.39: Clements encoding. The figure shows a representation of the Clements encoding
scheme for a 4×4 unitary. While this scheme uses the same number of gates as the Reck scheme,
it is more symmetric and space efficient, and the shorter overall propagation distance reduces
the total loss. Note that in contrast to Fig. 2.38 there are no implicit mode swaps, since the
decomposition only uses unitaries that couple adjacent modes.

always have a relative phase of ±π/2. The condition (2.5-15) can be satisfied by choosing

ϕ3,1 = mod
(
arg
[(

F3

)
3,3

]
− arg

[(
F3

)
3,1

]
, 2π
)
− π

2
=
π

6
. (2.5-17)

This choice of phase guarantees that the Rx rotation can null the matrix element
(
F3

)
3,1

.
The rotation angle θ3,1 can be calculated as

θ3,1 = −2atan

∣∣∣∣∣
(
F3

)
3,1(

F3

)
3,3

∣∣∣∣∣ = −π
2
. (2.5-18)

Direct calculation then shows that T3,1 indeed nulls the correct element of F3

F3T3,1(θ3,1, ϕ3,1) =

a b c
d e f
0 g h

 . (2.5-19)

The same steps as the ones above can be repeated to calculate the remaining angles,
giving

ϕ3,2 =
3π

4
, θ3,2 = −2atan

1√
2

ϕ2,1 =
5π

8
, θ2,1 = −π

2
.

(2.5-20)

Note that after the second step:

F3T3,1(θ3,1, ϕ3,1)T3,2(θ3,2, ϕ3,2) =

a′ b′ 0
d′ e′ 0
0 0 h′

 , (2.5-21)

the last column of F3 is nulled as well. This is a consequence of the fact that F3 is a
unitary matrix, and is why it is only necessary to null the elements in each row.

Due to its asymmetric, triangular shape, shown in Fig. 2.38, the Reck encoding is not
optimal in terms of footprint and propagation loss. In Ref. [372] a more symmetric, but
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otherwise equivalent encoding, known as the Clements encoding, was proposed. This
decomposition is illustrated in Fig. 2.39. To perform the decomposition one proceeds
similarly to the Reck method, however, instead of only multiplying from the right to
null a given row of the desired matrix, one instead nulls the sub-diagonals and alternates
multiplying from the left and right after each sub-diagonal.





3
Engineering reciprocity in

polarization optics

This chapter examines how polarization rotators, or gadgets, behave when the prop-
agation direction of the light through them is reversed. After characterising the most
commonly used polarization rotators, a set of missing devices is identified. Recipes for
the realisation of these devices are then introduced and analysed, concluding with a
discussion on their potential applications.

3.1 Introduction
The polarization of light is one of the most commonly used degrees of freedom for

encoding quantum information in single photons, and control over the polarization is of
great importance in many fields of optics, both classical and quantum [106,373,374,375].
There are many types of optical geometries, such as Michelson and Sagnac interferome-
ters, in which light retraces its own path. The light will therefore propagate through any
polarization optics placed in these optical geometries in two different propagation direc-
tions, and it is natural to ask how the polarization transformations in the two directions
are related. Polarization devices tend to be divided into two distinct categories: devices
which are invariant under the reversal of propagation direction are said to be reciprocal,
and devices which do not exhibit such an invariance are said to be nonreciprocal [106].
This distinction, however, will turn out to be insufficiently precise.

The most well known example of a nonreciprocal polarization device is the Faraday
rotator. Such a device rotates linear polarization using the magneto-optic effect. This
effect breaks Lorenz reciprocity, and this is the origin of the optical nonreicprocity [376].
Faraday rotators can be used to construct a device known as an optical isolator [377],
which only permits light to travel through it in one direction. This device is illustrated
in Fig. 3.1, and it can be seen that the diagonally polarized state does not return to the
original vertically polarized state under reversal of the propagation direction. Linear
polarization retarders, such as wave plates and liquid crystal retarders, are commonly
referred to as being reciprocal. However, there is a simple optical device, shown in
Fig. 3.2, in which a quarter-wave plate behaves exactly the same as Faraday rotator [378].
This seeming inconsistency can be explained in many different ways; fundamentally, it
boils down to under exactly which transformation one requires a polarization optic to
be invariant, and in which reference frame this invariance is viewed. A Faraday rotator,
for example, breaks time reversal invariance, while linear polarization retarders do not.
However, in the context of experimental physics this is not an operationally useful
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Figure 3.1: Optical isolator. An optical isolator consists of a Faraday rotator (grey cylinder),
sandwiched by two polarizers: one aligned vertically, transmitting V -polarized light, and one
aligned at 45° to the vertical axis, transmitting +-polarized light. In the forwards propagation
direction the vertically polarized light is rotated clockwise by the Faraday rotator to + and is
transmitted through the second polarizer. In the backwards propagation direction (right) light
aligned with the second polarizer is still rotated clockwise, this time to H, and is then blocked
by the vertically aligned polarizer. This is due to the nonreciprocity of the Faraday rotator.

distinction, since time reversal does not take place in the laboratory. In the next section
we will therefore outline a more operationally useful point of view from which to discuss
polarization operations in two propagation directions, and how they are related.

3.2 Preliminaries
Before moving onto the description of the various polarization devices that will be

discussed, we will first introduce some notation and useful identities. The convention
for the polarization states in this section will be the same as (2.3-3). Rotations about
the principal axes of the Bloch sphere will be written as

X(θ) = Rx(θ) = exp
(
− i

2
θσx

)
(3.2-1)

Y (θ) = Ry(θ) = exp
(
− i

2
θσy

)
(3.2-2)

Z(θ) = Rz(θ) = exp
(
− i

2
θσz

)
. (3.2-3)

We recall that a rotation about some arbitrary axis n⃗ can be written

Rn⃗(θ) = cos

(
θ

2

)
I − i sin

(
θ

2

)
n⃗ · σ⃗. (3.2-4)

From this expression it is clear that

Rn⃗(2π) = −I. (3.2-5)

It is worth pointing out the trivial fact that sequential rotations about the same axis
are additive:

Rn⃗(α)Rn⃗(β) = Rn⃗(α+ β), (3.2-6)
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Figure 3.2: Nonreciprocal elements. The two figures show two different ways to build a
device that functions similarly to the optical isolator in Fig. 3.1, blocking any backreflections in
the transmitted port of the polarizing beamsplitter. In (a) the H-polarized light transmitted by
the PBS is turned into ‘+’-polarized light by a Faraday rotator. Any light backreflected from an
optic in the beam path becomes ‘−’-polarized in the backwards propagating frame, and is rotated
to V by the Faraday rotator, after which it is rejected by the PBS. In (b) the Faraday rotator
is replaced by a quarter-wave plate at 45°, which turns the H-polarized light into right-handed
circularly polarized light. In the backwards moving frame this turns into L-polarized light, which
the QWP transforms into V , since the angle of the wave plate is −45° in this frame. This is an
example of a supposedly reciprocal element, a QWP, being used to realise a nonreciprocal device.

as we will make frequent use of this fact. We now prove a useful permutation identity
for Bloch-sphere rotations. Let j, k, l be some permutation of the axes x, y, z. Then

Rj

(
±π
2

)
Rk(θ) =

1√
2
[I ∓ iσj ]

[
cos

θ

2
I − i sin

θ

2
σk

]
=

1√
2

[
cos

θ

2
I − i sin

θ

2
σk ∓ i cos

θ

2
σj ∓ sin

θ

2
σjσk

]
=

1√
2

[
cos

θ

2
I − sin

θ

2
ϵjklσlσj ∓ cos

θ

2
σj ∓ i sin

θ

2
ϵjklσl

]
=

[
cos

θ

2
I ∓ i sin

θ

2
ϵjklσl

]
1√
2
[I ∓ iσj ]

Rj

(
±π
2

)
Rk(θ) = Rl(±ϵjklθ)Rj

(
±π
2

)
,

(3.2-7)

where ϵjkl is the Levi-Civita symbol. The inverse of this identity, for performing permu-
tations in the reverse order, is

Rj(θ)Rk

(
±π
2

)
= Rk

(
±π
2

)
Rl(±ϵjklθ) (3.2-8)

These identities also hold more generally for any three orthogonal axes j, k, l forming a
right-handed coordinate system, since the transformed Pauli matrices representing those
axes still obey the same commutation relationships. A corollary that follows directly
from (3.2-7) is

Rj(±π)Rk(θ) = Rj

(
±π
2

)
Rl(±ϵjklθ)Rj

(
±π
2

)
= Rl(ϵjlkϵjklθ)Rj(±π)
= Rk(−θ)Rj(±π).

j 6= k (3.2-9)
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Using the relation above, one can also show a useful ‘sandwich’ identity:

Rj(±θ) = Rj(±θ)Rk(±π)Rk(∓π)
= Rk(±π)Rj(∓θ)Rk(∓π)
= Rk(∓π)Rj(∓θ)Rk(±π).

j 6= k (3.2-10)

Additionally, an analogue of the cyclic relation σjσk = δjkI + iϵjklσl for Pauli matrices
also follows from (3.2-7) and (3.2-9):

Rj(±π)Rk(±π) = Rj(±π/2)Rk(±π)Rj(∓π/2)
= Rl(±2ϵjklπ)Rj(±π/2)Rj(∓π/2)
= Rl(ϵjklπ),

j 6= k (3.2-11)

and similarly if Rj and Rk have opposite sign in their argument:

Rj(±π)Rk(∓π) = Rj(±π/2)Rk(∓π)Rj(±π/2)
= Rl(±∓ ϵjklπ)Rj(∓π/2)Rj(±π/2)
= Rl(−ϵjklπ).

j 6= k (3.2-12)

Finally, we mention a result from [161], which is that a sequence of two half-wave plates
and one quarter-wave plate can always be reduced to a sequence containing just one of
each kind of wave plate:

Q(α)H(β)H(γ) = Q(α+ π/2)H(α− β + γ − π/2) (3.2-13)
H(α)H(β)Q(γ) = H(α− β + γ − π/2)Q(γ + π/2). (3.2-14)

Recursive application of these rules can reduce the number of HWPs in longer sequences
to a single one.

3.2.1 Polarization gadgets
Since the operation realised by a polarization rotator is not necessarily the same in

the two propagation directions it can be probed in, it is helpful to make a distinction
between the physical device, which will be referred to as a gadget, and the mathematical
operation effected by the gadget. A gadget G is defined as a sequence of polarization
rotators G = GN . . .G2G1 probed in a certain direction. Gadgets will be written in
boldface, to distinguish them from the SU(2) operations they realise and to emphasize
that these operation are implementation dependent. In this chapter, the discussion will
be restricted to half-wave plates H, quarter-wave plates Q and Faraday rotators F, as
well as gadgets that are compositions of these elements.

To obtain the description of a gadget in the reverse propagation direction we intro-
duce a counterpropagation operator Θ. This operator is order reversing and gives the
action of all the sub-gadgets in the backwards propagation direction:

Θ(G) = Θ(GN . . .G2G1)

= Θ(G1)Θ(G2)Θ(GN ).
(3.2-15)
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A gadget that is a function of some parameter ϕ will be called symmetric in this param-
eter if

Θ[GS(ϕ)] = GS(ϕ), (3.2-16)

and anti-symmetric if
Θ[GA(ϕ)] = GA(−ϕ). (3.2-17)

3.2.2 Basic gadgets
Wave plates are examples of linear retarders, and in general a linear retarder with

retardance η at an angle ϕ to the vertical axis corresponds to the gadget

Wη(ϕ) = Y (2ϕ)Wη(0)Y (−2ϕ)

= Y (2ϕ)Z(η)Y (−2ϕ).
(3.2-18)

Here the Y -rotations describe the rotation of the wave plate about the propagation
direction of the light. On the Bloch sphere, this gadget corresponds to a rotation around
an axis n⃗ by an angle η:

Wη(ϕ) = (cosϕI − i sinϕY )(cos
η

2
I − i sin

η

2
Z)(cosϕI + i sinϕY )

= cϕc η
2
cϕI + icϕc η

2
sϕY − icϕs η

2
cϕZ + cϕs η

2
sϕZY

− isϕc η
2
cϕY + sϕc η

2
sϕY Y − sϕs η

2
cϕY Z − isϕs η

2
sϕY ZY

= (c2ϕ + s2ϕ)c η
2
I − 2icϕsϕs η

2
X − i(c2ϕ − s2ϕ)s η

2
Z

= cos
η

2
I − i sin

η

2

(
sin 2ϕX + cos 2ϕZ

)
= Rn⃗(η),

(3.2-19)

where
n⃗ =

[
sin 2ϕ 0 cos 2ϕ

]
, (3.2-20)

and c{·} and s{·} are short for cos(·) and sin(·), respectively. The factor of two in the
angle ϕ comes from the difference between physical angles and Bloch-sphere angles.
Using this notation for a wave-plate gadget, half-wave and quarter-wave plates can be
written

H(ϕ) = Wπ(ϕ), (3.2-21)
Q(ϕ) = Wπ

2
(ϕ). (3.2-22)

In the counterpropagating frame the angles with respect to the vertical axis undergo a
sign change:

Θ[Wη(ϕ)] = Wη(−ϕ) (3.2-23)
Θ[H(ϕ)] = H(−ϕ) (3.2-24)
Θ[Q(ϕ)] = Q(−ϕ). (3.2-25)

This is simply a geometric consequence of any coordinate transformation to the coun-
terpropagating frame that respects Θ[Wη(0)] = Wη(0). For Faraday rotators it is not
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necessary to specify the angle to the vertical axis, since their action is independent of it.
The same is true for any circularly birefringent gadget, since the circular polarization
does not ‘see’ this angle, as there is nothing to reference it to. Faraday rotators will
therefore only be denoted by their circular retardance ψ:

Fψ = Ry(ψ). (3.2-26)

As mentioned in the introduction to this chapter, Faraday rotators violate Lorenz reci-
procity, and quantitatively this manifests as a change in the sign of the retardance under
counterpropagation:

Θ[Fϕ] = F−ψ. (3.2-27)

Since, in practice Faraday, rotators are almost exclusively sold with a fixed circular
retardance of ψ = π/2 these devices will be referred to using the shorthand notation
F± = F±π

2
.

3.2.3 Wave plate only gadgets
As discussed in Section 2.3.1 a combination of two quarter-wave plates and one

half-wave plate can be used to realise any U ∈ SU(2), using what is known as a Simon–
Mukunda gadget [161]. In this section, we will start by examining three simpler wave-
plate gadgets implementing rotations about the main axes of the Bloch sphere.

Using a gadget consisting of two fixed quarter-wave plates and one tunable half-wave
plate an X(ϕ) rotation can be realised. This gadget turns out to be anti-symmetric, and
has the following form

XA(ϕ) = Q(π/2)H(ϕ/4)Q(π/2)

=
[
Y (π)Z(π/2)Y (−π)

][
Y (ϕ/2)Z(π)Y (−ϕ/2)

][
Y (π)Z(π/2)Y (−π)

]
= Z(−π/2)

[
Y (ϕ/2)Z(π)Y (−ϕ/2)

]
Z(−π/2)

= X(ϕ/2)X(ϕ/2)

= X(ϕ),

(3.2-28)

where the second-to-last step used the permutation identity (3.2-7). Verifying that this
gadget is in fact anti-symmetric is straightforward:

Θ
[
XA(ϕ)

]
= Θ

[
Q(π/2)H(ϕ/4)Q(π/2)

]
= Q(−π/2)H(−ϕ/4)Q(−π/2)
= Q(π/2)H(−ϕ/4)Q(π/2)

= X(−ϕ),

(3.2-29)

where the second step used the fact that

Q(−π/2) = Y (−π)Z(π/2)Y (π)

= Y (−2π)Y (π)Z(π/2)Y (−π)Y (2π)

= Y (π)Z(π/2)Y (−π)
= Q(π/2),

(3.2-30)
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or in other words the fact that the quarter-wave plate has a period of π in the rotation
angle. Next, we consider a Y (ϕ) rotation. Such a rotation can be realised using a gadget
consisting of two half-wave plates and is symmetric:

YS(ϕ) = H
(ϕ+ α

4
+
π

2

)
H
(α
4

)
= Y

(ϕ+ α

2
+ π

)
Z(π)Y

(
−ϕ+ α

2
− π

)
Y
(α
2

)
Z(π)Y

(
−α
2

)
= Y (ϕ+ α+ 2π)Z(π)Y

(α
2

)
Z(π)Y

(
−α
2

)
= −Y (ϕ+ α)Z(2π)Y (−α)
= Y (ϕ+ α)Y (−α)
= Y (ϕ).

(3.2-31)

It can be seen that the Y -rotation only depends on the relative angle between the two
HWPs, which is expected since as mentioned before circularly polarized light, which
correspond to the eigenstates of Y , does not have a well defined angle with respect to
the wave plates. The gadget can therefore, without loss of generality, be written in the
simpler form

YS(ϕ) = H
(ϕ
4
+
π

2

)
H(0). (3.2-32)

The fact that the rotation angle only depends on the relative angle of the wave plates
makes the symmetry of the gadget obvious, since

Θ
[
YS
]
= Θ

[
H
(ϕ
4
+
π

2

)
H(0)

]
= H(0)H

(
−ϕ
4
− π

2

)
= H

(ϕ
4
+
π

2

)
H(0),

(3.2-33)

however the second step can also be explicitly verified:

Θ
[
YS
]
= H(0)H

(
−ϕ
4
− π

2

)
= Z(π)

[
−i sin

(
−ϕ
2
− π

)
X − i cos

(
−ϕ
2
− π

)
Z
]

= −iZ
[
−i sin ϕ

2
X + i cos

ϕ

2
Z
]

= cos
ϕ

2
I − i sin

ϕ

2
Y

= Y (ϕ).

(3.2-34)

The last of the rotations about the main axes, a Z-rotation, can be realised by a sym-
metric gadget consisting of two fixed quarter-wave plates and one variable half-wave
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plate:

ZS(ϕ) = Q(π/4)H(ϕ/4− π/4)Q(π/4)

=
[
Y (π/2)Z(π/2)Y (−π/2)

][
Y (ϕ/2− π/2)Z(π)Y (−ϕ/2 + π/2)

]
×
[
Y (π/2)Z(π/2)Y (−π/2)

]
=
[
Y (π/2)X(π/2)

][
X(−ϕ/2 + π/2)Z(2π)X(−ϕ/2 + π/2)

][
X(π/2)Y (−π/2)

]
= −Y (π/2)X(−ϕ+ 2π)Y (−π/2)
= Y (π/2)X(ϕ)Y (−π/2)
= Z(ϕ)Y (π/2)Y (−π/2)
= Z(ϕ),

(3.2-35)
where the second step made use of the permutation identity (3.2-7) twice. The symmetry
of the gadget can be verified by noting that the Z-rotations of the wave plates in the
calculation above ultimately reduce to a global π phase, and one can therefore skip
directly to the third last line and simply substitute in negative angles resulting from the
counterpropagation:

Θ
[
ZS(ϕ)

]
= Q(−π/4)H(−ϕ/4 + π/4)Q(−π/4)
= Y (−π/2)X(−ϕ)Y (π/2)

= Z(ϕ)Y (−π/2)Y (π/2)

= Z(ϕ).

(3.2-36)

In addition to rotations about the three main axes described above, another useful
gadget is the arbitrary linear retarder realising an arbitrary rotation about some axis
lying in the linear plane:

U = exp
[
− i

2
α
(
cos(β)Z + sin(β)X

)]
= Y (β)Z(α)Y (−β). (3.2-37)

Such a unitary can be realised by the gadget

L(α, β) = Q
(β
2
− π

4

)
H
(β
2
− α

4
+
π

4

)
Q
(β
2
− π

4

)
= Q(ϕ/2)H(θ/2)Q(ϕ/2)

= Y (ϕ)Z(π/2)Y (−ϕ)Y (θ)Z(π)Y (−θ)Y (ϕ)Z(π/2)Y (−ϕ)
= Y (ϕ)X(ϕ)X(−θ)Z(2π)X(−θ)X(ϕ)Y (−ϕ)
= −Y (ϕ)X(2ϕ− 2θ)Y (−ϕ)
= −Y (β − π/2)X(α− 2π)Y (−β + π/2)

= Y (β)Z(α)Y (−β),

(3.2-38)

where ϕ = β − π/2 and θ = β − α/2 + π/2. This gadget does not have an overall
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symmetry under Θ[·], but is symmetric in α and anti-symmetric in β:

Θ
[
L(α, β)

]
= Q

(
−β
2
+
π

4

)
H
(
−β
2
+
α

4
− π

4

)
Q
(
−β
2
+
π

4

)
= Q(−ϕ/2)H(−θ/2)Q(−ϕ/2)
= −Y (−ϕ)X(−2ϕ+ 2θ)Y (ϕ)

= Y (−β + π/2)X(−α)Y (β − π/2)

= Y (−β)Z(α)Y (β)

= L(α,−β).

(3.2-39)

Finally, while the Simon–Mukunda gadget was proven to be universal through a con-
structive proof in Section 2.3.1, this property can also be shown using the types of
decompositions above:

GSM = H(α/2)Q(β/2)Q(γ/2)

=
[
Y (α)Z(π)Y (−α)

][
Y (β)Z(π/2)Y (−β)

][
Y (γ)Z(π/2)Y (−γ)

]
= Y (2α− β)Z(2π)X(−β + γ)Y (−γ)
= Y (2α− β)X(−β + γ)Y (−γ).

(3.2-40)

It’s easy to verify that α′ = 2α − β, β′ = −β + γ and γ′ = −γ are three independent
Euler angles, and the gadget can therefore implement any U ∈ SU(2). This gadget does
not have a symmetry in any of the parameters α, β or γ, but as will be explored next,
its Euler-angle parametrisation does have one.

3.2.4 Linearly birefringent gadgets
In the previous section the symmetry properties of a few examples of wave-plate

gadgets were calculated explicitly. However, for the special case of gadgets consisting
only of a sequence of linear retarders, such as wave plates, there is a simpler way to find
the action of the counterpropagation operator. Using (3.2-10) with j = z the action of
a single linear retarder in the backwards direction, given by (3.2-23), can be re-written
as

Θ[Wη(ϕ)] = Y (−2ϕ)Z(η)Y (2ϕ)

= Z(±π)Y (2ϕ)Z(∓π)Z(±π)Z(η)Z(∓π)Z(±π)Y (−2ϕ)Z(∓π)
= Z(±π)Y (2ϕ)Z(η)Y (−2ϕ)Z(∓π)
= Z(±π)Wη(ϕ)Z(∓π).

(3.2-41)

Note that any linear retarder is described by a symmetric matrix:

Wη(ϕ)
T = Y (−2ϕ)TZ(η)TY (2ϕ)T

= Y (2ϕ)Z(η)Y (−2ϕ)

= Wη(ϕ),

(3.2-42)
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since

X(ϕ)T = X(ϕ) (3.2-43)
Y (ϕ)T = Y (−ϕ) (3.2-44)
Z(ϕ)T = Z(ϕ). (3.2-45)

The action of the counterpropagation operator on a sequence of linear retarders can
therefore be expressed as

Θ[Glinear] = Θ[Wη1(ϕ1)Wη2(ϕ2) . . .WηN (ϕN )]

= WηN (−ϕN ) . . .Wη2(−ϕ2)Wη1(−ϕ1)
= Z(±π)WηN (ϕN ) . . .Wη2(ϕ2)Wη1(ϕ1)Z(∓π)
= Z(±π)[Wη1(ϕ1)Wη2(ϕ2) . . .WηN (ϕN )]

TZ(∓π)
= Z(±π)GT

linearZ(∓π),

(3.2-46)

where the sandwich identity (3.2-10) was used in second step. Using this relation one
can see how a given parametrisation of a unitary U ∈ SU(2) changes under Θ. Take for
example the Tait-Bryan decomposition of a rotation, which is defined as three successive
rotations about all three main axes:

Glinear = X(α)Y (β)Z(γ). (3.2-47)

In the counterpropagating direction this parametrisation becomes

Θ[Glinear] = Z(±π)GT
linearZ(∓π)

= Z(±π)
(
X(α)Y (β)Z(γ)

)T
Z(∓π)

= Z(±π)Z(γ)TY (β)TX(α)TZ(∓π)
= Z(±π)Z(γ)Y (−β)X(α)Z(∓π)
= Z(±π)Z(γ)Z(∓π)Y (β)X(−α)
= Z(γ)Y (β)X(−α).

(3.2-48)

Here (3.2-9) was used in the second-to-last step. What the equation above shows is that,
in addition to the permutation of the rotations, the X-component in the Tait-Bryan
decomposition experiences a sign change. A different way to parametrise a unitary is
the axis-angle parametrisation (3.2-4). Expressing an arbitrary unitary this way, the
parametrisation in the counterpropagating direction is

Θ[Glinear] = Z(π)
[
cos

θ

2
I − i sin

θ

2

(
nxX + nyY + nzZ

)]T
Z(−π)

= cos
θ

2
I − i sin

θ

2

(
−nxX + nyY + nzZ

)
,

(3.2-49)

and we see that the X-component acquires a sign change in this parametrisation as well.
This result is quite natural since the changes to the parametrisations have to agree in
the trivial case of rotations about one of the main axes. A consequence of (3.2-48) and
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Figure 3.3: Illustration of how the state |L〉 evolves under the action of the YS(ϕ)
gadget. The rotation angle of the transformation in the figure is ϕ = π/2, which is twice
the physical angle between the two half-wave plates that constitute the gadget. Since the state
evolves solely along geodesics, only geometric phase is acquired. In this figure, the state initially
travels along the blue curve to |R〉, and then back to |L〉 along the green curve that lies on the
equator. In the process the state acquires a geometric phase of ϕg = −π/4, which is equal in
magnitude to the angular width of the ungula represented by the shaded area. This shaded area
also corresponds to the area enclosed by the trajectory of the state. The signed area of the wedge
is Ω = −π/2 = 2ϕg, and the rotation generated by the gadget is Y (−Ω) = exp

(
iΩ
2
Y
)
. Adding

an equal angle offset to both half-wave plates in the gadget has the effect of rotating the ungula,
but does not affect the acquired phase.

(3.2-49) is that given a gadget consisting of linear retarders implementing some unitary
U , the transformation of this unitary under counterpropagation is determined only by
its parametrisation, and is independent of what sequence of linear retarders was used
to actually implement U . This seemingly trivial property is not true for more general
polarization gadgets.

3.2.5 The geometric phase
The rotations produced by all three of the gadgets described in Section 3.2.3 result

from a phase shift that is geometric in origin, known as the Pancharatnam phase, which
is one of the earliest examples of a Berry phase [379,380,381,382]. The observation made
by Pancharatnam and Berry relevant to this discussion relates to the phase acquired by
states on the Bloch sphere evolving in time in such a way that they trace out a closed
path.1 Such a closed trajectory is equivalent to the initial and final states |Ψi〉 and |Ψf 〉
having unity overlap, i.e. |〈Ψi|Ψf 〉| = 1. Pancharatnam and Berry realised that the
phase difference between these initial and final states

ϕ = arg
[
〈Ψi|Ψf 〉

]
, (3.2-50)

has a geometric contribution ϕg, which is given by half the solid angle subtended by the
path C:

ϕg =
ΩC
2
. (3.2-51)

1If the path is open the geometric phase can be found by closing it with a geodesic.
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(a) ZS(π) (b) Θ
[
ZS(π)

]
Figure 3.4: Evolution of the state |H〉 under the ZS(ϕ) gadget in the forwards (a) and
backwards (b) propagation directions. The trajectory of the state is essentially the same as
for the YS gadget shown in Fig. 3.3, with the difference being the starting point, indicated by a
blue dot, and total enclosed area. Even though the trajectories in the two propagation directions
(a) and (b) are different, the area enclosed by the curves, and therefore the acquired geometric
phase, is the same. Visually this can be seen by the fact that the two trajectories are related by a
180° rotation about the z-axis, and rotations preserve the signed area. In this example, it is easy
to see that the area enclosed by the curve is Ω = −π, and the corresponding unitary is Z(π).

Since the Bloch sphere is a unit sphere the solid angle ΩC is simply equal to the signed
area enclosed by the curve C on the surface of the Bloch sphere. The total phase ϕ is
the sum of the geometric phase and the dynamical phase ϕd [381,383,384]:

ϕ = ϕg + ϕd. (3.2-52)

The dynamical phase is given as an integral over the expectation value of the Hamilto-
nian:

ϕd = −1

ℏ

∫ t

0
〈H(t)〉dt. (3.2-53)

In the case of a photon passing through a series of birefringent elements the Hamiltonian
can be decomposed into a sequence of time-independent Hamiltonians Hk, and for these
trivially time-dependent Hamiltonians the expectation value can be moved outside the
integral:

− 1

ℏ

∫ tk

tk−1

〈Hk〉dt =
〈
−1

ℏ

∫ tk

tk−1

Hkdt

〉
. (3.2-54)

In the eigenbasis of the Hamiltonian the time integral becomes

− 1

ℏ

∫ tk

tk−1

Hkdt =

[
−δ/2 0
0 δ/2

]
, (3.2-55)

where δ is the total rotation angle on the Bloch sphere under the Hamiltonian. For an
initial state

|Ψ〉 = c+ |+1〉+ c− |−1〉 , (3.2-56)
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(a) XA(π) (b) Θ
[
XA(π)

]
Figure 3.5: Action of the XA(ϕ) gadget in the two propagation directions. Unlike the
ZS(ϕ) gadget shown in Fig. 3.4, the trajectories in the forwards (a) and backwards (b) propagation
directions are not related by a rotation, but instead by a mirroring in the X−Y plane. This
mirroring changes the sign of the enclosed area, and therefore the geometric phase, and is one
way to understand the nonreciprocal behaviour Θ

[
XA(π)

]
= X(−π) of the gadget.

written in the eigenbasis of the Hamiltonian the dynamical phase is then

ϕd = −δ
2

(
|c+|2 − |c−|2

)
. (3.2-57)

If the initial state is in a balanced superposition of the two eigenstates of the Hamiltonian
then |c+|2 − |c−|2 = 0 and hence the dynamical phase vanishes:

ϕd = 0. (3.2-58)

States that are a balanced superposition of the eigenstates of the Hamiltonian have a 90°
angle to these eigenstates on the Bloch sphere. Consequently the path they trace out as
they evolve under the Hamiltonian is a geodesic. This leads to the following conclusion:
any state that evolves along geodesics acquires zero dynamical phase. The eigenstates
of the gadgets presented in the Section 3.2.3 evolve exclusively along geodesics, and the
action of these gadgets, and their symmetry properties, can therefore be understood
geometrically, and it was in fact through geometric arguments that they were first pro-
posed [384].

Examples of the geodesic trajectories produced by the three gadgets for rotations
about the main axes of the Bloch sphere, described in Section 3.2.3, are shown in
Figs. 3.3-3.5. In Fig. 3.3 the trajectory traced out by the state |L〉, as well as the
enclosed area, under the evolution of a YS gadget is shown. The area of a spherical
wedge on the unit sphere is 2α, where α is the angle between the two ‘cuts’. This angle
is exactly ϕ − π/2, where ϕ is the difference in angle between the two half-wave plates.
As an example to illustrate this, if one HWP is at 0° and the other at 90° to the vertical
axis, this corresponds to rotations about the positive and negative z-axis in the figure,
which obviously does not enclose any area. Rotating both wave plates by the same
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nx ny nz Operator
+ + + U

+ + − XUTX

+ − + UT

+ − − XUX

− + + ZUTZ

− + − Y UY = U∗

− − + ZUZ

− − − U †

Table 3.1: The table shows the different symmetries that a unitary operator U can have under
counterpropagtion, under the condition that the magnitudes of the elements nk of the vector n⃗,
defining the axis of rotation on the Bloch sphere, remain unchanged. The possible symmetries
are therefore all the ways to introduce a sign change, or not, in the different components nk, and
these are shown in the first three columns. The last column shows the unitary transformation
resulting from the different combinations of sign changes.

amount would have the effect of rotating the trajectory about the y-axis, and would not
affect the enclosed area.

In Fig. 3.4 the ZS gadget is illustrated in both propagation directions. All three
constituent rotations are different in the counterpropagating frame, however they still
produce a trajectory that is simply a rotated version of the trajectory traced out in the
forwards direction, and therefore the gadget is reciprocal. This is in contrast to the XA

gadget shown in Fig. 3.5. The trajectory traced out by the eigenstate |+〉 of the gadget
resembles the one that is traced out by the |H〉 under the ZS gadget, however under
counterpropagation this trajectory becomes mirrored in the X−Y plane, resulting in a
sign change in the enclosed area.

3.3 General gadgets
As discussed in sections 3.2.4 and 3.2.3 any qubit unitary implemented by a gadget

consisting solely of linear retarders transform as[
θ nx ny nz

]
7→
[
θ −nx ny nz

]
(3.3-1)

under counterpropagation. However, there are many other similar transformations that
preserve the magnitude of the nk components of n⃗. These transformations, together
with the unitary generated under the transformation in question, are summarised in
Table 3.1. One might now ask if it is possible to create polarization gadgets that have
some of these other symmetries under counterpropagation, and this question will be
explored in the following sections.

3.3.1 Pauli gadgets with Faraday rotators
In Section 3.2.3 we explained how the gadgets XA(ϕ), YS(ϕ) and ZS(ϕ) can be

constructed using short sequences of wave plates. As a starting point for filling out
Table 3.1 with possible gadgets, we will begin by constructing the hitherto missing
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(a) ZA(ϕ) (b) Θ
[
ZA(ϕ)

]
Figure 3.6: Trajectory of |H〉 under the anti-symmetric gadget ZA(ϕ) in both propa-
gation directions. The rotation angle of the gadget in the figure is ϕ = π. The blue path is tra-
versed twice, and the order in which the states are visited is: |H〉 7→ |+〉 7→ |R〉 7→ |L〉 7→ |+〉 7→ |H〉.
Just as for ZS(ϕ) the trajectory is entirely geodesic and the phase is therefore geometric.

Pauli gadgets XS(ϕ), YA(ϕ) and ZA(ϕ). First, it is worth commenting that since a
Faraday rotator obeys

Θ
[
Fψ
]
= F−ψ, (3.3-2)

such a rotator with a tunable retardance would in fact be a realisation of YA(ϕ). How-
ever, due to the fact that the vast majority of applications of Faraday rotators require a
fixed circular retardance of ψ = π/2, as well as the fact that packaging a tunable mag-
net with magnetic field strengths of 1T or more in a small tabletop optic is challenging,
Faraday rotators are in practice sold with permanent rare-earth magnets [385], and con-
sequently have a fixed retardance. In the remainder of the chapter we will therefore
restrict our discussion to these F± devices.

Out of the missing Pauli gadgets the simplest one to construct is ZA(ϕ). By using
two Faraday rotators to ‘sandwich’ a XA(ϕ) gadget it is converted to a Z(ϕ) rotation
with the same symmetry properties:

ZA(ϕ) = F−X
A(ϕ)F+. (3.3-3)

The action of the gadget in the forward direction can be verified using the permutation
identity (3.2-7):

ZA(ϕ) = F−X
A(ϕ)F+

= Y (−π/2)X(ϕ)Y (π/2)

= Y (−π/2)Y (π/2)Z(ϕ)

= Z(ϕ).

(3.3-4)
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Figure 3.7: Evolution of |+〉 under the gadget XS(ϕ) for ϕ = 0. Unlike the trajectory under
the XA(ϕ) gadget shown in Fig. 3.5, the trajectory does not exclusively consist of geodesics, and
the smaller circular trajectory |0〉 7→ |H〉 7→ |+〉 contributes dynamical phase. This cancels
the 2π geometric phase from the great circle, and gives zero net phase. The state evolution is:
|+〉 7→ |H〉 7→ |+〉 7→ |R〉 7→ |L〉 7→ |+〉 7→ |H〉 7→ |+〉.

It remains to confirm that the gadget is anti-symmetric:

Θ
[
ZA(ϕ)

]
= Θ

[
F+

]
Θ
[
XA(ϕ)

]
Θ
[
F−
]

= Y (−π/2)X(−ϕ)Y (π/2)

= Z(−ϕ).
(3.3-5)

Using the ZA(ϕ) gadget as a building block, it then becomes possible to construct an
XS(ϕ) gadget by sandwiching the ZA(ϕ) gadget with two half-wave plates:

XS(ϕ) = H(π/8)ZA(ϕ− 2π)H(π/8)

= Y (π/4)Z(π)Y (−π/4)Z(ϕ− 2π)Y (π/4)Z(π)Y (−π/4)
= Y (π/2)Z(π)Z(ϕ− 2π)Z(π)Y (−π/2)
= Y (π/2)Z(ϕ)Y (−π/2)
= X(ϕ).

(3.3-6)

The symmetry of the gadget can be verified using the same steps:

Θ
[
XS(ϕ)

]
= Θ

[
H(π/8)

]
Θ
[
ZA(ϕ− 2π)

]
Θ
[
H(π/8)

]
= H(−π/8)ZA(−ϕ+ 2π)H(−π/8)
= Y (−π/4)Z(π)Y (π/4)Z(−ϕ+ 2π)Y (−π/4)Z(π)Y (π/4)

= Y (−π/2)Z(−ϕ+ 4π)Y (π/2)

= Y (−π/2)Z(−ϕ)Y (π/2)

= X(ϕ).

(3.3-7)

The final gadget YS(ϕ) can be constructed in a way similar to the XS(ϕ) gadget, but
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(a) YA(ϕ) (b) Θ
[
YA(ϕ)

]
Figure 3.8: Trajectories for |L〉 under the anti-symmetric YA(ϕ) gadget for ϕ = 4π/3.
Like for YA(ϕ) the trajectory consists entirely of geodesics. The state evolution through the
gadget is: |L〉 7→ |H〉 7→ |+〉 7→ |R〉 7→ |L〉 7→ |+〉 7→ |H〉 7→ |L〉. Since the path |L〉 7→ |H〉 7→ |+〉 is
traversed twice in two different directions, the spherical triangle |L〉 |H〉 |+〉 does not contribute
geometric phase.

with a quarter-wave plate sandwich instead:

YA(ϕ) = Q(−π/4)ZA(ϕ)Q(π/4)

= Y (−π/2)Z(π/2)Y (π/2)Z(ϕ)Y (π/2)Z(π/2)Y (−π/2)
= Y (−π/2)Y (π/2)X(−π/2)Z(ϕ)X(π/2)Y (π/2)Y (−π/2)
= X(−π/2)Z(ϕ)X(π/2)

= Y (ϕ).

(3.3-8)

For this gadget, the anti-symmetry follows immediately:

Θ
[
YA(ϕ)

]
= Θ

[
Q(π/4)

]
Θ
[
ZA(ϕ)

]
Θ
[
Q(−π/4)

]
= Q(−π/4)ZA(−ϕ)Q(π/4)

= Y (−ϕ).
(3.3-9)

The trajectories produced by the gadgets ZA(ϕ), XS(ϕ) and YA(ϕ) are shown in Figs. 3.6-
3.8. It can be seen that while ZA(ϕ) and YA(ϕ) produce geodesic trajectories, XS(ϕ)
does not. At the cost of an additional two wave plates, however, it is possible to produce
an XS(ϕ) gadget that is entirely geodesic:

XS
geo(ϕ) = Q(π/2)YA(ϕ)Q(0)

= Y (π)Z(π/2)Y (−π)Y (ϕ)Z(π/2)

= Y (π)Y (−π)Z(−π/2)Z(π/2)X(ϕ)

= X(ϕ).

(3.3-10)
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(a) XS
geo(ϕ) (b) Θ

[
XS

geo(ϕ)
]

Figure 3.9: Trajectories for |+〉 under the symmetric XS
geo(ϕ) gadget for ϕ = −4π/3

in both propagation directions. The trajectory is similar to that of the YA(ϕ) gadget
shown in Fig. 3.8, and unlike the XS(ϕ) gadget shown in Fig. 3.7 the state evolves entirely
along geodesics. Since the area spanned by the two half-circle arcs in the two different prop-
agation directions is related by a rotation around the z-axis the gadget is symmetric. Note
that while the spherical triangle in (b) appears to be mirrored with respect to (a), the path
|+〉 7→ |H〉 7→ |L〉 in (a) is traversed in both directions, and the spherical triangle does
therefore not contribute any signed area, and the same argument holds for (b). The state
evolution in (a) is: |+〉 7→ |L〉 7→ |H〉 7→ |+〉 7→ |R〉 7→ |L〉 7→ |+〉 7→ |H〉 7→ |L〉 7→ |+〉. And for (b):
|+〉 7→ |R〉 7→ |V 〉 7→ |−〉 7→ |L〉 7→ |R〉 7→ |−〉 7→ |V 〉 7→ |R〉 7→ |+〉.

The symmetry of this gadget can also be verified:

Θ
[
XS

geo(ϕ)
]
= Θ

[
Q(0)

]
Θ
[
YA(ϕ)

]
Θ
[
Q(π/2)

]
= Q(0)Y (−ϕ)Q(−π/2)

=
[
Q(π/2)Y (ϕ)Q(0)

]T
= X(ϕ)T

= X(ϕ).

(3.3-11)

where the second step used Q(π/2) = Q(−π/2). Examples of the geodesic trajectories
under this gadget in the two propagation directions are shown in Fig. 3.9.

3.3.2 Transpose gadget
Using the Pauli gadgets presented in the previous section together with the wave

plate only gadgets from Section 3.2.3 it becomes possible to construct gadgets with new
symmetries, that are capable of realising any U ∈ SU(2). One of the simplest of these
is the transpose gadget, that obeys

Θ
[
GT

]
= (GT )

T . (3.3-12)

To construct the gadget, one first picks an Euler or Tait-Bryan decomposition of an
arbitrary unitary U , for example

U = Z(α)Y (β)Z(γ). (3.3-13)



3.3. GENERAL GADGETS
139

One then finds the transpose of the decomposition:

UT = Z(γ)TY (β)TZ(α)T

= Z(γ)Y (−β)Z(α).
(3.3-14)

From this one sees which symmetry property each sub-gadget needs. In this case the
gadget would be

GT = ZS(α)YA(β)ZS(γ), (3.3-15)

which is easily confirmed:

Θ
[
GT

]
= Θ

[
ZS(γ)

]
Θ
[
YA(β)

]
Θ
[
ZS(α)

]
= Z(γ)Y (−β)Z(β)

=
[
Z(α)Y (β)Z(γ)

]T
= (GT )

T .

(3.3-16)

Other sets of Euler angles, such as U = Y (α)X(β)Y (γ), could also be used to construct
a gadget with the same symmetry, however for this decomposition the resulting gadget
would be

GT = YA(α)XS(β)YA(γ), (3.3-17)

which consists entirely of the gadgets from Section 3.3.1. These gadgets contain two
Faraday rotators each, while the gadget in (3.3-15) only has two such rotators in total.
The construction above is therefore less efficient in terms of the number of required
optical components.

It is worth noting that the transpose is a basis-dependent operation, and therefore
also depends on the convention used for the Stokes parameters and Pauli matrices. As
shown in Publication 3, particular choices of convention can lead to simpler realisations
of the transpose that do not require any Faraday rotators.

3.3.3 Adjoint gadget
Another gadget that can be constructed in a straightforward manner is the adjoint,

or inverse, gadget, which under counterpropagation transforms as

Θ
[
GA

]
= G†

A = G−1
A . (3.3-18)

The inverse of any rotation Rn⃗(θ) is simply Rn⃗(−θ), and this condition is equivalent to

n⃗ 7→ −n⃗. (3.3-19)

The gadget should therefore be constructed entirely out of anti-symmetric sub-gadgets.
Since XA(ϕ) can be constructed just from wave plates, the most resource efficient im-
plementation is one that utilizes two X-rotations. One possible choice is

GA = XA(α)ZA(β)XA(γ). (3.3-20)
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The property (3.3-18) can be verified by direct calculation:

Θ
[
GA

]
= Θ

[
XA(γ)

]
Θ
[
ZA(β)

]
Θ
[
XA(α)

]
= X(−γ)Z(−β)X(−α)
= X(γ)†Z(β)†X(α)†

=
[
X(α)Z(β)X(γ)

]†
= G†

A.

(3.3-21)

3.3.4 Reciprocal gadget
A particularly useful gadget is the fully reciprocal gadget, i.e. the one which is fully

symmetric under counterpropagation:

Θ
[
GR

]
= GR. (3.3-22)

One approach to construct such a gadget would be to start with a palindromic order of
symmetric sub-gadgets:

GR
?
= YS(γ)ZS(β)XS(α)ZS(β)YS(γ). (3.3-23)

This gadget clearly obeys (3.3-22), however since the rotations do not constitute a set of
Euler or Tait-Bryan rotations it is not immediately obvious that the gadget is capable
of realising any unitary. To show that it is universal it is sufficient to show that it can
apply an arbitrary phase ±λ/2 to an arbitrary eigenstate |v〉:

Y (γ)Z(β)X(α)Z(β)Y (γ) |v〉 = e−iλ/2 |v〉 (3.3-24)

as this is equivalent to being able to perform any rotation on the Bloch sphere. This
can be done in the following way. Let

G = Y (γ)Z(β)X(α)Z(β)Y (γ), (3.3-25)

Then multiply both sides by X(π):

X(π)G = X(π)Y (γ)Z(β)X(α)Z(β)Y (γ). (3.3-26)

Using (3.2-10) this can be re-written as

X(π)G = X(π)Y (γ)Z(β)X(α)Z(β)Y (γ)

= X(π)Y (γ)X(−π)X(π)Z(β)X(−π)X(π)X(α)Z(β)Y (γ)

= Y (−γ)Z(−β)X(α+ π)Z(β)Y (γ)

= Y (−γ)Z(−β)X(α′)Z(β)Y (γ),

(3.3-27)

where α′ = α + π. The first three rotations X(α′)Z(β)Y (γ) are a set of Tait-Bryan
rotations and are therefore universal for SU(2). Let α′, β and γ be chosen such that

X(α′)Z(β)Y (γ) |u〉 = eiϕ |+〉 , (3.3-28)



3.3. GENERAL GADGETS
141

for a state |u〉 that is the eigenstate of some U ∈ SU(2):
U |u〉 = e−iλ/2 |u〉 . (3.3-29)

The phase ϕ can be decomposed into contributions from the first two rotations and the
X rotation:

X(−α′)X(α′)Z(β)Y (γ) |u〉 = X(−α′)eiϕ |+〉

⇐⇒ Z(β)Y (γ) |u〉 = ei(ϕ+α
′/2) |+〉

= eiδ |+〉 .

(3.3-30)

Here we identify ϕ = δ − α′/2 and see that δ is the phase from the Z(β)Y (γ) rotation.
It then follows that

X(π)G |u〉 = Y (−γ)Z(−β)X(α′)Z(β)Y (γ) |v〉

= Y (−γ)Z(−β)ei(δ−α′/2) |+〉

= e−iα
′/2 |u〉

(3.3-31)

Setting α′ = λ gives
X(π)G |u〉 = e−iλ/2 |u〉 = U |u〉 . (3.3-32)

Since α′ and U are arbitrary this shows that X(π)G is universal, and by choosing
U = X(π)V for any V ∈ SU(2) it follows that

G = X(−π)X(π)V = V, (3.3-33)
and hence the sequence of rotations in (3.3-24) is universal as well. A direct realisation
of the construction (3.3-23) only requires two Faraday rotators, since they only appear
in the XS(α) gadget, and since any sequence of wave plates is equivalent to a three-
component Simon–Mukunda gadget, at most three wave plates are required on either
side of the Faraday rotators. This, however, turns out to not be optimal. To show why,
it is first necessary to characterise a two-wave-plate gadget on the form Q(ϕ)H(θ). In
Ref. [161] it was shown that this gadget implements a two-parameter subset of SU(2)
parametrised by Y (α)Z(π/2)Y (β), and this is straightforward to confirm:

Q(ϕ)H(θ) = Y (2ϕ)Z(π/2)Y (−2ϕ)Y (2θ)Z(π)Y (−2θ)

= Y (2ϕ+ π)Z(−π/2)Y (−2ϕ− π)Y (2θ)Z(π)Y (−2θ)

= Y (2ϕ+ π)Z(π/2)Y (2ϕ+ π − 4θ)

= Y (α)Z(π/2)Y (β).

(3.3-34)

This parametrisation can equivalently be expressed in a form that is more useful for the
problem at hand:

Q(ϕ)H(θ) = Y (α)Z(π/2)Y (β)

= Y (α− π)Y (π)Z(π/2)Y (π)Y (β − π)

= Y (α− π)Y (π/2)X(π/2)Y (3π/2)Y (β − π)

= Y (α− π/2)X(π/2)Y (β + π/2)

= Y (α− π/2)Z(β + π/2)X(π/2)

= Y (γ)Z(δ)X(π/2).

(3.3-35)
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In the backwards propagation direction this becomes

H(−θ)Q(−ϕ) = Θ
[
Q(ϕ)H(θ)

]
= Z(π)

[
Y (γ)Z(δ)X(π/2)

]T
Z(−π)

= X(−π/2)Z(δ)Y (γ).

(3.3-36)

Consider the gadget
GR = Q(ϕ)H(θ)XS(ψ)H(−θ)Q(−ϕ). (3.3-37)

Using the parametrisation (3.3-35) the unitary it implements can be written as

GR = Y (γ)Z(δ)X(π/2)X(ψ)X(−π/2)Z(δ)Y (γ)

= Y (γ)Z(δ)X(ψ)Z(δ)Y (γ),
(3.3-38)

which is equivalent to (3.3-24) and therefore universal. The reciprocity of the gadget
can also be verified:

Θ
[
GR

]
= Θ

[
Q(−ϕ)

]
Θ
[
H(−θ)

]
Θ
[
XS(ψ)

]
Θ
[
H(θ)

]
Θ
[
Q(ϕ)

]
= Q(ϕ)H(θ)XS(ψ)H(−θ)Q(−ϕ)
= GR.

(3.3-39)

The explicit form of this gadget is

GR =

Q(ϕ)H(θ)H(π/8)F−Q(π/2)H(ψ/4− π/2)Q(π/2)F+H(π/8)H(−θ)Q(−ϕ),
(3.3-40)

which using the wave plate reduction rules (3.2-13) and (3.2-14) can be reduced to

GR = Q(ϕ1)H(θ1)F−Q(π/2)H(ψ/4− π/2)Q(π/2)F+H(θ2)Q(ϕ2). (3.3-41)

Due to the results presented in Section 3.2.4 such reductions do not change the symmetry
properties of the sub-gadgets, and therefore not the overall gadget either.

3.3.5 The XUX gadget
As discussed in Section 3.2.4 the wave plate symmetry U 7→ ZUTZ is equivalent

to changing the sign of the X-component of the unitary in any parametrisation. The
symmetry U 7→ XUX is in a sense the opposite of this, as it transforms as[

θ nx ny nz
]
7→
[
θ nx −ny −nz

]
. (3.3-42)

Such a gadget can be written down directly using a form similar to the reciprocal gadget
(3.3-23) and using only the gadgets from Section 3.3.1, for example

ZA(γ)YA(β)XS(α)YA(β)ZA(γ), (3.3-43)

however such a gadget would be inefficient, requiring ten Faraday rotators in total, and
with no direct way of reducing wave plates across them. A more efficient approach is
given by the gadget

G⊥ = XA(−θ)F−L(α, β)F+X
A(θ). (3.3-44)
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The fact that the gadget is universal for SU(2) can be seen by writing the rotations
explicitly:

G⊥ = X(−θ)Y (−π/2)Y (β)Z(α)Y (−β)Y (π/2)X(θ), (3.3-45)

and doing the substitution β′ = π/2− β:

G⊥ = X(−θ)Y (−α′)Z(β)Y (α′)X(θ). (3.3-46)

Since Z(β)Y (α′)X(θ) is a set of Tait-Bryan angles, this form of the parametrisation is
equivalent to (3.3-27), which was already shown to be universal. It remains to verify
the symmetry properties of the gadget:

Θ
[
G⊥
]
= Θ

[
XA(θ)

]
Θ
[
F+

]
Θ
[
L(α, β)

]
Θ
[
F−
]
Θ
[
XA(−θ)

]
= XA(−θ)F−L(α,−β)F+X

A(θ)

= X(−θ)Y (−π/2)Y (−β)Z(α)Y (β)Y (π/2)X(θ)

= X(−θ + π)X(−π)Y (−π/2)Y (−β)Z(α)Y (β)Y (π/2)X(π)X(θ − π)

= X(−θ + π)Y (−π/2)Z(π)Y (−β)Z(α)Y (β)Z(−π)Y (π/2)X(θ − π)

= X(π)
[
X(−θ)Y (−π/2)Y (β)Z(α)Y (−β)Y (π/2)X(θ)

]
X(−π)

= X(π)G⊥X(−π).

(3.3-47)

3.3.6 Universal gadget
All the gadgets discussed so far exhibit a symmetry that, once known, can be used

to relate the unitary transformation in the forwards propagation direction to the one
in the backwards direction. There are, however, gadgets that do not exhibit any such
symmetries. Consider, for example

GX(ϕ, θ) = XA(θ)XS(ϕ) = X(ϕ+ θ) = X(α). (3.3-48)

In the counterpropagating frame the unitary is

Θ
[
GX(ϕ, θ)

]
= XS(ϕ)XA(−θ) = X(θ − ϕ) = X(β). (3.3-49)

Taking θ = α + β and ϕ = α − β it’s clear that the rotation angles can be chosen
independently in the two propagation directions, and the implemented unitaries do not
obey any symmetry under counterpropagation. This can be generalized to arbitrary
unitaries by a gadget on the following form:

GU = XA(ϕ1)X
S(ϕ3)Y

A(θ1)Y
S(θ2)Z

A(δ1)Z
S(δ2)

= X(ϕ1 + ϕ2)Y (θ1 + θ2)Z(γ1 + γ2)

= X(α)Y (β)Z(γ).

(3.3-50)

In the backwards direction the transformation realised by the gadget is

Θ
[
GU

]
= ZS(δ2)Z

A(−δ1)YS(θ2)Y
A(−θ1)XS(ϕ3)X

A(−ϕ1)
= Z(γ2 − γ1)Y (θ2 − θ1)X(ϕ2 − ϕ1)

= Z(γ′)Y (β′)X(α′).

(3.3-51)
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Here the six rotation angles α, α′, β, β′, γ, γ′ can be chosen independently, and the trans-
formations in the two directions are therefore also independent. This gadget is once
again quite costly, requiring three sets of two Faraday rotators. To construct a simpler
gadget one might use the same starting idea as (3.3-50), namely that a symmetric as
well as an anti-symmetric version of each Pauli rotation should be present. The simplest
way to satisfy this condition is to combine the Simon–Mukunda gadget

GSM = Q(α)H(β)Q(γ), (3.3-52)

with the XUX gadget G⊥ presented in Section 3.3.5:

GU = GSMG⊥. (3.3-53)

For this gadget to be equivalent to (3.3-50) it should satisfy

GSMG⊥ = U (3.3-54)
Θ
[
GSMG⊥

]
= V, (3.3-55)

for two arbitrary unitaries U, V ∈ SU(2). Let

G⊥ =W, (3.3-56)
GSM = UW †, (3.3-57)

By construction this satisfies (3.3-54) for any W ∈ SU(2). For the second condition
(3.3-55) consider

Θ
[
GSMG⊥

]
= Θ

[
G⊥
]
Θ
[
GSM

]
= X(π)WX(−π)Z(π)

[
UW †]TZ(−π)

= X(π)WX(−π)Z(π)W ∗UTZ(−π)
= X(π)WX(−π)Z(π)Y (−π)WY (π)UTZ(−π)
= X(π)WX(−π)X(π)WY (π)UTZ(−π)
= X(π)W 2Y (π)UTZ(−π).

(3.3-58)

Here the relations Y (±π)UY (∓π) = Y ∗ and (3.2-12) were used. For the universality we
require

Θ
[
GSMG⊥

]
= X(π)W 2Y (π)UTZ(−π) = V, (3.3-59)

and this equation is solved by

G⊥ =W =
√
X(−π)V Z(π)U∗Y (−π). (3.3-60)

This shows that both (3.3-54) and (3.3-55) can be satisfied simultaneously. In other
words, the gadget is capable of implementing two independent unitaries in the two
propagation directions.
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3.3.7 Faraday mirrors and optical isolators
In this section we will discuss the two well known uses of Faraday rotators using

the same framework that was used to analyse the various polarization gadget. The
first device is the Faraday mirror [386], which is simply a mirror preceded by a F±
gadget. Faraday mirrors undo any linearly birefringent polarization rotation between
some initial point and a mirror, and additionally rotate linearly polarized light by 90°.
They are particularly useful in fiber-based Michelson interferometers, since the Faraday
mirrors make the interferometer insensitive to any polarization fluctuations induced by
the fibers. Viewed as a gadget, one arm of a Michaelson interferometer with a Faraday
mirror is

GFM = Θ
[
F+GSM

]
Z(π)F+GSM = Z(π)GT

SMZ(−π)F−Z(π)F+GSM, (3.3-61)

where the first Z(π) rotation transforms the light into the counterpropagating frame.
Substituting in the Tait-Bryan parametrisation GSM = Z(γ)Y (β)X(α) gives

GFM = Z(π)GT
SMZ(−π)F−Z(π)F+GSM

= X(−α)Y (β)Z(γ)Y (−π/2)Z(π)Y (π/2)Z(γ)Y (β)X(α)

= X(−α)Y (β)Z(γ)X(−π)Y (−π/2)Y (π/2)Z(γ)Y (β)X(α)

= X(−α− π)Y (−β)Z(−γ)Z(γ)Y (β)X(α)

= X(−π).

(3.3-62)

In the co-moving frame the diagonal polarization states are therefore preserved, while
the horizontal/vertical as well as the right-/left-handed circular states are swapped.
Transforming back into the original frame by taking Z(−π)GFM = Z(−π)X(−π) = Y (π)
shows that the light viewed from the input is rotated by 90°, just as commonly described.

The second device is the optical isolator, which was discussed in the introduction to
this chapter. Such a device consists of two polarisers:

PV = |V 〉〈V | = P+ = Y (−π) |V 〉〈V |Y (π) = |+〉〈+| , (3.3-63)

that transform the same as wave plates:

Θ
[
PV

]
= Z(π) |V 〉〈V |Z(−π) = |V 〉〈V | , (3.3-64)

Θ
[
P+

]
= Z(π) |+〉〈+|Z(−π) = |−〉〈−| , (3.3-65)

together with a Faraday rotator F−:

GOI = P+F−PV . (3.3-66)

This device fully transmits V -polarized light in the forward direction:

GOI |V 〉 = |+〉〈+|F− |V 〉〈V | |V 〉
= |+〉〈+|F− |V 〉
= |+〉〈+| |+〉
= |+〉 ,

(3.3-67)
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and blocks all light in the backwards direction:

Θ
[
GOI

]
|Ψ〉 = PV F+P− |Ψ〉

= |V 〉〈V |F+ |−〉〈−| |Ψ〉
= |V 〉〈V |F+ |−〉
= |V 〉〈V | |H〉
= 0.

(3.3-68)

It is often said that the Faraday rotator is a necessary element in the optical isolator
because it introduces nonreciprocity [106], however from the above description it is clear
that it is the combination of nonreciprocity in both the P+-polariser and the Faraday
rotator that produces the isolation. Other combinations of symmetries and polarisers
are possible. For example:

GOI = PHX
A(π/2)PL, (3.3-69)

would also be an isolator if the circular polariser transforms as Θ
[
PL

]
= PR. However,

a circular polariser obeying time-reversal symmetry transforms as Θ
[
PL

]
= PL, and a

symmetric X-rotation would therefore be required in (3.3-69). In general, an isolator
needs to consist of an even number of nonreciprocal components; since in time-reversal
symmetric elements only the X-component is nonreciprocal, the Faraday rotator is nec-
essary.

3.4 Gadget wave plate angles
In this section we will briefly discuss how to find the wave plate angles to implement a

given unitary using some of the gadgets described in this chapter. The gadgets described
in sections 3.2.3 and 3.3.1 have explicit forms that relate the wave plate angles to the
rotations they realise, and they do therefore not need to be discussed further.

3.4.1 Transpose and adjoint gadgets
The transpose and adjoint gadgets discussed in sections 3.3.2 and 3.3.3 are both

parametrised in terms of Euler angles:

U = Rj(α)Rk(β)Rj(γ). (3.4-1)

For these gadgets the angles can be calculated in a way similar to the procedure for
the Simon–Mukunda gadget described in 2.3.1. The basic idea, illustrated in Fig. 3.10,
is to undo the inverse of the unitary one wishes to implement, by starting from the
eigenstates of the chosen rotations mapped by the inverse unitary in question. More
concretely, let |j〉 and |k〉 be the +1 eigenstates of the Rj and Rk rotations, and consider
the mapped versions of these states under the inverse unitary U †:

U † |j〉 = |j′1〉 , U † |k〉 = |k′1〉 . (3.4-2)

To map |j′1〉 7→ |j1〉 first choose γ such that |j′2〉 = Rj(γ) |j′1〉 lies in the plane orthogonal
to k, i.e.

Tr
[
σk |j′2〉〈j′2|

]
= 0. (3.4-3)
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(a) |j′1⟩ = U† |+⟩ (b) |k′1⟩ = U† |L⟩

Figure 3.10: GT and GA gadgets. An example of a gadget with a Euler-angle decomposition
implementing the unitary U for j = x and k = y. This is equivalent to implementing the inverse
of U†, and the figures (a) and (b) show how this is done for the initial states U† |x+〉 = |j′1〉
and U† |y+〉 = |k′1〉. The first rotation, Rx(γ), takes |j′1〉 to the plane perpendicular to y, and
the Ry(β) operation then rotates it to x+. Finally, the second rotation about x, Rx(α) takes
Ry(β)Rx(γ)U

† |x+〉 to y+.

As illustrated in Fig. 3.11, this condition is satisfied by

γ = atan2
(
ϵjklTr

[
σk |j′1〉〈j′1|

]
,Tr
[
σl |j′1〉〈j′1|

])
. (3.4-4)

Next, the second angle, β, should be chosen such that |j′2〉 7→ |j1〉, or equivalently

Tr
[
σj |j′3〉〈j′3|

]
= 1, (3.4-5)

where Rk(β) |j′2〉 = |j′3〉. This can be done by taking

β = atan2
(
ϵjklTr

[
σl |j′2〉〈j′2|

]
,Tr
[
σj |j′2〉〈j′2|

])
. (3.4-6)

At this point all that remains is to map Rk(β)Rj(γ) |k′1〉 = |k′2〉 7→ |k〉. Let

Rj(α)Rk(β)Rj(γ) |k′1〉 = |k′3〉 . (3.4-7)

Then this final condition
Tr
[
σk |k′3〉〈k′3|

]
= 1, (3.4-8)

is satisfied by
α = atan2

(
ϵjklTr

[
σl |k′2〉〈k′2|

]
,Tr
[
σk |k′2〉〈k′2|

])
(3.4-9)

This ensures that
Rj(α)Rk(β)Rj(γ) = ±U, (3.4-10)

and if needed the global phase can be corrected by adding 2π to any of the rotations.
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Figure 3.11: Bloch sphere rotation angle. The rotation angles for the GT and GA gadgets
can be found geometrically. In this example the rotation axes are j = x and k = y The first
rotation about the axis x should bring the state |Ψ〉 to the plane spanned by the axes x and z.
The figure shows the y− z plane of the Bloch sphere, and the vector n⃗ is the Bloch vector of the
state |Ψ〉. The desired rotation angle γ is given by tan γ = nz/ny, where nz = Tr[Y |Ψ〉〈Ψ|] and
ny = Tr[Y |Ψ〉〈Ψ|]. The sign-correcting factor ϵjkl that appears in the formulae in the main text
accounts for the handedness of the coordinate system defined by the rotation order.

3.4.2 Reciprocal and universal gadgets
The procedure for the reciprocal gadget is slightly different. Start with the parametri-

sation
X(π)GR = Y (−γ)Z(−β)X(α)Z(β)Y (γ). (3.4-11)

Given a unitary U = GR that should be implemented, define a new unitary V = X(π)U
and let V |v〉 = e−iλ/2 |v〉. The rotation angles γ and β should then be chosen such that
the eigenstate of V gets mapped to |+〉:

Z(β)Y (γ) |v〉 = eiφ |+〉 , (3.4-12)

where φ is a irrelevant phase. Once this has been done, the Rx(α) rotation can be used
to apply the correct eigenphase, after which the last two rotations map |+〉 back to |v〉.
This procedure is illustrated in Fig. 3.12. The condition above can be satisfied by first
taking

γ = atan2
(
Tr
[
Z |v〉〈v|

]
,Tr
[
X |v〉〈v|

])
. (3.4-13)

Then let Y (γ) |v〉 = |v′〉 and take

β = −atan2
(
Tr
[
Y |v′〉〈v′|

]
,Tr
[
X |v′〉〈v′|

])
. (3.4-14)

The angles γ and β are illustrated in Fig. 3.13. Setting α = λ ensures

X(π)GR = V = X(π)U

⇐⇒ GR = U.
(3.4-15)
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Figure 3.12: Principle of the GR gadget. The reciprocal gadget can be decomposed as
X(π)GR = Y (−γ)Z(−β)X(α)Z(β)Y (γ). This decomposition can be used to realise any unitary
by using the first two rotations to take the eigenstate of the desired transformation to |+〉. The
X(α) rotation then applies the eigenphase of the unitary, after which the inverse of the first two
rotations take |+〉 back to the initial state, but with the added phase.

To find the wave plate angles, recall the form of the full gadget:

GR = Q(−ϕ)H(−θ)XS(ψ)H(θ)Q(ϕ)

= Y (γ)Z(β)X(π/2)X(ψ)X(−π/2)Z(β)Y (γ).
(3.4-16)

The angle ψ is given by ψ = α − π, and the two wave plates on the right side should
implement

W = X(−π/2)Z(β)Y (γ)

= H(θ)Q(ϕ)
(3.4-17)

Let |L′〉 = W † |L〉 = Y (−γ)Z(−β)X(π/2). Note that, as illustrated in Fig. 3.14, |L′〉
always lies in the linear plane. The quarter-wave plate can therefore be used to map it
back to a circular polarization. The QWP angle ϕ should be chosen as

ϕ =
1

2
atan2

(
Tr
[
X |L′〉〈L′|

]
,Tr
[
Z |L′〉〈L′|

]
,
)
+
π

4
. (3.4-18)

This choice of ϕ maps |L′〉 7→ |R〉, and ensures that |H ′〉 = Q(ϕ)W † |H〉 lies in the linear
plane. The HWP angle θ should then be picked so that |H ′〉 7→ |H〉. This is sufficient,
as every choice of angle maps |R〉 7→ |L〉. The correct angle θ can be found as

θ =
1

4
atan2

(
Tr
[
X |H ′〉〈H ′|

]
,Tr
[
Z |H ′〉〈H ′|

])
. (3.4-19)

The above expressions for the wave plate angles are explained in greater detail in Ap-
pendix A. The conditions above lead to an ambiguity in the global phase, however this
turns out to not matter since the unitary is realised on both sides of the gadget. The
reduction from three to two wave plates on each side of the gadget:

GR = Q(−ϕ)H(−θ)H(π/8)ZA(ϕ)H(π/8)H(θ)Q(ϕ)

= Q(ϕ1)H(θ1)Z
A(ϕ)H(θ2)Q(ϕ2),

(3.4-20)
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Figure 3.13: GR gadget angles. The first two rotations Y (γ) and Z(β) of the reciprocal
gadget should take an initial state |Ψ〉 first to the x− y plane and then to |+〉. The two figures
above show these rotations in the x − z and x − y planes, respectively, and correspond to the
transformation shown in Fig. 3.12. The left figure illustrates the need for the atan2 function, since
atan(Tr[Z |Ψ〉〈Ψ|]/Tr[X |Ψ〉〈Ψ|]) = π− γ, rather than the correct angle γ. In the right figure, the
positive z-axis is pointing out of the figure, and in order to rotate the state counter-clockwise the
negative angle should be used, explaining the sign in (3.4-14).

can be done using (3.2-13) and (3.2-14), giving

θ1 =
π

2
− θ (3.4-21)

ϕ1 = ϕ− θ +
π

8
− π

2
(3.4-22)

θ2 =
π

2
+ θ (3.4-23)

ϕ2 = θ − ϕ+
π

8
− π

2
. (3.4-24)

For the universal gadget GU = GSMG⊥ the Simon–Mukunda part can be calculated
using the steps in Section 2.3.1 and the XUX gadget has the same form as (3.4-11) and
the same steps as the ones above can therefore be used.
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Figure 3.14: Action of W † on |L〉. The transformation Y (−γ)Z(−β)X(π/2) always takes |L〉
to somewhere in the linear plane, as illustrated above. This means that a QWP can always be
used to map the resulting state back to a circular polarization.

3.5 Applications
In this section a few potential applications of the gadgets described throughout

the chapter will discussed. The theme of these is taking something which is already
possible in a non-common-path interferometer, such as a Mach-Zehnder interferometer,
and translating it to a common-path interferometer that has passive phase stability.
The primary example of this is a quantum switch built using a Sagnac geometry. An
experimental realisation of such a device is the subject of Publication 4, and is elaborated
on in Chapter 7.

3.5.1 Variable partially-polarizing beamsplitter
Partially-polarizing beamsplitters (PPBSes) show up in many places in photonic

quantum information, such as in the C-Phase gate shown in Fig. 2.16, and as shown
in Fig. 2.15 they can also be used to implement POVMs on polarization qubits, with-
out resorting to inconvenient beam-displacers, or a polarization-path conversion scheme.
PPBSes, however, often suffer from low tolerances in their splitting ratios, and being
bulk optics components they are not tunable, which prohibits their use for implement-
ing for example dynamically reconfigurable POVMs [387]. One way to implement a
PPBS is using a Mach-Zehnder interferometer with one tunable Rz operation in each
arm. This is pictured in Fig. 3.15. The first beamsplitter transforms a input state
|Ψ〉 = (αâ†H + βâ†V ) |0〉 as

|Ψ〉 7→ α
â†H + b̂†H√

2
|0〉+ β

â†V + b̂†V√
2

|0〉 (3.5-1)

TheRz operations then introduce phases ϕa and ϕb between the polarization components,
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Figure 3.15: Variable PPBS. A regular Mach-Zehnder interferometer can be used to construct
a variable partially-polarizing beamsplitter. By including polarization rotations about the z-axis
in one or both of the MZI arms. This changes the interference condition for the two polarization
components, however this by itself would not lead to a polarization dependent splitting ratio since
the output probabilities are symmetric functions of the interferometer phase. By additionally
controlling the phase θ originating in the path-length difference the interference condition can
be tuned independently for each polarization component. The downside of this is that the path-
length difference must be actively stabilized to keep the phase θ constant.

in addition to the interferometric phase θ between the two arms of the interferometer:

α
â†H + b̂†H√

2
|0〉+ β

â†V + b̂†V√
2

|0〉

7→ 1√
2

(
e−i(ϕa+θ)/2â†H + e−i(ϕb−θ)/2b̂†H + e−i(−ϕa+θ)/2â†V + ei(ϕb+θ)/2b̂†V

)
|0〉 .

(3.5-2)

The total phase difference ∆φ for the two polarization components at the second beam-
splitter is therefore

∆φH =
1

2

(
θ + ϕa + θ − ϕb

)
= 2θ +∆ϕ (3.5-3)

∆φV = −1

2

(
θ − ϕa + θ + ϕb

)
= −2θ +∆ϕ, (3.5-4)

where ∆ϕ = ϕa − ϕb. It’s clear that the interference conditions for the two polarization
components can be set independently by controlling the phase θ through the physical
path length difference between the two arms, together with the birefringent phase dif-
ference ∆ϕ. At the same time that means that the path length difference between the
two arms must be kept constant for a given pair of reflectivities for the PPBS.

If one wishes to make an interferometric PPBS in a Sagnac interferometer instead,
where the phase θ does not fluctuate, one immediately runs into the problem this phase
cannot be tuned. There is, however, a different way to make a tunable PPBS in a Sagnac
configuration. Such a device makes use of a polarizing beamsplitter instead of a regular
balanced beamsplitter, as well as a pair of symmetric and anti-symmetric Y(ϕ) gadgets.
The design is of this device is illustrated in Fig. 3.16.
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The basic idea is that states propagating in the clockwise direction see the gadget

YS(ϕ1)Y
A(ϕ2) = Y (ϕ1 + ϕ2) = Y (α), (3.5-5)

and the light propagating in the counter-clockwise direction sees

Θ
[
YS(ϕ1)Y

A(ϕ2)
]
= Y (ϕ1 − ϕ2) = Y (β), (3.5-6)

and the rotation of the linearly polarised light can be independently tuned in the two
propagation directions. Consider H-polarised light entering from the left port of the
device in Fig. 3.16. This light is transmitted by the PBS, travels in a counter-clockwise
fashion and is rotated by an angle α:

â†H 7→ cos
(α
2

)
â†H + sin

(α
2

)
b̂†V . (3.5-7)

It is then split on the PBS with a reflection coefficient of R = sin(α/2). Let the PBS
transformation inside the Sagnac be

â†H 7→ ĉ†H ,

b̂†H 7→ d̂†H ,

â†V 7→ d̂†V

b̂†V 7→ ĉ†V ,
, (3.5-8)

where c and d are the counter-propagating modes in the bottom and left ports, respec-
tively. The state after the PBS is then

cos
(α
2

)
ĉ†H + sin

(α
2

)
d̂†V (3.5-9)

Since the reflected light is V -polarized, it is necessary to swap the H and V components
in the backwards propagating top mode d with a Y (−π) rotation, giving the total
transformation

â†H 7→ cos
(α
2

)
ĉ†H + sin

(α
2

)
d̂†H , (3.5-10)

In contrast, V -polarized light entering the left port is reflected by the PBS, travels
clockwise through the interferometer, and undergoes the rotation Y (β):

â†V 7→ b̂†V 7→ − cos
(β
2

)
â†H + sin

(β
2

)
b̂†V . (3.5-11)

The total transformation after the PBS and Y (−π) rotation is

â†V 7→ cos
(β
2

)
ĉ†V + sin

(β
2

)
d̂†V . (3.5-12)

The splitting ratios of the PPBS for H and V can therefore be set by choosing α and
β. In order to use the bottom port of the PBS as an input as well, it is necessary to
perform a Y (π) operation at the input. An H-polarised input state in mode b then
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Figure 3.16: Sagnac variable PPBS. Using a pair of symmetric and anti-symmetric Y gadgets
it is possible to create partially-polarizing beamsplitter in a Sagnac geometry. The PBS splits a
polarization state such that the H-component input in mode a propagates in a counter-clockwise
fashion, and the V -component propagates clockwise. In the counter-clockwise direction the Y -
rotations add, giving a total rotation of linear polarization by an angle α = ϕ1+ϕ2, whereas in the
clockwise propagation direction the angles subtract, giving a total rotation of β = ϕ1 − ϕ2. This
leads to two different splitting ratios for the H and V polarizations when they impinge on the
PBS a second time. Two additional Y -rotations in the input/output modes c and d, respectively,
ensure that the device works in an all-to-all mode configuration.

becomes V -polarized, is reflected by the PBS and travels in a counter-clockwise fashion
just as an H-polarized input state in mode a:

UPBSY (π) :

Y (α) :

UPBS :

Ic ⊗ Y (−π)d :

b̂†H 7→ â†V

7→ cos
(α
2

)
â†V − sin

(α
2

)
â†H

7→ cos
(α
2

)
d̂†V − sin

(α
2

)
ĉ†H

7→ cos
(α
2

)
d̂†H − sin

(α
2

)
ĉ†H ,

(3.5-13)

and similarly for V -polarized light incident in the bottom mode b:

UPBSY (π) :

Y (β) :

UPBS :

Ic ⊗ Y (−π)d :

b̂†V 7→ −b̂†H

7→ − cos
(β
2

)
b̂†H − sin

(β
2

)
b̂†V

7→ − cos
(β
2

)
ĉ†H − sin

(β
2

)
d̂†V

7→ − cos
(β
2

)
ĉ†V + sin

(β
2

)
d̂†V .

(3.5-14)

The total transformation of the PPBS device is therefore:

cos
(α
2

)
− sin

(α
2

)
0 0

sin
(α
2

)
cos
(α
2

)
0 0

0 0 cos
(β
2

)
− sin

(β
2

)
0 0 sin

(β
2

)
cos
(β
2

)


, (3.5-15)
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Figure 3.17: Variable beamsplitter. Using the polarization degree of freedom as an interme-
diary, a regular Sagnac interferometer can be made to act as a variable beamsplitter, while still
preserving the polarization state. Viewed in the {H,V } basis the anti-symmetric XA(ϕ) gadget
simply changes the interference condition the same way for both polarizations. Consequently
polarization states that are superpositions of the horizontal and vertical polarizations have the
same interference condition as well, however in one output port the state becomes rotated. Since
this rotation does not depend on the angle ϕ it can be corrected with a static X(−π) rotation.
For states input in mode b this correction would have to be applied in the opposite port, however
this can instead be accounted for with an additional X(π) rotation before the beamsplitter. Both
of these corrective rotations can be realised with a single XA(π) gadget.

written in the bases:
Hin : {â†H , b̂

†
H , â

†
V , b̂

†
V }

Hout : {ĉ†H , d̂
†
H , ĉ

†
V , d̂

†
V }.

(3.5-16)

3.5.2 Variable beamsplitter
As discussed in Section 2.5.1 a basic Mach-Zehnder interferometer works as a variable

beamsplitter, and in analogy with the variable PPBS discussed in the previous section,
the lack of control over the interferometric phase in a Sagnac interferometer translates
into a fixed splitting ratio if one tries to use such a common-path interferometer as a
beamsplitter. By using the polarization degree of freedom as an intermediary, however,
one can control the splitting ratio. Such a device is pictured in Fig. 3.17.

Given a polarization gadget G inside a Sagnac interferometer, as well an input state
|Ψ〉a, the output state is of the interferometer is

1

2

(
G+Θ[G]

)
|Ψ〉a +

1

2

(
G−Θ[G]

)
|Ψ〉b , (3.5-17)

where a and b are the two input/output modes of the Sagnac. If the gadget G is anti-
symmetric, then the relative probability amplitude in the two output modes can be
controlled. The simplest choice for achieving this is the XA(ϕ) gadget, since it only
requires wave plates. This gives the output state

1

2

(
XA(ϕ) +XA(−ϕ)

)
|Ψ〉a +

1

2

(
XA(ϕ)−XA(+ϕ)

)
|Ψ〉b

= cos
(ϕ
2

)
I |Ψ〉a − i sin

(ϕ
2

)
X |Ψ〉b

= cos
(ϕ
2

)
I |Ψ〉a + sin

(ϕ
2

)
X(π) |Ψ〉b .

(3.5-18)
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Aside from the X operation in the second output mode, this is a tunable beamsplit-
ter with reflection coefficient R = sin(ϕ/2). Since the X(π) rotation in mode b does
not depend on the rotation angle ϕ inside the Sagnac, is can be undone with a fixed
X(−π) operation, thereby making the beamsplitter polarization preserving. The total
transformation for an input state in mode a with polarisation P is

UBS :

XA(ϕ)a ⊗Θ
[
XA(ϕ)b

]
:

UBS :

Ia ⊗X(−π)b :

â†P 7→
â†P + b̂†P√

2

7→ 1√
2

(
X(ϕ)â†P +X(−ϕ)b̂†P

)
7→ 1

2

([
X(ϕ) +X(−ϕ)

]
â†P +

[
X(ϕ)−X(−ϕ)

]
b̂†P

)
= cos

(ϕ
2

)
â†P + sin

(ϕ
2

)
X(π)b̂†P

7→ cos
(ϕ
2

)
â†P + sin

(ϕ
2

)
X(0)b̂†P

= cos
(ϕ
2

)
â†P + sin

(ϕ
2

)
b̂†P ,

(3.5-19)
Similar to the case of the variable PPBS, in order to make use of the second input port
it is necessary to first flip the input polarization with an X(π) rotation:

X(π) :

UBS :

XA(ϕ)a ⊗Θ
[
XA(ϕ)b

]
:

UBS :

Ia ⊗X(−π)b :

b̂†P 7→ X(π)b̂†P

7→ X(π)
â†P − b̂†P√

2

7→ 1√
2

(
X(ϕ)X(π)â†P −X(−ϕ)X(π)b̂†P

)
7→ 1

2

([
X(ϕ)−X(−ϕ)

]
X(π)â†P

+
[
X(ϕ) +X(−ϕ)

]
X(π)b̂†P

)
= sin

(ϕ
2

)
X(2π)â†P + cos

(ϕ
2

)
X(π)b̂†P

7→ − sin
(ϕ
2

)
â†P + cos

(ϕ
2

)
X(0)b̂†P

= − sin
(ϕ
2

)
â†P + cos

(ϕ
2

)
b̂†P .

(3.5-20)

The transformation realised by device is thereforecos
(ϕ
2

)
− sin

(ϕ
2

)
sin
(ϕ
2

)
cos
(ϕ
2

)
 , (3.5-21)

which shows that the splitting ratio can be controlled using the gadget phase. This is
transformation is equivalent to a Sagnac interferometer with a relative phase difference
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of θ between the two arms, which means that a nonreciprocal gadget can be used to set
the working point of the interferometers, which is often important for uses in sensing,
such as optical gyroscopes. In ring-laser gyroscopes a phase bias is typically applied
using active phase modulators [388], whereas with access to the polarization degree of
freedom this could be accomplished entirely passively.





4
Experimental methods for
“Trace-free counterfactual

communication with a nanophotonic
processor”

This chapter will discuss some of the experimental methods behind Publication 1
‘Trace-Free counterfactual communication with a nanophotonic processor’. As indicated
by the title of the final publication, the goal of this project was to demonstrate a counter-
factual communication protocol where the photon transmitted by Alice does not leave
a weak trace in Bob’s laboratory. The motivation for this is that the presence of a weak
trace of a photon in a certain region of space can be taken to mean that the photon
too was present in that region. In the context of counterfactual communication, the
presence of such a weak trace can call the counterfactuality of the process into ques-
tion. In Section 1.3.4 the first protocol for counterfactual communication, proposed by
Salih et al. [66], was analysed using the so-called two-state vector formalism, and it
was shown visually that the protocol does not eliminate the weak trace of photons sent
by Alice in Bob’s laboratory. To address this issue, a modified protocol was proposed
by Arvidsson-Shukur and Barnes [85], and it was this protocol that was the focus of
Publication 1.

4.1 The Arvidsson-Shukur and Barnes protocol
The counterfactual communication protocol proposed by Arvidsson-Shukur and Barnes

differs slightly from the original Salih protocol in that photons are allowed to travel from
Alice to Bob as long as any photons entering Bob’s laboratory do not travel back to
Alice. For this reason Salih-type protocols are sometimes referred to as type-I protocols,
while the ones of the latter type are called type-II [71]. The type-II protocol discussed
here is actually simpler than the Salih protocol, since it does not contain any nested
Mach-Zehnder interferometers. Instead it consists of N − 1 concatenated MZIs, with a
total of N beamsplitters, as shown in Fig. 4.1.a. Bob can transmit a 0- or 1-bit to Alice
by either blocking the photon path through his laboratory or not. The reflectivity of
the beamsplitters is not 50 : 50, but is instead chosen to be

R = cos2
( π

2N

)
. (4.1-1)
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Figure 4.1: Arvidsson-Shukur & Barnes CFC protocol. The trace-free counterfactual
communication protocol proposed in Ref. [85] allows for two parties, Alice and Bob, to exchange
a classical bit. The two shaded areas indicate which parts of the setup belong to the laboratories
of the two parties, while the unshaded area is considered a transmission channel belonging to
neither party. (a) If Bob wants to send a 0-bit to Alice he leaves the mirrors in his lab in place.
This causes the photon amplitude to be gradually transferred from the transmission channel to
Bob’s laboratory, and at the end of the interferometer chain it is detected by Bob with unity
probability. Alice records the non-detection of a photon as a 0-bit. (b) When Bob wants to send
a 1-bit he blocks or removes the mirrors in his lab. This prevents the photon amplitude leaking
into his lab from returning to the transmission channel, and the majority of the wavefunction
will simply reflect off the high reflectivity beamsplitters and return to Alice, who records a 1-bit
when she successfully detects the photon she injected into the transmission channel. In the limit
of infinitely many beamsplitters this occurs with unity probability. Note that in neither (a) nor
(b) does the photon ever travel from Bob’s laboratory back to Alice, and this is why the protocol
is counterfactual.

The corresponding beamsplitter transformation is

U =

 cos
( π

2N

)
i sin

( π

2N

)
i sin

( π

2N

)
cos
( π

2N

)
 = exp

[
i
π

2N
X
]
, (4.1-2)

implicitly written such that reflection is described by the identity operator, since this
corresponds to the photon staying in the transmission channel (see Fig. 4.1.a). If Bob
wishes to transmit a 0-bit to Alice he leaves the mirrors in his laboratory unblocked.
The photon is propagated by the transformation U a total of N times:

UN = exp
[
iN

π

2N
X
]

= exp
[
i
π

2
X
]

= iX.

(4.1-3)

This is a swap operation, meaning that the photon transits from the transmission chan-
nel into Bob’s laboratory with unity probability. In the communication protocol this
corresponds to the transmission of a 0-bit, which on Alice’s side is registered as the
non-detection of a photon injected into the transmission channel. When Bob wants to
transmit a 1-bit to Alice he blocks or removes the mirrors in his laboratory, as shown in
Fig. 4.1.b. Alice records a 1-bit when she successfully detects the photon she injected
into the transmission channel, and the probability P1 for the photon to return to Alice is
equal to the probability that the photon successfully reflects off all the N beamsplitters:

P1 = cosN
( π

2N

)
. (4.1-4)
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✔

Figure 4.2: Weak trace in the Arvidsson-Shukur & Barnes protocol. As discussed in
Section 1.3.4, the weak trace of a photon is non-zero only in regions where the forwards and
backwards propagating trajectories overlap. The figure shows the case when Bob successfully
transmits a 1-bit by removing the mirrors in his lab. In this scenario, the forwards and backwards
propagating states, indicated by the red and blue dashed lines respectively, have zero overlap in
Bob’s lab, and the photon does therefore not leave a weak trace there. The diagram for the 0-bit
is not shown here, since in that configuration the photon never travels back to Alice.

In the limit of infinitely many beamsplitters the 1-bit success probability P1 tends to
unity. This can be seen by evaluating the limit

lim
N→∞

cos2N
( π

2N

)
, (4.1-5)

which can be done in several ways. One straightforward way is to take the natural log
of the expression above:

lim
N→∞

lnP1 = lim
N→∞

2N ln
[
cos
( π

2N

)]
= lim

N→∞

ln
[
1−
(
1− cos

( π

2N

))]
1− cos

( π

2N

) 1− cos
( π

2N

)
1/2N

.
(4.1-6)

Using the substitution x = 1− cos
( π

2N

)
the first fraction can be evaluated as

lim
x→0

ln
[
1− x

]
x

= lim
x→0

ln
[
(1− x)

1
x

]
= ln

1

e
= −1, (4.1-7)

while the second term can be evaluated using l’Hopital’s rule:

lim
N→∞

1− cos
( π

2N

)
1/2N

= lim
N→∞

π

2
sin
( π

2N

) π

2N2

1/2N2
= 0. (4.1-8)

Hence
lim
N→∞

lnP1 = −1 · 0 = 0, (4.1-9)

and
lim
N→∞

P1 = 1. (4.1-10)

The success probability of transmitting a 1-bit can therefore be made arbitrarily high
by concatenating a sufficient number of beamsplitters.



CHAPTER 4 • EXPERIMENTAL METHODS FOR “TRACE-FREE
COUNTERFACTUAL COMMUNICATION WITH A NANOPHOTONIC
PROCESSOR”
162

4.2 Evaluation of counterfactuality

Figure 4.3: Nanophotonic processor. The figure shows a micrograph of the photonic waveg-
uide used to implement the counterfactual communication protocol. The gold wires at top and
bottom connect the thermal phase-shifters of the waveguide to a printed circuit board. The
input of the waveguides is on the left side of the picture, and the MZIs are arranged along several
diagonals. The thick vertical traces are the ground wires of the thermal phase-shifters, while the
thin wires are used to set the individual voltages across the heaters. Image courtesy of Nicholas
Harris.

Since the purpose of the above protocol is to allow for counterfactual communication
without the photon leaving a weak trace in Bob’s laboratory, we will here motivate the
absence of a trace using the same methods as described in Section 1.3.4. Note that it
is only necessary to analyse the outcome in which the photon returns to Alice, since in
this context a violation of counterfactuality means that some part of the photon wave-
function propagated from Bob to Alice. An illustration of the forwards and backwards
propagating states for the 1-bit is shown in Fig. 4.2. Since the trajectories of these states
never overlap in Bob’s laboratory the photon does not leave a weak trace there, and the
protocol is counterfactual. Note, however, that if there are imperfections present in the
interferometers, such as phase noise or incorrect splitting ratios in the beamsplitters,
then there is a finite probability that a photon enters Bob’s laboratory and travels back
to Alice, leading to a violation of the counterfactuality in the 0-bit case.

4.3 Nanophotonic processor
There are two main challenges associated with an experimental implementation of

the Arvidsson-Shukur and Barnes CFC protocol. The first is constructing a stable and
precisely tunable beamsplitter that has exactly the reflectivity given by (4.1-1). As dis-
cussed in Section 3.5.2 this could be done using a Sagnac interferometer, however this
still leaves the second problem, which is the stabilization of the concatenated MZIs. This
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Figure 4.4: Programmable waveguide layout. The waveguide used in the experiment con-
tains 88 programmable Mach-Zehnder interferometers spread out over 11 columns, and arranged
in a wedge-like fashion. Each Mach-Zehnder interferometer contains two thermal phase shifters;
one between the two directional couplers, and one at the output of the MZI, corresponding to
the phase shifters θ and γ in Fig. 2.37. The lightly shaded area indicates a diagonal along which
the internal phase shifters are calibrated.

is not an insurmountable challenge, however in order to reduce the experimental com-
plexity the decision was made to implement the protocol in a programmable waveguide,
also referred to as a programmable nanophotonic processor (PNP). Since the waveg-
uide exhibits passive phase stability it can be used to realise complex interferometric
structures, and this is indeed the point of such waveguides.

The waveguide used in this experiment was designed by Dr. Nicholas C. Harris,
under the supervision of Professor Dirk Englund at MIT [389]. This photonic chip was
also used in the publication [390], which is not elaborated on in this thesis. A micrograph
of the device is shown in Fig. 4.3. The chip contains 26 silicon waveguides with a silica
cladding, and the high refractive index contrast between the two materials results in a
very strong mode confinement. This allows a total of 88 Mach-Zehender interferometers
to fit into the approximately 5mm × 2.5mm footprint. These MZIs have one external
and internal thermo-optic phase-shifter each, which are capable of modulation speeds
approaching 100 kHz [335]. The 88 MZIs are arranged along several (anti-)diagonals,
forming an isosceles trapezoid, or a wedge shaped structure. The full structure of the
device is shown in Fig. 4.4. The bulk-optics picture of the CFC protocol shown in
Fig. 4.1 can be translated into the waveguide by mapping every beamsplitter and mirror
to an MZI. The act of Bob blocking a mirror to transmit a 1-bit is then modelled
by making the MZI fully transmissive, which corresponds to Bob simply removing the
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Figure 4.5: Waveguide implementation of CFC protocol. (a) The different basic element
of the protocol are beamsplitters and mirrors, as well as the absence of a mirror. These can be
implemented by MZIs with the appropriate internal phase, as indicated in the figure. (b) The 11
columns of the chip allow for an implementation of the CFC protocol with N = 6 beamsplitters.
The phase ϕB is chosen by Bob according to which bit value he wants to transmit to Alice.
ϕB = π corresponds to leaving the mirrors in place and sending a 0-bit, while ϕB = 0 removes
the ‘mirrors’ and transmits a 1-bit by returning the photon to Alice.

mirror instead of blocking it. The number of beamsplitters is limited by the number of
columns of MZIs in the chip, and as shown in Fig. 4.5 the 11 columns of the chip lead
to a maximum number of beamsplitters N = 6.

4.3.1 Device calibration
The thermal phase shifters in the chip were controlled via a voltage source, and in

order to perform well-defined operations inside the chip it is necessary to calibrate each
phase shifter. In practice this calibration consists of determining a voltage-to-phase map
by observing the optical power at the output of the chip as a function of a bias voltage.
The calibration method used for the chip was adapted from [391]. The internal phase
shifters are first calibrated by attempting to send light along the diagonals with constant
indices, one of which is indicated in Fig. 4.4. First, the voltage across the internal phase-
shifter in the first column is scanned, while the power in the two photodetectors at
the end of the diagonal is monitored. Since the only way for the light to get to these
two detectors is to travel along the diagonal, this measurement is equivalent to directly
observing the output power in the top port of the first MZI. One then repeats this
procedure for each MZI along the diagonal, before moving on to the next diagonal. The
voltage-to-phase map is created by fitting a sine function to the observed output power.
In practice phase is a nonlinear function of the voltage, and a good fit requires a model
incorporating electron drift velocity saturation [391].

The calibration for the external phase shifters follows the same idea. However, in
order to be sensitive to the phase they induce it is necessary to create a compound MZI,
consisting of four physical MZIs. This is illustrated in Fig. 4.6. One difference with
respect to the internal phase shifters is that each compound MZI contains two phase
shifters, and there is hence an overall phase ambiguity. This can be solved by simply
treating one of the phases as a constant reference, and calibrating the remaining ones
with respect to this one [391]. A second difference is that imperfections in the device
can lead to imperfect information about the interferometric phase, since it is possible for
the light to take multiple paths to the same detector. In practice this manifests itself as
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Figure 4.6: External phase shifter calibration. (a) To calibrate the external phase shifters
of the individual MZIs a compound MZI is constructed using four physical MZIs. Two of these,
with a π/2 internal phase, act as beamsplitters, and two with an internal phase of π act as
mirrors. (b) The calibration of the external phase shifters proceeds along a diagonal and the
light is routed to/from the desired compound MZI using SWAP operations. Compound MZIs
that lie on a diagonal share phase shifters, and this leads to an ambiguity in the phase when
performing the calibration, which can be remedied by treating one phase as a constant reference
and applying an appropriate offset to the remaining phases [391]. Also note that imperfect
visibility in the constituent MZI can negatively influence the calibration of the external phase
shifters, as light that leaks through the ‘mirror’ MZIs can make its way to the detector and
influence the phase measurement.

a lower visibility of the compound MZIs as compared to the physical ones, and degrades
the calibration.

4.3.2 MZI visibility
In order to perform high fidelity operations the MZIs in the chip must exhibit high

visibility, or equivalently, a high extinction ratio. One of the main imperfections affect-
ing the operation of the device is the variance in the splitting ratio of the directional
couplers in the MZI unit cells. The coupling constant C from (2.5-3) is inversely pro-
portional to the wavelength [106, 391] and the directional couplers therefore only have
a finite linewidth over which they produce a balanced splitting ratio. This balanced
splitting ratio is a necessary condition for achieving high extinction ratios, which is easy
to understand through the following argument: in one exit port of an MZI light will
either have been reflected twice by a beamsplitter, or transmitted twice. To observe full
destructive interference in this output port of the MZI, one therefore needs that:

R2 + eiφT 2 = 0, (4.3-1)

which is only possible for R = T . Note that in the other port of the MZI light is
always reflected by one beamsplitter and transmitted through the other, and destructive
interference is therefore possible as long as

R1T2 + eiφT1R2 = 0, (4.3-2)

which only requires that the two directional couplers be identical, not necessarily unbi-
ased. Due to the highly miniaturized nature of the waveguide used in this work, the
interaction regions in the directional couplers is very short, and this increases their
sensitivity, in absolute terms, to errors in the length of this interaction region.

In practice the various directional couplers present in the device have a center wave-
length at which they produce a balanced splitting ratio, and this center wavelength
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Figure 4.7: Wavelength dependence of MZI SWAP operation extinction ratio. When
performing a SAWP operation the extinction ratio depends on the optical wavelength. This
dependence is illustrated above for two different MZIs performing SWAP operations. The MZIs
are labelled as (c, d), where c is the column and d is the diagonal, as indicated by Fig. 4.4. It can
be seen that the extinction ratio drops by as much as a factor of 10 within 5 nm, and the linewidth
of the MZIs is significantly smaller than the difference between their center wavelengths.

follows some distribution. As long as the width of this distribution is smaller than the
linewidth of the individual directional couplers there exists a wavelength region within
which the device can operate well. In a waveguide the operation corresponding to the
condition (4.3-1) is the SWAP operation, which sends a photon entering in the top in-
put mode of an MZI to the bottom output mode, and vice versa. Fig. 4.7 shows the
extinction ratio Pmin/Pmax for two MZIs on the bottom diagonal of the device used for
the experiment. It can be seen that the best operating points for the two MZIs differ
by much more than the effective wavelength bandwidths of the MZIs. This means that
there is fundamentally no wavelength at which all the different MZIs on the chip can
operate with a high degree of fidelity.

While two MZIs shown in Fig. 4.7 are outliers in the overall distribution of center
wavelengths, choosing a wavelength at which the average performance is maximized still
results in significantly hampered performance compared to the what each MZI is capable
of individually. The mean extinction ratio for all the MZIs on the lower diagonal is shown
in Fig. 4.8. This diagonal was chosen because it allows for direct measurement of the
SWAP-operation splitting ratio, that is not affected by stray light travelling through
alternate paths through the chip. From the figure it can be seen that the best average
performance is achieved at a wavelength around 1575 nm.

For the actual experiment, a single-photon wavelength of λ = 1565.8 nm was chosen.
This was due to the fact that the CW laser available at the time was limited to the
telecom C-band, and was not able to perform a wavelength sweep sufficiently wide to
identity the optimal working wavelength. Since the act of Bob removing a mirror is
mapped onto a SWAP operation in the experiment, the relatively low fidelity of this
operation is one of the major sources of error in the experiment. A secondary impact of
the low fidelity SWAP operations is that the quality of the calibration of the external
phase shifters is degraded, since as described in the previous section this calibration
involves routing the light using SWAP operations.
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Figure 4.8: Mean and minimum MZI extinction ratio. The optimal wavelengths of the
MZIs in the nanophotonic processor follows a wide distribution. Optimal operation of the device
requires a trade-off between the average and worst-case performance. Above the mean and
minimum extinction ratios for the 11 MZIs lying on the lowest diagonal of the photonic chip are
shown. The best performance for this particular set of MZIs is reached around λ = 1575 nm,
with mean and minimum extinction ratios of ERmean = 27.6 dB and ERmin = 19.2 dB.

4.3.3 Crosstalk
In an ideal device setting a certain phase in a given phase shifter would not have

any effect on the other phase shifters. In practice, however, this is not the case and the
unintended influence of one phase shifter on another is known as crosstalk. There are
two main sources of crosstalk in the waveguide. The first one is thermal crosstalk, which
occurs due to the fact that the different elements on the chip are in close proximity. The
heat produced by one thermal phase shifter will inevitably diffuse throughout the entire
device, to at least some degree. This can be mitigated by engineering the device in
such a way that most of the heat is dissipated perpendicularly to the waveguide, and by
attempting to minimize the power consumption of the resistive elements. The second,
and dominant source of crosstalk in the waveguide is voltage crosstalk. This crosstalk
originates from the fact that all of the resistors that constitute the thermal phase shifters
are connected to the same ground. Since there is a finite resistance in the ground wires
this can lead to a floating ground for some or most of the phase shifters on the chip. A
circuit modelling this behaviour is shown in Fig. 4.9.

In practice this means that the true voltage across a phase shifter is a function of
the voltage applied on every other phase shifter in the device:

V ′
1 = f1(V1, V2, . . . , VN )

V ′
2 = f2(V1, V2, . . . , VN )

...
V ′
N = fN (V1, V2, . . . , VN ).

(4.3-3)

This set of coupled equations can in principle be solved by measuring all the voltage
correlation functions, truncating the functions fk to a given order, and then inverting
(4.3-3). If the functions are truncated to the first order, then the problem reduces to
inverting a matrix; for higher orders methods for nonlinear systems of equations have to
be employed, for example Newtons method, increasing the computational cost. While
the problem is numerically tractable, the experimental determination of the functions fk
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Figure 4.9: Crosstalk model. The voltage crosstalk in the programmable waveguide can be
modelled by a single electrical circuit. In an ideal circuit the voltage sources Vk would directly
apply a voltage across the resistors Rk inside the photonic chip, as well as the corresponding
ground resistance RGk . In practice, some or most of the ground wire is shared by the different
voltage sources. The problem that this creates is that when say the third voltage source is active
and current is flowing through R3 and RG3 this causes the ground for V1 and V2 to float, changing
the current through R1 and R2. This in turn changes the dissipated power, and therefore the
thermo-optic phase shift.

requires N2 measurements, where N is the number of phase shifters in the device. Since
there are two phase shifters per MZI, this works out to N = 176 and N2 = 30976. In
the setup used for the experiment this measurement could not be automated, and due
to the extremely high number of measurements required it was deemed infeasible. In
Ref. [392] the crosstalk for an equivalent photonic waveguide was measured, and found
to be as high as 100µVV−1. Individual phase shifters in the chip can be biased as high
as 10V, giving a crosstalk of 1mV. Considering the high number of phase shifters on the
chip this can, in a worst-case scenario, be enough to reduce the extinction ratio of the
affected MZI by a factor of two. As a cumulative effect the voltage crosstalk therefore
significantly degrades the performance of the device.

Since this effect was not pre-corrected for in the experiment, it was not possible to
directly implement the circuit for the CFC protocol simply from the voltage-to-phase
maps obtained from the calibration. Instead, the correct phases were found by iter-
atively optimizing the circuit, in particular the external phase shifters, to obtain the
correct output distribution for the 0-bit case. The downside of this approach is that
one cannot independently verify that every single component in the circuit implements
the correct operation, since there are many possible parameters that lead to the same
output distribution. However, under the assumption that the initial parameters from
the device calibration are sufficiently close to the correct minimum of the optimization,
this process will yield voltage/phase values that do indeed implement the correct circuit.
This is to some extent validated by the fact that the 1-bit circuit was not optimized
over, and still produced the expected output distribution.

4.3.4 Input/output coupling
The dimensions of the ridge waveguides inside the device are 500 nm× 220 nm, and

the transverse mode of the light is largely contained within the waveguide. This mode is
more than an order of magnitude smaller than the mode of a standard telecom SMF-28
fiber, and can therefore not be efficiently out-coupled directly. To address this problem,
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Figure 4.10: Waveguide setup. The picture shows the setup used to couple and control the
nanophotonic processor. The wedge-shaped grey waveguides are the interposer chips that convert
the mode from the 10µm SMF-28 fiber mode, to the 2µm PNP input mode. Between the two
interposers the PNP itself is visible, along with the wirebonds to the PCB, which in turn is
connected to a digital voltage controller using four 50-pin FFC cables (one pictured). At the
top of the image a 10x Mitutoyo long working distance objective can be seen, which was used
together with Optem Fusion lens system to image the PNP, and give visual feedback during the
coupling process.

the waveguides on the input/output facets of the chip are inverse tapered to a mode
field diameter of 2µm. Since this is still too small to efficiently couple into single-mode
fiber, an additional mode converter is necessary. To this end a Si3N4 waveguide with
an SiO2 cladding was designed by Nicholas Harris and manufactured by LioniX. This
mode converter, or interposer, has a 10µm mode field diameter with an 127µm pitch
on the input side, and is tapered to 2µm with a 25.4µm on the output, matching the
programmable waveguide. Light is then coupled in and out of the waveguide by butt-
coupling the interposer with the PNP. An image of the experimental setup, including
the interposer, PNP and wirebonded PCB is shown in Fig. 4.10.

While these interposers serve the purpose of decreasing the coupling loss, the mode-
converter waveguides nevertheless introduce some excess loss. A histogram of excess
loss for the two interposers is shown in Fig. 4.11. The mean loss across all modes
is approximately 2 dB, for a total 4 dB fiber-to-fiber loss. The highest transmission
measured through the device was 18%, equivalent to approximately 7.5 dB of loss. Out
of this at least 1 dB comes from the intrinsic propagation loss of the waveguides [389],
giving a coupling efficiency of at least 75%, or −1.25 dB.
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Figure 4.11: Interposer loss. The interposers used to couple in and out of the waveguide were
characterised in terms of the per-mode loss. The measured loss in dB is shown above on a per
mode basis, for both the input and output interposers. The mean loss for the input (output)
interposer is 2.16 dB (1.78 dB).

4.3.5 Black-body radiation
Since the thermal phase shifters in the PNP heat up the waveguide 80 °C or more

when applying a π phase shift [335] the waveguide emits a significant amount of black-
body radiation that can cause accidental photon detection events in NIR single-photon
detectors. This is exacerbated by the fact that many of these NIR and IR photons are
emitted directly into the waveguide mode(s). During normal operation of the device the
background count rate from the black-body photons was in the MHz range. When using
heralded single-photon source, such as an SPDC source, this problem can be alleviated
by exploiting the strong temporal correlation between the signal and idler photons, and
using this to filter the detection events in time. Despite this, the black-body radiation
contributes excess noise to the experiment in the form of accidental coincidences and
needs to be filtered. One way of doing this is by exploiting the strong wavelength
dependence of bending losses in optical fibers [393,394], to create a makeshift short-pass
filter. This can be further enhanced by placing the bent fiber inside a box made from,
or coated with, a low emissivity material, to decrease the effective temperature of the
surroundings.

While this approach was initially considered, for the experiment it was found that
a simpler solution using coarse wavelength-division multiplexers (CWDM) sufficed to
filter out the background radiation. While CWDMs are not designed to provide broad-
band spectral filtering, it was assumed that most of the black-body photons generating
spurious detection events were in or close to the telecom C-band, and that the CDWMs
would provide sufficient filtering in this wavelength range. In order to achieve sufficiently
high suppression of the background two CWDMs were used in series for each of the two
detected output modes.



5
Experimental methods for

“Demonstration of universal
time-reversal for qubit processes”

In this chapter the experimental methods and design decisions behind Publication 2,
as well as some of the theoretical background, will be elaborated on. The goal of the
experiment was to perform a demonstration of the time translation protocol presented
in Refs. [395,396] for a qubit system. This protocol allows one to transform the unitary
evolution of an arbitrary qubit state into its inverse, without requiring any knowledge
of the initial quantum state of the qubit, the Hamiltonian governing its time evolution,
or even the effect that one’s interventions have on the system in question; the only
requirement is that these interventions are repeatable. The fact that the protocol works
in this very general setting is what bestows on it the quality of being universal.

5.1 The rewinding protocol
While the question of how to transform a unitary evolution into its inverse may seem

abstract at first, it is in fact a problem that has been studied in various forms for a long
time. The most well known example of a rewinding protocol is the spin-echo technique
in nuclear magnetic resonance [397]. This protocol is applied to an ensemble of spins
precessing on the equator with some distribution of precession frequencies, causing them
to decohere. By performing a 180° rotation about an axis in the equatorial plane at a
time t = τ the spins begin to refocus, and become fully aligned at t = 2τ . This process,
illustrated in Fig. 5.1, works independently of the distribution of precession frequencies,
and is a simple example of a quantum state being made to reverse its time evolution.
Generalizations of spin echoes led to the development of so-called dynamical decoupling
techniques, which remove the influence of decohering environmental noise through the
application of suitably tailored control pulses [398,399]. Such methods can also be used
to refocus a quantum system independently of the free time evolution it is undergoing,
albeit probabilistically [400]. These protocols, however, require the ability to perform
well characterised operations on the system in question. For example, in the case of
the spin echo one needs to perform exactly a 180° rotation for the ensemble to become
refocused. In practice this means that control imperfections limit the accuracy of these
protocols [401]. Independently of this though, one can ask the fundamental question
of whether such rewinding protocols could be universal. In this context, a protocol
is said to be universal if it, in addition to working for any input state and free time
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(a) t = τ (b) t = τ + dt (c) t = 2τ + dt

Figure 5.1: Spin echo. A spin echo is a technique for refocusing a quantum system precessing
on the equator of the Bloch sphere. The technique is independent of the precession frequency,
and therefore also works on ensembles of quantum states with different precession frequencies.
(a) an ensemble of states, initially all aligned with the |x+〉 state at time t = 0, spreads out
as it evolves for t = τ units of time, due to the different states rotating around the z-axis at
different frequencies. (b) a π rotation about the y-axis is applied on the ensemble. This rotation
is assumed to take dt << τ units of time. (c) since the states have effectively been mirrored in
the x− z plane, they now behave as though their precession were reversed, and the ensemble is
refocused such that at time t = 2τ all the states are once again aligned. The dark (light) blue
arrows show the final (initial) states, and the yellow arrows indicate the trajectory traced out by
the time evolution.

evolution, does not require the interventions on the system to be well characterised,
or even known. This question whether such a protocol exists was first affirmatively
answered in Ref. [402], and the authors later later built upon this work in Refs. [395,396].
The experimental realisation of the protocol proposed in the latter two papers is the
subject of Publication 2.

The rewinding protocol is based on the following relation:

[U, V ]UN [U, V ] ∝ U−N , (5.1-1)

which holds for any invertible 2×2 matrix U , and any 2×2 matrix V. This relation can
be proved by first noting that due to the cyclic property of the trace, the trace of the
commutator between two matrices is always zero:

Tr(AB) = Tr(BA) =⇒ Tr(AB −BA) = 0. (5.1-2)

Then, let C = [A,B]. The characteristic polynomial of this matrix can be written

pC(λ) = λ2 − Tr(C)λ+ det(C)I

= λ2 + det(C)I.
(5.1-3)

Through the Cayley-Hamilton theorem this implies that

C2 = −det(C)I. (5.1-4)

The desired relation can now be found by considering the commutator

[U,UNV ] = UN [U, V ], (5.1-5)
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and squaring it:
[U,UNV ]2 = UN [U, V ]UN [U, V ] ∝ I. (5.1-6)

Multiplying this expression with U−N from the left recovers (5.1-1). If one interprets U
as the free time evolution of a quantum system, and V as a perturbed time evolution,
then it’s clear that if one is able to realise the commutator between the free and perturbed
time evolutions, then one can propagate the system backwards in time. Since the relation
holds for any 2 × 2 matrix V , the perturbed time evolution can be both arbitrary
and unknown.1 The perturbed time evolution V can therefore be generated by an
uncharacterised interaction, and this, together with the fact that the relation holds for
any U , is what makes the protocol universal.

The fact that the left-hand side in (5.1-1) is only proportional to the inverse unitary
is a reflection of the fact that the commutator cannot be applied deterministically, since
in general the commutator is not unitary. This means that any attempt to rewind
the system using this relation will be probabilistic. As will be discussed in the next
section, one way to probabilistically apply the commutator is to prepare a controlled
superposition of the commutator and the anti-commutator {U, V } = UV +V U by using
an auxillary control system C:

1

2
[U, V ] |Ψ〉T ⊗ |0〉C +

1

2
{U, V } |Ψ〉T ⊗ |1〉C . (5.1-7)

Projecting the control qubit onto the state |0〉C then applies the commutator. Here the
subscript T labels the target system on which the gates U and V act. If the projection
of the control qubit yields the outcome ‘1’ the anti-commutator gets applied instead of
the commutator, and the relation (5.1-1) can seemingly no longer be used. However, in
Ref. [396] it was shown, that using the two following relations, an inadvertently applied
anti-commutator can always be turned back into a commutator:

[U, V ]2 ∝ I (5.1-8)
{U, V }m[U, V ]{U, V }m ∝ [U, V ], (5.1-9)

and these relations can be used to boost the success probability to an arbitrary level.
The first relation is simply (5.1-4), while the second one is less obvious. Here we will
restate the proof from [396]. Consider

Tr
(
[U, V ]{U, V }n

)
. (5.1-10)

For n = 0 we already saw that this expression evaluates to zero, and for n = 1:

Tr
(
[U, V ]{U, V }

)
= Tr

(
UV UV + UV V U − V UUV − V UV U

)
= Tr

(
UV UV − V UV U

)
+Tr

(
UV V U − V UUV

)
= 0,

(5.1-11)

1If U and V commute the protocol fails, however the measure of the set of commuting 2× 2 matrices
is zero, and for two time evolutions picked at random the probability for them to commute is therefore
infinitesimally small.
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(a) Commutator device (b) Virtual roadmap

Figure 5.2: Adaptive error correction. (a) The basic building block of the rewinding protocol
is a device, labelled here as Q, that probabilistically applies the commutator of two unitaries U
and V on an input state |Ψ〉. In the figure the port corresponding to the commutator is indicated
by a light blue color, and the anti-commutator port is shown with a grey color. (b) The protocol
requires the commutator to be applied, but this only happens with some probability. In the
event that a Q-device applied the anti-commutator instead additional uses of Q can be used to
convert the anti-commutator into a commutator. The process for doing this is illustrated using
a virtual roadmap, and as long as the state exits in the lower right of this maze the commutator
will have been applied. The most direct path consists of applying the commutator and then the
anti-commutator, however this can also only be done probabilistically. If the anti-commutator is
applied in the second step, this too needs to be corrected, and the dashed line represents recursive
applications of the adaptive correction protocol.

due to the cyclic property of the trace. Since {U, V } is a 2 × 2 matrix the Cayley-
Hamilton theorem implies that {U, V }n can be written as a linear combination of I and
{U, V }, and (5.1-10) can therefore be reduced to the n = 0, 1 cases. Hence

Tr
(
[U, V ]{U, V }n

)
= 0. (5.1-12)

Since, as noted earlier, the square of any traceless 2 × 2 matrix is proportional to the
identity matrix, we have:

[U, V ]{U, V }n[U, V ]{U, V }n ∝ I, (5.1-13)

and multiplying this expression with [U, V ] from the left recovers (5.1-9). The way
in which (5.1-8) and (5.1-9) can be used to adaptively correct unwanted applications
of an anti-commutator can be illustrated using a virtual roadmap shown in Fig. 5.2.
Whenever the state exits in the lower right port of this ‘maze’ the commutator will have
been applied. The most direct path corresponds to applying (5.1-9) directly with m = 1,
however the application of the commutators and anti-commutators in the desired order
is naturally also probabilistic. An additional result presented in Ref. [396] is that a
photon entering the virtual maze will always exit in a finite number of steps, and this
means that the protocol can achieve an arbitrarily high probability of success at the
cost of a constant overhead in the running time. From (5.1-1) it can be seen that the
time it takes to rewind a system N timesteps grows linearly with N , and the running
time of the protocol is therefore T +O(1), where the second term accounts for the error
correction overhead. This linear scaling in the running time means that the system can
essentially be rewound in ‘real time’.
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5.1.1 Comparison with similar protocols
Before moving on to the experimental implementation of the protocol, it is worth

putting the underlying theory into the proper context by briefly comparing it to other
similar protocols. The most closely related protocol is the resetting protocol presented
in Ref. [402], and demonstrated in Refs. [403, 404]. This protocol works by preparing a
set of four probes in a product of two singlet states:

|Ψ−〉1,2 |Ψ
−〉3,4 . (5.1-14)

These probes are then made to interact with the target system one at a time, after which
they are projected onto a set of quasi-symmetric states, constructed from the symmetric
two-qubit states. More concretely, these states are on the form

1

A
(|k〉 |l〉+ |l〉 |k〉), (5.1-15)

where A is a normalization constant and

|k〉 , |l〉 ∈ {|0, 0〉 , |1, 1〉 , (|0, 0〉+ |1, 1〉)
√
2}, (5.1-16)

are the symmetric two-qubit states. If the projection succeeds the target system is
propagated by the identity operator. Similarly to the rewinding protocol that is the
focus of this chapter, the probability of success depends on the particular interaction
between the target and probe system.2 If the joint target-probe evolution is separable
then the success probability is exactly zero, in analogy to how the rewinding protocol
fails for perfectly commuting free and perturbed time evolutions. When the projection
fails the protocol can still be continued in order to increase the success probability,
however in contrast to [396] there is no proof that the success probability approaches
unity.

The second major difference between the resetting protocol of [402] and the rewinding
protocol is the running time. As mentioned in the previous section, the running time of
the rewinding protocol is T + O(1), whereas the resetting protocol has a running time
of 3T +O(1). Finally, the resetting protocol only propagates a system back to its initial
state, hence the name. This is in contrast to the rewinding protocol which can realise
higher powers of the inverse unitary.

A second protocol worth discussing is the method for reversing unknown unitaries
presented in Ref. [405]. The protocol is based on gate teleportation, and for qubits it
can be represented by the following circuit:

|ψ〉T H |k〉T

|Ψ−〉ab
U |l〉a

U−1Z1−lX1−k |ψ〉b
2The formulation of the rewinding protocol in the previous section did not explicitly include a probe

system to induce the perturbed time evolution V , however such a description is given in the supplemen-
tary material of Publication 2.
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Whenever the Bell-state measurement on the top two qubits results in the outcome |Ψ−〉
the protocol succeeds:

(〈Ψ−|T,a ⊗ 1b) |ψ〉T ⊗ (U ⊗ 1) |Ψ−〉ab ∝ U−1 |ψ〉b . (5.1-17)

The fact that the circuit above works can be understood by starting from a standard
gate teleportation circuit:

|ψ〉T H |k〉T

|Ψ−〉ab

|l〉a

U UZ1−lX1−k |ψ〉b

and noting that:
1⊗ U |Ψ−〉 = U−1 ⊗ 1 |Ψ−〉 . (5.1-18)

This relation is a direct consequence of the fact that the singlet state is anti-correlated
in every basis:

〈Ψ−|U ⊗ U |Ψ−〉 = 〈Ψ−|[cos θ 1− i sin θ(nxX + nyY + nzZ)]
⊗2|Ψ−〉

= 〈Ψ−| cos2 θ 1⊗2 − sin2 θ(n2xX
⊗2 + n2yY

⊗2 + n2zZ
⊗2)|Ψ−〉

= 1.

(5.1-19)

since:
1 = 〈Ψ−|U ⊗ U |Ψ−〉
= 〈Ψ−|(U ⊗ 1)(1⊗ U)|Ψ−〉
= (U † ⊗ 1 |Ψ−〉)†(1⊗ U) |Ψ−〉 ,

(5.1-20)

which is equivalent to (5.1-18). Similar relations exist for the other three Bell states.
Writing these states as |ψ〉 = 1⊗ Z lXk |Ψ−〉 = XkZ l ⊗ 1 |Ψ−〉 one finds:

1⊗ U |ψ〉 = 1⊗ UZ lXk |Ψ−〉
= XkZ lU † ⊗ 1 |Ψ−〉
= XkZ lU †Z lXkXkZ l ⊗ 1 |Ψ−〉
= XkZ lU †Z lXk ⊗ 1 |ψ〉 .

(5.1-21)

The transformation above can be understood as performing a specific set of sign flips
in the Bloch vector n⃗ defining the rotation axis of U . More specifically, these sign flips
correspond exactly to the minus signs of the σi⊗σi terms in the density matrices |ψ〉〈ψ|.
This offers a very intuitive way of understanding the protocol: since the density matrix
of |Ψ−〉 has a minus sign in all of its σi ⊗ σi terms:

|Ψ−〉〈Ψ−| = 1

4
[I −X ⊗X − Y ⊗ Y − Z ⊗ Z] , (5.1-22)
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the corresponding transformation of a unitary when exchanging the subspace that U
acts on is:

U =cos θ 1− i sin θ(nxX + nyY + nzZ)

7→ cos θ 1− i sin θ(−nxX − nyY − nzZ) = U−1
(5.1-23)

Similarly, the density matrix of the state |Φ+〉 only has a minus sign in the Y ⊗ Y
term, and hence the transformation of the unitary is a sign flip in the Y term, which
corresponds to the transpose:

1⊗ U |Φ+〉 = UT ⊗ 1 |Φ+〉 . (5.1-24)

The teleportation circuit of the protocol is probabilistic, since 3/4 of the time the Bell-
state measurement will not project the state onto |Ψ−〉, but one of the other three Bell
states, thereby giving the output state:

U−1Z1−lX1−k |ψ〉 , (5.1-25)

where at least one of the Pauli terms is present. These Pauli terms cannot be undone,
since they act before U−1. These failed outcomes can still be corrected though, by apply-
ing U , then the Pauli terms defined by the Bell-state measurement in the reverse order
and finally attempting the teleportation again. Unlike the resetting scheme described
at the beginning of the section, it’s obvious that the success probability of this method
converges to 1. However, the error correction requires the ability to implement specific
Pauli operations in accordance with the error syndrome, and the protocol does therefore
not meet the definition of universality used here.

5.2 Photonic realisation of the rewinding protocol
The rewinding protocol described in the previous section requires the ability to im-

plement the commutator between two time evolutions. This can be done using what
is known as a quantum switch [54, 55], and the fact that this device has a relatively
straightforward optical realisation makes the protocol particularly suited to photonic
implementations [11,406]. A quantum switch acts on two unitaries U and V and trans-
forms them into a controlled superposition of the operations being applied in different
orders:

(U, V ) 7→ UV ⊗ |0〉〈0|C + V U ⊗ |1〉〈1|C . (5.2-1)

To see how this transformation can be used to generate the commutator, consider the
superposition of operations above acting on the state |Ψ〉T ⊗ |+〉C :(

UV ⊗ |0〉〈0|C + V U ⊗ |1〉〈1|C
)
|Ψ〉T ⊗ |+〉C

=
1√
2
UV |Ψ〉T ⊗ |0〉C +

1√
2
V U |Ψ〉T ⊗ |1〉C

=
1

2
UV |Ψ〉T ⊗ (|+〉C + |−〉C) +

1

2
V U |Ψ〉T ⊗ (|+〉C − |−〉C)

=
1

2
{U, V } |Ψ〉T ⊗ |+〉C +

1

2
[U, V ] |Ψ〉T ⊗ |−〉C .

(5.2-2)
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Figure 5.3: MZI quantum switch. A quantum switch is a device which realises a coherent
superposition of two or more gate orders. The most common way of building a quantum switch
is using a Mach-Zehnder interferometer with a folded geometry, aligned in such a way that the
two arms of the interferometer pass through the polarization gadgets implementing the unitaries
U and V in different orders. Depending on which port of the output beamsplitter the photon
exits in either the commutator or anti-commutator is applied.

Projecting the control degree of freedom on the state |−〉 successfully implements the
commutator. The most common way to generate (5.2-1) in a photonic setting is by
spatially superposing a single photon in two different modes using a balanced beamsplit-
ter. The discrete time evolutions U and V can be realised using polarization gadgets.
Aligning the two photon paths in such a way that they propagate through the gadgets in
different orders then generates the desired transformation. In such an implementation,
the photon path acts as the control degree of freedom, while the photon polarization acts
as the target. A second beamsplitter can then be used to perform a Hadamard trans-
formation on the control degree of freedom, thereby correlating the (anti-)commutator
with the spatial mode of the photon. This is simply a Mach-Zehnder interferometer
containing two polarization gadgets, and an example drawing of such setup is shown in
Fig. 5.3.

The rewinding protocol could be realised by constructing two such interferometric
quantum switches, and performing the free time-evolution transformation UN on the
polarization as the photon transits from one quantum switch to the other. However,
such an implementation is conceptually unappealing, since it would necessitate multiple
physical realisations of the transformations U and V . This would in turn require the
transformations to be known, which stands in contrast to the universality of the protocol.
It was therefore decided to only use a single polarization gadget for each of the two time
evolutions U and V , and to actively route the photons through the setup such that
they could pass through the same polarization gadgets, as well as the quantum switch,
multiple times. This routing will be discussed more in Section 5.2.3.

Active routing could also be used to implement the adaptive error correction protocol
shown in Fig. 5.2, however this was not done in the experiment. Instead, a single-step
version of the protocol, which, as shown in Fig. 5.4, fails if the anti-commutator is applied,
was implemented. The reason for this is that it was deemed sufficiently challenging and
interesting to implement the protocol even in the absence of the adaptive corrections.
The two main challenges associated with the adaptive feed-forward is the additional
photon loss, and the inability to herald a failure. The latter would require access to
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Figure 5.4: Single-step protocol. For the rewinding protocol to succeed the commutator
between the free and perturbed time evolutions has to be applied twice, and this is done prob-
abilistically by the quantum switches, labelled Q in the figure. In a single-step version of the
protocol the execution is terminated if the anti-commutator is applied instead of the commutator.

non-demolition measurements on single photons, that would reveal their spatial mode
without collapsing the polarization state or absorbing the photon in question. Without
access to such measurements, every set of implemented feed-forward corrections would
have to be done in series, so as to not interfere with one another. This would in turn
add a significant experimental overhead, particularly in the form of photon loss.

5.2.1 Set of implemented parameters
The goal of the experiment was to certify that the rewinding protocol works inde-

pendently of the choice of free time evolution U , perturbed time evolution V , input
target state |Ψ〉, as well as the number of time steps to be rewound n. This could be
accomplished by sampling these parameters randomly and observing that the inverse
time evolution is realised with high fidelity. In our experiment, though, we instead opted
for realising a specific, predefined set of parameters. This was done in order to facili-
tate a comparison with a ‘classical’ experimenter, given access to the same resources as
a quantum experimenter but unable to superpose time evolutions.3 The implemented
pairs of unitaries were picked from the following set:

SU = {Up ∈ SU(2)|Up = e−i arcsin(α)σz , α =
p

10
, p = 1, . . . , 10} (5.2-3)

SV = {Vq ∈ SU(2)|Vq = i cos(θ)σz + i sin(θ)σy, θ =
qπ

11
, q = 1, . . . , 10}. (5.2-4)

Here the free time evolution U is defined in terms of the Hamiltonian generating the time
evolution, V is a perturbed time evolution, and p and q are parameters that change the
degree to which U and V commute. Since p and q can be chosen independently the set
contains 100 pairs of unitaries. Not all of these pairs were implemented in the experiment,
since the success probability for pairs of unitaries that almost commute would be too
small. Instead the only pairs of unitaries with a success probability greater or equal to
1% were chosen. Let

Nc(U, V ) = 1−
(
||[U, V ]||2

2

)2

, (5.2-5)

3This classical strategy is detailed in the Supplementary Material of Publication 2 and will not be
elaborated on in this chapter.
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Figure 5.5: Success probabilities. The success probability of the protocol depends on the
magnitude of the commutator between the free and perturbed time evolutions. In the experiment,
these evolutions are parametrised by the integers p and q, and the figure shows the dependence of
the success probability on these parameters. The red trace encloses the parameter set for which
the success probability is strictly greater than 1%. The corresponding set of 50 pairs of unitaries
were the ones implemented in the experiment.

be the commutativity of two unitaries. Then the set S of implemented pairs of unitaries
can be expressed as

S = {U ∈ SU , V ∈ SV |Nc(U, V ) ≤ 0.9}. (5.2-6)

In total there are 50 pairs of unitaries in this set, and their relation to the parameters
p and q is illustrated in Fig. 5.5. The input states were chosen such that they formed a
tomographically complete set, more specifically:

|Ψ〉 ∈ {|H〉 , |+〉 , |−〉 , |R〉}. (5.2-7)

A tomographically complete set of input state allows for the process matrix to be re-
constructed, which in turn could be used to verify that the process indeed corresponds
to the inverse unitary to some power. This will be discussed in Section 5.3.3, however
for the publication a different metric for evaluating the performance of the protocol was
chosen. Finally, the number of time steps n was chosen to be n = 1, 2, 3. These values
were chosen in order to limit the total measurement time of the experiment. Higher
values of n make the protocol take slightly longer, but more significantly lead to higher
photon loss as the total optical path length through the experiment is increased.

Every combination of these parameters was implemented three independent times,
giving a total of 50 · 4 · 3 · 3 = 1800 experimental runs. As mentioned in the beginning of
this section, the quantum switch needed to apply the commutator of the unitaries U and
V can be realised using a Mach-Zehnder interferometer. This type of implementation was
initially pursued for the experiment, because the set SV originally contained unitaries on
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V

U

(a) Setup sketch (b) Pre-box setup

Figure 5.6: MZI design. The initial experimental setup used a Mach-Zehnder interferometer
for the quantum switch, due to the assumed need to implement σx rotations on the polarization
degree of freedom. As shown in (a), both arms of the interferometer pass through both polariza-
tion gadgets. An additional path through the U -gadget, implementing the free time evolution,
allows this unitary to be applied an additional n times. Two mirrors mounted on a translation
stage connected to a piezo-actuator in one arm of the interferometer allow for control over the
relative path length and interferometer phase. (b) is a photograph of the first iteration of the
setup, which did not include thermal or acoustic insulation. Note that a few optical elements in
(a) were not present in (b) at the time of the photo.

the form Vq = cos(θ)σz + sin(θ)σx, which, as discussed in Chapter 3, are not reciprocal
when implemented using wave plates. A sketch as well as a photo of the initial MZI
setup is shown in Fig. 5.6.

The main challenge associated with a Mach-Zehnder based quantum switch is the
phase stabilization, since path length fluctuations on the order of nanometers will ap-
preciably change the interference condition. Since the core idea of a quantum switch is
that a non-vanishing commutator between two unitaries induces a relative phase shift
between the two arms of the interferometer, one cannot easily use active phase stabi-
lization to servo out phase drifts. This is because the locking light would travel through
the same polarization optics as the single photons, and therefore acquire the same phase
shift. The locking condition would therefore change depending on which polarization
unitaries are implemented, and one would like the device to function without requiring
any knowledge of the unitaries being applied.

Instead of active stabilization, one therefore has to rely on passive stabilization of
the interferometer phase, and periodically reset the phase to prevent it from drifting
too far from the desired set point. Due to space constraints, the interferometer for
the quantum switch had to be built on an elevated aluminium breadboard. This further
exacerbated the problem, because of the poor rigidity of the breadboard which decreased
the mechanical stability of the setup.

To improve the passive stability of the bulk interferometer, it was housed inside an
acrylic box, coated with Sorbothane and Thinsulate for acoustic and thermal insulation.
This was successful in reducing the passive phase drift of the interferometer. A measure-
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Figure 5.7: MZI phase drift. The drift rate of the Mach-Zehnder interferometer was measured
as a function of time. The observations were done by scanning the MZI phase, and then resetting
it to the quadrature point every 60 seconds while observing the output power in one port of the
interferometer. At the quadrature point the relation between phase and power is linear. The drift
in each minute long observation window was obtained by first rescaling the power measurement
to the min / max of the phase scan, and then doing a linear fit to the time trace of the power.
In the plot, a transient approximately of 5 h is present, and this is due to the thermalization of
the box within which the interferometer was housed. After this initial transient the drift rate of
the interferometer settles at around 97mradmin−1.

ment of the drift is shown in Fig. 5.7 where it can be see that the drift rate settles at
around 97mradmin−1. This measurement was performed by scanning the phase of the
interferometer every minute, and then resetting it to the quadrature point to observe the
drift. The observed drift rate, while by itself not insignificant, essentially just quantifies
the frequency noise at DC. The mean standard deviation of the phase in the 1-minute
measurement intervals was 73mrad, which indicates that the higher frequency phase
noise is non-negligible.

Another factor that affects the phase of the interferometer is the actual phase re-
setting procedure. For the Mach-Zehnder, this was done by first rotating all the wave
plates inside the quantum switch to a neutral position where they collectively imple-
ment an identity operation on both interferometer arms, and then moving translation
stages to inject laser light into the setup, as well as a powermeter and beam-blocks to
protect the single-photon detectors. The voltage of a piezo-electric actuator connected
to a mechanical translation stage was then scanned while observing the output power.
An example of such a phase scan is shown in Fig. 5.8a. After performing the scan, a
quadradic polynomial was fitted to the minimum of the sine curve, and the piezo voltage
was set to the minimum of this fit.

In practice, this turned out to work less well than expected. This can be seen in
Fig. 5.8b, which shows the mean of the normalized power, taken over the first five
seconds after resetting the phase. Ideally, the normalized power should be at exactly
0, since in the figure this corresponds to the quadrature point to which the phase was
attempted to be set. However, there are quite substantial deviations from this point,
indicating a large phase offset. This could partially be attributed to the hysteresis in
the piezo actuator, which would cause the voltage-to-phase map generated in a scan
to be different from the voltage-phase relation when resetting the piezo voltage. In an
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(a) MZI phase scan (b) MZI average power

Figure 5.8: MZI phase resetting. (a) The phase of the MZI was scanned by applying a
ramping voltage to a piezo actuator connected to an optical trombone, consisting of a linear
translation stage on which two mirrors were mounted. The piezo was driven using a high-voltage
amplifier (Thorlabs MDT693B) and the voltage was ramped digitally in 0.3V increments, stop-
ping to acquire data after each step. The blue circles represent the measured power, while the
red curve shows a quadratic fit to the minimum of the scan, used to determine the location of
the minimum in terms of the piezo voltage. The jumps in the data are likely caused either by
random phase noise unrelated to the scan, or friction in the translation stage. (b) As described in
Fig. 5.7, the interferometer drift was measured by periodically resetting the phase of the MZI to
the quadrature point. If the power is normalized to the range [−1, 1], as is the case in this figure,
the quadrature point corresponds to the zero crossing of the power. The graph above shows the
output power in one interferometer port averaged over the first five seconds of measurement. If
the phase is set correctly then the power in this time interval should be close to zero. As can be
seen in the figure, the phase reset procedure does not consistently reset the phase to the correct
value. This may be caused by a combination of hysteresis effects in the piezo actuator, as well
as in the translation stage used to change the path length difference between the interferometer
arms.

attempt to counteract this, the voltage was always reset to zero before ramping it to
the intended value. It was also observed that rapid changes to the piezo voltage would
excite mechanical modes in the spring of the translation stage, which could also give
rise to phase offsets.

An alternative phase resetting procedure would have been a lock-and-hold approach,
in which feedback control is used to set the interferometer phase to the desired value,
after which the control loop is switched off while maintaining the control signal. This
could likely have yielded improved performance, however locking an interferometer on a
dark fringe is unfavourable due to the even symmetry of the sine curve around the min-
imum. This approach would furthermore not have alleviated a second problem problem
with the periodic phase resetting procedure, which is simply the time overhead. While
scanning the phase of the interferometer only took a few seconds, the time spent moving
the various translation stages, and in particular rotating the wave plates, contributed
a significant amount to the overall measurement time since not all of these operations
could be performed in parallel, due to the serial nature of the control electronics.

It was found that the data acquisition time only constituted between one half and one
third of the total measurement time, and this, in combination with the aforementioned
phase control challenges, led to replacing the Mach-Zehnder with a Sagnac-based quan-
tum switch. While this would not work with σx unitaries without the gadgets discussed
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in Chapter 3, simply replacing the σx terms with σy does not change the commuta-
tivity of the unitaries in the two sets (5.2-3) and (5.2-4), and enables a common-path
implementation.

In order to retain the option of going back to the Mach-Zehnder based quantum
switch, the Sagnac interferometer was constructed using the existing MZI by inserting
additional mirrors that routed the light back to the same beamsplitter and combined
the two interferometer arms into one. This led to a more complicated structure of
the interferometer than otherwise necessary. The full experimental setup is shown in
Fig. 5.10, which can be compared with the initial MZI-based quantum switch in Fig. 5.6.
The Sagnac-based quantum switch exhibited no discernible phase drift, but did still
have a small amount of phase noise, as shown in Fig. 5.9, however laser intensity noise
was not accounted for in the stability measurements. The visibility of the interferometer
was checked by changing the interference condition using the wave plates, and observed
visibilities were typically in excess of 0.995.

Though not part of the quantum switch itself, the interferometer was also designed
to accommodate a second beam path through the polarization gadget implementing the
free time evolution U , which was applied to the photon between the two commutators
as part of the rewinding protocol. This beam path was vertically offset from the in-
terferometer beam path. In order to ensure that the polarization transformations in
the different beam paths were identical, six randomly chosen unitary transformations
were implemented using the wave plates and measured along four different spots on the
wave plates. Each unitary was implemented only once, to ensure that the variability in
the wave-plate angles did not enter into the measurement results. The fidelity of the
reconstructed unitaries with respect to the ideal ones were then calculated. The results
of these measurements are shown in Fig. 5.11. It can be seen that the difference between
individual unitaries is greater than the standard deviation of the different measurements
of the same unitaries, indicating that the wave plates are spatially uniform.

In order to reduce the amount of polarizing noise in the interferometer the mirrors
were chosen to have a low polarization-dependent reflection coefficient. At 1546 nm,
which was the wavelength of the single photons in the experiment, regular gold mir-
rors exhibit remarkably low polarization dependent loss, with reflection coefficients of
0.966 and 0.965 for the S- and P-polarizations respectively. The downside of this is
the relatively high loss of 3.5% per reflection. For n = 3, meaning the photons prop-
agate through the loop containing U three times, the total amount of reflections is
22, which contributes a total loss of 0.96522 = 0.46, which while not dominant, is still
non-negligible.

5.2.2 Photon routing
In order to only have a single physical realisation of the time evolution operators U

and V it was necessary to actively route the single photons through the experiment. The
routing was performed using two high-speed fiber electro-optic switches from Agiltron
(Premium NanoSpeed 2x2). The switches have a nominal 3 dB rise time of about 100 ns
and repetition rate of 1MHz. However, in practice the rise time was measured to be
significantly higher, and the time needed to reach a sufficiently high contrast was closer
to 150 ns (see Fig. 5.12a). Two switches, S1 and S2, were used in the experiment, and



5.2. PHOTONIC REALISATION OF THE REWINDING PROTOCOL
185

(a) Power time trace (b) Phase histogram

Figure 5.9: Sagnac phase stability. A Sagnac interferometer was used for the quantum switch
in the experiment in order to increase the passive phase stability, and optical power measurements
were performed in order to quantify the noise of the interferometer. (a) shows a time trace of
the output power in one port of the interferometer, normalized to the range [−1, 1]. Due to
the common path geometry, no phase drift can be observed, although a small amount of phase
noise is present. (b) quantifies this phase noise and shows a histogram of the phases in (a). The
standard deviation of this distribution is 4.7mrad, and the mean has been offset to zero. The
red curve is a Gaussian fit to the data.

programmed to implement the following steps:

1. S1 routes the photon from the state-preparation stage into the quantum switch.

2. S2 sends the photon to U a second time.

3. S2 traps the photon in a loop for n round trips.

4. S2 releases the photon from the loop

5. S1 sends the photon back to the quantum switch.

6. S2 and S1 route the photon to a tomography stage.

The corresponding switch states during these steps shown in Table 5.1.

Switch
Step 1 2 3 4 5 6

S1 low low low low high low
S2 low low high low low high

Table 5.1: Switching voltages for the two EO-switches during the different steps of the protocol.

Steps 1 and 2, as well as 4 and 5, can both be combined into single steps, and this
logic sequence therefore corresponds to four distinct states. An oscilloscope trace of the
FPGA pulse sequence for n = 2 is shown in Fig. 5.12b, while a graphical illustration
of the four switch states and the photon routing is shown in Fig. 5.13. For simplicity,
the switches were connected in such a way that the voltage applied to the switches was
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Figure 5.10: Experimental seutp. The experimental seutp consisted, broadly speaking, of
four different parts. The first of these is the single-photon generation part shown in the top left, in
which pairs of single photons are generated in a collinear type-II SPDC process using a ppKTP
crystal inside a Sagnac interferometer. Since the experiment did not make use of two-photon
entanglement the source was pumped using a single polarization and direction. The second part
is the quantum switch in the centre of the figure, for which the photon path is highlighted in blue.
This quantum switch is simply a Sagnac interferometer with two polarization gadgets inside of it.
The somewhat circuitous photon path was a result of non-intrusively modifying the original MZI
design in Fig. 5.6, and few mirrors have been omitted for simplicity. The third principal part of
the setup is the feed-forward elements, consisting of digital logic in the form of an FPGA, as well
as two ultra-fast electro-optical switches S1 and S2. These routed the photons and allowed them
to propagate through the quantum switch as well as the U -gadget multiple times. The final part
of the setup is the quantum tomography stage, drawn next to the single-photon source. Here
the polarization state of the single photons was measured and later reconstructed. Additionally,
the output of a continuous-wave (CW) laser was split using a fiber beamsplitter connected to
a coupler and a mirror on motorized translation stages. These were used to inject laser light
into the state-preparation stage as well as the Sagnac during the pre-measurement polarization
compensation procedure.

low (zero) in the first step. The switching logic was implemented on a Lattice iCEstick
FPGA clocked at 200MHz, and programmed in Verilog.

In order to deterministically route the single photons, it was necessary to synchronise
the FPGA with the photon generation. The first step of this was to trigger the FPGA
pulse sequence on the detection of a heralding photon. This was done by splitting off
the output signal of the corresponding superconducting nanowire single-photon detector
(SNSPD) after amplification, but before the time-tagger. This split-off signal was then
sent to a comparator (Pulse Research Lab PRL-350TTL) to ensure a consistent and
sufficiently strong output signal. Since the cryostat housing the SNSPDs was situated
in a different laboratory, separated by approximately 100m of optical fiber, this electrical
signal was converted to an optical signal at 1310 nm using a Highland Technology J720
electrical-to-fiberoptic converter. After propagating back through the fiber separating
the laboratories the optical signal was then converted back into an electrical signal using
a corresponding fiberoptic-to-electrical converter (Highland Technology J730), and this
signal was finally fed to the FPGA. If the FPGA was already executing a pulse sequence
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Figure 5.11: Wave plate characterisation. The spatial uniformity of the wave plates was
verified by performing tomography on six different unitaries at four different beam positions along
an axis transverse to the beam. Since the wave-plate angles are different for each unitary the
wave plates are in effect sampled on a set of points lying in a plane, not a line. The fidelities
are defined as the mean fidelity of the two inputs states, |H〉 and |+〉, under the reconstructed
unitaries with respect to the theoretical unitary: F = 1/2[〈H|U†

expU |H〉 + 〈+|U†
expU |+〉]. The

mean standard variation of this fidelity across the different measurement points was 7 ·10−4. The
error bars show the standard deviation of the fidelities for each unitary.

the trigger signal would be ignored, and otherwise a new sequence would be initiated.
Upon triggering, the FPGA would output a trigger signal of its own, which was converted
to an optical signal and sent back to the lab housing the SNSPDs and time tagger. There
it was detected using an InGaAs photodiode (ThorLabs DET08CFC/M) and recorded
using the time tagger.

In order to give time for the heralding photon to travel to the detectors, the resulting
trigger signal to propagate back to the laboratory, as well as for the EO-switches to
change state, it was necessary to include several fiber delay lines in the experiment. An
initial fiber delay of approximately τ1 = 519 ns, corresponding to 106m of fiber, was used
between the state-preparation stage and the quantum switch. This delay fiber is only
traversed once by every photon, and served to compensate for part of the trigger delay.
A second delay of τ2 = 533 ns (109m) was placed between the output of the quantum
switch and the second EO-switch. This delay was traversed twice by every photon. The
first pass compensated for the remaining trigger delay, while the second pass gave the
switch S1 time to change state in order to send the photon to the tomography stage. A
final fiber delay of τ3 = 760 ns (155m) was placed inside the loop which trapped the
photon, the purpose of which was to give S2 time to trap / release the photons.

For the routing to work properly, it was also necessary to synchronise the switch
states with the photon as it propagated through the experiment. Since the photon
cannot be directly observed as it is propagating through the setup, the right switch
timings were found by varying the electrical delays and searching for peaks in two-
photon histograms at expected delays.
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(a) EO-Switch response (b) FPGA output, n = 2

Figure 5.12: Photon routing oscilloscope time traces. An oscilloscope was used to char-
acterise the response of the EO-switches, as well as the FPGA pulse sequence. In both figures
the horizontal grid division is 100 ns. (a) shows the EO-switch response to a 1MHz square wave,
measured using a CW laser and a fast photodiode. The rise time of the switch is approximately
150 ns, and the fall time is 200 ns. (b) The FPGA pulse sequence is triggered directly by a split-off
and amplified detector signal, shown as the red trace in the figure. The yellow and blue traces
correspond to the FPGA outputs connected to S1 and S2, respectively, and are shown for the
n = 2 pulse sequence.

5.2.3 Polarization compensation
Since the target qubit on which the rewinding protocol was applied was encoded in

the polarization state of a single photon, it was necessary to remove any undesired po-
larization rotations induced by the various optical components. Although single-mode
optical fibers exhibit fairly low birefringence, they are in most cases sufficiently long that
they in effect act as polarization scramblers, and these random polarization transforma-
tions need to be undone. The full-width half-max wavelength width of the photons used
in the experiment was approximately 1 nm, which is narrow compared to the typical dis-
persion of SMF-28 fiber. The polarization transformation could therefore be considered
unitary.

To undo the transformations of the various fibers in the experiment, a combination of
fiber polarization controllers and wave plates were used. A fiber polarization controller
typically consists of three small loops of fiber, spooled with a radius chose such that each
loop acts as a quarter- or half-wave plate. In this way, a Simon–Mukunda gadget can be
realised directly in fiber, and if the retardances of these fiber loops are correct they can
be used to implement any unitary on the fiber. In practice, however, the spool radius
is fixed, and the retardances are only correct for a single wavelength, which means that
the set of implementable unitaries is restricted. Fiber polarization controllers also have
an additional problem. To undo an arbitrary unitary U, it is sufficient to implement
some unitary W such that:

WU |H〉 = |H〉 (5.2-8)
WU |+〉 = |+〉 (5.2-9)

The choice of states here is arbitrary, and the only condition is that the two states are
not orthogonal or parallel. The conditions (5.2-8) and (5.2-9) have a simple operational
interpretation: they correspond to preparing the state |H〉 (|+〉) before the device imple-
menting U, and minimizing the transmission through a |V 〉〈V | (|−〉〈−|) polarizer after
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Figure 5.13: Photon routing. The switching logic consists of four distinct states. (a) The ‘off’
state of the EO-switches was chosen such that a photon from the source is sent first through the
quantum switch and then to U a second time. (b) The state of the second switch changes to
trap the photon in a loop, where it propagates through U an additional n− 1 times. (c) The two
switches change their state to release the photon back from the loop and send it to the quantum
SWTICH a second time. (d) The photon is routed to a measurement device. In each diagram
the photon is represented by the green circles, with the initial state being marked by a dark
contour, while the other circles represent the photon at later times. The bright green lines in the
EO-switches indicate the photon path through the switch, and the numbers show the order in
which the switches are traversed.

the device. The problem that arises when attempting to simultaneously satisfy these
two conditions using a fiber polarization controller is that they are not decoupled. This
is because the transformation implemented by the fiber polarization controller, as well
as the state it acts on, are uncharacterised.

By using a quarter- and half-wave plate in combination with a fiber polarization
controller, however, it becomes possible to decouple the two conditions. This method is
illustrated in Fig. 5.14 and Fig. 5.15, and works the following way: an |H〉〈H| polarizer
is used to initialize the state |H〉, after which it propagates through a QWP fixed at 45°,
turning |H〉 into |L〉. The light then propagates through a HWP, and gets transformed
into |R〉 independently of the angle of the HWP. A fiber polarization controller can then
be used to minimize the transmission of the fiber output through a |V 〉〈V | polarizer.

Next, a |+〉〈+| polarizer is used to prepare the state |+〉, which is unaffected by the
QWP since it is aligned with its optical axis. The HWP can now be used to map |+〉
to any other linearly polarized state. Since the fiber polarization controller has been to
used to ensure that |H〉 gets mapped to itself after the fiber, the great circle that is the
image of |+〉 under the HWP therefore gets mapped to the equatorial plane after the
fiber. Simply rotating the HWP thus sets the phase between the horizontal and vertical
polarization components after the fiber, without affecting their magnitudes and (5.2-9)
can be set independently of (5.2-8).
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Figure 5.14: Polarization compensation method. A sufficient condition to ensure that a
fiber implements the identity operation on the polarization degree of freedom is that it maps
|H〉 7→ |H〉 and |+〉 7→ |+〉. Satisfying this condition using a fiber polarization controller alone
can be challenging, because the two mappings cannot be adjusted independently. By using
two wave plates in addition to the fiber paddles, however, the two measurement bases can be
decoupled [407]. One begins by using a polarizer to prepare the state |H〉, which then propagates
through a QWP fixed at 45°, transforming it to |R〉. The HWP then, independently of its angle,
transforms this state to |L〉, and the fiber paddles can be used to extinguish the transmission
through the PV -polarizer after the fiber. Next, one prepares the state |+〉, which is left unchanged
by the QWP. The HWP can then be used to transform |+〉 into any linear state. Since the fiber
maps |L〉 7→ |H〉, the set of linear polarizations is mapped to the equator of the Bloch sphere.
This guarantees that there is a linear polarization that gets mapped to |+〉, and the P−-polarizer
can therefore be extinguished by simply rotating the HWP. The evolution of the polarization
states during the compensation procedure is visualized in Fig. 5.15.

This decoupling of the two polarization bases requires the quarter- and half-wave
plates to be ideal, and also necessitates that the angles of the polarizers are set correctly.
Any imperfections will induce a small coupling between the polarizations, meaning that
when the HWP is rotated to set the phase, the state |H〉 experiences a slight rotation
at the output of the fiber. In practice it was found that this effect can be mitigated by
employing an iterative compensation procedure, in which one alternates attempting to
satisfy the two conditions. In the experiment, two rounds of compensation was usually
sufficient to ensure a polarization contrast of at least 40 dB for both components.

Due to the photon propagating through some parts of the setup several times, the
polarization compensation procedure was more involved than it would be for a straight
linear path. As shown in Fig. 5.10, translation stages were used to inject CW laser light
at two different points in the setup, in order to be able to perform the necessary polar-
ization measurements. The full fiber compensation procedure is illustrated in Fig. 5.16.

While standard single-mode fiber such as SMF-28 is not strongly dispersive, the same
was not true for the fiber based active EO-switches. A consequence of this dispersion
is that the random polarization transformations applied to the light as it propagates
through a switch is also wavelength dependent. A measurement dispersive nature of the
polarization rotations is shown in Fig. 5.17. This means that to effectively compensate
these polarization transformations using only unitary transformations, the laser light
used in the compensation procedure has to closely match the wavelength of the single
photons. Since this effect was unexpectedly large it was not initially tested or accounted
for. As a result, the polarization compensation in the measurement runs for n = 1, 2
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(a) Before fiber, all steps (b) After fiber, no compensation

(c) After fiber, paddle compensa-
tion

(d) After fiber, full compensation

Figure 5.15: State evolution during polarization compensation. The polarization com-
pensation method uses two input states, |H〉 and |+〉, which are shown in blue and yellow,
respectively. In (a) the two states are drawn immediately before the fiber to be compensated,
after they have passed through the two wave plates (cf. Fig. 5.14). The input state |+〉 is drawn
as a great circle representing all the possible states it could have been mapped to by the HWP.
(b) shows the states in (a) after the fiber, which performs a random rotation. In (c) the fiber
polarization controller is used to map |H〉 7→ |H〉, and this leaves |+〉 somewhere on the equator.
(d) Setting the appropriate HWP angle ensures |+〉 7→ |+〉.

was done with a laser wavelength of approximately 1549 nm, which differs from the
single-photon wavelength by a few nm.

Before the measurements for n = 3 this effect was discovered, and the polarization
compensation was instead done with a tunable laser. Care was then taken to ensure that
the polarization contrast was maximized for the laser and single photons simultaneously.
We believe that this accounts for the consistently higher fidelities observed for n =
3, even though the higher loss and longer optical path make the measurements more
challenging than for n = 1, 2.

In addition to the compensation of the rotations induced by the fibers, it was also
necessary to undo the polarization-dependent phase shifts caused by the mirrors inside
the Sagnac interferometer. Since these phase shifts have a preferred basis, defined by
the orientation of the mirror, it is sufficient to realise polarization phase shifts in this
particular basis to perform the compensation. In the experiment this was achieved using
multi-order quarter-wave plates mounted on z-axis rotation mounts. Rotating the wave
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Figure 5.16: Polarization compensation procedure. The polarization compensation is done
in five steps between the various points indicated above. In the figure, Q represents the quantum
switch. The path S2 → C → D → S2 is the loop containing U , and has been drawn separately
from Q for clarity. The procedure begins by using a translation stage to inject laser light at
the point B, and into the output coupler of the quantum switch. Using the fiber polarization
controller, or paddle, P1 as well as the wave plates at B the path B → TOMO can be compensated.
This guarantees that the polarization transformation between these two points is the identity
operation. Next, the pair of wave plates at C are used together with P2 to compensate the
path B → C. Then the same procedure is applied using P3 on the path D → TOMO. Since
B → C, B → TOMO and D → TOMO are now compensated this implies that D → C is also
compensated. At this point the light source is switched to the state-preparation stage (SP), and
the path SP → TOMO is compensated using P5 and the wave plates in SP. Finally, SP → A is
compensated using P4 and the wave plates at A. These conditions now imply that D → A is also
compensated and the experiment can proceed.

plate changes the effective birefringence and can be used to tune the phase between two
linear polarization components.

While this approach does not guarantee full 2π tunability of the phase unless the
birefrigent material is sufficiently thick, it turned out to work quite well in practice,
especially since the sign of phase shift can be change by rotating the wave plate by
90°. A total of five multi-order wave plates were used for polarization compensation
inside the Sagnac, with some compensating for a single mirror and some for multiple
mirrors. An additional two were used inside the U -loop. It was observed that the multi-
order QWPs only compensating a single mirror were able to reach higher polarization
extinction ratios, regularly in excess of 50 dB. This was likely caused by different mirrors
giving phase shifts along slightly different axes. The use of additional multi-order QWPs
to compensate each mirror separately was however prevented by space constraints.

5.2.4 Depolarizing noise
The polarization compensation procedure described in the previous section requires

the polarization transformations of the various components in the setup to be unitary.
This is a valid assumption as long as the total delay between the polarization components
is small compared to the coherence length of the light, which for our approximately 3 ps
long photons is the case even for several km of fiber, due to the low polarization mode
dispersion (PMD) exhibited by single-mode telecom fibers. The same does not necessar-
ily hold true for all the components in the setup though. In particular, the electro-optic
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Figure 5.17: Wavelength-dependent polarization contrast. Measurements of polarization
contrast as a function of wavelength were performed for two different optical components: a
standard SMF-28 fiber (blue), approximately 10m in length, and a high-speed electro-optic fiber
switch (green). The data was taken by performing polarization compensation in one basis at a
single wavelength, in this case 1548 nm, and then scanning the laser wavelength to see how the
extinction for the compensated polarization changes. As can be seen in the figure the SMF-28
fiber exhibits only negligible wavelength dependence, and maintains a polarization contrast of
10,000:1 over 15 nm. The EO-switch, on the other hand, exhibits a strongly wavelength-dependent
behaviour, with a drop in contrast by as much as a factor of five in a single nm step. For this
reason it is critical that the wavelength of the laser used in the polarization compensation step
of the experiment closely matches that of the single photons.

switches used in the experiment exhibit a non-negligible PMD. This is not due to the
inherent birefringence of the LiNbO3 crystal used since, according to the manufacturer,
the light propagates along the optical axis of the crystal, meaning that both polarization
components see the ordinary refractive index. Instead, the PMD is likely caused by the
waveguide structure used in the device. A rectangular ridge waveguide, for example,
will typically have polarization-dependent propagation constants.

The manufacturer-specified PMD for the EO-switches was 0.1 to 0.3 ps, and this num-
ber should be understood as the maximum delay between two polarization components
propagating through the device. For n = 3 the photons travel through the EO-switches
a total of seven times, and the total delay between the polarization components can
therefore be on the order of the coherence length of the photons. In practice the po-
larization state of a photon as it enters an EO-switch is essentially random, since the
polarization compensation procedure does not enforce any condition inside the switches.
The PMD of the EO-switchess therefore acts as a random walk, instead of coherently
building up in a certain basis.

In addition to the EO-switches the multi-order quarter-wave plate also introduce
some amount of depolarizing noise. Each quarter-wave plate delays one polarization
component by 5.25 wavelengths, corresponding to a PMD of approximately 0.027 ps,
which is roughly ten times less than the EO-switches. However, for n = 7 the photons
propagate through a total of 16 multi-order QWPs, several of which will give phase
shifts that add, and the wave plates may therefore contribute a small amount to the
overall depolarizing noise. Finally, the wavelength-dependent polarization rotations in
the EO-switches discussed in the previous section can also lead to depolarizing noise.
However due to the relatively narrow spectral bandwidth of the photons this is likely a
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tertiary effect.

5.3 Data acquisition and analysis
For each value of n the experiment was aligned and the polarization compensation

was performed. Data was then acquired for the different values of p and q in descending
order, starting with (p, q) = (10, 9), then (10, 8) and so on. For each value of p, q the
four different input states |H〉, |+〉, |−〉, |R〉 were prepared in sequence, and quantum
state tomography was performed on the resulting output state. After performing the
tomography for every combination of input state and p, q the whole process was re-
peated two more times, for a total of three repetitions. These were carried out without
interruption or re-alignment of the setup. The only interruptions came from the need
to re-condense the helium inside the closed-cycle cryostat once per day, limiting to the
daily measurement time to between 12 and 16 hours. One additional 10 day interruption
occurred for n = 1 due to an air-conditioning failure, however the measurements were
successfully resumed after the lab was once again able to be cooled.

The quantum state tomography was implemented using two motorized wave plates
and a polarizing beamsplitter, which meant that both eigenvalues of a qubit observable
could be measured simultaneously, and three measurement settings would have sufficed
to perform complete tomography. In practice, however, the fiber-coupled reflection port
of the PBS tended to have lower detection efficiency, and additionally had a worse extinc-
tion ratio. These differences need to be accounted for in order to faithfully reconstruct
the input state.

One can alternatively implement an additional three measurement settings, corre-
sponding to the negated observables for which the eigenvalues are swapped. This cancels
any imbalance between the two ports, since each eigenvalue is measured in reflection
half the time, and in transmission the other half of the time. In the experiment this
latter approach was used due to its simplicity, despite the downside of a slightly larger
experimental overhead. A total of six measurement settings were therefore used in each
tomography.

As can be inferred from the preceding discussion the total number of measurement
settings was quite high. More concretely, considering three runs, three different values of
n, 50 different pairs of unitaries, four different input states and six tomography settings,
the total number of measurement settings was 3 · 3 · 4 · 6 · 50 = 10800. Since the
success probability, and therefore final detected photon rate, varies greatly with p and
q, the choice was made to tailor the integration time for each setting to the expected
photon rate. This helped to distribute the total measurement time more efficiently, and
ensure that the signal-to-noise ratio for the low count rate settings was sufficient, while
avoiding excess integration past the point of diminishing returns. In order to mitigate
the effect of long term drifts, as well as ensuring that the measurement time was not
dominated by the overhead of rotating wave plates, the integration time for each setting
was constrained to be between 45 and 240 seconds.

Due to the relatively long photon flight time through the experiment, over 4µs for
n = 3, a lot of trigger events were ignored by the FPGA. This is because the FPGA only
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Figure 5.18: Effect of FPGA triggering on background. The use of active switches in
the experiment meant that there were multiple paths from the photon source to the detector.
This in turn led to a background of single photon detection events in the tomography stage.
While most of these events would be filtered out by their arrival time when conditioning the
signal on the heralding photon, an idler photon from one pair generation event can arrive within
the coincidence window defined by a heralding photon from a second pair. Due to the use of
a pulsed pump laser the various background peaks in the coincidence histogram were periodic
with a period of 13.2 ns defined by the laser repetition rate of 76MHz. As a first step, these
noise peaks were offset from the signal peak by adding a short fiber delay to the U -loop, that
differentially delayed the signal and the background. This was done separately for each value
of n. In order to further filter the noise the two-fold coincidence events were also conditioned
on an FPGA trigger signal, thereby filtering out any heralding photons that were not used to
start a new pulse sequence. As can be seen in the figure, this results in a strong reduction of
the background events. The solid blue curve shows the coincidence histogram after conditioning
on the FPGA signal, and the dashed green line shows the signal before. The light blue highlight
indicates the region of the histogram containing the experimental signal. While the filtering does
remove a small amount of real signal, since some ignored heralding events will have produced
photons close enough in time to the real heralding signal to pass through the EO-switches in the
correct order, this step was nevertheless found to improve the signal-to-noise ratio. The bin size
in the histogram is 0.1 ns.

starts a new pulse sequence after the previous one has been completed. The correspond-
ing idler (input) photons for these events, however, may still contribute background noise.
This is possible due to the multiple photon paths through the experimental setup, which
allow photons to arrive with various delays. This was exacerbated by the relatively low
extinction ratio of the EO-switches of around 13 dB, which contributed to a fairly high
rate of photons going straight through S1 to the detectors, even when this switch was
set to route photons from the source to the quantum switch. To mitigate this effect
the pump power of the SPDC source was decreased to lower the rate of trigger photons
while still keeping the rate of actual trigger events by the FPGA nearly constant. This
additionally allowed the trigger detector to be biased higher without latching, thereby
increasing its detection efficiency.

An additional consequence of the long photon path through the experiment was
that the time tagger could not filter coincidence events in real time, due to the trigger
delay being too long. All the coincidence analysis was therefore done on the raw time
tags in software. With integration times of upwards of four minutes, and a heralding
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(a) n = 1 (b) n = 2

Figure 5.19: Convergence of the Monte-Carlo simulation. The convergence rate of the
fidelity estimation varies significantly between measurements. This is illustrated in (a), where the
uncertainty in the estimate of the mean fidelity is shown as a function of the number of iterations
in the Monte-Carlo simulation. The green curve reaches the halting condition for the confidence,
indicated by the yellow line, in less than 70 iterations, but the simulation continues until the
minimum number of iterations. On the other hand, the blue curve converges much slower and
takes 565 iterations to reach an uncertainty below 2 ·10−3. (b) shows the corresponding evolution
of the mean fidelity during the simulation. In this case, the faster converging measurement also
has a higher fidelity, as well as higher photon counts, but these two factors were only found to
be weakly correlated with the convergence rate.

photon rate of approximately 1MHz, the amount of data collected was fairly high. As
an example, a 1MHz rate of time tags consisting of two 32-bit integers, one for the
detection channel and one for the actual time tag, results in a raw data rate of about 1
GB per minute, due to the raw text output of the time tagger. For this reason the data
for each measurement setting was converted to a binary format and compressed as soon
as it was fully acquired.

The large amounts of trigger events also made finding coincidence events in the time
tags a somewhat computationally intensive process, and a lot of effort, mostly by Pe-
ter Schiansky, was spent on optimizing this procedure. In the end it was found that
the fastest way to perform the coincidence analysis was using standard set-intersection
algorithms, by first binning the time tags into 0.1 ns bins. Performing the set intersec-
tion with a range of relative offsets between two channels then generated a coincidence
histogram, which could be integrated to yield the desired coincidence window. By dis-
tributing this analysis across several different computers in the lab, it was possible to
perform it in real time, so that the data was being processed at the same rate at which
it was being acquired.

To increase the signal-to-noise ratio the coincidence analysis also included the trigger
signal from the FPGA, thereby filtering out any heralding photons that were unused.
This, effectively three-fold coincidence analysis, was done as a second set intersection
between the initial two-fold coincidence events and the FPGA signal. The analysis
was complicated slightly by the fact that the FPGA signal had a significantly longer
temporal width than the detector output signal. This was caused by the 200MHz clock
of the board, limiting the pulse width to 10 ns. The trigger signal furthermore had a
non-negligible jitter due to the digital nature of the device timing. Conditioning the
two-photon coincidences on the FPGA trigger signal nevertheless significantly reduced
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Figure 5.20: Average fidelities. The bars show the average fidelity for each of the three runs
for each value of n. Each sub-group of bars is ordered according to the measurement order.
While a slight downwards trend in the fidelity for later rounds can be seen for n = 2, 3, these
runs nevertheless exhibit high repeatability despite the setup being operated continuously for as
long as two weeks. The highest average fidelity is seen for n = 3, which can be attributed to the
higher polarization contrast throughout the setup during the measurement run. The red lines
and blue boxes of the superimposed box plot indicate the median as well as the first and third
quartiles, respectively. The black crosses show the outliers, and the whiskers indicate the highest
and lowest values within 1.5 times the interquartile range.

the background noise, as illustrated in Fig. 5.18.
An additional noise reduction method that was explored was averaging the back-

ground signal at coincidence windows separated by 13.2 ns, and then drawing Poisson
distributed samples from this mean background to estimate the background noise in the
signal. This step had a significant effect on the signal to noise prior to conditioning the
coincidences on the FPGA trigger signal, since most of the noise was either periodic or
uniform. As discussed above, after employing the FPGA condition most of the periodic
noise was removed and the influence of the background sampling was thereby reduced
as the mean background at the sampled points was very small.

Finally, the coincidence windows were also chosen to maximize the signal-to-noise
ratio. For n = 1 the coincidence window was 0.6 ns, while for n = 2, 3 it was a mere
0.3 ns due to the need to offset the decreased signal-to-noise ratio resulting from the
lower photon count rate.

5.3.1 State fidelity
The performance metric chosen for the evaluation of the protocol’s performance was

the fidelity of the output states with respect to the ideal ones:

F = Tr

[√√
ρρexp

√
ρ

]
, (5.3-1)

where ρ = U−n |Ψi〉〈Ψi| (U−n)†, and |Ψi〉 ∈ {|H〉 , |+〉 , |−〉 , |R〉} is the input state. The
experimental density matrices were reconstructed using a maximum likelihood method,
and the state fidelities and their uncertainties were estimated using a Monte-Carlo sim-
ulation. More concretely, this was done the following way:
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(a) Fidelity bound (b) Distance from bound

Figure 5.21: State fidelity and purity for n = 3. Depolarizing noise in the experiment
necessarily decreases the fidelity of the output state, as the purity of a state imposes a bound
on the maximum state fidelity. This bound is indicated by the green curve in (a), while the
experimentally obtained fidelities are shown in blue. The data points that lie on the green curve
correspond to states that have the highest possible fidelity for their purity, meaning that the
observed fidelity is caused solely by depolarizing noise and not imperfect unitary transformations.
Conversely, the data points lying on the right-hand vertical axis correspond, in principle, to pure
states that were not subjected to the correct unitary transformations. In practice many of the
purities very close to 1 were likely a result of noise. It can be seen that the data points are, by and
large, clumped close to the green curve, indicating that the depolarizing noise was a significant
contributor to the observed fidelities. This is quantified in (b) by a histogram that shows the
distribution of the difference in fidelity between the measured value and the bound defined by
the purity. This distribution is peaked around 0, indicating that many of the observed fidelities
were limited by the state purity.

1. The observed photon counts for each measurement outcome are used to define a
set of Poisson distributions, from which new photon counts are randomly drawn.

2. A maximum likelihood estimation is used to fit a density matrix to the photon
counts.

3. The fidelity (5.3-1) is calculated, and appended to a list FL.

4. The procedure is repeated for at least r = 500 rounds, and until the condition
1.96

σ(FL)

r
< 2 · 10−3 is satisfied.

Here σ(FL) is the standard deviation of the generated fidelities, and this is used as
the uncertainty estimate of the mean fidelity. As discussed in Section 1.2.5, the halting
condition above is equivalent to lower bounding the probability P of the estimated mean
fidelity FL being wrong by more than 1/500 by P < 0.05:

P (|FL −F| > 1/500) < 0.05. (5.3-2)

Stated more simply, it implies a 95% confidence that the estimated mean is within
1/500 of the true mean F . Here the term ‘true mean’ refers to the mean of the distribu-
tion of fidelities defined by the Poissonian sampling of the photon counts, which is not
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(a) n = 1 (b) n = 2

Figure 5.22: State fidelity and purity for n = 1,2. In contrast to n = 3, the data for n = 1
and n = 2 exhibit deviations from the ideal state fidelity that are frequently much larger than
the fidelity bound imposed by the state purity. This was likely a result of the lower polarization
contrast in the setup during these measurements, leading to unwanted polarization rotations.

necessarily the true fidelity. The purpose of a minimum number of iterations as part of
the halting condition is to ensure that the central limit theorem can be invoked. Two
examples of the convergence of Monte-Carlo simulation runs are shown in Fig. 5.19.

The mean fidelities for each value of n and each of the three runs is and visualized
in Fig. 5.20. It can be seen that n = 2 produces a slightly lower fidelity than n = 1,
which is not unexpected due to the longer photon path introducing more noise and
photon loss. The runs for n = 3, despite using an even longer photon path, nevertheless
exhibit higher average fidelities. This can be attributed to the improved polarization
compensation enabled by tuning the CW laser used for the compensation to the single-
photon wavelength, as discussed in Section 5.2.3.

As will be explored in the following section, the reconstructed states were, in most
cases, not pure states, and this in turn affected their fidelities. In the special case of two
qubits, ρ1 and ρ2, one of which is in a pure state, the fidelity between the two states
can be expressed in simpler way than (5.3-1):

F = Tr[ρ1ρ2]. (5.3-3)

Suppose that ρ2 is a depolarized version of ρ1:

ρ2 = λρ1 +
I

2
(1− λ), λ ∈ [0, 1]. (5.3-4)

The purity P of this state is:

P(ρ2) =
1 + λ2

2
, (5.3-5)

and, using (5.3-3), it is straightforward to show that:

F(ρ1, ρ2) =
λ+ 1

2
. (5.3-6)

Since ρ1 and ρ2 correspond to parallel vectors on the Bloch sphere, the fidelity F(ρ1, ρ2)
is an upper bound for the fidelity between ρ1 and any state with a purity of (1 + λ2)/2.
By inverting (5.3-5):

λ =
√
2P − 1, (5.3-7)
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this bound can be expressed as

F ≤
√
2P − 1 + 1

2
. (5.3-8)

In Fig. 5.21a and Fig. 5.22 the experimental fidelities are visualized with respect to
this bound. For n = 3 many of the data points lie close to the bound. This is further
quantified in Fig. 5.21b, which shows the distribution of the distances from the bound.
The fact that the data is close to the fidelity bound indicates that depolarizing noise had
a dominant role to play in decreasing the output state fidelities. For n = 1, 2, on the other
hand, the data is not consistently close to the bound, meaning that other experimental
imperfections, such as polarization rotations in the optical fibers, contributed to the
degradation of the fidelities.

Since the input states in the experiment were initialized with a high-contrast linear
polariser their purity was essentially unity. Despite this the purity of the reconstructed
states at the output of the experiment was less than 1, falling as low as 0.8 for some
measurement settings. This drop in purity could have been caused by several differ-
ent effects. One possibly contributing effect is the depolarizing noise described in Sec-
tion 5.2.4, which will be discussed momentarily. Such noise causes the actual purity of
the polarization state to drop, but there are also effects which only cause the apparent
purity to drop by introducing noise in the measurement. This can be in the form of
background detection events, or noise arising from the finite counting statistics. Addi-
tionally, time-dependent effects can cause the state to change during the measurement
itself, and averaging over these different states will also lead to an effective impurity.

A scatter plot of the observed state purities for n = 1 is shown in Fig. 5.23a. It
can be seen that the purities decrease with lower photon count rates. Additionally
the variance of the purities increases. As shown in Fig. 5.23b, Poissonian noise arising
from a combination of the finite counting statistics and a background signal explains the
decrease in purity with decreasing photon counts, but does not explain the great increase
in the variance. The distribution of state purities is therefore caused by a different noise
source.

5.3.2 State purity
The results of an alternative noise model is shown in Fig. 5.24 and Fig. 5.25. This

model accurately reproduces both the distribution of the purities, shown in (a) and (b)
of the two figures, and the behaviour of the purity as a function of the mean photon
counts, shown in (c) and (d). The model consist of simply adding normal-distributed
noise to the photon counts:

P (N) =
1

σ
√
π
exp

[
−1

2

(
N − µ

σ

)2 ]
. (5.3-9)

The simulations shown in Fig. 5.24 and Fig. 5.25 were done by iterating through the
measurements and using the mean photon counts to define a Poissonian distribution,
from which a new mean value was drawn. This was then used to simulate the measure-
ment process by drawing Poisson-distributed samples from a fixed density matrix, using
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(a) Experiment (b) Simulation

Figure 5.23: State purities and Poissonian noise, n = 1. (a) shows the purities of the
reconstructed quantum states for n = 1 as a function of the average number of photon counts
in each basis. It can be seen that the state purity drops as fewer photons are collected, but the
spread of the purities also increases. (b) shows a model of the tomography that accounts for the
Poissonian noise in the photon counting, as well as an additional Poisson-distributed background
that acts as depolarizing noise. While this model predicts a drop in the state purity as a function
of decreasing photon counts, it does not accurately describe the widening of the distribution of
purities. The tomography was simulated for a slightly impure state, which is why the purity does
not asymptotically approach one.

the new mean value. Additional noise was then sampled from the distribution above
and added to the six measurement outcomes. The simulations of both n = 2 and n = 3
used the same noise distribution, more specifically one with a mean of zero (µ = 0),
and a variance with a term proportional to the observed photon number plus a constant
offset:

σ = 8 +
N

300
. (5.3-10)

This noise model is qualitatively different from the background-noise model shown in
Fig. 5.23 since the noise can be negative. Physically, this can be caused by a several
different effects. For example, errors in the wave-plate angles in the tomography can
cause the observed counts for a measurement outcome to drop, although this would not
explain the observed results in the experiment since the precision and repeatability of
the wave plate motors was sufficiently high for this to be a negligible effect. More likely
causes are various forms of time-dependent noise. Since the integration time for certain
measurement settings was upwards of four minutes, there was time for slow coupling
drifts to change the efficiency of the setup, which introduces a variance in the photon
counts with respect to the measurement settings. Slow time dependent polarization
noise that rotates the output state could also affect the measurement in a similar way.

This type of time dependent noise justifies the term in (5.3-10) that is proportional
to the photon rate. The constant term is needed to account for the bigger variance
at lower photon counts. This could partially be explained by the measurement time
being longer for these settings, making them more susceptible to longer term drifts. In
this scenario the dependence of the count rate on the noise would actually be nonlinear,
however the simple constant offset is sufficient to reproduce the behaviour. Ultimately,
however, a more quantitative noise model would be needed to elucidate exactly which
process caused the observed purity distribution.

While the simulations in Fig. 5.24 and Fig. 5.25 show good agreement with the
experimental data, the correct asymptotic behaviour is achieved by using an impure
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(a) Experiment (b) Simulation

(c) Experiment (d) Simulation

Figure 5.24: Observed and simulated state purities, n = 3. The measured final state
purities for n = 3 (left) were compared with a simulation of the quantum state tomography using
the noise model described in the main text (right). Good agreement between the simulation and
experiment can be seen. (a) and (b) show histograms of the distribution of purities, while (c) and
(d) are scatter plots of the state purity as a function of the average photon counts per observable.
In the experimental data the purity converges to a value around 0.99 as the number of detection
events increases, suggesting the presence of depolarizing noise sources. In the simulation this
behaviour is reproduced by assuming a slightly impure input state.

input state, and the input purity is a free parameter in the simulation. In the actual
experiment this depolarization may have been caused by the polarization mode disper-
sion in the EO-switches discussed in Section 5.2.4. A Monte-Carlo simulation was used
to quantify the effect of this noise. The simulation models the photon wavepacket as
a superposition of discrete time bins, and then applies unitary operations as well as
polarization-dependent time displacements on the bins. The purity of the output state
is found by simulating an idealized quantum state tomography that traces out the arrival
time of the photon. In each run of the simulation different fiber polarization unitaries
are generated to account for the random orientation of the polarization state as it prop-
agates through the EO-switches. An example of a simulated wavepacket is shown in
Fig. 5.26.

Naturally, the final purity depends on the random polarization unitaries inside the
fibers connecting the EO-switches to the free-space parts of the experiment. These ran-
dom rotations define the walk-off axis, and can cause the walk-off to add or cancel. The
unitaries Up and Vq also rotate the polarization state, which too could indirectly influ-
ence the purity. However, the choice of q turns out to not matter, since this parameter
only affects the magnitude of the commutator [Up, Vq], and does not change the fact
that it is proportional to σx. This means that whenever a photon successfully exits in
the commutator port of the quantum switch the same transformation will always have
been applied. The choice of p, though, does affect the orientation of the polarization
state inside the EO-switches since unitary Up is applied outside the quantum switch as
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(a) Experiment (b) Simulation

(c) Experiment (d) Simulation

Figure 5.25: Observed and simulated state purities, n = 2. The left-hand figures show
the distribution of purities for n = 2, while the right-hand figures show the results of a simula-
tion using the noise model described in the main text, with the same parameters as in Fig. 5.24.
Good agreement can be seen for both the relative frequency of purities, as well as the relation-
ship between the state purities and the number of detected photons. The correct asymptotic
behaviour in the simulation is achieved by simulating the tomography on a state with a purity
of approximately 0.97.

well. For this reason the simulation was performed for the seven different choices of p.
An example of the simulated dependence on p in the state purity for n = 1 is shown

in Fig. 5.27a. The simulation shows that the variance in the purity is large. This makes
it hard to judge whether the depolarizing noise observed in the experiment was due
to polarization mode dispersion in the EO-switches, or was caused by something else.
Fig. 5.27b shows two examples of simulation outputs, differentiated by their random fiber
unitaries. While the blue curve shows a purity that is largely independent of p, the yellow
curve displays larger variations. These two simulated datasets were used as input to
simulations of the measurement process, incorporating the noise model described earlier
in the section. The result of these simulations is shown in Fig. 5.27c and Fig. 5.27d, and
it can be seen that while the simulation corresponding to the blue curve in Fig. 5.27b
shows a purity distribution that agrees well with the experimental results, using the
yellow curve as input results in a distribution that does not fit the experiment.

The challenge in evaluating these results is that, since the polarization compensation
was only done once for each run of n = 1, 2, 3, the experiment only sampled three different
noise configurations, and does therefore not give any insight into the distribution of the
depolarizing noise. While the simulation in Fig. 5.27c does fit the experiment reasonably
well, it is unclear how likely this outcome is using the noise model. Fig. 5.28 attempts to
quantify this by visualizing the distribution of the standard deviation of the purities over
the different values of p. In the figure it can be seen that for relatively high purities, close
to 0.99, the variance across p is low. However, for purities closer to 0.98, as observed
in the n = 2 measurement, the typical variance is already larger. Since the observed
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Figure 5.26: Wavepacket polarization mode dispersion. The figure shows an example of a
simulated wavepacket at the output of the experiment. Due to the polarization mode dispersion
in the EO-switches two polarization components of the wavepacket separate. This example was
simulated for p = 4 and the magnitude of the wavepacket is shown in the +/− basis on the
left, and in the H/V basis on the right. Due to the imperfect overlap of the wavepackets in the
diagonal basis they do not show full destructive interference in the H/V basis, leaving a residual
|V 〉-component. The purity of the state is approximately 0.95.

purities for this measurement is well modelled using depolarizing noise that does not
depend on p, it makes the walk-off model slightly less plausible.

The influence of phase noise inside the Sagnac was also simulated, using the mea-
sured phase distribution shown in Fig. 5.9b, however the observed phase noise was found
to be at least one order of magnitude to small to act as a significant source of depolar-
izing noise. Furthermore, the qualitative behaviour of this type of depolarizing noise
does not agree with observations when taken on its own. In particular, the amount de-
polarization depends strongly on the particular choice of p and q, and for pairs of nearly
anti-commuting unitaries the phase noise only produces negligible depolarization. Ulti-
mately, there is not enough data to conclusively ascertain the cause of the depolarizing
noise.

5.3.3 Process tomography
Since the experimentally implemented rewinding process was probed by a tomograph-

ically complete set of input states, the idea of performing quantum process tomography
on the protocol was naturally investigated. The basic steps for doing this follow the
theory presented in Section 1.2.9. Since the protocol has a finite success probability the
experimentally realised process was not trace preserving. However, accurately estimat-
ing the degree to which the process was trace reducing was beyond the scope of the
experiment.4 Instead, the process tomography only used post-selected and normalized
data. More concretely, instead of fitting a process matrix to the raw observed photon
counts, it was fitted to the expectation values of the operators measured in the quantum
state tomography.

Similar to the estimation of the quantum state fidelities described in Section 5.3.1,
the process matrices were reconstructed as part of a Monte-Carlo simulation that in
each step sampled Poissonian noise using the photon counts, and performed a maximum
likelihood fit to the data. The fitting amounts to minimizing

∑
kl

(
Tr
[
|Pk〉〈Pk| E(|Ψl〉〈Ψl|)

]
−Mkl

)2
Tr
[
|Pk〉〈Pk| E(|Ψl〉〈Ψl|)

] , (5.3-11)

4The relative success probabilities are presented in the publication, however this does not quantify
the absolute trace reduction.
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(a) Average purity (b) Examples of purities

(c) Good agreement (d) Poor agreement

Figure 5.27: Simulation of depolarizing noise. The amount of depolarization induced by
the EO-switches depends on the value of p. This dependence is shown in (a) for n = 1 and a per-
switch PMD of 0.2 ps. The data is averaged over 250 different runs of the simulation, and while
the average purity changes slowly as a function of p the standard deviation is large. (b) shows
two examples of purities from single runs of the simulation. The blue curve has a nearly constant
purity, while the yellow curve shows much larger variations. (c) and (d) show simulations of the
apparent state purities using the noise model discussed in the main text, as well as the two sets
of purities from (b) as input. In (c) the simulation using the blue curve in (b) is shown, and
good agreement with the experiment can be seen, cf. Fig. 5.23 and Fig. 5.24. On the other
hand, the corresponding simulation for the yellow curve in (b), which is displayed in (d), shows
a distribution of purities that is much too broad.

where |Pk〉〈Pk| are the measurement projectors, |Ψl〉〈Ψl| are the input states, Mkl is the
experimentally measured expectation value of the k-th projector on the l-th input state
and E is the quantum channel defined by the process matrix being fitted. During the
fitting procedure the map E(ρ) needs to be evaluated a great number of times. We recall
that the definition of this map is

E(ρ) =
∑
mn

χmnẼmρẼ
†
n. (5.3-12)

Since the operators Ẽj and input states ρi are fixed, all the terms ẼmρjẼ†
n can be

precomputed and represented as a 16× 4 matrix Ai, whose rows are |ẼmρiẼ†
n〉〉T :

Ai =



|Ẽ1ρiẼ
†
1〉〉T

|Ẽ2ρiẼ
†
1〉〉T

...
|Ẽ4ρiẼ

†
1〉〉T

|Ẽ1ρiẼ
†
2〉〉T

...
|Ẽ4ρiẼ

†
4〉〉T


. (5.3-13)
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Figure 5.28: Polarization walk-off and state purity. Monte-Carlo simulations of the po-
larization mode dispersion in the EO-switches were performed to estimate the effect this has on
the final quantum state purity, and the results of one such simulation is shown above. The data
points marked with red circles correspond to the two curves in Fig. 5.27b. The decrease in state
purity as a result of the walk-off depends on the choice of p, but not on the choice of q. The points
in scatter plot correspond to a single run of the simulation, in which random fiber unitaries were
generated, and each point has additionally been averaged over the seven values of p = 4 . . . 10.
The x-axis of the graph shows the standard deviation of the purity over this set of values of p.
For relatively high average purities the standard deviation is low, meaning that the amount of
depolarization is roughly constant as p is changed.

The vectorized density matrices can then be efficiently computed as

|E(ρi)〉〉 = |χ〉〉TAi. (5.3-14)

Since the matrix χ is Hermitian it can be parametrised using the lower-triangular matrix
decomposition for density matrices defined in (1.2-15) and (1.2-17). A problem with this
decomposition, though, is that it does not ensure that the quantum channel described
χ matrix is trace preserving. More specifically, the channel is only trace preserving if∑

mn

χmnẼ
†
nẼm = 1. (5.3-15)

While the actual experimental process is not trace preserving, since there is photon
loss and the application of the commutators is probabilistic, the process defined by the
post-selected states is. One would therefore like to have an optimization process that
respects this condition. To do this, it turns out to be more convenient to work with the
Choi-matrix representation of the channel instead. Let

CE =
(
1A ⊗ E)(|Ω〉〈Ω|AB

)
, (5.3-16)

Be the Choi matrix of the map E. Suppose E is trace preserving, then [408]:

Tr[ρ] = Tr
[
E(ρ)

]
= Tr

[
TrA[(ρ

T
A ⊗ 1B)CE]

]
= Tr

[
TrB[(ρ

T
A ⊗ 1B)CE]

]
Tr[ρ] = Tr

[
ρTATrB[CE]

] (5.3-17)
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Figure 5.29: Average process fidelities. The barplot shows the average process fidelity for
the three values of n, using two different reconstructions of the quantum process. The blue bars
indicate the fidelities obtained when fitting the χ matrix, without enforcing the constraint that
the quantum channel be trace preserving, while the yellow bars show the fidelities that result from
fitting a Choi matrix that does respect this constraint. In this instance, the difference between
the two approaches is negligible. Both sets of process fidelities, however, are slightly lower than
the equivalent state fidelities shown in Fig. 5.20. This is not entirely surprising since the quantum
process tomography involves fitting more data than the simpler qubit state tomography, and the
data for the different input states might not be perfectly compatible with a quantum channel.

This implies that:
TrB

[
CE
]
= 1A, (5.3-18)

and this is both a necessary and sufficient condition for E to be trace preserving. Rather
than parametrising E in a way that respects this constraint, one can fit the Choi matrix
using semidefinite programming (SDP) methods, which is a type of convex optimization
for linear objective functions, in which the optimization variable (matrix) is positive
semidefinite, and possibly subject to additional constraints [409]. These optimization
methods are widely used within quantum information [410,411]. The objective function
(5.3-11) cannot be recast as a linear objective function due to the optimization variable
appearing in the denominator, however the following related least-squares problem can:

∑
kl

(
Tr
[
|Pk〉〈Pk| E(|Ψl〉〈Ψl|)

]
−Mkl

)2
Mkl

. (5.3-19)

While this objective function does not have interpretation of maximizing the likelihood
that the minimized variable generated the observed data, it is in practice almost iden-
tical to (5.3-11) since Tr

[
|Pk〉〈Pk| E(|Ψl〉〈Ψl|)

]
→ Mkl during the optimization. The

corresponding SDP was solved using YALMIP and MOSEK in MATLAB as part of a
Monte-Carlo simulation identical to the ones previously described.

As process fidelity one typically uses gate fidelity (1.2-10):

Fprocess =

〈
Tr

[√√
E(ρ)U(ρ)

√
E(ρ)

]〉
ρ

, (5.3-20)

restated here for convenience. The process fidelity was evaluated with respect to the
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Figure 5.30: State and process fidelities. As would be expected, the state fidelities and
process fidelities show a strong correlation. In the figure above these fidelities are plotted as a
function of the commutativityNc. The two datasets are symmetrically offset relative to each other
on the x-axis for visual clarity. A higher commutativity corresponds to a lower success probability,
and the decrease in fidelity as a function of the commutativity is explained by the lower photon
count rates. Additionally the data for low success probabilities corresponds to measuring a
nearly dark port of the interferometer, and is therefore more susceptible to for example imperfect
interferometric visibility. The state fidelities consist of averages over 72 different measurements,
while the data points for the process fidelities are averaged over 18 different Choi matrices.

post-selected rewinding protocol, which is a unitary channel:

U−n ⇐⇒ C = |U−n〉〉〈〈U−n| = (1⊗ U−n) |Ω〉〈Ω| . (5.3-21)

Since the Choi matrix C corresponds to a pure quantum state, one might be tempted to
make an analogy to the expression for the fidelity between two quantum states (5.3-3),
that holds when one of them is pure, and define a process fidelity:

FChoi =
1

d2
Tr
[
CCexp

]
. (5.3-22)

This fidelity is not equivalent to (5.3-20), however the two are related by a simple affine
transformation [412,413]:

Fprocess =

〈
Tr

[√√
E(ρ)U(ρ)

√
E(ρ)

]〉
ρ

=

∫
|ψ⟩

F
(
E(|ψ〉〈ψ|), U |ψ〉〈ψ|U †)d |ψ〉

=
d

d+ 1
FChoi

(
CE, |U〉〉〈〈U |

)
+

1

d+ 1
,

(5.3-23)

where the average is assumed to be taken over the Haar measure. This formulation is
convenient, because (5.3-23) gives a direct way to evaluate the process fidelity without
actually having to perform the averaging over all states.

The process fidelity was evaluated both for the reconstructed Choi matrices as well
as the χ matrices, and in the latter case the fidelity was averaged over 1000 states. The
results of this are shown in Fig. 5.29. The two methods produce almost identical fideli-
ties, because in practice the reconstructed χ matrix is, in most cases, only marginally
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non-trace preserving. Both process fidelities are, however, consistently lower than the
corresponding average state fidelities. This is to be expected, since the reconstruction
of the process requires fitting more of the data at the same time than the state recon-
struction. Measurement noise, as well as time dependent effects in the experiment, may
cause the acquired data to represent an average of several different processes. A fit to
this data will then not perfectly reproduce the measured states, let alone the ideal ones.

The state and process fidelities were nevertheless strongly correlated, and in Fig. 5.30
the two data sets are plotted together as a function of the commutativity Nc. The
process fidelity is strictly smaller than the average state fidelity for every value of the
commutativity, but the two fidelity metrics exhibit the same behaviour, decreasing as a
function of the commutativity. This is explained by the fact that the success probability
decreases as a function of the commutativity, and therefore so too does the photon count
rate, increasing the impact of noise in the experiment.





6
Experimental methods for

“Experimental superposition of a
quantum evolution with its time

reverse"

This chapter will discuss some of the experimental details as well as the theoretical
background of Publication 3. The experiment was motivated by a recent theoretical
proposal by Chiribella and Liu [414], in which they describe a novel process that is not
captured by the quantum circuit formalism. This process, named the quantum time flip,
amounts to transforming a unitary operator into a coherent superposition of itself and its
transpose. The name comes from the fact that the transpose of a unitary time evolution
can be interpreted as its time reverse. It can be shown that deterministic unitary
transposition of a single gate is forbidden in the quantum circuit formalism. However,
by exploiting knowledge of the experimental apparatus, it is nevertheless possible to
experimentally realise the time-flip process. Building on the results from Chapter 3 we
devise a polarization gadget that simultaneously realises both a unitary and its transpose,
thereby allowing for the two to be placed in superposition.

6.1 Non-quantum-circuit-model processes
The quantum circuit model is the most commonly used framework for describing

quantum information processing tasks [15]. It is, however, important to recognize that
this framework does not capture all of quantum mechanics, or indeed all quantum infor-
mation processing protocols. A reliance on this formalism can therefore, in some cases,
lead to a tension between what is allowed in the abstract model, and what is actually
possible in an experiment. A canonical example of this is coherent control of a unitary
with only a single use of the gate. In terms of quantum circuits the problem of coherent
unitary control can be stated as finding two unitaries A and B such that circuit equality

=A B

WU

U U
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Figure 6.1: Coherent unitary control. Using only linear optics an arbitrary unitary U can
be turned into a controlled version of itself. This is accomplished by coupling the control degree
of freedom, in this example the photon polarizaiton, to the photon path, and then placing the
device implementing the unitary U in one of the two photon paths. This unitary acts on the
target state |Ψ〉, encoded in some other interngal degree of freedom of the photon.

is satisfied. Here WU is some gate, possibly depending on U, acting on an ancillary
state. In Ref. [415] it was proven that there is no assignment of A and B that satisfies
the equation, even when only controlling U up to a global phase. In the same paper,
the authors also pointed out that there is a simple way to perform coherent unitary
control in a photonic setting, and coherent unitary control has indeed been demonstrated
experimentally [416].

The process for doing this is illustrated in Fig. 6.1, in which a controlled operation
between a qubit encoded in the photon polarization, and a second qubit encoded in a
different internal degree of freedom, is performed by coupling the polarization to the
photon path. The device implementing the single-qubit operation U is only present in
one of the photon paths, and a controlled operation between the path and an internal
degree of freedom is therefore realised. This method circumvents the no-go theorem
of the circuit model by exploiting knowledge about the position of the physical system
implementing the gate, and any device implementing a unitary transformation in a
finite spatial region is in a sense already a controlled operation between a spatial and
an internal degree of freedom of a particle.

Another example of a process that cannot be described in the quantum circuit model,
but that nevertheless has a physical realisation, is the quantum switch [55]. As discussed
in Chapter 5, this is a process that for qubits transforms a pair of unitaries (U, V )
into a superposition of the gates being applied in different orders, and more generally
transforms N unitaries into a superposition of them being applied in every possible
permutation. This can be thought of as a controlled superposition of quantum circuits,
for instance in the case of qubits:

+U V ⊗ |0〉〈0|C V U ⊗ |1〉〈1|C

Since a circuit consists of a fixed sequence of gates, the above process cannot be de-
scribed in the quantum circuit formalism. The quantum switch was first introduced in
the context of studying causality in quantum mechanics [54, 55], since if one associates
the application of the gates U and V with events in spacetime, then the order of these
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Figure 6.2: Forwards and backwards time evolutions. Any time-reversal operator in
quantum mechanics has to have the property of being order reversing. This is illustrated here
by decomposing a forwards (yellow) and a backwards (blue) time evolution into two steps. The
total forwards time evolution is given by V U , and clearly the backwards evolution is f(U)f(V ),
where f is the time-reversal operator. This shows that f(V U) = f(U)f(V ), meaning that f is
order reversing. There are only two non-trivial choices of such operators, the transpose and the
adjoint [414], and for two-level systems they are unitarily equivalent.

events becomes indefinite. The process matrix formalism outlined in Section 1.2.8 was
developed to describe these kinds of processes with more general causal structures. Pho-
tonic implementations of the quantum switch bypass the limitations of the quantum
circuit model much in the same way they do in the case of coherent unitary control, by
using knowledge of the photon path to control the order of two or more gates, instead
of controlling a single gate [11,56,406].

More general causally-indefinite models of quantum computation that make use of
the quantum switch have been shown to allow for a speed-up in certain computational
tasks [406, 417, 418, 419, 420, 421, 422]. This gives a motivation for studying these non-
circuit-model processes, both theoretically and experimentally, that goes beyond the
context of quantum foundations. An example of a computational task where the quan-
tum switch provides an advantage over causally ordered circuits is the problem of de-
ciding whether a pair of unitaries commute or anti-commute. This problem cannot be
solved deterministically given a single use of the gates, whereas the quantum switch
can solve it trivially, since as shown in Chapter 5 it can be used to create a controlled
superposition of the commutator and anti-commutator.

6.1.1 The quantum time flip
The non-circuit-model processes described above are all captured by the process

matrix formalism, but it turns out that quantum mechanics allows for even more general
processes that cannot be described using this framework. An example of such a process,
called the quantum time flip, was introduced in Ref. [414]. This process takes a unitary
operator and transforms it into a superposition of itself and its time-reversed version:

U 7→ U ⊗ |0〉〈0|C + θ(U)⊗ |1〉〈1|C . (6.1-1)



CHAPTER 6 • EXPERIMENTAL METHODS FOR “EXPERIMENTAL
SUPERPOSITION OF A QUANTUM EVOLUTION WITH ITS TIME REVERSE”
214

Here θ is a time-reversal operator. Superpositions of processes in different time direc-
tions had previously been studied in Ref. [423]. In that work the authors considered
superpositions of entropy increasing and decreasing processes, which can be associated
with forwards and backwards arrows of time, respectively. In contrast, the quantum
time flip is only well defined for processes that conserve entropy [414]. The relation of
the quantum time fip to more general causally indefinite processes will be discussed in
the next section. The choice of time-reversal operator θ in (6.1-1) is not unique; however,
as shown in Fig. 6.2 the operator has to be order reversing:

θ(UV ) = θ(V )θ(U) (6.1-2)

For qubits, two obvious candidates for such an operation are the transpose and the
inverse:

(UV )T = V TUT , (UV )† = V †U †. (6.1-3)

In the case of qubit systems these operations are unitarily equivalent:

Y UTY = U †, (6.1-4)

and the choice of operation is therefore a matter of taste.1 In particular, it does not affect
the relation of the quantum time flip to causally ordered circuits, or causally indefinite
processes. Deterministic unitary transposition, or inversion, is not possible in the circuit
model when given access to a single use of a gate [424]. One way to understand this
is by using the fact that a quantum supermap realising unitary transposition can be
shown to be unique [425], which is a consequence of the constraint of positivity on such
maps. Since, as shown in 5.1.1, quantum teleportation can be used to perform unitary
transposition, the existence of such a supermap would imply that teleportation could
be performed deterministically without adaptive corrections, which would in turn allow
for superluminal communication.

For Publication 3 the transpose was chosen as the time-reversal operator:

θ(U) = UT . (6.1-5)

One motivation for this is that when working with the Choi matrix of a unitary channel,
transposing the operator corresponds to exchanging the input and output systems:

1⊗ UT |Ω〉〈Ω| = U ⊗ 1 |Ω〉〈Ω| . (6.1-6)

This naturally leads to the concept of bidirectional quantum devices, for which one
direction corresponds to the forwards time direction, and the other to the backwards time
direction, as shown in Fig. 6.3. Introducing a control degree of freedom that determines
the direction in which such a bidirectional device is accessed then generates the quantum
time flip. This is illustrated in Fig. 6.4. These bidirectional devices furthermore map
directly onto the experimental realisation of the quantum time flip.

1In the case of bipartite systems the transpose and adjoint exhibit a difference, as the latter is not
guaranteed to generate CPTP maps when acting locally on one of the subsystems. See [414] for a
discussion on this.
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Figure 6.3: Bidirectional devices. In quantum information it is common to consider ‘black
boxes’ with an input and an output port that implement some, possibly unknown, transformation
on the input state. Time reversal in quantum mechanics can be thought of as exchanging the
roles of the input and output ports of such a box, and it therefore natural to consider bidirectional
boxes, where either port can act as an input or an output. As shown above, the direction in
which such a box is accessed determines the time direction of the channel implemented by the
box. Here the yellow path gives the forwards time evolution U , while the blue path gives the
time-reversed evolution UT .

The choice of time-reversal operator can also be motivated in a more formal way, as
discussed in Ref. [414]. One begins by noting that the time-reversal operator has to be
either unitary or anti-unitary in order to conserve probability. More concretely, let

Θ |ψ(t)〉 = |ψ̃(τ − t)〉 , (6.1-7)

be the time-reversed version of |ψ(t)〉, where Θ is a time-reversal operator and τ/2 is a
reference time with respect to which the time-reversal is taken. Then

〈ψ(t)|ψ(t)〉 = 〈ψ̃(τ − t)|ψ̃(τ − t)〉
= 〈ψ(t)|Θ†Θ|ψ(t)〉 =⇒ Θ†Θ = 1.

(6.1-8)

However, Θ cannot be unitary. This is because the position and momentum operators
x̂ and p̂ transform as

x̂ 7→ x̂ (6.1-9)
p̂ 7→ −p̂ (6.1-10)

under time reversal. If the time-reversal operator is unitary then the canonical commu-
tation relation for position and momentum is not preserved under time reversal:

[x̂, p̂] = iℏ 7→ Θ[x̂, p̂]Θ† = ΘiℏΘ† = iℏ 6= [x̂,−p̂]. (6.1-11)

Hence Θ is anti-unitary. Next, let Ufw(t, τ) be the forward time evolution operator from
time T = τ to T = t. Then

Ufw(t, τ) |ψ(τ)〉 = |ψ(t)〉

⇐⇒ ΘUfw(t, τ) |ψ(τ)〉 = |ψ̃(τ − t)〉 .
(6.1-12)

Using Θ†Θ = 1 this can be rewritten as

ΘUfw(t, τ)Θ
†Θ |ψ(τ)〉 = |ψ̃(τ − t)〉

⇐⇒ ΘUfw(t, τ)Θ
† |ψ̃(0)〉 = |ψ̃(τ − t)〉 = Ubw(0, τ − t) |ψ̃(0)〉 .

(6.1-13)
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Figure 6.4: Coherent control of time direction. By adding a control degree of freedom
that determines which direction a bidirectional device is accessed in, one gains control over the
direction of the time evolution. By placing the control qubit in a superposition state the two
time directions become coherently superposed, and this is a realisation of the quantum time flip.

Since this equation holds for any state |ψ〉 it follows that:

ΘUfw(t, τ)Θ
† = Ubw(τ − t, 0). (6.1-14)

By taking the inverse, this can be rewritten as

ΘU †
fw(t, τ)Θ

† = Ubw(0, τ − t), (6.1-15)

or, by making the initial and final times implicit, as

ΘU †
fwΘ

† = Ubw. (6.1-16)

In the context of thermodynamics this equation is known as the microreversibility rela-
tion, which in the case of a time-dependent Hamiltonian requires a more careful deriva-
tion [426]. The interpretation of (6.1-16) is that if one (i) lets a state evolve in time
under the forward time evolution, (ii) time-reverses the state, (iii) lets the resulting state
evolve under the time-reversed evolution, (iv) time-reverses the state a second time, then
one recovers the initial state.

Finally, we note that any anti-unitary operator can be decomposed in terms of a
unitary operator W and the complex-conjugation operator K:

Θ =WK, (6.1-17)

and this lets (6.1-16) be expressed as

Ubw =WKU †
fwK

†W †

=W (U †
fw)

∗W †

=WUTfwW
†,

(6.1-18)

showing, once again, that the time-reversal operator θ : Ufw 7→ Ubw is unitarily equiva-
lent to the transpose.

6.1.2 Advantage of the quantum time flip in a channel discrimination task
In analogy to how the quantum switch can outperform causally ordered quantum cir-

cuits in the task of determining whether two unitary channels commute or anti-commute,
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Figure 6.5: Quantum time flip strategy. The quantum time flip can be used to determinis-
tically perform the channel discrimination task described in the main text, and method for doing
this is illustrated above. The strategy uses two time flips, that have opposite actions with respect
to the control qubit. This leads to an output superposition state where the two time evolutions
act in the same order in both terms, but the relative time direction of the two evolutions is
reversed. Projecting the control qubit of the output state in the {|+〉 , |−〉} basis reveals which
set the pair of unitaries were picked from.

there exist a channel discrimination task that can only be deterministically accomplished
by using the quantum time flip. More specifically, consider the following two sets of
pairs of unitaries:

M+ :=
{
(U, V ) : UV T = +UTV

}
(6.1-19)

M− :=
{
(U, V ) : UV T = −UTV

}
. (6.1-20)

Given a pair of unitaries picked from either M+ or M−, the task is to determine
from which set they were picked while only accessing each gate once. This task can be
performed deterministically by concatenating two quantum time flips acting opposite to
each other; the first one on V and the second one on U :

(U, V ) 7→ V ⊗ |0〉〈0|C + V T ⊗ |1〉〈1|C
7→ UTV ⊗ |0〉〈0|C + UV T ⊗ |1〉〈1|C .

(6.1-21)

One then lets this process act on an initial state for which the control qubit is in a
balanced superposition:

|Ψ〉T ⊗ |+〉C = |Ψ〉T ⊗
|0〉C + |1〉C√

2
. (6.1-22)

This results in the state:
1√
2
(UTV |Ψ〉T ⊗ |0〉C + UV T |Ψ〉T ⊗ |1〉C)

=
1

2
(UV T + UTV ) |Ψ〉T ⊗ |+〉C +

1

2
(UV T − UTV ) |Ψ〉T ⊗ |−〉C .

(6.1-23)

A measurement of the control qubit in the diagonal basis then reveals from which set
the unitaries were picked. This strategy is illustrated in Fig. 6.5. In order to compare
the time flip strategy with ones that do not employ the quantum time flip one needs to
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specify the sets (6.1-19) and (6.1-20), since the optimal strategies can be tailored to the
sets. For the experiment, the following sets, first introduced in Ref. [414], were chosen:

M+ :=

{
(I, I), (I,X), (I, Z), (X, I), (X,X), (X,Z), (Z, I), (Z,X), (Z,Z),(

X − Y√
2

,
X + Y√

2

)
,

(
X + Y√

2
,
X − Y√

2

)
,(

Z − Y√
2

,
Z + Y√

2

)
,

(
Z + Y√

2
,
Z − Y√

2

)} (6.1-24)

M− :=

{
(Y, I), (Y,X), (Y, Z), (I, Y ), (X,Y ), (Z, Y ),

(
I + iY√

2
,
I − iY√

2

)
,

(
I − iY√

2
,
I + iY√

2

)}
.

(6.1-25)

One can then consider three different classes of strategies for the channel discrimination
task, as illustrated in Fig. 6.6. The first of these strategies uses the gates in parallel,
meaning that the experimenter prepares a general quantum state and then lets the
two gates U and V act on different subsystems of this state, after which a generalized
measurement may be performed. The second type of strategy involves using the gates
sequentially, in a definite causal order, with an additional quantum channel applied
between the two gates. The final, and most general, strategy is one described by a process
matrix. This includes causally indefinite strategies using for example the quantum
SWTCH or the Oreshkov-Costa-Brukner process [54]. This last class contains the most
general strategies possible that only access the gates in a single time direction. Note that
convex combinations of strategies in a given class are also valid strategies of the same
class, i.e. an agent may probabilistically choose different strategies of the same class.
All the strategies above correspond to processes that can be said to have a definite time
direction, since they only access the gates in one time direction. Conversely, processes
which cannot be written as a convex combination of processes that only access the gates
in one time direction can therefore be said to have an indefinite time direction, in analogy
to processes with an indefinite causal structure.

The three above strategies were analysed using the tester formalism [427, 428, 429].
Formally, a tester is a set of linear, positive-semidefinite operators acting on the joint
input-output space of a channel:

T = {Ti}, Ti ∈ L(HI ⊗HO) (6.1-26)
Ti ≥ 0. (6.1-27)

These operators furthermore have the property that they sum to a valid process matrix:∑
i

Ti =W. (6.1-28)

Testers encompass the preparation of the states sent through the channels, the manner
in which the channels are accessed, and the measurements on the resulting output states.
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They therefore describe a general scenario for measuring quantum channels, and can be
thought of as POVMs for quantum processes. By imposing constraints on the process
matrix that the testers add up to, one can restrict the analysis to certain classes of
strategies. For instance, in the case of a parallel process the process matrix of the tester
respects:

W par =
1O

dO
TrO

[
W par

]
, (6.1-29)

where dO is the dimension of the output Hilbert space. In this formalism, the measure-
ment outcomes associated with each process-POVM element Ti is given by a generaliza-
tion of Born’s rule:

P (i) = Tr
[
TiCE

]
, (6.1-30)

where CE is the Choi matrix of the channel. For the two-channel task that is the focus
of this section, this can be expressed as

P
(
k|(Ui, Vi)

)
= Tr

[
Tk|Ui ⊗ Vi〉〉〈〈Ui ⊗ Vi|

]
. (6.1-31)

In the case of a parallel strategy this is equivalent to the more explicit expression:

P
(
k|(Ui, Vi)

)
= Tr

[
Mk(Ui ⊗ Vi ⊗ 1)ρ(U †

i ⊗ V †
i ⊗ 1)

]
, (6.1-32)

where Mk are POVM elements defining the measurement performed by the tester, and
ρ is the input state used to probe the process. The advantage of the tester formalism is
that the state preparation, the accessing of the channel and the final measurements are
represented by a single object. This allows for the problem of determining the optimal
success probability for each class of strategy to be expressed as a convex optimization
problem that can be solved using semidefinite programming methods. For the channel
discrimination task realised in the experiment the tester consists of two elements, corre-
sponding two the two binary outcomes of the channels belonging to M+ or M−. The
optimal strategy for a given class is the one that maximizes the success probability:

max
1

N

[ ∑
(Ui,Vi)∈M+

Tr
[
T+|Ui ⊗ Vi〉〉〈〈Ui ⊗ Vi|

]
+

∑
(Ui,Vi)∈M−

Tr
[
T−|Ui ⊗ Vi〉〉〈〈Ui ⊗ Vi|

]]
,

(6.1-33)

where N is the total number of channels summed over. Maximizing (6.1-33) provides
a lower bound on the maximum success probability. In order to instead upper bound
the success probability one can make use of the so-called dual problem, which is a
reformulation of (6.1-33) as a minimization problem. The upper and lower bounds were
calculated using the computer assisted proof methods from [427], which ensure that the
SDP constraints are satisfied exactly despite the finite precision in the floating-point
arithmetic used by the numerical solver. The theoretical analysis of the three different
strategies was performed by Marco Túlio Quintino.
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Figure 6.6: Strategies with definite time direction The strategies for the channel discrim-
ination game that have a definite time direction can be divided into three categories. These
strategies form a hierarchy, with each subsequent one being strictly better than the preceding
ones. The first of these is the class of parallel processes, shown in (a), in which the gates U and
V are probed in parallel with different parts of a potentially entangled state ρ, after which a
generalized measurement M is performed. The next strategy is a casually ordered one, shown in
(b). In strategies of this type the two gates are accessed one after another, and may be separated
by another quantum channel E . (c) The third and most general strategy with a definite time
direction is one which is described by a process matrix W, without any additional constraints.
Such a strategy may therefore exhibit an indefinite causal structure, and can even violate causal
inequalities.

For the strategy that uses the gates in parallel the success probability was found to
be bounded by

88

100
≤ ppar ≤

89

100
, (6.1-34)

and this is the strategy with the lowest success probability. The second strategy is the
ones which uses the gates sequentially, and the bound for this strategy was evaluated to
be

90

100
≤ pseq ≤ 91

100
. (6.1-35)

Finally, the success probability of a player employing a strategy with an indefinite causal
order has a success probability bounded by

91

100
< pi.c. ≤

92

100
. (6.1-36)

Each subsequent strategy is strictly superior to the previous one, but even the most gen-
eral strategy with a definite time direction cannot perform the discrimination task de-
teministically. Observing a success probability greater than the upper bound in (6.1-36)
therefore certifies that the process in question has an indefinite time direction. It is also
worth noting that the bounds above do not make any assumptions about the specific
measurements used, and can therefore be used to certify an indefinite time direction
in a semi-device independent way. Specifically, in a way that is independent of the
measurement device, as will be discussed in Section 6.3.1.

6.2 Photonic implementation of the quantum time flip
While the quantum time flip cannot be realised within the quantum circuit model,

similarly to the other non-quantum-circuit-model processes discussed in Section 6.1, it
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Figure 6.7: Correcting a gadget transformation. In the typically chosen convention for
polarization states a wave-plate polarization gadget Gwp transforms as ZGwpZ under counter-
propagation. By performing a Z operation before and after the gadget one can recover the
transpose, however when coherently superimposing two propagation directions through the gad-
get this requires the ability to act differentially on the two propagation directions.

still admits experimental realisations. More concretely, one can realise the bidirectional
boxes pictured in Fig. 6.3 as physical devices, and use a control degree of freedom to
set the direction in which they are accessed. In Chapter 3 it was shown that these
boxes can realised as operations acting on the polarization degree of freedom of single
photons, with the control degree of freedom being the propagation direction through
the polarization gadget.

6.2.1 Bidirectional polarization gadget
As discussed in Section 6.1.1, the time-reversal operator was chosen to be the trans-

pose. To realise the quantum time flip on the polarization degree of freedom one there-
fore needs a polarization gadget that tranforms as the transpose under counterpropaga-
tion, so that the implemented unitary in one propagation direction is the transpose of
the unitary in the other direction. From the discussion in Chapter 3 we know that a
polarization gadget consisting of linear retarders transforms as

Gwp = U 7→ Z(π)UTZ(−π) = ZUTZ, (6.2-1)

under counterpropagation. The unitary in the backwards direction is related to the
transpose, but is sandwiched by two Pauli operators. This can be corrected by perform-
ing additional operations conditional on the control qubit:

Gwp ⊗ |0〉〈0|C + ZΘ
[
Gwp

]
Z ⊗ |1〉〈1|C , (6.2-2)

as shown in Fig. 6.7. This approach works, and the only downside is conceptual: the
polarization devices in the two propagation directions are now physically distinct, and
can in principle be fully decoupled from one another. Another option is to use the
transpose gadget described in Chapter 3:

GT = ZS(α)YA(β)ZS(γ)

= Q(π/4)H(α/4− π/4)Q(π/4)Q(−π/4)
× F−Q(π/2)H(β/4)Q(π/2)F+

×Q(π/4)Q(π/4)H(γ/4− π/4)Q(π/4).

(6.2-3)
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This gadget has the correct symmetry properties, and therefore realises the transpose
without any conditional correction operations. The obvious downside, however, is the
increased number of optical components. While the waveplates on either side of the
Faraday rotators can be compressed to single quater- half-wave plate pairs, a total of
nine optical elements is still required. In practice, a higher number of elements typically
results in lower fidelity operations, since the imperfections present in every element
compound. A gadget with fewer components would therefore be desirable.

One approach to achieve this is to not undo the Z operations sandwiching the unitary
using controlled operations that only act on one path degree of freedom, but to instead
perform a global transformation that generates the correct symmetry. This can be done
with the following basis transformation:

Ufw 7→ Z(π/2)Ufw Z(−π/2) = Vfw

Ubw 7→ Z(π/2)UbwZ(−π/2) = Vbw.
(6.2-4)

The basis transformation changes the unitaries, however this can be corrected for by
simply choosing the pre-transformed unitary as

Ufw = Z(−π/2)UZ(π/2), (6.2-5)

where U is the unitary one wants to preform the time flip on. It is straightforward to
verify that the basis transformation above leads to the correct symmetry properties:

Vbw = Z(π/2)UbwZ(−π/2)
= Z(π/2)

[
Z(π)UTfwZ(−π)

]
Z(−π/2)

= Z(3π/2)UTfwZ(−3π/2)

=
[
Z(π/2)UfwZ(−π/2)

]T
= V T

fw.

(6.2-6)

The basis transformation is essentially equivalent to swapping the X and Y eigenstates.
This hints at the fact that it is not actually necessary to perform the basis transformation.
One can instead simply redefine the polarization states by picking a different convention
for the Pauli matrices and Stokes parameters. In a polarization gadget consisting of
linear retarders it is always the part of the unitary acting on the diagonal polarization
components that is anti-symmetric under counterpropagation:[

θ nx ny ny
]
=
[
θ ↗ ⟲ →

]
→
[
θ ↖ ⟲ →

]
=
[
θ −↗ ⟲ →

]
. (6.2-7)

Here the symbols on the right-hand side represent the polarization states that are the
eigenstates of the corresponding component of the unitary. To get the correct transfor-
mation under counterpropagation one can simply choose to associate diagonal polariza-
tion states with the eigenstates of Y :

(S1, S2, S3) = (→,↗,⟲) ↔ (Z, Y,X). (6.2-8)
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This particular convention, which was initially picked for the experiment, is slightly
inconvenient because it corresponds to a left-handed coordinate system. It was therefore
later, after the data acquisition, changed to:

(S1, S2, S3) = (→,↗,⟲) ↔ (−Z,−Y,−X), (6.2-9)

which when going from (6.2-8) is equivalent to adding a minus sign to the 1 term in
a given unitary. In practice this simply means that the last two unitaries in the set
M− get exchanged with one another, while the others remain unaffected. One can
also verify through direction calculation that this choice of conventions causes linearly
birefringent gadgets transform as the transpose. Under the convention (6.2-9) a single
linearly birefringent element with retardance η at an angle ϕ to the vertical axis can be
written as

Wη(ϕ) = X(2ϕ)Wη(0)X(−2ϕ), (6.2-10)
since the Z and Y eigenstates now represent linear polarization states. The transforma-
tion of a single-element gadget under counterpropagation can then be calculated:

Θ
[
Wη(ϕ)

]
= Wη(−ϕ)
= X(−2ϕ)Wη(0)X(2ϕ)

=
[
(X(2ϕ)Wη(0)X(−2ϕ)

]T
= Wη(ϕ)

T ,

(6.2-11)

and we see that it indeed transforms as the transpose. From this it immediately follows
that sequences of linear retarders also transform as the transpose:

Θ
[
Glinear

]
= Θ

[
Wη1(ϕ1)Wη2(ϕ2) · · ·WηN (ϕN )

]
= WηN (−ϕN ) · · ·Wη2(−ϕ2)Wη1(−ϕ1)

=
[
Wη1(ϕ1)Wη2(ϕ2) · · ·WηN (ϕN )

]T
= (Glinear)

T .

(6.2-12)

To verify that the above gadget actually works, the unitaries in the sets (6.1-19) and
(6.1-20) were implemented using two gadgets, and were then reconstructed using quan-
tum process tomography restricted to unitary channels. The first (second) unitary U
(V ) in each pair was implemented with the gadget used to implement the same unitary
in the experimental channel discrimination task. All 21 unitaries for each gadget were
first measured in one propagation direction, and then independently in the other propa-
gation direction. This was done for practical reasons, as moving the tomography setup
between each measurement would have been too time consuming, but had the downside
that the unitaries measured in the two measurement sets could be slightly different due
to small differences in the wave-plate angles.

The unitaries were reconstructed from the measurement data using a maximum
likelihood estimation, and were then used to calculate the fidelity between the unitary
in the forwards propagation direction and the transpose of the unitary in the backwards
propagation direction:

F(Ufw, U
T
bw) =

〈
(Ufw |Ψ〉)†UTbw |Ψ〉

〉
|Ψ⟩. (6.2-13)
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Figure 6.8: Transpose fidelity. Fidelities between the reconstructed unitary in the forwards di-
rection and the transpose of the reconstructed unitary in the backwards direction, for all unitaries
in the sets M+ and M−. The superimposed box plot shows the uncertainties in the fidelities,
calculated using a Monte-Carlo simulation. The mean fidelity is 0.9992±0.00064, indicating that
the gadgets indeed have the correct symmetry properties.

This average was taken over 1000 Haar random states, and was evaluated as part of a
Monte-Carlo simulation that accounted for wave-plate angle errors in the tomography.
The distribution of the fidelities in the simulation was used as an estimate of the uncer-
tainty in the reconstructed fidelities, as the wave-plate-motor repeatability was assumed
to be the main error source. Tomography was also performed on the polarizers used
to prepare the two input states |H〉 and |+〉 in the process tomography, and the corre-
sponding reconstructed states were used in the maximum likelihood estimation of the
unitaries.

The result of the tomographies is shown in Fig. 6.8, and both gadgets exhibit high
fidelities. Note that these fidelities do not reflect how accurately the gadgets implement
the unitaries Ui and Vi, only the symmetry properties of the gadgets under counterprop-
agation. This property is independent of errors in the retardance and angles of the wave
plate. However, since as previously mentioned the two directions were measured inde-
pendently, differences in the gadget wave-plate angles between the two measurements
could have caused the fidelity to drop.

6.2.2 Interferometer design for the channel discrimination task
The bidirectional polarization gadgets described in the previous section were placed

inside an interferometric setup designed to implement the quantum time flip strategy for
the channel discrimination task presented in Section 6.1.2. The goal of the experiment
was to demonstrate that the time direction of the resulting process was indefinite, by
achieving a success probability for the channel discrimination strictly greater than that
of any strategy with a definite time direction.

The fact that the quantum time flip can be realised by exploiting two different
propagation directions through a single polarization gadget opens up the possibility of
novel optical geometries. Our implementation made use of fiber-optic circulators to
realise a partially common-mode interferometer, that used the non-reciprocal properties
of the circulators to separate two overlapping and counterpropagating beams. The input-
output relations of these devices is shown in Fig. 6.9. Overlapping the beams in the two
propagation directions through the polarization gadgets ensures that the polarization
transformation in one direction is exactly the transpose of the transformation in the
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Figure 6.9: Fiber circulator input-output relations. The experimental setup made use of
fiber circulators to superpose two different propagation directions, and to then separate these
counterpropagating modes. These devices work as shown above. Light input in mode 1 gets
routed to mode 2, while light entering in mode 2 is sent to mode 3. Finally, light entering in
mode 3 is rejected, though this feature was not utilized in the experiment.

other direction, since the two beams sample the same spots on the wave plates. The
mode overlap between the two beams was ensured by fiber coupling the light before and
after each gate.

A sketch of the full experimental setup is shown in Fig. 6.10. The main part of
the interferometer consists of a mixed bulk- and fiber-optic interferometer that imple-
ments the quantum time flip strategy for the channel discrimination task. The input
beamsplitter in the top left of the figure prepares the state:

1√
2
|Ψ〉T (|0〉C + |1〉C), (6.2-14)

where |Ψ〉T is a target polarization state, and the computational basis states of the
control qubit are encoded in the photon path. In practice the beamsplitter does not
prepare the state |+〉C since the reflectivity will in general not be perfectly 50 : 50,
and typically also depends on the optical alignment. Additionally, the two control
qubit states may experience differential loss throughout the setup, which can introduce
additional imbalance between the two terms. Finally, the output beamsplitter will also
exhibit some degree of imbalance in its splitting ratio. By choosing a bulk beamsplitter
for the input of the interferometer the control state superposition can be balanced by
adjusting the relative coupling efficiency into the single-mode fibers. This, in turns,
allows the interferometric visibility to be greatly improved, compared to a setup without
control over the non-common-mode loss.

After being initialized in a spatial superposition by the beamsplitter, two fiber circu-
lators were used to send the target state through the gadget implementing the unitaries
Vi in two different directions, thereby generating the join target-control state

1√
2

(
V |Ψ〉T |0〉C + V T |Ψ〉T |1〉C

)
. (6.2-15)

Entering the circulators from what was previously the output port, the two photon
paths were then routed to a second free-space path containing the gadget implementing
the Ui gates. The two counterpropagating paths through this gadget were aligned with
opposite relative directions with respect to the V gadget, meaning that the transposed
unitary was applied on the term with the |0〉C component, giving the state

1√
2

(
UTV |Ψ〉T |0〉C + UV T |Ψ〉T |1〉C

)
. (6.2-16)
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Figure 6.10: Experimental setup. The double-time-flip strategy for the channel discrimina-
tion task was implemented using an interferometer consisting of both bulk and fiber optics. In
order to balance the two interferometer arms as well as control the interferometer phase, a bulk
optics beamsplitter was used at the input, and the fiber coupler collecting the transmission port
of the beamsplitter was placed on a linear translation stage. Adjusting the relative coupling of
the two fiber couplers at the input also allowed for differential loss in the two interferometer
arms to be balanced. The polarization gadgets implementing the unitary channels U and V were
placed in two separate free-space paths, and four fiber circulators allowed the photons to be super-
posed in two different propagation directions through these two paths. A spontaneous parametric
down-conversion source was used to generate single-photon pairs, and non-polarization-resolving
detection was carried out with superconducting nanowire single-photon detectors (SNSPDs).

This is illustrated in Fig. 6.11, which shows the two photon paths through the interfer-
ometer. Finally, a second beamsplitter was used to perform a Hadamard operation on
the control qubit, thereby correlating its computational basis states with the defining
properties of the sets M±:

1

2
UTV |Ψ〉T

(
|0〉C + |1〉C

)
+
1

2
UV T |Ψ〉T

(
|0〉C − |1〉C

)
=
1

2

(
UTV + UV T

)
|Ψ〉T |0〉C +

1

2

(
UTV − UV T

)
|Ψ〉T |1〉C

(6.2-17)

This Hadamard transformation at the output of the interferometer was implemented in
fiber in order to simplify the spatial mode matching, and to thereby help facilitate a high
interferometric visibility. The two output ports of the interferometer were connected to
single-photon detectors and no polarization resolving measurements were performed.
Formally, the target state was therefore traced out. The superconducting single-photon
nanowire detectors (SNSPDs) used in the experiment did have a slight polarization
dependence, however, as will be discussed later this did not have to be accounted for.

6.2.3 Path-length balancing
In addition to balancing the interferometer loss, the bulk beamsplitter at the input

served the purpose of allowing for control over the relative path length of the two optical
paths through the setup. This was achieved by placing the fiber couplers collecting the
light in the transmitted port of the beamsplitter on a linear translation stage. Since
the range of the translation stage was relatively limited, around 20mm, the lengths of
the fibers in the non-common-path sections of the interferometer were carefully mea-
sured, and these fibers were connected in a configuration that minimized the relative
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Figure 6.11: Photon paths. The reflected and transmitted ports of the input beamsplitter
of the interferometer propagate along two different paths that partially overlap. The reflected
port (left) enters the upper-right fiber circulator in port 1 and propagates through the first
polarization gadget from right to left, yielding the transformation V T . After this, the two left-
hand circulators route it through the second polarization gadget in the opposite direction, which
applies U . Conversely, the transmitted port of the input beamsplitter is sent to the upper-left
circulator, and propagates through the first gadget left to right, which causes it to apply the
unitary V . The two right-hand circulators then route photons in this path through the second
gadget backwards, and consequently UT is applied.

path-length difference. The residual path-length difference was pre-adjusted by placing
the fiber coupler for the reflected port of the beamsplitter at the appropriate distance,
estimated from the measured fiber lengths. After this, the path length was coarsely min-
imized by using a diode (ThorLabs L1550P5DFB) with a linewidth of approximately
0.1 nm, corresponding to a coherence length of about 7.5mm, slightly exceeding that
of the single photons. The minimization was done by manually scanning the relative
optical path length while observing the interferometric visibility by sweeping the inter-
ferometric phase with a piezo-electric actuator, also connected to the linear translation
stage.

While the coherence length of the diode laser was in principle short enough to mea-
sure the path-length difference accurately enough to ensure high visibility between the
single photons, the resolution of the measurement was limited by back reflections from
the various optical components as well as fiber connectors. While all the free-space op-
tics in the experiment were anti-reflection coated individual components can still have
reflectivities on the order of tens of a percent. When attempting to resolve a very
low interferometric minimum these small signals are sufficient to ruin the measurement.
Due to the relatively short coherence length of the diode laser, one would expect most
backreflections to simply form an incoherent background that could be subtracted, but
instead a highly erratic signal near the interferometric minimum was observed. One ex-
planation of the interference exhibited by the backreflections could be signals resulting
from two double backreflections from the same components in the common-path parts
of the setup, as these would preserve the relative path-length difference. Since these
signals involve two back reflections though, they should be even smaller in magnitude.

The underlying cause of this behaviour was never investigated in detail, since it is
challenging to observe the back reflections in isolation when using continuous wave light,
and ultimately it was not necessary to perform the full path-length balancing using
the diode laser. Instead, after sufficiently high visibility was achieved the remaining
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(a) Photograph of opened box (b) Distribution of optical components

Figure 6.12: Interferometer box. The interferometer was stabilized using two nested boxes,
as shown in the photograph in (a). The inner box contained the bulk beamsplitter used at the
input, the associated fiber couplers, a translation stage used to control the path-length difference
between the interferometer arms and to set the interferometer phase, a polarizer and wave plates
for polarization compensation (one HWP not pictured), as well as the fiber ciruclators and output
fiber beamsplitter. The fiber components were placed between four sheets of Thinsulate in order
to avoid direct thermal contact with the metal box. Since the fibers were not rigidly secured,
slight polarization disturbances could be observed when opening and closing the box, but these
were not enough to need addressing. (b) shows which optical components were placed inside the
box (light blue) for stabilization, and which ones were placed outside for easier access.

path-length imbalance was corrected by observing the single-photon interference in the
interferometer, while conditioning the signal on the heralding photon from the SPDC
source. Since the back reflections will take a different optical path than the main signal,
and therefore have a different time delay with respect to the heralding photon, this time
filtering eliminates any back reflections arriving outside a time window defined by the
jitter of the detectors. The SNSPDs used in the experiment had a jitter of approximately
1 ns. This corresponds to an optical path length of 30 cm, and the separation between
the fiber couplers surrounding the polarization gates was about 60 cm. This means that
any back reflection traversing a free-space path twice, or not at all, will be filtered out.
Back reflections occurring in the middle of the free-space path would not get filtered out.
However, to the extent that these were present they did not significantly degrade the
measurements, and single-photon interference visibilities of around 0.998 were observed.

6.2.4 Interferometer stabilization
The interferometric setup described in the previous section is not fully common path,

and is therefore sensitive to path-length fluctuations that translate into phase noise.
Optical fibers, in particular, add a significant amount of instability to interferometers
unless actively or passively stabilized. Active stabilization of the interferometer would
present the problem that interference condition of the locking light is affected by the
polarization transformations in the free-space parts. This is not ideal, because the laser
light is in effect performing a classical measurement on the gates in the channel, while
the channel discrimination task is formulated such that only a single use of each gate is
allowed. A passive stabilization approach was therefore pursued instead.

The passive thermal and acoustic stabilization was done using two nested boxes.
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Figure 6.13: Interferometer thermalization. Immediately after closing the box used to
stabilize the phase-sensitive parts of the interferometer the observed passive phase drift is very
large. However, this behaviour is transient and decays exponentially, until the interferometer
settles. In the figure above the transient manifests as a frequency chirp in the sine curve.

Optics were housed inside an inner box consisting of a steel optical breadboard, and
aluminium walls and lid lined with sorbothane. This box was placed on top of a set of
sorbothane vibration-absorbing feet. A larger polystyrene box was placed around the
inner box, and Thinsulate was used to fill the air gap between the two boxes. Thinsulate
was additionally used as padding inside the inner box, as well as to cover the outside of
the polystyrene box. In Fig. 6.12 a picture of the opened box is shown.

One downside of housing the experiment inside an insulated box is that the optical
components cannot be readjusted without having to open the box, and then subsequently
waiting for it to re-thermalize. Fortunately, due to the partially common-path geometry
of the interferometer many of the optical components could actually be placed outside
the box without compromising the phase stability. As shown in Fig. 6.12b only the two
beamsplitters, as well as the four fiber circulators were placed inside the box, while the
four fiber polarization controllers and the two free-space optical paths containing the
polarization gadgets were placed outside the box.

The performance of the passive stabilization is illustrated in Fig. 6.13 and Fig. 6.14,
which show the initial transient behaviour of the box, and the steady state behaviour,
respectively. Given sufficiently long time to thermalize, the observed drift rate was as
low as 5mradmin−1, which was more than sufficient for the experiment. For the actual
single-photon measurements though, the box was not allowed to thermalize for this long.
This was due to the fact that a very slight decrease in the polarization contrast over time
was observed. Albeit small, this effect was nevertheless sufficient to measurably influence
the success probabilities in the channel discrimination task negatively. Since, as will be
discussed in Section 6.2.5, the polarization compensation procedure required the box to
be opened, the compensation could not be tuned up after the box had been allowed to
thermalize. Instead, a compromise between the stability of the interferometer and the
polarization contrast was found, and the time spent with the box open was minimized.

6.2.5 Polarization compensation
The basic principle of the polarization compensation in the experiment is the same

as described in Section 5.2.3, and will not be restated here. Due to the slightly uncon-
ventional geometry of the interferometer, however, a few extra considerations had to be
made. In particular, since the polarization compensation was performed using coher-
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(a) Power drift (b) Linear phase drift

Figure 6.14: Interferometer phase drift. After thermalizing, the interferometer displayed
significantly lower phase drift than in the initial transient period. As can be seen in (a), a drift of
less than 2π radians was observed a period of 30 h. In (b) the drift is quantified with a linear fit
to a 300min subset of the data in (a), shown in yellow, and the drift is found to be 5mradmin−1.
This drift rate only quantifies the DC noise, resulting from temperature gradients between the
inside and outside of the box. The full power spectral density of the thermal noise was not
measured, and the passive temperature stabilization does not reduce the intrinsic thermal noise
in the fibers.

ent light, the presence of back reflections was found to limit the resolvable polarization
contrast. Consider, for example, compensating the path A → M in Fig. 6.15. Light
propagating along the path A→ B →M will interfere with the light in the path to be
compensated, and this light could come from for example back reflections in the path
B → A, or light entering the circulator adjacent to A from the other port. Without
addressing these effects, the polarization contrast was limited to less than 30 dB, and in
some cases much lower, due to a mixed polarization state at the measurement polarizer.

In order to mitigate the effects of the back reflections the state-preparation polarizers
were supplemented with an additional polarizer as well as a Faraday rotator, in order
to construct a makeshift Faraday isolator. In addition to this, it was observed that the
linear polarizers used (ThorLabs LPNIR050) reflected most of the rejected light, and in
some cases this resulted in double back reflections, for example from the polarizer and
the fiber coupler in front of which it was placed, strong enough to significantly degrade
the achievable polarization contrast. The polarizers were therefore placed as far away
from the fiber couplers as possible, and were slightly tilted in order to misalign the back
reflection.
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CW

Figure 6.15: Polarization compensation. In the experiment the polarization of the photons
was not resolved as part of the photodetection, and therefore it was technically speaking not
necessary to compensate the polarization at the output of the interferometer. It was, however, still
necessary to compensate the polarization at the second fiber beamsplitter (BS) where interference
takes place. Since the polarization at the beamsplitter cannot be directly measured one of the
output fibers was connected to a fiber coupler, at the point M in the figure. While compensating
the fibers in the paths A→M and B →M does not ensure that the paths A→ BS and B → BS
realise the identity transformation, it does guarantee that the polarization transformations of the
two paths are identical. When compensating for example the path A → M it was possible,
due to the partially common-path geometry, for back reflections of the form A → B → M or
C → A → B → M to interfere with the measurement signal, and this significantly limited the
resolvable polarization contrast. In order to combat this problem makeshift optical isolators, in
place of linear polarizers, were used to prepare the input polarization states. The probe light for
the compensation was injected using a CW laser at the input side of the interferometer. The
compensation was carried out in a backwards order, starting with the path A → M (B → M)
using a combination of the wave plates and paddles at A (B). After this C → A (D → B) was
compensated the same way, and finally I → C (I → D). A linear polarizer at I was used to
prepare the input state for both the compensation and the experiment, and the paths connecting
the input to the first gadget therefore only had to be compensated in one basis. This single-basis
compensation was performed using the two wave plates in front of each input coupler.

6.3 Data acquisition and analysis
For each of the 21 pairs of unitaries in M± the wave-plate gadgets were first set

to implement the identity operation so that the phase of the interferometer could be
monitored, and if needed reset. After zeroing the interferometer phase, the gadgets were
set to implement unitaries U (V ) and data was acquired for 5 s. This short acquisition
time was enabled by the relatively low experimental loss. After the data acquisition,
time-ordered lists of two-fold coincidences between signal and trigger photons were cal-
culated using code re-purposed from Publication 2. Due to the polarization dependence
in the single-photon detectors the total number of photon counts for each setting varied
by as much as a factor of two, and the data sets for all settings were truncated to the
first 55 000 detection events.

Using this data set the channel discrimination game was played. In every round
of the game a referee randomly picks one of the 21 pairs of channels, and the player
attempts to guess from which set they were picked. The referee’s choices were sampled
uniformly randomly, and the player’s guesses were picked from the measured data. No
measurement outcomes were used more than once, and in each round the player’s out-
come was given by the first unused detection event in the list of events corresponding
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Figure 6.16: Relative frequencies. The figure shows the relative frequency of observed out-
comes, ‘+’ or ‘−’, for the 21 pairs of channels the referee picked from in the game. For the set
M+ (M−) obtaining the outcome ‘+’ (‘−’) wins the game, and it can be seen that the wining
frequency is close to 1 for every choice of channels. The average winning frequency observed in
the game was 0.9945, far exceeding the bound of 0.92 for strategies with a definite time direction,
while the highest and lowest winning frequencies were 0.9993 and 0.9860, respectively.

to the pair of channels that the referee picked. The exact procedure for game was the
following:

Let k be the number of rounds played, ni the number of times that the referee
has picked the channels (Ui, Vi) in the previous rounds and Om

i the m-th entry in the
time-ordered list of detection events corresponding to the channels (Ui, Vi). Then the
outcome of the k-th round of the game was determined by retrieving the event Oni

i .
While this game could also have been implemented by randomly sampling from the

unitaries during the experiment and implementing a different pair of channels for every
round of the game, the choice of instead playing the game using the acquired data was
taken in order to not have the data acquisition time be limited by the time spent rotating
the wave plates.

One million rounds of the game were played using the procedure described above.
This number was chosen to be high, while still ensuring that there would be a sufficient
number of detection events for every choice of unitaries even if the referee’s random picks
resulted in a slightly non-uniform distribution. During the game the player outputs an
answer every round, and we are interested in the relative frequency with which the
player gives the two possible answers. Let N+

k (N−
k ) be the number of times that the

player output the answer + (−) in a round when the referee picked the pair of unitaries
(Uk, Vk), and Nk the total amount of times that those unitaries were picked, then the
relative frequencies of the two outcomes ‘+’ and ‘−’ are:

f+k =
N+
k

Nk
, f−k =

N−
k

Nk
. (6.3-1)

In Fig. 6.16 the observed relative frequencies for all of the 21 possible choices of unitary
channels by the referee are shown. It can be seen that all the relative success frequen-
cies far exceed the bound of 0.92 on the success probability for processes with definite
time directions, with the highest (lowest) observed relative win frequency being 0.9993
(0.9860).
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The relative frequencies do not have an uncertainty associated with them, since they
are given directly by how many times each outcome was observed. One way to sta-
tistically analyse the result would be to interpret the relative frequencies as empirical
estimates of the underlying success probabilities for every choice of channels by the ref-
eree. These estimates would have an uncertainty given by Poissonian counting statistics,
and this uncertainty could be propagated to find an uncertainty in the mean success
probability. However, a more suitable way to quantify the statistical significance of the
results is to calculate the p-value for the process having an indefinite time direction,
which is the probability of a process with a definite time direction having generated at
least as many wins as observed. This probability can be expressed as

P =

N∑
k=v

(
N

k

)
pk(1− p)N−k. (6.3-2)

Here p = 0.92 is the highest success probability for a strategy with a definite time
direction, and v = 994, 512 is the number of experimentally observed wins in the game.
The binomial coefficient in the expression above counts all the different ways in which the
k wins can be distributed over the N rounds. Due to the large number of rounds played
the binomial coefficients become extremely large, while the exponentiated probabilities
tend to zero, and this makes the expression difficult to evaluate numerically. Instead
of calculating the exact p-value, one can use a Chernoff bound to calculate an upper
bound on the p-value [430]. This bound can be expressed as

P ≤ exp
[
−ND

( v
N

∣∣∣∣∣∣p)], (6.3-3)

where
D
( v
N

∣∣∣∣∣∣p) =
v

N
ln

(
v

Np

)
+

(
1− v

N

)
ln

(
1− v/N

1− p

)
, (6.3-4)

is known as the Kullback-Leibler divergence. Evaluating the expression above gives

D

(
994, 512

106

∣∣∣∣∣∣∣∣0.92) ≈ 0.06275, (6.3-5)

and hence
P ≤ e−6·104 . (6.3-6)

This is a very small number, and one can thus conclude that a process with a definite
time direction could not achieved as many wins as the experimentally realised process,
which must therefore have an indefinite time direction. As a complement to the above
bound, the p-value was also calculated explicitly for smaller numbers of rounds and
then extrapolated. This was done by exploiting the fact that the natural logarithm of a
binomial coefficient can be expressed as

ln

(
N

k

)
= lnΓ(N + 1)− ln Γ(k + 1)− ln Γ(N − k + 1), (6.3-7)
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Evaluated p-value

Linear fit

Figure 6.17: P-values. Since the p-value could not be directly calculated for theN = 106 rounds
that were played, it was instead evaluated for lower numbers of rounds and then extrapolated.
This was done for round numbers up to 10,000, and as shown in the figure the p-value decrease
exponentially with the round number. The data points in the figure were calculated using a
number of wins given by the average success probability 0.994512, not by sampling number of
wins for a given number of rounds. Extrapolating the linear fit to N = 106 gives a p-value of
P = exp[−6.279 · 104].

where Γ(·) is the gamma function. The p-value can then be evaluated for relatively large
round numbers as

P =
N∑
k=v

exp

[
ln

(
N

k

)
+ k ln p+ (N − k) ln(1− p)

]
. (6.3-8)

The results of this calculation are shown in Fig. 6.17 for up to 10,000 rounds. Ex-
trapolating from a linear fit to the logarithm of the p-values one finds a p-value of
exp[−6.279 · 104] for N = 106, suggesting that the bound (6.3-6) is quite tight.

6.3.1 Semi-device independence
The data analysis outlined above did not account for imbalanced or polarization-

state dependent detection efficiencies, which were known to be present in the setup.
The reason for this is that the certification method for the indefinite time direction was
semi-device independent; specifically, it was independent of the measurement device.
This device independence is a consequence of the theoretical methods used to device the
bounds on the success probabilities for strategies that do not have access to coherent
unitary transposition. More concretely, since the tester formalism encompasses the
measurement performed by the player, the bounds derived using this formalism represent
an optimization over all possible measurements the player can perform. As a result,
there is no possible measurement that a player using a strategy from a given class could
perform that would enable them to violate the bound derived for that class. This in turn
means that if a winning rate exceeding the bound for a class of strategies is observed,
then then one does not need to know what measurement was performed in order to
conclude that the experimentally implemented process does not belong to the class in
question. This notion of semi-device independence is taken from [431], where it was
applied to the certification of indefinite causal orders, leading to the first semi-device
independent demonstration of an indefinite causal order [432].
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The contrast between such a demonstration and previous device dependent ones is
best illustrated through an example. In Ref. [11] a causal witness was used for the first
certification of an indefinite causal order. This was achieved by constructing a witness
operator Ŝ that had the property that

Tr
[
ŜW sep

]
< 0, (6.3-9)

for any causally separable process matrix W sep. Experimentally evaluating Tr
[
ŜW exp

]
and recording a value greater than zero therefore certifies that the experimental process
W exp is causally indefinite. In practice this is done by decomposing Ŝ in terms of
an experimentally realisable set of observables,2 and then experimentally evaluating
the expectation values of these observables. However, the estimates of the expectation
values carry with them uncertainties resulting from measurement imperfections, thereby
introducing a corresponding uncertainty in the estimate of Tr

[
ŜW exp

]
. In order to

observe a violation of (6.3-9) that is statistically significant, it is therefore imperative
to have well characterised measurement devices.

Returning to the semi-device independent demonstration of an indefinite time direc-
tion in Publication 3, we note that the imbalanced detection efficiencies present in the
SNSPDs can be modelled as generalized measurements. For example, a biased measure-
ment of the control qubit could look like:

E1 = p1 |0〉〈0|C + p2 |1〉〈1|C ,
E2 = (1− p1) |0〉〈0|C + (1− p2) |1〉〈1|C ,

(6.3-10)

where p1, p2 ∈ [0, 1] represent the detector bias. This description gives a more concrete
understanding of how such measurement imperfections are considered in the derivation
of the success probability bounds. Accounting for measurement bias could likely have
yielded a larger violation, or higher rate of wins in the game, however this was not
necessary since the recorded data already certified the indefinite time-direction, and
modelling the detection device would have led to a less elegant result.

6.3.2 Discussion on number of gate uses
The advantage of the quantum time flip in the channel discrimination task hinges on

the restriction that the player can only access each gate once. When being given access
to more uses of the gates new strategies open up. For example, when given access to four
uses of the same unitary, there exists a circuit to deterministically transform this gate
into its transpose [433], and when a high number of gate uses is allowed a player could
simply perform quantum process tomography to determine what channels the referee
picked. In the photonic implementation one would intuitively expect that the gates are
only used once, since the two photon paths only pass through the gates once, however it
is not straightforward to actually verify this. This issue was first discussed in the context
of the query complexity of causally indefinite processes, and in Ref. [419] the authors
proposed using an additional system as a counter of the number of gate uses, however

2In the case of the quantum switch these observables consist of an input state, the operations inside
the quantum switch, and the actual measurements performed on the output system.
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this approach has not yet been rigorously formulated. A different approach, based on
quantum process tomography of so-called time-delocalized subsystems, was put forth in
Ref. [434].

The point of such discussions is to elucidate whether or not the physical realisation of
causally or temporally indefinite processes actually carry greater information processing
power than physical realisations of quantum-circuit-model processes. One can then
instead ask what the physically relevant resources are, and how they are consumed.
Such an analysis was carried out in Ref. [435] by studying the energy cost of a process.
The authors found that implementations of the quantum switch using a single realisation
of each operation compared favourably to ‘simulations’ of the quantum switch using two
realisations of each operation. However, the quantum time flip discussed in this chapter
was applied to single qubit gates. These gates, by definition, only affect a single, two-
level quantum system, and therefore implicitly require an interaction with a classical
environment on which there is no back action. This in turn means that this classical
resource is inexhaustible. Indeed, the transfer of angular momentum from a single
photon to a polarization gadget implementing a single-qubit gate can be completely
neglected, and one could just as easily apply the same transformation to 1015 photons
in a single optical pulse in parallel. In contrast, the study performed in Ref. [435]
considered single-qubit gates mediated by other quantum systems, and it was noted
that such operations will in general be slightly entangling and therefore introduce non-
unitary reduced dynamics on the target system.

To establish the existence of practically useful advantages of non-circuit-model pro-
cesses one ultimately needs to identify a more experimentally relevant difference in terms
of resource consumption. This would likely involve understanding how the requirements
on the physical implementations of these processes scale when extrapolated to more
complicated tasks on larger systems.



7
Background for “Demonstration of

a Quantum Switch in a Sagnac
Configuration”

This chapter will discuss Publication 4, “Demonstration of a quantum switch in a
Sagnac configuration”, but unlike the preceding chapters will not go into as great a detail
about the experimental methods as many of the experimental methods have been covered
in previous chapters. The purpose of the experiment was to test the theoretical results
presented in Chapter 3 and to demonstrate the applicability of one of the polarization
gadgets to a concrete task. The quantum SWTICH was a natural candidate for such a
task, since it is usually realised in Mach-Zehnder geometries that are not amenable to
active phase stabilization. At the end of the chapter it is discussed how the intrinsic
phase stability can be extended to a quantum switch with more than two parties.

7.1 Optical implementations of the quantum switch
As discussed in Chapter 5 the quantum switch is a process that maps two gates, U

and V , into a superposition of the two gates being applied in opposite orders, conditioned
on the state of a control system C

(U, V ) 7→ UV ⊗ |0〉〈0|C + V U ⊗ |1〉〈1|C . (7.1-1)

The relative ease with which single photons can be placed in spatial superpositions has
made photonics the simplest platform for realising the quantum switch, and to date all
realisations of the process have relied on different single-photon encodings of quantum
information [436].

7.1.1 Path-polarization quantum switch
The first, and most common, type of realisation of the photonic quantum switch is

one in which the polarization degree of freedom is used to encode the target system,
and the path degree of freedom is used to encode the control degree of freedom [11,406,
437, 438, 439, 440]. In practice this is typically done by using polarization optics placed
inside a Mach-Zehnder interferometer, aligned in such a way that the photons propagate
through the polarization gadgets in different orders in the two different interferometer
arms, as shown in Fig. 5.3. The advantage of this type of implementation is that high
fidelity single-qubit polarization transformations can be realised with relative ease, while
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the typically fixed control-qubit operation is realised using the harder to control path
degree of freedom.

The main challenge with this type of implementation is that the interferometer phase
needs to be stabilized. Passive stabilization has the problem of limiting the duty cycle
of the setup, as the phase needs to be periodically checked and reset [11], and this also
presents a trade-off between the available data collection time and the fidelity of the
device operation. On the other hand, active phase locking of interferometers, through
for example Pound-Drever-Hall locking [441, 442], is a well established technique that
can enable very high phase stability. While there is no fundamental problem preventing
the use of these methods in the realisation of photonic quantum switches, there is a
practical problem in that the locking light cannot propagate through the polarization
gadgets inside the inferferometer. This is because the polarization transformations affect
the apparent phase of the interferometer. For light passing through the gadgets, the
output of the interferometer is given by applying a Hadamard operation on the control
qubit in (7.1-1):

1√
2

[
UV ⊗H |0〉〈0|C + eiφV U ⊗H |1〉〈1|C

]
= UV ⊗

|0〉〈0|C + |1〉〈1|C
2

+ eiφV U ⊗
|0〉〈0|C − |1〉〈1|C

2

=
1√
2

[
(UV + eiφV U)⊗ |0〉〈0|C + (UV − eiφV U)⊗ |1〉〈1|C

] (7.1-2)

For the phase measurement one would like U = V = 1, which gives

1

2

[
(1+ eiφ1)⊗ |0〉〈0|C + (1− eiφ1)⊗ |1〉〈1|C

]
. (7.1-3)

The measurement probabilities on the control qubit are given by the magnitude of the
corresponding transformed polarization state:

P0 =
1

4
〈Ψ|(1+ eiφ1)†(1+ eiφ1)|Ψ〉 =

∣∣∣∣(1 + eiφ)

2

∣∣∣∣2 = cos2
φ

2
(7.1-4)

P1 =
1

4
〈Ψ|(1− eiφ1)†(1− eiφ1)|Ψ〉 =

∣∣∣∣(1− eiφ)

2

∣∣∣∣2 = sin2
φ

2
, (7.1-5)

where |Ψ〉 is the polarization state injected into interferometer. As can be seen above,
when the polarization transformations are the identity operation simply monitoring the
relative power in the two output ports of the interferometer constitutes a direct mea-
surement of the phase φ. However, if the locking light passes through the polarization
gadgets when they are not implementing the identity transformation the measurement
probabilities above become modified by the magnitudes of

1

4
〈Ψ|(UV ± eiφV U)†(UV ± eiφV U)|Ψ〉, (7.1-6)

which in general depend both on the polarization state |Ψ〉 and the polarization trans-
formations U and V , and the phase information cannot easily be extracted. The above
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Figure 7.1: Sagnac quantum switch. A path-polarization quantum switch can be realised
in a Sagnac geometry using standard linearly birefringent polarization gadgets to implement the
unitary transformations U and V . However, in this case only rotations in the two-parameter
subset {U = exp[−iα(cos θY + sin θZ)|α, θ ∈ [0, 2π]} of SU(2) can be implemented, restricting
the use of this approach to special cases only requiring a limited gate set.

calculation was done for single photon states, which for obvious reasons would not be
used to lock the interferometer. However, as discussed in Appendix B, it is also valid
for coherent input states.

The output probabilities of the quantum switch can also be calculated using the
process matrix formalism outlined in Section 1.2.8. The process matrix for the quantum
switch can be expressed as [11,53]

Wswitch = |w〉〈w| , (7.1-7)

where
|w〉 = 1√

2

(
|wA→B〉 |0〉C + |wB→A〉 |1〉C

)
, (7.1-8)

and
|wA→B〉 = |1〉〉TinAin |1〉〉AoutBin |1〉〉BoutTout

|wB→A〉 = |1〉〉TinBin |1〉〉BoutAin |1〉〉AoutTout .
(7.1-9)

The actual probabilities are then found as

P± = Tr
[
SWswitch

]
, (7.1-10)

with [443]
S = ρTTin ⊗

(
|U〉〉〈〈U |A

)T ⊗
(
|V 〉〉〈〈V |B

)T ⊗ 1Tout ⊗MC , (7.1-11)

where
ρTin = |Ψ〉〈Ψ|Tin (7.1-12)

is the polarization input state and

MC = Rz(φ) |±〉〈±|C Rz(−φ) (7.1-13)

is the measurement projector at the output beamsplitter, defined by the interferometric
phase φ. Here the outcome ‘+’ (‘−’) corresponds to the outcome ‘0’ (‘1’) in (7.1-4).
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Since during the experiment the polarization gadgets will typically not implement
the identity transformation, the locking light needs to be aligned so that it does not
pass through the gadgets. While this is of course possible in principle, it is harder to
do in practice as wave-plate mounts, and in particular motorized ones, tend to be quite
bulky. This necessitates very large beam separations or mounting solutions specifically
engineered to let a secondary beam pass unaffected. Therefore, while active stabilization
of a quantum switch has been demonstrated [432], it is typically not done.

An alternative is to use a passively stable Sagnac geometry, as shown in Fig. 7.1.
This was done in Publication 2, but due to the nonreciprocal nature of wave-plate-
only gadgets this type of implementation is limited to a two-parameter subset of SU(2)
generated by the two Pauli operators that are symmetric under counterpropagation.

7.1.2 Alternative realisations
There have also been demonstrations of quantum switches using other encodings

than the path-polarization one, and some of these have employed passively phase-stable
geometries. The experiments presented in Ref. [56, 444] used the polarization degree of
freedom as a control system, while the target qubit system was encoded in the transverse
modes of the light; specifically, the two Hermite-Gaussian modes HG01 and HG10 [106].
As shown in Fig. 7.2 a PBS was used to map the polarization degree of freedom to the
photon path in a polarization-path interferometer. However, through the use of a looped
geometry both photon trajectories, corresponding to the control qubit basis states, tra-
verse both arms of the interferometer, and do therefore not acquire any relative phase
from low-frequency path-length fluctuations. Additionally, the optical geometry ensures
that photons in the two different paths through the quantum switch hit the devices im-
plementing the two unitaries on the same spot, unlike the typical path-polarization
geometry that relies on having two offset beams through the same gadget.

The main drawback with this approach is the high complexity associated with the
manipulation of the Hermite-Gaussian modes. Transformations on the modes were
realised using a sequence of rotating prisms and cylindrical lenses, requiring a relatively
high number of optical components. Furthermore, since the transverse modes form
a countably infinite set, imperfect transformations will typically take the state out of
the {HG01,HG10} qubit subspace. Finally, state initialization was done using spatial
filtering, and was therefore post-selective. These experimental challenges are likely the
reason why the transverse-mode encoding has not seen more widespread use.

Another realisation of a quantum switch without the need for phase stabilization is
the demonstration of exponential advantage in communication complexity presented in
Ref. [421]. The experiment used a time-bin encoding for the target states, consisting of
d = 2n+1 time-bins, with n = 12. The implemented unitary transformations consisted
of shifts on the time-bins:

Xd |τ〉 = |τ + 1 mod d〉 , (7.1-14)
and time-bin dependent phase-shifts:

Zd |τ〉 = e2πiτ/d |τ〉 . (7.1-15)
The different time-shift operations in the experiment were realised by two sets of n fiber
patch-cable pairs that were connected in specific combinations to yield the appropriate
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Figure 7.2: Polarization-TEM quantum switch. By encoding both the target and control
systems of the quantum switch in internal degrees of freedom of a photon one can achieve passively
phase-stable operation. This was demonstrated in Ref. [56] using the setup shown above. The
control qubit was encoded in the polarization state, while the target qubit was encoded in the
Hermite-Gaussian transverse electromagnetic modes (TEM) shown on the right. Using a PBS the
polarization state is mapped to the photon path and the transformations A and B are applied
conditional on the state of the control qubit using a combinations of lenses, prisms and wave
plates. After this, the photons paths are recombined on a second PBS, and routed through the
polarization-path interferometer via the second input of the first PBS. Since the photons always
traverse both arms of the interferometer any relative phase between these arms only manifest as
a global phase.

time delays. This meant that to implement different Xd shifts the setup had to be man-
ually reconfigured. Furthermore, the Zd phase shifts required the use of ultra-fast phase
modulators, with modulation bandwidths in excess of 500MHz. Finally, the restriction
to time translations and phase shifts meant that the setup could not realise fully general
transformations on the time-bins, or even prepare superpositions of the computational
basis states. Therefore, while the experimental setup was cleverly designed to demon-
strate the communication advantage presented in Ref. [420], the experimental methods
employed do not readily generalise to other uses of the quantum switch.

7.1.3 Common-path path-polarization quantum switch
To maintain the advantage of the high fidelity and easily reconfigurable unitary

transformations enabled by a polarization encoding for the target state, while at the
same time making use of a passively phase-stable common-path geometry, one can build
a quantum switch using the reciprocal polarization gadget described in Chapter 3:

GR = Q(θ)H(ϕ)XS(γ)H(−ϕ)Q(−θ). (7.1-16)

The reciprocity of the gadget follows immediately from the palindromic order, and the
fact that the middle X-gadget

XS(γ) = H(π/8)ZA(γ − 2π)H(π/8)

= H(π/8)F−X
A(γ − 2π)F+H(π/8)

= H(π/8)F−Q(π/2)H(γ/4− π/2)Q(π/2)F+H(π/8)

(7.1-17)

is symmetric. While the symmetry of this gadget was shown mathematically in Chap-
ter 3, it can also be understood visually. As illustrated in Fig. 7.3, the key principle
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Figure 7.3: Reciprocity of the XS gadget. The reciprocal universal gadget uses a reciprocal
X-gadget as a key building block, and the symmetry properties of this latter gadget has an
intuitive explanation. In both sub-figures the evolution of the eigenstate |+〉 is shown in the
co-moving frame of the light. The gadget consists of a Simon–Mukunda gadget configured to
implement an X-rotation, sandwiched by two fixed Faraday rotators and two half-wave plates.
As shown in (a), in the forward direction the first half-wave plate, set at an angle of π/8, rotates
an initial |+〉 eigenstate in a clockwise direction to |H〉, and the F+ Faraday rotator then applies
a counter-clockwise rotation, cancelling the action of the HWP and taking the state back to |+〉.
After receiving a phase shift from the central gadget, the process is repeated by the second HWP
and Faraday-rotator pair. In the counterpropagating direction, shown in (b) the HWP angles are
mirrored, causing the rotations of the HWPs and Faraday rotators to add, turning the input state
|+〉 into |−〉. Due to the anti-symmetric nature of the central gadget it applies the same phase
to the anti-diagonal state in the backwards direction as to the diagonal state in the forwards
direction. Finally, the last Faraday rotator and HWP turn the state back to |+〉, and we see that
this eigenstate acquires the same phase in both directions, thereby showing the symmetry of the
gadget. Note that additional phases inside the gadget that ultimately cancel have been omitted
for the sake of clarity.

of the gadget is that both the Faraday rotators F± and the half-wave plates H(±π/8)
rotate a diagonally polarized state |±〉 by π/4, and in the forward propagation direction
these rotations cancel, while in the backwards propagation direction the rotations add
to a π/2 rotation that has the effect of swapping the eigenstates. Specifically, in the
forward direction:

H(π/8)F− = F+H(π/8) = −iX, (7.1-18)

the rotations cancel, preserving the states |±〉, and in the backwards direction:

H(−π/8)F− = F+H(−π/8) = −iZ, (7.1-19)

the rotations add, swapping the states |±〉 7→ |∓〉. This exchange of eigenstates on both
sides of the central gadget cancels the with the sign change in the rotation angle to
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produce the same transformation in both directions:

Θ
[
XS(γ)

]
= Θ

[
H(π/8)F−X

A(γ − 2π)F+H(π/8)
]

= H(−π/8)F−X
A(−γ + 2π)F+H(−π/8)

= i2ZX(−γ + 2π)Z |±〉
= ZX(−γ)Z |±〉
= ZX(−γ) |∓〉
= X(γ)Z |∓〉
= X(γ) |±〉 .

(7.1-20)

Given the reciprocal gadget (7.1-16) construction of a quantum switch becomes fairly
straightforward.

7.2 Advantage of the quantum switch in a channel
discrimination task

The aim of the experimental part of our work was to certify our design of the quantum
switch, and to this end we chose to demonstrate a task at which the quantum switch
is known to outperform all causally ordered processes. This task, similar to the one
presented in Chapter 6, consists of determining whether a given pair of unitaries U and
V commute or anti-commute, while only given access to a single use of these unitaries.
Our specific version of the task is adapted from [53], where it was first presented.

We begin by defining the following set of unitaries:

G :=

{
1, X, Y, Z,

X ± Y√
2

,
X ± Z√

2
,
Y ± Z√

2

}
. (7.2-1)

Using this set, we then define a two new sets consisting of pairs of unitaries (Ui, Vj) from
(7.2-1) that either commute or anti-commute:

G± :=
{
(Ui, Vj)

∣∣∣Ui, Vj ∈ G, UiVj = ±VjUi
}
. (7.2-2)

These two sets contain 28 commuting and 24 anti-commuting pairs unitaries respec-
tively, for a total of 52 pairs. It is well known that the quantum switch can determine
from which set a given pair was picked with unity success probability by creating a
superposition of the two gates such that the commutator or the anti-commutator is ap-
plied conditional on the state of a control qubit [406], in the way previously described in
Chapter 5. In short, one prepares the joint target-control input state |Ψ〉T ⊗ |+〉C and
lets the quantum switch generate a superposition of the gates U and V being applied
in different orders, giving the state(

UV ⊗ |0〉〈0|C + V U ⊗ |1〉〈1|C
)
|Ψ〉T ⊗ |+〉C

=
1

2
{U, V } |Ψ〉T ⊗ |+〉C +

1

2
[U, V ] |Ψ〉T ⊗ |−〉C .

(7.2-3)
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Figure 7.4: Experimental setup. Similar to the other experiments presented in this thesis, a
spontaneous parametric down-conversion source with a ppKTP crystal in a Sagnac configuration
was used to generate single-photon pairs. Since polarization entanglement between the signal-
idler pair was not needed the source was pumped in a single direction. The signal photon was
used as a trigger for the idler photon, which was sent into the Sagnac quantum switch through a
fiber circulator. Using a tunable directional coupler (TDC) in lieu of a regular fiber beamsplitter
allowed the splitting ratio to be fine tuned, thereby increasing the interferometric visibility. The
free-space part of the interferometer contained two pairs of half- and quarter-wave plates used
together with the fiber paddles for polarization control, as well as two reciprocal polarization
gadgets implementing the two unitaries U and V . After being split on the TDC the single
photons propagate through the two gadgets in a superposition of directions, and therefore a
superposition of the orders in which the two gates can be applied. Upon re-interfering on the
TDC the photons exit in one of the two ports depending on whether U and V commute or anti-
commute. The fiber circulator picks off the backwards propagating photons in the input port,
and two polarizing beamsplitters allow for polarization dependent detection efficiencies in the
superconducting nanowire single-photon detectors (SNSPDs) to be corrected for.

Tracing out the target qubit and measuring the state of the control qubit then reveals
from which set U and V were picked.

In contrast to casually indefinite processes such as the quantum switch, causally
separable processes exhibit a maximum success probability strictly less than 1. Using
the computer assisted proof methods from [427] we derive bounds on the minimum and
average success probabilities for causally separable strategies, and these are

min
(
ps(i, j)

)
≤ 0.841 (7.2-4)

〈ps〉 =
1

N

∑
i,j

ps(i, j) ≤ 0.904. (7.2-5)

For the average success probability it is assumed that the unitaries (Ui, Vj) are picked
from G± using a uniformly random distribution, and in this case the task can equivalently
be formulated as a causal witness, similar to the approach taken in [11, 53]. Violating
these bounds shows that the experimentally realised process is causally indefinite, and
this would in turn validate our design.
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Figure 7.5: Gadget process tomography setup. Tomography was performed on each of the
two gadgets in both propagation directions. In one of these directions the second gadget could be
used to set the measurement basis for the tomography, while in the other propagation direction
two additional wave plates were inserted. The blue outline indicates the gadget being measured,
while the green outline marks the measurement apparatus. The polarizer used for the projective
measurement was fixed at |H〉〈H|, while the state-preparation polarizer was set to either |H〉〈H|
or |+〉〈+| depending on the input state.

7.2.1 Interferometer and experiment design
The inherent phase stability of the Sagnac geometry means that the use of fiber-optic

elements inside the interferometer does not pose a problem, and our experimental setup
therefore utilized a tunable directional coupler (TDC) instead of a bulk-optic beamsplit-
ter. This choice was firstly made because the near unity mode overlap inside the TDC
allows for higher interferometric visibilities than those typically achieved in bulk inter-
ferometers. Secondly, the tunable nature of the TDC allows for further optimization of
the interferometric visibility, by adjusting the splitting ratio while monitoring the dark
port of the interferometer. Finally, injecting the light into fibers also simplifies the con-
struction of the free-space part of the interferometer housing the polarization gadgets,
since this part can be limited to a straight line punctuated by two fiber collimators.
This is particularly convenient when using Faraday rotators, because of their typically
small clear apertures of 5mm or less.

Due to the two, essentially perfectly, overlapping beams inside the interferometer,
the setup becomes quite susceptible to back reflections. This is not a major issue when
using heralded single photons with short coherence length, as the back reflections will
not contribute coincident two-photon detections. However, for characterisation mea-
surements using CW light, back reflections can contribute significant noise and lower
the apparent visibility of the interferometer. For this reason, anti-reflection coated APC
fibers were used to minimize reflections when transitioning from fiber to free-space. This
allowed high values of interferometric visibility to be recorded, with typical values in
excess of 0.9995. These visibility measurement were done by using the polarization
transformations to change the interference condition.

A full sketch of the experimental setup, including single-photon generation, polar-
ization compensation optics and single-photon detection is shown in Fig. 7.4. In the
input port of the interferometer a fiber-circulator was used to separate the backwards
propagating light so that it could be detected. Polarization resolving detection stages
were placed in both output ports in order to compensate for polarization-dependent de-
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(a) U -gadget (b) V -gadget

Figure 7.6: Gadget fidelities. The two reciprocal gadgets were characterised by performing
quantum state tomography on 100 randomly chosen unitaries. The fidelities of the reconstructed
unitaries with respect to the ideal ones are shown for the U - and V -gadgets in (a) and (b),
respectively. The U -gadget achieves consistently higher fidelities than the V -gadget, but exhibits
an asymmetry in the two propagation directions. This behaviour is quantified in Fig. 7.7.

tection efficiencies in the single-photon detectors. This was done by splitting the H- and
V -components of the light, and then performing single-basis polarization compensation
on the fibers connected to the detectors to maximize the detection efficiency.

The common-path geometry employed in the experiment can potentially complicate
the main polarization compensation procedure, since selectively blocking light in one
arm of the interferometer requires an optical isolator. However, as will be discussed
in Section 7.2, the implemented measurements involved tracing out the target qubit
encoded in the photon polarization, and it was therefore only necessary to compensate
the polarization in the two fibers internal to the interferometer. Doing this ensures
that the input state to the first unitary is the same in both propagation directions, and
likewise that the rotated polarization basis inside the fiber beamsplitter is the same in
both fibers when the photons re-interfere with themselves as they exit the interferometer.

7.2.2 Gadget characterisation
Before performing the channel discrimination task described in Section 7.2, it was

first necessary to characterise the two reciprocal gadgets, and verify that they worked
as intended. This was done by performing quantum process tomography on the devices
for 100 randomly picked SU(2) unitaries. While it would have been possible to perform
these measurements using the polarization resolving measurement stages used in the
experiment, unwanted polarization rotations in the fibers could potentially have intro-
duced excess noise. The gadgets were therefore characterised fully in free-space, inside
the interferometer itself. In order to quantify the reciprocity of the gadgets tomography
was performed on each gadget in both propagation directions. As illustrated in Fig. 7.5,
in one direction the second gadget could be used to perform the tomography of the first,
while in the opposite direction two additional wave plates were inserted.

The tomography was performed by probing the gadgets with horizontally and diag-
onally polarized CW light, and reconstructing the resulting output polarization states.
These were then used to fit the unitaries using a maximum likelihood estimation. Fi-
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(a) U -gadget (b) V -gadget

Figure 7.7: Gadget reciprocity. The reciprocity of the polarization gadgets was quantified by
measuring the fidelity of a given unitary transformation in one propagation direction with respect
to the transformation in the opposite propagation direction. This analysis was done using the
same dataset of 100 randomly chosen unitaries as in Fig. 7.6. Here we see that the V -gadget
achieves a higher measure of reciprocity than the U -gadget, despite having an, on average, lower
fidelity with respect to the ideal unitaries. Since most forms of uncorrelated noise will induce a
slight symmetry breaking in the device, one would expect the fidelities and reciprocities to be
correlated. The absence of this correlation indicates that imperfections in the measurement itself
was likely a major contributor to the fidelity reductions.

nally, the fidelity of the unitaries were calculated as the average of the fidelities of the
mapped states:

F(Wi,W
d
i,exp) =

1

2

(
〈H|W †

iW
d
i |H〉+ 〈+|W †W d

i |+〉
)
. (7.2-6)

Here d ∈ {fw, bw} denotes the propagation direction in which the experimentally recon-
structed unitary was probed. The average fidelity over the 100 unitaries was found to
be 0.9975± 0.0008 for the U -gadget, and 0.9966± 0.0013 for the V -gadget. Histograms
of the fidelities for each measurement set are shown in Fig. 7.6, and it can be seen that
the gadgets display similar behaviour in both directions. This was quantified further by
calculating the reciprocity of the gadgets, which we define as

R(W fw
i ,W bw

i ) =
1

2

(
〈H|(W fw

i )†W bw
i |H〉+ 〈+|(W fw

i )†W bw
i |+〉

)
. (7.2-7)

This quantity was calculated using the same measurement data as the fidelities, and
for the U gadget the reciprocity was found to be 0.9960 ± 0.0016, while for the V
gadget it was 0.99834±0.00099. The histograms in Fig. 7.7 show the distribution of the
reciprocities over the 100 measured unitaries. Since the measured reciprocity can be seen
to be strictly greater than 0.99 for all measurements, one can therefore be justified in
calling the gadgets reciprocal. The uncertainties in both the fidelity and reciprocity were
calculated as the standard deviations of the corresponding 100 measurement results.

The small deviations from the ideal behaviour of the gadgets could have been caused
by imperfect circular retardances in the Faraday rotators, imperfect linear retardance
in particular in the half-wave plates adjacent to the Faraday rotators, or errors in the
angles of these wave plates. Additionally, it is worth pointing out that during the
tomography all unitaries were first measured in a single direction, and then afterwards
in the opposite direction. Consequently, finite repeatability in the wave-plate motors
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Figure 7.8: Detection efficiencies. The two output ports of the interferometer had different
efficiencies, and it was therefore necessary to characterise and correct for this in order to accurately
estimate the probability for a photon to exit in a given port. This was done by exploiting the fact
that the total photon-detection event rate should be constant even as the interference condition
is changed. In an ideal experiment, where all efficiencies are equal, changing the interference
condition only redistributes the photon events between the two output ports, and if one plots
the event rate in one detector as a function of the rate in the other, one would then find that
the points lie of a line with slope −1. In the case of unequal detection efficiencies one instead
observes a different line, whose slope gives the relative detection efficiency. Above, such a line
is shown fitted to the experimental data in the third run of the experiment, instead of scanning
the phase continuously. The slope of the fitted line is −0.432, indicating that one port had just
over twice as much overall loss. The axes of the figure show the photon event rate normalized to
the heralding photon rate, and not the raw detection rate.

could have led to slightly different wave-plate angles for the two measurement directions.
Finally, as shown in Fig. 7.5, different wave plates were used for the measurements in
the two directions, which might also have contributed measurement errors.

Comparing Fig. 7.6 and Fig. 7.7 one sees that the U -gadget showed marginally higher
fidelities, while the V -gadget achieved higher reciprocity. Generally, uncorrelated errors
in the gadgets should contribute to a symmetry breaking in the device, and one would
therefore expect the fidelity and reciprocity to be somewhat correlated. Imperfections
that do not break the reciprocity are limited to symmetric errors in the outer wave-
plate pairs, and errors in the central Simon–Mukunda gadget that do not introduce
a Z-component to the corresponding unitary. While such errors are unlikely to have
occurred systematically, the observed results could have been caused by imperfections in
the measurements rather than the gadgets. This is because observing a high reciprocity
necessitates that the measurements in the two directions be highly correlated. In total
three different sets of wave plates were used in the tomography; one moveable set, and
the two inner waveaplates of each gadget. One possible explanation is thus that the inner
wave plates of the U -gadget, used to measure the V -gadget in one direction, matched
the moveable wave plates more closely than those of the V -gadget used to measure the
U -gadget did.

7.2.3 Experimental channel discrimination
To certify the design of the quantum switch, the channel discrimination task pre-

sented in Section 7.2 was performed experimentally, with the intent to violate the bounds
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imposed on causally separable processes. As previously explained the quantum switch
transforms the unitaries (U, V ) into a superposition of being applied in two different
orders correlated with the state of the control qubit. Measuring this latter state in the
X-basis then reveals whether the pair of unitaries was commuting or anti-commuting,
and experimentally this is equivalent to measuring the path of the photon as it exits
the interferometer.

As illustrated in Fig. 7.8 the detection efficiency in one output port of the interfer-
ometer was approximately double that of the other output port. This was partially due
to extra loss introduced by the fiber circulator, but the excess loss also had multitude
of other contributing factors, such as higher fiber mating loss, lower SNSPD detection
efficiencies and diminished free-space to fiber coupling efficiencies in the polarization
resolving detection stage. In order to more accurately estimate the probability for a
photon to exit in a given port, the detected photon rates were therefore normalized to
the observed detection efficiencies.

Each of the 52 unitaries was implemented six independent times, and two-photon
events were recorded for 60 s for each setting and run, giving a total measurement time
of 5.2 h, not including the time spent rotating the wave plates. The duty cycle of the
experiment was in excess of 90%, and could have been higher for longer individual data
acquisition times. This is in contrast to passively stabilized realisations of the quantum
switch, which require the interferometric phase to be periodically reset.

The results of the detection-efficiency-corrected measurements are shown in Fig. 7.9,
where it is apparent that the min

(
ps(i, j)

)
≤ 0.841 and 〈ps〉 =≤ 0.904 bounds on the on

the minimum and average success probabilities, respectively, are violated by a significant
margin. More quantitatively, the observed minimum success probability was 0.9895,
while the average success probability was 0.99639±0.00007. Since the goal of the design
was to achieve a more robust and performant setup, it is worth comparing the success
fidelities to the experiment in which an analogous channel disctrimination task was first
implemented, namely the experiment by Procopoio et al. In their work [406], mean
success probabilities of 0.973 and 0.976 for Pauli and random gates, respectively, were
achieved. This lower performance can be attributed to challenges associated with phase
drifts, imperfect mode matching on the bulk beamsplitter, and spatial-nonuniformity of
the wave plates, all of which are overcome in our design.
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Figure 7.9: Channel discrimination success probabilities. The channel discrimination task
was performed experimentally for 52 different pairs of unitaries, and the observed probabilities
of successfully determining from which set the unitaries were picked are shown above. Each
pair of unitaries was implemented in six independent runs; the solid dots indicate the average
success probability across these runs, and the blue shaded area shows the minimum and maximum
probabilities. The mean success probability was 〈pexps 〉 = 0.99639± 0.00007, with maximum and
minimum probabilities of min(pexps ) = 0.9895, max(pexps ) = 0.99997, clearly violating the bounds
for causally separable processes. The high repeatability between the six runs demonstrates the
stability of the setup, and the lower success probabilities for certain settings are likely a result of
systematic errors, such as wave-plate imperfections.

7.3 Extensions beyond the two-party quantum switch
Realisations of casually indefinite orders have generally been restricted to superposi-

tions of two gates, due to the challenge of building the complex interferometers needed
to realise larger superpositions. For example, creating a superposition of the 3! = 6
permutations of a set of three gates using a path-polarization encoding would require
aligning six different beams through the same polarization optics, and stabilizing the
relative phase of these beams. In Ref. [445], the only experimental realisation of a su-
perposition of N > 2 gate orders, this challenge was tackled using multi-core fibers that,
after free-space focusing, allowed multiple orthogonal modes to be overlapped in the far
field. This implementation, however, still required direct control over the phase in the
non-common-path geometry.

Interestingly, the methods applied to construct a passively stable two-party quantum
switch in this chapter, specifically the reciprocal polarization gadget, can be extended
to three parties as well, and could for example be used to realise the Hadamard promise
problems presented in Ref. [422]. To begin, one needs to realise a beamsplitter transfor-
mation that prepares an appropriate superposition of control qubit states, in accordance
with the gate superpositions to be realised. In the case of the full 6 permutations for
three single-qubit gates, this could for example be the 6-dimensional quantum Fourier
transform:
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Figure 7.10: Passively phase stable three-party quantum switch. The three-party quan-
tum switch is a process that transforms three gates A, B, C into a coherent superposition of every
possible order of them. These orders can be realised in a circular geometry with two propagation
directions and three input/output points. The center of the ring contains a device implementing
a generalized beamsplitter transformation on six modes. These modes are then injected into
the ring in two different propagation directions, travelling through three reciprocal polarization
gadgets. (a) The subfigure shows a photon exiting in one output port of the generalized beam-
splitter. The photon’s initial position is indicated by a contour, and the other circles show the
photon at subsequent times. An active switch, indicated by a green circle, injects the photon
into the loop where it first travels to the gadget implementing the unitary operator A. (b) After
the photon has entered the loop, the active switches change state to trap the photon in the loop,
allowing it to propagate through the remaining two polarization gadgets. (c) After the photon
has completed one full revolution, the switches once again change state and send the photon
back to the central beamsplitter. The path in the figure generates the gate sequence CBA, but
any other permutation of the three gates can be generated by considering different input/output
points and/or a different propagation direction.

This transformation, when acting on the photon path, could be implemented in several
different ways, for example using a Reck or Clements encoding in a waveguide, or using
beam-displacers.

The central idea of the proposed realisation is to let the photon propagate through
the three gates along a circular path. By injecting the photon along different points of
this circle, and in different propagation directions, according to the state of the control
qubit, all six permutations of the gates can be realised. This is illustrated in Fig. 7.10.
After completing one full revolution the photon would propagate along the same spoke
it was initially injected along. Since the paths corresponding to the different control
qubit states all traverse the circular path exactly once, any phase fluctuations in this
path fully cancel. Similar to the Sagnac geometry a reciprocal polarization gadget is
required, since both clockwise and counter-clockwise propagating paths are present.

If the photons in the loop propagate in the same spatial mode, then the points where
they enter the loop, marked in green in Fig. 7.10, need to be actively switched on and
off. However, this switching can be accomplished with a single physical device using
the optical geometry shown in Fig. 7.11. After exiting the generalized beamsplitter, the
photons are injected in one of two different ports of a Mach-Zehnder interferometer,
depending on whether they will propagate clockwise or counter-clockwise through the
loop. The phase φ of the interferometer is controlled by a fast electro-optical modulator,
and is initially set to φ = 0, injecting the photons into the loop. Setting the phase to
φ = π traps the photons, and resetting the phase after three passses through the MZI
directs them back to the beamsplitter. Errors in the MZI phase would not contribute to
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phase errors in the actual quantum switch, but would instead simply manifest as photon
loss.

As seen in Fig. 7.11, the colour- coded photon paths do not retrace themselves
as they enter the beamsplitter a second time, but instead paths with the same color
swap. Therefore, these photon trajectories are relatively phase stable. In Fig. 7.10
they correspond to two counterpropagating photon paths injected along different spokes,
that overlap in the first gadget they pass through. Paths marked with different colours
can in principle acquire relative phases through path length fluctuations. However,
similarly to displaced Sagnac interferometers [154, 446], one would in practice expect
the geometry to be stable. Finally it is worth noting that the multi-core fibers employed
in Ref. [445] could be used to circumvent the need for an active phase modulator, since,
if the photons propagate through the loop in six orthogonal spatial modes, the spatial
transformations in the injection and extraction points at the end of each spoke could be
statically configured without violating unitarity.
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Phase modulator

Beamsplitter

Generalized BS

Reciprocal gadget

Figure 7.11: Proposed optical setup for the three-party quantum switch. The figure
shows how a single Mach-Zehnder interferometer containing an ultra-fast phase modulator can
be used to inject a photon into the loop. Note that the phase modulator has to be polarization
independent to preserve the polarization state. This can be achieved by for example using two
crossed EOMs working in parallel. (a) Since two propagation directions overlap inside the Mach-
Zehnder, only the bottom three output ports of the generalized beamsplitter are shown. When
the phase of the modulator is φ = 0 the photons entering the Mach-Zehnder interferometer will
exit in the top right port, and travel through the loop in a counter-clockwise direction. (b) In
analogy to the lower photon paths, the right output modes of the generalized beamsplitter will
exit the Mach-Zehnder in the bottom port, and travel through the loop in a clockwise fashion.
(c) When a photon has entered the loop the phase modulator changes state to φ = π causing
the photons to be trapped. The paths are aligned such that a photon will always propagate
through all three polarization gadgets after three revolutions. (d-e) After the photons have
passed through the gadgets implementing A, B, C exactly once, the phase modulator changes
its state back to φ = 0 and the photons are released from the loop. Note that the photons in (a),
that initially took the lower path, return along the upper path in (c), and likewise for (b) and
(d). This means that any path-length fluctuations in this part of the setup are common mode
and do not induce a relative phase shift on any of the colour-coded photon amplitudes pairs.
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In standard communication information is carried by particles or waves. Counterintuitively, in counterfactual communication
particles and information can travel in opposite directions. The quantum Zeno effect allows Bob to transmit a message to Alice by
encoding information in particles he never interacts with. A first remarkable protocol for counterfactual communication relied on
thousands of ideal optical operations for high success rate performance. Experimental realizations of that protocol have thus
employed post-selection to demonstrate counterfactuality. This post-selection, together with arguments concerning a so-called
“weak trace” of the particles traveling from Bob to Alice, have led to a discussion regarding the counterfactual nature of the
protocol. Here we circumvent these controversies, implementing a new, and fundamentally different, protocol in a programmable
nanophotonic processor, based on reconfigurable silicon-on-insulator waveguides that operate at telecom wavelengths. This,
together with our telecom single-photon source and highly efficient superconducting nanowire single-photon detectors, provides a
versatile and stable platform for a high-fidelity implementation of counterfactual communication with single photons, allowing us
to actively tune the number of steps in the Zeno measurement, and achieve a bit error probability below 1%, without post-selection
and with a vanishing weak trace. Our demonstration shows how our programmable nanophotonic processor could be applied to
more complex counterfactual tasks and quantum information protocols.
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INTRODUCTION
Interaction-free measurements allow one to measure whether or
not an object is present without ever interacting with it.1 This is
made clear in Elitzur and Vaidman’s well-known bomb-testing
gedanken experiment.2 In this experiment, a single photon used
in a Mach-Zehnder interferometer (MZI) sometimes reveals
whether or not an absorbing object (e.g., a bomb) had been
placed in one of the interferometer arms, without any interaction
between the photon and the bomb. It was later shown that the
quantum Zeno effect, wherein repeated observations prevent the
system from evolving,3,4 can be used to bring the success
probability of this protocol arbitrarily close to unity.3–6 Such
protocols are often referred to as “counterfactual”, and have now
been applied to quantum computing,7 quantum key
distribution8–10 and communication.11,12 Here, we experimentally
implement a counterfactual communication (CFC) protocol where
information can propagate without being carried by physical
particles.
The first suggested protocol for CFC was developed by Salih

et al., and it is based on a chain of nested MZIs.11,13 Following its
publication, this fascinating protocol has been subject to both
intense criticism and vigorous defense. There are four main points
of discussion: (1) Achieving a high success probability (say > 95%)
requires thousands of optical elements.11,12,14 (2) An analysis of
the Fisher information flow indicates that to retain

counterfactuality in Salih’s protocol, perfect quantum channels
are needed.15 (3) If one performs a weak measurement in Bob’s
lab, one can detect the presence of photons that are later found in
Alice’s laboratory. Some authors have argued that the presence of
the “weak trace” renders the counterfactuality of the protocol
invalid,16–19 but others have dismissed the weak trace as a
consequence of the unwanted weak measurement’s distur-
bance.20–22 (4) Unless operated in the theoretical limit of infinite
optical operations, this scheme requires post-selection to remove
the CFC violations.13,21,23 It has recently been shown that also a
classical communication protocol can be counterfactual if post-
selection is allowed.14

To circumvent these issues, we implement a novel CFC
protocol12 that does not need post-selection and requires orders
of magnitude fewer optical elements than nested MZI protocols.
In our scheme single photons travel from Alice to Bob but
information from Bob to Alice; this has been dubbed type-II CFC,
in contrast to type-I schemes, where the photon should remain
with Alice throughout the protocol.15 In both types the particles
and the information never co-propagate, thereby making the
communication counterfactual. Note that the very recent
proposals23,24 discussing means of making the Salih scheme
trace-free still require the post-selected removal of non-
counterfactual events, as well as thousands of ideal optical
operations.

Received: 4 October 2018 Accepted: 27 June 2019

1Faculty of Physics, Vienna Center for Quantum Science and Technology (VCQ), University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria; 2Department of Physics,
Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK; 3Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139,
USA; 4Quantum Photonics Group, RLE, Massachusetts Institute of Technology, Cambridge, MA 02139, USA and 5Elenion Technologies, New York, NY 10016, USA
Correspondence: I. Alonso Calafell (irati.alonso.calafell@univie.ac.at) or T. Strömberg (teodor.stroemberg@univie.ac.at)
These authors contributed equally: I. Alonso Calafell, T. Strömberg

www.nature.com/npjqi

Published in partnership with The University of New South Wales



RESULTS
We perform our experiment using telecom single-photons in a
state-of-the-art programmable nanophotonic processor (PNP),25

which is orders of magnitude more precise and stable than
previous bulk-optic approaches.5,6 Our PNP also provides unpre-
cedented tunability, which we use to investigate the scaling of the
protocol by changing the number of chained interferometers. By
combining the novel CFC protocol with our advanced photonic
technology, we are able to implement counterfactual commu-
nication with a bit success probability above 99%, without post-
selection. As in previous CFC protocols, the interferometer
implementing the quantum Zeno effect is shared between Bob’s
laboratory and the fully passive transmission channel. In contrast
to these protocols, ours protocol allows for Alice’s laboratory to be
situated outside the interferometer. As a result, even our proof-of-
principle demonstration would allow for counterfactual commu-
nication over arbitrary distances, even if the region in which the
non-local information transfer takes place is bounded by the size
of the PNP.
Our protocol uses a series of N beamsplitters with reflectivity

R= cos2(π/2N), which, together with mirrors, form a circuit of
N− 1 chained MZIs. As shown in Fig. 1, the communication
protocol begins with Alice injecting a single photon into her input
port. If Bob wants to send a logic 0 he leaves his mirrors in place,
causing the photon to self interfere such that it exits in DB with
unit probability (Fig. 1a). To send a logic 1 Bob locally modifies the
circuit to have the upper paths open (Fig. 1b). In this case the
photon will successfully reflect off of all the beamsplitters and exit
in DA with probability RN. Removing the mirrors effectively
collapses the wavefunction after every beamsplitter, suppressing
interference and implementing the Zeno effect. The probability
that the photon remains in the lower arm after N beamsplitters
can be made arbitrarily high by increasing N (and changing the
reflectivities accordingly).
Since any implementation is restricted to a finite number of

beamsplitters, there will be a probability for a photon to exit the
wrong port when Bob tries to send a logic 1. This error probability
is a function that decreases with N as P1,err= 1− R(N)N. In the non-
ideal case, optical losses in the system will increase this probability
further. The errors associated with Bob’s attempt to transmit a
logic 0 are of a different nature. In theory, he can always perfectly
transmit a logic 0, independent of N; that is, P0,err= 0. In practice,

however, imperfections in the interferometers will lead to cases in
which the photon re-enters Alice’s laboratory and she incorrectly
records a logic 1. This leads to a rare counterfactual violation, as
the wavefunction “leaks” from Bob’s to Alice’s laboratory,15 leaving
a weak trace in Bob’s lab, while the photon is detected in Alice’s
laboratory. The high-fidelity operations enabled by our PNP allows
us to make the probability of such violations vanishingly small.
Although they do not contribute to a counterfactual violation,
dark counts in Alice’s detector will also increase this error rate.
We can overcome the bit errors by encoding each logical bit

into M single photons, at the cost of slightly increasing the CFC
violation. If Alice sends M photons into the transmission channel
without detecting any at DA, she will record a logic 0. On the other
hand, if she detects one or more photons in her laboratory, she
will record a logic 1. Assuming messages with a balanced number
of 0s and 1s, the average bit error probability is given by:

PerrðMÞ ¼ 1
2
½ðP1;errÞM þMP0;err� (1)

where the second term is an approximation of 1� PM0 valid for
small values of MP0,err. By increasing M we can thus decrease the
contributions of P1,err exponentially while only increasing those of
P0,err linearly. The counterfactual violation probability for a random
bit is given by

PCFCðMÞ ¼ 1
2η

MP0;err; (2)

where η is the detector efficiency. We can thus find an M that
minimizes the average bit error, while also maintaining a low
counterfactual violation probability. In our experiment this
expression slightly overestimates the violation probability, as it
includes the detector dark counts.
As illustrated in Fig. 2, we implement a series of chained MZIs

using a PNP. At the intersections of each of the modes shown in
the figure there are smaller MZIs that act as beamsplitters with
tunable reflectivities and phases. Since each of the MZIs is
completely tunable, we were able to implement our CFC protocol
using two to six concatenated beamsplitters on the same
photonic chip. Given the layout of our chip, six is the maximum
number of beamsplitter that we can concatenate. In addition, the
high interferometric visibility of the PNP, which we measure to be
99.94% on average, allows us to keep the rate of counterfactual
violations low, without post-selection. The single photons are
generated in a spontaneous parametric down conversion process
and detected using superconducting nanowire single-photon
detectors with detection efficiencies η ~ 90% (see Methods).

DISCUSSION
To study the performance of this CFC protocol we measure the
average bit error, as a function of the number of photons in which
the bit is encoded, M, for five different values of N number of BSs.
For the logic 0, we configure the MZIs in Bob’s laboratory as
mirrors (see Fig. 2), while for the logic 1 we let the MZIs in Bob’s
laboratory act as SWAP gates, routing the light out of the
interferometer chain. Since Alice cannot access detector DB, she
assumes that a photon is injected in the transmission channel
every time she detects a heralding photon in DH. We thus run the
measurement until we have M recorded single-photon events in
DH (typical rates were 1.1 MHz) and look for the coincidences that
these events have with DA within a set coincidence window Δτ=
2.5 ns that is shorter than the pulse separation. Our heralding
efficiency was ~3% through the PNP.
Figure 3a shows the experimental average error probability of

our CFC protocol as a function of M for different N. We also include
a theoretical calculation of the expected error probabilities, which
considers the heralding efficiency of the single photons and the
success probability of the interferometer that is in good

Fig. 1 Architecture of the chained MZI protocol. Alice inputs a
photon into the transmission channel, consisting of a row of
beamsplitters (BSs) and the lower row of mirrors (marked with an
‘m’). a If Bob intends to send a logic 0, he places mirrors in his
laboratory to form MZIs that span his lab and the transmission
channel, creating constructive interference in Bob’s port (DB). b If he
intends to send a logic 1, he removes the mirrors, causing the
photons to arrive back in Alice’s laboratory (DA) with high probability
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agreement with the experimental data. Note that these are not fits
to the data, but rather models with no free parameters. As
theoretically predicted, the error rate of the logic 1 decreases
exponentially with increasing M and the error rate of the logic 0
increases linearly with M. We observe that higher N requires
smaller M, and also results in lower bit error probabilities.
The success probability of this CFC scheme is highly sensitive to

the fidelity of the interferometers and the overall heralding
efficiency, which depends on the single-photon source and the
coupling efficiency throughout the system. Hence, we optimized
the setup for the N= 6 case. Figure 3b shows the corresponding

error probability of the logic 1 and the logic 0. The inset in Fig. 3b
shows the average error probability, where we find a minimum of
1.5% for M= 320, while the average counterfactual violation is
kept at 2.4%. Owing to backscattering in Bob’s laboratory (i.e.,
imperfect SWAP operations) small “amounts” of wavefunction
amplitude leak back into the transmission line in the 1 bit process.
Although these do not all lead to detection events in Alice’s
laboratory, the sum of their squares provides an upper bound on
the probability of a counterfactual violation. We estimate that the
probability for a photon to reflect off of a SWAP operation is at
most 1%. Hence, in our experiment (Fig. 4) with M= 320 and N=

Fig. 3 Success probabilities of the CFC communication. The curves are theoretical models of our experiment with no free parameters, and the
points are experimental data. a Measured average bit error (as defined in the main text) of the protocol for different number of beamsplitters
(N) as a function of the number of photons (M) used to encode each bit. For small M the cos2N(π/2N) dependence of the logic 1 error
dominates the average error, making the latter decrease with M as expected. As M is increased more, the linearly growing error in the logic 0,
caused by imperfect destructive interference in Alice’s port (DA), starts to dominate. b In the N= 6 case, the optimization of the interferometer
fidelity and heralding efficiency leads to an average bit error rate of 1.5% for M= 320, where the average CFC violation probability is 2.4%

Fig. 2 Experimental setup. a Our experiment is implemented in a programmable nanophotonic processor (PNP), which is composed of 26
interconnected waveguides. The waveguides are coupled by 88 Mach-Zehnder interferometers (MZIs), as indicated by the top-left inset. Each
MZI is equipped with a pair of thermo-optic phase shifters, which allows us to treat them as beamsplitters with fully tunable reflectivities (set
via θ∈ [0, 2π]) and phases ((ϕ∈ [0, 2π]). In our work, we set θ to π, 0 or π/2N, to implement mirrors (circles), SWAPs (triangles) or beamsplitters
(squares), respectively. In Alice’s laboratory (the pink shaded region) a spontaneous parametric down-conversion source creates a frequency
non-degenerate photon pair at λH= 1563 nm and λT= 1565.8 nm. Detection of the λH photon in detector H heralds the λT photon that is
injected into the transmission channel. This channel is comprised of the lower half of the PNP, in which MZIs are set to act as mirrors, as well as
the MZIs that couple the upper and lower half of the waveguide. The latter of these MZIs are configured to act as beamsplitters, whose
reflectivity varies with N (the number of beamsplitters used in the protocol) as R(N)= cos2(π/2N). Bob’s laboratory consists of the upper set of
MZIs (blue shaded area), which he can set as mode swaps to send a logic 1 or b as mirrors to send a logic 0. Thus in total we used 48 MZIs: 6 to
implement the tunable beamsplitters, 30 to implement the loss channels, 6 for the mirrors in the transmission channel, and 6 for the mode
swaps/mirrors in Bob’s laboratory. The photons are detected in Alice’s laboratory by superconducting nanowire single-photon detectors with
detection efficiencies of approximately 90%. Coincident detection events are recorded with a custom-made Time Tagging Module (TTM).
c Micrograph of the PNP with dimensions 4.9 × 2.4 mm
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6, the weak trace is vanishingly small and the contribution from
the logic 1 to a CFC violation is less than 1.1%. Note that this
violation probability decreases with N, even if the errors remain
the same.
To demonstrate the performance of the communication

protocol we proceed to analyze the quality of a message in the
form of a black and white image, sent from Bob to Alice, for N= 6
and M= {10, 50, 320, 500}. We arbitrarily define the white and
black pixels of the image as logic 1 and logic 0, respectively.
Figure 4 shows the message transmitted from Bob to Alice for

different numbers of encoding photons. We define the image
fidelity as

F ¼
XT

i¼1

1þ ð�1ÞAiþBi

2T
(3)

where Bi is the bit that Bob intended to send, Ai is the bit that Alice
recorded, and T is the total number of bits in the image. In this
case we define the CFC violation probability as the number of
incorrectly transmitted logic 0 s (black pixels) over T. The encoding
using M= 10 is clearly not enough to overcome the losses of the
system, with a very low image fidelity of 31.77%. As we increase M,
the success probability and legibility of the message increases (the
individual fidelities are listed below each panel). The image fidelity
reaches 99.09% at M= 320, at which point the CFC violation
probability from 0 bit errors remains as low as 0.6%. For M= 500
the image fidelity does not noticeably change; however, the CFC
violation increases slightly. If the CFC violation of the 1 bit (caused
by on-chip beamsplitter imperfections) is accounted for, the CFC
violation at M= 320 increases to 2.3%. Note that these values are
lower than the value in Fig. 3b due to the unbalanced distribution
of black and white pixels in the image.
Our high-fidelity implementation of a counterfactual commu-

nication protocol without post-selection was enabled by a
programmable nano-photonic processor. The high (99.94%)
average visibility of the individual integrated interferometers
allowed bit error probabilities as low as 1.5%, while, at the same
time, keeping the probability for the transmission of a single bit to
result in a counterfactual violation below 2.4%. By combining our
state-of-the-art photonic technology with a novel theoretical
proposal we contradicted a crucial premise of communication
theory:26 that a message is carried by physical particles or waves.
In fact, our work shows that “interaction-free non-locality”, first
described by Elitzur and Vaidman,2 can be utilized to send
information that is not necessarily bound to the trajectory of a
wavefunction or to a physical particle. In addition to enabling
further high-fidelity demonstrations of counterfactual protocols,
our work highlights the important role that technological
advancements can play in experimental investigations of funda-
mentals of quantum mechanics and information theory. We thus

anticipate nanophotonic processors, such as ours, to be central to
future photonic quantum information experiments all the way
from the foundational level to commercialized products.

METHODS
Telecom photon source
We use a pulsed Ti:Sapphire laser with a repetition rate of 76MHz, an
average power of 0.2 W, a central wavelength of 782.2 nm, and a pulse
duration of 2.1 ps. The repetition rate is doubled via a passive temporal
multiplexing stage.27,28 This beam pumps a periodically poled KTP crystal
phase matched for collinear type-II spontaneous parametric down
conversion, generating frequency non-degenerate photon pairs at λH=
1563 nm, λT= 1565.8 nm. Registering the shorter wavelength photon at
the detector DH heralds the presence of the longer wavelength one, which
is sent to the waveguide.

Programmable nanophotonic processor
Our chained Mach-Zehnder interferometers (MZIs) are implemented in a
silicon-on-insulator (SOI) programmable waveguide, developed by the
Quantum Photonics Laboratory at the Massachusetts Institute of
Technology.25 The device consists of 88 MZIs, each accompanied by a
pair of thermo-optic phase shifters that facilitate full control over the
internal and external phases of the MZIs. The phase shifters are controlled
by a 240-channel, 16-bit precision voltage supply, allowing for a phase
precision higher than 250 μrad. The switching frequency of these phase
shifters is 130 kHz. The coupling of the single photons in/out of the chip is
performed using two Si3N4–SiO2 waveguides manufactured by Lionix
International, that adiabatically taper the 10 × 10 μm mode from the single
mode fiber down to 2 × 2 μm, matching the mode field diameter of the
programmable waveguide at the input facet. The total insertion loss per
facet was measured as low as 3 dB.

Superconducting nanowire single-photon detectors
The photons are detected using superconducting nanowire single-photon
detectors.29,30 These detectors are produced by photonSpot and are
optimized to reach detection efficiencies ~90% at telecom wavelengths.

DATA AVAILABILITY
The datasets generated and analyzed during the current study are available from the
corresponding author if you ask nicely.
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In quantum mechanics, the unitary nature of time evolution makes it intrinsically reversible, given control over the
system in question. Remarkably, there have been several recent demonstrations of protocols for reverting unknown uni-
taries in scenarios where even the interactions with the target system are unknown. These protocols are limited by their
probabilistic nature, raising the fundamental question of whether time-reversal could be performed deterministically.
Here we show that quantum physics indeed allows for this by exploiting the non-commuting nature of quantum opera-
tors, and demonstrate a recursive protocol for two-level quantum systems with an arbitrarily high probability of success.
Using a photonic platform, we achieve an average rewinding fidelity of over 95%. Our protocol, requiring no knowledge
of the quantum process to be rewound, is optimal in its running time, and brings quantum rewinding into a regime of
practical relevance.
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1. INTRODUCTION

In the macroscopic world, there is an apparent unidirectionality
of processes in time, which stands in contrast to the time-reversal
symmetric nature of the underlying laws of physics. This tension
was first pointed out by Eddington, who coined the term “arrow
of time” to describe the asymmetry [1]. In classical physics, an
arrow of time emerges through the second law of thermodynamics,
giving rise to processes that cannot be reversed [2]. Due to the sta-
tistical nature of the law, and the determinism of classical physics,
the irreversibility is not fundamental. Indeed, for classical wave
mechanics, it is well known that the time evolution of a system
can be reversed without any knowledge of the dynamics through
a technique called phase conjugation [3,4]. In the microscopic
quantum realm, however, the ability to perform phase conjugation
becomes limited by fundamental quantum noise [5], due to the
non-unitary nature of the process. It has therefore remained an
open question whether or not the dynamics of quantum systems
can be reversed in a universal manner.

Recently, there have been several works addressing this ques-
tion, in which probabilistic protocols for “rewinding” quantum
systems were presented [6,7] and demonstrated in a laboratory
setting [8,9]. These protocols work independently of both the free
Hamiltonian guiding the time evolution of the system in question,
and the system’s interaction with the experimental apparatus. A
major drawback of the protocols in [7] is that they suffer from low
success probabilities, typically of the order of 10−3. The scheme

in [6], on the other hand, allows for a form of error correction,
whereby the protocol can be repeated when it fails. However, it is
not known whether these feed-forward corrections can boost the
success probability arbitrarily close to one. Moreover, the protocol
cannot rewind a target system in “real time,” instead taking three
units of time for every one rewound.

The teleportation based protocol in [10,11], as well as more
traditional methods to rewind a quantum system with an unknown
free Hamiltonian, such as the refocusing techniques used in
nuclear magnetic resonance [12], require the ability to implement
controlled operations that are specifically tailored to the target
quantum system, and are therefore not universal. The work of [13]
combines both quantum theory and general relativity to devise a
“time translator,” capable of rewinding or fast-forwarding quan-
tum systems. While this method can time-translate any quantum
system, it has two drawbacks: (1) it works only approximately,
and under a restriction on the free Hamiltonian of the target; (2) if
we demand reasonable precision, the probability of success of the
process becomes astronomically small.

In this paper, we demonstrate a novel universal time-reversal
protocol (Fig. 1) for which the success probability can be made
arbitrarily high, making it, in effect, deterministic. At its heart,
the protocol is based on the non-commutativity of quantum
operators, a core concept in quantum mechanics. This concep-
tual simplicity, which translates directly into a straight-forward
implementation in the laboratory based on the recently developed
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Fig. 1. (a) In the classical world, there is an unmistakable directionality
to time, illustrated here through the process of aging, a process that cannot
be reversed in practice despite its deterministic nature. In this paper, we
show that these same limitations do not apply in the quantum realm.
(b) The unitarity of quantum mechanics guarantees that an inverse of a
given time evolution U always exists, even though it may be unknown.
(c) By letting a target quantum system pass through an interaction region,
a perturbed time evolution V can be realized. (d) A quantum switch
makes the target system evolve in a superposition of its free evolution U
and perturbed evolution V . This superposition of time evolutions can be
used to “rewind” the system backwards in time, without requiring any
knowledge about either U , V or the state |9〉.

quantum switch [14,15], allows us to overcome the limitations
of previous proposals. The quantum switch is a process that,
in its simplest form, transforms two unitaries into a controlled
superposition of the two gates being applied in different orders:
(U , V )→U V ⊗ |0〉〈0|C + VU ⊗ |1〉〈1|C .

In this work, the utilization of quantum switches allows us to
time-translate the unknown internal degree of freedom of a target
system by setting it on a superposition of different trajectories.
For some of these trajectories, the free evolution U of the target’s
internal degree of freedom is perturbed by an unknown but repeat-
able interaction, which induces an evolution V on the target. This
perturbation can be achieved by any physical interaction and thus
can be applied to every possible quantum system. We make these
trajectories sequentially interfere in such a way that the final state
of the target’s internal degree of freedom is propagated by U−n ,
for some positive n, independently of the operators U , V . Each
quantum switch requires a projection of the target system’s path
degree of freedom to induce the desired superposition of time
evolutions. An advantage of our scheme is that even in the event
that the projection fails, a simple and repeatable error-correction
procedure can be applied, yielding an arbitrarily high success rate,
as long as [U , V ] 6= 0. It is also worth emphasizing that the proto-
col runs in real time, meaning that the time it takes to rewind the
system is equal to the amount of time to be rewound, aside from a
bounded overhead.

We demonstrate the universality of our protocol by running
it on a large set of different time evolutions. Our demonstration
utilizes a quantum photonics platform with control of path and
polarization degrees of freedom of single photons. We generate
a discrete time evolution of a single photon by implementing a
“polarization Hamiltonian” using a combination of half- and
quarter-wave plates. A superposition of time evolutions is achieved
via an interferometric quantum switch in which the propagation
direction defines the order of the evolutions U and V . Our setup
uses two fast optical switches that allow the quantum switch to be
accessed several times.

2. METHODS

A. Protocol

In this section, we will give a description of how the rewinding
protocol works in a photonic setting, the basic steps of which
are illustrated in Fig. 2. An alternative formulation using a scat-
tering scenario is given in Supplement 1. A full description, as
well as the accompanying proofs, can be found in [16]. Given an
unknown target system |9〉, whose time evolution is described by
U = e−i1T H0 , where H0 is an unknown Hamiltonian, our goal
will be to rewind the system: |9(t = n1T)〉→ |9(t = 0)〉, where
n is the number of discrete time steps to be rewound. The basis of
our protocol is the following identity [7]:

[U , V ]Un
[U , V ] ∝U−n . (1)

Here U , V are any 2× 2 matrices, with U being invertible. When
the matrix U describes the time evolution of a system, we see that
an experimenter able to implement a commutator can reverse the
time evolution, even if U is unknown. The basic protocol is thus
as follows: apply the commutator between the time evolution
operator U and any other 2× 2 matrix V , let the system evolve
freely for the amount of time to be rewound, then apply the com-
mutator again. The matrix V represents, in the general setting,
a time evolution that is perturbed by any repeatable means, for
example, by bringing the target on a trajectory that leads it through
some interaction region. This perturbed evolution can also remain
unknown; however, the magnitude of the commutator [U , V ]
affects the success probability of a single-step attempt to rewind the
system.

In a photonic setting, a commutator can be realized using a
quantum switch acting on two degrees of freedom of a single pho-
ton. The control qubit, defining the order of gate operations, is
encoded in the photon’s path, while the target qubit is encoded in
the polarization. The two possible gate orders, U V and VU , are
superposed by initializing the control qubit in the superposition
state (|0〉C + |1〉C )/

√
2 and then applying a controlled operation

between the control and target systems [15]:

|0〉C ⊗ |9〉T→
|0〉C + |1〉C
√

2
⊗ |9〉T→

1
√

2

[
|0〉

C
⊗U V |9〉T + |1〉C ⊗ V U |9〉T

]
. (2)

By applying a Hadamard gate to the control qubit, one obtains the
following state:

|0〉C ⊗
1

2
{U , V }|9〉T + |1〉C ⊗

1

2
[U , V ]|9〉T . (3)

A measurement of the control qubit now projects the target state
onto either the commutator or the anticommutator, where the
latter is denoted by {·}. If the measurement outcome of the control
qubit is |0〉, the anticommutator is applied by the quantum switch,
but the protocol does not necessarily fail. Instead, the following
matrix identities can be used to correct the error:

{U , V }m[U , V ]{U , V }m ∝ [U , V ], (4)

[U , V ]2 ∝ 1. (5)
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Fig. 2. Interferometric protocol. (a) Circuit diagram for the free evolution U n of a target quantum from time t = 0 to t = nT. (b) Symbolic circuit dia-
gram for the rewinding protocol. The target quantum system is made to propagate backwards in time by way of the identity: U−1

∝ [U , V ]U [U , V ], where
V is a perturbed evolution. (c) Q is a quantum switch, pictured here as a Sagnac interferometer, and acts as the basic building block of the interferometric
scheme, probabilistically applying the commutator [U , V ]. (d) A full interferometric implementation of the single-step protocol, which succeeds whenever
the photon, in which the target state |9〉 is encoded, exits both quantum switches in the commutator port (blue arrow). Detecting a photon in the anticom-
mutator port (gray arrow) heralds a failure of the quantum switch. (e) Adaptive error correction for achieving an arbitrarily high probability of success. This
entire diagram replaces a single quantum switch in (d). Instead of detecting the failure mode of the quantum switch, the photon is made to re-interfere with
itself. Whenever it exits in the bottom right, the commutator [U , V ]will have been applied (see [16]) The dashed path represents recursive applications of
the diagram, through which the success probability can be made arbitrarily high, while the darker shaded area indicates the additional quantum switches
needed.

1

2 3

6

75

4

Fig. 3. Active photon routing. The use of electro-optical (EO) switches
enables active routing of a single photon (green dot) encoding the target
quantum state. The settings of the EO-switches determine whether the
photon passes through the quantum switch, evolves freely, or is sent to a
detector. Sub-diagrams (a)–(d) indicate the states of EO-switches at dif-
ferent steps of the protocol (A)–(D), illustrated at the bottom of the figure.
The numbers index the order in which the EO-switches are traversed. In
each sub-diagram, the photon’s initial position is indicated by a contour;
the subsequent dots represent the photon at a slightly later time, and the
green trace shows the photon path through a given switch. (a) The photon
passes through the quantum switch for the first time. (b) For n ≥ 2, the
photon is trapped in a loop until the free time-evolution operator U
has been applied a total of n times. (c) The photon passes through the
quantum switch a second time. (d) The EO-switches direct the photon to
a quantum tomography stage.

Through recursive application of these identities, an anticom-
mutator can always be turned into a commutator. This process can
be described using a virtual road map, illustrated in Fig. 2(e). In
[16], some of us prove that whenU , V are unitary and [U , V ] 6= 0,
the protocol always terminates in a finite number of steps. Note
that for random U , V , the probability of the commutator van-
ishing is zero. We also point out that Eqs. (1), (4), and (5) hold
even for non-unitary matrices. Remarkably, the protocol can thus
be used to rewind, for example, a two-level system undergoing a
continuous decay governed by a non-Hermitian Hamiltonian.

From Eq. (1), it can be seen that to rewind a free evolution of
time T, our protocol runs for T + O(1) units of time, which is
asymptotically optimal [7], and where the O(1) term accounts
for the constant overhead introduced by the adaptive error cor-
rection. In comparison, the protocol demonstrated in [8,9] takes
3T + O(1) units of time for the same task, making our protocol
superior not only in terms of success probability, but also in terms
of running time, at the cost of requiring coherent control over the
time evolution.

The above description of the protocol involves placing the
target quantum system in a spatial superposition; however, we note
that the alternative, but equivalent, description of the protocol
provided in Supplement 1 does not require this.

B. Experiment

The rewinding protocol described in the previous section is applied
to a qubit state encoded in the polarization degree of freedom
of a single photon, while the path degree of freedom of the same
photon is used at two points to encode a second qubit that acts as a
control system, thereby enabling the application of a commutator
through a controlled unitary inside a quantum switch. The pho-
tons are generated using spontaneous parametric downconversion
(SPDC). The SPDC process produces pairs of photons denoted
signal and idler, the former of which is sent straight to a detector
and is used to herald the presence of the idler photon. Upon such
a heralding event, a trigger signal is transmitted in optical fiber to
a field programmable gate array (FPGA) controlling two active
electro-optical (EO) switches to permit the idler photon to pass
through parts of the setup multiple times. The active routing of
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Fig. 4. Experimental setup. A pulsed Ti:sapphire laser pumps a spontaneous parametric downconversion source to generate pairs of single photons in
a type-II process using a ppKTP crystal (top left). The signal photon is directed to the high efficiency superconducting nanowire single-photon detectors
(SNSPDs), and a successful detection event triggers an FPGA to initiate a pulse sequence for the EO-switches (see Fig. 3). The approximately 400 ns rise
time of the EO-switches is compensated for by three fiber spools, each around 100 m long, adding the needed optical delay. The target state, encoded in
the idler photon, is initialized using a state-preparation stage after which it is sent to the quantum switch, realized using a free-space Sagnac interferometer
(highlighted in blue). The unitaries U and V are implemented using a combination of half- and quarter-wave plates. Additional wave plates are used in con-
junction with the fiber polarization controllers to compensate for unwanted polarization rotations induced by the fibers and mirrors. Two additional fiber
couplers placed inside the Sagnac allow the photons to propagate through U separately. A tomography stage at the output of EO-switch S1 is used to meas-
ure the photons’ polarization. The CW laser is used during the pre-measurement polarization compensation procedure.

the photons by the EO-switches is shown in Fig. 3, while a detailed
schematic of the setup is displayed in Fig. 4.

The unitary 3i initializes the idler photon into the polariza-
tion state |9i 〉 chosen from a tomographically complete set, after
which an EO-switch (S1) routes the photon into the quantum
switch. The unitaries V and U inside the quantum switch are
implemented using two sets of three wave plates [17]. Note that
there is only one physical realization of U and V , and they could
thus in principle remain unknown without compromising the
protocol. Depending on whether the photon exits in the backwards
or forwards propagating port of the interferometer, either [U , V ]
or {U , V } is applied. The backpropagating port corresponding to
{U , V } [Fig. 2(c)] is disregarded in our implementation, and no
adaptive error correction is applied, but photons exiting in this port
could be used to increase the success probability of the protocol.
Any photon leaving the interferometer in the forward propagating
direction passes through a second EO-switch (S2), which traps
the photon in a loop, allowing it to propagate through U a total
of n times. Upon exiting the loop, the photon is directed back to
S1, which sends the photon through the quantum switch a second
time where [U , V ] is probabilistically applied once more. Finally,
the photon is routed to a quantum tomography stage by S1, where
its polarization is measured, post-selecting on succesful application
of the commutators. These measurements are then used to recon-
struct the density matrix ρ. In a successful run of the experiment,
the state U−n

|9i 〉 is recorded.

3. RESULTS

To demonstrate that the performance of the protocol is independ-
ent of the initial state |9i 〉, the free evolution U , the perturbed evo-
lution V , and the number of time steps n, a large set of combina-
tions of these parameters was realized. More specifically, the unitary

operators U and V were chosen from the set

Up = e−iarcsin(α)σz , α =
p

10
, p = 1, . . . , 10,

Vq = cos(θ)σz + sin(θ)σy , θ =
qπ
11
, q = 1, . . . , 10.

Depending on the choice of p and q , the degree to which the oper-
ators U , V commute changes. As a measure of the commutativity,
we define

Nc = 1−

(
||[U , V ]||2

2

)2

, (6)

which is normalized to be one when the unitaries are fully commut-
ing and is equal to the probability of applying the commutator in
a single step. For our implementation, we select 50 pairs of U , V
for which Nc ≤ 0.9. Choosing a finite set of unitaries generated
by fixed Hamiltonians, rather than sampling them randomly,
allows us to compare our results to those of a classical experimenter
given access to the same resources, but who cannot implement
quantum superpositions of time evolutions. The optimal strategy
for such a classical experimenter is discussed in Supplement 1.
While polarization rotations implemented by wave plates alone
are in general not invariant under counterpropagation, the specific
set above is since it does not contain any σx terms. As was recently
shown in [18], the restriction on the set of implementable unitaries
in a Sagnac quantum switch can be lifted if one includes time-
reversal symmetry breaking elements, making the implementation
equivalent to previous Mach–Zehnder based quantum switches.

To benchmark the fidelity of the protocol, we ran it on the
four input states {|H〉, |+〉, |−〉, |R〉}, corresponding to hori-
zontally, diagonally, anti-diagonally, and right-handed circularly
polarized light, respectively. This was independently repeated
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Fig. 5. Experimental results. (a) Experimental state fidelities. Each bar shows the measured state fidelity averaged over all 50 pairs of U , V , the four dif-
ferent input states, and three independent experimental runs, giving a total of 600 different reconstructed density matrices for each value of n. The com-
bined measurement time for all n was approximately three weeks. The exact fidelities are F1 = (0.94234± 0.00023),F2 = (0.93803± 0.00041),F3 =

(0.97336± 0.00043), with an average ofFm = (0.95129± 0.00021). The superimposed box plot indicates the median and spread of the fidelities for each
n. The higher fidelity for n = 3 can be attributed to higher polarization contrast in the setup (see Supplement 1). The dark blue bars show the highest theo-
retical fidelity for an experimenter unable to implement superpositions of time evolutions. (b) Fidelities to U−n

|9i 〉 as a function of the commutativity
(Nc ). For a given Nc , the plotted fidelity is averaged over all runs and input states, with a total of 72 samples per point as several pairs of unitaries commute
to the same degree. The error bars show the standard deviations of the fidelities, and not the uncertainty in the estimated mean fidelity, which is too small to
be visible. At high commutativity, the experiment becomes more sensitive to several noise sources, such as detector dark counts, background photons, and
the leakage of the interferometer due to finite visibility, whereas in the regime of high commutativity, the fidelity is limited by constant effects such as finite
polarization contrast through the setup. (c) Commutativity (Nc ) versus the normalized total event count rate for all implementations of V and U . Count
rates are normalized to the maximal event rate separately for each n (to account for additional losses at higher n). The rates are averaged over all four input
states and all three runs. n = 1 (circles), n = 2 (rectangles), n = 3 (triangles). Error bars (Poissonian standard deviation) are too small to be visible. The theo-
retically ideal behavior, depicted by the solid line, is given by N2

c and has a quadratic behavior due to the commutator being applied twice. The biggest devi-
ation from the overall good agreement to the theory appears in the central region of the curve, where the interferometer has a higher sensitivity to noise.

three times for all 50 choices of time evolutions, and for three
different sizes of time steps (n = 1, 2, 3), yielding a total of 1800
experimental runs with a combined measurement time of more
than 500 h. In each experimental run, full quantum state tomog-
raphy was performed on the output states ρ, and the fidelity
〈9i |UnρU−n

|9i 〉 was calculated. The density matrices of the
output states were reconstructed using a maximum likelihood fit
[19], and a background contribution originating from the detector
dark counts was accounted for using a Monte Carlo simulation,
which is how the uncertainties in the fidelities were calculated
(see Supplement 1). The average fidelities for n = 1, 2, 3 were
F1 = (0.94234± 0.00023),F2 = (0.93803± 0.00041),F3 =

(0.97336± 0.00043). These fidelities, along with the classical
bound, are shown in Fig. 5(a); it can be seen that the quantum
protocol clearly outperforms the classical strategy, achieving a high
fidelity independent of the length of the time evolution.

In our implementation, the fidelity of the final state is not
fully independent of the choice of U , V . This is due to the fact
that for pairs of unitaries that almost commute, photons are most
likely to exit in the anticommutator port of the interferometer,
which in turn makes the protocol more sensitive to experimental
imperfections such as finite interferometric visibility and detector
dark counts. In Fig. 5(b), the relationship between the degree of
commutativity Nc and fidelity is illustrated. The mean fidelity
stays at high levels over a broad range of Nc ; only when the degree
of commutativity approaches 0.9 can a small drop in the fidelity be
seen.

Since it is expected that the event rate will drop with increasing
values of Nc , we verify that out setup produces the correct scaling
by comparing Nc to our normalized detected photon rate, sepa-
rately for each n. The comparison is visualized in Fig. 5(c) where
good agreement between relative rate and degree of commutativity
can be seen. We attribute the undesired variance in rate to imper-
fect polarization compensation inside the Sagnac interferometer, as

well as phase shifts originating from slight interferometer misalign-
ment. The largest variance is seen in the neighbourhood around
Nc = 0.5, where the sensitivity to phase noise is highest, due to the
sinusoidal relationship between phase and output intensity in an
interferometer.

4. DISCUSSION

In this work, we have demonstrated a universal time-rewinding
protocol for two-level quantum systems. Unlike previously pro-
posed protocols, ours can reach an arbitrarily high probability
of success and is asymptotically optimal in the time required to
perform the rewinding, answering the question of whether or not
such processes are permitted by the laws of quantum mechanics.
Remarkably, the experimenter performing the rewinding does not
need any knowledge about the target quantum system, its internal
dynamics, or even the specifics of the perturbed evolution. The
optimality of the protocol is demonstrated in our implementation,
where the total elapsed time (equivalent to the number of applica-
tions of U ) grows linearly with the length of time to be rewound,
with an optimal proportionality constant of one. We find that the
experimental quantum protocol significantly outperforms the
optimal classical strategy in terms of the resulting state fidelity.

We emphasize that our results are in principle not restricted
to photonic quantum systems, since the concepts used do not
make any assumptions about the physical system the protocol
is applied to. We note that, while experiments using cold atom
interferometers have demonstrated the necessary building blocks
for the protocol [20], implementations utilizing massive particles
would still likely prove challenging. In contrast, our photonic
implementation offers a particularly simple and robust approach
that utilizes a mature technological platform, in particular for
implementing the commutator of the time evolutions through a
quantum switch. Given the recent progress in integrated quantum
photonics [21,22], we envision that fully monolithic architectures
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capable of higher fidelity operations will facilitate demonstra-
tions of the active error correction [Fig. 2(e)] in the near future.
Additional follow-up investigations could include non-optical
implementations of the protocol as well as extensions to higher
dimensions, as described in [7].
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1. CONNECTION WITH THE PROBE FRAMEWORK

Previous proposals for universal time translation [1], [2] are framed in a scattering scenario, where
the target system, which sits still in a so-called scattering region, is made to sequentially interact
with a number of quantum probes. These probes are prepared in a controlled lab and then released
to the scattering region, where they interact with the target in an uncharacterized but repeatable
way. As it turns out, the rewinding protocol introduced in the main text can also be realized as a
scattering experiment. In the following we explain how this can be achieved.

Our goal is to implement a quantum SWITCH by means of scattered probes, which the
experimenter has full control over. The probe system P, together with an ancillary qubit A,
are initially prepared in the state:

|ω⟩ = 1√
2
(|0⟩A |Φ⟩P + |1⟩A |Ψ⟩P) . (S1)

Here |Φ⟩ is a state that remains in the lab and does not interact with the target system, while |Ψ⟩
represents a probe state that allows the probe to enter the scattering region and interact with the
target.

We assume that the target system T, in the absence of probes, evolves via the (unknown) free
Hamiltonian H0. Similarly, when the probe remains in the lab, its evolution is governed by the
(known) free Hamiltonian HP. Finally, the interaction between the target and a probe in the
scattering region is described by the (unknown) Hamiltonian HI .

Taking the initial state of the target to be |ψ⟩, we let the joint target-probe state |ω⟩AP |ψ⟩T
evolve for time ∆T:

1√
2

(
|0⟩A U |ψ⟩T W |Φ⟩P + |1⟩A e−iHI ∆T |ψ⟩T |Ψ⟩P

)
, (S2)

where U = e−iH0∆T and W = e−iHP∆T . Subsequently, we apply the following (probabilistic)
operation on the probe system:

|0⟩ ⟨0|A ⊗ 1P + |1⟩ ⟨1|A ⊗ W |Φ⟩ ⟨Ξ|P , (S3)

where |Ξ⟩ is any state of the probe with support in the lab. Defining:

V = (⟨Ξ|P ⊗ 1T)e−iHI ∆T(|Ψ⟩P ⊗ 1T), (S4)

we can now write the joint state as:

1√
2
(|0⟩A U |ψ⟩T + |1⟩A V |ψ⟩T)W |Φ⟩P , (S5)

Taking advantage of the fact that the probe is now in the state |Φ⟩, i.e. within the lab, we apply
the following operation:

|0⟩ ⟨0|A ⊗ (|Ψ⟩ ⟨Φ|W−1)P + |1⟩ ⟨1|A (⊗W−1)P. (S6)

yielding the state:
1√
2
(|0⟩A U |ψ⟩T |Ψ⟩P + |1⟩A V |ψ⟩T |Φ⟩P) . (S7)

Letting the probe and target systems evolve for another ∆T units of time and applying (S3) once
more results in the state:



1√
2
(|0⟩A VU |ψ⟩T + |1⟩A UV |ψ⟩T)W |Φ⟩P . (S8)

Since the state of the probe factors out, we ignore it from now on. Finally, we measure the ancillary
qubit in the basis |±⟩ = 1√

2
(|0⟩ ± |1⟩). Depending on the measurement result ±, the final state of

the target system will be

1
2
(VU ± UV) |ψ⟩ . (S9)

This is an implementation of the quantum SWITCH gate.

2. CLASSICAL STRATEGIES

In this section we compute the fidelity of a classical rewinding protocol. We consider an experi-
menter given access to the same resources as a quantum one. Specifically they can choose to either
let the system evolve freely for some length of time, or evolve the system using the perturbed
time evolution V. The strategy should be understood as universal, meaning that the experimenter
cannot tailor their interventions to the specific time evolution to be rewound. In contrast to the
quantum experimenter, the classical one can only implement the free and perturbed evolutions
sequentially, not in a coherent superposition. Thus, the most general classical strategy will have
the following form:

C(H0, V, n, t) := e−iH0tn V · · · e−iH0t1 Ve−iH0t0 ,

where tj ≥ 0 for all j, and

n +
n

∑
i=0

ti ≤ (4 + n)∆T.

This last condition ensures that the classical protocol does not last longer than the one we have
used in the main text. Since we are using waveplates as gates, we have to consider a discretized
version of time where each gate consumes ∆T units of time, and thus the most basic rewinding
protocol, consisting of implementing [U, V]Un[U, V], lasts indeed (4 + n)∆T time units.

Our figure of merit for each n is the average over the fidelities between the final state and the
result of rewinding the original state |ψ⟩ ∈ S by an amount ∆Tn. The classical expression is thus

F =
1

|P||S| ∑
(U,V)∈P ,ψ∈S

|⟨ψ|UnC(H0, V, n, t) |ψ⟩|2, (S10)

where P ,S are, respectively, the set of pairs of operators (U, V) and states ψ considered in the
experiment.

We numerically maximize this expression in Mathematica, obtaining Fc ≈ 0.733713 for n =
1, 2, 3. The optimal classical strategy for these choices of states and gates is to let the system evolve
unperturbed for 5.91507 − n units of time. This particular result is a coincidence, since for other
choices the optimal is a non-trivial strategy.

The numerical optimization over C implies that the classical experimenter posesses knowledge
about the set of unitaries. An experimenter restricted to being ignorant about these sets - a
constraint we impose on the quantum experimenter - does not have access to this optimal
strategy.

3. EXPERIMENTAL DETAILS

Photon pairs centered at approximately 1546 nm are produced in a type-II spontaneous parametric
down conversion (SPDC) source based on a periodically poled KTiOPO4 crystal in a Sagnac
configuration [3]. The source is pumped by a mode-locked Ti:sapphire laser (Coherent Mira HP)
emitting 2 ps long pulses at 773.1 nm with a repetition rate of 76 MHz.

Two electro-optical (EO) switches (Agiltron NanoSpeed) are used throughout the experiment to
route the photons in real time, enabling them to pass through the same part of the setup multiple
times. Upon the detection of a signal photon, the electrical signal created by the detector is split
off, with one copy being amplified to TTL levels using a fast comparator, whereupon it is fed
into a waveform preserving electro-optical converter outputting an optical pulse at 1310 nm.
The optical signal is sent back through the fiber link to the experimental setup, where it gets
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re-converted to an electrical signal using an opto-electrical converter, and is then received by the
FPGA controlling the EO-switches.

The roughly 400 ns rise time of the switches necessitates the use of long fiber delays, which
lower the duty cycle of the experiment. These are 519 ns/106 m between the state preparation
Λi and S1, 533 ns/109 m between the output of the quantum SWITCH and S2, and 760 ns/155 m
inside of the U-loop (Fig. 3(b) in the main text). The 1.5 dB attenuation per pass through the
EO-switches is the main contributor to the overall experimental loss, as the eight passes for
n = 3 add up to 12 dB. The non-negligible leakage through the switches of around −13 dB also
contributes to some experimental noise. Additional short fiber delays are used to offset the
experimental signal in time to ensure that detection events originating from unused photon pairs
are not separated from the real signal by an integer multiple of the pump pulse separation of
13.2 ns.

The quantum SWITCH is implemented using a bulk Sagnac interferometer to enable long
term phase stability. Additionally, the common path geometry ensures that the polarization
unitaries are sampled on the same physical spots on the waveplates for both values of the control
qubit. The visibility of the interferometer is measured to be in excess of 0.99 for all the four input
polarization states used in the experiment. Polarization-dependent phase shifts from the mirrors
inside the interferometer are corrected using multi-order QWPs.

Superconducting nanowire single-photon detectors from Photon Spot, housed in a 1 K cryostat,
are used for detection. The typical measured detection efficiencies are around 93 %. An approx-
imately 100 m long optical fiber link separates the detectors from the experiment. Successful
detection events are recorded by a time-tagger with 15.625 ps timing resolution.

While our SPDC source is able to generate single photons at a rate in excess of 1.5 MHz,
many of which cannot be used since a single run of the experiment takes between 2.5 and 4.5 µs.
Therefore, the FPGA discards all detection events from heralding (signal) photons when a run of
the experiment is still in progress. We therefore attenuate the laser pump power until the point
where the rate of successful trigger events by the FPGA begins to fall. This also lets us bias the
heralding detector at a greater voltage, leading to a higher heralding efficiency.

The Sagnac interferometer constituting the quantum SWITCH is housed in and isolated by
three different layers of thinsulate, acrylic and neoprene. This is done to decrease airflow and
temperature fluctuations. Gold coated mirrors are used throughout the setup as they exhibit low
polarization-dependent loss at our working wavelength (0.034, 0.035 for S, P respectively). Their
relatively poor reflectivity of 0.96 adds around 3.5 dB to the total loss. Similarly, a beam splitter
with low polarisation dependent loss and splitting ratio is used for the Sagnac. Multi-order
quarter-wave plates are used inside the interferometer to compensate the unwanted polarization-
dependent phase shifts caused by the mirrors, with typical polarization contrasts in excess
of 40 dB. After acquiring data for the cases n = 1, 2 we were able to exchange the CW-laser
used for this compensation to a model with broader wavelength tuning-range to more closely
match our single-photon central wavelength. This lead to superior polarization compensation
performance, which in turn explains the increased fidelity F3 compared to F1,2. While the
polarization rotations induced by most components in the setup are not strongly wavelength
dependent, the EO-switches are an exception to this, and therefore benefit from a CW-wavelength
that more closely matches that of the idler photons. The polarization unitaries Up, Vq, Λi are
implemented with three sets of three waveplates in a QWP-HWP-QWP-configuration, mounted
in motorized piezo-electric rotation mounts. While polarization transformations implemented
purely with linear retarders will not in general be the same for both propagation directions, our
restricted gate set consisting only of linear combinations of σy and σz is invariant under change
of propagation direction. Since the applications of U outside the quantum SWITCH involve the
photons hitting a different spot on the wave-plates, we verify their uniformity by performing
quantum process tomography on six randomly generated unitaries. The wave-plates are sampled
by four different beams offset horizontally by 2 mm each, and we find that the resulting gate
fidelities do not differ by more than 0.1 %. To verify that the free time-evolution unitaries Up
are faithfully implemented we also perform quantum tomography on them inside the setup and
obtain an average fidelity of FU = (0.9928 ± 0.00035), averaged over all values of p and the states
|H⟩ and |+⟩.

The applicability of the protocol to mixed states is verified by reconstructing density matrices
from convex combinations of the acquired data for the pure states |+⟩ and |−⟩. They are compared
to expected outcomes for input states of the form ρ = α |+⟩⟨+|+ (1 − α) |−⟩⟨−|, for 23 values of
α ∈ (0, 1), all 50 combinations of (p, q) and all 3 experimental runs. In Fig. S1, the fidelities to
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Fig. S1. Fidelities for mixed states. Density matrices are reconstructed out of convex combina-
tions of data measured for input states |+⟩ and |−⟩. Fidelities to the expected states U−nρU−n†

,
with ρ = α |+⟩⟨+|+ (1 − α) |−⟩⟨−|, are calculated for varying mixing parameter α, all combina-
tions of (U, V), all 3 experimental runs, and all n. Each box plot shows the median and spread
of the state fidelities. (a) n = 1, (b) n = 2, (c) n = 3.

these expected states are plotted for each value of n.

4. SIGNAL PROCESSING

To analyse the data we generate coincidence histograms between the heralding detector and
the two detectors connected to the tomography stage. As previously stated, due to the long
fiber delays the idler photon takes several microseconds to traverse the entire setup. Heralding
photons detected within this time window will be ignored by the FPGA, but will still be recorded
by the time-tagger. In order to filter out these unused heralding photons in the coincidence
analysis, the FPGA outputs a trigger signal whenever it initiates a new pulse sequence. This
signal is transmitted back to the time-tagger by the same electro-optic conversion procedure as in
the Methods. Only trigger events for which a corresponding signal was received from the FPGA
are used in the analysis. Conditioning the photon detection events on the FPGA trigger signal
significantly reduces the background noise, as illustrated in Fig. S2.

Due to the presence of active switches in the setup, in any given run of the experiment there
exists multiple possible paths that a photon could have taken from the source to the tomography
stage. For example, during the state depicted in Fig. 3(c) in the main text photons can travel
directly from the source to the tomography stage. While most such events can be filtered out
by virtue of the fact that the difference in arrival time between the signal and idler photons
will not match that of the real signal, there are also higher order contributions consisting of
signal and idler photons emitted at different times. Since the photons propagating straight to the
tomography stage avoid most of the experimental loss, and are not attenuated by the success
probability, the rate of these events becomes comparable to the signal even though the intrinsic
rate of double-pair emission from the source is significantly lower than the single-pair emission
rate. To offset this large noise contribution we add a small fiber delay between S1 and S2. The
result is that the signal sits between the major noise peaks, as shown in Fig. S3.

While the SNSPDs have a very low dark count rate, ranging from about 30 to 300 Hz, the high
rate of heralding photons nevertheless leads to a small number of accidental coincidence events
that form a uniform background in the coincidence landscape. For pairs of implemented unitaries
that nearly commute, the resulting low rate of detected signal photons makes the background
of accidental coincidences non-negligible. To estimate the impact of this noise in our signal we
sample the background in several regions of the coincidence histograms that don’t contain any
signal. These regions, separated by 13.2 ns, are indicated in Fig. S3. The mean value of the noise
is used as input to a Monte Carlo simulation, from which the mean and standard deviation of
the fidelity is obtained. At every step of the simulation a density matrix is constructed using a
maximum likelihood fit. The Monte Carlo simulation is allowed to run until the 0.95 confidence
interval on the mean fidelity reaches a value below 2 · 10−3. In order to further increase the signal
to noise, a narrow coincidence window of 0.3 − 0.7 ns is used.
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Fig. S2. Influence of FPGA trigger events on noise background. A comparison between two
coincidence histograms with 100 ps wide bins taken from the first run of (p, q, i, n) = (6, 2, H, 1).
Background noise originating from higher-order emission events in the SPDC-source as well
as detector dark counts can be greatly reduced by filtering out trigger photons that were ig-
nored by FPGA while it was already executing a measurement sequence (blue, solid line). An
unprocessed histogram is shown as dashed line. The inset shows a magnified region centered
around the signal peak. The suppression of the noise peaks originating from unrelated photon
pairs is greater than the ratio of unused to used trigger events. This is because the dead time of
the detectors (on the order of 100 ns) acts as an additional filter on the heralding photons in the
region around our signal, and as a consequence the majority of the events contributing to these
peaks in the unfiltered signal comes from heralding photons that were not triggered on.
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Fig. S3. Background noise sampling. An example of a coincidence histogram with 100 ps
wide bins taken from the first run of (p, q, i, n) = (6, 2, H, 1). It shows the number of coin-
cidence events between the H-port of the tomography stage and the heralding detector, in-
tegrated over the measurement time, as a function of a time-offset in the heralding detector.
The signal in our experiment is the dark green peak in the center of the graph. Slightly offset
from the signal peak one would in an ideal experiment expect zero coincidence events due to
the strong time correlation between the signal and idler photons, however due to a small but
non-negligible detector dark count rate (on the order of 100 Hz) some coincidence events nev-
ertheless occur. These form a uniform background, which we sample and include as an input
to the Monte Carlo simulation that estimates the reconstructed state fidelities. The small side
peaks offset from the signal by 13.2 ns (which is the reciprocal of the 76 MHz laser repetition
rate) are caused by signal photons emitted before or after the pair the FPGAs triggered on. The
remaining peaks are caused by coincidences from uncorrelated photon pairs, and this signal is
strongly suppressed by conditioning the coincidence counting on the FPGA output signal.
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5. INDIVIDUAL FIDELITIES FOR ALL INPUT STATES, TIMESTEPS AND PAIRS OF U
AND V
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Fig. S4. Fidelities to U−1 |Ψi⟩. For all 50 pairs of (U,V) with Nc ≤ 0.9 and 4 input states each:
+(violet), −(prussian), R(teal), H(green). Averaged over three measurement sets. For each mea-
surement set, the standard deviation of the fidelities calculated by the Monte Carlo simulation
is computed. The shown error bars are the root square-sum of these standard deviations.

6



4 5 6 7
q

0.0

0.2

0.4

0.6

0.8

1.0

Fid
el

ity
 to

 W
^(

-2
)

p = 4

+

R
H

3 4 5 6 7 8
q

0.0

0.2

0.4

0.6

0.8

1.0
p = 5

2 3 4 5 6 7 8 9
q

0.0

0.2

0.4

0.6

0.8

1.0

Fid
el

ity
 to

 W
^(

-2
)

p = 6

2 3 4 5 6 7 8 9
q

0.0

0.2

0.4

0.6

0.8

1.0
p = 7

2 3 4 5 6 7 8 9
q

0.0

0.2

0.4

0.6

0.8

1.0

Fid
el

ity
 to

 W
^(

-2
)

p = 8

2 3 4 5 6 7 8 9
q

0.0

0.2

0.4

0.6

0.8

1.0
p = 9

2 3 4 5 6 7 8 9
q

0.0

0.2

0.4

0.6

0.8

1.0
p = 10

Fig. S5. Fidelities to U−2 |Ψi⟩. For all 50 pairs of (U,V) with Nc ≤ 0.9 and 4 input states each:
+(violet), −(prussian), R(teal), H(green). Averaged over three measurement sets. For each mea-
surement set, the standard deviation of the fidelities calculated by the Monte Carlo simulation
is computed. The shown error bars are the root square-sum of these standard deviations.
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Fig. S6. Fidelities to U−3 |Ψi⟩. For all 50 pairs of (U,V) with Nc ≤ 0.9 and 4 input states each:
+(violet), −(prussian), R(teal), H(green). Averaged over three measurement sets. For each mea-
surement set, the standard deviation of the fidelities calculated by the Monte Carlo simulation
is computed. The shown error bars are the root square-sum of these standard deviations.
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In the macroscopic world, time is intrinsically asymmetric, flowing in a specific direction, from
past to future. However, the same is not necessarily true for quantum systems, as some quantum
processes produce valid quantum evolutions under time reversal. Supposing that such processes
can be probed in both time directions, we can also consider quantum processes probed in a
coherent superposition of forwards and backwards time directions. This yields a broader class
of quantum processes than the ones considered so far in the literature, including those with
indefinite causal order. In this work, we demonstrate for the first time an operation belonging to
this new class: the quantum time flip. Using a photonic realisation of this operation, we apply it
to a game formulated as a discrimination task between two sets of operators. This game not only
serves as a witness of an indefinite time direction, but also allows for a computational advantage
over strategies using a fixed time direction, and even those with an indefinite causal order.

INTRODUCTION

In recent years, the framework of quantum theory has
been generalised to describe agents interacting through
quantum processes with indefinite causal orders [1–
3]. These processes have been realised experimen-
tally using photonic platforms [4–8], thereby witnessing
the implementation of causally non-separable series of
events. Remarkably, these are not the most general pro-
cesses allowed by quantum mechanics. Take, for exam-
ple, the quantum SWITCH [2]: even though the causal
order of the constituent events is indefinite, each op-
eration is accessed only in a single time direction. By
considering processes where the time direction of the
underlying operations is indefinite, one can go beyond
the framework of indefinite causality. Indeed, a quan-
tum superposition of evolutions with opposite thermo-
dynamic arrows of time was first proposed in [9]. By
associating the “forwards” temporal direction with a
positive change in the entropy generated in a thermo-
dynamic process, and its “time-reversing” counterpart
with a negative change, the corresponding superposi-
tion of processes exhibits a quantum-mechanically un-
defined thermodynamic arrow of time.

More generally, processes with an indefinite time di-
rection can be studied by considering operations that
exhibit a time symmetry; these operations admit a
change of reference frame that yields a valid quan-
tum evolution in which the time coordinate is inverted.

∗ Corresponding author: teodor.stroemberg@univie.ac.at
† Corresponding author: philip.walther@univie.ac.at

Unitary channels are an example of such operations,
and in particular they admit the following time-reversal
symmetries: for every evolution U, both the inverse
U 7→ U† and the transpose U 7→ UT are valid time-
reversal operations.

Given quantum operations that can in principle be ac-
cessed in both time directions, we can consider coherent
superpositions of transformations made in the forwards
and backwards time-directions. This amounts to a new
kind of process, which we will refer to as being insepara-
ble in its time direction, an example of which - called the
quantum time flip - was recently introduced in Ref. [10].
This process cannot be realised within the quantum cir-
cuit model. In this work we nevertheless present a pho-
tonic implementation of the quantum time flip by ex-
ploiting device dependent symmetries of our experimental
apparatus. A quantum state undergoing a time evolu-
tion is encoded in the polarization degree of freedom of
a single photon, while a control qubit determining the
time direction is encoded in its path degree of freedom.
We show that polarization operations with waveplates
naturally implement different time directions for for-
wards and backwards propagation directions through
the waveplates, given the correct Stokes-parameter con-
vention. This results in a deterministic time-reversal,
in contrast to more general approaches which may in-
volve multiple uses of the input operation in combi-
nation with probabilistic or non-exact methods [11–20].
We can furthermore realise the quantum time flip deter-
ministically by passing the photon through the wave-
plates in a superpositon of the two propagation direc-
tions.

We certify the indefinite time direction by demon-



2

FIG. 1. Time-reversal and the quantum time flip. (a) The forwards (top) and backwards (bottom) directions of the same time-
evolution are shown in yellow and blue, respectively. The backwards time-evolution is given by some function f of the forwards
evolution, and decomposing the total time evolution into steps shows that f must be order reversing. The inverse and transpose
are examples of such order reversing functions. (b) Quantum gates are often modelled as black boxes with an input and an
output. In this work, we consider black boxes that can be accessed in two different directions, producing either the forwards or
backwards time-evolution depending on which direction the box is accessed in. Here, the backwards time-evolution is taken to
be the transpose. (c) A control degree of freedom can be introduced to control in which direction the black box is accessed. (d)
By putting the control qubit in a coherent superposition of the two states in (c) the box is accessed in a superposition of both
directions, and the input state is propagated in a superposition of time directions. This is a realisation of the quantum time
flip. (e) The quantum time flip can be applied to more than a single gate. This figure illustrates a scenario where two gates are
accessed in a superposition of orders, in which they always have the opposite time directions. As described in the main text,
this use of two quantum time flips can yield a computational advantage.

strating an information-theoretic advantage of the
quantum time flip in the context of a computational
game. In this setting, the quantum time flip not only
outperforms strategies that utilise operations with a
fixed time direction, but even strategies that exploit op-
erations with an indefinite causal order [4, 21].

QUANTUM CIRCUITS, UNITARY TRANSPOSITION,
AND PROCESSES WITH INDEFINITE TIME

DIRECTION

The standard quantum circuit formalism provides
solid grounds for quantum computing and forms the
basis for quantum complexity theory [22, 23]. How-
ever, it also imposes limitations on how we apply quan-
tum theory. In a circuit, operations necessarily respect a
definite causal order and the strict notion of input and
output. The existence of time reversal processes such
as unitary transposition is forbidden by the standard
circuit formalism when given access to one [15, 16] or
even two [10] uses of an unknown unitary. However,
for practical and foundational reasons, researchers have
been designing and pursuing non-exact and probabilis-
tic schemes aimed towards this goal [11–19]. Remark-
ably, a very recent work shows that in the qubit case,
when four uses of the input operation are available,
there exists a quantum circuit to invert arbitrary uni-
tary operations [20].

In quantum theory, reversible operations are de-

scribed by unitary operators. Processes which reverse a
composition of such operations may be expressed by a
function f satisfying:

f (UV) = f (V) f (U), ∀U, V, (1)

for all unitary operators U and V (see Fig. 1). Un-
der natural assumptions, it can be proven that, up to
a unitary transformation, there are only two time re-
versal functions f , unitary transposition f (U) = UT

and unitary inversion f (U) = U−1 [10]. For two-
dimensional systems, unitary transposition and unitary
inversion are unitarily equivalent via a Pauli σY oper-
ation. This follows from the identity, U−1 = σYUTσY
which holds for all operators U ∈ SU (2). Hence, for
qubits, universal unitary transposition is possible if and
only if unitary inversion is possible. When focusing on
a particular physical implementation, the general as-
pects of the standard quantum circuit formalism may
limit our view and lead to an apparent mismatch be-
tween theory and practice. A known illustrative ex-
ample is the universal coherent control of unitary op-
erations, where an arbitrary unitary U is applied to the
target system conditional on the state of a control qubit:
U 7→ 1 ⊗ |0⟩⟨0|C + U ⊗ |1⟩⟨1|C. While it is not possible
to design a quantum circuit to perform universal con-
trol, a simple Mach-Zehnder optical interferometer can
be used for this task [24–26]. Indeed, experimental con-
trol of black box quantum gates has been demonstrated
[27, 28]. Such experimental implementations exploit the
knowledge of the position of the physical device per-
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FIG. 2. Classes of game strategies. The figure depicts the different strategies for the game described in the main text and their
corresponding maximum winning probabilities p. These maximum winning probabilities are obtained through an optimization
over all possible choices of the resources shown in dark blue. The state ρ, for example, is allowed to contain any number of
auxiliary degrees of freedom, and analogous statements hold for the measurement M, channel E and process W . The three
strategies differ in how they are able to access the gates picked by the referee. The strategies (a)-(c) are shown here in the
forwards time direction, but are also valid in the backwards time direction in which both gates are transposed. Each subsequent
strategy is strictly better than the previous one, and only players who have access to a quantum time flip process can win the
game with unity probability. (a) Parallel gate order. (b) Causally ordered gate sequence. (c) Process without a definite causal
order. (d) Quantum time flip.

forming the gate, circumventing this apparent limita-
tion imposed by the quantum circuit formalism.

Although time reversal processes such as unitary
transposition are not possible within the standard cir-
cuit formalism when given access to one [15, 16] or even
two [10] uses of an unknown unitary, in this work we
implement general qubit unitary transposition, as well
as the quantum time flip process, using a particular op-
tical construction. Similar to the case of universal co-
herent control, we make use of knowledge about our
specific experimental apparatus to realise a black box
unitary that may be used in two different directions.
As shown in Fig. 1.b, this box implements U in the ‘for-
wards’ direction, while in the ‘backwards’ direction it
has the effect of the transposed operation UT .

Moreover, in addition to “simply” reversing a quan-
tum evolution, we also coherently superpose the for-
wards and backwards time evolutions, and in so doing
perform an optical implementation of a process with
an indefinite time direction [10], i.e. one which can-
not be described as a convex mixture of processes in
which each gate is accessed only in one time direction.
The process that we implement optically is the quan-
tum time flip for unitary transposition, a process which
acts on unitary operations as:

U 7→ U ⊗ |0⟩⟨0|C + UT ⊗ |1⟩⟨1|C . (2)

We then compose the time flip process of Eq. (2) with its
flipped version, V 7→ VT ⊗ |0⟩⟨0|C + V ⊗ |1⟩⟨1|C, to ob-
tain a process which acts on a pair of unitary operators
as:

(U, V) 7→ UVT ⊗ |0⟩⟨0|C + UTV ⊗ |1⟩⟨1|C . (3)

In addition to having an indefinite time direction, the
process described in Eq. (3) cannot be described by gen-
eral process matrices with indefinite causality such as

the quantum switch [2] or the Oreshkov-Costa-Brukner
(OCB) process [3]. In the next section, we will explain
how to witness this property.

GAME DESCRIPTION

We now describe a discrimination task, first intro-
duced in Ref. [10], where the quantum time flip process
will be used as a resource to increase our performance.
In this game, a referee provides the player with two
black box unitaries, U and V, belonging to either the
set M+ or M−, which are known to respect the prop-
erty:

M+ :=
{
(U, V) : UVT = +UTV

}
(4)

M− :=
{
(U, V) : UVT = −UTV

}
. (5)

The player is then challenged to determine which of the
two sets the gates were picked from, while only being
allowed to access each of the black boxes once.

As discussed in the previous section, a player able
to perform the quantum time flip may implement the
process:

(U, V) 7→ UVT ⊗ |0⟩⟨0|C + UTV ⊗ |1⟩⟨1|C . (6)

Consider as a strategy an initial state of the form
|ψ⟩T ⊗ |+⟩C, where |±⟩C = |0⟩C±|1⟩C√

2
, |ψ⟩ is an arbitrary

state, and the subscripts C and T refer to the control
and target qubits. Sending this state through the gate
in Eq. (6) gives the state:[

UVT + UTV
2

]
|ψ⟩T |+⟩C +

[
UVT − UTV

2

]
|ψ⟩T |−⟩C.

(7)
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Since the states |±⟩ are orthogonal, a player using this
strategy can always correctly determine which set was
chosen by the referee. In contrast, players who do not
have access to indefinite time strategies may not be able
to ascertain with certainty to which set a given pair of
unitaries (U, V) belongs. In order to make this claim
concrete, Ref. [10] considers a particular game where
the set M+ has 13 pairs of unitary operators respecting
UVT = +UTV, and M− has 8 pairs of unitary opera-
tors respecting UVT = −UTV; these two sets of unitary
operators are presented in the Methods. Here, we con-
sider an average case variation of the aforementioned
game, which goes as follows: with uniform probability
p = 1

13+8 , the referee picks a pair of unitary operators
(U, V) from M+ or M− and lets the player make a
single use of each. We then consider the optimal suc-
cess probability of players who have access to different
kinds of resources. As indicated by Eq. (7), players who
have access to the quantum time flip can always win
with unity probability. The three other classes of strate-
gies, shown in Fig. 2, only have access to a single time
direction, forwards or backwards, and convex combina-
tions of these strategies will be called separable in their
time direction; a detailed mathematical characterisation
of these strategies is presented in the methods. Employ-
ing the computer-assisted proof methods of Ref. [29] we
obtain upper bounds on the maximal success probabil-
ities for players restricted to particular classes of strate-
gies. The code for this is openly available in our online
repository, see Methods for details.

The first alternative strategy we consider is one in
which the player is restricted to using U and V in par-
allel, and this results in a maximal success probabil-
ity that is bounded by 88

100 ≤ppar ≤ 89
100 . Next, we

consider players restricted to causally ordered strate-
gies, whose maximal success probability is found to
be bounded by 90

100 ≤ pcausal ≤ 91
100 . Finally, players

given access to process matrices with indefinite causal-
ity (also called indefinite testers [30]), but with definite
time direction, have their maximal success probability
bounded by 91

100 < pi.c. ≤ 92
100 . Unlike the task in [31],

in which causally ordered and general non-quantum-
circuit-model strategies perform equally well, this game
is hence an example of a channel discrimination task
with strict hierarchy between four different classes of
strategies. Additionally, while the operations selected
by the referee are treated as being fully characterised
in the above analysis, there are no assumptions made
about the measurements performed by the player, and
these can remain unknown. This is therefore an exam-
ple of a semi-device-independent certification of an in-
definite time direction [32, 33]. This stands in contrast
to witness based approaches, previously used to cer-

tify advantages in channel discrimination tasks [5], in
which one needs well characterised measurement de-
vices in order to evaluate the witness operator.

EXPERIMENT

Our photonic implementation of the game described
in the previous section makes use of the quantum time-
flip strategy from Eq. (7) to achieve a success probability
exceeding that of any strategy only using the gates in
one time direction. To coherently apply the quantum
time flip, we employ polarization optics in a partially
common-path interferometer, depicted in Fig. 3, with
the control and target qubits being encoded in the path
and polarization degrees of freedom of a single-photon,
respectively. Our experiment makes use of two quan-
tum time flips, sequentially applied to the two unitaries
V and U. The resulting controlled channel is the one
of Eq. (7) where the gates UVT and UTV act on the
target (polarization) qubit and are implemented using
two Simon-Mukunda polarization gadgets consisting of
three waveplates each [34], for which the transpose op-
eration is obtained by reversing the propagation direc-
tion.

Such polarization gadgets generally do not realise the
transpose operation in the backwards propagation di-
rection, but rather a related operation:

Ufw → Ubw = PUT
fwP†, (8)

where P is a matrix describing the change of reference
frame to the backwards direction, and the subscripts
indicate the propagation direction. While it is possi-
ble to construct a gadget that implements the trans-
pose by introducing time-reversal symmetry breaking
elements (T.S, R. Peterson, and P.W., SU(2) gadgets
for counterpropagating polarization optics, Manuscript
under preparation), here we instead exploit the fact that
the transpose is a basis-dependent operation. More
concretely, by adopting the convention (S1, S2, S3) ↔
(−Z,−Y,−X) for our Stokes parameters [35] we find
that P = 1, and the polarization gadgets transform as
the transpose under counterpropagation (see Methods).
Superimposing two propagation directions through a
gadget therefore allows us to implement the quantum
time flip, with the photon path acting as a control de-
gree of freedom. The specific coherent superposition of
time flips in Eq. (3) is achieved through the use of fiber
optic circulators.

The optical circuit in Fig. 3 begins with a bulk beam-
splitter that initializes the control qubit into the state
|+⟩C = 1√

2
(|0⟩C + |1⟩C), after which two fiber circu-

lators guide the photons through the V gadget in two
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Fiber pol. controller ppKTPMirror

Fiber beamsplitter SM-fiberCirculator

Freespace path V-gadgetHWP / QWP

Fibre-coupler U-gadgetBS / PBS

SNSPDTi:sapph

FIG. 3. Experimental apparatus. (a) A type-II spontaneous parametric down-conversion source generates frequency degenerate
single-photon pairs at 1546 nm in a ppKTP crystal (top). The signal photon is sent to a heralding detector, while the idler
photon is routed to a balanced bulk beam-splitter and coupled into single-mode fiber. A piezo-electric actuator attached to
one of the fiber couplers allows for control over the interferometric phase, pairs of HWPs / QWPs are used for polarization
compensation through the fibers. After the initial beam-splitter two fiber circulators guide the photon through the V-gadget.
Propagating through the gadget in the ‘forwards’ direction implements the unitary V, while propagating ‘backwards’ has the
effect of applying the transposed operation relative to the ‘forward’ direction. One of the two paths through first the gadget
therefore results in the VT being applied instead of V. Two additional circulators then route the photon through a gadget
implementing U (UT) in ‘forwards’ (‘backwards’) direction. Finally, the signal photon is sent to a fiber beam-splitter, which
applies a Hadamard gate on the path degree of freedom, and correlates the two spatial output modes with the sets M+, M−.
Detection is performed by superconducting nanowire single-photon detectors (SNSPDs) housed in a 1 K cryostat. Additional
QWP/HWP pairs are used to compensate fiber-induced polarization rotations. (b) The fiber circulators route the light from
port 1 → 2, from 2 → 3 and block light entering in port 3. The bidirectional boxes in Fig. 1 are realised using sets of three
waveplates. Depending on the propagation direction, they implement either the unitary operation U/V or UT/VT .

different directions, giving the joint control-target state:

1√
2
(V |ψ⟩T ⊗ |0⟩C + VT |ψ⟩T ⊗ |1⟩C). (9)

Entering the circulators from a different port, the
photons are then directed to the U gadget, which they
once again propagate through in opposite directions,
transforming the joint state to:

1√
2
(UTV |ψ⟩T ⊗ |0⟩C + UVT |ψ⟩T ⊗ |1⟩C). (10)

At the end of the optical circuit, a fiber beam-splitter
applies a Hadamard gate on the control qubit, giving
the state:[

UVT + UTV
2

]
|ψ⟩T |+⟩C +

[
UVT − UTV

2

]
|ψ⟩T |−⟩C. (11)

A projective measurement on the control (path) qubit
in the computational basis then reveals whether (U, V)
belong to M+ or M−.

The partially common-path structure of the interfer-
ometer has two distinct advantages: (1) photons in the
two different propagation directions of the interferom-
eter hit exactly the same spots on the waveplates and
the physical symmetries of the gadget therefore en-
sures the faithful implementation of the time flip in-
dependently of any imperfections in the waveplates, (2)
the paths traversed in both directions do not contribute

any phase noise to the interferometer, thereby simplify-
ing the phase stabilization. More specifically, only the
paths connecting the two beam-splitters with the fiber
circulators, as well as the fibers directly between the cir-
culators, add phase noise to the interferometer. These
fiber components, as well as the bulk beam-splitter at
the interferometer input, are housed in a thermally and
acoustically insulated box. The passive stabilization
of these elements is sufficient to bring the phase drift
down to a value of approximately 10 mrad min−1. The
use of a bulk-beamsplitter at the input was chosen in or-
der to balance the losses induced by the fiber circulators
through the free-space to fiber coupling, and to give
control over the interferometer phase , through a piezo-
electric actuator. This piezo was used to reset the phase
of the interferometer prior to beginning the measure-
ments, and was not employed for active feedback. The
fiber beam-splitter at the output ensures perfect spatial
mode overlap for high interferometric visibility.

RESULTS

Before demonstrating the quantum time flip in the
context of the game, we first verified the ability of a
polarization gadget to implement both a unitary and
its transpose simultaneously, in the two different prop-
agation directions of the light. To this end, we per-
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FIG. 4. Unitary transposition fidelity. The yellow and blue
bars indicate the fidelity, F , of the unitaries U (top) and V
(bottom) from the sets M+ (left) and M− (right), measured in
the forward propagation direction, with respect to the trans-
pose of the reconstructed unitary measured in the backwards
propagation direction. Taller bars indicate a higher fidelity be-
tween the unitaries in the two propagation directions. The av-
erage fidelity is 0.9992± 6.5× 10−4 indicating that the gadgets
faithfully implement the transpose. The uncertainties were
estimated using a Monte-Carlo simulation of the tomography
accounting for errors in the waveplate angles, and the super-
imposed box plot indicates the spread of the reconstructed
fidelities. We attribute the residual errors to imperfect wave-
plate retardance in the tomography, and angle differences be-
tween the setting of the forwards and backwards unitaries,
since in principle the gadgets perfectly implement the trans-
pose of the unitary in the forward direction.

formed quantum process tomography on the imple-
mented unitaries from the sets M+ and M−, in both
propagation directions. We then compared the fidelity
F =

〈
(Ufw|Ψ⟩)†UT

bw|Ψ⟩
〉
|Ψ⟩ between the reconstructed

unitaries in the forward direction, Ufw and Vfw, with
the transposed reconstructed unitaries in the backwards
direction, UT

bw and VT
bw (see Methods). The results of

this are shown in Fig. 4. The average fidelity is greater
than 0.999, indicating that the gadgets correctly imple-
ment the transpose. Note that the fidelity of the trans-
pose is independent of any errors in the retardance of
the waveplates in the gadget itself. Such imperfections
would cause the fidelity in the implementation of a de-
sired unitary to drop, but would affect the forward and
backward directions symmetrically. The same is true
for undesired offsets in the waveplate angles, however
in the measurements shown in Fig. 4 the unitaries in the
two directions were measured in separate runs, causing
them to indeed be sensitive to waveplate angle errors,
in addition to errors in the tomography itself.

Having verified the ability to implement a given uni-

tary and its transpose with a single black box simulta-
neously, we then realised the game discussed in the pre-
vious sections. First, two-photon coincidence events for
the different elements of M+ and M− were collected
sequentially to reduce the time spent rotating the wave-
plates. Second, the game itself was played using the
collected data. In each round the referee uniformly ran-
domly selects a pair of channels, and the player outputs
an answer, ‘+’ or ‘−’, given by a unique two-photon
event from the corresponding measurement set. Fig. 5

shows the relative frequencies f rel
±,k = N±

k /Nk, where
N±

k is the number of times the player output the answer
‘±’ when the channels (Uk, Vk) were picked, and Nk is
the total number of times these channels were selected
by the referee. It can be seen that the player outputs the
correct answer with a relative frequency higher than the
indefinite tester bound of 0.92 for every setting, and by
extension any strategy that is separable in its time direc-
tion. More specifically, the average winning frequency
is found to be 0.9945, with the best and worst case fre-
quencies being 0.9993 and 0.9860, respectively.

The formulation of the indefinite-time-direction wit-
ness as a game with only two outcomes, win or lose,
allows for a straightforward statistical interpretation of
the results. Since we have an upper bound pi.c. ≤ 92

100
on the probability of success for an indefinite tester , we
can calculate the probability P of such a player having
obtained v or more victories in N rounds:

P =
N

∑
k=v

(
N
k

)
pk

i.c.(1 − pi.c.)
N−k. (12)

This probability is exactly the P-value for the experi-
mentally implemented process not being indefinite in
its time direction. Out of the N = 106 rounds played in
the experiment, v = 994, 512 were won by successfully
identifying the correct set, while 5, 488 rounds were lost.
Using a Chernoff bound tailored for the binomial distri-
bution, we can provide an upper bound on the P-value,
given by:

N

∑
k=v

(
N
k

)
pk

i.c.(1 − pi.c.)
N−k ≤ exp

(
−N D

( v
N
∣∣∣∣pi.c.

))
,

(13)
where exp is the exponential function and:

D
( v

N
∣∣∣∣p) :=

v
N

ln
(

v
Np

)
+
(

1 − v
N

)
ln
(

1 − v/N
1 − p

)
(14)

is the relative entropy. Direct calculation using pi.c. =
0.92 shows that D

( v
N ||pi.c.

)
≈ 0.0627, hence the P-value

is upper bounded by P ≤ e−104
, which is an extremely

small number. This rules out any explanation of the
data in terms of convex mixtures of quantum processes
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FIG. 5. Observed relative outcome frequencies. The figure shows the observed relative frequency of answers f rel
± in the

quantum flip game for all the pairs of unitaries in the sets M+ and M−. For the gates in the set M+ (M−) the game is won
when the player outputs the answer ‘+’ (‘−’). The observed average winning frequency is 0.9945. Since the bars corresponds to
the actual number of times the different outcomes were recorded there is no associated uncertainty (see Methods).

that access the gates in a definite time direction. Since
this is the defining characteristic for the class of pro-
cesses with an indefinite time direction, we therefore
conclude that the implemented process belongs to this
class.

DISCUSSION

In this work we have demonstrated, for the first time,
a process that is inseparable in its time direction. Using
an optical interferometer, we implemented a coherent
superposition of arbitrary unitary transformations and
their time-reversal. Such a process can only be proba-
bilistically simulated by a quantum circuit with a def-
inite time direction. Even agents equipped with two
copies of the gates and able to combine them in an in-
definite order cannot realise the process deterministi-
cally, unless they are given the ability of pre- and post-
selecting quantum systems [2, 36–41]. It is worth noting
that our implementation of controlled unitary transpo-
sition is not in contradiction with the no-go theorem,
stating that there is no quantum circuit that can trans-
form an unknown quantum unitary gate to its trans-
pose [10, 15, 42]. Our implementation adopts a device
that implements a single-qubit gate U, and while this
gate can remain unknown, the physical device itself is
neither arbitrary nor unknown. Indeed, it is the partic-
ular symmetries of the physical device that necessarily
and deterministically generate the transposed gate UT .
While time itself does not flow backwards in any part
of the experimental apparatus, our demonstration high-
lights the limitations of the quantum circuit model for
describing the full range of quantum information pro-

cessing protocols. This is analogous to the impossibility
of perfect unitary coherent control within the quantum
circuit model [10, 25, 28, 43]. Through a channel dis-
crimination game, in which we outperform any strat-
egy with a definite time direction, we furthermore cer-
tify that the coherent superposition of time directions
yields a process that is inseparable in its time direction.

The study of indefinite causality led to the discovery
and realisation of quantum information protocols with
practical advantages [44, 45], as well as a lively debate
about the interpretation of these realisations [46–49].
We envision that future studies of processes with an
indefinite time direction will similarly expand both the
theoretical and experimental toolkit and open up new
avenues for quantum information processing. In this
context we note that universal transposition of single-
qubit gates is a sufficient building block for the trans-
position of multi-qubit gates, for instance using a Reck
decomposition [50], or through the inclusion of a re-
ciprocal symmetric two-qubit gate [51]. Finally, the in-
vestigation of time reversed quantum processes also
holds applications in quantum thermodynamics. In-
deed, in [10], it was shown that the processes for which
the quantum time flip produces another valid process
are exactly those which do not increase the entropy in
either time direction, and the application of superposi-
tions of two time directions in the context of thermody-
namic work was recently studied in [9, 52].
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METHODS

Arbitrary unitary transposition

The description of linear retarders depends on the convention used for the polarization states, i.e. which Pauli
matrices are associated with which Stokes parameters. The most commonly used convention in quantum optics is:

(S1, S2, S3) ↔ (Z, X, Y), (15)

corresponding to the {H, V}, {+,−} and {L, R} polarizations being the eigenstates of Z, X and Y respectively.
Under this convention, a linear retarder, such as a waveplate, at an angle θ to the vertical axis, is described by the
following matrix:

U(θ) = e−
i
2 θYe−

i
2 rZe

i
2 θY

=

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

] [
ei r

2 0
0 e−i r

2

] [
cos(θ) sin(θ)
− sin(θ) cos(θ)

] (16)

where r is the retardance of the element. Note that the matrix U(θ) is symmetric since:

U(θ)T = (e
i
2 θY)T(e−

i
2 rZ)T(e−

i
2 θY)T

= e−
i
2 θYe−

i
2 rZe

i
2 θY.

(17)

Propagating through such an element backwards has the effect of taking θ → −θ. This transformation can be
written as:

ZU(θ)Z = U(−θ) (18)

since

Ze−
i
2 θYZ = e

i
2 θY. (19)

For a general polarization gadget consisting of several linear retarders described by the unitary UG,fw in the for-
wards direction we find the unitary for the backwards propagation direction, UG,bw, by transposing the order of
the individual linear retarders and changing the sign of their respective angles:

UG,fw = U1(θ1) . . . Un(θn) → UG,bw = Un(−θn) . . . U1(−θ1) (20)

which can be written:

UG,fw → ZUT
G,fwZ (21)

since:

Z(U1(θ1) . . . Un(θn))
TZ = ZUn(θn) . . . U1(θ1)Z

= ZUn(θn)Z . . . ZU1(θ1)Z

= Un(−θn) . . . U1(−θ1).

(22)

The transformation in Eq. (21) is not useful for realising the transpose, since the Z gates around the unitary UT
G,fw

have to be undone to recover the transpose.
However, this problem can be overcome by picking a different convention for the polarization basis states, such

as (S1, S2, S3) ↔ (X, Y, Z) which is a cyclic permutation of the aforementioned one (corresponding to a rotation of
the basis vectors by π/3 around the vector

[
1 1 1

]
), and which is commonly used in polarimetry. In this work, we

chose the convention:

(S1, S2, S3) ↔ (−Z,−Y,−X). (23)
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The minus signs are necessary to preserve the handedness of the coordinate system when exchanging X and Y.
That this convention yields the desired transformation under counterpropagation can be realised by noting that the
Stokes parameters of a unitary always transform as (S1, S2, S3) → (S1,−S2, S3), however for completeness we will
perform the calculation explicitly. In the convention of Eq. (23) a linear retarder at an angle θ is written as:

U(θ) = e
i
2 θXe

i
2 rZe−

i
2 θX (24)

and the corresponding unitary in the backwards direction is

U(−θ) = e−
i
2 θXe

i
2 rZe

i
2 θX

= (e
i
2 θXe

i
2 rZe−

i
2 θX)T

= U(θ)T .

(25)

It then follows that a general waveplate gadget also transforms as the transpose:

UG,fw = U1(θ1) . . . Un(θn) → UG,bw = Un(−θn) . . . U1(−θ1)

= (U1(θ1) . . . Un(θn))
T

= UT
G,fw.

(26)

One could alternatively get around the problem with Eq. (21) by introducing two more polarization gadgets
implementing Z operators on either side of the gadget in Eq. (21), and making sure that these additional gadgets
only act on one propagation direction. For example, by physically displacing the beam paths of the two propagation
directions, so that the gadgets act on different spatial modes in the different propagation directions. This would,
however, change the interpretation of the experiment with respect to the implementation in the main text, since
the transformations in the two propagation directions would no longer be related by a physical symmetry. Instead
they would depend on the transformations realised by the additional gadgets.

Sets of unitary operators used in the game

In this section, we explicitly list the two sets of unitary operators used in the discrimination task considered in
this work. These sets of operators were first presented at Ref. [10].

M+ :=

{
(I, I), (I, X), (I, Z), (X, I), (X, X), (X, Z), (Z, I), (Z, X), (Z, Z),

(
X − Y√

2
,

X + Y√
2

)
,
(

X + Y√
2

,
X − Y√

2

)
,
(

Z − Y√
2

,
Z + Y√

2

)
,
(

Z + Y√
2

,
Z − Y√

2

)}

M− :=

{
(Y, I), (Y, X), (Y, Z), (I, Y), (X, Y), (Z, Y),

(
I + iY√

2
,

I − iY√
2

)
,
(

I − iY√
2

,
I + iY√

2

)}
.

(27)

Obtaining upper bounds for different classes of strategies

We now detail how to obtain an upper bound on the winning probability of the game described in the main
manuscript. Let N be the total number of pairs of unitary operators contained in the set M+ and M−. Following
a uniform distribution, i.e., with probably 1/N, the referee picks a pair of unitary operators (Ui, Vi). The player
should then employ a quantum strategy to guess whether (Ui, Vi) belongs to M+ or M−. Let p(±|(Ui, Vi)) the
probability that the player guesses (Ui, Vi) ∈ M±. The probability of such player to win the game is then given by

p =
1
N

(
∑

(Ui ,Vi)∈M+

p
(
+ |(Ui, Vi)

)
+ ∑

(Ui ,Vi)∈M−

p
(
− |(Ui, Vi)

))
. (28)



13

For the qubit scenario considered here, we can analyse the case where unitary gates act backwards by simply
considering the case where all involved unitary operators are transposed. This is true because, as discussed earlier,
there are only two anti-homomorphisms from SU (d) to SU (d), and for any U ∈ SU (2), we have that U−1 =
σYUTσY. More explicitly, the winning probability for players using the unitary gates backwards is given by

p =
1
N

(
∑

(Ui ,Vi)∈M+

p
(
+ |(UT

i , VT
i )
)
+ ∑

(UT
i ,VT

i )∈M−

p
(
− |(UT

i , VT
i )
))

. (29)

Also, as we show more explicitly later, since the success probability is linear function of the strategies, convex
combinations of forward and backwards strategies cannot increase the maximal success probability. Hence it is
enough to analyse the forward and backwards case.

When the player is restricted to parallel strategies, the most general approach consists of preparing a quantum
state ρ, sending part of this state to the operators Ui and Vi, and then performing a quantum measurement with
outcomes labelled as + or −, that is,

ppar
(
± |(Ui, Vi)

)
= tr

[
M±

(
Ui ⊗ Vi ⊗ 1)ρ(U†

i ⊗ V†
i ⊗ 1)

)]
, (30)

where M+, M− ≥ 0 are the POVM operators associated to the outcomes + and −, see Fig. 2 for a pictorial
illustration.

Parallel strategies may be analysed in the (parallel) tester formalism [29, 53], also known as process POVM [54].
Let us label the linear spaces corresponding to the input and output spaces as HI and HO respectively. We can
then write Ui ⊗ Vi : HI → HO with HI ∼= HO ∼= C2 ⊗ C2. In the tester formalism, operations are viewed as states
and Eq. (30) may be written as the generalized Born’s rule. More formally, we have that:

ppar
(
± |(Ui, Vi)

)
= tr

[
T± |Ui ⊗ Vi⟩⟩⟨⟨Ui ⊗ Vi|], (31)

where1 T+, T− ∈ L(HI ⊗HO) are tester elements and |Ui ⊗ Vi⟩⟩ ∈(HI ⊗HO) is the Choi vector of Ui ⊗ Vi defined
as:

|Ui ⊗ Vi⟩⟩ := ∑
l
|l⟩ ⊗

(
Ui ⊗ Vi |l⟩

)
, (32)

where {|l⟩} is the computational basis for HI . The operators T+ and T− are parallel testers when T+, T− ≥ 0 and
their sum respects:

T+ + T− = σI ⊗ 1O, (33)

where σ ∈ L(HI) is a quantum state. As shown in Refs. [29, 53, 54], all parallel strategies as in Eq. (30) can be
represented by testers such as those in Eq. (31), and vice versa. Hence, when optimizing over all possible strategies,
instead of considering all possible states ρ and measurements M± as in Eq. (30), we may optimize over all valid
testers T± as in Eq. (31).

One advantage of using the tester formalism, is that the maximal probability of winning the discrimination game
can be written in terms of a semidefinite program (SDP) via the following optimisation problem:

max
1
N

[
∑

(Ui ,Vi)∈M+

tr
(

T+ |Ui ⊗ Vi⟩⟩⟨⟨Ui ⊗ Vi|
)
+ ∑

(Ui ,Vi)∈M−

tr
(

T− |Ui ⊗ Vi⟩⟩⟨⟨Ui ⊗ Vi|
)]

(34)

s.t.: T+, T− ≥ 0 (35)

T+ + T− = σI ⊗ 1O (36)

tr(σ) = 1. (37)

1 Here L(HI ⊗HO) denotes the set of linear operators from HI ⊗HO (linear endomorphisms).
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Following the steps of Ref. [29], the dual problem is given by:

min tr(C)/dI (38)

s.t.:
1
N ∑

(Ui ,Vi)∈M+

|Ui ⊗ Vi⟩⟩⟨⟨Ui ⊗ Vi| ≤ C (39)

1
N ∑

(Ui ,Vi)∈M−

|Ui ⊗ Vi⟩⟩⟨⟨Ui ⊗ Vi| ≤ C (40)

trO(C) = trIO(C)
1I
dI

, (41)

where dI is the dimension of HI (for our particular problem, dI = 4). By the definition of dual problem, if we
find a linear operator C satisfying the feasibility constraints of inequality (39), inequality (40), and Eq. (41), the
quantity tr(C)/dI is an upper bound on the maximal success probability. In order to obtain a computer-assisted-
proof upper bound with fraction of integers, we use standard and efficient floating-point arithmetic algorithms to
solve the SDP, obtain an operator C which satisfies the constraints of the dual problem and truncate it in such a
way that the feasibility constraints are still satisfied. We refer to our online repository (see Code Availability) for
an implementation of this procedure and to Ref. [29] for a detailed explanation on how to perform the truncation
step.

When the player is restricted to causal strategies (also referred to as sequential strategies), the most general
approach consists of preparing a quantum state ρ, sending part of this state to the operators Ui (or to Vi), applying
a quantum channel E , then performing the operation Vi (or Ui), and finally performing a quantum measurement
with outcomes labelled as + or −, that is:

pseq(±|(Ui, Vi)) = tr
[

M± (Vi ⊗ 1)E
(

Ui ⊗ 1 ρ U†
i ⊗ 1

)
(V†

i ⊗ 1)
]
.

Using the concept of sequential testers [29, 53], we can also write the problem of finding the optimal causal strategy
as an SDP. Since there is a notion of causal order, we label the input and output space of the first operation as HI1

and HO1 respectively. Analogously, we use HI2 and HO2 for the second operations. If the player uses the operation
Ui first and Vi second, we have that Ui : HI1 → HO1 and Vi : HI2 → HO2 . Following Ref. [29], the primal and dual
problem for causal strategies are respectively given by

max
1
N

[
∑

(Ui ,Vi)∈M+

tr
(

T+ |Ui ⊗ Vi⟩⟩⟨⟨Ui ⊗ Vi|
)
+ ∑

(Ui ,Vi)∈M−

tr
(

T− |Ui ⊗ Vi⟩⟩⟨⟨Ui ⊗ Vi|
)]

(42)

s.t.: T+, T− ≥ 0 (43)

T+ + T− = WI1O1 I2 ⊗ 1O2 (44)

trI2(WI1O1 I2) = σI1 ⊗ 1O1 (45)

tr(σ) = 1. (46)

and

min tr(C)/dI (47)

s.t.:
1
N ∑

(Ui ,Vi)∈M+

|Ui ⊗ Vi⟩⟩⟨⟨Ui ⊗ Vi| ≤ C (48)

1
N ∑

(Ui ,Vi)∈M−

|Ui ⊗ Vi⟩⟩⟨⟨Ui ⊗ Vi| ≤ C (49)

trO2(C) = trI2O2(C)⊗
1I2

dI2

(50)

trO1 I2O2(C) = trI1O1 I2O2(C)
1I1

dI1

. (51)
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Another sequential strategy would be to use Vi before Ui. For this case, the semidefinite program is then exactly
the same as the one before, but we exchange the roles of Vi and Ui. Our methods show that, when Ui precedes
Vi, the success probability is bounded by 90

100 ≤ pUV ≤ 91
100 , and when Vi precedes Ui, the success probability is

bounded by 90
100 ≤ pVU ≤ 91

100 . Since the two bounds coincide, we have 90
100 ≤ pcausal ≤ 91

100 .
When the player is restricted to general quantum strategies without a definite causal order, the strategies are

described by means of an indefinite tester [30], which are positive semidefinite operators that add up to a process
matrix [3], that is T+ + T− = W, where W is a bipartite process matrix. Following Ref. [29], and defining the
trace-and-replace maps as iX := tri(X)⊗ 1i, the primal and the dual problem are respectively given by

max
1
N

[
∑

(Ui ,Vi)∈M+

tr
(

T+ |Ui ⊗ Vi⟩⟩⟨⟨Ui ⊗ Vi|
)

(52)

+ ∑
(Ui ,Vi)∈M−

tr
(

T− |Ui ⊗ Vi⟩⟩⟨⟨Ui ⊗ Vi|
)]

s.t.: T+, T− ≥ 0 (53)

T+ + T− = W (54)

I2O2W =O1 I2O2 W (55)

I1O1W =O2 I1O1 W (56)

W =O1 W +O2 W −O1O2 W (57)

tr(W) = tr(1O1O2). (58)

and

min tr(C)/dI (59)

s.t.:
1
N ∑

(Ui ,Vi)∈M+

|Ui ⊗ Vi⟩⟩⟨⟨Ui ⊗ Vi| ≤ C (60)

1
N ∑

(Ui ,Vi)∈M−

|Ui ⊗ Vi⟩⟩⟨⟨Ui ⊗ Vi| ≤ C (61)

O1 C =I1O1 C (62)

O2 C =I2O2 C. (63)

Data analysis

As described in the main text, the game was played by having the referee pick pairs of unitaries from the sets
M± in a uniformly random way in every round. The player’s outcome was determined by the first unused photon
detection event in the event list corresponding to that choice of unitary by the referee. More concretely, let Oj,k

± be

the k-th element in the time ordered list of detection events O j
± for the implemented pair of unitaries Mj

±. Then

the outcome of the n-th round of the game, in which the referee picked the pair of unitaries Mj
± for the k-th time,

is Oj,k
± .

During the course of this game the player outputs the answer ‘+’ (‘−’) a total of N+
j (N−

j ) times in the Nj rounds
that the referee selects the pair of channels (Uj, Vj). The relative frequencies with which the player outputs these
answers can be written as:

f rel
+,j =

N+
j

N j , f rel
−,j =

N−
j

N j . (64)

These observed relative frequencies are shown in Fig. 5 in the main text. The values of these observed relative
frequencies do not by themselves have an associated uncertainty, and are purely observed quantities. In many single
photon experiments, quantities such as these are interpreted as empirical estimates of underlying probabilities, and
such estimates do carry uncertainties. Even in perfect experimental realisations, finite counting statistics would
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introduce Poissonian noise in this type of estimation. However, the statistical method we use to determine the
confidence in our conclusion - the calculation of the P-value - allows us to make statements about the underlying
probability distribution without directly estimating it. Specifically, that its expectation value exceeds the bound
imposed on the winning probability of any strategy with a definite time direction.

In order to filter out background events resulting from various back-reflections in the experimental setup, as well
as detector dark counts, two-fold coincidence events between the signal and idler photons were used to time filter
the detection events.

The superconducting nanowire detectors used in the experiment have a slight polarization dependence in their
detection efficiency, and due to the different pairs of unitaries generating different target qubit states the event rates
for different implemented unitaries varied. This difference in efficiency was not necessary to account for, because
the number of events for each pair of unitaries was truncated, in reverse chronological order, to match the setting
with the fewest events. To find the numbers of rounds won and lost, the data was sampled from once, drawing
106 different samples from unique, chronologically ordered (for each setting) detection events. The exact number
of won and lost rounds in this sampling were 994, 512 won and 5, 488 lost.

A detection efficiency imbalance is also present in the two output ports of the interferometer, corresponding
to the two different measurement outcomes of the control qubit. This efficiency difference could quite easily be
characterised and corrected for, however such actions are equivalent to classical post-processing and is captured by
the indefinite tester. Imbalanced detection efficiency could therefore not lead to a violation of the bound, and is not
necessary to correct for since the data already violates the bound. This is a different way of stating the semi-device
independence of our methods.

The measurement of the fidelity between the unitary implemented in one direction and the transpose of the
unitary in the other direction was performed with coherent light. To estimate the fidelity, the two unitaries were
first fitted to the data using a maximum likelihood estimation and then the fidelity was calculated by evaluating
the following average:

F =
〈
(Ufw|Ψ⟩)†UT

bw|Ψ⟩
〉
|Ψ⟩, (65)

taken over 1000 Haar-random states |Ψ⟩. This was done in every step of a Monte-Carlo simulation to estimate the
measurement uncertainties induced by the waveplate errors.

Semi-device independence of demonstration

In this section we will elaborate on what is meant by our certification methods being semi-device independent.
Our usage of this term is consistent with the notion of semi-device independence introduced in [32]. That our
demonstration is semi-device independent means that the measurement that the player performs does not have
to be characterised. Equivalently, the player does not have to trust that their measurement device implements a
specific measurement. It is a statement about the required assumptions on the measurement.

The basis for the claim that our demonstration is semi-device independent lies in the fact that the derivation
of the bounds for the strategies depicted in Fig. 2.a-c in the main text included an optimization over all possible
binary measurements the player could perform. This means that there is no measurement that a player using these
strategies could perform that would allow them to violate the bounds we derived. Hence, a violation of these
bounds has the same interpretation regardless of what measurements the player performed.

It is worth noting that semi-device independence does not imply that the ability of the player to violate the
bounds is independent of the measurement they perform. Indeed, measurement imperfections can reduce the
winning rate of the player. This can cause them to fail to certify that they employ a certain strategy, even if they do
in fact employ that strategy.

A concrete consequence of the semi-device independence is that imperfections in the measurement do not need
to be accounted for, and the measurement itself does not need to be modelled in the data analysis. This is in
contrast to device-dependent methods, which rely on well characterised measurements to draw conclusions about
the observed results. A device-dependent verification method that frequently appears in experimental quantum
information science is the witness operator, for example entanglement witnesses or causal witnesses. Such witness
operators can also be constructed for the task described in the main text. A witness operator Ŝ can be used to
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certify a certain statement about a quantum system or process by experimentally evaluating its expectation value,
and confirming that it satisfies some bound:

⟨Ŝ⟩ < B. (66)

Empirically evaluating ⟨Ŝ⟩ requires the witness operator to be decomposed in terms of experimentally measurable
observables, and the expectation values of these observables to be estimated. Imperfections in the measurement
devices induce uncertainties in these estimates, which in turn propagate as uncertainties into the expectation
value of the witness operator. A statistically significant violation of the inequality (66) therefore requires well
characterised measurement devices.
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The quantum switch is an example of a process with an indefinite causal structure, and has attracted
attention for its ability to outperform causally ordered computations within the quantum circuit model. To
date, realizations of the quantum switch have made a trade-off between relying on optical interferometers
susceptible to minute path length fluctuations and limitations on the range and fidelity of the implementable
channels, thereby complicating their design, limiting their performance, and posing an obstacle to
extending the quantum switch to multiple parties. In this Letter, we overcome these limitations by
demonstrating an intrinsically stable quantum switch utilizing a common-path geometry facilitated by a
novel reciprocal and universal SU(2) polarization gadget. We certify our design by successfully performing
a channel discrimination task with near unity success probability.

DOI: 10.1103/PhysRevLett.131.060803

Introduction.—Quantum information processing tasks
are most commonly described within the framework of
the quantum circuit model. In this framework an initial state
gradually evolves by passing through a fixed sequence of
gates. This, however, is not the most general model of
computation that quantum mechanics admits, and in [1] a
processes that effects a superposition of quantum circuits
was proposed. This process, known as the quantum switch,
has attracted significant theoretical [2–5] and experimental
[6–13] interest. Together with the so-called Oreshkov-
Costa-Brukner process [14] it was the first example of a
quantum process without a definite causal structure, and
motivated the study of more general causal structures
within quantum mechanics that could help bridge the
gap between general relativity and quantum mechanics.
The quantum switch is also of practical interest, since it has
been shown to allow for a computational advantage over
standard quantum circuits [15,16], an advantage which has
been demonstrated experimentally [17].
In its simplest form, the quantum switch is a map that

acts on two gates, U and V, and transforms them into a

controlled superposition of the gates being applied in two
different orders:

ðU;VÞ ↦ UV ⊗ j0ih0jC þ VU ⊗ j1ih1jC: ð1Þ

To date, all experimental realizations of the quantum switch
have been done using single photons as the physical system
encoding the input and output state of the process. These
implementations typically rely on folded Mach-Zehnder
interferometers (MZIs) and polarization optics to couple
different internal degrees of freedomof the single photons.A
technical challenge associated with such implementations is
that the phase of the interferometer needs to be kept constant
even as different choices of U and V in (1) change the
interference condition. In practice, most experimental quan-
tum switches have relied on passive phase stability during
operation, limiting not only their fidelity, but also their duty
cycle due to the need to periodically reset the phase.
Furthermore, the geometry of the MZI means that single
photons in the two different arms of the interferometer
interact with different parts of the polarization optics [see
Fig. 1(a)]. The reliance on optical geometries that suffer
from phase instability is necessitated by the nonreciprocity
of the optical components that effect the unitary trans-
formations U and V on the photon polarization. The works
[8,10] remedied this by using the polarization as a control
degree of freedom (d.o.f.), instead of a target, thereby
enabling a common-path geometry; however, this came at
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the expense of more cumbersome and low fidelity target
qubit operations.
In [17] a common-path geometry was realized in a

different way, by encoding the target system in the temporal
degree of freedom. This implementation, however, was
limited to generalized versions of the Pauli X and Z
operators, and could therefore not prepare superposition
states. These operations furthermore required both ultrafast
phase modulators and the manual replacement of optical
components, increasing the experimental requirements
while reducing the programmability of the setup.
In this Letter, we overcome these limitations by design-

ing a fully reciprocal polarization gadget capable of
realizing any U ∈ SUð2Þ, thereby enabling the use of a
passively stable Sagnac geometry with perfect spatial mode
overlap, while still using the polarization d.o.f. for the
target qubit, without imposing any restrictions on the
unitaries applied on this system inside the quantum switch.
Photonic quantum switch.—In the commonly used path-

polarization quantum switch, shown in Fig. 1(a), the path
d.o.f. is used to coherently superpose two different orders
through the wave plate gadgets that act on the target
(polarization) qubit. These wave plate gadgets, first intro-
duced by Simon andMukunda, consist of two quarter-wave
plates and one half-wave plate, and are universal for SU(2)
[18]. If one tries to use a common path geometry, as
depicted in Fig. 1(b), the photon now travels through the
polarization gadgets in two different directions. The action
of a Simon-Mukunda gadget in the backwards direction is
Ubw ¼ PUTP† ≠ U, where U is the unitary operation in
the forwards direction, and P is a unitary operator describ-
ing the basis change to the backwards propagation

direction. By picking a convention for the polarization
states in which the diagonal polarizations are associated
with the eigenstates of the Pauli Y matrix one finds that
P ¼ 1 [19], however, the residual transpose, a consequence
of the fact that the order of the wave plates is transposed in
the backwards direction, cannot be undone this way. The
Simon-Mukunda gadget is therefore only reciprocal for a
two parameter subset of SU(2), and common-path quantum
switches such as [20], were thus far not able to implement
arbitrary polarization unitaries.
In this Letter, we adopt the convention ðS1; S2; S3Þ ↔

ðX; Y; ZÞ for the Stokes parameters and Pauli matrices.
Written in this convention, the Simon-Mukunda gadget
transforms asU ↦ Ubw ¼ ZUTZ under counterpropagation.
Given a unitary parametrized as U ¼ exp½−iðθ=2Þσ⃗ · n⃗�,
where σ⃗ is the Pauli vector and n⃗ the rotation axis of the
unitary operation on the Bloch sphere, this transformation
corresponds to ½θ ;nx; ny; nz�↦ ½θ; −nx; ny; nz�. Since this
transformation applies to any unitary operation implemented
by a sequence of linear retarders under counterpropagation,
we also consider circular retarders, more specifically Faraday
rotators. It is a well known fact that Faraday rotators are
nonreciprocal, due to the magneto-optic effect breaking
Lorentz reciprocity [21]. This property has enabled a multi-
tude of widely adopted optical devices such as Faraday
mirrors [22], optical circulators, and optical isolators [23].
Quantitatively, the nonreciprocity manifests itself as
the following transformation under counterpropagation
½θ ; ny� ↦ ½−θ ; ny�.
Faraday rotators are usually sold with a fixed circular

retardance of θ ¼ ðπ=2Þ, corresponding to a rotation of
linear polarization by 45°. We will therefore restrict our
discussion to only these devices, and show how they can be
used to construct a fully reciprocal polarization device.
A reciprocal polarization gadget.—Since only the X

component of the Simon-Mukunda gadget exhibits non-
reciprocity, we begin by constructing a gadget capable of
realizing a reciprocal X rotation:

GxðθÞ ¼ H

�
π

8

�
F−Q

�
π

2

�
H

�
θ þ 2π

4

�
Q

�
π

2

�
FþH

�
π

8

�
:

ð2Þ
Here H and Q refer to half- and quarter-wave plates at a
given angle from the vertical axis, and F� are Faraday
rotators with circular retardance of �ðπ=2Þ. The three
middle wave plates constitute a Simon-Mukunda gadget
implementing a nonreciprocal X rotation:

Rxðθ þ 2πÞ ¼ −RxðθÞ ↦ −Rxð−θÞ: ð3Þ
The action of theGx gadget in the two different propagation
directions can therefore be expressed as

Gfw
x ðθÞ ¼ −H

�
π

8

�
F−RxðθÞFþH

�
π

8

�
ð4Þ

FIG. 1. Path-polarization quantum switch. (a) The most
common implementation of the photonic quantum switch utilizes
the path degree of freedom of a single photon inside a Mach-
Zehnder interferometer to coherently control the order in which
two polarization operations U and V are applied. In this
geometry, photons in different arms of the interferometer propa-
gate through different parts of the polarization optics. (b) An
implementation based on a Sagnac interferometer is fundamen-
tally simpler and more robust, but necessitates two different
propagation directions through the polarization gadgets effecting
the transformations U and V. In general, the operations in the two
different propagation directions are not the same, limiting the use
of this geometry to special cases.
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Gbw
x ðθÞ ¼ −H

�
−
π

8

�
F−Rxð−θÞFþH

�
−
π

8

�
; ð5Þ

since for a single linear retarder at an angle φ to the vertical
axis the effect of reversing the propagation direction is
φ ↦ −φ. The superscripts fw and bw refer to the forwards
and backwards propagation directions, respectively. To see
that the full gadget is reciprocal, note that

H

�
π

8

�
F− ¼ FþH

�
π

8

�
¼ −iX; ð6Þ

H

�
−
π

8

�
F− ¼ FþH

�
−
π

8

�
¼ −iZ; ð7Þ

as shown in the Supplemental Material [24]. The action of
the gadget in the two propagation directions can therefore
be simplified to

Gfw
x ðθÞ ¼ XRxðθÞX ¼ RxðθÞ; ð8Þ

Gbw
x ðθÞ ¼ ZRxð−θÞZ ¼ RxðθÞ: ð9Þ

A graphical examination of the reciprocity of the gadget is
shown in Fig. 2. Using this gadget as a building block, it
becomes possible to construct a fully reciprocal gadget
capable of implementing arbitrary unitaries:

GR ¼ QðθÞHðϕÞGxðγÞHð−ϕÞQð−θÞ: ð10Þ

This gadget is reciprocal due to its palindromic order, and a
proof of its universality, as well as a method to find the
angles θ, ϕ, and γ for a given U, is provided in the
Supplemental Material [24]. An implementation of this
algorithm is available in an open repository [25].
Advantage in a channel discrimination task.—To certify

that our experimental platform is capable of realizing an
indefinite causal order, we now present a channel dis-
crimination task for which the quantum switch strictly
outperforms any causally ordered strategy. This channel
discrimination problem was originally presented as a causal

witness in Ref. [15] and was inspired by the task introduced
in Ref. [3]. Let Ui, Vj be two qubit unitary operators
belonging to the set

G ≔
�
1; X; Y; Z;

X � Yffiffiffi
2

p ;
X � Zffiffiffi

2
p ;

Y � Zffiffiffi
2

p
�
: ð11Þ

Using this set, we define two sets of pairs of operators
ðUi; VjÞ that either commute or anticommute:

G� ≔ fðUi; VjÞjUi; Vj ∈ G; UiVj ¼ �VjUig: ð12Þ

Let ðUi; VjÞ be a pair of channels belonging to either Gþ or
G−, and consider the task of deciding to which set they
belong, given only a single use of the channels. It is well
known that this task can be performed deterministically
when given access to the quantum switch. This can be seen
by setting the state of the control qubit in (1) to jþiC and
considering the action on any target state jΨiT :

ðUV ⊗ j0ih0j þVU⊗ j1ih1jÞjΨiT ⊗ jþiC
¼ 1

2
ðUVþVUÞjΨiT ⊗ jþiCþ

1

2
ðUV −VUÞjΨiT ⊗ j−iC:

ð13Þ

A measurement of the control qubit then reveals to which
set ðUi; VjÞ belongs.
For this discrimination task, the probability of success-

fully guessing the set can be expressed as

psði; jÞ ≔ p½�jðUi; VjÞ�; if ðUi; VjÞ ∈ G�: ð14Þ

By making use of the semidefinite programming
methods presented in Ref. [26], we find that any causally
ordered strategy necessarily obeys min½psði; jÞ� ≤ 0.841.
Moreover, if the pairs of channels ðUi; UjÞ are uniformly
picked from Gþ and G−, the average probability of correctly
guessing the set with a causally ordered strategy is bounded
by ð1=NÞPi;j psði; jÞ ≤ 0.904 where the indices i, j run
over all the pairs of gates that commute or anticommute. As
discussed in Ref. [15], this average success probability

FIG. 2. Reciprocal polarization gadget. The evolution of a diagonally polarized state in the two different propagation directions
through a reciprocal Rx gadget. The arrows indicating the polarization states are drawn in the comoving frame. Note that only differential
phases between the two polarization components are indicated. (a) The Faraday rotators F� rotate linear polarization by 45°, and in the
forwards direction these rotations cancel the half-wave plate (HWP) rotations, indicated by λ=2. The state before the central wave plate
gadget is therefore jþi, and the correct phase gets applied. (b) In the backwards propagation direction the rotations of the HWP and
Faraday rotators add, rotating the linear polarization by 90°. The Rxð−θÞ rotation applies the desired phase to what is now the j−i state,
which subsequently gets rotated back to jþi, yielding the correct transformation.
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approach can be phrased in terms of a causal nonsepar-
ability witness, and in the Supplemental Material [24] we
explicitly present such a witness.
Experiment.—Before experimentally performing the

channel discrimination task, we first show that the gadget
in (10) is indeed reciprocal and universal. To this end we
perform quantum process tomography on both gadgets used
in the experiment for 100 random unitaries. The resulting
gate fidelities, defined as the average state fidelity under the
reconstructed unitaries, are presented in the Supplemental
Material [24]. Achieving an average gate fidelity of
0.9970� 0.0018, and an average fidelity between the two
propagation directions of 0.9972� 0.0018, we conclude
that the gadget is reciprocal and universal.
We now turn to the experimental realization of the

quantum switch, pictured in Fig. 3. For the certification
of the indefinite causal structure of the implemented process,
we employ single photons generated using type-II sponta-
neous parametric down-conversion [27]. The signal photon
is used as a herald for the idler photon, which is made to
propagate through the quantum switch. Initially, a beam
splitter in the form of a tunable directional coupler (TDC)
applies a Hadamard operation on the path (control) d.o.f.,
thereby preparing the state: jΨiT ⊗ ðj0iC þ j1iCÞ=

ffiffiffi
2

p
,

where the subscripts C and T refer to the control and target
degrees of freedom, respectively. The photon then passes
through the polarization gadgets in a superposition of
the two propagation directions, correlating the applied
gate order with the control d.o.f.: ð1= ffiffiffi

2
p ÞUVjΨiT ⊗ j0iCþ

ð1= ffiffiffi
2

p ÞVUjΨiT ⊗ j1iC. Finally, the photon propagates
back to the TDC which once again applies a Hadamard
gate on the control qubit:

1

2
fU;VgjΨiT ⊗ j0iC þ 1

2
½U;V�jΨiT ⊗ j1iC: ð15Þ

Measuring the photon’s location then reveals, with
unity probability, whether the gates ðU;VÞ commute or
anticommute.

Our implementation makes use of a combination of free-
space and fiber optics, which is facilitated by the intrinsic
phase stability of the common-path geometry. The use of a
fiber TDC allows for precise control over the splitting ratio
as well as providing perfect spatial mode overlap. These
two factors combine to yield a high interferometric vis-
ibility in excess of 0.9995. The two inner ports of the TDC
are connected to fiber collimators that launch the photons
into free space where they propagate through the two
polarization gadgets in opposite directions.
A fiber circulator is placed at the input port of the TDC to

separate the backwards propagating photons from the
input light. Finally, two measurement stations are used
to measure the polarization of the photons in either output
arm of the Sagnac. The polarization resolving measure-
ments allow for the polarization dependent detection
efficiencies in the superconducting nanowire single-photon
detectors used in the experiment to be corrected for. The
fiber circulator induces a small amount of differential loss
in the two interferometer outputs which is also corrected for
(see Supplemental Material [24]).
Results.—Each of the 52 pairs of (anti)commuting

unitary operators in the sets (12) were implemented six
independent times, and for each pair of operations single-
photon events were recorded for 60 sec, giving a total
measurement time of approximately 5 h, with the only
downtime being the time spent rotating the wave plates.
The success probabilities were then calculated separately
for each run. The results of this are shown in Fig. 4. We find
a minimum success probability of min½psði; jÞ� ¼ 0.9895,
and an average success probability of hpsi ¼ 0.99639�
0.00007, far exceeding the causally separable bounds of
0.841 and 0.904, respectively. Our observed average
success probability can be directly compared with a non-
common-path implementation of an analogous channel
discrimination task presented in [6], where a success
probability of 0.973 was achieved. The observed success
probabilities psði; jÞ for the individual pairs of gates
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FIG. 3. Experimental setup. Single photons are generated by a type-II spontaneous parametric down-conversion source using a ppKTP
crystal. Detection of the signal photon using superconducting nanowire single-photon detectors (SNSPDs) heralds the presence of the
idler photon. A tunable directional coupler (TDC) configured for a balanced splitting ratio sends the idler photon through a free-space
path in a superposition of two propagation directions. This path contains two reciprocal polarization gadgets consisting of Faraday
rotators, quarter-wave plates (QWPs) and half-wave plates (HWPs). These gadgets implement the operatorsU and V. The photon finally
exits in one of the two TDC ports depending on whether U and V commute or anticommute, and is then detected using a polarization
resolving measurement. A fiber circulator is used to pick off photons exiting the Sagnac in the input port.
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ðUi; VjÞ additionally display a remarkably low variance,
with a recorded standard deviation of σ2 ¼ 0.0024, dem-
onstrating the robustness of our design. The uncertainty in
the experimentally evaluated success probability is the
error-propagated observed standard deviation for the con-
stituent success probabilities psði; jÞ in the six runs.
Discussion.—We have demonstrated for the first time a

path-polarization quantum switch that utilizes a passively
stable common-path geometry. Our novel design greatly
simplifies the construction and operation of the device,
while simultaneously increasing its fidelity, robustness and
duty cycle compared to previous demonstrations. The
implementation is facilitated by a new polarization gadget
that combines different forms of nonreciprocity to unlock
fully reciprocal and universal polarization transformations.
The methods used to engineer the reciprocity of the
polarization gadgets can be applied more broadly to map
balanced interferometers onto common-path geometries.
This will enable simple and robust bulk-optics realizations
of important primitives such as reconfigurable beam
splitters and variable partially polarizing beam splitters
[28]. We anticipate that this will lead to straightforward
realizations of generalized measurements directly on
polarization qubits [29], as well as the demonstration of
multiparty quantum switches [16].

All data used in this work is openly available at [30].
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I. EXPERIMENTAL DETAILS

The single photons in the experiment were generated using spontaneous parametric down-conversion in a period-
ically poled KTiOPO4-crystal phase matched for a type-II collinear process. This crystal was pumped by a pulsed
Ti:Sapphire laser (Coherent Mira 900HP), with a pulse repetition rate of 76 MHz and tuned to a wavelength of
λp = 773 nm, thereby generating degenerate photon pairs at λs = λi = 1546 nm. The two photons were separated
using a polarizing beam-splitter, and the signal photon was sent directly to a superconducting nanowire single-photon
detector (SNSPD) from PhotonSpot, housed in a 1 K cryostat. These single-photon detectors had a detection effi-
ciency of around 95 %, and were separated from the experimental setup by 100 m of optical fiber. The idler photon
was sent to the experimental setup through approximately 10 m of single-mode fiber, and was then injected into the
tunable directional coupler (TDC) using a fiber-optic circulator. This circulator contributed approximately 1 dB of
optical loss per pass (2 dB total).

Two 5 m fibers spooled inside fiber polarization controllers were used to connect the output of the TDC to the
fiber couplers in the centre of the Sagnac. The free-space optical path loop was approximately 80 cm long, in order to
have sufficient room for all the polarization optics and leaving enough space to fit polarizers between the elements for
characterisation measurements. Due to the small 5 mm aperture of the Faraday rotators in the polarization gadgets,
fiber collimators producing a small beam-diamter (Thorlabs PAF2A-7C) were used to ensure the spatial profile of the
photons was not clipped by the polarization elements. The single-mode coupling efficiency in the free-space part was
in excess of 85 %. In order to reduce backreflections in the interferometer, the fibers connected to the fiber collimators
used anti-reflection coated APC connectors. The output ports of the TDC in the backwards direction were connected
to two polarization measurement stations, and the photons in the TDC output port overlapping with the input port
were separated by the fiber circulator. The two different polarization components of the light were separated using
polarizing beam-splitters and coupled into different single-mode fibers, connected to a total of four SNSPDs. This
was done in order to account for the polarization dependent detection efficiencies in these detectors.

Before performing the measurements described in the main text, polarization compensation was first performed
on the fibers inside the Sagnac. This was done by injecting H (+)-polarized CW light in the input port of the
interferometer, and using the fiber paddles and quarter- / half-wave plates next to the fiber collimators to minimize
the transmission through a V (−)-polarizer. Polarization contrasts in excess of 40 dB were achieved for both input
polarization states. As a final step, the splitting ratio of the TDC was finetuned. This was done by configuring both
polarization gadgets to implement the identity operation, such that destructive interference is observed in one output
port of the interferometer. The splitting ratio of the TDC was optimized by minimizing the optical power in this dark
port.

∗ Corresponding author: teodor.stroemberg@univie.ac.at
† Corresponding author: philip.walther@univie.ac.at
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II. DEFINITIONS AND CONVENTIONS

In this work we use the following convention for our polarization states:

|H⟩ =

[
1
0

]
, |V ⟩ =

[
0
1

]
,

|+⟩ =
1√
2

[
1
1

]
, |−⟩ =

1√
2

[
1
−1

]
,

|L⟩ =
1√
2

[
1
i

]
, |R⟩ =

1√
2

[
1
−i

]
.

(1)

Under this convention, quarter-wave and half-wave plates are defined as:

Q(θ) = Ry(2θ)Rz(π/2)Ry(−2θ) (2)

H(θ) = Ry(2θ)Rz(π)Ry(−2θ), (3)

where

Rk(θ) = exp

[
−iθ

2
σk

]
= cos

θ

2
I − i sin

θ

2
σk. (4)

Similarly, the fixed Faraday rotators are expressed as:

F± = Ry(±π/2). (5)

III. GADGET DERIVATION

Having established these definitions, we explicitly show the simplification used in the derivation of the reciprocal
gadget in the main text:

H
(π

8

)
F− = Ry

(π
4

)
Rz(π)Ry

(
−π

4

)
Ry

(
−π

2

)
= Rz(π)Ry

(
−π

4

)
Ry

(
−π

4

)
Ry

(
−π

2

)
= Rz(π)Ry(−π)

= (−iZ)(iY )

= −iX,

(6)

where the first step used:

Ry(θ)Rz(π) = Rz(π)Ry(−θ). (7)

The other three simplifications follow using the same steps.

IV. UNIVERSALITY OF THE RECIPROCAL GADGET

In this section we will give a proof that the reciprocal gadget presented in the main text is capable of implementing
any U ∈ SU(2). We first recall the construction of this gadget:

GR = Q(θ)H(ϕ)Gx(ψ)H(−ϕ)Q(−θ)
= Q(θ)H(ϕ)Rx(ψ)H(−ϕ)Q(−θ). (8)

In [1] it was shown that a combination of one half-wave and quarter-wave plate implements a two-parameter subset
of SU(2) parameterized as:

Q(θ)H(ϕ) = Ry(α)Rz(π/2)Ry(β). (9)
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This subset can be equivalently expressed as:

Ry(γ)Rz(δ)Rx(π/2) ⇐⇒ Ry(α)Rz(π/2)Ry(β). (10)

Given a two-waveplate gadget with the above parameterisation, the description in the backwards propagation direction
is:

H(−ϕ)Q(−θ) = Rx(−π/2)Rz(δ)Ry(γ). (11)

Substituting in these parameterisations in (8) we find:

GR = Ry(γ)Rz(δ)Rx(π/2)Rx(ψ)Rx(−π/2)Rz(δ)Ry(γ)

= Ry(γ)Rz(δ)Rx(ψ)Rz(δ)Ry(γ).
(12)

We now multiply this expression from the left by Rx(π) and use the trivial relation Rx(π)Rx(−π) = 1:

Rx(π)GR = Rx(π)Ry(γ)Rx(−π)Rx(π)Rz(δ)Rx(ψ)Rz(δ)Ry(γ)

= Rx(π)Ry(γ)Rx(−π)Rx(π)Rz(δ)Rx(−π)Rx(ψ + π)Rz(δ)Ry(γ)

= Ry(−γ)Rz(−δ)Rx(ψ + π)Rz(δ)Ry(γ)

= Ry(−γ)Rz(−δ)Rx(ψ′)Rz(δ)Ry(γ),

(13)

where ψ′ = ψ + π and we made use of the identities:

Rx(π)Ry(γ)Rx(−π) = Ry(−γ) (14)

Rx(π)Rz(δ)Rx(−π) = Rz(−δ), (15)

in the last step. To show that (13) is universal it suffices to show that it can apply a phase λ/2 to an arbitrary state
|u⟩:

Rx(π)GR |u⟩ = U |u⟩ = eiλ/2 |u⟩ . (16)

To this end, we choose ψ′, δ and γ such that Rx(ψ′)Rz(δ)Ry(γ) maps |u⟩ to |−⟩ times some phase ϕ:

Rx(ψ′)Rz(δ)Ry(γ) |u⟩ = eiϕ |−⟩ = ei(ψ
′+µ)/2 |−⟩ , (17)

where µ = ϕ − ψ′. This is always possible since Rx(ψ′)Rz(δ)Ry(γ) is a Tait-Bryan rotation. It’s evident that the

mapping |v⟩ → eiµ/2 |−⟩ has to be done by Rz(δ)Ry(γ), since |−⟩ is an eigenstate of Rx(ψ′):

Rz(δ)Ry(γ) |u⟩ = eiµ/2 |−⟩
Rx(ψ′) |−⟩ = eiψ

′/2 |−⟩ .
(18)

We therefore have:

Rx(π)GR |u⟩ = Ry(−γ)Rz(−δ)Rx(ψ′)Rz(δ)Ry(γ) |u⟩
= Ry(−γ)Rz(−δ)ei(ψ

′+µ)/2 |−⟩
= eiψ

′/2 |u⟩ .
(19)

There is hence always a GR such that:

Rx(π)GR = U, (20)

for any U ∈ SU(2), and choosing U = Rx(π)V for some V ∈ SU(2) shows that that GR is universal.

V. WAVEPLATE ANGLE CALCULATION

In this section we give an explicit method for determining the waveplate angles α, θ and ϕ in the reciprocal gadget
given an arbitrary unitary U ∈ SU(2):

GR = Q(θ)H(ϕ)H
(π

8

)
F−Q

(π
2

)
H(α)Q

(π
2

)
F+H

(π
8

)
H(−ϕ)Q(−θ) = U. (21)
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A Python implementation of the algorithm can be found in the online repository [2]. The method essentially consists
of going through the proof presented in the previous section backwards. First, define a new unitary V :

V = Rx(π)U, (22)

then find the eigenphase −λ/2 and corresponding eigenvector |v+⟩:

V |v+⟩ = e−iλ/2 |v+⟩ . (23)

The angles γ and δ should then be chosen to rotate |v+⟩ to |+⟩. This can be done by taking:

γ = arctan2
(

tr
[
Z |v+⟩⟨v+|

]
, tr

[
X |v+⟩⟨v+|

])
(24)

δ = −arctan2
(

tr
[
Y Ry(γ) |v+⟩⟨v+|R†

y(γ)
]
, tr

[
XRy(γ) |v+⟩⟨v+|R†

y(γ)
])
. (25)

The angle ψ is simply given by:

ψ = λ− π. (26)

Next, the rotation angles γ and δ need to be mapped to the corresponding waveplate angles θ and ϕ:

Q(θ)H(ϕ) = Ry(γ)Rz(δ)Rx(π/2). (27)

To find these waveplate angles, first construct the state:

|L′⟩ = Rx(−π/2)Rz(−δ)Ry(−γ) |L⟩ , (28)

where:

Rx(−π/2)Rz(−δ)Ry(−γ) =
(
Q(θ)H(ϕ)

)−1
. (29)

The quarter-wave plate angle for the order H(ϕ′)Q(θ′) = ±Ry(γ)Rz(δ)Rx(π/2) can then be found as:

θ′ =
1

2
arctan2

(
tr
[
X |L′⟩⟨L′|

]
, tr

[
Z |L′⟩⟨L′|

])
+
π

4
. (30)

To find the half-wave plate angle, construct the state:

|H ′⟩ = Q(θ′)Rx(−π/2)Rz(−δ)Ry(−γ) |H⟩ . (31)

The angle ϕ′ is then given as:

ϕ′ =
1

4
arctan2

(
tr
[
X |H ′⟩⟨H ′|

]
, tr

[
Z |H ′⟩⟨H ′|

])
. (32)

Note that the ambiguity in the overall sign of the unitary doesn’t matter due to palindromic order of the total gadget,
since ±H(ϕ′)Q(θ′) = ±ZQ(−θ′)H(−ϕ′)Z, and any minus signs cancel. The angles for the order Q(θ)H(ϕ) are found
using the waveplate permutation rule:

H(α)Q(β) = Q(2α− β)H(α), (33)

and hence:

ϕ = ϕ′ (34)

θ = 2ϕ− θ′. (35)

The last angle, the one of the middle half-wave plate, can be calculated directly from ψ:

α = ψ/4 + π/2. (36)

Using the waveplate reduction rules [1]:

Q(a)H(b)H(c) = Q(a+ π/2)H(a− b+ c− π/2) (37)

H(a)H(b)Q(c) = H(a− b+ c− π/2)Q(c+ π/2), (38)
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the gadget can be simplified, removing two waveplates:

GR = Q(θ1)H(ϕ1)F−Q
(π

2

)
H(α)Q

(π
2

)
F+H(ϕ2)Q(θ2) = U, (39)

with:

θ1 = θ + π/2 (40)

ϕ1 = θ − ϕ+ π/8 − π/2 (41)

θ2 = −θ + π/2 (42)

ϕ2 = π/8 + ϕ− θ − π/2. (43)

VI. DEFINITIONS OF G[,], G{,}

The commuting and anti-commuting subsets G+, G− of

G =

{
1, X, Y, Z,

X + Y√
2

,
X − Y√

2

X + Z√
2

,
X − Z√

2

Y + Z√
2

,
Y − Z√

2

}
(44)

are

G+ =
{
Ui, Vj ∈ G|[Ui, Vj ] = 0

}
=

{
Ui, Vj ∈ G|i = 0 ∨ i = j ∨ j = 0

} (45)

and

G− =
{
Ui, Vj ∈ G|{Ui, Vj} = 0

}
=

{
Ui, Vj ∈ G|i = 1, j ∈ {2, 3, 8, 9}∨

i = 2, j ∈ {1, 3, 6, 7}∨
i = 3, j ∈ {1, 2, 4, 5}∨
i = 4, j ∈ {3, 5}∨
i = 5, j ∈ {3, 4}∨
i = 6, j ∈ {2, 7}∨
i = 7, j ∈ {2, 6}∨
i = 8, j ∈ {1, 9}∨
i = 9, j ∈ {1, 8}

}
.

(46)

VII. SUPPLEMENTARY DATA

In this section we present alternative visualisations of the data presented in the main text, as well as some supple-
mentary data used to generate the main result.

Fig. 1 shows the expectation values for each pair of unitaries in the witness averaged over all runs.
Fig. 2 shows the heralding efficiency in the |±⟩ ports of the control qubit. Since the total photon number should

be conserved, a linear fit to this data gives the relative detection efficiencies in the two ports. This value was in turn
used in the evaluation of the success probabilities.. Fig. 3 shows a histogram of the winning probabilities with a bin
size of 0.001. This data includes all the settings for the six different runs. It can be seen that in the majority of
rounds the winning probability exceeds 0.996.

To verify that the gadgets can faithfully implement any unitary, we implement 100 random unitaries Wi, use
quantum state tomography to determine the states W δ

i |Ψ⟩ for |Ψ⟩ ∈ {|H⟩ , |+⟩} and δ ∈ {fw,bw}, and calculate
the quantum state fidelities to the expected states. We define the gate fidelity as the average over Ψ, and show the
resulting fidelities as histograms in Fig. 4. The mean gate fidelity over all gadgets and directions of 0.9970 ± 0.0018
indicates that the gadgets are indeed capable of implementing arbitrary unitaries.
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FIG. 1. Average winning probabilities. The figure shows the relative probability of a photon to be detected in the
commutator and anti-commutator ports of the quantum SWITCH, for every pair of (U, V ) in the sets G[,] and G{,}. The
theoretical probabilities p ∈ {0, 1} are shown as solid bars, and the experimentally recorded ones, averaged over all six runs,
are indicated by the colored dots. The indices (i, j) on the x-axis specify the pair of unitary operators (U, V ) = (Gi,Gj).
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FIG. 2. Relative heralding efficiencies. Imbalanced detection efficiencies, as well as loss, between the two output modes of
the quantum SWITCH may influence the calculated winning probabilities. As photons must exit the SWITCH in one of either
ports, the observed relative heralding efficiencies of unitaries that commute to various degrees follow a linear slope.

Finally, to check that the gadgets are reciprocal, we use the very same measurements, but now calculate the fidelities
between W fw

i |Ψ⟩ and W bw
i |Ψ⟩. Similarly to before, we define the gadget reciprocity as an average over Ψ, and show

the results in Fig. 5. With a mean reciprocity of 0.9972 ± 0.0018, it can be concluded that unitaries implemented
by the gadgets are reciprocal. We would like to point out that all unitaries were implemented independently for
each direction, hence the reciprocity is affected by imperfect repeatability of the rotation motors moving the gadgets’
waveplates.

In order to remove the influence of unwanted fiber polarization rotations on the tomography, it was not performed
using the same polarization measurement stations as in the actual experiment. Instead, the tomography was carried
out inside the Sagnac interferometer itself. In one propagation direction this was facilitated by using part of one
polarization gadget to set the measurement basis for the tomography on the other gadget, and in the opposite
propagation direction two additional motorized waveplates were introduced into the setup. A sketch of the tomography
setup is shown in Fig. 6.

VIII. CAUSAL WITNESS

To characterise the causal structure of quantum processes one can make use of the process matrix formalism [3],
in which a quantum process is represented by a positive semidefinite matrix W . The set of all process matrices that
represent a definite causal structure, also called causally separable processes matrices, form a convex subset of all
process matrices. Consequently, it is always possible to find a hyperplane separating any causally indefinite process
matrix from the set of causally separable ones [4]. This in turn implies the existence of a witness operator S, that can
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FIG. 3. Winning probability histogram (3 runs: n=312 )
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FIG. 4. Gate fidelity histograms for both gadgets in the forwards and backwards directions. 100 random unitaries Wi were
implemented with each gadget, the states Wi |H⟩ and Wi |+⟩ were measured in both directions independently and the quantum
state fidelity between the expected and measured state determined. Depicted are the average fidelities for |H⟩ and |+⟩ for a)
Ufw (Mean fidelity 0.99852 ± 0.00079). b) Ubw (0.9964 ± 0.0014). c) Vfw (0.9967 ± 0.0021). d) Vbw (0.9964 ± 0.0016). The
mean fidelity over all gadgets and directions is 0.9970± 0.0018. All uncertainties are standard deviations.
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FIG. 5. Reciprocity histograms for the two gadgets used in the experiment. 100 random unitaries Wi were implemented on
both gadgets, the states Wi |H⟩ and Wi |+⟩ were measured in both directions independently and the quantum state fidelity
between the expected and measured state determined. Depicted are the average fidelities for a) the U gadget, with mean
fidelity of 0.9960± 0.0016 and b) the V gadget, with a mean fidelity of 0.99834± 0.00099. The mean fidelity for both gadgets
is 0.9972± 0.0018. All uncertainties are standard deviations.

FIG. 6. Tomography setup. The tomography on the polarization unitaries was performed inside the Sagnac interferometer in
order to avoid introducing measurement errors caused by imperfect polarization compensation in optical fibers. In the forward
direction (top) the tomography on the first gadget was performed using the first two waveplates of the second gadget. A
polarizer (PH/+) preparing the input polarization H / + was placed before the gadget, and a horizontally aligned measurement
polarizer (PH) was placed inside the second gadget. In the backwards propagation direction (bottom) the state preparation
polarizer was placed between the two gadgets, and two additional motorized waveplates were introduced into the setup to
perform the tomography. The gadget being measured is circled in blue, while the measurement apparatus is circled in green.
The tomography on the second gadget in forward (backward) direction was carried out analogously to the one on the first
gadget in backward (forward) direction.

be used to certify the indefinite causal structure of a process. Such a witness has previously been used experimentally
to validate the casual non-separability of the quantum SWITCH [5]. Here, we adapt a version of the witness from [4],
which is inspired by the task presented in Ref. [6]. Making use of the Choi-Jamio lkowski ismorphism, which allows
us to represent linear maps and quantum channels as matrices, the witness can be defined in terms of the operators:

Gi,j± = |Ui⟩⟩⟨⟨Ui| ⊗ |Vj⟩⟩⟨⟨Vj | ⊗ |±⟩⟨±|C , (47)

with:

Ui, Vj ∈ G =

{
1, X, Y, Z,

X ± Y√
2

,
X ± Z√

2
,
Y ± Z√

2

}
. (48)
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We then define

G+ :=
{

(Ui, Vj)
∣∣∣Ui, Vj ∈ G, UiUj = VjUi

}
(49)

G− :=
{

(Ui, Vj)
∣∣∣Ui, Vj ∈ G, UiVj = −VjUi

}
(50)

The witness itself is given by:

S =
1

N

10∑
i,j

q
[,]
ijG

i,j
+ + q

{,}
ij G

i,j
− , (51)

where q
[,]
ij and q

{,}
ij are weights chosen such that:

{(i, j) : [Ui, Vj ] = 0} : g
[,]
ij = 1

{(i, j) : {Ui, Vj} = 0} : g
{,}
ij = 1,

(52)

and are zero otherwise. Here, similarly to the main text, N = 52 is the total number of commuting or anti-commuting
pairs of unitaries in G, and the coefficients above select exactly these subsets. The expectation value of the witness is
evaluated as ⟨S⟩ = tr[SW ], where W is a process matrix [3]. The causal separability bound for the witness described
above can be evaluated numerically using the semidefinite programming methods of Ref. [4]. Additionally, the methods
from [7] allow us to obtain a computer assisted proof that tr[SWsep] ≤ 90.4

100 , for any causally separable process Wsep;
the code to certify this value is openly available in an online repository [2]. It can be shown that tr[SWSWITCH] = 1,
where WSWITCH is the process matrix of the quantum SWITCH.
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[4] M. Araújo, F. Costa, and Č. Brukner, Phys. Rev. Lett. 113, 250402 (2014), arXiv:1401.8127 [quant-ph].
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Conclusions

In this thesis I have presented four experiments on photonic quantum information
that explore some of the unique aspects of quantum theory.

The first experiment demonstrated a counterfactual communication protocol that
circumvents the issue of the weak trace present in previous experimental proposals and
demonstrations. Due to the need for several concatenated interferometers, a photonic
waveguide was deemed a suitable platform for the experimental realisation. The intrinsic
phase stability of integrated photonic structures obviates the need for active stabilization,
and therefore allows a large number of interferometers to be concatenated. However, the
rigid structure of the device means that the quantum state of the photons cannot be
probed during the experiment. This prevents the implementation of weak measurements
to experimentally verify the near-vanishing weak trace in Bob’s laboratory. A more
flexible bulk-optics realisation of a counterfactual communication protocol in which such
measurements could be performed would constitute an interesting direction for future
work.

The second experiment was the first implementation of a universal time-rewinding
protocol for two-level quantum systems. The protocol was validated in a large parame-
ter regime, but one restricted to unitary time evolutions. Since the only requirement on
the time evolution imposed by the protocol is that it be invertible, the demonstration
of time rewinding for non-unitary processes is worth exploring in future work. Addi-
tionally, while the implemented version of the protocol is probabilistic, it admits an
adaptive error-correction procedure that can asymptotically bring the success probabil-
ity to unity. A demonstration of at least one round of this error correction should be
within experimental reach, but the issue of how to quantify the success probability of
the protocol in a scenario where photon loss is the dominant source of failure remains
an open question.

In the third experiment time reversal in quantum mechanics was studied from a
different angle; instead of addressing the question of how to effect the time reversal,
the potential of superposing two time directions of quantum evolutions was explored.
Such superpositions turn out to constitute a computational resource that outperforms
all temporally-ordered quantum processes in a specifically tailored task. Here the metric
used for the comparison is the number of uses of a given set of quantum gates, and an
important open problem is the experimental certification of this resource consumption.
At the moment it is furthermore unclear if there are other, possibly more general tasks
for which the advantage offered by temporally-indefinite processes is present. Finally,
while the experiment exploited the symmetry properties of the experimental devices
generating the time evolutions to induce the time-reversed ones, one could achieve the
same results by incorporating the methods of Publication 2, though it must be noted
that this approach would presently be challenging experimentally.

The fourth and final experiment was a demonstration of a quantum switch in a
common-path geometry. The primary goal of the experiment was to show the utility
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and applicability of the devices introduced in Chapter 3, and this was achieved by
constructing a setup that outperformed similar works by a significant margin while
being simpler to operate. The study and development these devices began during and
was motivated by the work on Publication 2, which employed a quantum switch as part
of the rewinding protocol, and this device initially suffered from phase instabilities. The
connection between the different works showcases the value in translating theoretical
ideas into lab, as this process often spurs, or even necessitates technical progress. In the
case of the polarization gadgets presented in Chapter 3, I believe that they will see use
outside the specific context of experiments on indefinite causality, as the ability to map
balanced Mach-Zehnder interferometers onto a common-path geometry is a powerful
and general tool.



A
Wave-plate angle formulae

Here the expressions for wave-plate angles that appear in Chapter 2 and Chapter 3
will be motivated.

A.1 SimonMukunda gadget
For the Simon–Mukunda gadget there are three wave-plate angles that need to be

calculated in order to implement a unitary U . The expressions for these are given by
(2.3-11), (2.3-13) and (2.3-19) in the main text. The first angle θq should be set such
that a state |Ψ〉 = U † |L〉 is mapped to the plane of linear polarization on the Bloch
sphere by the quarter-wave plate. To find an expression for this angle it is helpful to
consider the reverse process: using a QWP to map a linearly polarized state to some
point on the Bloch sphere. This is illustrated in Fig. A.1, which shows how linearly
polarized states are transformed by a QWP at an angle θ to the horizontal axis. As
shown in Section 3.2.2 the action of a QWP can be decomposed as

Q(θ) = Y (2θ)Z(π/2)Y (−2θ). (A.1)

When acting on linearly polarized states, the first Y -rotation simply maps these states
to other linear polarizations. The Z(π/2) rotation then maps the linear plane to the
y − z plane, and the final Y (2θ) rotation tilts this plane about the y-axis. Therefore,
every linearly polarized state transformed by a given QWP makes the same angle with
the y−z plane of the Bloch sphere. As shown in Fig. A.1 this angle is exactly two times
the physical angle of the QWP. From this discussion it is clear that a given any state
|ψ〉 on the Bloch sphere there is always a QWP angle such that the image of the linear
plane under the QWP contains this state. We can therefore write:

|Ψ〉 = Q(θ) |Φ〉L , (A.2)

where |Φ〉L is a linearly polarized state. Since:

Q(90° − θ)Q(θ) = 1 (A.3)

it follows that:
Q(90° − θ) |Ψ〉 = Q(90° − θ)Q(θ) |Φ〉L = |Φ〉L , (A.4)

is in the linear plane. From Fig. A.1 it’s clear that:

tan 2θ =
Tr
[
X |Ψ〉〈Ψ|

]
Tr
[
Z |Ψ〉〈Ψ|

] , (A.5)
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Figure A.1: QWP angle for map to linear plane. A quarter-wave plate at an angle θ to the
horizontal axis (the positive z-axis in the figure) transforms linearly polarized states such that
the projection of the final state in the linear plane is at an angle 2θ relative to the z-axis. This
is illustrated for two different linearly polarized states, |H〉 and |+〉, by decomposing the QWP
rotation as Q(θ) = Y (2θ)Z(π/2)Y (−2θ). By considering the inverse of the transformation in the
figure one finds that the angle to map a given state to the linear plane using a QWP is given by
90°− θ.

since, as illustrated in Fig. 3.11, the quantities Tr[σjρ] correspond to the projection of
a the Bloch vector of the state ρ onto the axis j. The expression above can be inverted
to find:

θq = 90° − θ =
1

2
atan2

(
Tr
[
X |Ψ〉〈Ψ|

]
,Tr
[
Z |Ψ〉〈Ψ|

])
. (A.6)

The second QWP angle, φq, should be chosen to map a state in the linear plane to
right-handed circular polarization. Let this state be

|ΨL〉 = Q(θq) |Ψ〉 . (A.7)

A QWP is a π/2 rotation about an axis in the linear plane of the Bloch sphere. Therefore,
mapping a linear state to a circularly polarized one can be done by ensuring that the
rotation axis of the transformation is orthogonal to the Bloch vector of the initial state.
In order for the state to get mapped to |R〉 the rotation axis and Bloch vector need to
have the correct relative handedness. As illustrated in Fig. A.2 the rotation axis defined
by the QWP should be rotated by −90° in the x − z plane, with respect to the Bloch
vector. It can also be seen that this corresponds to finding the angle with respect to the
negative x-axis, instead of the positive one:

tanφ = Tr

[
Z |ΨL〉〈ΨL|
−X |ΨL〉〈ΨL|

]
. (A.8)

The wave-plate angle is therefore:

φq =
1

2
atan2

(
Tr
[
Z |ΨL〉〈ΨL|

]
,Tr
[
−X |ΨL〉〈ΨL|

])
. (A.9)
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Figure A.2: QWP angle for map to circular polarization. In order to map a linearly
polarized state |ΨL〉 to |R〉, the rotation axis (yellow arrow) should be orthogonal to the Bloch
vector of the state (black arrow). As can be seen in the figure, the rotation axis should be chosen
so that it is rotated by −90° with respect to the Bloch vector, in order to ensure the correct
handedness. The opposite choice of rotation axis will lead to the map |ΨL〉 7→ |L〉.

From the definition of the atan2 function it follows that:

atan2(y, x) + atan2(y,−x) = ±180° (A.10)

Since the QWP has a period of 180° the sign on the right-hand side does not matter,
and the angle can be expressed as

φq = 90° − 1

2
atan2

(
Tr
[
Z |ΨL〉〈ΨL|

]
,Tr
[
X |ΨL〉〈ΨL|

])
. (A.11)

The equivalent of the relation atan(x/y) + atan(y/x) = 90° for atan2 is:

mod
(
atan2(x, y) + atan2(y, x), 360°

)
= 90°, (A.12)

and using this the QWP angle can finally be expressed as

φq =
1

2
atan2

(
Tr
[
X |ΨL〉〈ΨL|

]
,Tr
[
Z |ΨL〉〈ΨL|

])
+ 45°, (A.13)

which is the form of the equation that appears in the main text. The final angle γh for
the HWP should be chosen to rotate a state |Φ〉 = Q(φq)Q(θq)U

†|H〉 in the linear plane
to |H〉. The equation for this angle is:

γh =
1

4
atan2

(
Tr
[
X |Φ〉〈Φ|

]
,Tr
[
Z |Φ〉〈Φ|

])
. (A.14)

This expression comes from the facts that, as illustrated in Fig. A.3, a HWP at an angle
γ to a linearly polarized state always rotates this state by 4γ on the Bloch sphere, and
that on the Bloch sphere a HWP is self inverse.
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Figure A.3: HWP angle for rotation in linear plane. The action of a half-wave plate on a
linearly polarized state is to rotate it by 2θ on the Bloch sphere, where θ/2 is the physical angle
between the axis of the wave plate and the polarization of the light, and θ is the angle between
the Bloch vector of the corresponding state and the axis around which the wave plate rotates
the state on the Bloch sphere. This is illustrated above for two different states, |H〉 and |−〉.
The rotation axis is indicated by a dashed line. Similar to Fig. A.1, the action of the HWP is
decomposed as Y (θ)Z(π)Y (−θ) for illustrative purposes.

A.2 Reciprocal gadget
In the reciprocal gadget there are two wave-plate angles that need to be calculated.

The first is a QWP angle to map a linearly polarized state to |R〉, and the second is a
HWP angle to take a linearly polarized state to |H〉. These angles therefore correspond
to (A.13) and (A.14) above, and do not need further explanation.



B
Coherent states in linear optics

At a few points in this thesis calculations using single-photon states are explicitly or
implicitly applied to coherent states. For example, the characterisation of polarization
gadgets using laser light assumes that these transformations are the same for single
photons, and another example is the discussion of active phase stabilization in Chapter 7.
Doing this is justified by a formal correspondence between single-photon states and
coherent states in linear-optical networks, which will be derived in this Appendix.

B.1 Correspondence with single-photon states
As pointed out in Section 2.2.5, a coherent state can be represented by the displace-

ment operator acting on vacuum:

eαâ
†−α∗â |0〉 = |α〉 = e−

1
2
|α|2

∞∑
n=0

αn(â†)n

n!
|0〉 . (B.1)

This was not proven, but can be shown quite straightforwardly using the exponential
operator identity

eA+B = eAeBe−
1
2
[A,B], (B.2)

which holds whenever A and B commute with [A,B]. In the case of the displacement
operator we have

[αâ†,−α∗â] = −αα∗â†â+ αα∗ââ† = −|α|2[â†, â] = |α|2. (B.3)

It is then obvious that αâ† and −α∗â commute with the commutator above. We can
therefore use (B.2) to write the displacement operator as

eαâ
†−α∗â = eαâ

†
e−α

∗âe−
1
2
|α|2 . (B.4)

It is clear that
e−α

∗â |0〉 = 0, (B.5)

and hence
eαâ

†−α∗â |0〉 = e−
1
2
|α|2eαâ

† |0〉 = e−
1
2
|α|2

∞∑
n

(αâ†)n

n!
|0〉 . (B.6)
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To see how coherent states are transformed by linear-optical elements, consider a uni-
tary generated by an m-mode Hamiltonian bilinear in the creation and annihilation
operators1:

UH = e−iH , H =
∑
jk

Ajkâ
†
j âk. (B.7)

As shown in Section 2.2.7 this unitary transforms the creation operators as

â† 7→ UH â
†U †

H = Uâ†, (B.8)

where U is an operator that can be represented by an m ×m matrix. Using the fact
that

U †
H |0〉 = |0〉 , (B.9)

We can write the effect of (B.7) on a coherent state in mode k as

UH |α〉k = UHe
− 1

2
|α|2

∞∑
n

(αâ†k)
n

n!
U †
H |0〉

= e−
1
2
|α|2

∞∑
n

(αUH â
†
kU

†
H)

n

n!
|0〉

= e−
1
2
|α|2

∞∑
n

(αUâ†k)
n

n!
|0〉

= e−
1
2
|α|2eUαâ

†
k |0〉 .

(B.10)

Here the second step used the fact that U †U = 1. Let

Uâ†k =

m∑
j=1

ujkâ
†
j . (B.11)

Inserting this into (B.10) gives

UH |α〉k = e−
1
2
|α|2exp

[
m∑
j=1

ujkâ
†
j

]
|0〉

= e−
1
2
|α|2

m∏
j=1

exp
[
ujkâ

†
j

]
|0〉 .

(B.12)

Using the unitarity of U once more, specifically that(
U †U

)
ik

=
∑
j

u∗jiujk = δik =⇒
∑
j=1

|ujk|2 = 1 (B.13)

1As previously stated in Section 2.2.7, all linear-optical transformations are generated by Hamiltoni-
ans of this form.
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(B.12) can be re-written as

UH |α〉k =
m∏
j=1

e−
1
2
|ujkα|2exp

[
ujkâ

†
j

]
|0〉

=

m⊗
j=1

|ujkα〉j .
(B.14)

From this equation one sees that the amplitude of the coherent state in a given mode
after the linear-optical unitary transformation corresponds exactly to the single-photon
amplitude in the same mode under the same transformation. This means that the
relative intensities |ujkα|2/|α|2 are equal to the single-photon detection probabilities
|ujk|2, which is what we wanted to show. To illustrate this with an example, consider
the beamsplitter transformation:

UBS =

[
cos θ sin θ
sin θ − cos θ

]
. (B.15)

For a single-photon state we have that

â† |0, 0〉a,b 7→ cos θâ† |0, 0〉a,b + sin θb̂† |0, 0〉a,b = cos θ |1, 0〉a,b + sin θ |0, 1〉a,b , (B.16)

and for a coherent state:

|α, 0〉a,b 7→ |α cos θ, α sin θ〉a,b . (B.17)

This correspondence is also what justifies the natural, and somewhat obvious interpreta-
tion of a matrix such as (B.15) as describing the reflection and transmission coefficients
of the beamsplitter for a classical EM-field. Similarly, this is why the Jones matrices of
linearly birefringent polarization optics also describe the transformation of single-photon
states.

Note that while the correspondence here was shown for an initial one-mode coherent
state it also holds for m-mode states and single-photons superposed over these modes.
This can be shown in the same way, or alternatively by using the fact that any m-mode
coherent state can be written on the form (B.14). Any linear-optical transformation
W on this state can be decomposed into a map that contains a unitary U †

H that first
brings the state back to a single-mode state, and then a second unitary that prepares
the output state of the total transformation.





C
Quantization of the electromagnetic

field

This appendix clarifies a mathematical point touched on in the discussion on spon-
taneous parametric down-conversion in Section 2.4.2 of the main text. It then discusses
the problems that arise when using the quantized free electric field in dielectric media,
before briefly presenting an alternative approach.

C.1 Box quantization continuum limit
Consider a one-dimensional box with side length L and periodic boundary conditions.

The basis states for this box are of the form

uk(x) =
1√
L
eikx, (C.1)

where
k =

2πn

L
, n ∈ Z. (C.2)

The basis states are orthonormal and therefore obey∫ L/2

−L/2
u∗k(x)uk′(x)dx =

1

L

∫ L/2

−L/2
ei(k−k

′)xdx = δk,k′ . (C.3)

Multiplying the middle and right-hand terms with L and taking the limit L → ∞ we
see that

lim
L→∞

∫ L/2

−L/2
ei(k−k

′)xdx = 2πδ(k − k′) = lim
L→∞

Lδk,k′ . (C.4)

In the continuum limit we therefore have

δk,k′ →
2π

L
δ(k − k′). (C.5)

A function f(x) on the domain [−L/2, L/2] can be written as a Fourier series [110]:

f(x) =
1√
L

∑
k

fke
ikx, (C.6)

with Fourier coefficients
fk =

1√
L

∫ L/2

−L/2
f(x)e−ikxdx. (C.7)
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Taking the continuum limit L→ ∞

lim
L→∞

∫ L/2

−L/2
f(x)e−ikxdx = f(k) (C.8)

and we find that
fk →

1√
L
f(k). (C.9)

For the creation and annihilation operators the equivalent substitution

âk →
1√
L
â(k) (C.10)

together with (C.5) gives

[âk, âk′ ] = δk,k′ → [
1√
L
â(k),

1√
L
â(k′)] =

2π

L
δ(k − k′). (C.11)

In some texts the creation and annihilation operators are therefore rescaled [222]:

âk →
√

2π

L
â(k) (C.12)

to avoid the factor of 2π in the commutator, giving

[âk, âk′ ] = δk,k′ → [

√
2π

L
â(k),

√
2π

L
â(k′)] =

2π

L
δ(k − k′) (C.13)

=⇒ [â(k), â(k′)] = δ(k − k′). (C.14)

The equivalent expression in terms of frequency is

âω →
√

2πc

L
â(ω), (C.15)

which is what appears in the main text.

C.2 Transverse delta function
This section will introduce a function, or distribution, known as the transverse delta

function that will be used in the next section. As the name suggests, it is a function
that acts like the delta function for transverse fields [110]:

F⊥(r) =

∫
d3r′δ⊥(r− r′)F(r′), (C.1)

where F⊥(r) is the transverse part of the field F:

F(r) = F⊥(r) + F∥(r) (C.2)
∇ · F⊥(r) = 0 (C.3)
∇× F∥(r) = 0. (C.4)
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The decomposition above is known as the Hemholtz decomposition [215]. In reciprocal
space δ⊥ is simply the projector onto the transverse part of the field:

F⊥(k) = F(k)− k · F(k)
‖k‖2

k = δ⊥(k)F(k), (C.5)

which can expressed in index notation as

F⊥
i (k) =

(
δij −

kikj
k2

)
Fj(k) (C.6)

To see that this definition indeed corresponds to a projection onto the transverse com-
ponent of the field, we take the divergence of its Fourier transform:

∇ ·
∫

d3k

(2π)3

(
F(k)− k · F(k)

‖k‖2
k

)
eik·r =

∫
d3k

(2π)3
k ·
(
F(k)− k · F(k)

‖k‖2
k

)
eik·r

=

∫
d3k

(2π)3

(
k · F(k)− k · F(k)k · k

‖k‖2

)
eik·r

= 0.
(C.7)

Similarly, the fact that δ⊥(r) acts as a delta function can be verified by Fourier trans-
forming (C.5) twice:

F⊥
i (r) =

∫
d3k

(2π)3
δ⊥ij(k)Fj(k)e

ik·r

=

∫
d3k

(2π)3
δ⊥ij(k)e

ik·r
∫
d3r′Fj(r

′)e−ik·r
′

=

∫
d3r′

∫
d3k

(2π)3
δ⊥ij(k)Fj(r

′)eik·(r−r′).

(C.8)

Here the Fourier transformed functions are simply labelled by their argument. Making
the identification

δ⊥ij(r− r′) =

∫
d3k

(2π)3
δ⊥ij(k)e

ik·(r−r′) (C.9)

recovers (C.1). For discrete momenta the transverse delta function can be defined as

∆⊥
ij(r) =

1

V

∑
k

(
δij −

kikj
k2

)
eik·r. (C.10)

This comes from the fact that
∑

k e
ikx is the Fourier series of the Dirac comb:

+∞∑
k=−∞

ei2πkx/L = L
+∞∑

n=−∞
δ(x− nL). (C.11)

Considering a finite quantization volume where ki = 2πni/Li gives∑
k

eik·r = V
∑
nx

∑
ny

∑
nz

δ(x− nxLx)δ(y − nyLy)δ(z − nzLz). (C.12)
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All the terms for which |ni| > 0 lie outside the quantization volume,1 and therefore

1

V

∫
V
d3r′

∑
k

eik·(r−r′)F(r′) =

∫
V
d3r′δ(x− x′)δ(y − y′)δ(z − z′)F(r′) = F(r), (C.13)

and hence
1

V

∑
k

eik·r = ∆(r− r′), (C.14)

F⊥(r) =

∫
d3r′∆⊥(r− r′)F(r′). (C.15)

C.3 Quantization in nonlinear dielectrics
In Section 2.4.2 the interaction Hamiltonian for SPDC was treated using the field

operators obtained by quantizing the free electric field. It has been pointed out that
this approach can lead to inconsistencies [216, 217, 447], and in some cases incorrect
predictions in experimentally relevant regimes [448]. To illustrate this, consider the field
operators

A(r, t) =
∑
k,α

√
ℏ

2ϵ0ωkV
êk,α

(
âk,α(t)e

ik·r + â†k,α(t)e
−ik·r

)
(C.1)

E(r, t) = i
∑
k,α

√
ℏωk
2ϵ0V

êk,α

(
âk,α(t)e

ik·r − â†k,α(t)e
−ik·r

)
(C.2)

B(r, t) = i
∑
k,α

√
ℏ

2ϵ0ωkV
k× êk,α

(
âk,α(t)e

ik·r
)

(C.3)

In the Heisenberg picture the time evolution of the magnetic-field operator is given by

∂B

∂t
=
i

ℏ
[H,B]. (C.4)

Suppose that the Hamiltonian generating the time evolution is the linear Hamiltonian
of a dielectric:

H =
ϵ0
2

∫ (
c2B2 +E2 + χ(1)E2

)
d3r. (C.5)

Since we know that the free Hamiltonian can be directly written on a simple form:

Hf =
ϵ0
2

∫ (
c2B2 +E2

)
d3r =

∑
k,α

ℏωk
(
â†k,αâk,α +

1

2

)
, (C.6)

using
[â†â, â†] = â†, [â†â, â] = −â, (C.7)

1The terms with n = ±1 are delta-functions that lie on the endpoints of the interval, see Section C.4
for a discussion on this.



C.3. QUANTIZATION IN NONLINEAR DIELECTRICS
327

it is straightforward to verify that

i

ℏ
[Hf ,B] = −∇×E. (C.8)

Furthermore, because the magnetic field commutes with itself, only the electric-field
term in the Hamiltonian contributes to the commutator. Assuming, for simplicity, an
isotropic medium and therefore scalar linear susceptibility, we can obtain the linear
dielectric Hamiltonian by simply rescaling this term

E2 → (1 + χ(1))E2. (C.9)

It therefore follows that

∂B

∂t
=
i

ℏ
[H,B] = −∇× (1 + χ(1))E. (C.10)

This is similar to what we would expect from Faraday’s law (2.4-8):

∂B

∂t
= −∇×E, (C.11)

only with the additional χ(1) term that we could account for by redefining the electric-
field operator. However, the situation gets more troublesome if we include a nonlinear
term in the Hamiltonian:

H = ϵ0

∫ (c2
2
B2 +

1

2
(E2 + χ(1)E2) +

2

3
χ(2)E3

)
d3r. (C.12)

To evaluate the effect this term has on the time evolution it is helpful to calculate the
commutator of the electric- and magnetic-field operators. This is most easily done by
first finding the commutator between the electric field and the vector potential:

[Ej(r, t), Al(r
′, t)] =

iℏ
2ϵ0V

∑
k,k′

∑
α,β

(êk,α)j(êk′,β)l

×
[(
âk,αâ

†
k′,β − â†k′,β âk,α

)
ei(k·r−k′·r′)

−
(
â†k,αâk′,β − âk′,β â

†
k,α

)
e−i(k·r−k′·r′)

]
.

(C.13)

Here we already neglected the obviously commuting [â, â] = [â†, â†] terms. The full
commutation relations of the creation and annihilation operators:

[âk,α, âk′,β ] = [â†k,α, â
†
k′,β ] = 0 (C.14)

[âk,α, â
†
k′,β ] = δk,k′δα,β (C.15)

impose k = k′, and since different vector components in (C.13) commute with each other
we also have j = l. However, we need to account for the fact that in the Coulomb gauge
A is a transverse field, and the commutator should vanish when acting on longitudinal
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fields. Therefore, instead of the Kronecker delta we should use the projector onto the
transverse field:

δ⊥ij = δij −
kikj
k2

, (C.16)

and using [â, â†] = 1 we get [205]

[Ej(r, t), Al(r
′, t)] =

iℏ
ϵ0V

∑
k

(
δjl +

kjkl
k2

)
eik·(r−r′)

=
iℏ
ϵ0
∆⊥
jl(r− r′),

(C.17)

where ∆⊥
jl(r) is the transverse delta function, and the minus sign in the second expo-

nential of (C.13) was ignored since it doesn’t affect the delta function. To find the
commutator between the electric and magnetic fields we use definition of the latter in
terms of the vector potential:

Bi = (∇×A)i = ϵijk
∂

∂rj
Ak, (C.18)

where ϵijk is the Levi-Civita symbol. Using this relation together with (C.17) gives

[Ej(r, t), Bk(r
′, t)] = [Ej(r, t), ϵklm

∂

∂r′l
Am(r

′, t)]

=
iℏ
ϵ0
ϵklm

∂

∂r′l
∆⊥
mj(r− r′).

(C.19)

Since the curl of a longitudinal field is by definition zero, the transverse delta function
can be replaced with the normal delta function (C.14) without changing the commutator:

[Ej(r, t), Bk(r
′, t)] =

iℏ
ϵ0
ϵklm

∂

∂r′l
∆mj(r− r′), (C.20)

and we can now evaluate the commutator with the nonlinear term in the Hamiltonian:

i

ℏ
[H(2), Bm] =

2iϵ0
3ℏ

∫
d3r χ

(2)
jklEjEkElBm −Bm

2iϵ0
3ℏ

∫
d3r χ

(2)
jklEjEkEl. (C.21)

This expression can be expanded as

2iϵ0
3ℏ

∫
d3r
(
χ
(2)
jklEjEkElBm − χ

(2)
jklEjEkBmEl + χ

(2)
jklEjEkBmEl − χ

(2)
jklEjBmEkEl

+χ
(2)
jklEjBmEkEl −Bmχ

(2)
jklEjEkEl

)
=
2iϵ0
3ℏ

∫
d3r
(
χ
(2)
jklEjEk[El, Bm] + χ

(2)
jklEj [Ek, Bm]El + χ

(2)
jkl[Ej , Bm]EkEl

)
.

(C.22)
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Using the permutation symmetry of the susceptibility tensor we then get [205]

i

ℏ
[H(2), Bm] =

2iϵ0
ℏ

∫
d3r χ

(2)
jkl[Ej , Bm]EkEl

= −2ϵmno
∂

∂r′n

∫
d3r∆oj(r− r′)χ

(2)
jklEkEl

= −2ϵmnj
∂

∂r′n
χ
(2)
jklEkEl,

(C.23)

and hence
∂B

∂t
=
i

ℏ
[H,B] = −∇×E−∇× (χ(1)E+ 2χ(2)E2). (C.24)

This expression is clearly different from Faraday’s law, a problem first pointed out in
Ref. [205], and one that a rescaling of the electric-field operator does not solve. A more
general argument from [216] shows why this is the case whenever the electric field is
linear in the creation operators. This is because, using the following properties of the
creation and annihilation operators:

[â, f(â, â†)] =
∂f

∂â†
, [â†, f(â, â†)] = −∂f

∂â
, (C.25)

one can infer that the evolution of the magnetic-field operator under a nonlinear Hamilto-
nian with terms of degree N +1 will always be described by some function that contains
terms of degree N . However, if the electric field is linear in the creation and annihilation
operators so is the curl of this field, leading to the same problem as above.

Another non-physical prediction this approach makes can, as pointed out in Ref. [205],
be arrived at by finding the Heisenberg evolution of the electric field under the linear
Hamiltonian. Simply comparing with (C.24) without explicitly carrying out the calcu-
lation shows that

∂E

∂t
= c2(∇×B). (C.26)

Considering only the linear evolution of the magnetic field (C.10) the wave equation for
the electric field can be derived, using the same steps as in Section 2.4.1. Specifically,
by taking the curl of (C.24), substituting in (C.26) and using ∇ ·E = 0:

−∇×∇× (1 + χ(1))E = ∇× ∂B

∂t

⇐⇒ n2∇2E− n2∇(∇ ·E) =
∂

∂t
(∇×B)

⇐⇒ ∇2E =
1

n2c2
∂2E

∂t2
.

(C.27)

The solutions to this equation are waves that travel at nc > c, instead of the actual speed
c/n. To avoid these problems and recover Maxwell’s equations it is necessary to treat
the displacement field as fundamental, instead of the electric field. This is a reflection
of the fact that, in this macroscopic approach to quantization, one does not have pure
excitations of the electromagnetic field inside a medium, but instead joint light-matter
excitations.
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The alternative description, treating the displacement field as fundamental, appears
in the literature as well [448, 449, 450]. To begin, the Hamiltonian (2.4-77) needs to be
expressed in terms of the D-field. This can be done by Taylor expanding E in terms of
D:

Ei = β
(1)
ij Dj + β

(2)
ijkDjDk + · · · (C.28)

The tensors β(i) can be expressed in terms of the susceptibilities χ(j) by perturbatively
solving the Taylor expansion of D in terms of E [205]:

Di = ϵ0[(1 + χ
(1)
ij )Ej + χ

(2)
ijkEjEk + · · · ]. (C.29)

The lowest order β term is found by truncating the Taylor series after the first term and
solving for it:

Di = ϵ0(I + χ(1))ijEj

= ϵ0(I + χ(1))ijβ
(1)
jk Dk

⇐⇒ β(1) = [ϵ0(I + χ(1))]−1. (C.30)

The next term can now be found by truncating (C.29) one order higher, and substituting
in the first-order term of (C.28) in the second-order term of (C.29):

Dj = ϵ0(I + χ(1))jkEk + ϵ0χ
(2)
jklEkEl

= ϵ0(I + χ(1))jkEk + ϵ0χ
(2)
jklβ

(1)
kmDmβ

(1)
ln Dn.

(C.31)

Rearranging and applying β(1) gives

β
(1)
ij Dj − β

(1)
ij ϵ0χ

(2)
jklβ

(1)
kmDmβ

(1)
ln Dn = β

(1)
ij ϵ0(I + χ(1))jkEk

= Ei
(C.32)

Equating terms of equal order in the expression above and (C.28) one finds:

β
(2)
imn = −ϵ0β(1)ij χ

(2)
jklβ

(1)
kmβ

(1)
ln (C.33)

One then proceeds the same way for the higher-order terms. To find the Hamiltonian in
terms of the D-field, the Taylor series (C.28) has to be substituted into (2.4-77). Doing
this for the first-order term is straightforward:

ϵ0(I + χ(1))ijEiEj = ϵ0(I + χ(1))ijβ
(1)
ik Dkβ

(1)
jl Dl

= ϵ0β
(1)
ik DiDk.

(C.34)

The second-order term in the Hamiltonian receives contributions from the product of
first and second-order terms inserted into (2.4-77):

ϵ0(I + χ(1))ijEiEj = ϵ0(I + χ(1))ij(β
(1)
ik Dkβ

(2)
jlmDlDm + β

(2)
ikmDkDmβ

(1)
jl Dl)

= β
(2)
jlmDjDlDm + β

(2)
ikmDiDkDm,

(C.35)
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as well as the first-order term of the Taylor series (C.28) substituted into the second-
order term of the Hamiltonian:

ϵ0Ejχ
(2)
jklEkEl = ϵ0β

(1)
ij Djχ

(2)
jklβ

(1)
kmDmβ

(1)
ln Dn

= −β(2)iklDiDkDl.
(C.36)

Adding (C.35) and (C.36) with the weights from (2.4-77) gives

β
(2)
ijkDiDjDk −

2

3
β
(2)
ijkDiDjDk =

1

3
β
(2)
ijkDiDjDk. (C.37)

The Hamiltonian truncated after the second order therefore reads

H =

∫ (
B2

2µ0
+

1

2
β(1)D2 +

1

3
β(2)D3

)
d3r. (C.38)

It can be shown that the general expression for the n-th order D term is [216,451]:

H(n) =
1

n+ 1
β(n)Dn+1. (C.39)

The Hamiltonian can be quantized by introducing the annihilation operator [205]

âk,α(t) =
1√
ℏV

∫
d3re−ik·rêk,α ·

[√
ϵ0ωk
2

A(r, t)− i
1√

2ϵ0ωk
D(r, t)

]
, (C.40)

where, as before, êk,α is a polarization vector, V is the quantization volume and A is the
vector potential of B. The expressions for the field operators are found by inverting the
equation above, which can be done using the transverse delta function ∆⊥(r) introduced
in the previous section. To do this we multiply by (C.40) by êk,αeik·r

′ and sum:∑
k,α

êk,αe
ik·r′ âk,α(t) =

∑
k,α

êk,αe
ik·r′ 1√

ℏV

∫
d3re−ik·rêk,α · F(r, t), (C.41)

where
F(r, t) =

√
ϵ0ωk
2

A(r, t)− i
1√

2ϵ0ωk
D(r, t). (C.42)

Note that, since in the Coulomb gauge ∇ ·A = 0, both the vector potential and electric
displacement are transverse fields, and thus F⊥(r, t) = F(r, t). Moving the sum inside
the integral in (C.41) gives∑

k,α

êk,αe
ik·r′ âk,α(t) =

1√
ℏV

∫
d3r

∑
k,α

eik(r
′−r)êk,αêk,α · F(r, t)

=

√
V

ℏ

∫
d3r∆⊥(r′ − r)F(r, t)

=

√
V

ℏ
F(r′, t).

(C.43)
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Doing the same for the adjoint of (C.40) we find∑
k,α

êk,αe
−ik·r′ â†k,α(t) =

√
V

ℏ
F∗(r′, t)

=

√
ϵ0ωkV

2ℏ
A(r′, t) + i

√
V

2ℏϵ0ωk
D(r′, t).

(C.44)

The fields are now obtained by adding/subtracting (C.43) and (C.44), and solving for
them:

D(r, t) =
∑
k,α

i

√
ℏϵ0ωk
2V

êk,α

(
âk,α(t)e

ik·r − â†k,α(t)e
−ik·r

)
(C.45)

A(r, t) =
∑
k,α

√
ℏ

2ϵ0ωkV
êk,α

(
âk,α(t)e

ik·r + â†k,α(t)e
−ik·r

)
. (C.46)

Finally, the B-field is found by taking the curl of (C.46):

B(r, t) = ∇×A(r, t)

=
∑
k,α

i

√
ℏ

2ϵ0ωkV
(k× êk,α)

(
âk,α(t)e

ik·r − â†k,α(t)e
−ik·r

) (C.47)

It can be shown that this approach is self consistent, does satisfy Maxwell’s equations,
and avoids the various unphysical predictions that appear when directly quantizing the
electric field. As an example, we revisit the case of propagation in a linear medium.
Direct comparison with the calculations in the beginning of the section shows that

[Dj(r, t), Al(r
′, t)] = iℏ∆⊥

jl(r− r′), (C.48)

and thus

[Dj(r, t), Bk(r
′, t)] = iℏϵklm

∂

∂r′l
∆mj(r− r′). (C.49)

The steps for finding the equation of motion for the magnetic-field operator are therefore
exactly the same as before, and using the linear part of the Hamiltonian (C.38) we find

∂B

∂t
=
i

ℏ
[H,B] = −∇× β(1)D. (C.50)

For the displacement field we similarly get
∂D

∂t
=
i

ℏ
[H,D] =

1

µ0
∇×B. (C.51)

We can now derive the wave equation for the displacement field:

−∇×∇× β(1)D = ∇× ∂B

∂t

⇐⇒ β(1)∇2D =
∂

∂t
(∇×B).

(C.52)
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Figure C.1: Delta function on finite interval. Rearranging the interval so that the endpoints
overlap in the center of the new interval allows the two delta functions on the endpoints, pictured
here as narrow Gaussians, to act as a single delta function that can be integrated over.

Using β(1) = 1/(ϵ0n
2) and (C.51) we finally get

∇2D = ϵ0µ0n
2∂

2D

∂t2
=
n2

c2
∂2D

∂t2
. (C.53)

We thus see that the excitations of the now fundamental displacement field propagate
at the correct speed c/n inside the medium.

C.4 Delta function on finite interval
As shown in Section C.2, when considering a finite interval [0, L] with periodic bound-

ary conditions:
f(0) = f(L), (C.1)

The dirac comb ∑
n

δ(x− nL) = X(x) =
1

L

∑
k

ei2πkx/L (C.2)

acts as a delta function: ∫ L

0
X(x)f(x)dx = f(x). (C.3)

For the open interval (0, L) this follows from the fact that the terms in the left-hand
sum with |n| > 0 lie outside the interval, and the sum simply reduces to δ(x). However,
terms with n = ±1 overlap with the endpoints of the closed interval for x = L and x = 0,
respectively. This results in one-sided integrals over the delta function, for example∫ L

0
δ(x− L)f(x)dx, (C.4)

which are not defined. However, due to the periodic boundary condition one can, as
shown in Fig. C.1, translate the interval and combine the delta functions in the zeroth
and first order terms into a single delta function. Consider∫ L

0

[
δ(x) + δ(x− L)

]
f(x)dx

=

∫ L/2

0

[
δ(x) + δ(x− L)

]
f(x)dx+

∫ L

L/2

[
δ(x) + δ(x− L)

]
f(x)dx.

(C.5)
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The second (first) delta function in the first (second) integral always lies outside the
integration interval and can therefore be dropped. Let

t =

{
x+ L

2 if x ∈ [0, L/2)

x− L
2 if x ∈ [L/2, 1]

(C.6)

and

g(x) =

{
f(x+ L

2 ) if x ∈ [0, L/2)

f(x− L
2 ) if x ∈ [L/2, 1].

(C.7)

Performing the variable substitution gives∫ L

0

[
δ(x) + δ(x− L)

]
f(x)dx

=

∫ L/2

0
δ(x)f(x)dx+

∫ L

L/2
δ(x− L)f(x)dx

=

∫
[L/2,L)

δ(t− L

2
)f(t− L

2
)dt+

∫ L/2

0
δ(t− L

2
)f(t+

L

2
)dt

=

∫
[0,L)

δ(t− L

2
)g(t)dt = g(

L

2
) = f(0),

(C.8)

which shows that the dirac comb X(x) works as a delta function on the endpoints of
the interval as well.
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