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Zusammenfassung

Wir geben eine Einführung in die Methoden der Arbeit von Bertrand, Della Sala und
Lamel [4] über ein Jet Determination Resultat für CR-Diffeomorphismen von Hyperflächen
im n−dimensionalen komplexen Raum. Das benötigte Hintergrundwissen wird erar-
beitet, dies beinhaltet die Birkhoff Faktorisierung und Resultate zu Riemann-Hilbert
Problemen. Anschließend wird das Hauptresultat durch Konstruktion sogenannter k0−stationärer
Kreisscheiben bewiesen.
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Abstract

We give an introduction to the methods used in the work of Bertrand, Della Sala and
Lamel [4] to prove a jet determination result for CR-diffeomorphisms of hypersurfaces in
n−dimensional complex space. After developing the required background material which
includes an account of the Birkhoff factorization and results concerning Riemann-Hilbert
problems we construct so called k0−stationary disks to prove the main result.
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1 Introduction

1.1 Jet Determination

A finite jet determination property is a result in the following setting:

• We have “spaces”X,Y that allow us to to talk about “differentiable” maps between
them, e.g. open subsets of Rn or Cn, (finitely) smooth (sub-)manifolds, (formal)
varieties, etc.

• We consider a class of mappings f : X → Y that allow us to evaluate “deriva-
tives” f(p), f ′(p), f ′′(p), . . . at some point p ∈ X, e.g. (finitely) smooth functions,
holomorphic functions, germs of the former, formal power series, etc.

Such a result can then be stated as: If f, g : X → Y are in the class of mappings and
satisfy f(p) = g(p), f ′(p) = g′(p), . . . , f (ℓ)(p) = g(ℓ)(p) at a point p ∈ X for some integer
ℓ, then f = g.

Writing jℓp(f) = (f(p), f ′(p), . . . , f (ℓ)(p)) for the ℓ−jet map at p, we can rephrase the

result as injectivity of jℓp on the class of mappings.

To give a concrete example of such a theorem, consider:

Theorem 1 (Cartan). Let U ⊂ Cn be a bounded, open, connected subset and let H :
U → U be a holomorphic function satisfying H(p) = p and H ′(p) = id for some p ∈ U.

Then we have H = id on the entirety of U.

Our setting will be that of certain families of hypersurfaces S ⊂ Cn+1 and for map-
pings we take germs of finitely smooth CR-diffeomorphisms H : S → S. More specifi-
cally, our result applies to perturbations of a polynomial hypersurface satsifying a Levi-
nondegeneracy condition.

1.2 Overview

Chapter 3 is devoted to a proof of the jet determination result which will proceed as
follows: First we construct k0−stationary disks attached to the hypersurface S, which
are a family of analytic functions on the unit disk f : {z ∈ C : |z| < 1} → Cn+1 with Ck,α

boundary values that lie in S. Using an approximation result for CR functions called
the Baouendi-Treves theorem we can show that these disks are invariant under CR-
diffeomorphisms. For the polynomial hypersurface, we can give an explicit construction
of a k0−stationary disk attached to it. We will formulate a nonlinear boundary problem
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1 Introduction

whose solutions are the k0−stationary disks and transform it into a linear Riemann-
Hilbert problem by means of the implicit function theorem. This allows us to get disks
for the perturbed hypersurface S from the disk attached to the polynomial hypersurface.
We can then use the invariance of the disks to reduce the jet determination result for
CR-diffeomorphisms to a jet determination result for analytic disks. Using the Birkhoff
factorization this boils down to the finite jet determination of polynomial maps.
Chapter 2 goes over some of the prerequisites to understand the material in Chapter 3.
First we introduce the various Hölder spaces that will be in use. Then we give an account
of the Birkhoff factorization which will make up the bulk of the chapter. This starts with
the solution theory of the Hilbert problem on the unit disk. The Birkhoff factorization
is then obtained from the fundamental solutions of this problem. Afterwards we apply
it to the study of the linear Riemann-Hilbert problems that arise in Chapter 3 and we
finish the chapter with a proof of the Baouendi-Treves theorem.
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2 Background

Let ∆ := {z ∈ C : |z| < 1} be the unit disk in C and b∆ := {z ∈ C : |z| = 1} its
boundary.

2.1 Function Spaces

For an integer k ≥ 0 and 0 < α < 1 let Ck,α = Ck,α(b∆,R) be the Banach space of
real-valued functions on b∆ of class Ck,α equipped with the usual norm

∥v∥Ck,α =

k∑
j=0

∥∥∥v(j)∥∥∥
∞

+ sup
ζ ̸=η∈b∆

∣∣v(k)(ζ)− v(k)(η)
∣∣

|ζ − η|α

where
∥∥v(j)∥∥∞ = maxb∆

∣∣v(j)∣∣. We also need the following related spaces:

• Ck,α
e resp. Ck,α

o , the closed subspaces of even resp. odd functions, i.e. Ck,α
e := {v ∈

Ck,α : v(−ζ) = v(ζ) ∀ζ ∈ b∆} and Ck,α
o := {v ∈ Ck,α : v(−ζ) = −v(ζ) ∀ζ ∈ b∆}.

• Ck,α
C = Ck,α + iCk,α, hence v ∈ Ck,α

C if and only if Re v, Im v ∈ Ck,α.

• Ak,α ⊂ Ck,α
C the subspace of continuous functions f : ∆ → C, holomorphic on ∆

such that f |b∆ ∈ Ck,α
C

• Ck,α
0m = ((1 − ζ)mCk,α

C ) ∩ Ck,α and Ak,α
0m = (1 − ζ)mAk,α for integers m ≥ 0,

where (1 − ζ)m is the multiplication operator with ζ 7→ (1 − ζ)m. They are
not closed subspaces with the Ck,α norm, instead we equip them with the norm
∥(1− ζ)mf∥X := ∥f∥Ck,α , X ∈ {Ck,α

0m ,A
k,α
0m } which turns them into Banach spaces.

• Rm := {v ∈ Ck,α
C : v(ζ) = (−1)mζ−mv(ζ) ζ ∈ b∆} a subspace of Ck,α

C we need for
technical reasons.

The connection of Rm with Ck,α
0m is given by the following lemma from [3]:

Lemma 1. 1. The map τm : Ck,α
0m → Ck,α

C defined by τm((1− ζ)mv) = v is an isomor-

phism between Ck,α
0m and Rm;

2. if m = 2m′ is even, the map v 7→ ζm
′
v induces an isomorphism between Rm and

R0 = Ck,α;
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2 Background

3. if m = 2m′ + 1 is odd, the map v 7→ ζm
′
v induces an isomorphism between Rm

and R1.
Furthermore, if m is odd the map v(ζ) 7→ iζmv(ζ2) sends Rm isomorphically to Ck,α

o

Proof. 1. A function v ∈ Ck,α
C is in the image of τm if and only if (1− ζ)mv ∈ Ck,α, that

is,

(1− ζ)mv = (1− ζ)mv = (1− ζ)m(−1)mζ−mv,

establishing bijectivity. τm and its inverse are continuous because, per definition, it is
an isometry.
2. Let m = 2m′ be even, v ∈ Rm, u = ζm

′
v, then

u = ζm
′
v = ζm

′
ζ−2m′

v = ζ−m′
v = u

showing u ∈ Ck,α. We can multiply everything with ζ−m, then the first and last equality
show surjectivity.
3. Let m = 2m′ + 1 be odd, v ∈ Rm, u = ζm

′
, then

u = ζm
′
v = −ζm′

ζ−2m′−1v = −ζζ−m′
v = −ζu

so u ∈ R1. Again, surjectivity follows by multiplying with ζ−m′
. For the last claim, let

v ∈ Rm with m odd and set u(ζ) = iζmv(ζ2). Then

u(ζ) = iζmv(ζ2) = −iζmζ−2mv(ζ2) = −iζ−mv(ζ2) = u(ζ)

and u(−ζ) = (−1)mu(ζ) = −u(ζ) shows that u ∈ Ck,α
o . To show that this correspondence

is an isomorphism, we give an inverse in terms of the Fourier coefficients. Write u ∈ Ck,α
o

as

u(ζ) =
∑
j∈Z

ajζ
2j+1

where aj = a−j−1 for j ∈ Z. Now define

v(ζ) = −
∑
l∈Z

ial+(m−1)/2ζ
l.

Since m is odd,

u(ζ)

iζm
= −

∑
j∈Z

iajζ
2j−m+1 = −

∑
l∈Z

ial+(m−1)/2ζ
2l = v(ζ2),

i.e., u(ζ) = iζmv(ζ2). Lastly, we show that v ∈ Rm :

−ζ−mv(ζ) = −
∑
l∈Z

ial+(m−1)/2ζ
−l−m = −

∑
h∈Z

ia−h−(m+1)/2ζ
h

= −
∑
h∈Z

iah+(m−1)/2ζ
h = v(ζ)
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2.2 Birkhoff Factorization

2.2 Birkhoff Factorization

Let N > 0 be an integer and G : b∆ → GLN (C) a Ck,α map into the general linear group
over CN . A Birkhoff factorization of −G−1G is given by Ck,α maps B+ : ∆ → GLN (C)
and B− : (C ∪∞) \∆ → GLN (C), holomorphic on ∆ and C \∆ respectively with

−G(ζ)−1G(ζ) = B+(ζ)


ζκ1 (0)

ζκ2

. . .

(0) ζκN

B−(ζ) ∀ζ ∈ b∆.

The integers κ1, . . . , κN are called the partial indices of −G−1G and their sum κ :=∑N
j=1 κj is called the Maslov index of −G−1G. The Maslov index is equal to the winding

number of the map ζ 7→ det
(
−G(ζ)−1G(ζ)

)
around the origin and is thus even. It is also

possible to find a Ck,α map Θ : ∆ → GLN (C), holomorphic on ∆, such that B+ := Θ
and B− := Θ−1.
The proof of this result requires a bit of work and is not essential to understanding the
rest of the material here, it is included mainly for the sake of completeness.
As the main ingredient of the proof we will need so called fundamental systems of
homogeneous Hilbert problems, we construct these following the exposition by Vekua in
[6]. We start with some terminology. Abbreviate ∆− := (C ∪ {∞}) \∆. A sectionally
holomorphic function φ is a function φ : (C ∪ {∞}) \ b∆ → C which

1. is holomorphic except possibly at ∞ and

2. has one sided limits on b∆, i.e., the limits

φ+(ζ) = lim
z→ζ
z∈∆

φ(z) φ−(ζ) = lim
z→ζ
z∈∆−

φ(z)

exist for all ζ ∈ b∆. Note that in this case φ+ and φ− provide continuous extensions
of φ|∆ and φ|∆− , respectively, to the boundary b∆.

A sectionally holomorphic function φ has finite degree at infinity if φ(z)/|z|m → 0 as
z → ∞ for some m > 0. In this case we have the following expansion for sufficiently
large z :

φ(z) = akz
k + ak−1z

k−1 + . . .

for some integer k, where we impose ak ̸= 0 so φ cannot vanish identically in a neigh-
borhood of infinity. For k > 0, φ has a pole of order k at infinity, for k < 0 φ has a zero
of order |k| at infinity. For k = 0 φ(z) has a finite non-zero value at infinity in which
case we will sometimes say that φ has a order zero pole (or zero) at infinity.
If φ(z) = γ(z)+O(1/z) in a neighborhood of infinity for some polynomial γ, then γ will
be called the principal part of φ at infinity. For negative degrees, k < 0, γ = 0.
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2 Background

We will call φ = (φ1, . . . , φN ) a sectionally holomorphic vector if all its components
φ1, . . . , φN are sectionally holomorphic. If all the components of φ have finite degree at
infinity, then we say that φ has finite degree at infinity and we set its degree k as the
maximum degree of its components. If the components φ1, . . . , φN have principal parts
γ1, . . . , γN , respectively, at infinity then γ = (γ1, . . . , γN ) will be called the principal
part of φ at infinity. Again, if the degree k is negative, k < 0, then γ = 0.

2.2.1 The Sokhotski-Plemelj Formula

Let v ∈ Ck,α, then

φ(z) =
1

2πi

∫
b∆

v(ζ)

ζ − z
dζ

defines a holomorphic function on ∆ ∪∆− that vanishes at ∞. The Sokhotski-Plemelj
formulae give the one sided limits:

φ+(ζ) =
1

2
v(ζ) +

1

2πi

∫
b∆

v(ξ)

ξ − ζ
dξ (ζ ∈ b∆) (SP+)

φ−(ζ) = −1

2
v(ζ) +

1

2πi

∫
b∆

v(ξ)

ξ − ζ
dξ (ζ ∈ b∆) (SP−)

where the integrals are understood as Cauchy principal value integrals. Thus, φ is a
sectionally holomorphic function vanishing at ∞.

Proof. Set ε(z) := (1− |z|)β for z ∈ ∆, where β ∈ (0, 1) will be determined later. Define
the contours Cz := Bε(z)(z/|z|) ∩ b∆ and Lz := b∆ \ Cz, and split the integral for φ as

φ(z) =
1

2πi

∫
Cz

v(ζ)

ζ − z
dζ +

1

2πi

∫
Lz

v(ζ)

ζ − z
dζ. (2.1)

For the first integral, we estimate∣∣∣∣∣
∫
Cz

v(ζ)− v( z
|z|)

ζ − z
dζ

∣∣∣∣∣ ≲ 1

1− |z|

∫
Cz

∣∣∣∣ζ − z

|z|

∣∣∣∣α|dζ| = 1

1− |z|

∫ 2 arcsin ε(z)

−2 arcsin ε(z)

∣∣∣eiθ − 1
∣∣∣αdθ =

=
1

1− |z|

∫ 2 arcsin ε(z)

−2 arcsin ε(z)

∣∣∣∣2 sin(θ2
)∣∣∣∣αdθ ≤ 1

1− |z|

∫ 2 arcsin ε(z)

−2 arcsin ε(z)
|θ|αdθ ≲

≲
arcsin ε(z)α+1

1− |z|
≲
ε(z)α+1

1− |z|
→ 0

as |z| → 1, provided we choose β ∈ (1/(1 + α), 1). Consequently, the first integral can
be replaced by the following easier to evaluate expression when taking the limit:∫

Cz

v( z
|z|)

ζ − z
dζ.
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2.2 Birkhoff Factorization

Denote by az and bZ the starting point and the endpoint of the arc Cz respectively.
Writing [z1, z2] for the path [0, 1] ∋ t 7→ (1 − t)z1 + tz2 we can proceed using Cauchy’s
integral theorem∫

Cz

1

ζ − z
dζ =

∫
Cz+[bz ,0]+[0,az ]

1

ζ − z
dζ︸ ︷︷ ︸

=2πi

+

∫
[0,bz ]

1

ζ − z
dζ −

∫
[0,az ]

1

ζ − z
dζ.

Thus, we need to show that the difference of the last two integrals tends to −iπ. We use
coordinates such that bz = eiθ, z = r, az = e−iθ :∫

[0,az ]

1

ζ − z
dζ −

∫
[0,bz ]

1

ζ − z
dζ =

∫ 1

0

1

e−iθt− r
e−iθdt−

∫ 1

0

1

eiθt− r
eiθdt

=

∫ 1

0

2ir sin(θ)

t2 − 2r cos(θ)t+ r2
dt = 2i arctan

(
1− r cos(θ)

r sin(θ)

)
+ iπ − iπθ.

Since θ = 2arcsin(ε(z)/2) ≃ ε(z) goes to 0 as z → 1 we only need to find the limit of
the expression inside the arctangent. θ/ sin(θ) → 1 as z → 1 this simplifies further to
finding the limit of (1− r cos(θ))/(rθ). To this end, we calculate

1− r cos(θ)

rθ
=

1− r + rθ2/2 +O(θ4)

rθ
=

1− r

rθ
+ θ/2 +O(θ3) ≃ 1− r

(1− r)β
→ 0,

as z → 1. We have now dealt with the integral over Cz in (2.1). For the integral over
Lz, we estimate ∣∣∣∣∫

Lz

v(ζ)

(
1

ζ − z
− 1

ζ − z/|z|

)
dζ

∣∣∣∣ ≲ ∫
Lz

|z − z/|z||
|ζ − z||ζ − z/|z||

|dζ|

≲ |1− |z||
∫
Lz

1

|ζ − z/|z||2
|dζ| ≲ ε(z)1/β

∫ π

ε(z)

1

θ2
dθ ≲ ε(z)1/β−1 |z|→1−−−→ 0,

and ∣∣∣∣∫
Lz

v(ζ)

ζ − z/|z|
dζ −

∫
b∆

v(ζ)

ζ − z/|z|
dζ

∣∣∣∣ = lim
r→0

∣∣∣∣∣
∫
Ar,z

v(ζ)

ζ − z/|z|
dζ

∣∣∣∣∣
= lim

r→0

∣∣∣∣∫
Ar,z

v(ζ)− v(z/|z|)
ζ − z/|z|

+

∫
Ar,z

v(z/|z|)
ζ − z/|z|

dζ︸ ︷︷ ︸
=0

∣∣∣∣ ≲ lim
r→0

∫
Ar,z

|ζ − z/|z||α−1|dζ|

≲ ε(z)α
|z|→1−−−→ 0,

here Ar,z denotes Cz \Br(z/|z|). Combining these estimates, we see that

lim
z→ζ0

∫
Lz

v(ζ)

ζ − z
dζ = lim

z→ζ0

∫
b∆

v(ζ)

ζ − z/|z|
dζ

and the formula follows from the continuity in ζ of the principal value integral in (SP+).
In fact, we actually have Hölder continuity here, which we will prove as a separate
result.
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Theorem 2 (Plemelj-Privalov). Let v ∈ Ck,α, the one-sided limits φ± : b∆ → C of the
sectionally holomorphic function

φ(z) =
1

2πi

∫
b∆

v(ζ)

ζ − z
dζ

defined on ∆ ∪ ∆− are themselves Hölder continuous, i.e. φ± ∈ Ck,α. Moreover, the
mapping v 7→ φ± is continuous as a map from Ck,α to itself.

Proof. Case 1: v ∈ Cα

As a first step we will manipulate the principal value integral into an actual integral:∫
b∆

v(ξ)

ξ − ζ
dξ = lim

r→0

∫
b∆\Br(ζ)

v(ξ)

ξ − ζ
dξ = lim

r→0

∫
b∆\Br(ζ)

v(ξ)− v(ζ)

ξ − ζ
dξ +

∫
b∆\Br(ζ)

v(ζ)

ξ − ζ
dξ =

=

∫
b∆

v(ξ)− v(ζ)

ξ − ζ
dξ + iπv(ζ)

Here, we used dominated convergence for the first integral and compute the second as
in the previous proof. Thus we need to analyze integrals over “difference quotients”.
We split the domain of integration:∣∣∣∣∫

b∆

v(ξ)− v(ζ)

ξ − ζ
dξ −

∫
b∆

v(ξ)− v(ζ0)

ξ − ζ0
dξ

∣∣∣∣ ≤
∣∣∣∣∣
∫
Br(ζ0)

v(ξ)− v(ζ)

ξ − ζ
dξ −

∫
Br(ζ0)

v(ξ)− v(ζ0)

ξ − ζ0
dξ

∣∣∣∣∣+
+

∣∣∣∣∣
∫
b∆\Br(ζ0)

v(ξ)− v(ζ)

ξ − ζ
dξ −

∫
b∆\Br(ζ0)

v(ξ)− v(ζ0)

ξ − ζ0
dξ

∣∣∣∣∣
where r = 2|ζ − ζ0|.
For the first summand we use the estimate∣∣∣∣∣

∫
Br(ζ0)

v(ξ)− v(ζ)

ξ − ζ
dξ

∣∣∣∣∣ ≤ ∥v∥Cα

∫
Br(ζ0)

|ξ − ζ|α−1|dξ| ≤ 6∥v∥Cα |ζ − ζ0|α

which also holds for the other integral over Br(ζ0) and the triangle inequality to bound
it by 12∥v∥Cα |ζ − ζ0|.
We split the second summand further:∣∣∣∣∣
∫
b∆\Br(ζ0)

v(ξ)− v(ζ)

ξ − ζ
− v(ξ)− v(ζ0)

ξ − ζ0
dξ

∣∣∣∣∣ ≤
∣∣∣∣∣
∫
b∆\Br(ζ0)

v(ξ)− v(ζ)

ξ − ζ0
− v(ξ)− v(ζ0)

ξ − ζ0
dξ

∣∣∣∣∣+
+

∣∣∣∣∣
∫
b∆\Br(ζ0)

(v(ξ)− v(ζ))

(
1

ξ − ζ
− 1

ξ − ζ0

)
dξ

∣∣∣∣∣.
Here we can evaluate as before∣∣∣∣∣
∫
b∆\Br(ζ0)

v(ζ)− v(ζ0)

ξ − ζ0
dξ

∣∣∣∣∣ ≤ |v(ζ)− v(ζ0)|

∣∣∣∣∣
∫
b∆\Br(ζ0)

1

ξ − ζ0
dξ

∣∣∣∣∣ ≤ π∥v∥Cα |ζ − ζ0|α.
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2.2 Birkhoff Factorization

Lastly, we can combine the bound |ξ − ζ0|/|ξ − ζ| ≤ 2 for ξ ∈ b∆ \ Br(ζ0) and the
previous estimate:∣∣∣∣∣

∫
b∆\Br(ζ0)

(v(ξ)− v(ζ))
ζ − ζ0

(ξ − ζ)(ξ − ζ0)
dξ

∣∣∣∣∣ ≤ 8

π
∥v∥Cα |ζ − ζ0|

∫ π

|ζ−ζ0|
θα−2dθ =

=
8

π
∥v∥Cα |ζ − ζ0|

(
|ζ − ζ0|α−1 − πα−1

α− 1

)
.

(2.2)

With this, the first case is completed.
For the general case v ∈ Ck,α we need to differentiate under the integral sign. This is
easier with a change of variables:

∂ζ

∫
b∆

v(ξ)

ξ − ζ
dξ = ∂ζ

∫
b∆

v(ζξ)

ξ − 1
dξ = ∂ζ

(∫
b∆

v(ζξ)− v(ζ)

ξ − 1
dξ + iπv(ζ)

)
=

=

∫
b∆

ξv′(ζξ)− v′(ζ)

ξ − 1
dξ + iπv′(ζ) =

∫
b∆

ξv′(ζξ)

ξ − 1
dξ.

Here, (ξv′(ζξ)− v′(ζ))/(ξ − 1) is integrable because∣∣ξv′(ζξ)− v′(ζ)
∣∣ ≤ |ξ − 1|

∣∣v′(ζξ)∣∣+ ∣∣v′(ζξ)− v′(ζ)
∣∣ ≲ |ξ − 1|

∣∣v′(ζξ)∣∣+ |ζξ − ζ|α.

We continue ∫
b∆

ξv′(ζξ)

ξ − 1
dξ =

∫
b∆
v′(ζξ)dξ +

∫
b∆

v′(ζξ)

ξ − 1
dξ =

∫
b∆

v′(ξ)

ξ − ζ
dξ,

so we can apply the reasoning of Case 1 to v′ by replacing the Cα norms with ∥v′′∥∞
if k > 1. Only (2.2) looks slightly different, here we evaluate the integral as log(π) −
log(|ζ − ζ0|) which is still controlled by the |ζ − ζ0| factor. Using induction on k, the
theorem follows.

2.2.2 Boundary values of holomorphic functions

We will now develop conditions for a function on b∆ to be the boundary value of a
holomorphic function on ∆ or ∆−.
Let φ : ∆ ∪ b∆ → C be continuous, holomorphic on the interior and denote by φ+(ζ)
the boundary values for ζ ∈ b∆. The Cauchy integral formula gives:

φ(z) =
1

2πi

∫
b∆

φ+(ζ)

ζ − z
dζ (z ∈ ∆) (2.3)

0 =
1

2πi

∫
b∆

φ+(ζ)

ζ − z
dζ (z ∈ ∆−). (2.4)

Then (2.4) is a necessary condition for a continuous function φ+ on b∆ to be the bound-
ary value of a continuous function on ∆ ∪ b∆, holomorphic on ∆.

9



2 Background

This condition is actually sufficient. We will prove this in the case of Hölder continuous
boundary values, which is enough for our purposes. So let v ∈ Ck,α be the prospective
boundary value and let

φ(z) =
1

2πi

∫
b∆

v(ζ)

ζ − z
dζ (z ∈ C \ b∆).

Taking limits in ∆−, applying the Sokhotski-Plemelj formula (SP−) to v and using (2.4)
we get

0 = lim
z→ζ
z∈∆−

φ(z) = −1

2
v(ζ) +

1

2πi

∫
b∆

v(ξ)

ξ − ζ
dξ (ζ ∈ b∆).

Adding v to both sides,

v(ζ) =
1

2
v(ζ) +

1

2πi

∫
b∆

v(ξ)

ξ − ζ
dξ (ζ ∈ b∆),

we recognize the boundary value φ+ on the right hand side, by the other Sokhotski-
Plemelj formula (SP+). Thus we have v = φ+ so v is indeed the boundary value of a
holomorphic function.
In this proof, we transformed the necessary condition (2.4) into the sufficient condition

0 = −1

2
φ+(ζ) +

1

2πi

∫
b∆

φ+(ξ)

ξ − ζ
dξ (ζ ∈ b∆). (2.5)

Thus the conditions (2.4) and (2.5) are both necessary and sufficient, and equivalent.
Analogously, let φ : b∆∪∆− → C be a continuous holomorphic in the interior with finite
degree at infinity and denote by φ−(ζ) the boundary values for ζ ∈ b∆. Let γ be its
principal part, by expanding into power series and using the residue theorem to evaluate
the integral

∫
b∆ ζ

k/(ζ − z)dζ we get:

−φ(z) = 1

2πi

∫
b∆

φ−(ζ)

ζ − z
dζ − γ(z) (z ∈ ∆−) (2.6)

0 =
1

2πi

∫
b∆

φ−(ζ)

ζ − z
dζ − γ(z) (z ∈ ∆). (2.7)

(2.7) is a necessary and sufficient condition for a continuous function on b∆ to be the
boundary value of a continuous function on b∆ ∪ ∆−, holomorphic on ∆−. The proof
is the same as before if we again assume Hölder continuity. We also have that (2.7) is
equivalent to

0 =
1

2
φ−(ζ) +

1

2πi

∫
b∆

φ−(ξ)

ξ − ζ
dξ − γ(ζ) (ζ ∈ b∆). (2.8)

All the arguments in this subsection also apply to the case of sectionally holomorphic
vectors φ = (φ1, . . . , φN ).

10



2.2 Birkhoff Factorization

2.2.3 The Homogeneous Hilbert Problem

The homogeneous Hilbert Problem for N unknown functions is stated as:

Find the sectionally holomorphic vector φ = (φ1, . . . , φN ) which has finite degree at
infinity and satisfies the boundary condition

φ+(ζ) = G(ζ)φ−(ζ) (ζ ∈ b∆), (I)

where G : b∆ → GLN (C) is Hölder continuous. A solution of (I) is always understood to
not be the trivial solution φ = 0. For any solutions φ1 . . . ,φk and polynomials p1, . . . , pk
we get another solution of (I):

φ =
k∑

j=1

pjφj

We will later show that the boundary value of any solution of (I) is Hölder continuous,
which is a consequence of G being Hölder continuous. For now, we will mean by solutions
of (I) only those where both φ+ and φ− are Hölder continuous (note: since G is Hölder
continuous it is enough to assume that either one is continuous, continuity of the other
follows from (I)).

First we will seek solutions with prescribed principal part γ = (γ1, . . . , γN ) for given
polynomials γ1, . . . , γN . We can reformulate problem (I) as follows: Find a Hölder con-
tinuous vector φ− on b∆ satisfying the conditions

1. φ− is the boundary value of a holomorphic vector on ∆−, right continuous on b∆
with principal part γ at infinity.

2. the vector φ+ defined by

φ+(ζ) = G(ζ)φ−(ζ) (ζ ∈ b∆)

is the boundary value of a holomorphic vector on ∆, continuous from the left on
b∆.

In the last section we have seen that these conditions are equivalent to

1

2
φ−(ζ) +

1

2πi

∫
b∆

φ−(ξ)

ξ − ζ
dξ = γ(ζ) (ζ ∈ b∆) (2.9)

−1

2
G(ζ)φ−(ζ) +

1

2πi

∫
b∆

G(ξ)φ−(ξ)

ξ − ζ
dξ = 0 (ζ ∈ b∆). (2.10)

Multiplying (2.10) with G(ζ)−1 from the left we get

−1

2
φ−(ζ) +

1

2πi

∫
b∆

G(ζ)−1G(ξ)φ−(ξ)

ξ − ζ
dξ = 0 (ζ ∈ b∆) (2.11)

11



2 Background

which we can subtract from (2.9) to get

φ−(ζ)− 1

2πi

∫
b∆

G(ζ)−1G(ξ)− I

ξ − ζ
φ−(ξ)dξ = γ(ζ) (ζ ∈ b∆) (IF)

where I is the identity matrix.
(IF) is a Fredholm equation of the second kind so we want to apply Fredholm theory
in the L2 setting. As a first step we show that the integral operator is even L1 →
L∞-bounded, this essentially follows from the Young inequality since the operator is a
convolution “up to a bounded function”:∣∣∣∣∫

b∆

G(ζ)−1G(ξ)− I

ξ − ζ
φ(ξ)dξ

∣∣∣∣ ≤ ∫
b∆

∥∥G−1
∥∥
∞
|G(ξ)−G(ζ)|

|ξ − ζ|α
|ξ − ζ|α−1|φ(ξ)||dξ| ≤

≤
∥∥G−1

∥∥
∞∥G∥Cα

∥∥∥|·|α−1 ∗ |φ|
∥∥∥
L∞(b∆)

≲
∥∥G−1

∥∥
∞∥G∥Cα

∥∥∥|·|α−1 ∗ |φ|
∥∥∥
L1(b∆)

≤

≤
∥∥G−1

∥∥
∞∥G∥Cα

∥∥∥|·|α−1
∥∥∥
L1(b∆)

∥φ∥L1(b∆)

Next, we show compactness of the operator by expressing it as the limit of Hilbert-
Schmidt operators. To this end, consider the regularized kernels

gε(ζ, ξ) :=
1

2πi

G(ζ)−1G(ξ)− I

ξ − ζ + ε ζ−ξ
|ζ−ξ|

(ζ, ξ ∈ b∆).

Since gε is continuous, we get gε ∈ L2(b∆× b∆) and the corresponding integral operator

Kεφ(ζ) :=

∫
b∆
gε(ζ, ξ)φ(ξ)dξ (ζ, ξ ∈ b∆)

is Hilbert-Schmidt and thus compact. As before, using the Young inequality, we can get
the estimate

∥(K0 −Kε)φ∥L2(b∆) ≲
∥∥G−1

∥∥
∞∥G∥Cα

∥∥∥|·|α−1 − (|·|+ ε)α−1
∥∥∥
L1(b∆)

∥φ∥L2(b∆).

Consequently Kε → K0 as ε→ 0 by dominated convergence, so K0 is also compact.
To ensure that L2 is the right setting, we need to prove that any L2 solution to (IF) is
also Ck,α. Since γ ∈ Ck,α, we can assume γ = 0 for this purpose. Observe that

φ(ζ) =
1

2πi

∫
b∆

G(ζ)−1G(ξ)− I

ξ − ζ
φ(ξ)dξ =

G(ζ)−1

2πi

∫
b∆

G(ξ)−G(ζ)

ξ − ζ
φ(ξ)dξ.

Since G−1 is Ck,α, we only need to show that the integral is as well.
Case k = 0. φ ∈ L∞(b∆) so this follows exactly as in the proof of Privalov’s theorem.
Case k = 1. We calculate

∂ζ

∫
b∆

G(ξ)−G(ζ)

ξ − ζ
φ(ξ)dξ =

∫
b∆

−G′(ζ)

ξ − ζ
+
G(ξ)−G(ζ)

(ξ − ζ)2
φ(ξ)dξ

=

∫
b∆

1
ξ−ζ

∫ ξ
ζ G

′(η)−G′(ζ)dη

ξ − ζ
φ(ξ)dξ.
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2.2 Birkhoff Factorization

Using the estimate
∣∣∣ 1
ξ−ζ

∫ ξ
ζ G

′(η)−G′(ξ)dη
∣∣∣ ≲ |ξ − ζ|α we can conclude integrability and

are therefore justified in differentiating inside the integral. Moreover, it also follows that
φ′ is bounded. With this, we can now employ the substitution ξ → ζξ :

∂ζ

∫
b∆

G(ζξ)−G(ζ)

ξ − 1
φ(ζξ)dξ

=

∫
b∆

ξG′(ζξ)−G′(ζ)

ξ − 1
φ(ζξ)dξ +

∫
b∆

G(ζξ)−G(ζ)

ξ − 1
ξφ′(ζξ)dξ =∫

b∆
G′(ζξ)φ(ζξ) +G(ζξ)φ′(ζξ)dξ +

∫
b∆

G′(ζξ)−G′(ζ)

ξ − 1
φ(ζξ)dξ

+

∫
b∆

G(ζξ)−G(ζ)

ξ − 1
φ′(ζξ)dξ.

After changing back ζξ → ξ, we get a multiple of 1/ζ for the first integral, the other
two can be shown to be Cα as in the proof of Privalov’s theorem. Now we proceed
using induction. Assume that we have already shown that φ ∈ Ck−1,α(b∆) and that the
k − 1−th derivative of the integral is of the form

∂k−1
ζ

∫
b∆

G(ξ)−G(ζ)

ξ − ζ
φ(ξ)dξ = Pk−1(1/ζ)+

∑
l=0

(
k − 1

l

)∫
b∆

G(l)(ξ)−G(l)(ζ)

ξ − ζ
φ(k−1−l)(ξ)dξ

for some polynomial Pl. But then each integral in the sum can be differentiated as in
the k = 1 case, we pick up some linear terms in 1/ζ which can be combined with the
derivative of Pk−1.With this, we have established the Ck,α regularity of solutions to (IF).
Now we investigate two questions:

1. When can we solve (IF)?

2. Does each solution of (IF) produce a solution of the original problem (I)?

We start with the second one. Let φ− be a solution of (IF). This will be a solution
of (I) if it satisfies the conditions (2.9) and (2.10). We reformulate these conditions by
introducing a new sectionally holomorphic vector ψ defined by

ψ(z) =
1

2πi

∫
b∆

φ−(ζ)

ζ − z
dζ − γ(z) (z ∈ ∆) (2.12)

ψ(z) =
1

2πi

∫
b∆

G(ζ)φ−(ζ)

ζ − z
dζ (z ∈ ∆−). (2.13)

Then, ψ vanishes at infinity. Conditions (2.9) and (2.10) are now equivalent to

ψ+(ζ) = 0, ψ−(ζ) = 0 (ζ ∈ b∆) (2.14)

which is further equivalent to ψ = 0.
We can rewrite (IF) in terms of ψ as follows:

ψ+(ζ) = G(ζ)−1ψ−(ζ) (ζ ∈ b∆) (II)

Following Plemelj, we call the problem (II) the accompanying problem of (I). With the
above arguments, we have just shown:
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2 Background

Lemma 2. If the accompanying problem (II) has no non trivial solutions vanishing at
infinity, then every solution of the Fredholm integral equation (IF) yields a solution of
the original problem (I)

The methods for the construction of the Fredholm integral equation (IF) can be used to
obtain a similar integral equation for (II). We will however, find a Fredholm equation
for ψ+ instead of ψ−. We start by writing down (II) in the equivalent form

ψ−(ζ) = G(ζ)ψ+(ζ) (ζ ∈ b∆).

Now using the same arguments as before (note: we search for solutions vanishing at
infinity, so γ = 0), the Fredholm integral equation for problem (II) is

ψ+(ζ) +
1

2πi

∫
b∆

G(ζ)−1G(ξ)− I

ξ − ζ
ψ+(ξ)dξ = 0 (ζ ∈ b∆). (2.15)

Next we look at the solvability of (IF). For this we introduce the adjoint equation

ψ′+(ζ) +
1

2πi

∫
b∆

G(ζ)t(G(ξ)t)−1 − I

ξ − ζ
ψ′+(ξ)dξ = 0 (ζ ∈ b∆). (II′F)

This is again connected to a Hilbert problem:

φ′+(ζ) = (G(ζ)t)−1φ′−(ζ) (ζ ∈ b∆) (I′)

which we will call the associate problem to (I). There is also the problem

ψ′+(ζ) = G(ζ)tψ′−(ζ) (ζ ∈ b∆) (II′)

accompanying the associate problem (I′). For (I′) we can again construct a Fredholm
integral equation

φ′−(ζ)− 1

2πi

∫
b∆

G(ζ)t(G(ξ)t)−1 − I

ξ − ζ
φ′−(ξ)dξ = 0 (ζ ∈ b∆) (I′F)

for solutions vanishing at infinity. The Fredholm integral equation for (II′) is given
by (II′F). In summary, the adjoint integral equation to (IF) is the integral equation
associated to the problem (II′) which is the accompanying problem of the associate one.

Lemma 3. If none of the accompanying and associate problems of (I) have non triv-
ial solutions vanishing at infinity, then the Fredholm equation (IF) is solvable for any
polynomial right hand side and every solution of this equation produces a solution of the
original problem.

By Lemma 2 we only need to see that, assuming the above conditions, (IF) is solvable
for any polynomial γ. (IF) is a Fredholm equation so this is the case if we have∫

b∆
γ1ψ

′+
1 + . . .+ γNψ

′+
N = 0 (2.16)
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for every solution ψ′+ of (II′F). But by the assumed conditions each solution of this
problem is a solution of problem (II′) and is thus the boundary value of a holomorphic
function. Thus the integral (2.16) vanishes by Cauchy’s theorem.

The conditions of the previous lemma might seem restrictive but we will show that the
general case can always be reduced to this one. Moreover, we will construct general
solutions from those bounded at infinity. Therefore we will temporarily assume the
conditions of the previous lemma and seek solutions bounded at infinity.

By lemma 3 all such solutions come from the integral equation (IF). Now we construct
a basis of solutions: Let φ−

1 , . . . ,φ
−
N be solutions of (IF) with γ equal to (1, 0, . . . , 0),

(0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1) respectively. Denote by φ1, . . . ,φN be the corresponding
solutions of the Hilbert problem. They have the property

φk,l(∞) = δk,l (2.17)

Then it is clear that any (bounded) solution of (IF) can be written as

φ−(ζ) = γ1φ
−
1 (ζ) + . . .+ γNφ

−
N (ζ) + γN+1φ

−
N+1(ζ) + . . .+ γmφ

−
m(ζ) (ζ ∈ b∆)

(2.18)

whereφ−
N+1, . . . ,φ

−
m are a basis of solution for the homogeneous problem and γN+1, . . . , γm

are constants. Such a solution then induces a solution φ = γ1φ1 + . . . + γmφm of the
homogeneous Hilbert problem (I).

We now consider the general case, where the conditions of Lemma 3 are not necessarily
fulfilled. To start off, we make an observation that will be crucial in the construction of
the fundamental system of solutions:

Remark 1. There is a bound s ≥ 0, such that the order of the zero at infinity of any
solution of problem (I) does not exceed s.

Proof. Let the homogeneous equation corresponding to (IF) have at most s linearly inde-
pendent solutions (such an s exists because (IF) is a Fredholm equation) and let φ(z) be
any solution of (I). If φ has a zero of order k at infinity, then φ(z), zφ(z), . . . , zk−1φ(z)
are all solutions of (I) that vanish at infinity. Therefore they all represent linearly inde-
pendent solutions of the homogeneous equation (IF) so k ≤ s.

Applying this to the accompanying problem (II) and the associate problem (I′), we can
find an integer r ≥ 0 such that neither problem has a solution with a zero of order
greater than r at infinity.

Next, we want to characterize all solutions of (I) of degree less than r at infinity where
r is as above. Let φ be one of these solutions. Then φ̇ defined by

φ̇(z) = φ(z) (z ∈ ∆) (2.19)

φ̇(z) =
φ(z)

(z − a)r
(z ∈ ∆−) (2.20)
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where a ∈ ∆ is arbitrary, solves the Hilbert problem

φ̇+(ζ) = (ζ − a)rG(ζ)φ̇−(ζ) (ζ ∈ b∆) (İ)

and remains bounded at infinity. We can see that finding solutions to (I) with degree
less than r at infinity is reduced to finding solutions of (İ) which remain bounded at
infinity.
We now show that this problem satisfies the conditions of 2 and 3. The accompanying
problem to (İ) is

ψ̇+(ζ) = (ζ − a)−rG(ζ)−1ψ̇−(ζ) (ζ ∈ b∆). (İI)

Any solution to this, vanishing at infinity, would induce a solution ψ to problem (II)

ψ(z) = ψ̇(z) (z ∈ ∆)

ψ(z) = (z − a)−rψ̇(z) (z ∈ ∆−)

which has a zero of order greater than r at infinity, a contradiction to the definition of
r. Analogously, we can prove that the problem associated to (İ) has no solutions which
vanish at infinity. Thus we can, as before, characterize solutions that vanish at infinity
of (İ) and transfer these to solutions of the original problem, we formulate this in the
following theorem:

Theorem 3. For the problem (I) and r ≥ 0 sufficiently large, each solution of degree
less than r at infinity is of the form:

φ(z) = γ1φ1(z) + . . .+ γNφN (z) + γN+1φN+1(z) + . . .+ γmφm(z) (z ∈ C \ b∆)
(2.21)

with constants γ1, . . . , γm and linearly independent particular solutions φ1, . . . ,φm. The
first N of these solutions have the property:

lim
z→∞

z−rφj,k(z) = δj,k j, k = 1, . . . , N (2.22)

and those remaining (possibly none if N = m) have degree less than r at infintiy.

2.2.4 Fundamental Systems

Let r be sufficiently large such that theorem 3 applies, we assume r is fixed from now
on.
The first N solutions are linearly independent over the polynomials, i.e. if there are
polynomials q1, . . . , qN such that

q1φ1 + . . .+ qNφN = 0 (2.23)

then q1 = . . . = qN = 0. This follows from the fact that the determinant det(φ1| . . . |φN )
is not identically 0 which is immediate by 2.22.
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Next, we construct a special system of solutions:

Since the order of a zero at infinity of a solution is bounded above, there is a solution
of the form 2.21 which has minimal degree at infinity among all solutions. Denote this
degree by (−κ1) and let χ1 be one solution having degree (−κ1).
Now consider the solutions 2.21 which do not lie in the span of χ1 over the polynomials,
i.e. those which cannot be written as p1χ1 for any polynomial p1. Let (−κ2) the lowest
degree of such solutions, then κ1 ≥ κ2. Let χ2 be a solution of degree (−κ2). Let (−κ3)
be the lowest degree of solutions not of the form p1χ1 + p2χ2 with polynomials p1, p2
and let χ3 be a solution of degree (−κ3).
We claim that we can continue this process to construct N solutions χ1, . . . ,χN , to
this end, assume that we have already constructed k solutions χ1, . . . ,χk this way with
k < N. Then there will exist solutions not of the form p1χ1+ . . .+pkχk for polynomials
p1, . . . , pk. Because if all solutions were of this form, then the solutions φ1, . . . ,φN would
lie in the span of χ1, . . . ,χk over the polynomials, contradicting their linear indepen-
dence. Hence, this process can be continued to construct N solutions χ1, . . . ,χN with
respective degrees −κ1,−κ2, . . . ,−κN where κ1 ≥ κ2 ≥ . . . ≥ κN .

We will show later that this process can not be continued further. Moreover each solution
of (I) can be represented as

∑N
k=1 pkχk for some polynomials p1, . . . , pN .

For now, we only prove this for solutions χ of degree strictly less than (−κk), for
such a solution we can find polynomials p1, . . . , pk−1 with χ(z) = p1(z)χ1(z) + . . . +
pk−1(z)χk−1(z).

Assume towards a contradiction that this is not true. Then χ(z) lies outside the span
of χ1, . . . ,χk−1 so by the above construction the degree of χk would be less than the
degree of χ by minimality of χk. This contradicts our assumption on χ.

Next we prove the following important property of the fundamental system of solutions:

Any linear combination

χ(z) = a1χ1(z) + . . .+ aNχN (z)

with a1, . . . , aN ∈ C not all equal to zero cannot vanish anywhere in C.
Suppose χ(c) = 0 for some c /∈ b∆. Then χ(z) = (z − c)φ(z) for some sectionally
holomorphic φ that is a solution to (I). Let ak the last nonzero coefficient, then the
degree of φ is less than the degree of χk and we can write it as

φ(z) = p1(z)χ1(z) + . . .+ pk−1(z)χk−1(z)

for some polynomials p1, . . . , pk−1. But this contradicts the linear independence of χ1, . . . , χk

over the polynomials.

Now consider the case when c ∈ b∆. Vanishing of χ on b∆means χ+(c) = 0 or χ−(c) = 0,
both are equivalent since χ+(c) = G(c)χ−(c). We can argue as before if we show that
we again have χ(z) = (z − c)φ(z) with φ being a solution of (I). Accordingly, define
the vector

φ(z) :=
χ(z)

z − c
(z ∈ C \ b∆).

17



2 Background

Then, φ± ∈ L1(b∆) ∩ Ck,α
loc (b∆ \ {c}) since χ vanishes at least to order α at c and since

ζ 7→ 1/(ζ − c) is Ck,α on any closed arc that does not contain c. Hence the Sokhotski-
Plemelj formulae hold for φ except at the point c, so we can deduce that φ also solves
(IF). But then we know that φ ∈ Ck,α(b∆) and we can argue as in the case c /∈ b∆.
As a corollary we obtain: Property 1. The determinant

δ(z) := det(χk,j(z))

does not vanish on C.
We can also characterize the behaviour of ∆ at ∞ :
Property 2. Write

χ0
k(z) = zκkχk(z)

for k = 1, . . . , N, then the determinant

δ0(z) = det
(
χ0
1(z)| . . . |χ0

N (z)
)

has a finite nonzero value at ∞.

Proof. By construction, δ0 has finite value at infinity, since the degree of χk at infinity
is exactly (−κk). Now assume that δ0(∞) = 0, then there are a1, . . . , aN ∈ C not all
zero such that

a1z
κ
1χ1(z) + . . .+ aNz

κ
NχN (z) = O(1/z)

Let ak be the last nonzero coefficient then

χ(z) := a1z
κ1−κkχ1(z) + . . .+ akχk(z) = O(z−κk−1)

Consequently, χ has degree less than (−κk) at infinity and would thus be representable
as
∑k−1

j=1 pjχj contradicting linear independence of χ1, . . . ,χk over the polynomials.

Property 2 has the following consequence: For a sum

p1(z)χ1(z) + . . .+ pN (z)χN (z)

with polynomials p1, . . . , pN with repsective degrees m1, . . . ,mN we can we always know
its degree. Indeed, since δ0(∞) ̸= 0 this is just the maximum of m1 − κ1, . . . ,mN − κN .
In other words the terms of highest degree degree cannot cancel.
From now on, any N solutions of (I) χ1, . . . ,χN with properties 1 and 2 will be called
a fundamental system of solutions. The N ×N matrix X(z) = (χ1(z)| . . . |χN (z)) will
be called the fundamental matrix of the homogeneous Hilbert problem.
By construction the fundamental matrix satisfies

X+(ζ) = G(ζ)X−(ζ) (ζ ∈ b∆)

or equivalently

G(ζ) = X+(ζ)(X−(ζ))−1 (ζ ∈ b∆).

We will use this identity to prove
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2.2 Birkhoff Factorization

Theorem 4. Any solution φ of (I) with finite degree at infinity can be written as

φ(z) = p1(z)χ1(z) + . . .+ pN (z)χN (z)

where χ1, . . . ,χN is a fundamental system of solutions and p1, . . . , pN are polynomials.

Note: With this theorem we can now abandon the requirement that φ must be Hölder
continuous.

Proof. Substituting G(ζ) = X+(ζ)(X−(ζ))−1 (ζ ∈ b∆) into (I) we get

(X+(ζ))−1φ+(ζ) = (X−(ζ))−1φ−(ζ) (ζ ∈ b∆)

This implies that (X(z))−1φ(z) is holomorphic on the entirety of C. Combining this
with the assumption that φ has finite degree at infinity we see that (X(z))−1φ(z) is
polynomial, i.e.

(X(z))−1φ(z) = p(z) (z ∈ C)

for some polynomial p. Consequently,

φ(z) = X(z)p(z)

which was to be proven.

For this proof it was actually only necessary to assume Property 1 for the matrix X.
Property 2 gives us more control over the polynomials in the expression for φ. Specif-
ically, a solution φ of degree not greater than some given integer k at infinity can be
written as

φ(z) = p1(z)χ1(z) + . . .+ pN (z)χN (z)

where the pj have degree not greater than k+κj . Here we have that pj = 0 if k+κj < 0.
The solution will have degree exactly k if the degree of one of the pj is k+κj . If k+κj < 0
for all j = 1, . . . , N then the problem has no non-trivial solutions with degree at infinity
not greater than k.
Next, we will investigate the relation between different fundamental systems of solutions.
First, we will prove that the integers κ1, . . . , κN are the same for any fundamental system.
Let χ1, . . . ,χN and ζ1, . . . , ζN be two fundamental systems and let −κ1, . . . ,−κN and
−λ1, . . . ,−λN be the respective degrees of the solutions at infinity. We assume κ1 ≥
. . . ≥ κN , λ1 ≥ . . . ≥ λN and will prove κ1 = λ1, . . . , κN = λN .
Since the χj form a fundamental system, we can express ζk as

ζk = pk,1χ1 + . . .+ pk,NχN (2.24)

for polynomials pk,1, . . . , pk,N . Similarly, we can express the χj in terms of ζk.
The degrees of the fundamental systems are ordered as κ1 = κ2 = . . . = κk > κk+1 and
λ1 = λ2 = . . . = λl > λl+1. We now prove κ1 = λ1 and k = l. Comparing the degrees of
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both sides of (2.24) we see that −λ1 ≥ −κ1 because the degree of the right hand side
at infinity cannot be less than −κ1. By interchanging the roles of the χj and the ζk it
follows that −κ1 ≥ −λ1, so κ1 = λ1.
Comparing no the degrees of both sides of (2.24), we obtain relations

ζj = pj,1χ1 + . . .+ pj,NχN

for j = 1, . . . , l and polynomials pj,1, . . . , pj,N (in this case the polynomials are actually
constants). If l > k then these relations contradict the linear independence of the ζj
over the polynomials. Completely analogously, we can rule out l > k by switching the
roles of the fundamental systems. Hence, l = k.
We now have: κ1 = λ1, . . . , κk = λk, κk > κk+1 = . . . = κk+r > κk+r+1, λk > λk+1 =
. . . = λk+s > λk+s+1. Our next objective is proving κk+1 = λk+1 and r = s. Again
we start by comparing degrees of both sides of (2.24) for ζk+1, . . . , ζk+s to see that the
right hand side will contain only χ1, . . . ,χk+r. Assuming that one of these right hand
sides only contains χ1, . . . ,χk would contradict linear independence of the ζ1, . . . , ζk+s

(the κk+j has some coefficients for the χ1, . . . ,χk which can be expressed in terms of
the coefficients of the ζ1, . . . , ζk). From this, we can conclude −λk+1 ≥ −κk+1 which
implies, by symmetry, λk+1 = κk+1.
As above, assuming now that s > r would contradict linear independence of χ1, . . . ,χk+s

and it follows again that s = r. The rest of the proof proceeds by induction.
We will now outline a construction of all fundamental systems starting from a given one.
Assume that the κj are ordered as

κ1 = κ2 = . . . = κk1 > κk1+1 = . . . = κk1+k2 > . . . > κk1+...+kr+1 = . . . = κn

The same arguments as in the previous proof allow us to better describe the degrees of
the polynomials in (2.24): Let

ζj = χ1pj,1 + . . .+ χk1pj,k1 + . . .+ χk1+k2pj,k1+k2 + . . .+ χnpj,n,

then the polynomials pj,k are constants for j, k = 1, 2, . . . , k1; pj,k = 0 for j = 1, . . . , k1,
k = k1 +1, . . . , n; pj,k have degree not greater than κk1 − κk2 for j = k1 +1, . . . , k1 + k2,
k = 1, . . . , k1; pj,k are constant for j, k = k1 + 1 . . . , k1 + k2; etc.
In summary, the pj,k are polynomials of degree not greater than κk − κj , where pj,k = 0
if κk − κj < 0. We can package these statements into matrix form: Let Pl,m, l,m =
1, . . . , r be the matrix with entries pj,k for j = k1 + . . .+ kl−1 + 1, . . . , k1 + . . .+ kl and
k = k1 + . . .+ km−1 + 1, . . . , k1 + . . .+ km and set

H = (pj,k) =


P1,1 0 . . . 0
P2,1 P2,2 . . . 0
...

...
. . .

...
Pr,1 Pr,2 . . . Pr,r

 .

Then the blocks Pl,m have degree at most κm − κl. We can now write

Z(z) = X(z)H(z)t (FM)
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2.2 Birkhoff Factorization

where Z is the matrix with entries ζj,k, j, k = 1, . . . , N. The determinant of Z does not
vanish, thus detH(z) ̸= 0. Furthermore, since H has block form,

detH = detP1,1 . . . detPr,r,

each of these blocks has constant entries so detH is constant as well.
Altogether, we see that any fundamental system ζ is related to X by ζ(z) = X(z)H(z)t.
Here H is a lower blocktriangular matrix with polynomial entries where: the diagonal
blocks are square, the entries of each block Pl,m have degree less than κm−κl, and detH
is a nonzero constant.
The integers κ1, . . . , κN will be called the component indices of the homogeneous Hilbert
problem and their sum

κ = κ1 + . . .+ κN

the total index or simply the index of the problem.
The total index can be directly calculated from the matrix G of the Hilbert problem.
Writing, as before, δ(z) = det(X(z)) we get, by using X+(ζ) = G(ζ)X−(ζ)

δ+(ζ) = det(G(ζ))δ−(ζ) (ζ ∈ bδ)

Taking logarithmic derivatives here, we conclude the following identity of winding num-
bers around 0 :

Indδ+(b∆)(0) = Inddet(G)(b∆)(0) + Indδ−(b∆)(0)

Since δ is holomorphic and nonvanishing on ∆, by the argument principle, Indδ+(b∆)(0) =
0. Since δ(z) = δ0(z)/zκ, δ0 is holomorphic on ∆− and nonzero at∞ we get Indδ−(b∆)(0) =
−κ. Combining these observations, we conclude

κ = Inddet(G)(b∆)(0). (Ind)

2.2.5 Proof of the Birkhoff factorization

Lemma 4 (Special fundamental matrix). For a Hölder continuous matrix with G−1 = G,
the homogeneous Hilbert problem

φ+ = Gφ−

has a fundamental matrix Ω such that Ω∗ = ΩΛ, where Ω∗ denotes the Schwarz reflection
of Ω about the circle and Λ(z) = diag(zκ1 , . . . , zκN )

Proof. Start with any fundamental matrix X(z) = (χ1| . . . |χN ) then we see that X∗Λ
−1

is also a fundamental matrix and hence is connected to X by an identity of the form
X∗Λ

−1 = XHt. Here H is a matrix as in (FM), all its entries are polynomials pk,j of
degree not exceeding κj − κk and detH is constant and nonzero. Conversely any such
matrix H produces a fundamental matrix XHt. We will now find a diagonal matrix
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2 Background

δ = diag(δ1, . . . , δN ) where the δk are nonzero constants such that Ω = (Xδ)∗Λ
−1 +Xδ.

It is readily apparent that all matrices of this form satisfy the required identity

((Xδ)∗Λ
−1 +Xδ)∗ = (Xδ)Λ + (Xδ)∗ = ((Xδ)∗Λ

−1 +Xδ)Λ,

we only need to find δ such that we get a fundamental matrix. Using (FM) again and
setting γ = δδ−1 we get

(Xδ)∗Λ
−1 +Xδ = X(γH + I)tδ

Hence a matrix of this form gives a new fundamental matrix if we choose δ such that
det(γH(z) + I) ̸= 0 (it is already constant since the diagonal blocks of H are constant),
this is clearly possible.

We are finally ready to prove the Birkhoff factorization:

Let B(ζ) = G(ζ)G(ζ)−1 (ζ ∈ b∆) and observe that B(ζ) = B(ζ)−1 (ζ ∈ b∆ and that B
is of class Cα We now consider the homogeneous Hilbert problem associated to B, i.e.
solutions of

Ψ+(ζ) = B(ζ)Ψ−(ζ) (ζ ∈ b∆)

such that Ψ+ : ∆ → C and Ψ− : C \∆ are continuous and holomorphic on the interior
with Ψ− having only a pole at infinity. Suppose (Ψ+,Ψ−) is a solution of such a Hilbert
problem, then the reflections

Ψ+
∗ (ζ) = Ψ−(1/ζ) ζ ∈ ∆ \ {0}

Ψ−
∗ (ζ) = Ψ+(1/ζ) ζ ∈ (C ∪ {∞}) \∆

are again holomorphic on the interior. Furthermore, by taking conjugates in Ψ+ = BΨ−

we get Ψ+ = B−1Ψ− which implies

Ψ+
∗ (ζ) = B(ζ)Ψ−

∗ (ζ) ζ ∈ b∆

so (Ψ+
∗ ,Ψ

−
∗ ) is also a solution of the generalized Hilbert Problem as it is not necessarily

holomorphic at 0. Using this property we obtain the matrix Θ as a special fundamental
matrix of the problem: Namely, according to Lemma 4 there is a fundamental matrix Ω
of the problem satisfying Ω+

∗ (ζ) = Ω+(ζ)Λ(ζ). Setting Θ = Ω+, we verify

Ω+(ζ)Λ(ζ) = Ω+
∗ (ζ) = B(ζ)Ω−

∗ (ζ) = B(ζ)Ω+(ζ) (ζ ∈ b∆)

2.3 Riemann-Hilbert problems

In order to solve the type of Riemann-Hilbert problem that arises in our setting we make
use of the following theorem by Florian Bertrand and Giuseppe Della Sala [3]
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2.3 Riemann-Hilbert problems

Theorem 5. Let k,m ≥ 0 be integers and let 0 < α < 1. Consider the following operator

L :
(
Ak,α

0m

)N
→
(
Ck,α
0m

)N
given by

L(f) = 2Re(Gf)

with smooth G : b∆ → GL(N,C). Denote by κ1, . . . , κN and κ the partial indices and

the Maslov index of −G−1
G. Then

1. The map L is surjective if and only if κj ≥ m− 1 for all j = 1, . . . , N .

2. Assume L is surjective. Then the kernel of L is finite dimensional with real di-
mension κ+N −Nm.

This theorem is an extension of results by Globevnik [5] who proved the nonsingular
analogue:

Theorem 6. Let k ≥ 0 be an integer and let 0 < α < 1. Consider the following operator

L :
(
Ak,α

)N
→
(
Ck,α

)N
given by

L(f) = 2Re(Gf)

with smooth G : b∆ → GL(N,C). Denote by κ1, . . . , κN and κ the partial indices and

the Maslov index of −G−1
G. Then

1. The map L is surjective if and only if κj ≥ −1 for all j = 1, . . . , N .

2. Assume L is surjective. Then the kernel of L is finite dimensional with real di-
mension κ+N.

Proof. For the first step in the proof we simplify the problem from arbitrary smooth
matrices G to special block diagonal matrices: Start with the Birkhoff factorization
−G−1G = ΘΛΘ−1 where Θ : ∆ → GL(N,C) is smooth and holomorphic on ∆ and
Λ(ζ) = diag(ζκ1 , . . . , ζκN ). Here the κj are ordered such that the first 2s partial indices
are odd and all the others even. Now consider the block matrix M(ζ) = P1(ζ) ⊕
. . . Ps(ζ)⊕ diag(ζ−κ2s+1/2, . . . , ζ−κN/2) with blocks

Pj(ζ) =

(
1 + ζ −i(1− ζ)
i(1− ζ) 1 + ζ

)(
ζ−

κ2j−1+1

2 0

0 ζ−
κ2j+1

2

)
.

and set V =M(iΘ)−1G−1. M is chosen such that we get three properties: MM−1 = Λ,
the entries of V (ζ) are real for all ζ ∈ b∆ and, most importantly, V G = M(−iΘ)−1.
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The first is straightforward matrix multiplication, the third is by construction. For the
second, we calculate

V =MiΘ−1G−1 = iMΛ−1Θ−1G−1 =M(−iΘ)−1G−1 = V.

Since multiplication by V and (−iΘ)−1 give automorphisms of (Ck,α)N and (Ak,α)N

respectively, the third property allows us to replace G withM without changing whether
L is surjective or what the dimension of its kernel is. Now the operator given by f 7→
2Re(Mf) is surjective if and only if

1. for j = 1, . . . , s the operator Lj : (Ak,α)2 → (Ck,α)2 given by Lj(f) = 2Re(Pjf) is
surjective.

2. for j = 2s+1, . . . , N the operator Lj : Ak,α → Ck,α given by Lj(f) = 2Re(ζ−mjf)
is surjective, where κj = 2mj .

We start with 2. For φ ∈ Ck,α denote by φ̃ its harmonic conjugate and set w = φ+ iφ̃.
w is in Ak,α and satisfies φ(ζ) = Re(ζ−l(ζ lw(ζ))) (ζ ∈ b∆) for all integers l. For l ≥ 0
we have ζ 7→ ζ lw(ζ) ∈ Ak,α and thus LJ is surjective for mj ≥ 0.

Ifmj < 0, we have
∫
b∆ ζ

−1−mjw(ζ)dζ = 0 for all w ∈ Ak,α. This implies
∫ 2π
0 Lj(w)(θ)dθ =

0 for w ∈ Ak,α and hence Lj is not surjective in this case, for example 1 /∈ Lj(Ak,α).
For case 1 set κj = 2mj − 1. We investigate equations of the form Re(Pj(ζ

2)w(ζ2)) =
φ(ζ2) (ζ ∈ b∆) for φ ∈ (Ck,α)2 and w ∈ (Ak,α)2, i.e.

Re

((
1 + ζ2 −i(1− ζ2)
i(1− ζ2) 1 + ζ2

)(
ζ−2lw1(ζ

2)
ζ−2rw2(ζ

2)

))
=

(
φ1(ζ

2)
φ2(ζ

2)

)
(ζ ∈ b∆)

for integers l, r.We can factor out ζ in both columns of Pj(ζ
2) to see that this is equivalent

to

2Re

((
ζζ−2lw1(ζ

2)
ζζ−2rw2(ζ

2)

))
=

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)(
φ1(ζ

2)
φ2(ζ

2)

)
(ζ ∈ b∆) (2.25)

where ζ = eiθ. The point here is that now the right hand side is an odd function, recall
that a function φ on b∆ is odd if φ(−ζ) = −φ(ζ) (ζ ∈ b∆). Furthermore, by looking at
the power series expansion, we see that φ ∈ Ak,α is odd if only if φ(ζ) = ζψ(ζ2) with
ψ ∈ Ak,α and φ ∈ Ck,α odd implies φ̃ odd and unique not just up to constants since the
value at 0 has to be 0.
Let l = r = 0. We have just established that for odd φ ∈ Ck,α there is a unique odd
function in Ak,α, namely φ+ iφ̃ such that φ is its real part. Let φ ∈ Ck,α be 1/2 times
the right hand side of (2.25), thus, evoking the notation of the previous paragraph, the
unique solution of the equation is given by the ψ ∈ (Ak,α) associated to φ+ iφ̃.
For l, r ≤ 0 we can reduce to the case l = r = 0 by the same trick as before by using
ζw(ζ2) = ζζ2a(ζ−2aw(ζ2)) and ζ−2aw(ζ2) ∈ Ak,α for any integer a ≤ 0 and any w ∈ Ak,α.
Let l ≥ 1. Choose a g ∈ Ak,α with g(0) ̸= 0 and decompose it into real and imaginary
part as g = φ1 − iφ2. We are led to the equation

Re(ζg(ζ2)) = φ1(ζ
2) cos(θ) + φ2(ζ

2) sin(θ) (ζ ∈ b∆)
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where ζ = eiθ. By the previous arguments ζ 7→ ζg(ζ2) is the only function in Ak,α whose
real part equals the right hand side. We are now faced with the task of expressing ζg(ζ2)
as ζζ2jh(ζ2) for some h ∈ Ak,α which is rendered impossible by the multiplicities of the
zero at 0 being 1 and 1 + 2j respectively. We conclude that we do not have surjectivity
in this case. Argue along these lines for r ≥ 1 to finish the proof of the first claim. The
second claim will be shown in the next proof.

Proof of Theorem 5. By the same matrix factorization argument we have that the op-
erator is surjective if and only if

1. for j = 1, . . . , s the operator Lj : (Ak,α
0m )2 → (Ck,α

0m )2 given by Lj(f) = 2Re(Pjf) is
surjective.

2. for j = 2s+1, . . . , N the operator Lj : Ak,α
0m → Ck,α

0m given by Lj(f) = 2Re(ζ−mjf)
is surjective, where κj = 2mj

Case 2 is again easier: Take φ = (1− ζ)mv ∈ Ck,α
0m where v ∈ Rm. We need to study the

equation

ζ−rf + ζrf = φ f ∈ Ak,α
0m (2.26)

We can express f as (1− ζ)mg with g ∈ Ak,α and cancel the (1− ζ)m factors to get

ζ−rg + (−1)mζr−mg = v

Split into two subcases: For m = 2m′ even, we can multiply by ζm
′
to get

ζ−(r−m′)g + ζr−m′
g = ζm

′
v

By Lemma 1 the right hand side is now in Ck,α so we can argue as in the proof of
Theorem 6.
For m = 2m′ + 1 odd, we again multiply by ζm

′
to get

ζ−(r−m′)g − ζr−m′
ζg = ζm

′
v

Applying Lemma 1,we see that the right hand side ζm
′
v =: u sits in R1. Take the

orthogonal decomposition u = u′ + u′′ where u′ = P(u) ∈ Ak,α is the Szegő projection.

Using u = −ζu and u′′ = iζ(iζu)′ we have u′′ = −ζu′ (see Chapter 4 of [2]). If r−m′ ≥ 0
then g = ζr−m′

u′ ∈ Ak,α and satisfies (2.26). If r −m′ < 0 then∫
ζ−(r−m′)gdθ =

∫
ζr−m′−1gdθ = 0

so 1− ζ for example is not in range.
Now for the two dimensional Case 1. The subcase of m = 2m′ can be handled in the
same way as in the proof of Theorem 6 by multiplying with ζm

′
we get surjectivity if

and only if both l −m′ ≥ 0 and r −m′ ≥ 0.
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Lastly, if m = 2m′ + 1 odd we have by multiplication with ζm
′

ζm
′
Pg − ζ−m′−1Pg = ζm

′
v

We substitute ζ = ξ2 and multiply by ξ to get

ξmP (ξ2)g(ξ2)− ξ−mP (ξ2)g(ξ2) = ξmv(ξ2)

Multiply by i and use Lemma 1

2Re(ξmP (ξ2)ig(ξ2)) = iξmv(ξ2)

similar to before we get

4Re

((
iξ−(2r1−m−1)g1(ξ

2)

iξ−(2r2−m−1)g2(ξ
2)

))
= i

(
Re ξ Im ξ
− Im ξ Re ξ

)
ξmv(ξ2)

According to Lemma 1, ξ 7→ iξmv(ξ2) is odd so the right hand side is now in (Ck,α
e )2

and the problem reduces to a pair of one-dimensional problems

ξ−(2rj−m−1)gj(ξ
2) + ξ2rj−m−1gj(ξ

2) = uj(ξ)

with uj ∈ Ck,α even. Setting uj(ξ) = u′j(ξ
2) with uj ∈ Ck,α

ζ−(2rj−m−1)/2)gj(ζ) + ζ(2rj−m−1)/2gj(ζ) = u′j(ζ)

we have reduced it to the one-dimensional case considered before. Surjectivity here is
equivalent to 2rj −m− 1 ≥ 0 and since m is odd, we are done.
Now for the second part of the theorem concerning the (real) dimension of the kernel in
the surjective case. Assume

2Re(Mf) = 0

on b∆ for some f ∈ (Ak,α
0m )N . Multiplying with M−1 and using the construction of M

gives

f = −M−1Mf = −diag(ζκ1 , . . . , ζκN )f

Thus the determination of the kernel reduces to the one dimensional problem

f + ζ lf = 0

for f = (1− ζ)mg ∈ Ak,α
0m and l ≥ m− 1. By factoring out (−ζ)m we get

g + (−1)mζ l−mg = 0

We see that solutions have the form g(ζ) =
∑l−m

r=0 arζ
r with conditions ar+(−1)mal−m−r =

0. We have 2(l −m + 1) (real) degrees of freedom for these coefficients and m − l + 1
conditions so the space of solutions has real dimension l −m+ 1.
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2.4 Approximation of CR Functions

We need an approximation result, which can be found in [1], we reproduce the proof
here.

Defiition 1. LetM be a manifold and V an n−dimensional subbundle of its complexified
tangent bundle CTM. V is called integrable if at each point p ∈ M there is an open
neighbourhood Ω of p and Z1, . . . , Zm ∈ C∞(Ω,C), where m = dimRM − n such that

• the differentials dZ1, . . . , dZm are linearly independent over C

• For any section L ∈ Γ(M,V) we have

LZj = 0 ∀j = 1, . . . ,m.

In this case, we call (M,V) an integrable structure.

Theorem 7 (Baouendi-Treves). Let (M,V) be an integrable structure, p0 ∈ M, and
Z = (Z1, . . . , Zm) a family of basic solutions near p0. Then there exists a compact neigh-
bourhood K of p0 in M such that for any continuous solution h in M, there is a sequence
of holomorphic polynomials Pν(z) in m complex variables with the property that

h(u) = lim
ν→∞

Pν(Z(u)) (BT)

uniformly on K.

The idea of the proof is similar to many other approximation results: We convolve the
data with a Gaussian kernel to obtain a sequence of holomorphic approximations whose
power series we can truncate to get the desired polynomials.

Proof. First, we show that we can find suitable coordinates near p0.

Lemma 5. Take (M,V), p0 and Z = (Z1, . . . , Zm) as in theorem BT. Then we can
find local coordinates (x, y) near p0, vanishing at p0, with x = (x1, . . . , xm) and y =
(y1, . . . , yn) and an invertible complex linear transformation L such that

Z̃j(x, y) = xj + iφj(x, y), (2.27)

for j = 1, . . . ,m. Here Z̃ is the system of basic solutions defined by Z̃ = LZ, the φj are
smooth, real-valued functions defined near the origin in Rk, k = n +m, with φ(0) = 0
and φx(0) = 0.

Proof of Lemma 5. dZ1, . . . , dZm are linearly independent near p0, so we can find a sys-
tem of coordinates (u1, . . . , uk) vanishing at p0 such that the matrixA(u) = (∂Zj/∂l(u))1≤j,l≤m

is invertible for u near 0 in Rk. Then we take coordinates

x := ReA(0)−1Z(u), yj := uj+m, j = 1, . . . , n.

From this, we see immediately that Z̃(x, y) = A(0)−1Z(u(x, y)) satisfies (2.27).
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Here is the basic idea of the rest of the proof, which is similar to one proof of the
Weierstrass approximation theorem: We take a Gaussian-like kernel αν which is analytic
in Z and consider Hν , the convolutions of h with αν . These are again analytic and we can
show that they converge uniformly to h as ν → ∞. Then we can extract our polynomials
from this sequence by truncating the power series of Hν .

Continuing with the proof of Theorem BT, we choose the coordinates (x, y) from Lemma
5 and take Z̃ as our new system of basic solutions but still denote it by Z. We give the
domain K in terms of two parameters r and d to be determined later as

K := {(x, y) : |x| ≤ r

4
, |y| ≤ d}.

Fix some smooth cutoff function χ ∈ C∞
0 (Rm) with χ(x) = 1 for |x| ≤ r

2 and χ(x) = 0
for x ≥ r.

Temporarily, we will restrict to the case h ∈ C1(M) and show how to adapt the proof to
the continuous case later. Consider the family of m−forms αν(x, y; z) for z ∈ Cm and
ν ∈ Z+ defined by

αν(x, y; z) :=
(ν
π

)m/2
exp
(
−ν(z − Z(x, y))2

)
χ(x)h(x, y)dZ(x, y),

where

dZ(x, y) = dZ1(x, y) ∧ . . . ∧ dZm(x, y),

and, for v = (v1, . . . , vm) ∈ Cm, we write v2 = v ·v =
∑

j v
2
j . For y ∈ Rn with 0 < |y| < d

we consider the cylinder Dy

Dy := {(x′, y′) ∈ Rk :
∣∣x′∣∣ < r, y′ = ty, t ∈ (0, 1)}.

By Stokes’ Theorem we get∫
Dy

dαν(x
′y′; z) =

∫
∂Dy

αν(x
′, y′; z) (2.28)

First we compute the right hand side of (2.28). Since χ(x) = 0 for |x| ≥ r the only
boundary remaining are∫

∂Dy

αν(x
′, y′; z) =(ν

π

)∫
Rm

exp
(
−ν(z − Z(x′, y))2

)
χ(x′)h(x′, y)dx′Z(x′, y)

−
(ν
π

)∫
Rm

exp
(
−ν(z − Z(x′, 0))2

)
χ(x′)h(x′, 0)dx′Z(x′, 0)

(2.29)

where dx′ denotes the differential with respect to the x′ variables. The calculation of the
left hand side of (2.28) will be aided by the following lemma.
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2.4 Approximation of CR Functions

Lemma 6. Let Ω be an open subset of Rk, k = m+n and (Ω,V) an integrable structure
with basic solutions Z1, . . . , Zm defined on Ω. A distribution f on Ω is a solution if and
only if d(fdZ) = 0 on Ω, where dZ(u) = dZ1(u) ∧ . . . ∧ dZm(u)

Proof. First assume f ∈ C1(Ω). Then f is a solution if and only if df(p) ∈ V⊥
p , which is

further equivalent to df(p) lying in the span of {dZ1(p), . . . , dZm(p)}. Hence,we can now
calculate d(fdZ) = df ∧ dZ = 0 and the lemma is proved in the C1 case.
Without loss of generality, we may shrink Ω if necessary and assume that the Zj are
given by (2.27). Then dZ1, . . . , dZm, dy1, . . . , dyn form a basis for CT ∗

(x,y) at every point

(x, y) ∈ Ω. Hence, we can express df for f C1 as

df =
m∑
j=1

(Rjf)dZj +
n∑

l=1

(Slf)dyl, (2.30)

where Rj , 1 ≤ j ≤ m and Sl, 1 ≤ l ≤ n are vector fields. From the above arguments it
follows that f is a solution if and only if Slf = 0 for all l = 1, . . . , n, i.e. if the vector
fields Sl form a basis for the sections of V on Ω. Now, (2.30) also applies to a distribution
f on Ω, and so f is a solution if and only if df is a linear combination of the dZj , this
time with distribution coefficients. To finish the proof we can calculate

d(fdZ) = df ∧ dZ =
n∑

l=1

(Slf)dyl ∧ dZ

and we see that f is a solution if and only if d(fdZ) = 0.

We proceed with the calculation of the left hand side of (2.28). exp
{
−ν(z − Z(x′, y′))2

}
is a holomorphic function of Z(x′, y′) and the product of two solutions is again a solution.
Thus, Lemma 6 eliminates most terms arising from the product rule and we are left with

dαν(x
′, y′; z) =

( ν
2π

)m/2
∫
Rm

exp
(
−ν(z − Z(x′, y′))2

)
h(x′, y′)dχ(x′)∧dZ(x′, y′). (2.31)

Define a sequence (Hν)ν of entire functions on Cm by

Hν(z) :=
(ν
π

)m/2
∫
Rm

exp
(
−ν(z − Z(x′, 0))2

)
χ(x′)h(x′, 0)dx′Z(x′, 0). (2.32)

We will show thatHν converges uniformly to h(x, y) onK as ν → ∞. To accomplish this,
we prove that the left hand side of (2.28) converges to 0 when evaluated at z = Z(x, y),
uniformly in (x, y). On the other hand, the first integral on the right hand side of (2.29)
converges uniformly to h(x, y). This, we prove in the next two lemmas.

Lemma 7. For r, d chosen sufficiently small and any continuous function f on Ω,∫
Dy

exp
(
−ν(Z(x, y)− Z(x′, y′))2

)
f(x′, y′)dχ(x′) ∧ dZ(x′, y′) → 0 (2.33)

uniformly in (x, y) ∈ K as ν → ∞.
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2 Background

Proof. dχ(x) = 0 for |x| ≤ r
2 and |x| > r, so the integral in (2.33) is evaluated over the

set {(x′, y′) : r
2 ≤ |x′| ≤ r, y′ ∈ [0, y]}. The exponential term is the only one containing ν

so we need to estimate
∣∣exp(−ν((Z(x, y)− Z(x′, y′))2)

)∣∣. Using (2.27) we get

Re(Z(x, y)− Z(x′, y′))2 = (x− x′)2 − (φ(x, y)− φ(x′, y′))2 (2.34)

By the mean value theorem,∣∣φ(x, y)− φ(x′, y′)
∣∣ ≤ ∣∣φ(x, y)− φ(x′, y)

∣∣+ ∣∣φ(x′, y)− φ(x′, y′)
∣∣ ≤ a

∣∣x− x′
∣∣+A

∣∣y − y′
∣∣,

with
a := sup

|x′|≤r,|y′|≤d

∣∣φx′(x′, y′)
∣∣, sup

|x′|≤r,|y′|≤d

∣∣φy′(x
′, y′)

∣∣
By assumption φx′(0) = 0, so we can choose r, d sufficiently small such that |a| ≤ 1

8 .
Then, we can shrink d further to also get d ≤ r

32A . Then, since |x− x′| ≥ r
4 ,∣∣exp(−ν(Z(x, y)− Z(x′, y′))2

)∣∣ ≤ exp

(
−ν 53r

2

1024

)
,

the lemma follows.

Lemma 8. For r, d sufficiently small, f a continuous function on Ω,(ν
π

)m/2
∫
x′∈Rm

exp
(
−ν(Z(x, y)− Z(x′, y))2

)
f(x′, y)χ(x′)dx′Z(x′, y) → f(x, y)

uniformly in (x, y) ∈ K as ν → ∞.

Proof. First, note that dx′Z(x′, y) = det(Zx′(x′, y))dx′. Making the change of variables√
ν(x′ − x) = ξ, the integral becomes

1

πm/2

∫
Rm

exp

(
−
(
ξ + iν1/2

(
φ

(
x+

ξ√
ν
, y

)
− φ(x, y)

))2
)

χ

(
x+

ξ√
ν

)
f

(
x+

ξ√
ν
, y

)
det

(
Zx

(
x+

ξ√
ν
, y

))
dξ.

(2.35)

Again, choosing r and d sufficiently small such that

a = sup
|x|≤r,|y|≤d

|φx(x, y)| ≤ 1/2.

Then the integral (2.35) converges to

1

πm/2

∫
Rm

exp
(
−(ξ + iφx(x, y)ξ)

2
)
f(x, y) det(Zx(x, y))dξ,

uniformly in (x, y) ∈ K as ν → ∞. This, we can compute using the following lemma:
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2.4 Approximation of CR Functions

Lemma 9. Let B be a real m×m matrix with norm less than 1. Set A = I + iB, then

det(A)

πm/2

∫
Rm

e−(Aξ)2dξ = 1

Proof. |Bξ| ≤ ∥B∥|ξ|, for all ξ ∈ Rm, thus the integrand can be bounded by e(1−∥B∥)ξ2 , so
the integral is finite and we can make a change of variables ξ′ = Aξ, since A is invertible
by a Neumann series. We are then left with a Gaussian integral 1

πm/2

∫
Rm e

−(ξ′)2dξ′, which
can be evaluated to 1 in a multitude of ways (e.g. squaring the integral and factoring
the integrand reduces to the two dimensional case which is easily handled using polar
coordinates).

This completes the proof of Lemma 8

We have now established that the entire functionsHν defined by (2.32) satisfyHν(x, y) →
h(x, y) uniformly in (x, y) ∈ K. Now we can truncate the power series of the Hν to get
polynomials that converge uniformly to each of the Hν on K, from these polynomials
we can extract a diagonal sequence converging uniformly to h. Consequently, we have
proved the theorem for continuously differentiable h. To extend to the continuous case,
the only step that needs justification is the application of Stokes’ theorem. (2.28) is still
true in this case, even if coefficients of the forms are not necessarily C1, since neither
side of (2.28) contains derivatives of h by Lemma 6. We have now finished the proof of
Theorem BT.

Theorem BT relates to hypersurfaces in Cn+1 in the following way: Let CTCn+1 be the
complexified tangent bundle of Cn+1. Taking (x1, y1, . . . , xn+1, yn+1) as coordinates of
Cn+1, we set

∂

∂Zj
:=

∂

∂xj
− i

∂

∂yj
,

∂

∂Zj

:=
∂

∂xj
+ i

∂

∂yj

producing a basis { ∂
∂Zj

|p, ∂
∂Zj

|p}j=1,...,n+1 for CTpCn+1. Setting T 1,0
p Cn+1 = spanC{ ∂

∂Zj
|p}

and T 0,1
p Cn+1 = spanC{ ∂

∂Zj
|p} we obtain a direct sum decomposition CTCn+1 = T 1,0Cn+1⊕

T 0,1Cn+1 of CTCn + 1 into holomorphic and antiholomorphic vectors respectively. The
complexified tangent bundle CTS of a hypersurface S inherits this direct sum decom-
position from the ambient space and we can set Vp := CTpS ∩ T 0,1Cn+1 for the space of
antiholomorphic tangent vectors and define the CR bundle of S as the bundle with fiber
Vp at p ∈ S.
Let S, S′ ⊂ Cn+1 be hypersurfaces with CR bundles V and V ′ respectively. A Ck map
H : S → S′ is CR if TpH(Vp) ⊂ V ′

p.
It is then possible to show that BT applies to CR functions between hypersurfaces in
Cn+1(see Proposition 2.1.5. of [1]).
We can now prove an extension result for CR functions on hypersurfaces, this uses the
concept of analytic disks. For a hypersurface S in Cn+1 we write D(S) for the analytic
disks attached to S, i.e. A ∈ D(S) if A : ∆ → Cn+1 is Ck,α, holomorphic on ∆ and
A(b∆) ⊂ S.
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2 Background

Proposition 1. Let S be a hypersurface in Cn+1 and p0 ∈ S. Then there exists an
open neighbourhood U of p0 such that for any Ck,α CR function f on U there exists a
continuous function F defined on W := ∪A∈D(U)A(∆) that fulfil for any A ∈ D(U)

• F ◦A is holomorphic on ∆

• F (p) = f(p) for all p ∈ U

• F is holomorphic on the interior of W

Proof. We choose U sufficiently small such that Theorem BT applies, i.e. such that for
any CR function on U there exists a sequence of polynomials pν(Z) converging uniformly
to f on U. The constant disk A ≡ p for p ∈ U lies in D(U), hence U ⊂ W . Now define
F as follows: for Z ∈W choose A ∈ D(U) such that Z ∈ A(∆). By construction, pν ◦A
converges uniformly on b∆ and, by the Maximum Principle, also on ∆. Thus, we can
set F (Z) := limν→∞ pν(Z) and we see that F is independent of the choice of A. F is
also independent of the approximating sequence (pν)ν and the holomorphicity properties
follow since the uniform limit of holomorphic functions is holomorphic.
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3 A Jet Determination Result

In this chapter we apply the material to prove a finite jet determination result for CR-
diffeomorphisms of hypersurfaces in Cn+1.We follow the paper [4] and adopt the notation
from there.

3.1 Stationary Disks

Let S be a finitely smooth hypersurface in Cn+1, defined in a neighbourhood of 0 by its
defining function r, we assume 0 ∈ S. We will call functions f ∈ (Ak,α)n+1 analytic disks
and say that they are attached to S if f(ζ) ∈ S for all ζ ∈ b∆.

Defiition 2. A holomorphic disk f ∈ (Ak,α)n+1 attached to S = {r = 0} is called
k0−stationary if there exists a continuous map c : b∆ → R \ {0} such that b∆ ∋ ζ 7→
ζk0c(ζ)∂r(f(ζ)) extends to a map in (Ak,α)n+1.

Proposition 2. Let S ⊂ Cn+1 be a hypersurface as in Definition 2. Then there exists a
neighbourhood U of 0 in Cn+1 such that if H is a Ck+1 CR diffeomorphism sending S∩U
to a real hypersurface S′ ⊂ Cn+1 and f ∈ (Ak,α)n+1 is a k0−stationary disk attached to
S ∩ U then H ◦ f ∈ (Ak,α)n+1 gives a k0−stationary disk attached to S′.

Proof. Following the notation of Proposition 1, let W =
⋃
φ(b∆) where φ ranges over

all analytic disks attached to S. By the same result, H extends to a holomorphic map H̃
on W continuous up to W ∩ S. Since f(∆) ⊂W, H ◦ f ∈ (Ck,α

C )n+1 extends analytically
as H̃ ◦ f ∈ (Ak,α)n+1. To see that this disk is k0−stationary, we note that r ◦H−1 gives
a defining function for S′ and calculate

ζk0c(ζ)∂(r ◦H−1)(H ◦ f(ζ)) = ζk0c(ζ)∂r(f(ζ))(∂H(f(ζ))−1

where c is provided by the k0−stationarity of f attached to S. (∂H(f(ζ))−1 = (∂H̃(f(ζ))−1

so we have that the above expression extends analytically as desired.

There is also a geometric description of k0−stationary disks

Defiition 3. A holomorphic disk f ∈ (Ak,α)n+1 attached to S = {r = 0} is k0−stationary
if there exists a holomorphic lift f = (f, f̃) of f to the cotangent bundle T ∗Cn+1, which
is continuous up to the boundary and such that for all ζ ∈ b∆,f(ζ) ∈ N k0S(ζ), where

N k0S(ζ) := {(z, w, z̃, w̃) ∈ T ∗Cn+1|(z, w) ∈ S, (z̃, w̃) ∈ ζk0N∗
zS \ {0}}, (3.1)

here N∗
zS = spanR{∂r(z)}

33



3 A Jet Determination Result

3.2 The model surface

The jet determination result we will prove applies to a families of hypersurfaces which
are perturbations of polynomial hypersurfaces. More specifically, we consider here gen-
eralizations of homogeneous polynomials: A (real) polynomial P : Cn → C is called
weighted homogeneous with weight M = (m1, . . . ,mn) ∈ Nn and weighted degree d ∈ N
if for all t ∈ R and all z ∈ Cn we have

P (tm1z1, . . . , t
mnzn, t

m1z1, . . . , t
mnzn) = tdP (z, z). (3.2)

As an abbreviation we will write tMz = (tm1z1, . . . , t
mnzn), with this, the condition reads

P (tMz, tMz) = tdP (z, z). Evidently, a weighted homogeneous polynomial with weight
(1, . . . , 1) is just a homogeneous polynomial.
For multi-indices M = (m1, . . . ,mn), J = (j1, . . . , jn) we write

M · J =
n∑

l=1

mljl.

Now we fix a weight vector M = (m1, . . . ,mn) and a real-valued weighted homogeneous
polynomial P with weight M and weighted degree d. With this notation we can write P
in the form

P (z, z) =
∑

M ·J+M ·K=d
d−k0≤M ·J≤k0

aJKz
JzK =

k0∑
d−k0

 ∑
M ·J+M ·K=d

M ·K=l

aJKz
JzK


︸ ︷︷ ︸

=:P d−l,l(z,z)

(3.3)

where d
2 ≤ k0 ≤ d−1 is the largest number for which there exist multi-indices J̃ , K̃ with

M · K̃ = k satisfying αJ̃K̃ ̸= 0. The P d−l,l are the “bihomogeneous” components of P,
satisfying P d−l,l(tMz, sMz = td−lslP d−l,l(z, z). Since P is assumed to be real-valued, we

have that αJK = αK,J for all multi-indices J,K, and also, that P d−l,l(z, z) = P
l,d−l

(z, z).
We define the model hypersurface SP = {ρ = 0} ⊂ Cn+1 where the defining function ρ
is given by

ρ(z, w) = −Rew + P (z, z) = −Re z +
∑

M ·J+M ·K=d
d−k0≤M ·J≤k0

aJKz
JzK (3.4)

For v ∈ Cn define the analytic disk hv : ∆ → Cn

hv(ζ) := (1− ζ)M = ((1− ζ)m1v1, . . . , (1− ζ)mnvn)

Then, for any disk (hv, gv) that is attached to S, the Levi Form takes the following form
(cf. Prop. 2.2.10 in [1]):

Pzz(h
v(ζ), hv(ζ)) =

Pz1z1(h
v(ζ), hv(ζ)) . . . Pz1zn(h

v(ζ), hv(ζ))
...

. . .
...

Pznz1(h
v(ζ), hv(ζ)) . . . Pznzn(h

v(ζ), hv(ζ))

 .
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3.2 The model surface

Later on, expressions of the form ζk0Pzizj (h
v(ζ), hv(ζ)) will appear, we calculate

ζk0Pzizj (h
v(ζ), hv(ζ)) =

k0∑
l=d−k0

ζk0P d−l,l
zizj

((1− ζ)Mv, (1− ζ)Mv)

=

k0∑
l=d−k0

(1− ζ)d−l−mi(1− ζ)l−mjζk0P d−l,l
zizj

(v, v)

= (1− ζ)d−mi−mj

k0∑
l=d−k0

(−1)l−mjζk0−l+mjP d−l,l
zizj

(v, v)

= (1− ζ)d−mi−mjζk0Pzizj (v, (−ζ)Mv)

and

ζk0Pzizj (h
v(ζ), hv(ζ)) =

k0∑
l=d−k0

ζk0P d−l,l
zizj ((1− ζ)Mv, (1− ζ)Mv)

=

k0∑
l=d−k0

(1− ζ)d−l−mi−mj (1− ζ)lζk0P d−l,l
zizj (v, v)

= (1− ζ)d−mi−mj

k0∑
l=d−k0

(−1)lζk0−lP d−l,l
zizj (v, v)

= (1− ζ)d−mi−mjζk0Pzizj (v, (−ζ)Mv).
Thus, we can set

ζk0Pzizj (h
v(ζ), hv(ζ)) = (1− ζ)d−mi−mjQv

ij
(ζ)

ζk0Pzizj (h
v(ζ), hv(ζ)) = (1− ζ)d−mi−mjSv

ij(ζ),

with Qv
ij
and Sv

ij holomorphic polynomials. Qv
ij
has degree at most 2k0−d+mj and S

v
ij

has degree at most 2k0−d, furthermore, Qv
ij
is divisible by ζmj : Comparing the condition

M · J ≤ k0 in the sum from (3.3) with the definition Qv
ij
(ζ) = ζk0Pzizj (v, (−ζ)Mv) we

see that the corresponding terms here satisfy M · (M − ej) ≤ k0−mj . Hence, the (−ζ)M
can only cancel a (k0−mj)−th power from the outside ζk0 . This is actually an essential
ingredient in a later proof.

Defiition 4. v is admissable for P if there exists a function gv : ∆ → C such that for
fv = (hv, gv) we have:

• fv(b∆) ⊂ SP , but f
v(∆) ⊈ SP

•

Qv(ζ) = det

Q11(ζ) . . . Q1n(ζ)
...

. . .
...

Qn1(ζ) . . . Qnn(ζ)

 ̸= 0 (3.5)

for ζ ∈ b∆.
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3 A Jet Determination Result

In the above definition, fv(b∆) ⊂ SP , uniquely determines gv and it can be explicitly
computed, we will do this later. A more general method for attaching analytic disks is
given in Chapter VI of [1].

Lemma 10. Assume that SP is generically Levi-nondegenerate and that the set of Levi-
degenerate points ΣP := {(z, w) ∈ SP | detPzz(z, z) = 0} does not have any branches of
dimension 2n− 1 near 0. Then there exists an admissible vector v for P.

Proof. First we show that for an open, dense subset of v’s. Qv only vanishes at 1.

(1− ζ)nd−2|M |Qv(ζ) = ζnk0 det

Pz1z1(h
v(ζ), hv(ζ)) . . . Pz1zn(h

v(ζ), hv(ζ))
...

. . .
...

Pznz1(h
v(ζ), hv(ζ)) . . . Pznzn(h

v(ζ), hv(ζ))


=: ζnk0Dv(ζ, ζ),

so Qv(ζ) = 0 for ζ ̸= 1 if and only if (hv(ζ),ReP (hv(ζ), hv(ζ)) ∈ ΣP is a Levi-degenerate
point. Assuming towards a contradiction that there exists an open set of v′s such that
for each of them we have a ζ = ζv with D(ζv) = 0. Then we can pass to a smooth point
of the real-algebraic variety ΣP to see that its dimension would have to be a at least
2n− 1, contradicting our assumption on ΣP .
Secondly, we claim that if v satisfies Dv(i,−i) ̸= 0 then Qv(1) ̸= 0. For this we employ
the coordinate change ζ = i−t

i+t , where t is taken from the upper half plane. With this,

we have that (1− ζ) = 2it+O(t2), and that the boundary b∆ corresponds to R, hence

Dv(ζ, ζ) = Dv(2it+O(t2),−2it+O(t2))

= (2t)nd−2|M |Dv(i,−i) +O(tnd−2|M |).

This implies that Qv(1) = Dv(i,−i) ̸= 0. the set of all v′s such that Dv(i,−i) ̸= 0 is by
assumption open and dense. Thirdly, we claim that the set of v′s for which hv(∆) ⊈ SP
is a subset of the set of v′s for which P (v, v) ̸= 0. Assume fv(∆) ⊂ SP , then can deduce
that g(ζ) = 0 for ζ ∈ ∆. Then we also get P ((1 − ζ)Mv, (1 − ζ)Mv) = 0 in ∆ so
P (v, v) = 0.
To conclude, we have seen that admissable vectors have to lie in the three open dense
sets that we have discussed and their intersection is obviously nonempty.

From now on, we will fix an admissable vector v and set

f0 := (hv, g0) = ((1− ζ)m1v1, . . . , (1− ζ)mnvn, g
0). (3.6)

f0 is a k0−stationary disk attached to SP satisfying f0(1) = 0.

3.3 Deformations

Next we will parametrize a space of allowed higher order deformations of a model surface
SP .
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3.3 Deformations

3.3.1 Space of allowed deformations

Let SP = {ρ = 0} be a model surface of the form (3.4), k > 0 an integer. Choose δ > 0
large enough such that the polydisc δ∆n+1 ⊂ Cn+1 contains f0(∆), where f0 is the disc

given by (3.6). We consider the affine Banach space X of functions r ∈ Ck+3
(
δ∆n+1

)
which can be written as

r(z, w) = ρ(z, w) + θ(z, Imw)

with

θ(z, Imw) =
∑

M ·J+M ·K=d+1

(zJzK)rJK0(z) +
d∑

l=1

∑
M ·J+M ·K=d−1

zJzK(Imw)l · rJKl(z, Imw) (3.7)

where rJK0 ∈ Ck+3
C

(
δ∆n

)
and rJKl ∈ Ck+3

C
(
δ∆n × [−δ, δ]

)
. We equip X with the fol-

lowing norm

∥r∥X = sup ∥rJKl∥Ck+3

so thatX is isomorphic to a real, closed subspace of a suitable power of Ck+3
C

(
δ∆n × [−δ, δ]

)
and, hence is a Banach space.

3.3.2 Defining equations for N k0SP

Let

SP = {ρ = 0} = {−Rew + P (z, z) = 0} ⊂ Cn+1

be the model hypersurface from (3.4). We will now give defining equations for the
submanifold N k0SP (ζ) ⊂ C2n+2 (see (3.1)) for each ζ ∈ b∆. By definition, we have

(z, w, z̃, w̃) ∈ N k0SP (ζ) ⇔


ρ(z, w) = 0

there exists c : b∆ → R \ {0} such that
(z̃, w̃) = ζk0c(ζ)

(
Pz(z, z),−1

2

)
.

Reading the w̃ component in the above, we have that −2w̃ = ζk0c(ζ), so we can eliminate
the function c and get the equivalent form

⇔



ρ(z, w) = 0

w̃

ζk0
∈ R

z̃i + 2w̃Pzi(z, z) = 0 for 1 ≤ i ≤ n.

By splitting these into real and imaginary part, we get 2n+2 real defining equations for
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N k0SP (ζ) ⊂ C2n+2 :

ρ̃1(ζ)(z, w, z̃, w̃) = −Rew + P (z, z) = 0

ρ̃2(ζ)(z, w, z̃, w̃) = (z̃1 + 2w̃Pz1(z, z)) +
(
z̃1 + 2w̃Pz1(z, z)

)
= 0

ρ̃3(ζ)(z, w, z̃, w̃) = i (z̃1 + 2w̃Pz1(z, z))− i
(
z̃1 + 2w̃Pz1(z, z)

)
= 0

...

ρ̃2n(ζ)(z, w, z̃, w̃) = (z̃n + 2w̃Pzn(z, z)) +
(
z̃n + 2w̃Pzn(z, z)

)
= 0

ρ̃2n+1(ζ)(z, w, z̃, w̃) = i (z̃n + 2w̃Pzn(z, z))− i
(
z̃n + 2w̃Pzn(z, z)

)
= 0

ρ̃2n+2(ζ)(z, w, z̃, w̃) = i
w̃

ζk0
− iζk0w̃ = 0.

We set
ρ̃ := (ρ̃1, . . . , ρ̃2n+2).

3.3.3 k0−stationary disks attached to deformations

We introduce the following space to measure (lifts of) k0−stationary disks in:

YM,d :=

n∏
i=1

(
Ak,α

0mi

)
×Ak,α

0 ×
n∏

i=1

(
Ak,α

0d−mi

)
×Ak,α. (3.8)

For a real hypersurface S = {r = 0} with r in the space of allowed deformations X, we
denote by Sk0,r the set of lifts f ∈ YM,d of k0−stationary disks attached to S. The disk
(3.6) has the lift

f0 = (h0, g0, h̃0, g̃0) = ((1− ζ)m1v1, . . . , (1− ζ)mnvn, g
0, h̃0,−ζk0/2) ∈ YM,d

where h̃0(ζ) = ζk0Pz(h
0, h0).

Theorem 8. There exists an integer N, open neighborhoods ρ ∈ V ⊂ X and 0 ∈ U ⊂
RN , a real number η > 0 and a map

F : V × U → YM,d

of class C1 such that:

• F(ρ, 0) = f0,

• for all r ∈ V the map

F(r, ·) : U → {f ∈ Sk0,r|
∥∥f − f0

∥∥
Y M,d < η}

is one-to-one and onto.
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Proof. Define the following map between Banach spaces

H : X × YM,d → Ck,α
0 ×

n∏
i=1

((
Ck,α

0d−mi

)2)
× Ck,α

by
H(r,f) := r̃(f).

Since f ∈ YM,d is a k0−stationary disk attached to S = {r = 0} if and only if r̃(f) = 0,
we have that for each r ∈ X, the zero set of H(r̃, ·) is exactly Sk0,r. Thus, the theorem
follows by applying a version of the implicit function theorem to H.
The partial derivative of H with respect to YM,d at (ρ,f0) is

f ′ 7→ 2Re(G(ζ)f ′) (3.9)

where the matrix

G(ζ) :=
(
ρ̃z(f

0), ρ̃w(f
0), ρ̃z̃(f

0), ρ̃w̃(f
0)
)
∈M2n+2(C)

is given by

G(ζ) =



Pz1(h
0, h0) . . . Pzn(h

0, h0) −1/2 0 · · · 0 0

0 1
. . . 0 2Pz1(h

0, h0)

0 −i . . . 0 −2iPz1(h
0, h0)

B(ζ) 0 0
. . . 0 2Pz2(h

0, h0)
...

...
. . .

...
...

0 0
. . . −i −2iPzn(h

0, h0)

0 · · · 0 0 0
. . . 0 −iζk0


.

Using the notation dℓj := d−mℓ −mj , the entries of the 2n× n matrix B(ζ) are given
by

B2ℓ−1,j(ζ) = −(1− ζ)dℓj
(
Qℓj(ζ) +

Sℓj(ζ)

ζdℓj

)
for odd 1 ≤ 2l − 1 ≤ 2n− 1 and

B2ℓ,j(ζ) = −i(1− ζ)dℓj
(
Qℓj(ζ)−

Sℓj(ζ)

ζdℓj

)
for even 2 ≤ 2ℓ ≤ 2n.
For our application of the implicit function theorem, we care about the surjectivity of
f ′ 7→ 2Re(G(ζ)f ′) and the dimension of its kernel. We can permute the columns of
G(ζ) to obtain the operator

L1 : Ak,α
0 ×

n∏
i=1

(
Ak,α

0d−mi
×Ak,α

0mi

)
×Ak,α → Ck,α

0 ×
n∏

i=1

((
Ck,α

0d−mi

)2)
× Ck,α
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defined by

L1(g
′, h̃′1, h

′
1, · · · , h̃′n, h′n, g̃′) := 2Re

[
G1(ζ)(g

′, h̃′1, h
′
1, · · · , h̃′n, h′n, g̃′)

]
,

where

G1(ζ) =

 −1/2 (∗)
A(ζ)

(0) −iζk0


and where A(ζ) is 

1 B1,1(ζ) . . . 0 B1,n(ζ)
−i B2,1(ζ) . . . 0 B2,1(ζ)
...

...
...

...
...

0 B2n−1,1(ζ) . . . 1 B2n−1,n(ζ)
0 B2n,1(ζ) . . . −i B2n,n(ζ)

 .

At this point, we have gone from a nonlinear problem to a linear one but we still have
the problem that G(1) is singular so we can not apply the machinery we have developed.
Now our results concerning different function spaces come in handy. Specifically, for

φ ∈ Ck,α
0 ×

∏n
j=1

((
Ck,α

0d−mj

)2)
transform the linear system

2Re
(
G1(ζ)(g

′, h̃′1, h
′
1, . . . , h̃

′
n, h

′
n, g̃

′)
)
= φ

in the following way: We divide the first line by (1− ζ) and the (2l− 1)−th and (2l)−th
lines by (1 − ζ)d−ml for l = 1, . . . , n. Then we multiply the (2l − 1)−th and (2l)−th
lines by ζsl , where sl = (d−ml)/2 for l = 1, . . . , n. By Lemma 1 these transformations
correspond to isomorphisms transforming L1 to an operator

L2 :
(
Ak,α

)2n+2
→ R1 × (R0)

2n × Ck,α

which is equivalent to L1 in the sense that L1 is surjective with finite dimensional kernel
if and only if L2 is surjective with finite dimensional kernel of the same dimension. We
have thus reduced the problem to studying the linear operator

L3 : (Ak,α)2n → (R0)
2n

defined by

L3(h̃
′
1, h

′
1, · · · , h̃′n, h′n) := 2Re

[
A(ζ)(h̃′1,−h′1, · · · , h̃′n,−h′n)

]
where the corresponding matrix, still denoted by A(ζ), is

ζ
s1

Q11ζ
s1−m1 + S11ζ

s1
. . . 0 Q1nζ

s1−mn + S1nζ
s1

−iζs1 iQ11ζ
s1−m1 − iS11ζ

s1
. . . 0 iQ1nζ

s1−mn − iS1nζ
sn

...
...

...
...

...

0 Qn1ζ
sn−m1 + Sn1ζ

sn
. . . ζ

sn
Qnnζ

sn−mn + Snnζ
sn

0 iQn1ζ
sn−m1 − iSn1ζ

sn
. . . −iζsn iQnnζ

sn−mn − iSnnζ
sn

 .
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Out of convenience, we set Q′
ℓj
= Qℓjζ

−mj and therefore

A(ζ) =


ζ
s1

Q′
11
ζs1 + S11ζ

s1
. . . 0 Q′

1nζ
s1 + S1nζ

s1

−iζs1 iQ′
11
ζs1 − iS11ζ

s1
. . . 0 iQ′

1nζ
s1 − iS1nζ

sn

...
...

...
...

...

0 Q′
n1
ζsn + Sn1ζ

sn
. . . ζ

sn
Q′

nnζ
sn + Snnζ

sn

0 iQ′
n1
ζsn − iSn1ζ

sn
. . . −iζsn iQ′

nnζ
sn − iSnnζ

sn

 .

Multiplying the 2l − 1−th row with i and adding it to the 2l−th row for l = 1, . . . , n,
we can eliminate all the −iζsl ’s. Then, expanding along the 2l − 1−th columns for
l = 1, . . . , n we get

detA(ζ) = (2i)nQ′(ζ) (3.10)

where

Q′(ζ) = ζ−(m1+...+mn)Q(ζ).

We have now transformed the problem into a form where the machinery we have devel-
oped in section 2.3 can be applied.

Lemma 11. The linear operator L3 : (Ak,α)2n → (R0)
2n is onto.

Proof. This follows from the first part of Theorem 5 if we can show that the partial
indices of

A−1(ζ)A(ζ) =
1

detA(ζ)
A′(ζ) =

1

(2i)nQ′(ζ)
A′(ζ)

are all greater than or equal to −1. For 1 ≤ j, ℓ ≤ 2n we denote by A′
jℓ the (j, ℓ)-entry

of A′. A direct computation gives for ℓ, p = 1, · · · , n

A′
2ℓ−1,2p = (−2i)nζs1+···+sn−sℓ det


Q′

lpζ
sℓ Sl1ζ

sℓ Sl2ζ
sℓ · · · Slnζ

sℓ

S1pζ
s1

Q
′
11ζ

s1
Q

′
12ζ

s1 · · · Q
′
1nζ

s1

S2pζ
s2

Q
′
21ζ

s2
Q

′
22ζ

s2 · · · Q
′
2nζ

s2

...
...

...
... · · ·

...

Snpζ
sn

Q
′
n1ζ

sn
Q

′
n2ζ

sn · · · Q
′
nnζ

sn



= (−2i)n det


Q′

ℓp Sℓ1 Sℓ2 · · · Sℓn

S1p Q
′
11 Q

′
12 · · · Q

′
1n

S2p Q
′
21 Q

′
22 · · · Q

′
2n

...
...

...
... · · ·

...

Snp Q
′
n1 Q

′
n2 · · · Q

′
nn


︸ ︷︷ ︸

:=B2ℓ−1,2p

= (−2i)na′2ℓ−1,2p
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where a′2ℓ−1,2p = detB2ℓ−1,2p. We use Cj,l(B) to denote the (j, l)−cofactor of a square
matrix B. All entries of the first row of B2l−1,p except the first only depend on l, so we
have for all j = 1, . . . , n and any p, p′ = 1, . . . , n :

Cj,1(B2l−1,p) = Cj,1(B2l−1,p′).

We write Cj,1;l = Cj,1(B2l−1,p), which is well-defined by the above. Similarly, we get

C1,j(B2l−1,p) = C1,j(B2l′−1,p)

for any p = 1, . . . , n and any l, l′ = 1, . . . , n which we denote by Cp
1,j . A computation

yields

A′
2l−1,2p−1 = (−2i)nCp+1,1;l

and

A′
2l,2p = (−2i)nCp

1,l+1

for l, p = 1, . . . , n. Denote by Dlp the n × n matrix obtained by removing the first row
and the (l + 1)−th column of B2l−1,2p, namely,

Dℓp =


S1p Q

′
11 Q

′
12 · · · Q

′
1ℓ−1 Q

′
1ℓ+1 · · · Q

′
1n

S2p Q
′
21 Q

′
22 · · · Q

′
2ℓ−1 Q

′
2ℓ+1 · · · Q

′
2n

...
...

... · · ·
...

... · · ·
...

Snp Q
′
n1 Q

′
n2 · · · Q

′
nℓ−1 Q

′
nℓ+1 · · · Q

′
nn


for l, p = 1, . . . , n. Note that

det(Dlp) = (−1)lCp
1,l+1

and

Cj,1(Dlp) = Cj,1(Dlp′)

which we denote by cj,1;l. By a direct computation, we see

A′
2l,2p−1 = (−1)l+1(−2i)ncp,1;l.

Now we have notation for the entries of A′(ζ) :

A′(ζ)

(−2i)n
=



C2,1;1 a′1,2 C3,1;1 a′1,4 · · · Cn+1,1;1 a′1,2n
c1,1;1 C1

1,2 c2,1;1 C2
1,2 · · · cn,1;1 Cn

1,2

C2,1;2 a′3,2 C3,1;2 a′3,4 · · · Cn+1,1,2 a′3,2n
−c1,1;2 C1

1,3 −c2,1;2 C2
1,3 · · · −cn,1;2 Cn

1,3
...

...
...

... · · ·
...

...
C2,1;n a′2n−1,2 C3,1;n a′2n−1,4 · · · Cn+1,1;n a′2n−1,2n
c11,n

(−1)n+1 C1
1,n+1

c2,1;n
(−1)n+1 C2

1,n+1 · · · cn,1;n

(−1)n+1 Cn
1,n+1


. (3.11)
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We set Cp for the p−th column of A′(ζ). By performing the column operation

C2p → C2p −
n∑

j=1

SjpC2j−1 (3.12)

for each p = 1, . . . , n A′(ζ) transforms into

A′(ζ) → (−2i)n



C2,1;1 Q′
11
Q′ C3,1;1 Q′

12
Q′ · · · Cn+1,1;1 Q′

lnQ
′

c1,1;2 0 c2,1;2 0 · · · cn,1;2 0

C2,1;2 Q′
21
Q′ C3,1;2 Q′

22
Q′ · · · Cn+1,1;2 Q′

2nQ
′

−c1,1;3 0 −c2,1;3 0 · · · −cn,1;3 0
...

...
...

... · · ·
...

...

C2,1;n Q′
n1
Q′ C3,1;n Q′

n2
Q′ · · · Cn+1,1;n Q′

nnQ
′

c 1,1;n

(−1)n+1 0
c2,1;n

(−1)n+1 0 · · · cn,1;n

(−1)n+1 0


. (3.13)

Now consider the Birkhoff factorization of A−1A (cf. section 2.2): Let κ1 ≥ . . . ≥ κ2n be
the partial indices of A−1A, Λ = diag(ζκ1 , . . . , ζκ2n), and Θ : ∆ → GL2n(C) a smooth
map , holomorphic on ∆ such that

ΘA−1A = ΛΘ. (3.14)

Let λ = (λ1, µ1, . . . , λn, µn) be the last row of the matrix Θ. Substituting (3.11) into
(3.14) results in the system:

n∑
k=1

Cj+1,1;kλk +
n∑

k=1

(−1)k+1cj,1;k+1µk = Q′ζκ2nλj

n∑
k=1

a′2k−1,2jλk +

n∑
k=1

Cj
1,k+1µk = Q

′
ζκ2nµj

 j = 1, . . . , n.

After performing the column operations (3.12) the second line above reads (see (3.13)):

Q′
n∑

k=1

Q′
kj
λk = Q′ζκ2nµj −

n∑
k=1

SkjQ′ζκ2nλk, j = 1, . . . , n

Recall that we are working with an admissable vector (3.5), which means that Q′ does
not vanish on b∆, so we can divide to get

n∑
k=1

Q′
kj
λk = ζκ2nµj +

n∑
k=1

Skjζ
κ2nλk, j = 1, . . . , n.

In section 3.2, we saw that Qij is divisible by ζmj , thus Q′
ij
= Qijζ

−mj is holomorphic.

Assuming now that κ2n ≤ −1, the right hand side of each of the equations above is
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antiholomorphic and divisible ζ, while the left hand side is holomorphic. This is only
possible if both sides vanish, yielding the system

n∑
k=1

Q′
kj̄λk = 0, 1, . . . , n.

Since the determinant of the system is Q′ ̸= 0, we must then have that λj vanishes
identically. Inserting this above implies that the µj also vanish identically. But the
matrix Θ is invertible so its last row λ = (λ1, µ1, . . . , λn, µn) cannot be 0. Hence we must
have κ2n ≥ 0, proving Lemma 11.

Lemma 12. The kernel of L3 : (Ak,α)2n → (R0)
2n has finite real dimension less than

or equal to 2n(2k0 − d) + 2n.

Proof. Here we apply the second part of Theorem 5 (with m = 0) which states that the
kernel of L3 has real dimension κ + 2n, where κ is the Maslov index of A−1A which is
given by (Ind):

ind det
(
−A−1A

)
=

1

2iπ

∫
b∆

(
det
(
−A(ζ)−1

A(ζ)
))′

det
(
−A(ζ)−1

A(ζ)
) dζ.

By (3.10), we have

detA−1A = (−1)n
2′(ζ)

Q′(ζ)
= (−1)nζ−2(m1+...+mn)Q(ζ)

Q(ζ)

Therefore

ind det
(
−A−1A

)
= −2

n∑
i=1

mi + 2indQ

≤ −2
n∑

i=1

mi + 2

(
n(2k0 − d) +

n∑
i=1

mi

)
= 2n(2k0 − d).

Lemma 13. Let S = {r = 0} ⊂ Cn+1 be an admissable real sufficiently smooth hy-
persurface. Consider the scaling Λt(z, w) = (tm1z1, . . . , t

mnzn, t
dw). For t > 0 small

enough, the defining function rt =
1
td
r ◦ Λt lies in the neighbourhood V of Theorem 8

Proof. Recall that we can write r as ρ+θ with θ as in 3.7, accordingly we can decompose
rt as

rt =
1

td
ρ ◦ Λt +

1

td
θ ◦ Λt.
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3.4 Finite jet determination

First, we note that the “model” part of the above is invariant under the scaling, since
P is weighted homogeneous:

1

td
ρ ◦ Λt(z, w) =

1

td
(−Re tdw + P (tMz, tMz)) = −Rew + P (z, z) = ρ(z, w).

V is a neighborhood of ρ, so we need to show that the θ part vanishes as t→ 0.

1

td
θ ◦ Λt(z, Imw) =

1

td

∑
M ·(J+K)=d+1

td+1(zJzK)rJK0(t
Mz)

+
1

td

d∑
l=1

∑
M ·(J+K)=d−1

td−lzJzKtd·l(Imw)l · rJKl(t
Mz, td Imw)

Now we can estimate ∥trJK0∥Ck+3 ≤ t∥r∥X and, since d−l+d·l ≥ d+1,
∥∥td·l−lrJKl

∥∥
Ck+3 ≤

t∥r∥X . Combined, these estimates show that ∥rt∥X ≤ t∥r∥, proving the lemma.

Putting this lemma together with Theorem 8, we get

Theorem 9. Let S ⊂ Cn+1 an admissable Cd+k+4 real hypersurface. There exists
a finite-dimensional biholomorphically invariant manifold of small Ck,α k0−stationary
disks attached to S.

3.4 Finite jet determination

With our theorem concerning the existence of k0−stationary disks in hand we are now
ready to prove the following jet determination result for CR diffeomorphisms:

Theorem 10. Let P (z, z) be a weighted homogeneous polynomial of weighted degree d.
Then there exists an integer ℓ0 ≤ 6nd such that the following holds: Let S ⊂ Cn+1 be an
admissable Cd+ℓ0+4 real hypersurface through 0 ∈ Cn+1 with model SP . If H is a germ
of a Cℓ0+1 CR diffeomorphism of S at 0 satisfying jℓ0+1

0 H = I, then H = id .

Proof. For the proof, we will first show that we can reduce the case of an arbitrary
allowed deformation to one whose defining equation lies in the neighborhood of ρ from
Theorem 8. Indeed, we take rt and Λt as in Lemma 13 and set

St := {rt = 0} Ht = Λ−1
t ◦H ◦ Λt.

Then Ht and St satisfy all the assumptions of Theorem 10. We will now use the following
facts whose proof we give later:

• The jet map jℓ0 for disks at 1 is injective on Tf0Sk0,ρ.

• Pullbacks H∗
t (f)(ζ) := (Ht(f(ζ)), f̃(ζ)(∂Ht(f(ζ))

−1) of disks along Ht satisfy the
estimate:

∥H∗
t (f)− f∥Y m,d ≲ t∥f∥Y M,d ∀t ∈ (0, 1), ∥f∥Y M,d ≤ 1
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• The family of disks fv associated to admissable vectors cover an open subset of
Cn+1 with their images.

Putting these facts together there exists and open neighborhood O1 of f0 in YM,d, such
that the jet map jℓ0 is injective on the intersection of this neighborhood with Sk0,rt for all
t small enough. From the estimate we can find an even smaller neighborhood O2 ⊂ O1

of f0 such that pullbacks along Ht lie in O1, i.e. H
∗
t (O2) ⊂ O1. Since we have the jet

identity jℓ0H
∗
t (f) = jℓ0f for f ∈ O2, we already have that H∗

t (f) = f by injectivity
of jℓ0 on O1 (it is here that we need ℓ0 + 1 jet determination since the conormal part
of the pullback contains derivatives of H). Since the disks fv cover an open subset of
Cn+1 we can also cover an open subset with the nearby disks from O2. We can sample
this identity on there to obtain H̃t(q) = q for q in the open subset covered by the disks,
here H̃t is the holomorphic extension of Ht from Proposition 1. This implies H̃t = id by
the identity theorem, so Ht = id and in turn H = id .

First we sketch a proof of the estimate

∥H∗
t (f)− f∥Y m,d ≲ t∥f∥Y M,d ∀t ∈ (0, 1), ∥f∥Y M,d ≤ 1.

The Leibniz rule implies the following estimate for products in the Hölder space:

∥uv∥Ck,α ≲ ∥u∥Ck,α∥v∥Ck,α ∀u, v ∈ Ck,α.

This can be used in our setting since the space YM,d is a product space with Ck,α norms
in each factor. To get the difference H∗

t (f) − f into a form where we can apply this
inequality and extract the factor of t from the higher order terms, write

H = id+
∑
j

Pjψj ,

where the Pj are polynomials with no constant term and ψj are Cℓ0 functions. The same
method works for the cotangent part of the pullback.

3.4.1 Injectivity of the jet map

Let ℓ0,m,N ∈ N. Consider the the linear map jℓ0 : YM,d → C(2n+2)(ℓ0+1) sending f to
its ℓ0−jet at ζ = 1

jℓ0(f) = (f(1), ∂f(1), . . . , ∂ℓ0f(1))) ∈ CN(ℓ0+1)

where ∂lf(1) ∈ CN denotes the vector ∂lf
∂ζl

(1) for all l = 1, . . . , ℓ0.

Lemma 14. There exists an integer ℓ0 ≤ 6nd such that the restriction of jℓ0 to the

kernel of the operator f ′ 7→ 2Re
(
G(ζ)f ′

)
(see (3.9)) is injective.
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Proof. Following the notation of the proof of Theorem 8, we prove there exists an integer
ℓ0 such that the restriction of jℓ0 to the kernel of L2 (from the proof of Theorem 8) is
injective. Using a Birkhoff factorization, we write

−G−1
2 G2 = Θ−1

2 ΛΘ2

where Θ2 : ∆ → GL2n+2(C) is a smooth map holomorphic on ∆, and Λ = diag(ζκ1 , . . . , ζκ2n+2)

with κj being the Maslov indices of −G−1
2 G2. For f ∈ kerL1, we then have

f = −G−1
2 G2f = Θ−1

2 ΛΘ2f

which we can rearrange to
Θ2f = ΛΘ2f .

Θ2f is holomorphic, which implies that the j−th component of Θ2f is a polynomial of
degree at most κj . Hence Θ2f is determined by its ℓ0 = max{κ1, . . . , κ2m+2}−jet at 1.
We now have to show that jℓ0 restricted to kerL1 is injective. To this end, we observe
that, by the product rule, for any l ≥ 0,

∂l(Θ2f)(1) = Θ2(1)∂lf(1) +Rl−1

where R is a linear function of the (l−1)−jet of f at 1. Hence, we can get a well-defined
linear map Θl2 : C(2n+2)(ℓ0+1) → C(2n+2)(ℓ0+1) by jℓ0(f) 7→ jℓ0(Θ2f). Additionally, we
have a matrix representation of this map, block-triangular matrix whose (2n+2)×(2n+2)
diagonal blocks are the invertible matrix Θ2(1). Thus, Θl2 is invertible and we can
combine the identity jℓ0 ◦Θ2 = Θl2 ◦ jℓ0 with the injectivity of jℓ0 on Θ2(kerL1) to get
injectivity of jℓ0 on kerL1. Finally, to get the bound on ℓ0, we estimate ℓ0 by the Maslov

index of G−1
2 G2 :

ind det
(
−G−1

2 G2

)
= −2

n∑
i=1

mi + 2indQ+ 2k0

≤ 4n(2k0 − d)) +
n∑

i=1

mi + 2k0 ≤ 6nd.

3.4.2 Disks covering an open subset

Let v be admissable as in Definition 4 with associated disk fv = (hv, gv). fv is
k0−stationary, since

∂ρ ◦ fv = (Pz1(h
v, h

v
), . . . , Pzn(h

v, h
v
),−1

2
)

and the degree in ζ for each of the components is at most k0 so ζk0∂ρ ◦ fv extends
holomorphically to ∆. We can find an explicit form for gv : It is the unique holomorphic
function satisfying

gv(0) = 0 and Re gv(ζ) = P (hv(ζ), hv(ζ)) (ζ ∈ b∆).
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3 A Jet Determination Result

Thus we can compute

Re gv(ζ) =

k0∑
j=d−k0

(1− ζ)j(1− ζ)d−jP j,d−j(v, v)

=Re

k0∑
j=d−k0

(∑
ℓ

(
j

ℓ

)(
d− j

ℓ

))
P j,d−j(v, v)

+ 2Re

k0∑
j=d−k0

|d−2j|∑
e=1

(−1)eζe

(∑
ℓ

(
j

e+ ℓ

)(
d− j

ℓ

))
P j,d−j(v, v)

and we can read off gv from the sum inside the second real part. We can get (gv)′(0) as
the ζ coefficient:

(gv)′(0) = −2

k0∑
j=d−k0

(∑
ℓ

(
j

1 + ℓ

)(
d− j

ℓ

))
P j,d−j(v, v)

so (gv)′(0) ̸= 0 for an open, dense subset of v′s. We will now see how to use this fact to
cover an open subset of Cn with disks. Take the evaluation map C : (v, ζ) 7→ fv(ζ), we
will show that it has full rank at points (v, 0) where (gv(0))′ ̸= 0. To this end, consider
the Jacobi matrix

DC =

 ∂C
∂(v,ζ)

∂C

∂(v,ζ)
∂C

∂(v,ζ)
∂C

∂(v,ζ)

 =


∂
∂vh

v ∂
∂ζh

v ∂
∂vh

v ∂
∂ζ
hv

∂
∂vg

v ∂
∂ζ g

v ∂
∂vg

v ∂
∂ζ
gv

∂
∂vh

v ∂
∂ζh

v ∂
∂vh

v ∂
∂ζ
h
v

∂
∂vg

v ∂
∂ζ g

v ∂
∂vg

v ∂
∂ζ
gv


The first column is given by

∂

∂v
hv(v, ζ) = diag(1− ζ)M

∂

∂v
gv(v, ζ) =

k0∑
j=d−k0

|d−2j|∑
e=1

(−1)eζe

(∑
ℓ

(
j

e+ ℓ

)(
d− j

ℓ

))
P j,d−j
z (v, v) ⇒ ∂

∂v
gv(v, 0) = 0

∂

∂v
h
v
(v, ζ) = 0

∂

∂v
gv(v, ζ) =

k0∑
j=d−k0

|d−2j|∑
e=1

(−1)eζe

(∑
ℓ

(
j

e+ ℓ

)(
d− j

ℓ

))
P d−j,j
z (v, v) ⇒ ∂

∂v
gv(v, 0) = 0,
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3.4 Finite jet determination

the second column by

∂

∂ζ
hv(v, ζ) = (−m1(1− ζ)m1v1, . . . ,−mn(1− ζ)mnvn

∂

∂ζ
gv(v, ζ) =

k0∑
j=d−k0

|d−2j|∑
e=1

(−1)eζe−1

(∑
ℓ

(
j

e+ ℓ

)(
d− j

ℓ

))
P j,d−j(v, v) ⇒ ∂

∂ζ
gv(v, 0) = (gv)′(0)

∂

∂ζ
h
v
(v, ζ) = 0,

∂

∂ζ
gv(v, ζ) = 0.

The other columns are then determined by conjugation and we arrive at

DC(v, 0) =



In
∂
∂ζh

v(v, 0)

0 (gv)′(0)

0

0

In
∂
∂ζ
h
v
(v, 0)

0 (gv)′(0)


.

Hence detDC(v, 0) = |(gv)′(0)|2 ̸= 0 for an open dense subset of v′s, proving

Lemma 15. ∪vf
v(∆) contains an open subset of Cn+1.
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