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Abstract

Motivated by topological symmetries of quantum mechanics, we study 2-dimensional ex-
tended topological quantum field theories (TQFTs). A 2-dimensional extended TQFT
with orientation is a symmetric monoidal 2-functor F : Bordor2,1,0 → B. A class of

such theories is the state-sum TQFTs where the codomain B = Alg2
k
is the symmetric

monoidal 2-category of algebras, bimodules and bimodule maps. Fully dualisable ob-
jects in such a category are separable symmetric Frobenius algebras. The cobordism
hypothesis states that the full 2-subgroupoid of fully dualisable objects in Alg2

k
classify

2-dimensional oriented TQFTs. We explicitly show this classification.
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Abstrakt

Motiviert durch topologische Symmetrien der Quantenmechanik untersuchen wir zwei-
dimensionale erweiterte topologische Quantenfeldtheorien (TQFTs). Eine zweidimen-
sionale erweiterte TQFT mit Orientierung ist ein symmetrischer monoidaler 2-Funktor
F : Bordor2,1,0 → B. Eine Klasse solcher Theorien sind die Zustands-Summen-TQFTs,

wobei die Zielmenge B = Alg2
k

die symmetrische monoidale 2-Kategorie der Alge-
bren, Bimodule und Bimodulabbildungen ist. Vollständig dualisierbare Objekte in einer
solchen Kategorie sind separable symmetrische Frobenius-Algebren. Die Cobordismus-
Hypothese besagt, dass der volle 2-Untergruppoid der vollständig dualisierbaren Objekte
in Alg2

k
zweidimensionale orientierte TQFTs klassifiziert. Wir zeigen diese Klassifikation

explizit.
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1 Introduction

1.1 Motivation

The main subject of this thesis is 2-dimensional extended topological quantum field
theories (TQFTs). They are symmetric monoidal 2-functors from symmetric monoidal
2-category of extended bordisms to a symmetric monoidal 2-category. n-dimensional
bordisms between (n − 1)-dimensional smooth manifolds form an equivalence relation.
Such equivalence classes of bordisms form a bordism group with the disjoint union re-
garded as the group multiplication. The symmetric monoidal 2-category of extended
bordisms ‘categorifies’ bordism groups which are important notions in algebraic topol-
ogy. One can think of extended TQFTs as ‘representations of bordisms’ on algebraic
structures, generalizing representations of groups on vector spaces.

Among many applications listed at the end of this subsection, extended TQFTs encode
topological symmetries of quantum field theories (QFTs). Here, we motivate extended
TQFTs by giving an example of a 1-dimensional QFT, namely quantum mechanics, in
a language that can be ‘generalized’ to n-dimensional QFTs.

The reason for starting with quantum mechanics is as follows: higher categorical com-
putation involves systematically studying the intricate web of dots, arrows, and arrows
between arrows, extending indefinitely or stopping at a certain point. While the ele-
gance and enthusiasm of studying this may captivate some, it can also serve as a source
of frustration for others. However, when viewed through the lens of physics, it swiftly
transcends into a realm of profound philosophical depth. Weatherall provides a com-
pelling example, comparing Galilean space-time with Newtonian space-time, Newtonian
gravitation with geometrized Newtonian gravitation, Maxwell’s electromagnetism with
Yang-Mills theory, and geometric general relativity with Einstein algebras through a
forgetful functor [29]. Imagine the implications of a 2-functor!

In our current understanding of theoretical physics, any physical theory can be for-
mulated by some field theory. This is because of the fact that all fundamental forces we
know of are formulated in terms of field theories.

To motivate field theories from a physical point of view, we will relax mathematical
rigor in this subsection and start with an example of a quantum mechanical system.
A ‘quantum particle’ on a Riemannian manifold (N, g) ‘takes all paths’ between two
points with a statistical distribution, each of which has equal possibility in magnitude
but with a phase factor of ei/ℏS[x] where S[x] is the action functional. The probability
of a particle that was measured to be at p1 ∈ N at time t1 and will be measured at p2
at time t2 can be computed by the partition function Z(t1, p1; t2, p2). If N = Rn, we
consider the graph of paths divided into infinitesimal regions dx1 . . . dxn . . . and compute
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1 Introduction

the partition function

Z(t1, p1; t2, p2) =

∫ x(t2)=p2

x(t1)=p1

ei/ℏS[x]Dx (1.1)

where the measure Dx = dx1dx2 . . . dxndxn+1 . . . is possibly ill-defined. If we take space
to be discrete so that the integral becomes a sum, the phase factor in the integral leads
to the assumption that the action can be written as S[x] =

∑
i S(xi, xi+1) and that

S(xi, xi+1) = δS|ti+1

ti
which means that the particle takes the classical path in a small

interval extremizing the action.
This is the path integral approach to canonical quantization using the Lagrangian of

the system. This approach can be made precise using random walk techniques with the
stochastic measure [13, Section 2]. We can switch to Hamilton’s formalism by computing
the path integral for Z(t1, p1, t, x(t)) and see that this integral is proportional to the wave
function [10, Section 5].
Equivalently, one can use Hamilton’s point of view for quantization in the first place

in which one replaces Poisson brackets with commutators. The fact that a quantum
particle follows the classical path in the infinitesimal regions allows us to consider the
Hamiltonian which is constant of motion under time translation as a time translation
generator and leads to the Schrödinger equation in the non-relativistic case

iℏ
∂ψ

∂t
= Hψ (1.2)

where ψ ∈ H denotes the wave function belonging to the Hilbert space H = L2(N,µg).
The Hilbert space is the space of possibly infinite dimensional square integrable com-
plex functions on (N, g) with the measure µg. The 1-parameter group of unitary au-
tomorphisms of the Hilbert space U(t) = e−it/ℏH ∈ Aut(H) generated by the Hamilto-
nian together with an initial state ψ(x, 0) gives a solution to the Schrödinger equation
ψ(x, t) = e−it/ℏHψ(x, 0).
To summarize physical ideas developed above, the data which precisely defines a quan-

tum mechanical system is a Hilbert space H and a self-adjoint operator H. We observe
that the background field (N, g) is used in the path integral ‘to sum over paths in N ’ to
form the Hilbert space. The time translation operator U(t) depends on the Hamiltonian
and the magnitude of t. It has the property that U(t2 + t1) = U(t2) ◦ U(t1). This is
the causality/locality principal which is a fundamental principal of physics and all phys-
ically relevant field theories. Furthermore, it is associative and limϵ→0U(ϵ) = idH. In
addition, if we have N particles moving on (N, g) without interaction, their state-space
can be described by the tensor product of N copies of the Hilbert spaces. This is the
superposition principal of fields and waves.
This motivates us to model quantum mechanics as a monoidal functor from some

monoidal category of 1-dimensional geometries to some monoidal category of algebras.
A category consists of objects together with a set of morphisms between pairs of objects
such that morphisms are composable, for every object there is an identity morphism
and the composition is associative. A functor between two categories assigns objects to
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1.1 Motivation

objects, morphisms to morphisms, identities to identities, such that this assignment is
compatible with compositions of both categories. This means that a functor F : A → B
satisfies F (g ◦A f) = F (g) ◦B F (f). For detailed introduction to categories, readers
may refer to [19], [20]. Monoidal categories and functors will be discussed in Section
2.1.1. For now, we regard a monoidal structure on a category as disjoint union of
geometrical/topological spaces or tensor product of algebraic spaces in which the empty
set and the ground field are monoidal units, respectively. A monoidal functor is a functor
that respects the monoidal structure.
Therefore, the monoidal functor definition of quantum mechanics essentially captures

causality and superposition principals. This is important because causality and superpo-
sition principles are fundamental concepts in physics. Physicists often construct possi-
bly ill-defined complicated theories from better understood simpler theories by relaxing
some axioms and keeping more fundamental ones. This suggests that an n-dimensional
(quantum) field theory should be a monoidal functor from a monoidal category of n-
dimensional geometries to a monoidal category of algebras.
Next, we discuss the domain of this functor. Roughly, it is a geometric category

BordRiem,or1,0 whose objects are oriented points and morphisms are 1-dimensional oriented
manifolds of length t, composition is gluing of 1-manifolds along their common boundary
(points) and disjoint union is the monoidal product, empty set is the monoidal unit.
The issue here is gluing. First of all, we cannot smoothly glue 1-manifolds along a point;
we need to define objects as points together with collars that are germs embedded in
1-dimensional Rimeannian manifolds. Such germs, in fact, capture infinitesimal time
translation, i.e. the Hamiltonian. This lets us to define a smooth composition but it
is still not associative since there is no unique smooth structure on the glued manifold.
However, as it will be discussed in Section 3.1, this is sufficient to define a topological field
theory by taking diffeomorphism classes of 1-bordisms. Here, in the geometrical case,
one needs a certain equivalence class of morphisms to have a well-defined associative
composition. Furthermore, to define a sensible quantum mechanical system, one needs
to include a background field (N, g) which represents space-time. This is achieved by
endowing 1-dimensional bordism category with sheaves and stacks smoothly attached to
every small neighborhood of 1-manifolds. This can be thought as smooth fibering over
a dynamical 1-dimensional manifold in which fields live in, and gluing can be defined by
fiber products. An interested reader is referred to a recent paper [24].
The codomain is the category of Hilbert spaces where objects are Hilbert spaces,

morphisms are linear maps respecting the structure of the Hilbert space [16]. To sum
up, a quantum mechanical system is a monoidal functor F : BordRiem,or(N, g) → Hilb:

• A point with a + orientation is mapped to a Hilbert space H and negatively
oriented point is mapped to the dual space H∗.

• A bordism with length τ between two points is mapped to a Wick-rotated linear
map U(τ) = e−iτH/ℏ.

• Gluing of 1-manifolds is mapped to composition of linear maps

• The monoidal unit ∅ is mapped to the ground field C.
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1 Introduction

• The disjoint union is mapped to the tensor product.

We now take our attention to symmetries. Traditionally in physics literature, symmetries
are understood as a set of invertible tranformations of the model that leaves the action
functional invariant. There are two types of symmetries. First, symmetries of space-time
e.g. group of isometries of a Riemannian manifold. Second, internal symmetries that
are internal to the model e.g. U(1)-symmetry of electromagnetism.

Classically, the Noether procedure associates conserved quantities (Noether charges)
to symmetries. In quantum systems, on the other hand, a Noether charge is treated as
an operator on the Hilbert space as a generator of the symmetry that commutes with
the Hamiltonian.. More precisely, an invertible symmetry in a quantum mechanical
system is expressed by a Lie group G together with a representation ρ : G → GL(H)
such that elements of representation of its Lie algebra commute with the Hamiltonian.
Let g be the Lie algebra of G and ρ′ : g → GL(H) be its representation on the Hilbert
space. The Hamiltonian commutes with elements of representations of the Lie algebra:
[H, ρ′(L)] = 0 for all L ∈ g. Here, ρ′(L) corresponds to the Noether charge.

The case we are interested in is internal topological symmetries, including non-invertible
symmetries. Since we described quantum mechanical system ‘globally’, such symmetries
appear more naturally. A non-invertible symmetry amounts to ‘a group without in-
verses’, thus, an algebra (Definition 2.1.2), and a representation amounts to modules
over algebras (Definition 2.1.7). To make this connection clearer, we consider the group
algebra of a finite group in Example 2.1.9 and see that modules over group algebras are
precisely the representations of groups. We expect a non-invertible topological symmetry
of a quantum mechanical system to be an algebra A together with a left A-module (H, l),
where l : A⊗H → H is the left A-action, such that it commutes with the propagator in
the sense that U(t) ◦ l = l ◦ (1A ⊗ U(t)) as maps A⊗H → H.

In functorial words, let F be a 1-dimensional quantum field theory with F (+) = H,
let A be a C-algebra and let A be a right A-module over itself. The A-symmetry on H
can be realized as the ‘sandwich’

A⊗A H ∼= H (1.3)

where ⊗A is the relative tensor product defined in Definition 2.2.3. Furthermore, if B is
another algebra of a symmetry of the Hilbert space, both symmetries can be expressed
as (A⊗B)⊗A⊗B H ∼= H.

Turns out that such topological symmetries of n-dimensional field theories are ‘con-
trolled’ by (n + 1)-dimensional extended topological field theories. We already en-
countered an example of a topological quantum field theory by taking diffeomorphism
classes of bordisms in dimension 1. Topological field theories are mathematically well-
understood, easier to work with as there is no geometrical structure like length or Rie-
mannian metric on the bordism category. However, they can be endowed with extra
topological structures like orientation, topological groups, or more general tangential
structures. An n-dimensional topological quantum field theory is a symmetric monoidal
functor from n-dimensional bordism category to a symmetric monoidal target category
which we can take to be the category of vector spaces (Definition 3.3.1).
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1.1 Motivation

To accommodate extended TQFTs, higher categories are necessary. A 2-category, in
addition to objects and (1)-morphisms of a category, introduces an additional layer of
composable 2-morphisms, ensuring compatibility with the axioms of 1-morphisms. Just
as with 1-categories, 2-categories can be endowed with a monoidal structure, subject
to appropriate compatibility conditions. Section 2.2 delves into the discussion of sym-
metric monoidal 2-categories. One can iterate this by endowing (n − 1)-category with
n-morphisms to get an n-category.

Extending the previously discussed n-dimensional symmetric monoidal bordism cate-
gory to a symmetric monoidal 2-category involves allowing the boundaries of n-manifolds
to possess codimension 2 corners. Roughly, (Bordn,n−1,n−2,⊔, ∅) is a symmetric monoidal
2-category, where objects are (n− 2)-dimensional manifolds, 1-morphisms are manifolds
with boundaries, and 2-morphisms are n-manifolds with boundary and corners. Ex-
tended TQFTs, are symmetric monoidal 2-functors from this bordism category. One
can continue this extension further all the way to codimension n corners, to get a fully
extended bordism category Bordn+1,n,...1.

Motivated by this, consider following schematic

∼=

σρ FF̃

θ
(1.4)

Following the notation of [5], σ : BordFn+1,n,...,1→C is an (n + 1)-dimensional fully
extended TQFT with tangential structure F , ρ is the topological right regular boundary
theory, F̃ is an n-dimensional possibly geometrical left boundary theory, F is the n-
dimensional quantum field theory. The tuple (σ, ρ) is the abstract symmetry data, (F̃ , θ)
is the concrete realization of the symmetry (σ, ρ). Topological (also called categorical,
generalized) symmetries of a quantum field theory is encoded in

ρ⊗σ F̃ ∼= F (1.5)

In this thesis, we understand this general statement in the case σ : Bordor2,1,0 → Alg2C
is an oriented extended TQFT. Alg2C is the symmetric monoidal 2-category of algebras,
bimodules and bimodule maps. Such extended TQFTs with target Alg2C are classified
by separable symmetric Frobenius algebras by the cobordism hypothesis and are called
state sum (or semi simple) models. We will discuss state sum construction in Example
3.3.4.

Let now σ(+) = A be a separable symmetric Frobenius algebra, ρ(+) = AA : A → C
and F̃ (+) = AH : C → A are 1-morphisms, F (+) = H is the quantum mechanical
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1 Introduction

system we partially defined. The A symmetry of the quantum mechanical system is
encoded in (1.3).

Equation (1.5) lets us study symmetries of possibly ill-defined n-dimensional field
theories in an (n + 1)-dimensional topological field theory setting which is well-defined
and studied extensively in the mathematics literature. Moreover, topological defects can
be encoded in this formalism. An introduction to defects can be found here [4].

In addition to this, studying 2-dimensional extended TQFTs provides a rich frame-
work for understanding mathematical structures such as manifolds, knots, and invari-
ants. They offer a rigorous mathematical formalism to study topological properties of
spaces and their invariants, which has applications in various branches of mathematics,
including topology, geometry, and algebraic geometry. TQFTs also serve as toy models
for understanding QFTs. 3-dimensional TQFTs through Chern Simons - Reshetikhin
Turaev theory relates Jones polynomials of knot invariants to field theories [30].

Moreover, 2-dimensional TQFTs, in particular, can describe certain phases of matter,
such as topological insulators and topological superconductors, which exhibit interesting
quantum properties and potential applications in quantum computing and electronics.
Their application include fractional quantum Hall effect. [13] applies TQFTs to classify
invertible gapped phases of matter.

Finally, studying TQFTs can reveal deep connections between seemingly distinct phys-
ical theories through dualities and symmetries. These connections lead to new insights
into the nature of quantum field theories and their behavior under different conditions.

1.2 Outline

Section 2.1 includes a review of symmetric monoidal categories and functors with graph-
ical calculus. Two examples k-vector spaces and k-algebras are presented and used to
generalize to the symmetric monoidal category of algebras over a monoidal category C.
Later, Frobenius algebras, semi-simple algebras and their center and modules are de-
fined. Examples of matrix algebras and group algebras are discussed and finally duality
in general symmetric monoidal 2-categories is defined.

In Section 2.2, we move one dimension higher and first define 2-categories, followed
by symmetric monoidal 2-categories. Even though the data of symmetric monoidal cat-
egories are very complicated, they can be precisely presented by 3-dimensional graphics.
An example of a symmetric monoidal 2-category is algebras, bimodules and bimodule
maps, also known as the Morita category denoted by Alg2

k
, which is constructed in de-

tail. Furthermore, fully dualisable objects of a symmetric monoidal 2-category is defined
and shown that in the case of Morita category, they correspond to separable symmetric
Frobenius algebras.

In chapter 3, we turn to topology. In Section 3.1, firstly n-dimensional manifolds with
boundary and the bordism category Bordn,n−1 are defined. Secondly, we define orien-
tation and restrict our attention to 2-dimensional case in which we have comprehensive
classification results. Thirdly, we extend our discussion to n-dimensional manifolds with
boundary and corners of codimension 2. We explore horizontal and vertical gluing to

6



1.2 Outline

define the once-extended symmetric monoidal 2-category of Bordn,n−1,n2 . Fourthly, we
return to dimension 2 and provide generators-relations description of Bordor2,1,0.
In Section 3.2, we generalize orientation to an arbitrary group structure on the bor-

dism category. To do so, we define principal fiber bundles and demonstrate that the cat-
egory of principal G-bundles over a manifold M and bundle morphisms form a groupoid
BunGM . Isomorphism classes of principal G-bundles are shown to be in bijection with
the homotopy class of continuous maps [M,BG], where BG is the classifying space of
the group G. Consequently, we endow the bordism category with a G-structure.
In Section 3.3, we define TQFTs and give classification results. An n-dimensional

closed TQFT with a G-structure is a symmetric monoidal functor F : BordGn,n−1 → C.
1-dimensional oriented TQFTs are classified by full subcategory of dualisable objects
in C. This is 1-dimensional cobordism hypothesis. In dimension 2, closed TQFTs are
classified by commutative Frobenius algebras. The heuristic description of state sum
models are given. They are formed by taking center of a semisimple algebra and they
may be used as a playground to understand algebraic, geometric and gauge theoretic
aspects as they include Dijkgraaf-Witten theories when the semisimple algebra is the
group algebra of a finite group G.
Lastly, n-dimensional once extended TQFTs are defined and a sketch proof of classifi-

cation of the oriented theory in dimension 2 with target Alg2
k
is presented. Such TQFTs

are classified by full subcategory of fully dualizable objects in Alg2
k
, that is, separable

symmetric Frobenius algebras. The proof is the direct result of generators and relations
description of the 2-dimensional extended bordism category. This is the 2-dimensional
cobordism hypothesis and the main topic of this thesis. 1 and 2-dimensional classifica-
tion results are special situation of more general hypothesis [25] in the (∞, n)-setting. It
is the cobordism hypothesis which states that a fully extended TQFT, that is, an (∞, n)
functor F : BordG∞,n → C is fully determined by its value on a point.

7





2 Categorical and Algebraic Preliminaries

2.1 Symmetric Monoidal Categories

In this section, symmetric monoidal categories are defined with duals and graphical
calculus.

2.1.1 Definitions and Examples

We start with a review of symmetric monoidal categories and functors which describe
closed topological quantum field theories. Additionally, we introduce graphical calculus
as a precise representation of categories. For readers seeking a foundational understand-
ing of category theory, a comprehensive introduction is available in [22]. Those interested
in a detailed exploration of symmetric monoidal categories and functors can refer to the
works of [20] and [17].

Let C be a category. Objects and morphisms of C can diagramatically be represented
by points and lines with labels. Composition of morphisms are read from bottom to top
which we may interpret as the arrow of time. For A,B,C ∈ C, and ϕ ∈ HomC(A,B)
and ψ ∈ HomC(B,C), composition of morphisms is depicted as

=

A

C

A

B

C

ϕ

ψ

ψ ◦ ϕ (2.1)

whereas identity morphism 1A ∈ HomC(A,A) is identified with the object 1A=̂A.

A monoidal category is roughly a category endowed with a (weakly) associative unital
product. More precisely, a monoidal category is a tuple (C,⊗,1, α, l, r):

i. C is a category.

ii. ⊗ : C × C −→ C is a functor called monoidal product.

iii. 1 ∈ C is an object called monoidal unit.

iv. There is a family of natural isomorphisms; associators αA,B,C : (A ⊗ B) ⊗ C −→
A ⊗ (B ⊗ C) for all A,B,C ∈ C, left and right unitors lA : 1 ⊗ A → A and
rA : A⊗ 1→ A for all A ∈ C,

9



2 Categorical and Algebraic Preliminaries

such that the pentagon and the triangle diagrams commute [17, Def. 1.2.1]. These
diagrams ensure that associatiors and unitors are compatible.

We will omit associators and unitors in the notation and refer to a monoidal category
as (C,⊗,1) or just C.

A monoidal functor between two monoidal categories (C,⊗,1) and (C′,⊗′,1′) con-
sists of

i. a functor F : C → C′,

ii. natural isomorphisms ϕA,B : F (A)⊗′ F (B) → F (A⊗B) for all A,B ∈ C,

iii. a natural isomorphism ϕ : 1′ → F (1)

such that one hexagon and two rectangular diagrams commute [17, Def. 1.2.14].
These commutative diagrams ensure that natural isomorphisms are compatible
with monoidal structures of both categories.

Monoidal categories (C,⊗,1) and (C′,⊗,1) are monoidally equivalent if there are
monoidal functors F : C → C′, G : C′ → C such that G ◦ F ∼= IdC and F ◦ G ∼= IdC′

where Id stands for identity monoidal functor from monoidal category to itself. By
[8, Theorem2.8.5], any monoidal category is monoidally equivalent to a strict monoidal
category where all associators and unitors are replaced by equality signs and coherence
axioms are redundant. Thus, disregarding associators and unitors is justified without
loss of generality.

Let (C,⊗,1) be a monoidal category. For objects A,A′, B,B′ ∈ C and morphisms
ϕ : A→ A′, ψ : B → B′, the monoidal product of objects and morphisms is depicted by

A

A′

B

B′

ϕ ψ =

A⊗B

A′ ⊗B′

ϕ⊗ ψ (2.2)

A monoidal category is called braided if there exists a braiding, that is, natural
isomorphisms βA,B : A ⊗ B −→ B ⊗ A for all A,B ∈ C such that one triangle, two
hexagon diagrams commute ensuring that braiding is coherent with associators and
unitors of the monoidal category [17, Eq. 1.2.36-37-38]. A braided monoidal category is
called symmetric if βA,B = β−1

B,A.

The braiding is graphically depicted by over and under crossings of diagonal lines
representing objects. If the braided monoidal category is symmetric (which is what we
are interested in for TQFTs), then over and under crossings are not distinguished. For

10



2.1 Symmetric Monoidal Categories

A,B ∈ C, βA,B is depicted as

A B

B A

βA,B (2.3)

A braided monoidal functor F : (C,⊗,1, β) → (C′,⊗′,1′, β′): between braided
monoidal categories is a monoidal functor such that one triangle and one hexagon di-
agram commutes [17, Eq. 1.2.27-28]. These diagram ensure that the braiding is com-
patible with natural isomorphisms of associators and unitors of the monoidal category.
If braided monoidal categories C and C′ are symmetric, then we call F a symmetric
monoidal functor.

Let (C,⊗,1) and (C′,⊗′,1′) be monoidal categories. A natural transformation between
two monoidal functors F, F ′ : C → C′ is called a monoidal natural transformation if
it respects monoidal structures. This means that the rectangular diagram for monoidal
products and the triangle diagram for monoidal units commute [17, Eq. 1.2.20].

Example 2.1.1.

i. Symmetric monoidal category of vector spaces (V ectk,⊗,k): Objects are k-vector
spaces and morphisms are linear maps. The monoidal product is the tensor product
of vector spaces and the ground field k is the tensor unit. Associators are the
canonical isomorphisms (V1 ⊗ V2)⊗ V3 ∼= V1 ⊗ (V2 ⊗ V3) for all V1, V2, V3 ∈ V ectk,
left-right unitors are V ⊗ k ∼= V ∼= k⊗ V for all V ∈ V ectk. It is also symmetric
monoidal category since we have canonical isomorphisms V1 ⊗V2 ∼= V2 ⊗V1 for all
V1, V2 ∈ V ectk.

ii. Symmetric monoidal category of k-algebras (Algk,⊗,k): Objects are associative
unital k-algebras, that is a tuple (A,µ, η) where A ∈ V ectk is a vector space together
with a linear map (µ : A⊗A→ A), denoted by (a1⊗a2 7→ a1.a2) with a unit (k→
A, 1 7→ e) such that a.e = a = e.a for all a ∈ A and (a1.a2).a3 = a1.(a2.a3) for
all a1, a2, a3 ∈ A, and morphisms are linear maps that preserve algebra structure,
ξ : V → V ′ in V ectk such that ξ(v1.v2) = ξ(v1).ξ(v2) and ξ(e) = e′. The monoidal
product is the tensor product of underlying vector spaces where the multiplication
in the tensor product space defined by ((a1 ⊗ a2)⊗ (a′1 ⊗ a′2)) 7→ (a1.a

′
1)⊗ (a2.a

′
2).

The tensor unit is the ground field k viewed as a k-algebra over itself. The natural
isomorphisms are induced from that of V ectk.

Note that an object of Algk is defined by a vector space V , together with an associative
unital multiplication V ⊗ V → V . Next, we generalize k-algebras to algebras over any
(symmetric) monoidal category.

11



2 Categorical and Algebraic Preliminaries

Definition 2.1.2. Let (C,⊗,1) be a symmetric monoidal category. (Alg(C),⊗,1) is a
monoidal category whose objects are tuples (A,µ, η) where A ∈ C, multiplication µ and
unit η are morphisms in C

A A

A

= µ : A⊗A→ A,

A

= η : 1→ A (2.4)

such that multiplication is associative and unital

A A

A

µ = µ

µ

A A A

A

A

,

A

=

A

AA

(2.5)

and morphisms are morphisms of C with the following compatibility condition: for A,B ∈
C, ϕ ∈ HomAlg(C)(A,B) is a morphism in C such that

A

=

A A A

BB

ϕ

ϕϕ

, =

BB

ϕ (2.6)

Multiplication and unit are defined on monoidal product pointwise, i.e. for A,B ∈
Alg(C), µA⊗B = µA ⊗ µB and ηA⊗B = ηA ⊗ ηB.

In this notation, the category of ordinary k-algebras is Algk = Alg(V ectk).
A coalgebra (A,∆, ϵ) in C is an object A ∈ C together with morphisms in C

AA

A

= ∆ : A→ A⊗A ,

A

= ϵ : A→ 1 (2.7)

such that comultiplication is coassociative and counital

A

=

AA

A A

A A A

,

A

A

= =

A

AA

A

(2.8)
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2.1 Symmetric Monoidal Categories

Let (C,⊗,1) be a monoidal category and κ ∈ HomC(A ⊗ A′,1) be a morphism. κ is
called a non-degenerate pairing if for all B,C ∈ C, the map between morphisms

HomC(C,B ⊗A) → HomC(C ⊗A′, B)

κ

C

B A

C A′

B

(2.9)

is an isomorphism.

Definition 2.1.3. Let (C,⊗,1, β) be a symmetric monoidal category and (A,µ, η) ∈
Alg(C) be an algebra over C. A Frobenius algebra is a tuple (A,µ, η, κ) where

A A

= κ : A⊗A→ 1 (2.10)

is a non-degenerate pairing compatible with the multiplication in the sense that

A A

µ = µ

A A AA

(2.11)

A Frobenius algebra is called symmetric if κ = κ ◦ β.

Lemma 2.1.4. Let (A,µ, η) ∈ Alg(C). Then the following are equivalent:
1 - (A,µ, η, κ) is a Frobenius algebra.
2 - (A,µ, η,∆, ϵ) is both an algebra and coalgebra such that the Frobenius relations hold

A

= =

A

A

A

A A

A

A A

A A

(2.12)

Proof. follows from [20, Lemma 2.2.4 and Proposition 2.3.24]

Definition 2.1.5. Let (C,⊗,1, β) be a symmetric monoidal category.

i. (FrobAlg(C),⊗,1) is a symmetric monoidal category. Objects are Frobenius alge-
bras, a mophism from (A,µ, η, κ) to (A′, µ′, η′, κ′) is an algebra morphism compat-
ible with the Frobenius pairing; κ′ ◦ (f ⊗ f) = κ.

13



2 Categorical and Algebraic Preliminaries

ii. (cFrobAlg(C),⊗,1) is a symmetric monoidal category where objects are commuta-
tive Frobenius algebras, that is, (A,µ, η, κ) ∈ FrobAlg(C) such that µ = µ ◦ β and
morphisms are induced from FrobAlg(C).

Definition 2.1.6. Let (C,⊗,1) be a symmetric monoidal category.

i. A Frobenius algebra (A,µ, η,∆, ϵ) is called ∆-separable if µ ◦∆ = 1A.

ii. (ssFrob(C),⊗,1) is a symmetric monoidal category whose objects are ∆-separable
symmetric Frobenius algebras and morphisms are algebra morphisms compatible
with the ∆-separable symmetric Frobenius structure and monoidal product is in-
duced from C.

Definition 2.1.7. Let (C,⊗,1) be a monoidal category and let A,B ∈ Alg(C). An
A-B bimodule is a tuple (M,λ, ρ), where M ∈ C together with left and right actions,
in other words, morphisms in C

A M

M

= λ : A⊗M →M,

M

M

B

= ρ :M ⊗B →M (2.13)

such that left and right actions commute

M

M

=

M

M

B BA A

(2.14)

and compatible with the multiplication

A M

M

A

=

A A M

M

,

M

M

=

M

M

B B B B

(2.15)

and the unit

M

M

=

M

M

,

M

M

=

M

M

(2.16)
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2.1 Symmetric Monoidal Categories

A-B bimodules form a category denoted by AModB whose objects are A-B bimodules,
and morphisms between two objectsM,M ′ ∈ AModB are bimodule maps, i.e. morphisms
ξ :M →M ′ in C such that

M

=

M

M′ M′

ξ

ξ

A A

,

M

=

M

M′ M′

ξ

ξ

B B

(2.17)

A left A-module is anA-1 bimodule denoted byMod(A) or AMod, and a right B-module
is an 1-B bimodule denoted by ModB.

An algebra (A,µ, η) can be viewed as a left (or right) module over itself with the
multiplication µ viewed as a left (or right) action on A ∈ AMod (or ModA).

Let A be a k-algebra and M ∈Mod(A) be a left A-module. M is called simple if for
each m ∈ M \ {0}, the action of A on the point m spans M i.e. A.m = M . In other
words, there is only one orbit so that the action is transitive. An algebra A is called
simple if it is simple as a left A-module.
An A-moduleM is called semisimple if it can be written as a direct sum of simple A-

modules. Similarly, an algebra is called semisimple if it is semisimple as a left A-module.
The center of an algebra A is Z(A) = HomA,A(A) = {a ∈ A|a.b = b.a}∀b ∈ A. If A is

a Frobenius algebra, Z(A) is also a Frobenius algebra since for all a, b ∈ Z(A), µ(a, b) ∈
Z(A), ∆(a) ∈ Z(A) ⊗ Z(A) and the unit η is by definition commutative and therefore
in Z(A). Moreover, Z maps algebras to (commutative) algebras, Frobenius algebras to
(commutative) Frobenius algebras, separable algebras (which will be defined in (2.2.8))
to (commutative) separable algebras. However, it is not a functor since a morphism
f : A → B restricted to Z(A) is not necessarily mapped to Z(B). Nevertheless, it is
shown in [6] that it can be made into a lax functor between appropriate bicategories.
The center of a semisimple algebra is what a state sum model TQFT assigns to an object
as we will discuss in Section 3.

Example 2.1.8. Let (Mn(k), µ, η) be the algebra of (n × n) matrices where µ is the
matrix multiplication and the unit η = 1n is the matrix with all entries zero, but diagonal
entries are 1. It is simple since any left A-module is of the form k

n. If k = C (or
any algebraically closed field), then by the Artin-Wedderburn theorem any semisimple
C-algebra A is isomorphic to direct sum of Matrix algebras:

A ∼=
r⊕
i=1

Mni(C) (2.18)

Take A =
⊕r

i=1Mni(C) and let Eijk be an (nk × nk) matrix for each value of k ∈
{1, . . . , r}, whose only non-vanishing entry is ith row and jth column with value 1.

15



2 Categorical and Algebraic Preliminaries

Clearly, they form a basis of Matnk
(C). It is sufficient to determine values of the maps

on the basis.
Any element a ∈ A is of the form

a =

nu∑
i,j=1

r∑
u=1

αijuEiju (2.19)

for some αijk ∈ C.
Let A =

⊕r
i=1Ai with Ai = Mni(C) simple algebras as above and let Vi = Cni be

ni-dimensional vector spaces. It is clear that V1, . . . , Vr are simple left A-modules where
Aj acts on Vi trivially for i ̸= j and Vi is also simple left Ai-module for all i ∈ {1, . . . , r}.
Therefore, the simple algebra Ai can be written as, Ai = niVi direct sum of ni copies of
Vi’s for ni ∈ Z+ and the semisimple algebra becomes A =

⊕r
i=1 niVi.

Furthermore, by [9, Theorem 3.3.1], we see that any finite dimensional left A-module
M is isomorphic to direct sum of arbitrary multiplicities of simple left A-modules:

M ∼=
r⊕
i=1

αiVi (2.20)

for some αi ∈ Z+.
If B ∼=

⊕r
j=1Mdi(k), any finite dimensional A-B bimodule M ∈ AModB of semisim-

ple algebras A ∼=
⊕r

i=1Mni(k) and B
∼=

⊕r
j=1Mdi(k) is of the form

M ∼=
r⊕

i,j=1

αiαjk
ni ⊗ k

di (2.21)

for some αi, αj ∈ Z+.
Multiplication and unit in terms of this basis are

µ : A⊗A→ A

(Eiju ⊗ Eklv) 7→ δu,vδj,kEilv (2.22)

η : k→ A

1 7→
r∑

u=1

1nu (2.23)

Matrix algebras can be endowed with the Frobenius algebra structure. Define a comulti-
plication and a counit map by

∆ : A→ A⊗A

Eiju 7→
nu∑
k=1

1

nu
Eiku ⊗ Ekju (2.24)

16



2.1 Symmetric Monoidal Categories

ϵ : A→ k

nu∑
i,j=1

r∑
u=1

αijuEiju 7→
r∑

u=1

nk∑
i=1

αiiunu (2.25)

Note that ϵ is the usual trace of matrices and non-degenerate pairing is κ = ϵ ◦ µ.
The Frobenius relations hold:

A⊗A
∆⊗1A−−−−→ A⊗A⊗A

1A⊗µ−−−→ A⊗A

(Eiju ⊗ Eαβγ) 7→ (

nu∑
k=1

1

nu
Eiku ⊗ Ekju)⊗ Eαβγ 7→ δjαδuγ

nu∑
k=1

1

nu
EikuEkβu (2.26)

A⊗A
µ−→ A

∆−→ A⊗A

(Eiju ⊗ Eαβγ) 7→ δuγδjαEiβu 7→ δuγδjα

nu∑
i=1

1

nu
Eiku ⊗ Ekβu (2.27)

A⊗A
1A⊗∆−−−−→ A⊗A⊗A

µ⊗1A−−−→ A⊗A

(Eiju ⊗ Eαβγ) 7→ Eiju ⊗ (

nu∑
k=1

1

nγ
Eαkγ ⊗ Ekβγ) 7→ δuγδjα

nγ∑
k=1

1

nγ
Eikγ ⊗ Ekβγ (2.28)

are equal. In fact, any map Eiju 7→ αEiku ⊗ Ekju for some α ∈ C and 1 ≤ k ≤ nu
satisfies Frobenius relations, thus, can be taken as ∆. However, the ∆ we chose satisfies
∆-separability condition:

µ ◦∆(Eiju) =

nu∑
k=1

1

nu
δuuδkkEiju = Eiju (2.29)

Multiples of units are the center of matrix algebras. In other words, any a ∈ Z(A) is
of the form a =

∑r
i=1 αi.1n for some αi ∈ C. The restriction of µ, η,∆, ϵ to the center

endows Z(A) with commutative Frobenius algebra structure.

Example 2.1.9. Let G be a finite group with neutral element e and A = C[G] =
{
∑

g∈G κg.g|κg ∈ C} group algebra with multiplication and unit

µG : A⊗A→ A

(
∑
g∈G

κgg,
∑
h∈G

κ′hh) 7→
∑
g,h∈G

κgκhg.h (2.30)

η : C → A

1 7→ e (2.31)
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2 Categorical and Algebraic Preliminaries

Group algebras can be endowed with a Frobenius structure:

∆ : A→ A⊗A

h 7→ 1

|G|
∑
g∈G

h.g ⊗ g−1 (2.32)

ϵ : A→ C∑
g∈G

kgg 7→
∑
g∈G

kg (2.33)

Frobenius relations hold since

(a⊗ b)
1A⊗∆7−−−−→ 1

|G|
∑
g∈G

a⊗ b.g ⊗ g−1 µ⊗1A7−−−→ 1

|G|
∑
g∈G

a.b.g ⊗ g−1 (2.34)

(a⊗ b)
µ7−→ a.b

∆7−→ 1

|G|
∑
g∈G

a.b.g ⊗ g−1 (2.35)

(a⊗ b)
∆⊗1A7−−−−→ 1

|G|
∑
g∈G

a.g ⊗ g−1 ⊗ b
1A⊗µ7−−−→ 1

|G|
∑
g∈G

a.g ⊗ g−1.b (2.36)

are equal since
∑

g∈G g ⊗ g−1 commutes with all other elements of the group algebra.
C[G] is ∆-separable since

µ ◦∆(h) =
1

|G|
∑
g∈G

h.g.g−1 = h (2.37)

The center of the group algebra Z(C[G]) is therefore ∆-separable commutative Frobe-
nius algebra. Since characteristic of G does not divide |G| in the complex setting, then
C[G] is semisimple by Maschke’s theorem and by the Artin Wedderburn theorem:

C[G] ∼=
r⊕
i=1

Matni(C) (2.38)

for some r ∈ N. Group algebra is |G|-dimensional vector space and therefore |G| =∑r
i=1 n

2
i . This relation determines r. Therefore, the center of the group algebra is r-

dimensional.

Modules are representations of algebras. If A = k[G] is the group algebra of a finite
group G, then left A-modules can be identified with group representations of G (see [7,
Proposition 2.41]).

2.1.2 Duality

We now define duality in a (symmetric) monoidal category. Even though the braiding
and the symmetry property are not needed for this definition, we require symmetry
explicitly since TQFTs which are the main interest of this thesis are symmetric monoidal.
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2.1 Symmetric Monoidal Categories

Definition 2.1.10. Let (C,⊗,1) be a (symmetric) monoidal category. Left and right du-
ality data for an object A ∈ C is (A, ∨A, evA, coevA) and (A,A∨, ẽvA, c̃oevA), respectively
where A∨, ∨A ∈ C. Evaluation and coevaluation maps are morphisms in C

A∨A

= evA : ∨A⊗A→ 1

A ∨A

= coevA : 1→ A⊗ ∨A (2.39)

A∨A

= ẽvA : A⊗A∨ → 1

A∨ A

= c̃oevA : 1→ A∨ ⊗A (2.40)

such that the composition satisfies the so-called Zorro identities:

A A

A

A A

A

A

AA

A A

A

= , ==

∨A ∨A

∨A∨A

(2.41)

==

AA

A A

A

,

A∨

=

A∨

A∨ A∨

(2.42)

Let (C,⊗,1, β) be a symmetric monoidal category and (A,A∨, ẽvA, c̃oevA) be a right
duality data. Then, (A,A∨, ẽvA ◦ βA∨,A, βA∨,A ◦ c̃oevA) is left duality data for A ∈ C.
Diagramatically,

evA = :=

A∨ A A∨ A

, coevA = :=

A∨ A A∨ A

(2.43)

Zorro identities follow from naturality of the braiding and right Zorro identities. Sim-
ilarly, braiding and the right duality data realizes A∨ as a left dual:

ẽvA =

A ∨A

:=

A ∨A

, c̃oevA = :=

∨AA ∨A A

(2.44)
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Example 2.1.11.

i. In (V ectk,⊗,k), finite dimensional objects are dualizable. For an n-dimensional
vector space V ∈ V ectk, V

∗ := Homk(V,k) is both left and right duals of V .
ẽv(v ⊗ f) = f(v) is the usual evaluation and coevaluation in terms of dual basis
(e1, . . . , en) and (f1, . . . , fn) of V and V ∗, c̃oev(1) =

∑n
i=1 fi ⊗ ei.

v ⊗ 1
1V ⊗c̃oev7−−−−−→ v ⊗

n∑
i=1

fi ⊗ ei
ẽv⊗1V7−−−−→

n∑
i=1

fi(v)ei = v (2.45)

other Zorro identities follow similarly.

ii. Let (A,µ, η,∆, ϵ) be a Frobenius algebra. Then, A has a dual in C with ∨A = A =
A∨,

ẽvA = evA = ϵ ◦ µ c̃oevA = coevA = ∆ ◦ η (2.46)

Frobenius relations together with unit and counit axioms correspond to Zorro iden-
tities.

iii. Given a Frobenius algebra (A,µ, η,∆, ϵ) and an isomorphism ϕ : A→ A∨ = ∨A in
C, ẽvA = ϵ ◦ µ ◦ (1A ⊗ ϕ−1), c̃oevA = (ϕ⊗ 1A) ◦∆ ◦ η defines right duality data in
C, whereas evA : ϵ ◦ µ ◦ (ϕ ⊗ 1A), coevA : (1A ⊗ ϕ−1) ◦∆ ◦ µ defines a left duality
data. Zorro moves follow from Frobenius identities and unit-counit axioms.

2.2 Symmetric Monoidal 2-Categories

In this section, we will give a brief introduction to symmetric monoidal 2-categories.
As symmetric monoidal categories and symmetric monoidal functors are fundamental
to study closed TQFTs, symmetric monoidal 2-categories are the framework for once
extended TQFTs. We will give the explicit definition of 2-categories but only explain
the required data of symmetric monoidal 2-categories. For details and precise definitions,
the reader can look up [28].

We note that since the monoidal product is associative and unital, just like mor-
phisms of a category, we can think of them as another layer of morphisms of a higher
category: composition of 1-morphisms of a 2-category with one object. Therefore, the
data of a 2-category B with one object is given by ∗ ∈ B as the object and the objects
of a monoidal category as 1-morphisms together with monoidal product considered as
(horizontal) composition of 1-morphisms and morphisms of the monoidal category as
2-morphisms. This is the idea of 2-categories, it is endowed with another layer of com-
posable morphisms. To illustrate this idea, let us define BV ectk from the data of the
monoidal category (V ectk,⊗,k).
The data of BV ectk is the following:

1. an object ∗ ∈ BV ectk,
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2.2 Symmetric Monoidal 2-Categories

2. a Hom category, that is HomBV ectk(∗, ∗) = V ectk, that is,

- 1-morphisms are k-vector spaces with horizontal composition as the tensor
product,

- 2-morphisms are k-linear maps with horizontal composition is the tensor prod-
uct of linear maps and vertical composition is composition of linear maps,

- associators and unitors are that of the monoidal category V ectk.

This is an example of a 2-category with one object. In other words, the trivial category
with a single object ∗ is enriched over V ectk; the set End(∗) is replaced by a monoidal
category V ectk. To motivate 2-categories further, consider [Algk] where objects are
algebras and morphisms are isomorphism classes of bimodules where composition is
relative tensor product over the intermediate algebra and on the other side, consider
module category where objects are bimodules and morphisms are bimodule maps. These
data can be put together to form a symmetric monoidal 2-category Alg2

k
as we will see

in Example 2.2.4.

Definition 2.2.1. A 2-category is a tuple (B, 1, ◦, α, λ, ρ) with the following data:

1. There is a class of objects denoted by ob(B) or B.

2. For all objects A,B ∈ B, there are Hom categories denoted by HomB(A,B). The
data of HomB(A,B) is the following:

- objects of HomB(A,B) are called 1-morphisms,

- for all objects X,Y ∈ HomB(A,B), morphisms in HomB(A,B) called 2-
morphisms denoted by HomHomB(A,B)(X,Y ) or HomA,B(X,Y ),

- for all 1-morphisms X,Y, Z ∈ Hom(A,B) and for all 2-morphisms ϕ ∈
HomA,B(X,Y ), ψ ∈ HomA,B(Y,Z) composition of morphisms in HomB(A,B)
denoted by ψ.ϕ ∈ HomA,B(X,Z) and called vertical composition of 2-morphisms
and the identity 2-morphism denoted by 1X ∈ HomA,B(X,X).

3. For each triple of objects A,B,C ∈ B, there are functors cABC : B(B,C) ×
B(A,B) −→ B(A,C) denoted by ◦ and called horizontal composition. The hori-
zontal composition of 1-morphisms and 2-morphisms is the following:

- for all objects A,B,C ∈ B and for all 1-morphisms X ∈ B(A,B) and Y ∈
B(B,C), Y ◦X ∈ B(A,C),

- for all 1-morphisms X1, X2 ∈ B(A,B) and Y1, Y2 ∈ B(B,C) and for all 2-
morphisms f ∈ HomA,B(X1, X2), and for all g ∈ HomB,C(Y1, Y2), the hori-
zontal composition of 2-morphisms g ◦ f ∈ HomA,C(Y1 ◦X1, Y2 ◦X2),

4. For all objects A ∈ B, there is a 1-morphism 1A ∈ HomB(A,A).

5. There are natural isomorphisms (called associators) between functors: for all A,B,C,D ∈
B

αABCD : cABD ◦ (cBCD × 1A,B) → cACD ◦ (1C,D × cABC) (2.47)
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where 1A,B is the trivial functor that takes each object and morphism to the same
object and morphism, then the functors read

HomB(C,D)×HomB(B,C)×HomB(A,B) → HomB(A,D)

(Z, Y,X) 7→ (Z ◦ Y ) ◦X
(Z, Y,X) 7→ Z ◦ (Y ◦X) (2.48)

6. There are natural isomorphisms (called left and right unitors) between functors;
for all A,B ∈ B,

λAB : cABB(1B × 1A,B) → 1A,B

ρAB : cAAB(1A,B × 1A) → 1A,B (2.49)

such that the triangle and the pentagon diagrams commute.[17, Eq. 2.1.4-5]

The commutative diagrams ensure that units and associators are in coherence.

Definition 2.2.2. A 2-functor (F, ϕ, 1) : (B, 1B, cB) −→ (C, 1C , cC) between two 2-categories
consists of the following:

1. There is an assignment F : B → C between objects.

2. There is a family of functors between Hom categories, for all A,B ∈ B, FA,B :
HomB(A,B) −→ HomC(F (A), F (B)).

3. There are natural isomorphisms for every A,B,C ∈ B;

ϕABC : cDF (A)F (B)F (C) ◦ (FBC × FAB) → FAC ◦ cCABC , (2.50)

4. There are unitors for all A ∈ B

1A : 1CF (A) → FAA ◦ 1BA (2.51)

such that the hexagon and two rectangle diagrams commute [17, Eq.4.1.3-4].

The commutative diagrams ensure that 2-functors are in coherence with associativitiy
and unity natural transformations of 2-categories.

Let (F, ϕ, 1F ), (G,ψ, 1G) : (B, 1B, cB) → (C, 1C , cC) be two 2-functors. A pseudo
natural transformation σ : F → G is the following data:

i. For each A ∈ B there are 1-morphisms σA : F (A) → G(A).

ii. For every A,B ∈ B and X ∈ HomB(A,B), there are invertible 2-morphisms
σX : G(X) ◦ σA → σB ◦ F (X)

such that the diagrams [28, Figure A.1] commute.

22



2.2 Symmetric Monoidal 2-Categories

As we see moving from categories to 2-categories, the required data grows exponen-
tially. We will endow the 2-category with a monoidal product and we have to make
sure that the product is compatible with the structure of the 2-category. To do this, we
need modifications that are transformations between pseudo natural transformations to
make the data coherent. Furthermore, a monoidal 2-category can be used to construct
a 3-category with one object just like a 2-category with one object can be constructed
from the data of a monoidal category. This works even in higher categories. We now
give a sketch of the definition of a symmetric monoidal 2-category.

Let F,G : B → C be 2-functors, σ, θ : F → G be pseudo natural transformations.
A modification between two pseudo natural transformations Γ : σ → θ is a family of
2-morphisms ΓA : σA → θA for each A ∈ B such that [28, A.8] commutes.

A symmetric monoidal 2-category consists of

1. a 2-category B,

2. a 2-functor ⊗ : B × B → B,

3. an object 1 ∈ B, monoidal unit

4. together with associators and unitors which are pseudo natural isomorphisms,
(α, λ, ρ)

αABC : (A⊗B)⊗ C → A⊗ (B ⊗ C)

λ : 1⊗A 7→ 1

ρ : A⊗ 1 7→ A, (2.52)

5. a symmetric braiding β is an invertible pseudo natural transformation ⊗ → ⊗τ
where τ : B × B → B × B is a 2-functor that flips objects, 1-morphisms and
2-morphisms. For all A,B ∈ B

βA,B : A⊗B → B ⊗A (2.53)

is a 1-morphism equivalence and for all A,B,C,D ∈ B and for all X1, X2 : A→ B
and for all Y1, Y2 : C → D

βϕ,ψ : ϕ⊗ ψ → ψ ⊗ ϕ (2.54)

is a 2-morphism equivalence,

6. together with 7 invertible modifications.

These modifications ensure compatibility of associators, unitors and braiding. In
addition, this data has to satisfy commutative diagrams as in [28, Def. 2.3].

Before giving examples, we will introduce relative tensor product which will be the
horizontal composition of a 2-category Alg2

k
.
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2 Categorical and Algebraic Preliminaries

Definition 2.2.3. Let (C,⊗,1) be a symmetric monoidal category, let A ∈ Alg(C) and
let M ∈ ModA and N ∈ AMod. The relative tensor product of M and N over A is an
object M ⊗

A
N ∈ C defined to be the coequalizer of the maps

M ⊗ (A⊗N)
1M⊗ρ
⇒

(λ⊗1N)◦αM,A,N

M ⊗N

in C where α is the associator. In other words, for any morphism ϕ : M ⊗N → Z for
an object Z ∈ C such that

ϕ ◦ (ρM ⊗ 1N )((M ⊗A)⊗N) = ϕ ◦ (1M ⊗ λN )(M ⊗ (A⊗N)) (2.55)

there exists a unique morphism ϕ̃ :M ⊗A N → Z in C up to isomorphism.

M ⊗N(M ⊗ A)⊗N
ρ⊗ 1N

(1M ⊗ λN) ◦ α(M,A,N)

M ⊗A N

Z

∀ϕ ∃!ϕ̃ (2.56)

Take C = V ectk and define the relative tensor product of two bimodules as above to
be the quotientM⊗AN := {

∑k
i=1mi⊗ni ∈M⊗N |

∑k
i=1(m.a)⊗n = m⊗(a.n)∀a ∈ A}.

If i : M ⊗A N → M ⊗ N is the inclusion, then for any Z ∈ V ectk and for any linear
map ϕ : M ⊗ N → Z such that ϕ((m.a) ⊗ n) = ϕ(m ⊗ (a.n)), we have a unique map
ϕ̃ := ϕ ◦ i. Furthermore, if M is endowed with a left B-action and N is endowed
with a right C-action for B,C ∈ Algk and if ϕ : M ⊗ N → Z is a morphism of B-C
bimodules satisfying ϕ((m.a)⊗ n) = ϕ(m⊗ (a.n)), then M ⊗N is clearly endowed with
a B-C-bimodule structure.

It follows that there are canonical isomorphismsM⊗AA ∼=M given bym⊗Aa 7→ m.a,
m 7→ m⊗A η where η is the unit in A and similarly B ⊗

B
M ∼=M .

The relative tensor product can be considered as composition of modules in the sense
that given associative unital algebras, A,B ∈ Alg(C) we can form a category [Alg(C)]
whose objects are associative unital algebras, and morphisms from A to B are isomor-
phism classes of B-A bimodules together with a relative tensor product as composition.
ForM ∈ BModA a B-A bimodule,M⊗AA ∼=M where A is viewed as an A-A bimodule,
A can be considered as the identity morphism. Similarly, B ⊗B M ∼= M . This is an
example of a category whose morphisms are not functions.

We can construct a monoidal category with relative tensor product. Let (C,⊗,1)
be a monoidal category and A ∈ Alg(C). The A-A bimodules and bimodules maps
(AModA,⊗A, A) form a monoidal category.

Example 2.2.4. Alg2
k

1. Objects are associative, unital k-algebras as discussed in Definition 2.1.2.
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2.2 Symmetric Monoidal 2-Categories

2. For all objects A,B ∈ Algk, the Hom category is the category of B-A bimodules,
HomAlg2

k

(A,B) := BModA as defined in Equation (2.1.7). This has the following
data:

- for all objects A,B ∈ Alg2
k
, 1-morphisms from A to B are B-A-bimodules,

- for all 1-morphisms M,N ∈ BModA, B-A bimodule maps as 2-morphisms,

- vertical composition of 2-morphisms are composition of bimodule maps with unit
as the identity map.

3. Horizontal composition is the relative tensor product of bimodules over the inter-
mediate algebra, that is, for all A,B,C ∈ Alg2

k
and M ∈ AModB, N ∈ BModC ,

the composition is M ⊗B N ∈ AModC as in Definition (2.2.3):

- for M1,M2 ∈ AModB, N1, N2 ∈ BModC and f : M1 → M2, g : N1 → N2,
f ⊗B g :M1 ⊗B N1 →M2 ⊗B N2 is an A-C bimodule map.

4. For every A ∈ Alg2
k
, unit 1-morphism of the horizontal composition is A ∈ AModA

viewed as an A-A bimodule, relative tensor product is associative and unital with
natural isomorphisms

5. Monoidal structure is the tensor product over the ground field k with the unit k,

6. The 1-morphism components of the braiding are βA,B = A⊗B ∈ B⊗AModA⊗B, for
all A,B ∈ B. Since the composition βB,A◦βA,B = (B⊗A)⊗B⊗A (A⊗B) ∼= (A⊗B)
is the unit 1-morphism in A⊗BModA⊗B, the braiding is symmetric.

A symmetric monoidal 2-functor F : C → D between two symmetric monoidal
2-categories C,D consists of

• a 2-functor F : C → D

• transformations ξ : F (A)⊗ F (B) → F (A⊗B) and ι : 1D → F (1C) which ensures
that the monoidal product and the monoidal unit is compatible with the 2-functor

• together with four invertible modifications such that the diagrams [28, Figure 2.5,
2.6] commute.

2.2.1 3d Graphical Calculus

In this subsection, we will introduce graphical calculus for symmetric monoidal 2-categories.
For a detailed discussion for the graphical calculus, we refer to [2]. For a brief summary
of graphical calculus for duals in 2-categories [3]. Realizing graphical representations
of symmetric monoidal 2-categories pave the way to extended 2-dimensional bordism
category in Section 3.1.

Objects of a symmetric monoidal 2-category B are depicted by 2-dimensional surfaces,
1-morphisms X ∈ HomB(A,B) are identified with 1X ∈ HomA,B(X,X) and depicted
as vertical lines.
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2 Categorical and Algebraic Preliminaries

AB

X

=̂ (X : A→ B) (2.57)

We read diagrams from bottom to top and from right the left.

A 2-morphism ϕ : X1 → X2 is depicted by a point between 1-morphisms X1, X2 :
A→ B:

AB

X1

X2

ϕ =̂ (ϕ : X1 → X2) (2.58)

Vertical composition of 2-morphisms ϕ : X1 → X2 and ψ : X2 → X3 are represented by

AB =
ϕ

ψ

AB ψ.ϕ

X1

X2

X3
X3

X1

(2.59)

For X : A→ B and Y : B → C, horizontal composition is given by

= ABC B A

XY
Y ◦X

(2.60)

Our convention for horizontal composition is from right to left. For ϕ : X → X ′ and
ψ : Y → Y ′ withX,X ′ ∈ HomB(A,B) and Y, Y ′ ∈ HomB(B,C), horizontal composition
of 1 and 2 morphisms given by

=C B A C A

X1

X2

Y1

Y2

Y3

Y1 ◦X1

Y3 ◦X2

ϕ

ψ1

ψ2

(ψ2.ψ1) ◦ ϕ (2.61)

Monoidal structure, on the other hand, is depicted by the third direction; the conven-
tion for the composition for monoidal product is from front to back.
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2.2 Symmetric Monoidal 2-Categories

=

AB X

X ′
A′B′

A⊗ A′B ⊗B′

X ⊗X ′

(2.62)

Care must be taken here. Identity maps are not shown in the graphical representation.
For example, the graph below reads;

=

AB

A′B′

X1

X2

X3

X ′
1

X ′
2

Y ′
1

Y ′
2 X3 ⊗X ′

2

X1 ⊗X ′
1

A⊗ A′

1B ⊗ Y ′
1

1B ⊗ Y ′
2

11B ⊗ ψ′

B ⊗B′C ′

(ϕ2 ◦ ϕ1)⊗ ϕ′
ϕ′

ϕ1

ϕ2

ψ′

B ⊗ C ′
(2.63)

[(1BB
⊗ ψ′)(1B ⊗ Y ′

1)] ◦ [(ϕ2.ϕ1 ⊗ ϕ′)(X1 ⊗X ′
1)] : A⊗A′ → B ⊗ C ′ (2.64)

Braiding is depicted as transversal intersection of two surfaces or equivalently transver-
sal intersection of two lines which should be thought as projection of surfaces from the
top:

A

BA

B

βA,B =̂

BA

AB

βA,B
= (βA,B : A⊗B → B ⊗A) (2.65)

2.2.2 Full Dualisability

Next, we define duality in a symmetric monoidal 2-category. We will omit associators
and unitors.

Definition 2.2.5. Let (B,⊗,1) be a symmetric monoidal 2-category. An object A ∈
B is called right dualizable with duality data (A,A∨, ẽvA, c̃oevA) where A∨ ∈ B and
right evaluation and coevaluation maps are 1-morphisms in B together with invertible
2-morphisms called cusp isomorphisms cA1 : (1A ⊗ coevA) ◦ (evA ⊗ 1A) → 1A and cA2 :
(1A∨ ⊗ evA) ◦ (coevA ⊗ 1A∨) → 1A∨.

Graphically, evaluation and coevalution maps can be represented by

A∧

A

=̂ ẽvA : 1→ A⊗A∨,

A∧

A =̂ c̃oevA : 1→ A∨ ⊗A (2.66)
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such that

cA1

= cA1 : (ẽvA ⊗ 1A) ◦ (1A ⊗ c̃oevA) → 1A (2.67)

cA2

= cA2 : (1A∨ ⊗ ẽvA) ◦ (c̃oevA ⊗ 1A∨) → 1A∨ (2.68)

with inverses (cA1 )
−1 and (cA2 )

−1 can be depicted by upside down graphs. These are
Zorro identities but the equalities are replaced by invertable 2-morphisms cA1 and cA2 .

Similarly, left evaluation and coevaluation 1-morphisms

∧A

A =̂ evA : ∨A⊗A→ 1,

∧A
A

= coevA : 1→ A⊗ ∨A (2.69)

are endowed with invertible 2-morphisms realizing Zorro identities.

If A∨ is a right dual of A, then it is also left dual since 1-morphisms

ẽvA

A

A∨

βA∨,A

= ẽv ◦ βA∨,A = evA (2.70)

βA∨,A ˜coevA

A∨

A

= βA∨,A ◦ c̃oevA = coevA (2.71)

define left evaluation, coevaluation 1-morphisms. Zorro equivalences are

ẽvA

A

A

βA∨,A

˜coevA

βA∨,A

∼=

1A

˜coevA

βA∨,A
βA∨,A

A∨
ẽvA

A∨

1A∨

∼=
(2.72)

satisfied by the naturality of the braiding and cusp isomorphisms.
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2.2 Symmetric Monoidal 2-Categories

Since B is symmetric monoidal, one can show that A∨∨ ∼= A and that we can choose
A∨∨ = A.

A 1-morphism X ∈ HomC(A,B) in a symmetric monoidal 2-category is said to have a
left adjoint if there exists a 1-morphism ∨X ∈ HomC(B,A) together with 2-morphisms

B

X∨X

A

= evX : ∨X ◦X → 1A, B

X ∨X

A

= coevX : 1B → X ◦X∨

(2.73)
such that

= B AA
B

XX

X X

, = BAA
B

∨X

∨X

∨X

∨X

(2.74)

Similarly, X as above is said to have a right adjoint if there exists a 1-morphism
X∨ ∈ HomC(B,A) together with 2-morphisms

B

X X∨

A = ẽvX : X ◦X∨ → 1B, B

XX∨

A

= ˜coevX : 1A → X∨ ◦X

(2.75)
such that

= B A

A

B

X

X

X

, = BA
A

B

X∨X∨

X∨ X∨

(2.76)

Definition 2.2.6. Let (C,⊗,1) be a symmetric monoidal 2-category. An object A ∈ C
called fully dualizable if it admits (right) duality data (A,A∨, ẽvA, c̃oevA, c

A
1 , c

A
2 ) and

evaluation and coevaluation 1-morphisms also admit left and right adjoints.

This means that A ∈ C has right duals (A,A∨, ẽvA, c̃oevA), and the right evaluation
1-morphisms have adjoints. The right evaluation map ẽvA : A ⊗ A∨ → 1 has a right
adjoint ẽv∨A : 1→ A⊗A∨ together with

ẽvA ẽv∨A

A

A∨

A

A∨

= ẽvẽvA : ẽvA ◦ ẽv∨A → 1k (2.77)
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A

A∨

A

A∨

ẽvAẽv∨A

= c̃oevẽvA = 1A⊗A∨ → ẽv∨A ◦ ẽvA (2.78)

such that

ẽvA

ẽvA

ẽvA ẽv∨A =

ẽvA

ẽvA

,

ẽv∨A

ẽv∨A

ẽv∨A

ẽvA

ẽv∨A

ẽv∨A

= (2.79)

Simirlarly, left adjoint ∨ẽvA : 1→ A⊗A∨ together with

A

∨A
ẽvA

A

∨A
∨ẽvA

A

∨A

= evẽvA = ∨ẽvA ◦ ẽvA → 1A⊗A∨ (2.80)

A

A∨

A

A∨
ẽvA ∨ẽvA

= coevẽvA : ẽvA ◦ ∨ẽvA → 1A⊗A∨ (2.81)

such that

ẽvA

ẽvA

ẽvA

ẽvA ∨ẽvA

=

ẽvA

ẽvA

,

ẽvA

∨ẽvA

∨ẽvA

∨ẽvA

=

∨ẽvA

∨ẽvA

(2.82)

Similarly, c̃oevA must have left and right adjoints; four morphisms satisfying four Zorro
identities as above.

2.2.3 Separable Algebras

Let (C,⊗,1, β) be a symmetric monoidal category and (A,µ, η) ∈ Alg(C). The opposite
algebra denoted by Aop is an algebra (A,µop, η) where µop = µ ◦ β. The enveloping
algebra is (A⊗Aop, (µ⊗ µop) ◦ (id⊗ β ⊗ id), η ⊗ η) ∈ Alg(C) and denoted by Ae.

We defined ∆-separable algebras for a Frobenius algebra by requiring that µ ◦ ∆ =
1A in Definition (2.1.6). ∆-separable algebras are, in fact, a special case of the more
general notion of separable algebras. An algebra (A,µ, η) is called separable if the

30



2.2 Symmetric Monoidal 2-Categories

multiplication µ : A⊗A→ A admits ‘a section’ σ : A→ A⊗A such that the Frobenius
relations hold for σ:

A

= =

A

A

A

A A

A

A A

A A

(2.83)

Note that Frobenius relations can be interpreted as bimodule maps: σ : A → A ⊗ A
satisfies Frobenius relations if and only if it is a map of A-A bimodules, that is to say,
σ ∈ HomAA(A,A ⊗ A). Since A-A bimodules are equivalent to left Ae-modules, σ can
be defined by left Ae module map.

In V ectk, separable algebras can equivalently be described by split exact sequences.

More precisely, a k-algebra is separable if and only if the sequence 0 → ker(µ)
i−→ Ae

µ−→
A→ 0 is split exact. This means that there is a section σ of its multiplication µ : Ae → A
viewed as a left Ae-module:

σ : A→ Ae such that σ(ae.a) = ae.σ(a) (2.84)

µ ◦ σ = 1A for all ae ∈ Ae. (2.85)

Equivalently, an algebra is separable if and only if for all algebraic field extensions
L of k, A ⊗ L is semisimple. In particular, since A ⊗ k ∼= A, the algebra A itself is
semisimple [11, Prop. 1.1].
Let A ∈ Algk. A left A-module M ∈ AMod is finitely generated if M admits a

finite set of generators m1, . . . ,mn such that any m ∈M can be written as

m =
n∑
i=1

ai.mi (2.86)

for some ai ∈ A. Furthermore, M is called projective if there exists a set of maps
(f1, . . . , fn) ∈ M∗ = HomA(M,A) with fi(m) = ai. An element f ∈ M∗ has the
property f(a.m) = a.f(m). Since M∗ has a natural right action: (f.a)(m) = f(m).a for
all a ∈ A, M∗ ∈ModA.
As duals of vector spaces are defined by V ∨ = Homk(V,k), we expect M∗ to be a

dual of M . However, the category of A-B bimodules is not monoidal unless A = B and
we defined duality only in monoidal categories. Nevertheless, in the symmetric monoidal
2-category Alg2

k
, for a left A-module M ∈ AModk, M

∗ is the left adjoint module.
Now, take A = Ae, M = A. It follows that an algebra A is separable if and only if

A ∈ AeMod is finitely generated and projective as an Ae-module. The next lemma will
let us realize A∗ as a left adjoint in Alg2

k
so that an algebra (A,µ, η) is separable if and

only if A ∈ AeMod (viewed as a 1-morphism) admits a left adjoint.

Lemma 2.2.7. Let A ∈ Algk. A module M ∈ AMod is finitely generated and projective
if and only if

ψ :M∗ ⊗AM → EndA(M)

ψ(f ⊗m) := (x 7→ f(x).m) (2.87)
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is an isomorphism of left A-modules.

Proof. =⇒ : Let (m1, . . . ,mn) ∈M , (f1, . . . , fn) ∈M∗ be bases for M and M∗. Define

ϕ : EndA(M) →M∗ ⊗
A
M

f 7→
n∑
i=1

fi ⊗
A
f(mi) (2.88)

(ψ ◦ ϕ(f))(m) = (ψ(
n∑
i=1

fi ⊗
A
f(mi)))(m) =

n∑
i=1

fi(m)⊗
A
f(mi) = f(m) (2.89)

for all m ∈M . Thus, we have ψ ◦ ϕ(f) = f .

On the other hand,

ϕ ◦ ψ(f ⊗A m) = ϕ(x 7→ f(x).m))

=
n∑
i=1

fi ⊗A f(mi).p =
n∑
i=1

fi.f(mi)⊗A m = f ⊗A m (2.90)

Thus, ψ and ϕ are inverse to each other.

⇐= : Given a projective basis, we define ψ−1(1M ) =
∑n

i fi ⊗A mi so that

m =
n∑
i

fi(m).mi = (ψ(
n∑
i,

fi ⊗A mi))(m) = (ψ ◦ ψ−1)(1M )(m) = m (2.91)

Definition 2.2.8. Let (C,⊗,1) be a symmetric monoidal category and A ∈ Alg(C) be
an algebra over C. The algebra A is called separable if A viewed as a left Ae module
has a left adjoint 1-morphism in Alg2(C).

As we will see explicitly in the next example, A viewed as a left Ae-module has a right
adjoint in Alg2(C) if an only if it is finite dimensional.

Example 2.2.9. Fully dualizable objects in Alg2
k
:

Let A ∈ Alg2
k
be an object. Define left and right duals A∨ = ∨A = Aop to be the opposite

algebra together with right evaluation and coevaluation maps as A viewed as bimodules
as follow:

ẽvA := kAA⊗Aop ∈ Alg2
k
(A⊗Aop,k)

c̃oevA := Aop⊗AAk ∈ Alg2
k
(Aop ⊗A,k) (2.92)

To show that these data are actually right evaluation and coevaluation maps, we have to
construct bimodule maps as in (2.67). Labeling A’s with redundant lower indices to keep
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track of A’s, define A4-A5 bimodule maps

cA1 : (kAA1⊗Aop
2

⊗ A4AA3)
⊗

A1⊗Aop
2 ⊗A3

(A1AA5 ⊗ Aop
2 ⊗A3

Ak) 7→ A4AA5

((m1 ⊗m2)⊗ (m3 ⊗m4)) → m2.m4.m1.m3 (2.93)

(cA1 )
−1 : A4AA5 → (kAA1⊗Aop

2
⊗ A4AA3)

⊗
A1⊗Aop

2 ⊗A3

(A1AA5 ⊗ Aop
2 ⊗A3

Ak)

m 7→ (1⊗m)⊗ (1⊗ 1) (2.94)

(cA1 )
−1.cA1 :(m1 ⊗m2)⊗ (m3 ⊗m4) 7→ (1⊗m2.m4.m1.m3)⊗ (1⊗ 1)

= (1⊗m2)⊗ (1⊗m4.m1.m3) = (m1.m3 ⊗m2)⊗ (1⊗m4)

= (1⊗m2)⊗ (m3 ⊗m4.m1) = (m1 ⊗m2)⊗ (m3 ⊗m4) (2.95)

where we repeatedly used the property of the relative tensor product.

cA1 .(c
A
1 )

−1(m) = ϕ((1⊗m)⊗ (1⊗ 1)) = m (2.96)

Thus, it is an isomorphism. Similarly,

cA2 : (Aop
5
Aop ⊗AA2⊗kAop

3
)

⊗
Aop

1 ⊗A2⊗Aop
3

(Aop
1 ⊗A2

Ak ⊗ Aop
3
Aop
Aop

4
) → Aop

5
Aop
Aop

4

(m1 ⊗m2)⊗ (m3 ⊗m4) 7→ m4.m2.m3.m4 (2.97)

and the inverse

(cA2 )
−1 : Aop

5
Aop
Aop

4
→ (Aop

5
Aop ⊗AA2⊗kAop

3
)

⊗
Aop

1 ⊗A2⊗Aop
3

(Aop
1 ⊗A2

Ak ⊗ Aop
3
Aop
Aop

4
)

m 7→ (1⊗m)⊗ (1⊗ 1) (2.98)

This completes the proof of first dualisability.

Let A further be finite dimensional as a vector space and a separable algebra. Taking
Ae = A⊗Aop, we define the right adjoint of ẽvA

ẽv∨A := Ae(Homk(A,k))k ∈ AeModk (2.99)

The dual vector space Homk(A,k) is endowed with a left Ae action defined by

(ae.f)(a) = f(a.ae) (2.100)
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Let (e1, . . . , en) ∈ A and (f1, . . . , fn) ∈ Homk(A,k) be a standard orthonormal basis as
vector spaces with fi(ej) = δij. An element ae = a1 ⊗ a2 in Ae acts on A ∈ ModAe by
a.ae = a2.a.a1 We define

ẽvẽvA : kAAe

⊗
Ae

Ae(Homk(A,k))k → k

(a⊗ f) 7→ f(a)

c̃oevẽvA : AeAeAe → Ae(Homk(A,k))k
⊗
k

kAAe

1 7→
n∑
i=1

(fi ⊗ ei) (2.101)

The first Zorro identity (2.79) amounts to the composition

(ẽvẽvA ⊗ id
kAAe ) ◦ (idkAAe ⊗ c̃oevẽvA) : kAAe → kAAe

a 7→ (a⊗
n∑
i=1

fi ⊗ ai) 7→
n∑
i=1

fi(a).ai = a (2.102)

and second equation of (2.79) reads

(id
AeopAk ⊗ ẽvẽvA) ◦ (c̃oevẽvA ⊗ id

AeopAop
k

) : Aeop (Homk(A,k))k → Aeop (Homk(A,k))k

f 7→ (

n∑
i=1

fi ⊗ ai ⊗ f) 7→
n∑
i=1

fi ⊗ f(ai) = f

(2.103)

Similarly, we define the left adjoint of ẽvA

∨ẽvA := Ae(HomAe(A,Ae))k ∈ AeModk (2.104)

and the left Ae action here is defined by

(ae.f)(a) = ae.f(a). (2.105)

Let a1, . . . , an ∈ A and f1, . . . , fn ∈ HomAe(A,Ae) be a projective basis as in (2.88).
Define bimodule maps

evẽvA : Ae(HomAe(A,Ae))k
⊗
k

kAAe → AeA
e
Ae

(f ⊗ a) 7→ f(a) (2.106)

coevẽvA : kkk → kAAe

⊗
Ae

Ae(HomAe(A,Ae))k

1 7→
n∑
i=1

ai ⊗ fi (2.107)
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These morphisms satisfy identities from (2.82)

(id
kAAe ⊗ evẽvA) ◦ (coevẽvA ⊗ id

kAAe ) : kAAe → kAAe

a 7→ (

n∑
i=1

ai ⊗ fi ⊗ a) 7→
n∑
i=1

ai ⊗
n∑
i=1

fi(a) = a (2.108)

(coevẽvA ⊗ id
AeopAk) ◦ (idAeopAk ⊗ evẽvA) : AeopAk → AeopAk

f 7→ (f

n∑
i=1

ai ⊗ fi) 7→
n∑
i=1

f(ai)⊗ fi = f (2.109)

Notice that the right adjoint of the evaluation ẽv∨A is the dual of ẽvA in V ectk whereas
the left adjoint of the evaluation is the dual of ẽvA in Mod(Ae).

Thus, a finite dimensional separable algebra is fully dualizable in Alg2
k
. Converse

is also true; if an object A ∈ Alg2
k
is fully dualizable then it is separable and finite

dimensional. For a proof we refer to [28], and in the language of ∞-categories, see [31,
Theorem 4.2.6].
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3 2d Extended TQFT

In this chapter, we turn from algebra to manifolds and define bordism category. First, we
review n-dimensional bordism category whose objects are (n−1)-dimensional manifolds
and morphisms are n-dimensional manifolds with boundary. Second, we allow manifolds
to have a codimension 2 corner to define once extended bordism category. The classifi-
cation of surfaces are then used to define generators and relations descriptions. Third,
we endow manifolds with a group structure and finally define TQFTs and express the
cobordism hypothesis.

3.1 Bordism

Let R+ = {x ∈ R : x ≥ 0}, and let M be a second countable, Hausdorff topological
space and O be an open neighborhood of a point m ∈ M and let U ⊂ Rk+ × Rn−k.
A homeomorphism ϕ : U → O is called a chart with corners for M where n, k are
positive integers such that 0 ≤ k ≤ n. Taking k = 1 gives a chart with boundary and
k = 0 gives a chart (without boundary without corners). Two charts ϕ1 : U1 → O1,
ϕ2 : U2 → O2 with O1 ∩ O2 ̸= ∅ are compatible if ϕ−1

1 ◦ ϕ2 : U1 ∩ U2 → U2 ∩ U1

where U1 ∩ U2 = ϕ−1
1 (O1 ∩O2) is a diffeomorphism onto its image. This diffemorphism

is called a transition function. An atlas (with corners) A for a topological space
M is a family of compatible charts (with corners) A = {Uα, ϕα}α∈Λ that cover M =
∪α∈Λϕα(Uα). M is called a manifold (with corners) if it is endowed with a smooth
atlas (with corners). A manifold is called compact if every cover has finite subcover.

Manifolds are defined as ‘abstract spaces’ but computations on manifolds are carried
on local charts that can be glued together to form a manifold. Given a set of local
spaces {Uα}α∈Λ and diffeomorphisms ψαβ : Uαβ → Uβα where Λ is an index set and
Uαβ = Uα ∩ Uβ and Λ such that

ψαβ(Uαβ ∩ Uαγ) = Uγα ∩ Uγβ, (3.1)

and

ψαβ = ψγβ ◦ ψαγ on Uαβ ∩ Uαγ (3.2)

there is a unique manifold with an atlas whose transition functions are diffeomorphic
to ψαβ. This is the co-cycle condition. The proof can be found in any text book on
manifolds.

We would like to define a notion of composition of manifolds with boundary with
corners for categorification. First, we focus on manifolds with boundary. For two
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3 2d Extended TQFT

n-dimensional manifolds M1,M2 with a common boundary Σ as a closed (n − 1)-
dimensional manifold, we can use the local charts to construct the glued manifold
M1 ∪Σ M2 = M1 ⊔ M2/ ∼Σ. Let θi : Σ → Mi be embeddings. The equivalence re-
lation for m,m′ ∈ M1 ⊔M2 is the following: m ∼ m′ iff m = θ1(σ) and m

′ = θ2(σ) for
some σ ∈ Σ. In the case of topological manifolds, M1 ⊔Σ M2 is well-defined and unique
up to homeomorphism. The embeddings are canonical. However, in the smooth setting,
even though the resulting manifold is unique up to diffeomorphism, the diffeomorphism
class is not unique. In other words, M1 ∪Σ M2 can be endowed with non-diffeomorphic
smooth structures.
To overcome this problem, we need the data of embeddings of open neighborhood

of the boundary. A collar is a locally diffeomorphic embedding θ : [0, 1) × Σ → M .
Given collars θ1 : (−1, 0] × Σ → M1, θ2 : (−1, 0] × Σ → M2 for the boundary Σ, the
glued manifold has a unique smooth structure up to diffeomorphism. Different choices
of collars induce diffeomorphic smooth structures on the glued manifold. Though the
diffeomorphism is non-canonical, this is sufficient to define bordism category by taking
diffeomorphism classes.

Definition 3.1.1. An n-dimensional bordism category Bordn,n−1 is a symmetric monoidal
category with the following data:

1. Objects are closed (n− 1)-dimensional manifolds.

2. For objects E1, E2 ∈ Bordn,n−1, a morphism (called bordism) E1 → E2 is a tuple
(M, θ1, θ2) whereM is a diffeomorphism class of a compact manifold with boundary
together with decomposition into incoming and outgoing boundaries ∂M = ∂inM ⊔
∂outM and collars; θ1 : [0, 1) × E1 → M and θ2 : (−1, 0] × E2 → M such that
θ({0} × E1) = ∂inM and θ2({0} × E2) = ∂outM .

3. Composition is gluing along the common boundary with the collars,

4. Unit morphism for E ∈ Bordn,n−1 is the cylinder [0, 1]× E,

5. Monoidal product is the disjoint union,

6. Monoidal unit is the empty set ∅,

7. Associators for E1, E2, E3 ∈ Bordn,n−1 are canonical isomorphisms (E1 ⊔ E2) ⊔
E3

∼= E1 ⊔ (E2 ⊔ E3) and unitors for E ∈ Bordn,n−1 are ∅ ⊔ E ∼= E ∼= E ⊔∅.

Let M be a manifold with boundary equipped with an atlas A = {Uα, ϕα}α∈Λ. A set
of diffeomorphisms

∂ϕα : Uα × Rn → TOα

(x, v) → (ϕα(x), ∂ϕα(v)|x) (3.3)

forms a set of compatible charts with transition functions

∂ϕ−1
i ◦ ∂ϕj : (Ui × Rn) ∩ (Uj × Rn) → (Uj × Rn) ∩ (Ui × Rn) (3.4)

38



3.1 Bordism

These charts satisfy the cocyle condition and thus, there exists a unique manifold TM
with such charts.

The projection π : TM → M , locally defined by π ◦ ∂ϕ(x, v) = ϕ(x) is smooth and
surjective, TmM = π−1(m) ∼= Rn is an isomorphism of vector spaces.

An oriented atlas on M is a collection of compatible charts {Uα, ϕα} such that the
transition maps ϕα ◦ ϕ−1

β have positive Jacobian determinant whenever their domains

intersect nontrivially, i.e. det(∂ϕα ◦ ∂ϕ−1
β ) > 0. Here, the positive Jacobian determinant

ensures that the transition functions between coordinate systems preserve the chosen
orientation. An orientation on a manifold is a manifold equipped with an oriented atlas.
In other words, an orientation on a manifold M is ‘a consistent choice of assignment
of positive direction at each point of the manifold’. This choice is made in the tangent
space TmM at any point m ∈M .

A manifold is orientable if it admits an atlas that is oriented. Equivalently, an n-
dimensional manifold is orientable if and only if it possesses a nowhere-vanishing n-form
(i.e., a non-zero n-form at each point). If the manifold M has a boundary ∂M , then
a chart U → Rn−1 × R+ of the boundary whose restriction to the interior of M is
oriented is an oriented chart of the boundary. Therefore, the orientation on M induces
an orientation on the boundary.

Objects and bordisms of the symmetric monoidal category Bordn,n−1 can be endowed
with orientation to form Bordorn,n−1. Objects of Bordorn,n−1 are (n−1)-dimensional closed
oriented manifolds and morphisms are oriented diffeomorphism classes of n-dimensional
compact manifolds together with collars that respect orientation.

2-dimensional oriented connected closed manifolds are classified up to diffeomorphism
by the number of genus. If we allow manifolds to have a boundary, the classification
includes number of connected incoming-boundary components and number of outgoing-
boundary components.

Since any 1-dimensional closed manifold is diffeomorphic to a finite disjoint union of
circles, the objects of Bordor2,1 is generated by S1 under disjoint union and bordisms are
generated as a symmetric monoidal category by four morphisms under disjoint union and
composition [19, Section 2] such that relations [20, Section 1.4] satisfy. These relations
give precisely the relations of commutative Frobenius algebras.

In the case of manifolds with corners, it is more difficult to construct a well-defined
composition. The aim now is to construct a symmetric monoidal 2-categoryBordn,n−1,n−2.
Roughly speaking, objects of this category are closed (n− 2)-dimensional manifolds, 1-
morphisms are (n− 1)-dimensional manifolds with boundary and 2-morphisms are com-
pact n-dimensional manifolds with corners. We must be able to compose 1-morphisms
horizontally and compose 2-morphisms horizontally and vertically. So far, we defined
gluing only up to non-canonical diffeomorphism and taking diffeomorphism classes as
composition of 1-morphisms as we did for Bordn,n−1 will lead us to fail on constructing
a well-defined 2-morphism.

This is explicitly constructed in [28, Chapter 3]. Here, we give the rough idea and
give reference to this paper for details and focus on dimension 2.

We should be able to glue n-dimensional manfiolds with corners along their common
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3 2d Extended TQFT

(n − 1)-dimensional faces. Let S be a manifold with corners and (ϕ,U) be a chart at
s ∈ S. The codimension at s is the number of zero coordinates of ϕ−1(x) ∈ Rk+×Rn−k.
This is independent of the choice of chart. A face of S is the topological closure of all
codimension 1 points of S. We restrict our attention to manifolds with corners such
that every point s ∈ S belongs to -codimension at s-many connected components of
faces. In the 2 dimensional example (3.5), corners have codimension 2 and they belong
to two connected components, e.g. left top corner with label + belongs to two connected
faces, Y2 and +× I where I is the closed interval and + denotes the point with positive
orientation.

We further assume that a manifold with corner S is equipped with an ordered set of n-
faces (∂0S, . . . , ∂n−1S) such that their union covers boundary and arbitrary intersection
of any two ∂iS and ∂jS is also a face.

[28, Prop. 3.1] proves that given two manifolds with corners S1 and S2 with a common
face X together with collars, there is a canonical smooth structure on the glued manifold
S1 ∪X S2 compatible with the smooth structures of S1 and S2. We use this proposition
to construct horizontal and vertical compositions.

Let P1, P2 be closed (n− 2)-dimensional manifolds. An (n− 1)-dimensional manifold
X with boundary with collars ∂X ∼= ∂inX ⊔ ∂outX ∼= P1 ⊔ P2 is called a 1-bordism
from P1 to P2. In the 2-dimensional example (3.5), X = I× (+ ⊔ −) is a unit 1-bordism
for (+ ⊔ −) and Y1, Y2 are 1-bordisms.

+

−

−
+

+

+
−

−

X

Y1Y2

I × {+ ⊔ −}

+

P1 = + ⊔ −
P2 = + ⊔ −
X =

+ +

: + ⊔ − → + ⊔ −
− −

Y1 =

Y2 =
+

−

−

: + ⊔ − → ∅
: ∅ → + ⊔ −

S : X → Y2 ◦ Y1

XXXX

S
(3.5)

Let P1, P2, P3 be closed (n − 2)-dimensional manifolds and let X1 : P1 → P2 and
X2 : P2 → P3 be 1-bordisms with chosen collars as above. This choice is necessary
since we are not taking diffeomorphism classes. We use the axiom of choice to glue 1-
bordisms. The resulting manifold with boundary X2 ∪P2 X1 has a canonical smooth
structure and boundary, thus again a 1-bordism from P1 to P3. We will call this
horizontal composition of 1-bordisms. In the 2-dimensional example (3.5), two 1
bordisms Y1, Y2 are horizontally composed along common face ∅ whereas in (3.6), Y1, Y2
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3.1 Bordism

are composed along + ⊔ − to form S1.

+

−

−
+

+

+
−

−

Y1Y2

I × P2

+

P1 = ∅
P2 = + ⊔ −

+ + : + ⊔ − → + ⊔ −X2 =− −

X2

+

−

−

+

X1

P1

P2

P2P3

Y3

P3 = + ⊔ −
X1 = : ∅ → + ⊔ −

Y2 =

Y3 =
+

−

−

: + ⊔ − → ∅
: ∅ → + ⊔ −

S1 = X1 × I : X1 → Y1

Y1 =− : ∅ → + ⊔ −

S2 : X2 → Y3 ◦ Y2

S1
S2

X1 = Y1

S2 ◦ S1 : X2 ◦X1 → Y3 ◦ Y2 ◦ Y1

(3.6)

For two closed (n− 2)-dimensional manifolds P1, P2, and two 1-bordisms X1 and X2

from P1 to P2, we define a 2-bordism S : X1 → X2 to be a compact n-dimensional
manifold with boundary with corners together with decompositions

∂0S = ∂0,inS ⊔ ∂0,outS
g−→ X1 ⊔X2

∂1S = ∂1,inS ⊔ ∂1,out
f−→ P1 × [0, 1] ⊔ P2 × [0, 1] (3.7)

such that

f−1g : ∂inX1 ⊔ ∂outX1 → P1 × {0} ⊔ P2 × {0}
f−1g : ∂inX2 ⊔ ∂outX2 → P1 × {1} ⊔ P2 × {1} (3.8)

and that these isomorphisms coincide with the boundary isomorphisms of X1 and X2.
In (3.5), the collars are shown by shaded areas on the faces of a 2-bordism S where
n = 2.

Let P1, P2, P3 be (n− 2)-dimensional closed manifolds, X1, X2 : P1 → P2 and Y1, Y2 :
P2 → P3 be 1-bordisms and let S : (X1 : P1 → P2) → (X2 : P1 → P2) and S

′ : (Y1 : P2 →
P3) → (Y2 : P2 → P3) be 2-bordisms. Both S1 and S2 have a common face P2×I and the
collars for P2 in S1 and S2 induce collars for P2 × I [28, Lemma 3.7]. Thus, they can be
glued among this face. The glued manifold with corners S2∪P2×I S1 : Y1∪P2X1 → Y2∪P2

X2 is again a 2-bordism. This is the the horizontal composition of 2-bordisms.
(3.6) is a 2-dimensional example of horizontal composition of 1-bordisms.

Let P1, P2 be closed (n− 2)-dimensional manifolds, X1, X2, X3 be (n− 1)-dimensional
1-bordisms from P1 to P2 and S1 : X1 → X2 and S2 : X2 → X3 be 2-bordisms.
Similarly, we glue manifolds with corners along the common face to form the vertical
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3 2d Extended TQFT

composition S2∪X2 S1 : X1 → X3. (3.9) depicts a 2-dimensional example of horizontal
and vertical compositions.

+

P1 = ∅
P2 = + ⊔ −

+ + : + ⊔ − → + ⊔ −X2 =− −

P3 = + ⊔ −
X1 = : ∅ → + ⊔ −

Y2 =

Y3 =
+

−

−

: + ⊔ − → ∅
: ∅ → + ⊔ −

S1 : X1 → Y1

Y1 =− : ∅ → + ⊔ −

S2 : X2 → Y3 ◦ Y2

+

−

−
+

+

+
−

−

Y1Y2

I × {+ ⊔ −}

X2

+

−

−

+

X1
P1

P2

P2P3

Y3

++

− −

+

−

S3 : Y2 ◦ Y1 → 1∅

S2 ◦ S1 : X2 ◦X1 → Y3 ◦ Y2 ◦ Y1

S4 : Y3 → Y3

S4 ◦ S3 : Y3 ◦ Y2 ◦ Y1 → Y3 ⊔ ∅
(S4 ◦ S3).(S2 ◦ S1) : X1 → Y3

+ −

S1
S2

S3

S4

(3.9)

We are now ready to define the symmetric monoidal 2-category Bordn,n−1,n−2.

Definition 3.1.2. The symmetric monoidal 2-category Bordn,n−1,n−2 consists of

1. Objects are (n− 2)-dimensional closed manifolds.

2. For every pair of objects P1, P2 ∈ Bordn,n−1,n−2, a 1-morphism is a 1-bordism
X : P1 → P2, that is a compact 1-dimensional manifold with boundary with collars.

3. For every pair of objects P1, P2 ∈ Bordn,n−1,n−2 and for every pair of 1-bordisms
X,Y ∈ Bordn,n−1,n−2(P1, P2), a 2-morphism is an equivalence class of a 2-bordism
S : X → Y , that is, a diffeomorphism class of a compact 2-dimensional manifold
with boundary with corners together with collars.

4. For every triple of objects P1, P2, P3 ∈ Bordn,n−1,n−2, and X : P1 → P2, Y : P2 →
P3 the horizontal composition of 1-bordisms is Y ◦X = Y ∪P2 X : P1 → P3.

5. For every object P ∈ Bordn,n−1,n−2, an identity 1-morphism of the horizontal
composition is the cylinder over P : I × P : P → P .

6. For every triple of objects P1, P2, P3 ∈ Bordn,n−1,n−2 and 1-bordisms X1, Y1 : P1 →
P2, Y1, Y2 : P2 → P3, and 2-bordisms S1 : X1 → Y1, S2 : X2 → Y2 the horizontal
composition of 2-bordisms is S2 ◦ S1 = S2 ∪P2×I S1 : Y1 ◦X1 → Y2 ◦X2.
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3.1 Bordism

7. For every 1-bordism X, an identity 2-bordism of the horizontal composition is
X × I.

8. For every pair of objects P1, P2 ∈ Bord2,1,0 and every triple of 1-bordisms X1, X2, X3 :
P1 → P2, the vertical composition of 2-bordisms S1 : X1 → X2 and S2 : X2 → X3

is S2.S1 = S2 ∪X2 S1 : X1 → X3.

9. The monoidal product is the disjoint union and the monoidal unit the empty set.

10. For every pair of objects P1, P2 ∈ Bordn,n−1,n−2, 1-morphism components of the
symmetric braiding are βP1,P2 : P1⊔P2 → P2⊔P1 whereas 2-morphism components
are βX1,X2 : X1 ⊔X2 → X2 ⊔X1 for all 1-bordisms X1, X2.

An orientation on a manifold with corners M involves defining a consistent choice of
positive directions not just on the smooth parts but also at the corners of the manifold.
Consider an n-dimensional manifold with corners M embedded in RN . At each point

p of M , the orientation determines a notion of positive directions for the tangent space
TpM . For smooth points within the interior of M , the orientation behaves similarly
to manifolds as discussed previously. At these points, the orientation is defined using
charts and transition functions that preserve the orientation in a manner consistent with
manifolds. At the corners, there is not a simple notion of tangent space like in smooth
points. Hence, the definition of orientation at corners involves considering admissible
coordinate systems that respect the corners. We refer to [18, Chapter 7] for precise
definition.

Theorem 3.1.3. The symmetric monoidal 2-category Bordorn,n−1,n−2 is generated as a
symmetric monoidal 2-category by the following generators:
objects

+ , − (3.10)

1-bordisms
+

−

+

−

+

−

,

+

−

(3.11)

2-bordisms

, , , (3.12)

and

cA1

,

cA2

,

(cA1 )
−1

,

(cA2 )
−1

(3.13)
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subject to 2D Morse relations, the swallowtail relations, the cusp flip relations and the
cusp inversion relations [28, Figue 13]. The 2D Morse relations are

ẽvA

ẽvA

ẽvA ẽv∨A =

ẽvA

ẽvA

,

ẽv∨A

ẽv∨A

ẽv∨A

ẽvA

ẽv∨A

ẽv∨A

= (3.14)

ẽvA

ẽvA

ẽvA

ẽvA ∨ẽvA

=

ẽvA

ẽvA

,
ẽvA

∨ẽvA

∨ẽvA

∨ẽvA

=

∨ẽvA

∨ẽvA

(3.15)

This means that any 0-dimensional closed oriented manifold is arbitrary disjoint union
of points with positive and negative orientations.

Any oriented 1-dimensional manifold with boundary is under horizontal composition
of 1-bordisms and disjoint union generated by (3.11) together with identity 1-bordisms
and the braiding.

Any oriented 2-dimensional closed monifold with boundary with corners is generated
by the above 2-bordisms under horizontal and vertical compositions of 2-bordisms and
the disjoint union. However, we quotient relations (such as (3.14), (3.15) that correspond
to Zorro identities) that are double-counted by the generators under such operations.
These generators and relations show that Bordorn,n−1 is generated by a fully dualizable
object.

3.2 Group Structures

We defined the orientation as a consistent choice of direction for the tangent space at
each point on the manifold. We will now reformulate orientation to motivate equipping
bordism category with G-structure for a Lie group G.

Definition 3.2.1. A fiber bundle or locally trivial fibration is a tuple (E, π,M,F )

1. π : E →M is a smooth surjection, M,E called base and total spaces are manifolds
and F is a manifold called fiber.

2. The bundle is locally trivial; for every point m ∈M , and for any open neighborhood
O with m ∈ O, there exists a diffeomorphism

h :O × F → π−1(O) such that

π ◦ h(m, f) = m, (3.16)
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3.2 Group Structures

We can construct an atlas for the total space E from an atlas {ϕα, Uα}α∈Λ of M and
a family of local trivializations hα : Oα × F → π−1(Oα). Abusing the notation, we call
{hα, Uα × F}α∈Λ a bundle atlas for E.

In particular, fixingm ∈M , the local trivialization induces a diffeomorphism hα(m, .) :
F → π−1(m). Hence, one may conceptualize fiber bundles as the act of affixing a
smoothly varying manifold π−1(m) ∼= F to each point m ∈ M to form a new manifold
E whose charts are compatible with that of M .

If F = V is taken to be a k-vector space, for m ∈ M , the bundle map induces
hα(m, .) : V → π−1(m) an isomorphism of vector spaces, then we have a vector bundle
(E, π,M, V ). We see that the tangent bundle π : TM → M is a vector bundle over an
n-dimensional manifoldM with fibers F = Rn since TpM ∼= Rn for all p ∈M and charts
{∂ϕα, Uα × Rn}α∈Λ.

Definition 3.2.2. Let (E, π,M,F ) be a fiber bundle and f : N →M be a smooth map.
The pullback bundle of (E, π,M,F ) along f is a tuple (f∗E, π′, N, F ) where

f∗E = {(n, x) ∈ N × E|f(n) = π(x)} (3.17)

π′ : f∗(E) → N

(n, x) 7→ n (3.18)

The transition functions ψαβ =: (Uα ∩ Uβ) × F → (Uβ ∩ Uα) × F satisfy the cocycle
condition, endowing E with a smooth manifold structure. Thus, (f∗E, π′, N, F ) is a
fiber bundle [21, Thm. 2.1.6].

Definition 3.2.3. A tuple (P, π,M,G) is called a principal G-bundle if

1. G is a Lie group.

2. π : P →M is a smooth surjection between manifolds.

3. There exists a (right) G-action on the total space, that is, a smooth map P×G→ P ,
(p, g) 7→ p.g with (p.g).h = p.(h.g) ∀g, h ∈ G, and p.e = p, ∀p ∈ P such that it is

- simply transitive on fibers; ∀m ∈ M and ∀x, y ∈ π−1(m), ∃!g ∈ G such that
y.g = x,

- free on fibers; ∀m ∈M , ∀x ∈ π−1(m) x.g = x =⇒ g = e.

4. There exists a G-equivariant bundle atlas {hα, Oα × G}α∈Λ, that is, a set of dif-
feomorphisms

hα : Oα ×G→ π−1(Oα) such that

pr1 ◦ h−1
α = π

hα(x.g) = hα(x).g ∀g ∈ G, ∀x ∈ Oi. (3.19)

where {ϕα, Uα} is an atlas for M .
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3 2d Extended TQFT

Equivalently, a principal G-bundle can be defined by projection from the total space
to the orbit space. The orbit space of a G-action at p ∈ P is

Gp = {x ∈ P | p.g = x for some g ∈ G} (3.20)

This is an equivalence relation on P . Therefore, for a principal G-bundle (P, π2,M,G),
we can define a quotient of P by the G-action: π1 : P → P/G by p 7→ Gp = [p]. Since
π1 is surjective, define a map f : P/G→M by f ◦ π1(p) = π2(p) so that the diagram

P

MP/G

π1

π2

f

(3.21)

commutes. This is well-defined since π2 is transitive on the fibers π2(g.p) = π2(p). It is
injective since π2(p) = π2(q) implies that p, q are on the same fiber and it is surjective
since any m ∈ M , any p ∈ π−1

2 (x) is mapped to m. Therefore, f is a bijection. We can
now declare f to be a diffeomorphism, inducing a manifold structure on P/G from M .

Definition 3.2.4. Fix a manifold M and let (P, π,M,G) be a principal G-bundle and
let (P ′, π′,M,H) be a principal H-bundle over M . A bundle morphism is a tuple (f, λ)
where f : P → P ′ is a smooth map, that restricts to identity on M , i.e. π′ ◦ f = π and
λ : G→ H is a Lie group homomorphism such that

f(p.g) = f(p).λ(g) ∀g ∈ G, ∀p ∈ P (3.22)

If G ⊂ H is a Lie subgroup and λ is the inclusion, then f is called λ-reduction whereas
H ⊂ G and λ is projection, then f is called λ-lift. If G = H, λ = idG and f is a
diffeomorphism, then f is called a bundle isomorphism.

Let (f, idG) : (P, π,M,G) → (P ′, π′,M,G) be a bundle morphism between principal
G-bundles over M . Then, f : P → P ′ is injective since f(p1) = f(p2) implies that
π̃ ◦ f(p1) = π̃ ◦ f(p2) and π(p1) = π(p2). Since p1, p2 ∈ π−1(m) are on the same fiber
for some m ∈ M , there exists a unique g ∈ G with p2 = p1.g because the G-action is
transitive on the fibers. f(p1) = f(p1.g) = f(p1).g implies g = e. Since the G-action is
free, p1 = p2. f is surjective since any point p ∈ π−1(m) is mapped to a point in the
fiber π̃−1(m) and by transitivity, there exists a unique g ∈ G with f(p).g = p′ for any
p′ ∈ P ′. Thus, f(p.g) = p′. Therefore, (f, idG) is a bundle isomorphism.

Let M be a manifold and let G be a Lie Group. The groupoid of pricincipal
G-bundles over M BunG(M) is a category whose objects are principal G-bundles and
morphisms are bundle isomorphisms (f, idG) : (P, π,M,G) → (P ′, π′,M,G).

Let (P, π,M,G) be a principal G-bundle and f : N → M be a smooth map. The
pullback bundle (f∗P, π′, N,G) is endowed with G-equivariant charts and therefore, it
is a principal G-bundle.
Recall from homotopy theory that for any Lie group G, there exists its universal

covering space EG, that is a contractible covering space for G. EG is unique up to
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3.2 Group Structures

homotopy and therefore called the universal cover[14, Section 1.3]. The projection π :
EG → BG forms a principal G-bundle where BG = EG/G is called the classifying
space. Furthermore, classifying spaces are functorial in the sense that a Lie group
homomorphism f : G → H induces a smooth map Bf : BG → BH. BG and BH
realized as manifolds, Bf induces pullback so that the diagram

EG

BG

π1
π2

Bf

EH

BH

(Bf )∗

(3.23)

commutes up to homotopy. This means that (Bf)∗ ◦ π1 ◦ Bf ≃ Bf are homotopy
equivalent. Two continuous maps f0, f1 : X → Y between topological spaces are called
homotopic if there is a continuous map H : X × [0, 1] → Y with H(., 0) = f0 and
H(., 1) = f1.

Similarly, for any manifold M , any smooth map f : M → BG induces a principal
G-bundle over M , π1 : f∗(EG) → M up to homotopy. Moreover, given a Lie group G
and a manifold M , homotopy classes of maps f :M → BG are in bijection with the set
of isomorphism classes of principal G-bundles over M ; [M,BG] ∼= |BunG(M)|.

P

M

π1
π2

f

EG

BG = EG/G

f ∗

(3.24)

In particular, taking G = GL(Rn) and taking a homotopy class of a smooth map
cM :M → BGLn defines a principal GLn bundle over M by the commutative diagram

P

M

π1
π2

cM

EGLn

BGLn

c∗M

(3.25)

Let M be an n-dimensional manifold and consider now the set B(TpM) = {e =
(e1, . . . , en)| e is an ordered basis for TpM}. This is linearly isomorphic to the set of in-
vertible linear maps from TpM to itself and therefore under the isomorphism TpM ∼= Rn,
we have an isomorphism of vector spaces B(TpM) ∼= GL(Rn). Define the frame bundle

B(TM) =
⊔
p∈M

B(TpM) (3.26)

π : B(TM) →M

(p, e) 7→ p (3.27)

GL(Rn) acts on B(TM) by
e.A = (e1.A, . . . en.A) (3.28)

47



3 2d Extended TQFT

This action is simply transitive and free on fibers. Furthermore, one can construct a
bundle chart for B(TM). Therefore, B(TM) is a principal GL(Rn) bundle overM . Since
BunG(M) is a groupoid, we have the commutative diagram:

π1

EGLn

BGLn

P

M cM

c∗M
B(TM)

M
f

f ∗

π2π3 (3.29)

where f is a bundle isomorphism. Given a map cM :M → BGLn, a GL(Rn)-structure
on an n-dimensional manifold M is the bundle π : B(TM) → M constructed by the
above diagram.
Now let ρ : G→ GL(Rn) be a representation of G on Rn and let cM,G :M → BG be

a smooth map such that cM ≃ cM,G ◦Bρ are homotopic maps. Combining the diagrams
above, we have a commutative diagram:

π2

EG

BG

P

M cM,G

c∗M,G
B(TM)

M
f

f ∗

π3π

BGLn

EGLn

π1

Bρ

(Bρ)∗

cM

(3.30)

A G-structure on an n-dimensional manifoldM is the principalG-bundle π : B(TM) →
M constructed by composition of pullbacks by the above diagram.
Now we will define orientation in this language. First, we note that GL(Rn) = {A ∈

Mn(R)|det(A) ̸= 0} and the determinant function det : Mn(R) → R is smooth, and
det−1(0) spans an (n− 1)-dimensional hyperplane in Rn2

. Thus, GL(Rn) = GL+(Rn)⊔
GL−(Rn) has two diffeomoirphic simply connected components GL+(Rn) ∼= GL−(Rn).
The isomorphism is the reflection with respect to this hyperplane. An orientation on
an n-dimensional manifold M is a GL(Rn)-structure along the inclusion i : GL+(Rn) →
GL(Rn).
Since O(n) ≃ GL(Rn) are homotopy equivalent, an orientation can equivalently be

defined by the inclusion i : SO(n) → O(n) and a smooth map cM :M → BO(n) together
with cM,O(n) :M → BSO(n) such that cM ≃ cM,G ◦Bi.

3.3 Cobordism Hypothesis

We are now ready to define TQFTs. Dualisablity imposes strong finiteness condition on
TQFTs and allows us to prove classification theorems. Exploiting classification result of
surfaces, we prove cobordism hypothesis in dimension 2 and give the general cobordism
hypothesis heuristically.

Definition 3.3.1. i) Let C be a symmetric monoidal category and let G be a Lie group
together with a representation ρ : G → O(n). An n-dimensional closed TQFT with a
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3.3 Cobordism Hypothesis

G-structure with target C is a symmetric monoidal functor

ZG : BordGn,n−1 → C (3.31)

ii) The category of TQFTs denoted by Fun(BordGn,n−1, C) is a functor category whose
objects are symmetric monoidal functors ZG, morphisms are monoidal natural transfor-
mations.

In fact, Fun(BordGn,n−1, C) is a groupoid since every monoidal transformation η : F →
T for F, T ∈ Fun(BordGn,n−1, C) is invertable because the domain is rigid.

Example 3.3.2. Taking n = 1, C = V ectk, G = SO(1) with inclusion i : SO(1) → O(1)

Fun(Bordso1,0, V ectk)
∼= (vectk)

×

Zso 7→ Zso(+) (3.32)

where (vectk) is the category of finite dimensional vector spaces and linear isomorphisms.
This equivalence is the result of duality condition of topological field theories that results
in finiteness on the algebraic part. 1-dimensional bordism category is generated by two
points {+,−} and 1-dimensional bordisms are generated by ẽv+, c̃oev+ such that relations
that correspond to Zorro moves satisfy.

In fact, for any symmetric monoidal category C, we can define a category DuDa(C)
whose objects are chosen duality data and morphisms are morphisms of C compatible
with the duality data. In other words, a morphism (A,A∨, ẽvA, c̃oevA) → (B,B∨, ẽvB, c̃oevB)
is a morphism ϕ : A→ B in C, together with ψ : A∨ → B∨. Zorro identities imply that
a moprhism (ϕ, ψ) in DuDa(C) is invertible with inverse (ψ∨, ϕ∨) making it a groupoid.
Defining DuDa(C) in this way, we choose a duality data for a dualizable object A ∈ C
and use the property of the duality data to see that every morphism is invertible. We can
go the other direction and consider a full subcategory Cfd whose objects are dualisabile
objects of C (without a choice of a duality data) and morphisms are in C. Now define
(Cfd)× as a maximal subgroupoid of Cfd where morphisms are isomorphisms in C. It
is straightforward to see that there is an equivalence of categories DuDa(C) ∼= (Cfd)×.
This corresponds to the 1-dimensional cobordism hypothesis:

Theorem 3.3.3 (1-dimensional cobordism hypothesis).

Fun(Bordso1,0, C) ∼= (Cfd)×

Zso 7→ Zso(+) (3.33)

Example 3.3.4. Taking n = 2, G = SO(2), C = V ectk

Fun(Bordso2,1, V ectk)
∼= comFrobAlg(V ectk) (3.34)

Zso 7→ Zso(S1) (3.35)

An example of a class of 2-dimensional closed TQFTs is state sum models. Alge-
braically, they classify TQFTs that are formed from a semisimple algebra A by taking its
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3 2d Extended TQFT

center: Z(S1) = Z(A). Semisimple algebras can be endowed with a Frobenius structure,
and their center form commutative Frobenius algebras.
Equivalently, state sum models can be constructed by methods of algebraic topology in

four steps:

1. Let M : Σ1 → Σ2 be a bordism in Bordor2,1. Take an oriented triangulation of
M . Note that any two triangulations of a manifold are related to each other by
arbitrarily many implementation of 2 Pachner moves [23, Theorem 5.9], [26].

2. Take the Poincare dual of triangulation, interpret resulting diagrams as string di-
agrams in V ectk (or any symmetric monoidal category) where a string represents
an object A ∈ V ectk. The intersection of three lines interpreted as multiplication
or comultiplication endows objects A ∈ V ectk with algebra and coalgebra structure.

3. Imposing triangulation invariance (invariance under Pachner moves) in the inte-
rior of M in the Poincare dual picture endows A with a ∆-separable symmetric
Frobenius algebra structure (A,µ, η,∆, ϵ).

4. The result still depends on how many triangles are on the boundary Σi. To over-
come this problem, we first observe that the Poincare dual of any triangulation of
S1 × [0, 1] is of the form Pk,l : A

⊗l → A⊗k for k, l ∈ Z+:

A⊗l

A⊗k

Pk,l= (3.36)

We notice that the colimit of such maps colim(Pk,l) = im(P1,1) which in V ectk
corresponds to taking the center of the ∆-separable Frobenius algebra [1, Section
2.7]. Now we declare Z(S1) = Z(A). Morphisms are morphisms of ssFrobk.

A special case of state-sum models also corresponds to physically relavant Dijkgraaf-
Witten models where algebraic input is a finite groupG where the ∆-separable symmetric
algebra is taken to be the group algebra A = k[G]. The center of a group algebra
corresponds to class functions G → k which are constant on conjugacy classes and
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3.3 Cobordism Hypothesis

composition of two such functions is the convolution product. The bijection between
class functions with convolution product and the center of a group algebra is well-known
(for example see [12]).

It is useful to realize gauge theoretic aspects of Dijkgraaf-Witten models by principal
G-bundles. Consider the groupoid BunG(M) where objects are principal G-bundles
and morphisms are bundle isomorphisms. Under |BunG(M)| ∼= [M,BG], isomorphism
classes of objects of BunG(M) can be represented by homotopy classes of continuous
maps ϕ : M → BG. Note that given a representation of G → GLn, ϕ corresponds to a
field ; a section of the frame bundle π : B(TM) →M .

The embeddings of collars

Σ1 Σ2

M
i1 i2 (3.37)

induce maps by pre-composition

[BunG(Σ1)] [BunG(Σ2)]

[BunG(M)]

r1 r2 (3.38)

on the isomorphism classes of principal G-bundles. Now, consider the set of functions
on a principal G-bundle over Σ, C̄Σ = {[BunG(Σ)] → k}. This is a k-vector space
under point-wise addition and multiplication with k. The maps r1, r2 induce pullback
and pushforward maps

r∗1 : C̄Σ1 → C̄M

ξ 7→ ξ ◦ r1 (3.39)

r2∗ : C̄M → C̄Σ2

ξ 7→

[ϕ] 7→
∑

[Φ]∈r−1
2 ([ϕ])

|Aut(ϕ)|
|Aut(Φ)|

ξ(Φ)

 (3.40)

which are clearly linear.

Now we can define Dijkgraaf-Witten TQFT as follows:

ZG : Bordso2,1 → V ectk

Σi 7→ C̄Σi = {[BunG(Σi)] → k}
M 7→ r2∗ ◦ r1∗ : ZG(Σ1) → ZG(Σ2) (3.41)

To see that ZG is a functor, let M1 : Σ1 → Σ0, M2 : Σ0 → Σ2 be bordisms and
define projections pi : [BunG(M1 ∪Σ0 M2)] → [BunG(Mi] for i ∈ {1, 2} and consider the
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3 2d Extended TQFT

induced pullback and pushforward maps

C̄M1
C̄M2

C̄Σ1

C̄M1

C̄M1∪Σ0
M2

C̄M2

C̄Σ2
C̄Σ0
C̄Σ0

C̄Σ2

r∗1

p∗1

r0∗

p2∗

r∗0 r2∗

(3.42)

The fact that this diagram commutes [12, Section 4], is the result of locality of principal
G-bundles. The pushforward and pullback maps depend only on the local neighborhood
of the boundaries. Since (r1 ◦ p1)∗ = p∗1 ◦ r∗1 and (r2 ◦ p2)∗ = r2∗ ◦ p2∗, ZG is a functor.
It is also symmetric monoidal functor since there are natural isomorphisms C̄Σ1⊔Σ2

∼=
C̄Σ1 ⊗ C̄Σ2 .

The significance of state sum models lies in the simplicity of its algebraic description
and its role on connecting algebraic topological, geometric-group theoretic and theoret-
ical physicists’ approaches.

Definition 3.3.5. A 2-dimensional extended TQFT with a G-structure is a symmetric
monoidal 2-functor from the symmetric monoidal 2-category of bordisms with G-structure
to a chosen symmetric monoidal 2-category B:

Z : BordGn,n−1,n−2 → B (3.43)

Let (ssFrob2
k
)× be the maximal subgroupoid of separable symmetric Frobenius alge-

bras in Alg2
k
.

Theorem 3.3.6. 2-dimensional fully extended oriented TQFTs with target Alg2
k

are
classified by separable symmetric Frobenius algebras. In other words, there is an equiva-
lence of symmetric monoidal 2-categories:

Fun(Bordso2,1,0, Alg
2
k
) ∼= (ssFrob2

k
)×

Zso∗ 7→ Zso∗ (+) (3.44)

Proof. Only a sketch of the proof is presented here. By [28, Theorem 2.78], it is sufficient
to show the equivalence on the generators of Bordso2,1,0 and check the relations. Clearly,
the generators of Bordso2,1,0 and the 2D Morse relations enforce Zso∗ (+) to be a fully

dualizable object in Alg2
k
. We showed in Example (2.2.9) that an algebra A is fully

dualizable if and only if it is finite dimensional as a vector space and separable. The
swallowtail and the cusp inversion relations imply that 1-morphisms must be a Morita
context, that is, an adjoint equivalence in Alg2

k
. The cusp flip relations by [28, Lemma

3.74], endows A with a separable symmetric Frobenius algebra.

To summarize, combining Example (2.2.9) and the previous theorem, we can compute
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3.3 Cobordism Hypothesis

the image of any bordism of Bord2,1,0 by

+

−

+

−

−

+

A

Aop

AeopAk

kAAe

kkk → kAAe ⊗Ae AeHomAe(A,Ae))k

kAAe ⊗Ae AeHomAe(A,Ae))k → kkk

Ae(HomAe(A,Ae))k ⊗k (kAAe → AeAe
Ae

AeAe
Ae → Ae(HomAe(A,Ae))k ⊗k kAAe

(kAAe ⊗ AAA)⊗Ae⊗A (AAA ⊗ AeopAk) → AAA

(AopAop ⊗ AAe)⊗Aop⊗Ae (AeopAk ⊗ AopAop
Aop) → AopAop

Aop

AopAop
Aop → (AopAop ⊗ AAe)⊗Aop⊗Ae (AeopAk ⊗ AopAop

Aop)

AAA → (kAAe ⊗ AAA)⊗Ae⊗A (AAA ⊗ AeopAk)53



3 2d Extended TQFT

As an example, Zso∗ (S1) = A⊗Ae A ∼= Z(A).

Zso∗ (S2) : k→ A⊗Ae HomAe(A,Ae) → k

λ 7→
∑
i=1

λai ⊗ fi 7→
∑
i=1

λfi(ai) (3.45)

as expected.
The equivalence DuDa(C) ∼= (Cfd)× extends to symmetric monoidal 2-categories with

a detail. We showed that left duality data can be constructed from the braiding and
the right duality data. This is sufficient but one needs to make sure that this data is
coherent in the sense that cusp isomorphisms cA1 , c

A
2 satisfy the swallowtail identities;

(see [27, Figure 1-2] for details and further references). Then, we have an equivalence of
symmetric monoidal 2-categories

DuDacoh(B) ∼= (Bd)×

(A,A∨, ẽvA, c̃oevA, c
A
1 , c

A
2 ) 7→ A (3.46)

where (Bd)× is a maximal 2-subgrupoid of dualizable objects in B.
Next, we extend this equivalence to fully dualizable objects. Note that left and right

adjoints of the right evaluation map are not necessarily isomorphic to each other. How-
ever, this is the case for TQFT’s.
Define a 1-morphism SA ∈ HomC(A,A), called the Serre automorphism;

SA = (1A ⊗ ẽvA) ◦ (βA,A ⊗ 1A∨) ◦ (1A ⊗ ẽv∨A)

(3.47)

SA =

A

ẽvA
∨

A

ẽvA

(3.48)

(3.49)

Note that the Serre automorphism is (weakly) invertible with

S−1
A = (ẽvA ⊗ 1A) ◦ (1A ⊗ 1) ◦ (1A ⊗ ∨ẽvA) (3.50)

S−1
A =

A

∨ẽvA

A

ẽvA

(3.51)

so that there are natural isomorphisms ϕ : SA ◦ S−1
A → 1A, ψ : S−1

A ◦ SA → 1A.
The Serre automorphism is said to be trivializable if there is an invertible 2-morphism

λA : SA → 1A. Then,

∨ẽvA ∼= coevA ∼= ẽv∨A
∨c̃oevA ∼= evA ∼= c̃oev∨A (3.52)
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3.3 Cobordism Hypothesis

See [3, Equation 2.16] for details and further references. Trivialization of the Serre
automorphism corresponds to homotopy fixed points of SO(2) action [15, Corollary 4.10].
Following the remarks in [27], there is an equivalence

FuDuDacoh(B) ∼= (Bfd)×

(A,A∨, ẽvA, c̃oevA, c
1
A, c

2
A, evẽvA , coevẽvA , ẽvẽva , c̃oevẽvA , SA, S

−1
A , ϕ, ψ) 7→ A (3.53)

where FuDuDacoh(B) stands for coherent fully dualizable objects in B. A fully dualizable
object A ∈ B is said to be coherent if the Serre automorphism is trivializable.

Theorem 3.3.7. There is an equivalence of symmetric monoidal 2-categories:

Fun(BordG2,1,0,B) ∼= (Bfd)×

Z 7→ Z(+) (3.54)

Proof. [28, section 3.6].

This result works even more generally. We will now give a sketch of the cobordism
hypothesis. Having discussed once extended bordism category Bordn,n−1,n−2, we can
ask if we can further extend this category. There are two directions to go. We can go
lower in dimension; this leads us to the fully extended bordism category. Objects of the
fully extended bordism category are 0-dimensional compact manifolds, 1-bordisms are
1-dimensional manifolds with boundary between 0-dimensional points, 2-bordisms are
manifolds with boundary with corners realizing 1-bordisms as boundary, 3-bordisms are
manifolds with corners between 2-bordisms and so on till n-bordisms between (n − 1)-
bordisms. As we have seen that the once extended bordism category has 2 composi-
tions; horizontal and vertical besides the symmetric monoidal structure, fully extended
n-dimensional bordism category has n compositions. Compositions have to satisfy asso-
ciativity and unit properties. A k-bordism for 0 ≤ k ≤ n, has to preserve boundary and
corners of lower dimensions. Furthermore, coherence conditions must be implemented
for each k-bordism for lower dimensional bordisms. This data gets exponentially more
complicated when the dimension of n increases.
It is also useful to go higher in dimension. For n-bordisms X1, X2 in Bordn,...,0, an

(n+ 1)-bordism is a diffeomorphism of manifolds with boundary with corners ϕ : X1 →
X2. For two such differomorphisms ϕ0, ϕ1, an (n+2)-bordism is a homotopy equivalence.
(n+3)-bordisms are homotopy equivalences between homotopies and this can be iterated
all the way to infinity. The diffeomorphisms and homotopies must be compatible with all
lower dimensional data. In this way, one can construct an (∞, n)-category. Symmetric
monoidal structure is similarly disjoint union compatible with the (∞, n)-structure. A
symmetric monoidal (∞, n)-functor between (∞, n)-categories is a symmetric monoidal
functor that preserves (∞, n)-structures. For a detailed construction, we refer to [25].

Now, we are ready to define fully extended field theories.

Definition 3.3.8. Let C be an (∞, n)-category. An n-dimensional fully extended topo-
logical field theory with target C is a symmetric monoidal functor

F : Bord∞,n → C (3.55)
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We defined dual objects in a 1-category as an object with evaluation and coevalu-
ation maps satisfying the so-called Zorro identities. In the 2-categorical setting, fully
dualizable objects are also defined similarly with an object together with evaluation
and coevaluation 1-morphisms but the Zorro identities are replaced with invertible 2-
morphisms and evaluation and coevaluation 1-morhisms are required to have adjoints
with Zorro identities.
In the (∞, n)-setting, this argument can be iterated. An object is fully dualizable

if there exists a dual object with evaluation and coevaluation 1-morphisms and k-
morphisms of evaluation and coevaluation maps have adjoint k-morphisms such that
there exists invertable (k + 1)-morphisms for Zorro equivalences.

Theorem 3.3.9. (Cobordism hypothesis [25]) Let C be a symmetric monoidal (∞, n)
category. There is an equivalence between (∞, n)-categories.

Fun(BordG∞,n, C) ∼= [(Cfd)×]hG (3.56)

where (Cfd)×]hG denotes the homotopy fixed points of maximal (∞, n)-subgroupoid of
fully dualizable objects in C.
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