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Abstract

Predicting and modelling convective-scale features, such as convective cells and associated
hazards, provides many challenges for numerical weather prediction (NWP) models. The
convective scale is sensitive to small-scale errors, limited by intrinsic predictability and
not easily constrained by conventional observations, which also poses a challenge for data
assimilation (DA). Visible reŕectance observations offer the necessary temporal and spatial
resolution. Still, they are underused in operational centres because the nonlinear relation
between the state and the observed variable violates fundamental assumptions of many
DA algorithms: the linearity of the observation operator and Gaussian error distributions.
This thesis proposes a new form of assimilating visible satellite information by computing
a cloud fraction with a threshold over a changeable area. Like superobbing, pixel-by-pixel
assimilation is avoided, and, especially when more than one scale of cloud fraction is
assimilated, nonlinear effects are possibly mitigated. The relative impact of single and
multiscale cloud fraction assimilation is assessed with idealised observing system simulation
experiments (OSSEs), where the truth is perfectly known and systematic operator or
model deőciencies are neglected. The conducted OSSE comprise the Weather Research
and Forecast (WRF) model for forecasting, the Data Assimilation Research Testbed
(DART) and its implementation of the Ensemble Adjustment Kalman Filter (EAKF)
to assimilate observations and the RTTOV-MFASIS forward operator to simulate those
observations. The cloud fractions are precomputed from visible reŕectance images and
assimilated with an empirically estimated observation error. All conducted experiments
have been evaluated with a probabilistic formulation of the fraction skill score: the
pFSS. Experiments assimilating a single scale of cloud fraction computed over 16x16 km
exhibit improved skill compared to a direct visible reŕectance benchmark experiment
on the same scale for cloud fraction, precipitation, and visible reŕectance. Assimilating
all available cloud fraction scales, ranging from 256x256 km to 16x16 km scales, does
improve pFSS scores but leads to spurious convection and adds a bias to the humidity
proőle with each assimilation cycle. These issues have been alleviated by updating coarse
scales less frequently and assigning a better-suited observation error estimate, leading to
improvements of up to 20 % pFSS compared to the free ensemble for visible reŕectance
during the free forecast and a consistently positive impact on all scales for predicted
precipitation.
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Kurzfassung

Die Vorhersage und Modellierung von konvektiven Zellen und damit verbundener Gefahren
stellt numerische Wettervorhersagemodelle (NWP) vor viele Herausforderungen. Die kon-
vektionserlaubende Skala reagiert empőndlich auf kleine Fehler, ist durch die intrinsische
Vorhersagbarkeit begrenzt und lässt sich oft nicht durch konventionelle Beobachtungen
einschränken, was auch eine Herausforderung für die Datenassimilation (DA) darstellt.
Satellitenbeobachtungen im sichtbaren Bereich (VIS) besitzen die notwendige zeitliche
und räumliche Auŕösung, werden jedoch operationell selten genutzt, da die nicht-lineare
Beziehung zwischen dem Modelzustand und der beobachteten Variable grundlegende
Annahmen vieler DA-Algorithmen verletzt: die Linearität des Beobachtungsoperators
sowie Gaußsche Fehlerverteilungen. Diese Arbeit präsentiert eine neue Form der Assimil-
ation von VIS-Bildern, die sogenannte cloud fraction, welche mit einem Schwellenwert
über einem veränderlichen Gebiet berechnet wird. Ähnlich wie mit Superobbing wird
eine pixelweise Assimilation vermieden, und das Assimilieren von multiplen Skalen kann
potenziell helfen, nicht-lineare Effekte zu vermindern. Die relativen Auswirkungen von
cloud fraction Assimilationen von einzelnen oder mehreren Skalen werden mit idealisierten
Beobachtungssystemsimulationsexperimenten (OSSEs) evaluiert. Das experimentelle
Design besteht aus dem Weather Research and Forecast (WRF)-Modell für Vorhersagen,
sowie dem Data Assimilation Research Testbed (DART) mit dem Ensemble Adjustment
Kalman Filter (EAKF), um synthetisch erstellte cloud fraction Beobachtungen zu assim-
ilieren. Es wurde ein empirisch erstelltes Beobachtungsfehlermodell angewendet und alle
durchgeführten Experimente wurden mit einer probabilistischen Variante des Fraction
Skill Score (pFSS) evaluiert. Experimente, die 16x16 km cloud fraction assimilierten,
weisen im Vergleich zu dem Benchmark-Experiment mit direkten VIS-Beobachtungen
Verbesserungen für cloud fraction, Niederschlag und VIS auf. Die Assimilation aller
verfügbaren cloud fraction Skalen, die Beobachtungen von 16x16 km bis 256x256 km
umfasst, verbessert zwar die pFSS-Werte, führt jedoch zu unerwünschter, zufällig ver-
teilter Konvektion und einer Verzerrung des Feuchteproőls. Diese Probleme wurden
durch die seltenere Assimilierung von großŕächigen cloud fraction Beobachtungen und
Verbesserungen in der Beobachtungsfehlerschätzung gemildert. Insgesamt konnten mehr-
skalige cloud fraction Assimilationsexperimente den pFSS für VIS-Vorhersagen bis zu 20
% verbessern im Vergleich zum freien Ensemble und eine positive Auswirkung auf allen
Skalen für vorhergesagten Niederschlag konnte ebenfalls festgestellt werden.
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1 Introduction and motivation

With advancements in the last decades, numerical weather prediction (NWP) models on
a global scale allow for precise forecasting of synoptic-scale events. However, predicting
convective-scale features, such as convective cells and associated hazards, provides many
challenges for models, and there is still limited success in forecasting convection-permitting
scales (Clark et al., 2016). Processes that are often not accurately represented, such as
low stratus and convective precipitation, can signiőcantly impact society. Deep convective
systems such as thunderstorms and their associated rainfall threaten the public and
require timely and accurate warnings (Scheck et al., 2020). Deőciencies in the model rep-
resentation of clouds also contribute strongly to the uncertainty in solar power production
forecasts (Kurzrock et al., 2018). Clouds are the őrst manifestation of convective processes
and are detectable even before precipitation forms. The prediction of convection would
strongly beneőt from better positioning and constraining clouds within NWP systems.

The convective scale contains various meteorological features ranging from 4-40 km.
The effective resolution of a numerical model is 5-10 times larger than the applied grid
spacing (Skamarock, 2004). In contrast to global models, the limited domain size of
regional models allows for a convection-permitting grid resolution of 1-2 km, which can
resolve convective-scale features at least partially. As the temporal predictability of
those models ranges from hours to a few days (Zhang et al., 2019), the main goal of
convective-scale NWP is to use the large-scale boundary conditions provided by global
models to forecast the position and numbers of individual convective cells.

However, a sufficient numerical grid resolution does not ensure successful regional
forecasts. Partly, this is due to the intermittent and stochastic nature of convection,
the predictability of which is intrinsically limited (Bachmann et al., 2020). Although
high-resolution models can partly resolve moist convection explicitly, their simulations
still suffer from several sources of systematic errors. How a model represents clouds is
inŕuenced by multiple parameterization schemes containing many parameters that often
are not well constrained (Geiss et al., 2021).

Another forecast error source stems from the uncertainty of the initial conditions. The
better the initial state of the atmosphere is known and represented in the model, the
better the subsequent forecast. Data assimilation (DA) aims to reduce the uncertainty of
the initial conditions by combining short-term forecasts with observations. The obtained
analysis can serve as enhanced initial conditions for the forecasting. Thus, increasing the
resolution of numerical models represents a challenge for DA systems, as the assimilated
information should constrain the model state on all its resolved scales.

Observations constraining the convective scale are relatively scarce. Ground-based,
conventional observation types usually have a temporal and spatial inhomogeneous dis-
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1 Introduction and motivation

tribution and are often not representative of a larger area. Indirect remote-sensing
observations like radar can monitor larger neighbourhoods and constrain the thermo-
dynamic cloud structure and height. However, geographic shadowing and gaps in the
radar network limit data quality. Additionally, this observation type needs precipitating
particles to measure the reŕected microwave radiation and, therefore, already formed,
larger hydrometeors (Fabry & Meunier, 2020). Satellite observations, however, cover large
parts of Earth’s surface and offer a high observation frequency (Kugler et al., 2023), which
is especially important in less observation-dense parts of the world (Bauer et al., 2015).
Assimilated satellite products, as listed by Eyre et al. (2022), include passive temperature
or humidity soundings, infrared (IR) imagery, microwave (MW) imagery and visible (VIS)
imagery.

Satellite observations for convective-scale modelling

Observations stemming from LEO1 satellites, such as MW imagery, play an important role
for global NWP DA systems (Geer et al., 2018). LEO satellites only observe an area once
per day, which signiőcantly limits the temporal resolution. Instruments on geostationary
satellites, though, can provide temporally and spatially high-resolved data of VIS and
IR observations suitable for regional forecasting. IR channels from geostationary orbits
observe the humidity őeld and can provide valuable information regarding convective
initiation. However, their signal is signiőcantly changed in the presence of clouds, as IR
radiances are sensitive to water vapour and cloud height and, therefore, cannot detect
low-level clouds. On the other hand, 0.6 µm visible reŕectance observations use the
visible spectrum during the daytime, meaning that the observed radiation from any
vertical level is not attenuated, and the observation is height-independent. Visible satellite
channels can, therefore, provide complementary information to IR observations about
cloud distributions and properties, as they allow for a clear distinction between low clouds
and ground (Scheck et al., 2016).

Cloud-affected satellite observations remain still underused in DA systems, as their
assimilation can violate assumptions of currently used DA schemes and may lead to a
suboptimal forecast update (Geer et al., 2018; Gustafsson et al., 2018). The data retrieved
by satellites is usually not a model variable, but a reŕectance or irradiance measurement,
and a suitable forward operator h is needed to create the model equivalents to update the
model state with the observed information. Many DA algorithms assume a linear h, which
also applies to the sequential Kalman Filter used in this study, the EAKF (Anderson,
2001). However, cloud-affected satellite observations are not linearly related to the model
state variables, and their error distributions are often non-Gaussian (Kugler et al., 2023).

Another issue that arises as a prerequisite for assimilating cloud-related observations is
the need for a good representation of clouds in the model. Assimilated and simulated
clouds should follow a similar climatology, which is often unfulőlled due to systematic
model representation errors (Geiss et al., 2021; Scheck et al., 2020). Deőciencies in
representation can introduce a bias to the őrst guess (FG) forecast and violate the basic

1LEO - Low Earth Orbits
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assumption of an unbiased estimate in currently used DA schemes (Gustafsson et al.,
2018).

Therefore, operational DA setups have frequently excluded cloud-affected satellite
channels or assimilated only retrieved information. Currently, different all-sky assimilation
approaches using water vapour channels from LEO satellites are operational in centres
around the world (Geer et al., 2018) and have been studied in many instances (Cintineo
et al., 2016; Jones et al., 2014; Okamoto, 2017). Regarding regional modelling, IR
observations are still not operationally used due to the reasons above (Geer et al., 2018).

However, the őrst assimilations of visible reŕectances were made possibly recently
with the development of a suitable and fast enough forward operator: RTTOV-MFASIS
(Saunders et al., 2018). It is a lookup table-based, radiative transfer model for simulating
top-of-atmosphere radiances, őrst introduced by (Scheck et al., 2016) and soon added to
RTTOV (Radiative Transfer for TOVS) (Saunders et al., 2018). It simulates the top of
atmosphere reŕectance as seen by the satellite with a function depending on particle sizes
for water and ice clouds, as well as vertically integrated optical depths. It also takes the
surface albedo, the sun, the satellite zenith angle and the scattering angle into account
(Scheck et al., 2016). Scheck et al. (2020) and Schröttle et al. (2020) have explored the
potential of direct reŕectance assimilation and built the foundation for its operational
implementation in the regional model of DWD2 (Schomburg & Bach, 2023). As the
impact of direct visible reŕectance has only been investigated for the NWP and DA
system of DWD, Kugler et al. (2023) explored direct visible reŕectance assimilation with
the Weather Research and Forecast (WRF) model with promising results. The motivation
of this thesis is to investigate the assimilation of visible reŕectance information further
and contribute to a better understanding of its impact.

Pixel-by-pixel assimilations of reŕectances are avoided as observation errors are assumed
to be uncorrelated (Kugler et al., 2023), as this is not the case with neighbouring pixels of
a satellite image. Pixel-based veriőcation methods, such as the root mean squared error
(RMSE), have been proven in many instances to be suboptimal for veriőcation purposes
(Roebber et al., 2004; Rossa et al., 2008), as they penalize a location or intensity mismatch
twice. Neighbourhood-based metrics like the Fraction Skill Score (FSS) introduced by
Roberts and Lean (2008) are less sensitive to minor displacement errors and therefore
favoured for spatial veriőcation (Necker et al., 2023). A more or less equivalent approach
for the assimilation of satellite images is the so-called superobbing. Averaging over
radiances in some way to generate superobs acts similar to a low-pass őlter, helps to
smooth the images of the departures and reduces noise (Duncan et al., 2023). Superobbing
for VIS reŕectance was shown to be beneőcial for the forecast by Scheck et al. (2020) for
the NWP and DA system at DWD. However, Kugler et al. (2023) did not őnd a difference
between assimilating thinned visible reŕectance observations and superobbed ones, which
might be due to superobbing algorithms in WRF being optimized for different observation
types (Sun & Wang, 2013). Therefore, this thesis proposes a new type of superobbing:
cloud fraction.

2DWD - German Weather service
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1 Introduction and motivation

Cloud fraction

Assimilating cloudiness in relatively large areas, instead of considering the pixel scale of the
initial visible reŕectance image, might prove beneőcial to the state update, as it reduces
the double penalty error from displacements of clouds. Instead of simply averaging, the
VIS image is transformed into a binary őeld with a threshold before it is averaged over the
computation area. This kind of superobbing for VIS observations is called cloud fraction.
A high threshold, for example, 0.6 µm VIS reŕectance, helps to isolate water clouds
and, therefore, clear signals of convective activity from high ice clouds (Scheck et al.,
2020). This is important, as VIS imagery is height-independent and cannot distinguish
between ice and water clouds. However, this also means that there is no introduced bias
from height-dependency of the observation like with IR imagery. Compared to a direct
VIS assimilation approach, ensemble members with similar cloud fraction values as the
observation will be given more weight during a cloud fraction assimilation, even though
the placement of small convective systems inside the observed area might differ. Ensemble
members do not need to model the convective system perfectly, which is quite difficult to
achieve given the stochastic nature of convection. Even if the exact placement of each
individual cell might not be feasible, having the same amount of convective activity in a
domain can beneőt cloudiness and precipitation forecasts. The potential of assimilating
such structural information with a threshold-based approach from VIS images has not
yet been explored and will be the main focus of this thesis.

Cloud fraction can be evaluated on areas of arbitrary size, enabling a multiscale
assimilation approach. Going from larger scales to őner ones might effectively alleviate
non-linearity, as the modelled overall convective activity is adjusted to the observed one at
each scale. A similar concept of gradually adjusting an ensemble to the observations has
been investigated by Ying (2019) and Ying et al. (2023), with good results in enhancing
the position of an extensive convective system on a large scale. A more challenging
scenario for DA algorithms on the convective scale is one with deep convection triggered
at random locations. It exhibits low predictability, as it is susceptible to initial conditions
and has to account for fast-growing errors and interacting convective cells (Bachmann
et al., 2020). This work will explore the possibilities of assimilating multiple scales of
cloud fraction observations in this highly unpredictable random case.

1.1 Research questions and outline

The present work aims to provide insight into two main research topics:

I Is the impact of cloud fraction assimilation positive and how does it compare with
that of direct visible reŕectance assimilation?

II Is it useful to assimilate cloud fractions at different spatial scales, and if yes, how
often should the different scales be assimilated?
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1.1 Research questions and outline

The őrst research question focuses on single-scale cloud fraction assimilation and its
possible impact on forecasts of precipitation and cloudiness. This study uses perfect model
OSSEs (Observing System Observation experiments) in an idealized experimental design
to evaluate the relative impact of cloud fraction assimilation. An identical assimilation
cycling is also performed with direct VIS reŕectance assimilation, which serves as a
benchmark experiment. As there is no observation error model for cloud fractions yet,
an empirical error model is obtained by transposing the instrument error applied in
Kugler et al. (2023) for VIS to cloud fractions. Results are evaluated with a probabilistic
formulation of the Fraction Skill Score, the pFSS (Necker et al., 2023).

The second research topic relates to the impact of multiscale cloud fraction, where
OSSEs are conducted by assimilating cloud fractions on coarser and őner scales at the
same assimilation cycling step. To ensure independent observations, only the differences
of the observations on different scales are assimilated. As őner scales exhibit a higher
temporal volatility than coarser ones, experiments featuring a different assimilation fre-
quency for different scales have also been conducted.

The context of this thesis will be provided in chapter 2, which gives a brief overview
of mesoscale convection, numerical weather prediction and data assimilation. It also
describes the data assimilation algorithm applied in this study and the veriőcation method
pFSS.

Chapter 3 focuses on the experimental design and its components. It describes the
technical aspects of the conducted OSSEs and gives detailed information on how cloud
fractions are calculated from a satellite image. Section 3.4 illustrates the empirically
obtained observation error variance models used in this study.

The results of all conducted cloud fraction assimilation experiments are shown in
chapter 4. Potential issues with the multiscale approach are highlighted in section 4.2.1,
and an experiment featuring an enhanced error model alleviating those issues is introduced
in section 4.2.2.

The last chapter, 5, is dedicated to discussing said results and offers conclusions and
suggestions for further investigations.
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2 Background and methods

The following chapter describes the theoretical and technical background for this study
as well as the veriőcation methods.

2.1 Mesoscale convection

Convection generally refers to mass transport in the atmosphere in an upward direction.

Deőnition of the mesoscale

Motion in the atmosphere has a broad spectrum of temporal and spatial scales. The
timescales range from under a second for atmospheric turbulence to weeks for planetary-
scale baroclinic waves. The spatial scales of motion also range from microphysical processes
below one centimetre to thousands of kilometres (Markowski & Richardson, 2010), as is
illustrated by Figure 2.1.

Over a dozen different length scale limits for the mesoscale have been proposed. Orlanski
(1975)’s deőnition with a mesoscale process spanning 2 to 2000 km is one of the most
widely used (Markowski & Richardson, 2010) and will also be used in this thesis. Even
though convective clouds, precipitation, and associated phenomena have characteristic
temporal and spatial scales that can extend below the lower range of the mesoscale and can
be forced by processes at or above the upper end, cumulus and cumulonimbus convection,
such as thunderstorms, are mostly mesoscale phenomena (Trapp, 2013). Convection-
permitting NWP models, as in this thesis, have a spatial and temporal resolution that is
high enough to partly resolve mesoscale convection.

Convective storms

This section follows closely McMurdie and Houze (2006).

Thunderstorms (or convective storms) are forms of local deep moist convection associ-
ated with various severe weather conditions. One can differentiate between:

• Single-cell storms: an individual convective cell with a single up- and downdraft
that is also called an ordinary thunderstorm;

• Multicell storms: organized groups of more than one convective cell;
• Supercell storms: intense and long-lived clusters of cells characterized by rotating

updrafts;
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2.2 Numerical weather predication

Advancements in technology have enabled numerical weather prediction (NWP) to
become a central component of today’s weather forecasts. The basic concept is that
a set of partial differential equations (PDEs) governs the evolution of the atmosphere.
NWP models integrate these PDEs numerically forward in time to predict the future
atmospheric state. Therefore, the initial atmospheric conditions must be described as
accurately as possible.

Primitive equations

The motion and evolution of the atmospheric state are captured in seven basic equations:
conservation of mass (continuity equation), conservation of energy, conservation of water
mass, the state equation for an ideal gas and one equation for conservation of momentum
for each velocity component. Depending on the design of the microphysics scheme, the
conservation of water is split into equations for cloud water, rainwater and water vapour,
and in the case of a mixed-phase scheme, equations for snow, graupel/hail and cloud ice
are added.

Those universal equations are often solved in approximate form. For example, the
vertical momentum equation is simpliőed on a large-scale NWP with the hydrostatic
balance assumption.

Numerical frameworks and grid staggering

There is generally no analytical solution to the aforementioned PDEs except for several
approximated cases. Therefore, the equations are discretized with spectral or őnite
volume methods to őnd approximate solutions. A numerical scheme needs to be stable
and consistent for the numerical solution to converge with the true one. NWP models
today use semi-Lagrangian schemes for spatial discretization on global scales, őnite volume
schemes for temporal discretization, or high-order Runge-Kutta schemes for both. Another
degree of freedom is the arrangement of model variables on different grid points, with
models usually adapting a staggered grid approach. A staggered grid combines nodal
points on different positions to achieve a more accurate characterization of PDEs on the
discrete grid, both in the horizontal and in the vertical direction.

Effective resolution

Regarding the resolution of an NWP system, one has to mention the difference between
numerical resolution and resolved features. Numerical dissipation is introduced either by
the numerical scheme itself or added on purpose to avoid the onset of numerical instability.
Therefore, the effective resolution of the model is always below the theoretically possible
maximal value of twice the grid spacing. Most NWP models resolve effectively 5 to 10
times their grid spacing, and any processes on smaller scales are not resolved due to the
numerical inaccuracy (Abdalla et al., 2013; Skamarock, 2004).
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2 Background and methods

Parametrizations and sub-grid processes

Figure 2.1 shows that atmospheric motion covers various scales. As the PDEs are numer-
ically discretized, the grid resolution of the model is always limited. Any sub-grid-scale
process cannot be explicitly resolved, but its contribution cannot be ignored. Regional-
scale, convection-permitting NWP models resolve deep convective processes explicitly,
but turbulent heat and moisture ŕuxes, condensation, evaporation and friction are below
the resolution. Therefore, parameterization schemes are necessary to properly account for
unresolved processes’ impact and interactions with larger, resolved scales: the averaged
net effect of the sub-grid mechanism must be formulated and applied to the model grid.
Precipitation, for example, is computed by the microphysics parametrization scheme and
highly depends on its implementation.

2.3 Data assimilation

NWP is an initial/boundary value problem: an estimate of the present state of the
atmosphere is necessary to predict its future evolution. The better the initial conditions
are represented, the better the quality of the forecast will be. Today’s operational weather
centres use a statistical combination of observations and short-range forecasts, so-called
data assimilation (DA) (Kalnay, 2002). As observations often do not measure model
variables directly and exhibit a nonuniform distribution in time and space, the observed
information is combined with a ’background’ deőned on all model grid points. The
best background available is usually a short-range forecast, called őrst-guess. It is then
combined with observations valid at that time to yield an analysis, which may serve as
the initial conditions for the NWP model, producing a őrst guess again and long-term
forecasts (Kalnay, 2002). This concept, known as cycling, is depicted in Figure 2.2 for a
regional model.

When combining observed and background information, one needs to determine how
much weight is given to each ingredient. The simplest realization of the concept is the
1-D Bayes Theorem:

P (T |To, C) =
P (To|T,C) · P (T |C)

P (To|C)
, (2.1)

where P (T |To, C) is the probability of the event T , given the observed event To and prior
information C. The numerator in Equation 2.1 is the likelihood of observing To, assuming
T is the true value and taking C into account, multiplied with the prior P (T |C). The
denominator P (To|C) serves as a normalization. An often-made fundamental assumption
in data assimilation is that the probabilities P for the prior and likelihood are Gaussian
and can be described by a mean value T and its standard deviation σT - resulting in a
Gaussian posterior (Evensen et al., 2022).
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2 Background and methods

smaller than the model state, as its size depends on the used observation types. To avoid
dealing with those huge matrices, a sequential approach assimilating one observation after
another has been proposed by Anderson (2001). The following aims to give an overview
of the so-called Ensemble Adjustment Kalman Filter (EAKF) based on Karspeck and
Anderson (2007) and a tutorial created by NCAR1 (NCAR, 2009).

The EAKF assumes independent observation errors and, therefore, error distributions,
which allows the assimilation of subsets of observations sequentially. This leads to the
computation of many small scalar problems instead of dealing with huge matrices. It can
be summarized in three main steps, repeated for each assimilated observation.

Firstly, we assume a single observation yo and a prior ensemble with N members. Each
member i has a state vector xbi that can be transformed to observation space with an
observation operator h, resulting in model equivalents ybi : ybi = h(xbi). Overlines indicate
the mean over the members with the variances σ2

xb and σ2

yb
, respectively. The purpose of

the algorithm is to compute the mean xa and standard deviation σxa of the posterior.

Step A.

In step A., the mean of the posterior ya and variance σ2
ya in observation space are

computed:

ya = σ2

ya

(︃

yb

σ2

yb

+
yo

σ2
yo

)︃

with σya =

(︃

1

σ2
yo

+
1

σ2

yb

)︃

−1

, (2.2)

using the variance of the model equivalents σ2

yb
and the observation error σ2

yo for our
scalar observation yo.

Step B.

Step B. adjusts the ensemble spread by correcting the deviations of the updated ensemble
members yai from their mean ya:

yai − ya = α(ybi − yb) with α =

(︃

σ2
yo

σ2
yo + σ2

yb

)︃
1

2

(2.3)

The deviations of the updated ensemble members from their mean, yai − ya, are
proportional to the deviations in the prior ensemble, scaled by the proportionality factor
α based on the variances of background and observation. α is always less than one, which
means a reduction in the spread and, therefore, uncertainty.

Step C.

The computed state and spread adjustment are now projected to the model space by
computing each member’s observation space increment δyi = yai − ybi . This increment in

1NCAR - National Center for Atmospheric Research
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2.3 Data assimilation

observation space is now projected to the state space with a linear regression using the
covariances between the ensemble members. This also allows for an update of unobserved
variables based on the covariance between variables for each state variable j within the
state vector x. The increment for each xi,j is given by:

δxi,j =
cov(xbj , y

b)

σ2

yb

· δyi (2.4)

δxi,j can be added to the state to yield xa, but it only represents the additional
information from assimilating a single observation. Assuming uncorrelated observation
errors, one can add each impact to the state sequentially and use the updated ensemble
to assimilate the next observation.

2.3.2 Localization and inŕation

Covariance localization

As shown in Equation 2.4, the EAKF accuracy strongly depends on the prior covariance
matrix. However, the covariances can be suboptimal as a result of small ensemble sizes,
model errors, non-linearities and various other factors (Anderson, 2012).

Covariance localization

Localization of the background error covariance matrix is applied to mitigate spurious
correlations and reduce sampling errors caused by the limited size of the ensemble. The
ensemble matrix is a low-rank approximation, as the affordable number of ensemble
members is much lower than the degrees of freedom in the model (Evensen et al., 2022).
As dynamical effects can propagate in space but are primarily local, correlations closer
to the observation are less affected by sampling errors than long-distance correlations.
Therefore, today’s primary approach to covariance localization is distance-based. It
is assumed that there is also no sampling error with zero covariances. Therefore, a
correlation function is chosen that supports covariances locally and őlters remote and,
thus, noisy covariances. A Schur product2 of the selected function and the background
error covariances calculated from the ensemble is taken (Houtekamer & Mitchell, 2001) to
ensure that the product function is again a covariance function (Gaspari & Cohn, 1999).
A commonly used correlation function is the one by Gaspari and Cohn (1999), also known
as the Gaspari-Cohn-function. This function reduces the covariances by a factor smaller
than 1, decreasing with distance. The factor reaches zero after a certain length scale that
can be set according to the expected inŕuence of each observation type. To ensure a
smooth spatial update, the covariances of neighbouring observations should overlap. For
visible reŕectance assimilations, Kugler et al. (2023) assumed a cutoff distance of 20 km
with an observation density of 10 km, while Scheck et al. (2020) set the cutoff to 35 km
with a superobbed observation every 12 km.

2Schur product - an elementwise matrix multiplication
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2 Background and methods

Background error inŕation

Another way of accounting for sampling errors and addressing unrepresented error sources
is background error inŕation. It is a direct way to increase the variances prior to or posterior
to the assimilation step. Prior inŕation is applied to mitigate variance underestimation
caused by model errors, while posterior inŕation methods mitigate sampling errors caused
during the assimilation. Inŕation algorithms can generally be multiplicative or additive
(Gharamti, 2018). This study uses a posterior multiplicative inŕation method called
relaxation to prior spread (RTPS), as described by Whitaker and Hamill (2012). The
ensemble standard deviation of the posterior is relaxed back to the prior:

σa ← (1− α)σa + ασb (2.5)

where σa is the spread (deőned as standard deviation) before and σb after the assimilation.
α is a changeable parameter deőned between 0 and 1, where 1 indicates a relaxation to
100 % of the prior spread.

Sample Error Correction - SEC

Inŕation and covariance localization are the most common methods for dealing with
deőciencies of the sampled covariances. Furthermore, Anderson (2012) described a
statistical model called Sample Error Correction (SEC). Prior information about the
distribution of the correlation between a state and an observed variable is used to reduce
the error of the analysis. This method applies a correction factor between 0 and 1 to all
state variables during the assimilation. An offline Monte-Carlo simulation precomputed
the factor for different ensemble sizes and sample correlations. As the SEC factor is
applied similarly to a traditional localization, it effectively reduces the sensitivity to the
localization strength (Anderson, 2012).

2.3.3 The role of the observation error

Another essential role in the EAKF plays the assigned observation error σo and the
corresponding variance σ2

o . Depending on the accuracy of the observation indicated by
this parameter, the observation is given more or less weight during the assimilation. The
assigned observation error should contain the instrument and representativity error and
account for errors related to the observation operator (Janjić et al., 2018). Furthermore,
the error estimate can be inŕated and used to account for neglecting correlated errors
and other deőciencies of the DA system. Therefore, the observation error value for the
optimal update is not clear apriori. Visible reŕection and cloud fraction are bounded
quantities, and ideally, the observation error decreases towards the bounds to avoid
including impossible values in the assumed Gaussian distribution (Scheck et al., 2020).
Finding a dynamic estimate is not straightforward, and most studies apply a constant
observation error estimate for simplicity (Kugler et al., 2023; Scheck et al., 2020; Schröttle
et al., 2020).
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2.4 Veriőcation methods

2.4 Veriőcation methods

The veriőcation scores used in this thesis are the mean absolute error (MAE) and the root
mean squared error (RMSE) of the ensemble mean, as well as the probabilistic fraction
skill score (pFSS).

Mean absolute error (MAE) and root mean squared error (RMSE)

To compute spread-error-relationships, the root mean squared error (RMSE) for one
observation type was used:

RMSE =

⟨︃(︃

1

N

n
∑︂

i=1

Fi −O

)︃2⟩︃

, (2.6)

where F is the forecasted őeld for each member i, O the observed őeld and ⟨.⟩ indicates
the average over all observations. For verifying vertical proőles as was done by Kugler
et al. (2023), the mean absolute error, MAE, was computed:

MAEz =

⟨︃

1

N

n
∑︂

i=1

|Fi,z −Oi,z|

⟩︃

, (2.7)

with MAEz being the value of the MAE for a speciőc model level z. MAEz is the mean
over both horizontal dimensions indicated by ⟨.⟩, and it is also a mean over the ensemble
members N .

2.4.1 Fraction Skill Score - FSS

Grid point veriőcation, like the RMSE, can introduce double-penalty errors when small
displacements of events in the forecast lead to it being penalized twice (Necker et al.,
2023). This is especially problematic for high-resolution forecasts, as the intrinsically
limited small-scale predictability for precipitation or clouds leads to many displacement
errors (Bachmann et al., 2020). Thus, to avoid unfair forecast assessment, applying object-
based spatial veriőcation methods, using some sort of scale separation or considering a
neighbourhood, is recommended (Necker et al., 2023).

Deterministic FSS

The Fraction Skill Score (FSS), as introduced by Roberts and Lean (2008), is a method
to verify deterministic forecasts while alleviating the inŕuence of double penalty errors by
comparing neighbourhood fractions (Necker et al., 2023). It is based in neighbourhood
probabilities NPj for each grid point J :

NPj =
1

M

M
∑︂

m=1

BPj,m with BPj =

{︃

1, if Fj ≥ t

0, if Fj < t
, (2.8)
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2.4 Veriőcation methods

As shown in őgure 2.3, the FSS has a range of 0, being the worst, to 1, the perfect
match between forecast and observations. As the size of the squares to compute the
fractions increases, the FSS will approach an asymptotic value depending on the ratio of
observed and forecasted events (Roberts & Lean, 2008). This so-called asymptotic FSS
(AFSS) is based on the FBdet, the deterministic frequency bias:

AFSSdet =
2 · FBdet

1 + FB2

det

with FBdet =
fo

fm
, (2.12)

where fo and fm are the fractions of gridpoints exceeding the threshold t in the domain
and the total number of gridpoints J for the observation and the forecast, respectively.
Therefore, a frequency bias smaller than one indicates that the event occurs more often
in the forecast than it was observed and vice versa if it is greater than 1. The asymptotic
FSS is less sensitive to biases from small frequencies than the frequency bias and indicates
a bias if it is smaller than its perfect value 1 (Roberts & Lean, 2008).

Probabilistic FSS - pFSS

There is more than one way to account for the ensemble dimension when computing a
probabilistic FSS, with most having advantages and disadvantages. Necker et al. (2023)
tested four approaches, and the pFSS, based on combining neighbourhood and ensemble
probabilities for the forecast, is used in this study. It is also implemented in an open-source
software package by Wolfgruber (2024). It utilizes Neighbourhood Ensemble Probabilities
NEPj,f :

NEPj,f =
1

N

N
∑︂

n=1

NPj,n,f =
1

M

M
∑︂

m=1

EPj,m,f , (2.13)

where N is the number of ensemble members and EPj,m, f is the ensemble probability,
with M again being the number of grid points in the neighbourhood. To compute pFSS,
NPj,f in equation 2.9 and 2.10 has to be replaced by NEPj,f from 2.13 (Necker et al.,
2023):

pFSS = 1−

∑︁J
j=1

(NEPj,f −NPj,o)
∑︁J

j=1
NEP 2

j,f +
∑︁J

j=1
NP 2

j,o

. (2.14)

The AFSS for a probabilistic forecast, pAFSS, also has no commonly agreed upon
deőnition (Necker et al., 2023). For this thesis, 2.12 was adapted with the ensemble mean
of the frequency bias pFB:

pAFSS =
2 · pFB

1 + pFB2
with FBpFB =

1

n

n
∑︂

i=1

fo

fmi

(2.15)

Uncertainty of the pFSS

As far as the author knows, there is no common, agreed-upon, and straightforward way to
express the pFSS’s uncertainty. Different analysis and forecast times have been aggregated
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2 Background and methods

to alleviate issues from sampling errors due to a small number of observation-forecast pairs.
Depending on the applied threshold and the veriőed őeld, the pFSS might suffer from a
limited sample size. Especially for large-scale cloud fractions, only a few observations cover
the whole domain. Time can be added as another dimension to make the computation
more robust. The different valid times T are aggregated, as has been done with the
ensemble members in equations 2.13 and 2.14, yielding

pFSStime = 1−

∑︁T
t=1

∑︁J
j=1

(NEPj,t,f −NPj,t,o)
∑︁T

t=1

∑︁J
j=1

NEP 2

j,t,f +
∑︁T

t=1

∑︁J
j=1

NP 2

j,t,o

. (2.16)
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3 Experimental design

The following chapter describes the experimental design applied in this study. It gives a
detailed overview of how cloud fraction is computed and assimilated (section 3.2). The
last section of the chapter, section 3.4, focuses on the empirically obtained observation
error estimate.

3.1 OSSE

An Observing System Simulation Experiment (OSSE) is designed to use (new) data
assimilation algorithms and proposed data inputs to investigate their potential impact.
OSSEs are conducted in an entirely simulated environment: instead of using actual
observations, OSSEs draw their observations from a simulated atmosphere with simulated
errors. Therefore, the actual state of the virtual atmosphere is known precisely, unlike
reality, and can be used to verify OSSE experiments (Errico & Privé, 2018).

OSSE workŕow

An OSSE typically comprises a nature run, simulating the ’Truth’, and is used to create
simulated observations with an observation operator. Those are then assimilated using
a data assimilation algorithm and appropriate error modelling to create an analysis.
The analysis is then advanced in time with a NWP forecast model (Masutani et al.,
2010).

To alleviate issues with systematic errors between modelled and observed clouds, a
perfect model OSSE is used in this study, applying an identical model setup for creating
the nature run and the forecasts. As the lack of model error can lead to a minor observation
impact, this setup only shows a relative inŕuence of the proposed ideas. Figure 3.1 depicts
the workŕow with components mentioned above linked to the models and algorithms used
in this thesis, following closely the experimental design by Kugler et al. (2023).

3.1.1 WRF

The NWP model used in this study is the Weather Research and Forecast (WRF) model,
version 4.3, as described by Skamarock et al. (2021). It was set up with the ARW
(Advanced Research WRF) solver, a mass-conserving, fully compressible, Eulerian, non-
hydrostatic equations solver. It features a terrain-following hybrid sigma-pressure vertical
coordinate and uses horizontal Arakawa C-grid staggering. This grid staggering type
separates the evaluation of velocities and masses. East-west velocity components are
evaluated at the centres of the left and right grid faces, and south-north components at
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3 Experimental design

Figure 3.1: The OSSE workŕow for a data assimilation experiment using DART and
WRF.

the centres of the upper and lower grid faces. To integrate forward in time, it uses a
time-split 3rd-order Runge-Kutta scheme and different time steps for acoustic and gravity
modes (Skamarock et al., 2021). WRF was run in an idealized setup for the ensemble
forecasting and the nature run, with identical settings.

The domain has a 2 km resolution and comprises 256 × 256 mass gridpoints. The
model top is set to 21.5 km with 101 vertical levels on őxed hybrid eta-coordinate
levels. The whole domain features homogenous, ŕat terrain and double periodic boundary
conditions. To simulate solar radiation, a summer day in early July was chosen, and the
domain is centred around latitude 47°N and longitude 7°E. The used parameterizations
include Morrison et al.’s 2-moment scheme for microphysics, 5-layer thermal diffusion
for the land-surface model, the Mellor-Yamada-Nakanishi-Niino (MYNN) schemes for
the boundary and surface layer, and the RRTMG option for the atmospheric long- and
shortwave radiation.

Nature run

The nature run was initialized using a modiőed sounding from Schröttle et al. (2020),
shown in Figure 3.2, following Kugler et al. (2023). A high amount of CAPE (2670 J/kg)
and low amount of CIN (26 J/kg) allow the triggering of convection with relatively small
perturbations. To create randomly scattered convective cells, at the initialization at 7
UTC, the potential temperature at every grid point is perturbed with a 0.2 K standard
deviation of a uniform distribution. This leads to a series of ordinary thunderstorms,
as seen in Figure 3.3. The resulting convective cells have a random location, grow,
interact dynamically and dissipate again. At 11 UTC, the around 20 resulting storms
are in different development stages, leading to swiftly growing model errors and low
predictability. This continues onward to around 15 UTC when convection starts to decay.

Forecast ensemble

Following Kugler et al. (2023) and Schröttle et al. (2020), the ensemble was created by
applying two kinds of perturbations for each member. Large-scale errors are represented
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3.1 OSSE

Figure 3.2: Skew Tślog-p diagram depicting the initial conditions for the nature. Proőles
of temperature, dewpoint, and a parcel-lifting curve are shown averaged
over the domain. Figure taken from Kugler et al. (2023).

with vertically auto-correlated proőle perturbations: the initial sounding’s (Figure 3.2)
temperature, moisture, and wind are perturbed. Every 20th vertical level is taken from the
original proőle and randomly perturbed with a 0.25 K standard deviation for temperature
and 2 % of the initial value for relative humidity and wind. Vertically auto-correlated
proőles are then created by interpolating between those random numbers. Random,
small-scale noise was added to the vertical velocity and temperature őelds at the lowest
levels and exponentially decreased to zero with height. The 40-member ensemble exhibited
a small uniform temperature spread at initialization time, which grew considerably over
time, especially as the developing convection modiőed the proőles. The horizontally
averaged spread (standard deviation of the ensemble) proőle for temperature and water
vapour mixing ratio are shown in Figure 3.4 for 12 UTC. The water vapour mixing ratio
spread (Figure 3.4 b.) is reaching two peaks, one at the boundary layer and one slightly
above 2.5 km height, while the peak spread in temperature (Figure 3.4 d.) can be found
between 5 and 7.5 km with 0.8 K. As the ensemble is created, the convective indices of
each ensemble, such as its level of free condensation or CAPE value, differ initially. With
time, the ensemble spread is not evolving equally in different heights.
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3.2 Cloud fraction assimilation

3.6. Panel b.-d. show cloud fraction values calculated over 256x256 km, 128x128 km,
64x64 km, 32x32 km and 16x16 km, respectively. Smaller scales (8x8 km or 4x4 km) can
be computed but are not effectively resolved by the model, and the cloud structure on
those őne scales is unlikely to be realistic.

Cloud fraction threshold

Cloud fraction C is heavily dependent on its threshold value - it also distinguishes
the cloud fraction computation from averaging over a subdomain or other forms of
superobbing. The visible reŕectance is a highly nonlinear function of the optical depth.
Due to scattering effects, ice clouds have a generally lower visible reŕectance than water
clouds with the same water content (Scheck et al., 2020). Therefore, setting a high enough
visible reŕectance threshold allows isolating convective cells (values above the threshold)
from cirrus clouds (reŕectance below the threshold). As C gives no height information
during the assimilation, excluding pixels with low visible reŕectance seems beneőcial.
This thesis uses a threshold of 0.6 visible reŕectance for all cloud fraction computations,
as has been for veriőcation purposes in Kugler et al. (2023) and is similar to the 0.5
threshold used in Scheck et al. (2020).

Covariance localization and cutoff

To minimize spurious correlations, an appropriate covariance localization needs to be
applied. The cutoff length scale depends on the spatial scale of the cloud fraction
observation. This thesis uses a localization cutoff radius R of the same length as one side
of the cloud fraction computation area square, schematically illustrated by Figure 3.7.
This means the covariances will decrease following a Gaspari-Cohn function and fade to
zero at two times the radius (dashed circle). This leads to an overlap of localizations from
neighbouring observations, as indicated by the grey square in Figure 3.7 and ensures a
smooth spatial update.

The localization cutoff is adjusted for each cloud fraction observation depending on its
area of computation, leading to non-zero covariances at the domain boundaries. As DART
is unaware of WRF’s double periodic boundary conditions, it cuts off localization at the
boundaries, which can cause numerical errors and suboptimal data assimilation updates.
Only observations simulated from a smaller subdomain were used during the assimilation
to avoid any issues. For the initial 512x512 km domain, the smaller assimilation zone was
set to 256x256 km and is shown in Figure 3.6 as an orange rectangle.

Simulating observations

Cloud fractions can be computed directly from the nature run and assimilated as a perfect
observation. Realistically, there is an instrument error with the visible reŕectance őeld
that is then not accounted for. To simulate observations from the nature run, each pixel
of the computed visible reŕectance őeld is perturbed with 3 % error, as has been done in
Kugler et al. (2023). The cloud fraction is then calculated from the disturbed őeld.
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3.2 Cloud fraction assimilation

Figure 3.7: Schematic illustration of the covariance localization used for cloud fraction
observations: for a cloud fraction computed over an area (X times X km), a
cutoff radius R of X km is deőned (pink line). The covariances are decreased
following a Gaspari-Cohn-function before fading to zero at two times R,
depicted by the dashed circle. The grey square indicates a neighbouring
observation.

3.2.3 Cycling setup

The assimilation cycling was set up the same way for each conducted experiment and
is schematically shown in Figure 3.9. The assimilation window was set between 12-13
UTC based on the convective developments depicted in Figure 3.3, with őve assimilation
cycles every 15 minutes. In an idealized experimental design, the start of the cycling
should be set to a time when the ensemble has developed enough spread to ensure a
consistent spread-error-relationship. As the ensemble spread is deőned as the standard
deviation of the ensemble, it should, in theory, be equal to the RMSE of the ensemble
mean in Equation 2.6 (Eckel & Mass, 2005). To check the spread-error-relationship, the
RMSE and the spread for the water vapour mixing ratio (q), visible reŕectance (VIS), a
coarse cloud fraction scale (256x256 km) and a őne-scale one (16x16 km) were computed
for each timestep between 12 and 13 UTC and shown in Figure 3.10. The RMSE and
spread of each observation type were divided by the corresponding maximum RMSE to
allow a comparison of all őelds in one őgure. While humidity and VIS fulőll the criterion,
the coarse cloud fraction type exhibits an RMSE that is too small for the corresponding
ensemble spread and vice versa for the őner-scale cloud fraction. Especially the coarse
scale cloud fraction spread and RMSE are not robust, as not a lot of observation-forecast
pairs are available.

After the last assimilation at 13 UTC, a free forecast was performed for 5 hours to
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Figure 3.12: Observation error variance estimate as in Fig. 3.11, but for different bins
of cloud fraction values and interpolated over the whole range from 0-1.
Zero cloud fraction observations are neglected.
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4 Results

This chapter provides results regarding single-scale cloud fraction assimilation experiments
(section 4.1) as well as experiments featuring multiple scales (section 4.2). Potentially
introduced biases by the multiscale approach are investigated in section 4.2.1, and an
enhanced error model is proposed in section 4.2.2.

4.1 Single scale experiments

Name Description Error model Assimilated
cloud frac-
tion scales

Number of
assimilated
observations
per cycle

VIS16 Thinned visible reŕectance ob-
servations assimilated every 16
km with a localization cutoff
of 32 km

constant, σ2
o =

9.0 · 10−4

/ 256

CFcon Single scale cloud fraction as-
similation using a constant er-
ror variance estimate found
empirically

constant (Fig.
3.11 b.), non-
inŕated

16x16 km 256

CFvar Single scale cloud fraction as-
similation using the empir-
ical error variance estimate de-
pendent on cloud fraction

varying (Fig.
3.12), non-
inŕated

16x16 km 256

Table 4.1: Overview over single scale experiments and the benchmark experiment.

Cycled experiments only featuring a single observation type on a single scale are listed
in Table 4.1. VIS16 is the benchmark experiment, following Kugler et al. (2023), but
using less dense observations to have the exact same observation count as two cloud
fraction assimilation experiments: CFcon and CFvar, that have been conducted to assess
the impact of cloud fraction assimilation on a single scale. CFcon is a cycled assimil-
ation of 256 16x16 km cloud fraction observations with a constant observation error
variance that was estimated excluding clear sky observations, as shown in Fig. 3.11 b) and
Table 3.4. CFvar uses the cloud fraction value dependent error model based on Figure 3.12.
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4 Results

still utilizing the full potential of the cloud fraction computation similar to MCFdiff1.
An overview of which scales are assimilated at which cycle for each multiscale experiment
is given in Figure 4.5.

Name Description Error model Assimilated
cloud frac-
tion scales

Number of
assimilated
observations
per cycle

MCFdiff1 Multiscale cloud fraction as-
similation using a constant er-
ror variance estimate; different
scales are assimilated at the
same assimilation time using
the difference approach

constant (Fig.
3.11 b.), non-
inŕated

256x256 km,
128x128 km,
64x64 km,
32x32 km,
16x16 km;

341

MCFdiff2 As MCFdiff1, but with in-
ŕated observation error vari-
ance

constant
(Fig. 3.11 b.),
inŕated by
100%

256x256 km,
128x128 km,
64x64 km,
32x32 km,
16x16 km;

341

MCFseq1 Multiscale cloud fraction as-
similation, using cloud fraction
dependent error estimate and
assimilating only one scale per
assimilation cycle

varying (Fig.
3.12)

varying (Fig.
4.5)

varying
between 1
and 256

MCFseq2 Multiscale cloud fraction as-
similation using a constant er-
ror variance estimate inŕated
by 100 %; at 12 and 13 UTC,
all scales are assimilated with
the differences approach and
only the őnest two in between.

constant
(Fig. 3.11 b.),
inŕated by
100%

varying (Fig.
4.5)

varying
between 320
and 341

Table 4.2: Overview over conducted multiscale experiments.

In MCFdiff1, each scale of cloud fraction observation was assimilated at the same
timestamp using a constant error variance model without inŕation. It also distinguishes
it from MCFdiff2, where the observation error σo was inŕated by 100 %. Both MCFdiff

experiments assimilate differences of cloud fraction as explained in section 3.2.2. MCFseq1

assimilates only one scale per cycle, starting with 256x256 km cloud fraction computation
area at 12 UTC, continuing with 128x128 km at 12:15 UTC, 64x64 km at 12:30 UTC,
32x32 km at 12:45 UTC and concluding with 16x16 km at 13 UTC. As no differences
were assimilated, MCseq1 is applying the cloud fraction value dependent error model,
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4.2 Multiscale experiments

Figure 4.11: The ensemble probability of the visible reŕectance őeld exceeding 0.6
at 13 UTC (last analysis). Panel a. illustrates the free ensemble, b.-
e. depict cloud fraction experiments as listed in 4.2 and panel f. the
benchmark experiment VIS16. The orange box shows the inner domain,
where observations have been assimilated. The green overlay is the outline
of the visible reŕectance binary őeld (threshold 0.6) of the nature run at
the same time.
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5 Discussion and conclusions

This study compares direct visible reŕectance assimilation and assimilating structural
information taken from VIS images: cloud fraction. Perfect-model OSSE experiments
were conducted to evaluate the relative impact of cloud fraction assimilation, featuring an
idealized, ŕat WRF domain with randomly distributed ordinary thunderstorms. Synthetic
0.6 µm visible reŕectance images and cloud fraction values computed from those images
on different scales have been assimilated with an Ensemble Adjustment Kalman Filter
implementation. For the observation error, an empirical estimate was applied. Cycled
experiments assimilating cloud fraction observations of a single scale and experiments
exploring a multiscale approach were conducted. Cloud fraction differences have been
assimilated in the multiscale experiments to ensure the independence of the observations
and uncorrelated observation errors. A probabilistic Fraction Skill Score formulation,
pFSS, was used to evaluate the results.

The main őndings include:

• Single-scale cloud fraction assimilation exhibits similar or slightly improved skill
compared to thinned VIS assimilation;

• Multiscale cloud fraction assimilations can outperform direct VIS assimilation in
pFSS;

• Multiscale assimilations can introduce humidity biases and add spurious convection,
but these issues are alleviated with a more appropriate error model;

Figure 5.1 summarizes the impact of multiscale cloud fraction assimilation. Panels a.-c.
show how the assimilation affects the ensemble probability of each pixel exceeding 0.6
µm visible reŕectance after the cycling. The benchmark experiment VIS16 enhances the
probability similar to the structure of the green overlay, which indicates the binary event
in the nature run. The cloud fraction assimilation seems to cause spurious convective
cells throughout the domain, which can be seen in panels b. and c. However, a better-
suited observation error model applied in MCFseq3 seems to lessen the effect and visibly
enhance the ensemble probability. Figure 5.1 d. illustrates the impact on the accumulated
pFSS over the free forecast for visible reŕectance. Although MCFseq2 and MCFseq3 offer
less accurate placements of individual convective cells, the forecast beneőts from this
uncertainty. Overall, the cloud fraction experiments outperform the benchmark on all
scales. MCFseq3 is performing better than MCFseq2 on larger scales, which indicates a
better representation of the overall convective activity in the domain.

Although the cloud fraction observation type is a bounded quantity and depends on
a non-linear observation operator, its assimilation can substantially improve the skill of
forecasting precipitation and clouds during the assimilation window and for up to 5 h
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free forecast lead time. Especially for multiscale experiments with different assimilation
frequencies for different scales, cloud fraction seems a viable source of structural informa-
tion leading to skill improvements across scales. It provides an alternative to thinned and
direct visible reŕectance assimilation, utilizing the observed information differently and
subsequently impacting the overall convective activity in the domain.

The assimilation of a singular őne-scale cloud fraction in a cycled experiment (section
4.1) leads to improved skill for the assimilated variable and visible reŕectance. Cloud
fraction assimilation slightly outperforms visible reŕectance assimilation compared to
the benchmark experiment where the same number of observations was assimilated.
The experiment utilizing an observation error estimate depending on the cloud fraction
value, CFvar, performs best during the free forecast, exhibiting positive effects on coarse
scales, where direct VIS assimilation has little to no positive impact. Compared to the
free ensemble, cloud fraction assimilation consistently positively inŕuenced precipitation
forecasts.

As all conducted experiments share the same assimilation window, the free forecast
results heavily depend on the last analysis. The 13 UTC analysis for the experiment
featuring the constant error model, CFcon, was decreasing skill at the last analysis of
the cycling, as seen in Fig. 4.4 b., leading to less pFSS improvement during the free
forecast period. In this speciőc experimental design, the cloud fraction value-dependent
error model proved useful, as it inŕates the error of mid-range cloud fraction observations,
where only a fragment of the computation area is covered in clouds and gives more weight
to clear sky or full-cloudy ones. For the weather situation present at 13 UTC, many
16x16 km areas were only half covered with high VIS values, leading to many mid-range
cloud fraction observations and, subsequently, a difference between the constant and the
value-dependent error model. Clear sky observations were neglected in the computation
of the error model, which might lead to a too-high error estimate on őner scales. Based
on the computation and its threshold approach, clear sky observations would need to be
assimilated theoretically with zero or almost zero as an error estimate.

Furthermore, errors are difficult to determine in an OSSE and deviate from the full
real-world system. The proposed empirical error model accounts for the instrument error
for simulated observations, and the representativeness error is irrelevant when assuming
a perfect model and operator. However, it does not take uncorrelated random errors,
systematic biases, or correlations between errors into account. Therefore, inŕating the
empirically obtained error might be beneőcial for all values and not only for mid-range
values. An inŕation factor of 100 % for the constant error estimate has been assumed for
the experiments MCFdiff2, MCFseq2 and MCFseq3. As the optimal inŕation value for the
observation error is not clear apriori, further investigations and sensitivity studies would
be needed to őnd an optimal estimate.

When assimilating all available scales in every cycling step, as done in MCFdiff1 and
MCFdiff2, the skill of visible reŕectance on őne scales is increased by 20-30 % during the
free forecast, as shown in Fig. 4.6 a.-c. However, a certain bias is added to the forecast,
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as pFSS values decline with increasing windowsize and indicate a negative impact of the
assimilation on scales larger than 100 km. This multiscale approach also does not have a
strictly positive effect on precipitation. Inŕation of the observation error estimate helps
to lessen the detrimental impact but does not change the pattern. Moisture is added
across the vertical proőle, and the horizontally averaged MAE of moisture increases with
each assimilation. This indicates that assimilation is more efficient in adding clouds than
removing them, resulting in a declining frequency bias during the assimilation window.
After the last analysis, as the forecast model adjusts moisture and many created clouds
disappear again, the frequency bias for all experiments is relatively similar after 1-2
h forecast time. The bias seen in this study might not be representative of different
experimental designs - as the efficiency of cloud removal and creation is highly dependent
on the amount of cloudiness already present in the domain.

Moreover, experiments have been conducted assimilating fewer scales of cloud fraction
at the same time and updating the coarser scales only once or twice during the assimilation
window, MCFseq1 and MCFseq2. As larger scales are less volatile with time than őner scales,
they should also be assimilated less frequently. MCFseq2 utilizes all scales only at the őrst
and last analysis at 12 and 13 UTC, respectively. This doubles the pFSS improvement
during the free forecast for visible reŕectance and 1-h-accumulated precipitation compared
to other multiscale experiments and outperforms the benchmark. A negative trend in
the frequency bias during the cycling is still observed with MCFseq2, but the horizontally
averaged MAE for moisture is reduced by around 45 % compared to MCFdiff2. The
experimental design can potentially be optimized further by changing at which time which
scales are assimilated. Overall, the added structural information beneőts the forecast in
terms of pFSS if coarse scales are not assimilated too often. Hypothetically, this can be
due to cloud fraction on those scales not changing rapidly and being stable over the short
period of the assimilation window. Thus, updating too often leads to the introduced biases
when combined with the assigned very small observation error. As the best-performing
mix might depend heavily on the weather situation, determining the assimilated scales by
the size and amount of observed convective cells with an automated algorithm or machine
learning approach could potentially lead to great improvements in forecast skill.

Although the computed pFSS values might be similar for the benchmark and the cloud
fraction assimilation experiments, the visually seen updates, as depicted in Figure 4.11
and 4.14, differ. As the experimental design contains, by default, many clear sky pixels in
comparison to cloudy ones, the algorithm is more likely to add moisture and clouds in the
whole updated area. The localization radius was adapted with scale, and the entire domain
can be affected by the assimilation of one coarse scale cloud fraction observation. Spurious
convection pops up depending on the initial őelds of each ensemble member, leading to an
ensemble probability őeld with no distinctive outline, contrary to the visible reŕectance
assimilation. This might not necessarily be a disadvantage, as small convective cells are
intrinsically difficult to predict. The ensemble members exhibit different small-scale cloud
patterns in regions where the nature run also has individual convective cells. Even as the
exact location might not be perfectly met, this behaviour beneőts the overall performance
of the forecast as it captures the uncertainty in those regions. Especially with experiments
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5 Discussion and conclusions

utilizing less frequent coarse scale updates, the ensemble probability indicates areas with
the possibility of small cloud structures occurring instead of not capturing them. This
is potentially useful for probabilistic solar power production forecasting. However, too
much added spurious convection, as seen with MCFdiff1, is degrading forecast skill again.
As the observation error estimate is based on cloud fractions, it might be a suboptimal
estimate for assimilating cloud fraction differences. An empirical error estimate based on
cloud fraction differences is introduced in section 4.2.2 to őnd a more appropriate error
model. A version of MCFseq2 with this error estimate, called MCFseq3, does improve
pFSS values on larger neighbourhoods and visibly enhances the ensemble probability for
visible reŕectance at the last analysis. The amount of spurious convection is signiőcantly
reduced by the better-suited error model based on cloud fraction differences. However, the
observation error estimates are highly dependent on their statistical sample, and averaging
over various weather situations would be beneőcial to achieve a more robust estimate,
which was beyond the scope of this project. Furthermore, this study can only assess cloud
fraction assimilation regarding relative impact, as there are no systematic representation
differences between the nature and the forecast model in a perfect-model OSSE. If more
error sources were considered, the beneőt of having a higher ensemble spread in areas
with small-scale convection could lead to signiőcant forecast improvements.

The attempted proof-of-concept of assimilating structural information taken from a
visible reŕectance image was fulőlled, but further experiments and research are needed to
test the robustness of cloud fraction assimilation. The experimental design of this study,
with its randomly distributed convective cells, is intrinsically difficult to forecast, and the
demonstrated positive impact of the assimilation in this idealized case indicates promising
results for different weather scenarios. Ying et al. (2023) improved vortex positioning
signiőcantly using a multiscale assimilation approach based on wind information, and
similar results might also be possible for cloud fraction assimilation in the presence of
a synoptic-scale event. The experimental design of this study limits the coarser cloud
fraction scales to a very small range, as every 256x256 km square is bound to contain at
least some thunderstorms. A broader range of values might lead to different error model
estimates but certainly to a different and possibly positive impact on the forecasts.

As visible reŕectance and cloud fraction do not contain any height information, adding
another observation type to the assimilation might prove beneőcial in reducing the added
error on the vertical proőles. The results shown in this project are generally very depend-
ent on the creation and spread of the initial ensemble, which, in this case, is dominated
by the differently timed onset of convective activity of the members and, therefore, their
initial proőles. Assimilating soundings might improve the ensemble’s vertical moisture
distribution and facilitate the creation of clouds from cloud fraction assimilation at the
correct height.

To summarize, assimilating cloud fraction on a single scale has a similar impact as direct
visible reŕectance assimilation. It enhances the visible reŕectance and cloud fraction
forecast on the assimilated scale and positively impacts precipitation. However, cycled
experiments featuring multiple cloud fraction scales positively impact all assimilated scales,
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while direct VIS assimilation is improving skill mostly on őne scales. The multiscale
approach has many degrees of freedom concerning the cloud fraction computation threshold
itself, the error model, and the assimilation cycling and update frequency. Further studies
are required to understand the behaviour of multiscale cloud fraction assimilation in
different experimental designs and weather situations. However, cloud fraction is a viable
alternative to direct assimilation and an easily implementable form of superobbing that
has great potential for future applications.
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5 Discussion and conclusions

Figure 5.1: Summarizing the results of this thesis: Panel a.-c. show the ensemble
probability of the last analysis (13 UTC) for VIS > 0.6 µm for the benchmark
experiment VIS16 and two multiscale cloud fraction experiments, MCFseq2

and MCFseq3. Only the inner domain, where observations are assimilated,
is shown. The green overlay indicates VIS > 0.6 µm for the nature run.
Panel d. is the accumulated pFSS improvement to the free ensemble for
all neighbourhoods (x-axis) again for VIS16, MCFseq2 and MCFseq3. The
pFSS has been accumulated over the free forecast period (13:15-18 UTC)
and calculated with a VIS threshold of 0.6 µm.
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