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Abstract

This thesis proposes novel algorithms for time series mining specifically designed for
trip reconstruction, which is a subdomain of mobility research. The proposed methods
advance established methods from machine learning and time series mining to efficiently
retrieve and discover patterns in sensor data, especially accelerometer and GPS data.
These patterns facilitate a higher level understanding of the dynamics and processes
generating the collected mobility data, for example the chosen mode of transportation.
This understanding is crucial to evaluate policy initiatives, make informed decisions to
adjust traffic-regulation measures, and ultimately achieve higher goals such as reducing
traffic-induced air pollution.

Although the proposed methods are designed for analysing mobility data, the algo-
rithms are also beneficial for time series data from different domains, as the accompa-
nying research papers, that present the developed methods, also demonstrate.

Time series data are ubiquitous across many fields, not only mobility research, but
also finance, medicine and speech recognition. The overwhelming amount of data opens
up many opportunities, but also poses the challenge of developing algorithms that can
process the amount of data, often even in real time. The methods proposed in this thesis
can help gaining high level knowledge from data to improve business processes, make
informed management decisions or recognise critical situations early.
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Zusammenfassung

Diese Doktorarbeit präsentiert neuartige Algorithmen für das Analysieren
von Zeitreihen, die speziell für die Rekonstruktion von Transportwegen en-
twickelt wurden, einem Teilbereich der Mobilitätsforschung. Die vorgeschla-
genen Methoden bauen auf etablierten Verfahren aus den Bereichen Machine
Learning, Data Mining und Zeitreihenanalyse auf, um Muster in Sensor-
daten, insbesondere Accelerometer- und GPS-Daten, effizient zu erkennen.
Diese Muster ermöglichen ein besseres Verständnis der Prozesse, die den
gesammelten Mobilitätsdaten zu Grunde liegen, beispielsweise das Trans-
portmittel. Dieses Verständnis kann das Evaluieren politischer Initiativen
unterstützen, sowie informierte Entscheidungsfindungen zur Anpassung von
Verkehrsregelungen und letztendlich das Erreichen höhere Ziele wie die Re-
duzierung von verkehrsbedingter Luftverschmutzung.

Obwohl die vorgeschlagenen Methoden für die Analyse von Mobilitätsdaten
konzipiert sind, sind die Algorithmen auch für Zeitreihendaten aus anderen
Domänen vorteilhaft, wie die wissenschaftlichen Publikationen auf welchen
diese Doktorarbeit aufbaut und dieser angehängt sind, zeigen.

Zeitreihendaten sind in vielen Bereichen allgegenwärtig, nicht nur in der
Mobilitätsforschung, sondern auch in der Finanzwelt, der Medizin und der
Spracherkennung. Die überwältigende Datenmenge eröffnet viele Möglichkeiten,
birgt jedoch auch die Herausforderung, Algorithmen zu entwickeln, die die
Datenmenge verarbeiten können, oft sogar in Echtzeit. Die in dieser Dok-
torarbeit vorgeschlagenen Methoden können dazu beitragen, Erkenntnisse
aus Daten zu gewinnen, um Geschäftsprozesse zu verbessern, informierte
Managemententscheidungen zu treffen oder kritische Situationen frühzeitig
zu erkennen.





vi

Acknowledgements

First of all I would like to thank my supervisor Claudia, who guided me
through this journey and also gave me the chance to work together with her
team. Her critical and result-oriented thinking shaped my way of working.

I want to express my special gratitude to the reviewers of this thesis, Prof.
Leisch from the University of Natural Resources and Life Sciences, Vienna,
and Ao. Prof. Rauber from the Technical University of Vienna.

Without the support from the Austrian Institute of Technology this work
wouldn’t have been possible. Further I want to thank all the colleagues
from AIT, especially Peter, Christian, Anita, Hannes, Melitta, Florian and
Markus. First and foremost, I would like to thank Norbert, whose support,
countless fruitful conversations and valuable feedback have been so important
to me over these years. I would also like to thank the colleagues of the data
mining team at the University of Vienna, especially Ben, Martin and Lukas,
for all the hours in which we exchanged ideas or shared the ups and downs
of a PhD student’s life.

My family supported and encouraged me throughout my academic career. I
am deeply grateful.

My very special thanks go to Mira, who was always there for me, especially
during the frustrating times, and motivated me to finish this project.

This dissertation was a lifelong project, I want to thank everyone who con-
tributed knowingly or unknowingly.

This journey wasn’t always easy. I wouldn’t want to miss it.





viii

Publications

Most of the results of this thesis were already published in conference pro-
ceedings and journal articles. Therefore, this thesis is based on the fol-
lowing publications. My contributions of the following papers comprise the
core work of development, implementation and mathematical derivations and
drafting/writing of the paper. The co-authors contributed to publications via
guidance, supervision and editing of the paper text.

• Paper A: Maximilian Leodolter, Peter Widhalm, Claudia Plant, Nor-
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Chapter 1

Introduction

Innovations and new technologies in recent decades have enabled the modern world to be
shaped by measuring, monitoring and optimizing processes and decisions across many
fields of business and research. Massive amounts of data is both a driving force but also a
result of this evolution. One area where these developments have had a profound impact
is in analysing time series, which is the collection of sequential observations. Machine
learning methods to analyse time series and gain knowledge out of such analyses, find
application in various domains, including finance, medicine, weather forecasting, and
mobility research.

The field of mobility research investigates the dynamics, motivation, structure, and
outcomes associated with the movement of people and vehicles or other objects. In the
realm of mobility research, the collection and analysis of time series data are also impor-
tant. Time series data in mobility research can, for example, contain the sequentially
observed information about the status, position or speed of a moving object. Figure 1.1
gives an example of such a sequence, by visualizing the GPS and accelerometer signals
recorded by a person riding the bus or walking. The analysis and derivation of high level
information of such data is part of the research field of trip reconstruction. Moreover,
trip reconstruction [8] is a subdomain of mobility research and deals with the identifica-
tion of the start, end, segmentation, intermediate states and transport modes of a trip
by the help of data analysis.

This thesis is a presentation of machine learning methods for time series, that help to
better understand the data generating process behind the time series, with special focus
on data for trip reconstruction. Specific actions or movements along a transportation
trip may cause specific patterns in sensor recordings. Recognising these patterns and
assigning them to the correct cause is crucial for a comprehensive understanding of the
chain of events taking place along a transportation trip.

One of the biggest challenges in trip reconstruction is the manifoldness of patterns
that could describe the same root cause. This is due to the fact that the movement
causing the pattern can vary along multiple dimensions, e.g. the person or vehicle that
executes the movement, speed and duration of the movement, position or orientation
of the recording device, and external factors such as traffic situation. For this reason,

1
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(a) Acceleration signal of a bus trip segment (b) Acceleration signal of a walk trip segment

(c) GPS signal of a bus trip segment (d) GPS signal of a walk trip segment

Figure 1.1: Sensor recordings of a smartphone attached to a person’s hip while walking
or riding the bus.

we developed algorithms for pattern recognition while respecting these variations. The
algorithms Seg-IP and Segment-123 (Paper A) help to adjust erroneous user-provided
input and build a semi-supervised transport mode classifier model. The Caterpillar algo-
rithm (Paper B) is a combination of the Minimum Description Length (MDL) principle
and the distance measure Dynamic Time Warping (DTW), and is capable of detecting
time series patterns that vary in speed. In addition, the S3KR algorithm (Paper D)
recognizes patterns in time series independent of any rotation, scale and position. Hence
the algorithm S3KR detects similarities in GPS trajectories regardless of the orientation
and/or speed and/or position in which a person or vehicle is moving.

Apart from the complexity of detecting patterns accurately, algorithms dealing with
this type of time series data also need to work efficiently. Runtime efficiency is necessary,
on the one hand because applications based on data analysis algorithms often run live and
the data must therefore be processed in real time. On the other hand because efficient
algorithms allow more processing in the same amount of time and can therefore produce
more accurate results. Furthermore, efficient algorithms require less computation power,
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and so less energy consumption, and consequently produce less greenhouse gas emissions.
To meet this challenge, the proposed methods presented in this work are designed

to work most efficiently. In addition, we have developed the software package IncDTW
that implements the incremental computation of DTW – applied in the Caterpillar
algorithm – to update computations for newly arriving observations as efficiently as
possible. Paper C elaborates the theoretical foundation for IncDTW. Further, IncDTW
serves as toolkit for other researchers to build time series analysis algorithms based on
the incremental calculation of DTW.

The remainder of this chapter gives a more detailed introduction in the motivation
of mobility research, before this chapter concludes with the research questions this thesis
deals with, and an overview of the remainder of this thesis.

Mobility Research

One of the major challenges in mobility research is to better understand mobility be-
haviour. Based on a better understanding, one can learn how to nudge or change mobility
behaviour towards reaching higher goals. These goals are for example the reduction of
pollution of green house gas emissions (GHG) and noise emissions in urban areas, or a
higher level of efficiency in freight transport.

The motivation for these goals are well known: The European Green Deal [17] says
that ”In 2018, the transport sector, including aviation, was responsible for one quarter
of emissions in the EU27. To achieve the objective of net carbon neutrality by 2050,
emissions in the transport sector need to be reduced by 90%. In December 2020, the
Commission proposed a Sustainable and Smart Mobility Strategy. The strategy is based
on three pillars: 1) Make all modes of transport more sustainable, 2) Make sustainable
alternatives widely available in a multi-modal transport system, and 3) Put in place the
right incentives to drive the transition”

And further the World Energy Outlook states [27] that: ”Emissions trends in the
transport sector are determined by how quickly oil can be displaced; at present it ac-
counts for 90% of energy use in transport. Both passenger and freight activity are set to
more than double by 2050, underpinned by higher mobility demand needs in the devel-
oping world as economies and populations expand and living standards rise. Reductions
in emissions of around one-quarter to 2030 in the NZE Scenario are driven by increased
electrification, efficiency improvements and behaviour change.”

According to both reports one key strategy is to make alternative low-emission trans-
port means more attractive and to target a behaviour change of passengers towards a
multi-modal mobility behaviour based mainly on sustainable transport means. Achiev-
ing a behaviour change also requires the capability to measure the mobility behaviour.
This is already possible for many areas in the transportation sector, however to measure
the modal split of passengers remains a burdensome challenge. Until recently the state
of the art method has relied on pen and paper interviews which used to be cost intensive
and resulted in coarse data [42]. During the last few years these surveys have been
partly replaced by smartphone-based systems that recreate multimodal trips of individ-
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uals. This new approach has the potential to gather more fine-grained and longitudinal
mobility data with significantly less effort required from the participants [42], [15]. This
PhD thesis puts a special emphasis on fundamental research and the development of
new pattern matching algorithms, applicable for time series data of plenty of different
domains. Besides the purpose of contributing to the research field of time series data
mining in general, this work was also motivated to improve an already existing system –
for gathering smartphone supported travel-diary data – at the AIT (Austrian Institute
of Technology).

1.1 Research Questions

This section states the two main research questions (RQ) and sub-questions addressed
in this thesis. The following enumeration gives a guidance which section of this thesis
introduces the concepts and research fields behind the research questions, and which of
the published research papers of this thesis proposes solutions to the respective research
questions.

Research Topic 1: How can machine learning methods help to retrieve
and detect prototypical patterns in time series data, especially for the
use case of trip reconstruction?

• RQ 1.a: How can machine learning models incorporate erroneous user-feedback
in a semi-supervised fashion to improve the overall quality of a transport mode
detection system?
Section 4 gives more details about mobility research and Paper A addresses this
question by proposing the algorithms Seg-IP and Segment-123.

• RQ 1.b: How to detect transport mode specific patterns of varying lengths in
accelerometer time series?
Section 3 gives more details about machine learning methods for time series and
Paper B addresses this question by proposing the Caterpillar algorithm.

• RQ 1.c: How to detect patterns in GPS trajectories independently of any rotation?
Section 3 gives more details about machine learning methods for time series and
Paper D addresses this question by proposing the algorithm S3KR.

Research Topic 2: How can machine learning methods operate most
efficiently to enable the analysis of time series data in real-time, or to
enable the detailed analysis of big databases of time series in
manageable time?

• RQ 2.a: How to efficiently retrieve and detect prototypical patterns in a set of
time series of different lengths?
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Section 3.3 elaborates sliding algorithms for time series and Paper B and D address
this question by presenting algorithms that analyse time series in a sliding fashion.

• RQ 2.b: How to most efficiently apply DTW in a sliding algorithm to detect
patterns of varying lengths?
Section 3.1 introduces the distance measure DTW. Paper B addresses this question,
while Paper C presents the fundamental work for achieving efficiency.

The remainder of this thesis is structured as follows: Chapter 2 gives a basic intro-
duction to the areas of data mining and machine learning covered in this work. Chapter 3
discusses some peculiarities of data mining methods for time series data that are relevant
for this thesis. Chapter 4 introduces briefly the field of trip reconstruction in mobility
research. Chapter 5 deals with the conclusion, discussion and prospects for future work
that could be based on this thesis. The published research papers on which this work is
based are included in the appendix.



Chapter 2

Data Mining and Machine
Learning

Data mining and machine learning are both fields within the broader realm of computer
science that deal with analyzing and extracting insights from data. Both data mining
and machine learning rely heavily on statistical analysis and algorithms, and they share
many techniques and methods. While data mining is often focused on the discovery of
patterns in historical data, machine learning is more concerned with using that data to
make predictions and automated decisions in real-time.

The following sections only give a brief introduction to the most important concepts
of data mining and machine learning required to understand all concepts of this thesis. A
more detailed and thorough introduction in data mining and machine learning methods
can be found in [24].

2.1 Supervised Learning

Supervised Learning is the exercise to learn a relation between a target variable Y (in
literature also often called dependent variable or response) and the feature variables X
(also called independent variables or inputs). If Y is a categorical variable that can
only take values of a limited set, for example (’car’, ’bicycle’, ’train’) then we speak of
a classification problem. On the other hand, if Y is a continuous numerical variable,
as for example stock prices or the estimated driving time for a trip, then we speak
of a regression problem. The inputs X represent observations and can also take any
form, either numerical, or categorical. An input could be the number of cylinders or the
manufacturer of a vehicle.

Having a model f(.) that describes Y dependent on X plus an error term ϵ

Y = f(X) + ϵ (2.1)

one can use the model to derive estimates for Y given X: Ŷ = f(X). Finally we
can evaluate the model by measuring the error term (Y -Ŷ ). Minimizing the error term

6
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helps the model to predict the target variable more accurately. For this reason this
problem category is called supervised, since the observed target variable Y serves as a
form of teacher that helps to develop and improve the model. The data set consisting
of historical observations used to learn the relation f(.) is called the training data.

The literature [24] gives more details about different supervised learning models. The
following two models described briefly give an excerpt of the most elementary but also
very popular models. These two models differ fundamentally in the way they model the
function f() from (2.1), but both build the foundation for state of the art supervised
learning models, and serve here as examples how supervised models work.

• Linear models make strong assumptions on the data, but deliver consistent es-
timations and are capable of extrapolation outside of the so-far observed space.
Linear models are typically trained by minimizing the estimation error. The most
generic linear model is of the form Y = β0 + Xβ1 + ϵ, so the relation between
the target variable Y and the independent variable X is modelled via the linear
combination with the parameters β.

• k-Nearest Neighbor models (kNN) are non-parametric, in the sense that they
make no assumptions on the data. A kNN classifier works by comparing the
distance of a new observation to all observation of a training set of historical
observations, and forming the estimation via majority vote out of the labels of
the k closest neighbors. This aggregation step can be unweighted, or weighted
dependent on the distances. A kNN regression model works similarly, but in the
aggregation step the target values are aggregated instead of the majority vote of
the labels. Section 3.1 details the concept of distances for machine learning and
data mining methods. In the literature [13] you can also find variations of the
kNN, e.g. Parzen Windows where predictions are based on all neighbors in a
neighborhood of predefined size (rather than number of neighbors), or the Convex
Containment Method. For all of these nearest neighbor models the choice of the
distance measure is key.

Both model categories share the benefit of being easy to interpret and explainable.
Also, both models find application for regression as well as classification problems.

2.2 Unsupervised Learning

Unsupervised Learning deals with the problem to find structure in data where no struc-
ture is obvious. It allows for the discovery of patterns and relationships in data without
the need for explicit labels or guidance. This is particularly useful in situations where
the data is complex or high-dimensional, and it may be difficult or impossible for a
human expert to manually label every example in the dataset. Unlike to supervised
learning, there is no ’teacher’ in an unsupervised learning problem. Hence there is no
target variable, which a model should describe best by observed features, but rather the
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model is designed to find structure in the features directly. Discovering such structure
can help users to better understand the data and support decision making.

Apart from the capability of unsupervised learning algorithms in an isolated setting,
they are also often applied to preprocess the data before a supervised learning model is
applied.

The following sections focus on two unsupervised learning methods that are most
important for a full understanding of this thesis: clustering and the Minimum Description
Length principle. A more detailed discussion of unsupervised learning can be found in
[12].

Clustering

Clustering a set of data means to discover inherent groups of data points, such that
the data points inside of one group are most similar and that the data points of any
two different groups are most dissimilar. The definition of the similarity measure, or
analogously the definition of the distance measure, is key. Section 3.1 elaborates distance
measures generally, and specifically for time series. Apart from the distance measure
between two data points, next important is how the similarity between a two groups
of data points is understood. Hence there is no single truth for this question, and
different use cases require different definitions of similarity.There is a wealth of clustering
algorithms in the literature. The most important ones to mention here are:

• Centroid-based clustering: The distance of a data point and a group of data points
is defined by the distance of that point to the barycenter of the group. This way the
data points are assigned to the closest of the groups. The most popular algorithms
of this class are k-Means and PAM (Partitioning Around Medoids) [23] and [1].

• Density based clustering: The main idea is that clusters are areas of density, and
that clusters are separated by sparsity. This means also, that the assignment of
a data point to a cluster relies on the direct neighborhood of that data point,
and whether in that neighborhood is enough density of a cluster. The assignment
step is independent of the barycenter of the group, and consequently non-spherical
clusters can be discovered. Also, contrary to the centroid based clustering, not
all data points must be assigned to clusters. If the direct neighborhood of a data
point is too sparse, then this point is not assigned to any cluster. The most popular
density based clustering algorithm is DBSCAN [16].

• Hierarchical clustering: The algorithm is based on the pairwise distances between
all pairs of data points. Starting with all observations interpreted as standalone
clusters, a hierarchy of clusters is build by merging iteratively in a greedy fashion
the closest clusters together to form a new cluster. The other way round is also
possible, to start with all observations in a single cluster, and split those most
dissimilar. The choice of the distance for single observations plays a major role,
and also how to define the distance between two clusters. [29]
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• Spectral clustering is, as hierarchical clustering, also based on the similarity matrix
of all observations. The algorithm first reduces the dimensionality via deriving the
most relevant dimensions from the spectrum (the eigenvalues) of the similarity
matrix. And second, the reduced problem is clustered, for example with k-Means
[10].

Most of these clustering methods found application in the research work of this thesis:
the algorithm TSS (presented in Paper D) is based on spectral clustering, Segment-123
(Paper A) incorporates PAM, we also applied PAM for the evaluation of the novel
distance metric (Paper D), and we applied hierarchical clustering to demonstrate some
functionalities of the IncDTW package in the extension paper [36] of Paper C.

The Minimum Description Length (MDL) Principle

The MDL principle can be considered as a formalization of Occam’s Razor, which says
if you have two explanations for one and the same problem, that are equally well in
describing the problem, then the simpler model – the one that requires fewer assumptions
– is the one to select. [22] says: ”The minimum description length (MDL) principle
is a powerful method of inductive inference, the basis of statistical modeling, pattern
recognition, and machine learning. It holds that the best explanation, given a limited
set of observed data, is the one that permits the greatest compression of the data.
MDL methods are particularly well-suited for dealing with model selection, prediction,
and estimation problems in situations where the models under consideration can be
arbitrarily complex, and overfitting the data is a serious concern.” We made use of this
principle in Paper B to design an algorithm which decides whether one observation can
be understood as a similar representation of another observation, if the compression rate
of the differences are smaller than representing these two observations independently.

2.3 Semi-supervised Learning

Semi-supervised Learning [62] can be understood as the research field where supervised
and unsupervised learning overlap. Supervised learning relies on historical observations
of the target variable Y . There are situations where Y is not always observed for
each observation of X. This can be due to the lack of resources (labelling data by
human supervision can be time and cost intensive), or because of evolving data gathering
methods (in past surveys Y was maybe not part of the survey). In this sense there are
similarities between semi-supervised learning and the imputation of missing data.

Say a dataset Ω consists of two disjunct sets where the target variable Y was observed

in one of the two sets, and unobserved in the other: Ω =
(
(Xo, Yo), (Xu, Yu)

)
and Yu =

missing. The simple approach would be to train the supervised learning models limited
to data where Y was observed, soXo and Yo. However, semi-supervised learning methods
make it possible to gain knowledge out of Xu as well. The main idea is to improve the
overall performance of a model by iteratively training on (Xo, Yo), predicting the target
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variable Yu for selected observations of Xu, and feeding these enriched observations back
to the training data for the next iteration. We make use of this principle in Paper A.
More details about semi-supervised learning can be found in [63].



Chapter 3

Machine Learning Methods for
Time Series Data

Machine learning methods applied to time series data need to factor in the special
characteristics of data structured as time series. This chapter introduces some of these
specialties that are necessary to comprehend the Papers A to D and the contributions
of this thesis.

A time series x is a sequence of data points xt for the time t ∈ T . An observation xt
can be univariate or multivariate. Say x ∈ RT×M :

x =




xt,1 xt,2 ... xt,M
xt+1,1 xt+1,2 ... xt+1,M

... ... ... ...
xT,1 xT,2 ... xT,M


 (3.1)

An example for a univariate time series is the ECG (heart rate) of a patient, sampled
multiple times per second, and an example for a multivariate time series could be the
unemployment rates of all the European countries for the last twenty years, sampled
quarterly. Another example would be the bid prices of all the stocks listed in the Dow
Jones index for a the last 7 days, sampled every hour. Typically time series are collected
in regular intervals. If not, a common practice is to interpolate the observations such
that the observations are re-sampled equidistantly. Time series data can origin from
many different domains, such as finance, economy, meteorology, health sector, manu-
facturing, and many more. This thesis deals especially with two types of time series,
accelerometer data, and GPS trajectory. Accelerometer time series are typically collected
by 3-dimensional sensors, where each data point gives the acceleration at time t of the
sensor in each of the three directions in the 3-dimensional space (forward-backward, left-
right, up-down). GPS trajectories are sequences of GPS (Global Positioning System)
coordinates that are recorded over time by a GPS device or application. GPS records
consist of latitude, longitude, and sometimes altitude of a user’s location at regular in-
tervals, creating a series of points that represent the user’s movement over time – also

11
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called GPS trajectory. Figure 1.1 shows sensor readings (recorded at a frequency of
1̃00Hz) of a smartphone attached to a person’s hip, while the person is walking or riding
the bus1. The Figures 1.1c-1.1d show GPS trajectories segments lasting a couple of
minutes, extracted from a multiple-hour trip record. The Figures 1.1a-1.1b show the
accelerometer readings of some seconds extracted from the GPS segments. The usual
presentation of GPS trajectories is embedded in the two dimensional space with the map
context, whereas all of the three dimensions of the accelerometer signal are plotted in
parallel against the time. The figures show that the characteristics of these signals vary.
While the accelerometer signal of a walk has higher variation, it seems that the signal
from the bus ride is separated in segments with higher and lower variation. Also the
GPS signals shows differences. The bus ride follows a clear pattern, while it seems that
the GPS positions of the walk jump more often to the sides of the actual (most likely)
walking path. This small example already reveals some of the challenges related to these
types of data.

As described in [47], methods for storing and processing times series data has become
more and more relevant in recent years. Further [47] list the following popular use cases
for processing time series data:

• Indexing: Having a set of time series X, and another time series x, find the time
series in X that is closest to x. The task is similar to a k-Nearest Neighbor search,
where k is 1.

• Clustering: Find groups of similar time series in a set of time series. See also
Section 2.2 and 3.2

• Classification: Given an unlabeled time series x, and a set of available labels, find
the label that is most suitable for x. See also Section 2.1.

• Forecast: Given the observations of a time series x until time t, predict the value
of xt+k for any time step k > 0. This falls in the domain of classical time series
analysis with the well known ARIMA, SARIMA, and SARIMAX models [6].

• Summarization: This field deals with the challenge of finding a representation of
a very long time series x to better understand x and visually represent it more
compact.

• Anomaly Detection: Detecting sections of a time series x that are different to the
remaining part of x, or in some other interpretation of special interest.

• Segmentation: Given a time series x with observations ranging from x1 to xT , then
the challenge is to find single observations xt, where to split x in homogeneous
segments.

1The data is a sample out of the University of Sussex-Huawei Locomotion and Transportation Dataset
[21].
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• Representation: Similar to segmentation, the task is to find a representation of x
via segmentation and aggregation that is somehow different than x (for example
smaller in bit size for storage), but also represent x as close as possible.

Most of these challenges require algorithms, data mining methods or machine learning
methods that directly or implicitly apply distance /similarity measures. Two distance
measures that are popular in the literature [41, 2, 60] for times series mining in general,
but also for the application on accelerometer data and GPS data are the Euclidean
distance metric (dE) and the Dynamic TimeWarping (DTW or dDTW ) distance measure.
For this reason this thesis puts a special focus on these two distance measures and
developed algorithms that help to efficiently calculate the distance measures, and/or
modify the distance measure for special problems. Hence, the following sections will
give a brief introduction and discuss shortly the advantages and disadvantages of dE
and DTW. More details about further time series distances can be found in [37] and
[54].

3.1 Distance Measures

Euclidean Distance Metric

For two time series x and y of the same length, the Euclidean distance metric is defined
as:

dE(x, y) =

√√√√
T∑

t=1

(xt − yt)2 (3.2)

dE is a metric, so for any time series x, y and z of identical dimensions it fulfills the
following conditions:

dE(x, y) = dE(y, x)

dE(x, y) ≥ 0 and dE(x, y) = 0⇔ x = y

dE(x, y) ≤ dE(x, z) + dE(z, y)

(3.3)

The third condition is the triangle inequality condition, which is used in the literature
to speed up algorithms that require multiple distance calculations in a metric space, as
the k-nearest neighbor search [55, 9, 44] or clustering [14, 34].

Dynamic Time Warping

The Dynamic Time Warping algorithm – originally introduced by [49] – calculates the
distance between two time series x and y by finding the best non-linear alignment of
the single observations of x and y. This non-linear alignment is also the main advantage
of DTW compared to the Euclidean distance which forces a 1-1 alignment, hence one
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observation of x is aligned to exactly one observation of y. The 1-many alignment of
DTW allows to detect similar patterns in two time series, that were collected at shifted
time periods, and can also have differing extensions in time. Figure 3.1 illustrates this
principle. The dashed lines connect the observations of x and y according to the enforced
alignment by dE (a), and the alignment calculated by the DTW algorithm (b).

Figure 3.1: Alignments of the Euclidean Distance (a) and the Dynamic Time Warping
distance measure (b).

DTW computes the distance of two time series as the accumulated sum of distances
of pairs of observations. To find the sequence of pairs that result in the smallest overall
distance, the DTW algorithm proceeds as follows. A cost matrix of local distances of
all pairwise combinations of single observations is computed. Then these local costs are
aggregated by following defined rules to a global cost matrix. And finally the algorithm
steps through the global cost matrix in reverse order to find the alignment path (which
defines the pairs of observations in Figure 3.1b) with the cheapest overall costs.

The possibility of this procedure to detect similarities of time-shifted time series
comes at a certain cost, an increased runtime complexity. This is a disadvantage of
the DTW distance measure compared to dE . While dE has linear complexity in the
number of observations O(T ), the complexity of computing dDTW is O(T 2). There are
methods to restrict the possible alignment paths for the calculation of dDTW , as for
example the Sakoe-Chiba warping window ω [49], which restricts the algorithm to align
observations xt and ys if |t−s| > ω. This alignment restriction reduces the complexity to
O(T × ω). Nevertheless, increasing the runtime efficiency of algorithms applying DTW
is a popular topic in the literature [50, 3, 32]. This thesis also deals with the research
question how to accelerate the computation of DTW, and proposed the implementation
of the incremental calculation of DTW, and the vector-based implementation of the cost
matrices, see Paper B and C.
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A second disadvantage is that DTW does not fulfill the triangle inequality. Again,
this increases the required runtime for some data mining tasks as a nearest neighbor
search or clustering, when applying DTW instead of a metric. Other lower-bound meth-
ods for DTW were introduced e.g. by [48, 32], also implemented in [35].

For a more detailed definition of DTW please see Paper B, or Paper C or [49], [20].

3.2 Time Series Clustering

Clustering time series is basically similar to clustering objects that are not time series.
Given a set of time series , the challenge is to find a model that builds groups of most
homogeneous time series. Finding the most suitable model for a set of data depends on
the choice of a) the distance/similarity measure, b) the clustering algorithm, and c) the
representation/preprocessing of a time series. Apart from the raw representation of a
time series x, common practice is either to perform some preprocessing – for example
normalization or smoothing –, or to represent a time series as set of derived features
and statistics of x. If x ∈ RT×M , then the derived set of k features is a vector Θ ∈ Rk.
Section 3.3 elaborates how sliding algorithms can support the calculation of a feature
vector Θ for all the segments of a time series x. The best choice of representation highly
depends on the data and the use case, and typically some experimentation is required
to meet the best decision for a dataset and use case.

Clustering Time Series Segments

For a time series xt with observations ranging from 1 to T , a segment of x starting at
index s with a length of m observations is defined as:

{x}ms ..= {xt|s ≤ t ≤ s+m− 1} ∀s,m > 0 and s+m− 1 ≤ T (3.4)

Figure 3.2 illustrates some of the initial segments of x, all of the same length. Obvi-
ously two neighboured time series segments {x}ms and {x}ms+1 are very similar. When

Figure 3.2: A time series x and some segments of x. The segments are plotted with a
vertical offset.
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attempting to cluster overlapping segments of a time series trajectory, the clustering
task can lose its meaning. This is because the nearest neighbor of a segment is often a
trivial neighbor that has a high overlap, starting either one time index earlier or later.
[31] discuss this problem of meaningless time series segments clustering in detail.

Nevertheless, there is often a need to uncover structures and repeating patterns in a
time series, so clustering time series segments can still be worthwhile and provide new
insights into the data. In Paper D we developed an algorithm for clustering time series
segments that circumvents this pitfall and guarantees that two overlapping neighbors
can only end up in the same cluster, if both are connected to another segment, which
has no overlap to any of the former two.

Apart from clustering the segments of a time series, the next section discusses other
pattern recognition algorithms to uncover structures and repeating patterns in a time
series.

3.3 Pattern Recognition and Sliding Algorithms

Given a long time series x, and a statistic θ to be computed for each of the segments {x}ms
of x. The naive brute force approach would be to first extract all of the segments and
save these in a database Ω, and second to apply θ on all of the segments independently
from each other.

In contrast, there are time series sliding algorithms, that apply computational steps
on the segments of x incrementally. Depending on θ, there may be a function f() that
fulfills:

θms+1 = f(θms , xs, xs+m), (3.5)

and the calculation of θs+1 via f() is significantly faster than the brute force calculation,
since there is no need to touch all of the observations of x in-between xs and xs+m.
The initial value θm1 is to be calculated traditionally, independent from f(). The two
observations xs and xs+m have a special role since xs /∈ {x}ms+1 and xs+m /∈ {x}ms , as
Figure 3.3 illustrates by repeating the time series example and two of the segments of
Figure 3.2, and emphasises which data is required to calculate the statistics θs and θs+1.
This principle has also found application in [46]. The following formula 3.6 demonstrates
step by step how to achieve the relation between two consecutive values of θ, for the
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Figure 3.3: Incremental calculation of the statistic θ by recycling previous calculation
results.

exemplary case of θ being the mean of a segment, µ:

µm
s+1 =

1

m

s+m∑

i=s+1

xi

=
1

m
(xs+1 + · · ·+ xs+m)

=
1

m
(xs+1 + · · ·+ xs+m) +

1

m
(xs − xs)

=
1

m
(xs + · · ·+ xs+m−1) +

1

m
(−xs + xs+m)

= µm
s +

1

m
(xs+m − xs)

(3.6)

So the runtime complexity of an update step of θ reduces from O(m) to O(1), and to
calculate θ for all segments reduces from O(T ×m) to O(T ).

Obviously it depends on the statistic θ if a function f() exists, which fulfills θs+1 =
f(θs, xs, xs+m). Therefore this principle is not applicable in general for any statistic
θ. However, the algorithms and methods presented in this thesis repeatedly apply this
principle of incrementally updating statistics: Paper C and B for the update of the local
cost matrix, and the update of the vector based DTW computation for new observations,
in [35] for the update of the normalization of segments via the mean and standard
deviation, and in Paper D again for the normalization of segments, and for updating the
rotation matrix required to rotate a new segment to minimize its distance to a reference
trajectory.

In summary, when faced with pattern recognition problems in time series mining, it
can be advantageous to reformulate the algorithm so that the time series are analyzed in
a sliding fashion. When time series segments are compared, often the distance calculation
follows a preprocessing step of local normalization or calculation of statistics (see e.g.
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[58], [7]). Depending on θ and the use case, a sliding algorithm can save computation
time and the amount of the required storage compared to a brute force approach where
all segments are stored in a database.



Chapter 4

Challenges and Approaches from
Mobility Research

Mobility research deals with the questions of why and how people or goods are trans-
ported and what dynamics and consequences the transport behavior of a society has in
a globalized world. Section 1 introduces the motivation of this thesis out of the perspec-
tive of mobility research and trip reconstruction, which is to develop efficient machine
learning algorithms, that support data driven transport visibility systems. A transport
visibility system is a digital platform or software application that provides real-time
and end-to-end visibility into the movement and status of people, goods and shipments
within a supply chain or transportation network. Efficient and accurate machine learning
methods that applied in transport visibility systems could help to facilitate and evaluate
a mobility shift towards sustainable transport means.

The following sections detail the main research questions relevant for this thesis out of
the field of mobility research – especially for trip reconstruction and transport visibility
– and what algorithms and methods this thesis proposes to approach these challenges.

4.1 Trip Reconstruction

In mobility research a transportation trip (or just trip) is the action of moving an object
or a person from an origin to a destination. Trip reconstruction means to gain as much
information about a recorded trip as possible, such as the trip purpose, the motivation
for decisions along the trip, the set of used transport modes, the taken routes, and the
duration of the mode-specific stages [8]. The data collected with travel-diaries can be
used to develop methods for trip reconstruction.

The related field of transport visibility is the surveillance of a trip by tracking and
monitoring the status and location of the moving object, person or vehicle from origin
to destination. The challenge of these two fields is similar, to gain high level knowledge
about events during the trip. The difference is, trip reconstruction usually is performed
a posteriori by analysing historical data, and transport visibility analyses the data in
real-time or near-real-time when the trip is actually recorded. The algorithms for these

19
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two types of problems are also called offline and online methods. From a methodological
stand point the methods to analyse the data to accomplish the challenge for trip recon-
struction or transport visibility are very similar. The methods proposed in this thesis
can be applied for either of these two problems.

Transport Mode Detection

Trips can be recorded with smartphones and special smartphone applications to record
sensor data. With the help of this collected data, machine learning and data mining
models are trained that help to gain the intended higher level information [43], [57].
An example for such a model is a transport mode detection model, which receives the
collected sensor data as input and returns the most probable transport mode. Having
such a model of high quality is key to perform smartphone supported and user-friendly
mobility surveys to gain high quality insights about a population’s mobility behaviour.

One challenge lies in the chicken-egg problem of the requirement of labelled data, to
train a classifier model, which in turn is capable of labelling (without user interaction)
new data, collected when the system is applied in the field. To resolve this problem, some
manually labelled data needs to be collected in an initial phase. Once an initial model
is ready, users can record trips and the model classifies the detected transport modes. If
the system allows the user to adjust estimated labels provided by the model, the system
could learn from this new user-provided ground truth data of the form: When did a
trip start and end, when were transport modes changed, and what were the transport
modes. However, labelling such data is a challenging task, because there is some room
for interpretation in these questions. For example consider the following intermodal trip
(an intermodal trip consists of a chain of various transport modes to get from an origin
to the destination): a user is riding the metro and next takes the bus to reach their
destination. Is there a segment of walking in-between the two segments of metro and
bus? And when would be the correct point of time to split the segments between metro
and walking, when the user exits the metro station, or when the user exits the metro
car, or as soon as the user starts walking inside the metro towards the door to get off
the metro?

Consequently it is a difficult task for users to provide valuable feedback to the system,
and further it is challenging to incorporate user provided feedback in the training process
of a model. This thesis approaches this challenge of systematically biased ground truth
data on the one hand via an algorithm for improving a user-provided segmentation (see
Paper A), and on the other hand via a data gathering initiative specifically designed
to collect unimodal trips only (see Section 4.1). Further algorithms presented here are
unsupervised methods trained on the unimodal dataset, and so predominantly free of
erroneous ground truth data.

Trip Segmentation

As the example of an intermodal metro-bus ride in the previous section points out, the
trip reconstruction not only consists of the transport detection but also of the problem
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to find the best points in time to separate the trip into unimodal segments.
Paper A elaborates in detail that it is no trivial task for a user to set the point of

time for changing the transport mode. And further, at what extend disturbances in
the segmentation can cause problems in the feature extraction and actual training of a
classifier model. The proposed algorithms SEG-IP and Segment-123 in Paper A adjust
the user-stated segmentation by identifying changes in the variance of the accelerometer
signal. The corrected segmentation results in more homogeneous segments. The ex-
periments demonstrate that applying our proposed method helps a classification model
to separate the modeled transport modes and in general to improve the classification
performance.

Data Gathering

In the literature ([25], [39]) the data gathering for trip reconstruction problems is often
performed with participants who are equipped with smartphones and special smartphone
applications. A number of sensors are usually built into smartphones that could be of
interest for training transport mode detection models. [25] However, sensor recording
requires some battery capacity, so there is a trade-off between collecting as much data
as possible to improve data quality and collecting as little data as necessary to reduce
smartphone battery drain. This thesis puts special focus on algorithms for trip recon-
struction designed for time series data from two different sensor readings: the GPS sensor
and the accelerometer sensor. Both sensors are strongly represented in the literature of
trip reconstruction ([25], [38], [39], [28], [52]). The GPS sensor delivers information in
the spatial-temporal dimension about the movement trajectory of a device that carries
the GPS sensor. On the other hand, the accelerometer sensor measures accelerations of
the device in the 3 dimensions (x,y,z) independently of the device’s location. Recording
high frequency sensor data causes the battery of the smartphone to drain faster [25], and
so the usability of a smartphone application – based on battery-intensive data collection
– declines. The power consumption varies among the location sensors and motion sen-
sors of a smartphone. Recording GPS data is very expensive, whereas the accelerometer
sensor is rather inexpensive and still covers much information about human movements.
Further, especially GPS sensors are affected by recording gaps. In urban canyons, inside
buildings, in subways, or in special trains the signal is lost, and so the location infor-
mation can hardly be rebuilt. Recording accelerometer data is unaffected by these two
issues. Consequently a model to analyze trip data relying solely on accelerometer data
and independent of GPS information is of advantage and can work as stand alone model
or support a GPS-based system.

A special data gathering initiative helped to tackle the problem of erroneous ground
truth data. On the basis of an already existing system by the AIT, the system enhances
an Android smartphone application to collect sensor data with a smartphone during
a transport trip is performed. Figure 4.1 depicts the user interface of the application.
The user interface was designed intentionally as simple as possible, because experiments
have shown that a simple usability helps participants to annotate the recorded trips
accurately. Equipped with the smartphone application, the participants of the study
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were advised to collect a number of unimodal trips. As soon as the trip was started,
the participants were asked to state the respective transport mode, hence to annotate
the ground truth label. At the end of the recording there was the possibility of adding
some notes. Finally the trip was saved and uploaded to a server. It is important to
remark, that the fact that the collected trips were unimodal, made it possible to identify
transport mode-specific patterns.

While a GPS sensor records independently of user-interactions with the smartphone
(as long as the GPS is activated), the accelerometer readings are sensible to the position
in which the participant is carrying the phone, and whether the position is changed, or
the phone is used for other purpose during the recording (e.g. texting messages, reading,
etc.). [21] address this issue via recording trips with multiple smartphones equipped to
the same participant in different positions. [25, 38, 39] apply a gravity component
projection of the accelerometer signal, which we also applied in Paper B. A thorough
analysis of the performance of transport mode identification models depending on various
typical user interactions with the smartphone remains for future work. Developed on the

(a) Start a new trip
or upload existing
ones

(b) Select a trans-
port mode

(c) Optionally take
notes

(d) Delete records if
necessary

Figure 4.1: Layout of the smartphone application applied in the mobility data gathering
initiative.

basis of this unimodal dataset this thesis proposes the Caterpillar algorithm (Paper B)
that helps to identify ’vertically shifted and time warped matches of different lengths
of hypothesis time series.’ This way the Caterpillar algorithm can for example identify
the typical pattern of a metro stop in accelerometer time series. And further, a trip
reconstruction model could benefit from this information of a detected metro stop to
segment the sensor time series in more homogeneous segments and finally to improve
the quality of the trip reconstruction.
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4.2 Recognition of Mobility Patterns

Mobility patterns can origin from any human, device or vehicle – equipped with a record-
ing sensor – that performs a specific action or movement. Examples for such patterns
and movements are

• the stop of a metro (see Figure 1 and 10, Paper B),

• turns of different vehicles, speeds and angles (see Figure 1, 10, 11, Paper D)

• a combination of the above, that symbolises for example a parking maneuver

• drinking a glass, walking, brushing teeth, writing a digit (see Figure 4, Paper C)

In the domain of recognising mobility patterns this thesis distinguishes between two
challenges: The detection of patterns, and the retrieving of patterns.

• Pattern retrieval: Given a set of sensor readings and a query pattern, the task
is to find similar occurrences of the query pattern in the set of sensor readings.
The occurrences are also called fits or matches. These tasks are also called range
query (or ϵ−query) and knn-query. The ϵ−query says: Given a set of time series
X and a time series y, and a distance measure d(., .), find the set

{x|d(y, x) < ϵ and x ∈ X}. (4.1)

The knn-query is similar: Given a set of time series X and a time series y, a
distance measure d(., .) and a number of neighbors to be found k, find the set:

{x|d(y, x) ≤ d(y, z) where x ∈ Xk, z ∈ X\Xk, Xk ⊆ X, |Xk| = k}. (4.2)

• Pattern detection: Given a set of sensor readings, the task is to discover out-
standing patterns or recurrent patterns, typically without the prior knowledge how
a pattern might look, or how often it occurs, nor what it means. Detected patterns
can be prototypical patterns for any context the sensor readings originate from (e.g.
the detected u-turn in GPS trajectories of a dredger ship in Paper D). Methods
from the domain of outlier detection or clustering are typically the methods of
choice to address this problem.

Both problems, pattern retrieval and pattern detection depend on the length of the
desired pattern y. And if y is significantly shorter than the time series in X, than sliding
algorithms (see Section 3.3) can help to increase the efficiency to solve these problems.

This thesis faces both problems and proposes distance measures and algorithms to
address these problems.

Section 4.1 already introduced trip reconstruction and mentions how the Caterpillar
algorithm from Paper B can support the reconstruction of a trip. The results section
of this paper demonstrates that the Caterpillar algorithm is for example capable of
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retrieving query patterns of accelerometer readings of a metro, that decelerates before
a stop, then pauses, and accelerates again to continue the ride. The applied distance
measure is a marriage of the DTW distance measure and the MDL principle. This
combination results in a method that decides without the need of a user-given threshold
whether a segment of a signal is similar to the query pattern or not. Further, the
Caterpillar can retrieve similar patterns, even though they are of different time extend.
So, coming back to the metro example, metro stops were identified to be similar matches
of the query metro stop, even though the metro waited in some stops half or twice as
long as it waited in the query pattern.

Paper D deals with both challenges, detecting and retrieving patterns in GPS trajec-
tories. The idea of this paper is to measure similarities and recognise patterns invariant
of any rotation, location. This means, that a simple movement as a left turn of a driving
car is similar to another left turn, no matter where located and in which cardinal di-
rection the car is heading during the two left turns. The same applies to more complex
movements. Based on a novel rotation-invariant distance metric the algorithm S3KR is
proposed to scan a GPS trajectory for retrieving similar segments of a query pattern,
as for example retrieving all left turns in a GPS trajectory of some hours. On the other
hand, S3KR is applied in a second proposed algorithm, TSS, to cluster the segments
of a trajectory and to detect recurrent, prototypical patterns of movements in a GPS
trajectory. A case study in Paper D presents a GPS trajectory of a dredger ship. At
first glance, it is difficult to identify a purpose in the ship’s movements, since the GPS
trajectory looks like a blob of GPS positions that seem to origin from a ship moving in
a disoriented zick-zack pattern. Applying the algorithm TSS reveals the most frequent
movement patterns of the ship: u-turns. This way it was easy to interpret, that the
ship was circling around a certain position in the sea. Another case study in that paper
applies the proposed methods to compare prototypical movement patterns of trains an
light-rail GPS trajectories. The comparison shows that light-rail trains operate on a rail
network that enables the train-cars to make turns of smaller radius.

4.3 Runtime Efficient Algorithms

In general, runtime efficient algorithms are important because they can solve complex
problems quickly and allocate computational resources – such as CPU time and mem-
ory – more efficiently. As the size of data sets and computational problems continue
to increase, the importance of efficient algorithms becomes obvious, when formerly in-
tractable or too cost intensive problems become solvable due to more efficient program-
ming. Further, efficient programming can also reduce the amount of energy required
to analyse data or solve complex problems. The European Green Deal [19] points out
the importance of efficient algorithm development in the realm of Artificial Intelligence:
”The future contribution of AI to GHG emissions will depend on the energy efficiency of
data centres and their operation with renewable energies. Furthermore, it is crucial to
make energy and resource efficiency a dedicated development goal in the AI innovation
process.”
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As in other domains, also in mobility research runtime efficiency is crucial. On
the one hand, the proliferation of mobile devices and sensors results in an inundation
of machine-generated trajectory data about moving people, vehicles, vessels and other
objects. On the other hand, multiple use cases in mobility research require efficient
data processing for real time or near-real time response, such as navigation systems,
recommendation systems [4] or ticketing apps for public transport that require to detect
the state of the user. Further, the user experience and consequently the user acceptance
benefits from instantaneous responses of smartphone application. This is a critical factor,
when smartphone applications – that require data processing by the help of machine
learning algorithms – are designed to ease the transition towards environmentally friendly
transport means. For this reason, this thesis puts a special emphasis on the runtime
efficiency of novel algorithms, especially by designing the proposed algorithms according
to two principles: Firstly, by recognizing which calculation steps are necessary to return
exact results, and skip those that are not necessary, and secondly by recycling already
calculated results.

Paper C proposes the software package IncDTW [35] to calculate the DTW distance
measure incrementally. Considering a system where data is updated every second and
predictions based on distance measures need to be calculated in real time, the incremental
update of the DTW distance measure helps to facilitate these real time predictions.
Paper C demonstrates this via an exemplary classifier model that processes accelerometer
sensor data and also updates the prediction of the recognized activity every second.
Further, the principle of incremental calculation of the DTW distance measure finds
application in Paper B.

Paper B addresses the problem of searching long time series to retrieve query pat-
terns. The proposed Caterpillar algorithm decides whether a segment is a representation
of the query pattern by applying the MDL principle. The algorithm scans time series by
combining the incremental calculation from Paper C and the MDL principle. The Cater-
pillar algorithm is capable to retrieve the best matches of query patterns that represent
e.g. a metro that stops-pauses-accelerates again.

Also the algorithm S3KR proposed in Paper D is developed for scanning time series
efficiently. Especially, S3KR is designed to scan GPS trajectories and discover similar
trajectory segments independent of their position and orientation. The key milestones
for S3KR to improve runtime efficiency are: a) the introduction of a novel rotation
invariant distance metric that allows to decouple the rotation from the standardisation,
b) the incremental update of statistics required for standardization (as dsicussed in
Section 3.3), and c) the early abandoning of unnecessary calculation steps, also possible
due to a) and b).



Chapter 5

Contributions, Conclusion and
Perspectives

5.1 Contributions

The research work for this thesis has been motivated out of two domains, the domain of
transport visibility as subdomain of mobility research, and the more general domain of
time series mining.

From the point of view of the transport visibility domain we contributed by analysing
the impact of the segmentation bias – which is a systematic bias in the ground truth data
caused by erroneous user input – and developed the algorithms SEG-IP and Segment-123
that improve a user-provided segmentation of a trip record to find more homogeneous
data segments. Our methods improve the quality of the training data, and ultimately
result in the presentation of a semi-supervised transport mode classifier, which is more
robust against biased user input, Paper A. Further we developed the Caterpillar algo-
rithm, which can also help to split a trip into segments by detecting patterns of interest,
Paper B. The Caterpillar algorithm is capable of identifying transport mode specific
patterns in accelerometer sensor readings of smartphones. The algorithm is not limited
to being applied to this type of data, but can be applied to any type of time-series
data, in particular to analyze patterns that may vary in extent over time. Moreover, in
Paper D we developed methods to analyse GPS trajectories for detecting and retrieving
patterns invariantly of any rotation. This can help to analyse movement patterns that
are specific for transport modes, moving objects or activities. Overall we demonstrated
in the respective publications that our proposed methods help to get a better under-
standing of sensor readings, either accelerometer or GPS, related to recorded trips or
trajectories. Our proposed pattern recognition methods help to address both problems
out of transport visibility, trip segmentation and transport mode detection.

In the realm of time series analysis, our contribution manifests through the method-
ological developments to analyse mobility data. The Caterpillar algorithm in Paper B
combines the time series distance measure DTW and the well known principle of MDL.
This marriage facilitates on the one hand the parameter-free retrieval of query patterns
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in time series. And on the other hand, by exploiting the nature of the DTW algorithm,
the patterns retrieved can vary in temporal extent. During the development of the
Caterpillar algorithm, the need for a software toolbox to incrementally calculate DTW
distance arose. Paper C presents the R package IncDTW that fills this gap. IncDTW is
mainly about the incremental DTW calculation, and supporting functionalities to give
a user the possibility to write their own algorithm that applies incremental DTW com-
putation. Further, IncDTW is the first package on CRAN that offers the vector-based
implementation of the DTW algorithm – for multivariate time series and/or time series
of various lengths – which considerably decreases the computation time. Our R package
is also mentioned in the task view of time series 1, which is a collection of selected R
packages for various time series analysis tasks. For analysing GPS trajectories Paper D
presents our methods to perform rotation invariant mining of patterns in time series.
The proposed methods are (1) a novel rotation-scaling-shifting invariant distance metric,
(2) the sliding algorithm S3KR that efficiently tackles the kNN-query or range-query,
and (3) an the algorithm TSS for clustering the segments of a time series – by respecting
the overlap of segments – to discover groups of segments in the time series and further
to detect prototypical patterns in a time series.

During the development of the contributed methods in this thesis we always put a
special emphasis on computational efficiency of our proposed algorithms. This supports a
better usability, a broader applicability and reduced energy consumption. Our methods
achieve these efficiencies by taking advantage of two principles: allocate as little as
necessary and limit the computational steps to those that are inevitable. The first
principle found application via the vector based implementation of DTW in Paper B
and C. We realized the second principle by remodelling mathematical foundations of our
methods to finally either recycle computational results in sliding algorithms, or early
abandon computations (Paper B, C and D).

5.2 Conclusion and Discussion

This thesis is a composition of novel data mining algorithms for time series, specifically
but not exclusively out of the domain of mobility research.

We tackled the problem of biased user input and time series segmentation, on the one
hand via the development of the novel algorithms Seg-IP and Segment123 to revise the
user input, similar to [30, 26] who apply change detection in a signal for segmentation.
And on the other hand, via the design of a special data gathering initiative, supported
by a smartphone application.

Further we focused on the problem of detecting patterns in time series that give more
details about the segmentation and cause of the underlying data generation process. To
that end we put significant effort in one basic element in the data mining process,
measuring the similarity of time series and segments of time series. We focused mainly
on two distance measures that are most relevant and widely applied in the literature
[51, 46, 61], the Euclidean metric and Dynamic Time Warping.

1https://cran.r-project.org
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Motivated by the use case to detect transport mode specific patterns that can vary
in the temporal extend, and inspired by the pattern detection algorithm UCR Suite [46],
which applies DTW, we developed the Caterpillar algorithm, which marries DTW and
MDL. The Caterpillar algorithm recognizes if a segment of varying length in a time series
is a close-enough representation of a query pattern or not. And due to the combination
with the MDL principle, the Caterpillar makes this decision parameter-free, while setting
such a threshold parameter would be a difficult task for a user. We also demonstrated
to outperform the related approaches from literature for our use case. To operate most
efficiently, the foundational work for the Caterpillar algorithm is the incremental compu-
tation of DTW, which we implemented and published as R package [35], Paper C. Some
of the most popular approaches in the literature to increase the efficiency of the DTW
computation are lower bounding and early abandoning [33, 48], the vector-based imple-
mentation of the DTW core algorithm [5], and the incremental computation of DTW
[45, 11, 40]. We implemented all of these in [35] and also introduced the vector-based
incremental calculation of DTW.

There are two established approaches for analysing accelerometer data independently
from rotation and position of the recording device. The first is to calculate the absolute
power of the signal, which is the 2-norm [42, 56], and the second is to use the projection
of the 3-dimensional signal into the 2 dimensions of horizontal and vertical component
[25, 38, 39], Paper B and A. We could not find equivalent methods in the literature
for the analysis of GPS patterns, which suffice our requirements of analysing efficiently
and robust against noise. For this reason we developed the rotation invariant distance
measure inspired by Procrustes analysis, the sliding algorithm S3KR, and the time series
segment clustering algorithm TSS. The most similar approaches we found in the litera-
ture addressed this either via an projection of the GPS trajectory into the space of arc
length and angle with the Euclidean distance [18] or DTW as distance measure [53], or
via the transformation towards a series of distances from its own gravity center [59]. We
compared our proposed distance method with the similarity measures presented in these
papers and outperformed them in several experiments in accuracy and efficiency. Further
the similarity measures from literature were not optimized for application in a sliding
algorithm as we proposed, to most efficiently mine big amounts of GPS trajectories.

During recent years deep learning, or deep neural networks (DNN) (e.g.: Convolu-
tional NN, Recurrent NN, Long-Short-Term Memory, Generative Adversarial Network,
etc.) seem to have ushered in a new era of machine learning, while this thesis relies on
the development of algorithms that rely on traditional machine learning and data mining
methods compared to DNN. DNN excel in various data mining and machine learning
tasks, especially applied on structured data as images or time series. However, these
methods also share some disadvantages. First, DNNs are not the first choice for every
use case and data set, since the training of these models with hundreds to thousands of
parameters requires a big amount of data, dependent on the complexity of the problem
and the number of parameters. Next, due to the huge amount of parameters, DNNs can
be difficult to interpret, which is often appreciated when there is the need to communi-
cate the results to stakeholders, or to develop, monitor and debug a system that applies
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a DNN. Further, for the use case of edge computing – deployment of an application,
based on a machine learning model, directly on a mobile device – it is necessary that
the model is manageable in size, and efficient in prediction. Moreover, Occam’s razor
would suggest to use the simple model instead of the more complicated in case both
approaches perform equally well. Finally, in a use case where the application of a DNN
is higly advantageous, the methods presented in this thesis can also be applied in an
ensemble model, where for example detected distances to a given query pattern serve as
input to a DNN that uses other data as well. For these reasons, there will likely be a
long-term need for traditional machine learning and data mining models, along with the
need for DNNs.

We accompanied the research work for this thesis with comprehensive experimenting
and a thorough comparison with the related work in the respective publications (Paper A
to D). For the use case of transport visibility and time series mining our publications
demonstrate that our developed methods contribute to the state of the art.

This thesis concludes that the proposed methods can help other researchers and users
to analyse time series data most efficiently and achieve a better understanding about a
dataset, which can serve as stand alone result, or as input for further analysis methods.

5.3 Outlook

The domain of transport visibility and time series mining consist of a plethora of open re-
search questions. The methods presented in this thesis address some of these problems.
Future work in applied research based on this thesis could deal with the integration
of our proposed algorithms in applications to support transport visibility. Our algo-
rithms for pattern detection can be integrated in ensemble models in combination with
state of the art machine learning models for supervised/unsupervised learning problems.
Furthermore, a thorough analysis of the performance of transport mode identification
models depending on typical user interactions with the recording smartphone would be
necessary to comprehensively evaluate a system applied for trip reconstruction.

Future work in the methodological perspective could deal with the integration of
DTW in the rotation-invariant distance measure δ and the sliding algorithm S3KR (Pa-
per D). The advantageous non-linear assignment of DTW could help to improve the
resilience of S3KR against outliers and varying speeds in similar patterns. At the same
time, designing an algorithm that combines S3KR with DTW would inherit the challenge
of keeping it runtime efficient, to remain the applicability. Finally, the implementation
of the algorithm TSS (Paper D) for DTW in the R package IncDTW is planned.
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Abstract—Collecting ground truth data with smart phone
applications is as difficult as important for training classifi-
cation models predicting transport modes of people. Errors
of respondent input with respect to trip length and transport
mode segmenting introduce a systematic bias in the classification
model. We propose a semi-supervised framework adjusting user-
given input to process user-collected accelerometer time series
data. Our contributions are (1) an evaluation of the impact of
segmentation bias, (2) a novel algorithm to find more homoge-
neous segments and (3) a robust incrementally trained classifier
model based on clustering employing Dynamic Time Warping as
similarity measure. We apply the proposed method on synthetic
and real-world accelerometer trip data of 800 labeled trips
consisting of 2000 user-given segments and 400 hours travel time
and test it against a baseline classifier relying completely on
user-feedback. The results prove that our method learns clusters
revised from noise and increases the classifier’s accuracy for real-
world and synthetic data by up to 17%.

Keywords— Transport Mode Detection, Accelerometer,
Segmentation, Clustering, Dynamic Time Warping

I. INTRODUCTION

In mobility research traditional pen and paper surveys have
partially been replaced in favor of smartphone-based systems
reconstructing multimodal trips of people, which have the
potential to collect more accurate and longer-term mobility
data with much less effort for the respondent [1], [2]. Such
systems usually incorporate data-driven classification models
to distinguish different travel modes such as walking or taking
the bus. The classification is based on features extracted
from smartphone sensor data, most notably GPS locations
or accelerometer readings. Data-driven classification models
require ground truth data for training and for evaluation of
classification accuracy. But in general, obtaining ground truth
data by any form of manual user interaction is challenging [3].
When applying a post-trip interactive graphical interface such
as in [2], [4], our experience shows that threre are two different
kinds of erroneous user-input. First, users sometimes assign a
wrong label to a segment. In the literature this kind of error is
known as label noise and it has been shown that it can have
a significant impact on the performance of classifiers [5], [6].
Second, it turned out that users cannot be expected to specify
the exact times of transition between the trip segments. In
particular, when trip data are recorded at high sampling rates
and users are asked to indicate the transition points based on
the recorded GPS track displayed on a map, it is practically

Figure 1: Impact of segmentation bias on the ACF. (a) shows the vertical
component of the accelerometer signal of a trip. The user defined the transition
points (vertical black lines) and the labels. (b) shows the similar ACF of the
three segments.

impossible to obtain a precise segmentation. The reasons are
that a) the higher the sampling rate the more difficult it is
for the user to provide an exact segmentation of the data
stream, b) the relationship between position on the map and
points in time is ambiguous, and c) inaccurate positions on
the map originating from measurement errors and interpolation
directly translate to inaccurate segmentation. Here, we define
this kind of error as segmentation bias. Existing literature
on transport mode recognition frequently involves processing
3D-accelerometer data ([7], [8], [9]). The vertical component
is extracted by aligning the 3-dimensional signal with an
estimated Earth gravity vector [10]. The ACF of this signal
or it’s Fourier Transform – the Spectral Density – is often
used as one of the most relevant features (e.g. [7], [11]–
[13]). Figure 1 illustrates (a) the vertical component of a
trip’s accelerometer signal, and (b) the ACFs of three trip
segments, defined and labeled by the user. The vertical lines in
(a) depict the user-set transition points between segments. The
two walk segments s1 and s3 show patterns of high variance,
similar to the beginning and ending of the subway segment s2,
while the middle part of s2 has a much lower signal variance.
However, the feature vectors, i.e. the ACFs, can hardly be
distinguished. Considering that the user-given segmentation is
probably inaccurate, this example motivates our hypothesis,
that segmentation bias in raw user-supplied ground-truth data
can severely impact classification accuracy.
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In this work, we therefore evaluate the impact of segmenta-
tion bias on classification performance and propose a method
to correct the user-supplied segmentation. Similar to [14] and
[15] the proposed approach identifies changes in the signal’s
variance to increase the homogeneity within each trip segment.
Further we propose a robust iteratively-incrementally learned
classifier to learn revised representatives per label. Finally we
demonstrate the improvement achieved by our method with
both synthetic and real-world accelerometer data recorded in
Vienna, Austria. While the reported experiments use the ACF
of the signal as feature, it can be expected, that the effects of
segmentation bias demonstrated for the ACF also apply to all
other features based on transformations of the signal to the
frequency domain.

The remainder of this paper is organized as follows: Section
II introduces the segmentation algorithm, which the classifier
learning algorithm in Section III incorporates. Section IV
details the evaluation and discusses the results. Finally we
draw conclusions and point out future research in Section V.

II. SEMI-SUPERVISED SEGMENTATION

In the remaining paper a user-recorded trip is considered as
a time series t ∈ RN that can be separated in the time domain
into segments s, where each s has a label l (which represents
the transport mode). A point in time when one segments ends
and the next segment begins is called a breakpoint b. We call
a breakpoint biased, if it is different from it’s true value.
Likewise, a segment s is biased, if at least one of the two
enclosing breakpoints are biased.

Figure 1 motivates the approach to identify more homo-
geneous subsegments σ within a user-given segment. The
proposed method identifies additional breakpoints of a signal
by finding points in time when the signal’s variance changes
significantly. The fitness of a breakpoint candidate bc to
separate a trip t ∈ RN into the left and right subsegments
σl and σr is defined as:

fitness(t, bc) := g(t[1 : bc], t[bc + 1 : N ])

g(σl, σr) := max(
V (σl)

2

V (σr)
,
V (σr)

2

V (σl)
)

where V is the variance. Evaluating fitness(t, bc) for different
bc along t returns a time series of fitness values, of which
local maxima indicate points in time where the variance of
t changes significantly. This fitness function is used in the
here proposed segmentation algorithm SEG-IP (Segmentation
Incorporating Priors, see Figure 1), that incorporates user-
given breakpoints, and looks for further breakpoints to finally
form a set of subsegments where each is more homogeneous
than the segment it origins from. Bt is the set of all breakpoints
{bi}i=1... of trip t and Σ(t, Bt) is the set of subsegments
{σi}i=1... of t formed by the enclosing breakpoints in Bt.
Even though the given breakpoints are probably biased, they
serve as borders defining restricted ranges which are searched
for subsegments. Figure 2 depicts the fitness functions for
different displacements of the two user-defined breakpoints

Algorithm 1 The algorithm SEG-IP (SEGmentation
Incorporating Prior user-given breakpoints) achieves
homogeneous subsegments of a trip
1: procedure SEG-IP(t, Bt)
2: B∗

t ← Bt . set of new breakpoints
3: F ← matrix(N, |Bt|)
4: for j ∈ 1 : |Bt| do
5: for i ∈ bj−1 : bj+1 do
6: F [i, j]← fitness(t[bj−1 : bj+1], i)
7: end for
8: add local maxima of F [., j] to B∗

t
9: end for

10: get and return Σ(t, B∗
t )

11: end procedure

Figure 2: (a) shows the same signal as Figure 1a. The black vertical
breakpoints (solid and dashed) in (a) relate to the fitness functions plotted
in (b), solid and dashed respectively. The vertical green lines in (b) indicate
the local maxima of the fitness functions to separate the segments into
subsegments. The green horizontal lines in (a) indicate the new subsegments.

within the range defined by the previous and next breakpoint.
The green vertical lines in Figure 2b indicate the local maxima,
which will be used as corrected breakpoints. The corrected
breakpoints enclose the new subsegments represented by green
horizontal lines in Figure 2a. SEG-IP results in a new sep-
aration of a trip Σ(t, B∗t ) and enables extracting features
from these subsegments, instead of using biased user-defined
segments. The example in Figure 1 is continued in Figure 3
showing (a) the new segmentation achieved by applying the
algorithm SEG-IP and (b) 3 auto correlation functions:

• The red highlighted part of the signal in (a) represents
the subway segment s2 corresponding to the user-given
segmentation, with the corresponding ACF in (b), also in
red. A repetition from Figure 1.

• σ2 (purple) is one of the subsegments that cause the bias
of the ACF of s2.

• σ4 (cyan) is the longest subsegment (and hence the most
important representative) of s2. The importance of a
subsegment in terms of influence onto the prediction
model will be discussed in Section III.

This exemplary trip (depicted in the Figures 1, 2 3) and the
comparison of the ACF for the noticeable segments and sub-
segments demonstrated that a biased segmentation – possibly
user-given – can cause features extracted from these segments
to be biased as well.
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Figure 3: How segmentation bias can affect the ACF. (a) shows the same
signal as Figure 1a with a focus on the second segment. (b) depicts the ACF
of S2 and the new subsegments σ2 and σ4.

III. SEGMENT123-CLASSIFIER

This section describes a classification model based on a
nearest medoid classifier (NMC) that we use in our expriments
in Section IV on a synthetic dataset and a real-world dataset to
evaluate the segmentation bias. The results as the evolution of
the results (the cluster medoids) of a NMC are easy to interpret
which is a key advantage over other classifiers (e.g. Neural
Network, SVM, Logistic Regression etc.) if ground truth data
is biased and so the interpretation of the results needs to reach
beyond a binary true-false discussion (see Figures 5 and 7).
The distance measure used for clustering and classification is
Dynamic Time Warping.

A. Why Dynamic Time Warping?

Dynamic time warping (DTW) [16] is an algorithm for
estimating similarity between two time series which possibly
vary in speed. By allowing the sequences to be warped
(compression and/or strain in time) similarities of shape inde-
pendent of non-linear variations in time can be found. Section
II made clear that such prudent walking signals mixed up
with non-walking signals lead to a bias towards a walking
pattern. To prevent such a mixup we apply DTW as similarity
measure to facilitate differentiating patterns of different labels
and joining similar patterns that are shifted in time within
the clustering algorithm. DTW returns a small distance value
for ACF that are slightly shifted, however have the same
pattern. Especially for patterns of walking segments this is
the case since the walking speed and step width differs from
person to person and day to day. In order to demonstrate that
we need the warping property in our application, consider
the ACFs of two walk signals in Figure 4 which are very
similar but slightly vary in speed. The Euclidean Distance
is not able to recognize the similarity between those two
time series. The distance between them is in the same order
of magnitude as the distance between each of them to the
zero line, which is a constant time series. In contrast, DTW
transforms the signals such that the similarity of the basic
pattern becomes obvious. Matching our intuition, the mutual
distance between the two walk signals is very small compared

to their distance to the zero-line. The calculated similarity
measures for the ACFs depicted in Figure 4 and their relations
to the 0-line as comparison are DTW (ACFa, ACFb)

DTW (ACFx, 0) ≈ 7
26 and

deuclid(ACFa, ACFb)
deuclid(ACFx, 0) ≈ 21

22 , where x ∈ {a, b}. Consequently
DTW is much more appropriate to assign small dissimilarity
values for similar walking patterns than the Euclidean distance.

Figure 4: Why the ACF is much more appropriate than the simple Euclidean
distance measure: (a) shows two ACF and the 1-1 relations of an Euclidean
distance calculation. (b) shows the same ACF with the DTW relations.

B. Segment-123 Algorithm
Since the chance of erroneous user input (also label noise,

which again leads to a bias in the classifier training) increases
with the length of a trip, we apply SEG-IP in an iteratively and
incrementally structured algorithm to facilitate the learning
of a robust classifier. The algorithm Segment123 (Algorithm
2) initializes with trips consisting of a single segment to
learn mostly clean features and continues iteratively with
trips having 2 segments, then 3 and so forth. For each label
the clustering is performed separately to learn label-specific
patterns. In each iteration step the prediction step follows the
clustering to define G, the ”good” subsegments (prediction
coincides with user-given label) of the clustered ones and those
of trips with one more segment. In turn for the next clustering
step only the good subsegments are clustered to neglect biased
patterns. The clustering method used is partitioning around
medoids (PAM [17]), which initializes with a set of medoids,
and assigns the data to the closest medoids. By iteratively
swapping non-medoids data with medoids the possibly best
choice of clusters and medoids is found. This algorithm has
two main advantages contrary to traditional k-means cluster-
ing. Firstly it is more robust against outliers, and secondly it
allows a similarity measure that does not fulfill the triangle
inequality, which is required in this case, since DTW does
not. The number of clusters is defined with the need of the
well known silhouette index [18] which puts into relation a
data points distance to its assigned cluster and its distance to
the other clusters. Some notation for algorithm Segment123:
• St is the set of all segments of trip t, S(T ) = {St|t ∈ T}.
• Sl(T ) is the set of segments ∈ S(T ) with label l.
• Σ(t) = {σ ∈ t}; Σ(T ), Σl(T ) are defined analogously.
• Ti = {t ∈ T : |St| = i} is the set of all trips having

i-many segments.
The algorithm Segment123 is applied on a set of trips T

with segments S and subsegments Σ to learn clusters, used in
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Algorithm 2 The algorithm Segment123 trains the S123-NMC
based on subsegments
1: procedure SEGMENT123(T, S,Σ)
2: nos← 1 . number of segments
3: G← Σ(Tnos) . initiate G, good subsamples
4: while Tnos 6= ∅ do
5: for l in L do . L = set of all labels
6: get Σl(G)
7: cluster Σl(G)
8: get cluster Medoids
9: end for

10: Σ∗ ← Σ(
⋃
j6nos+1 Tj)

11: for σ ∈ Σ∗ do
12: l̂σ ← label of closest Medoid . Prediction
13: end for
14: G← {σ ∈ Σ∗|l = l̂} . update G
15: nos← nos+ 1
16: end while
17: S123-NMC ← set of Medoids
18: return S123-NMC
19: end procedure

a NMC, called S123-NMC. That classifier in turn is used to
predict the labels of new time series.

IV. EXPERIMENTS

A. Evaluation Design

We test the classifier S123-NMC against a model without
prior breakpoint detection, employing the user-given segments
as they are, that is per label the segments are clustered by
the DTW distance of their ACF feature vectors. The cluster
medoids are predestined as representatives in a NMC, notated
as Segment-NMC (S-NMC). For the evaluation phase no user-
given breakpoints are assumed. So we adjust the algorithm
SEG-IP to a segmentation with no prior knowledge (SEG-
NP), where the fitness function is applied to a trip as sliding
window function. We set the window size to 1 minute which
is found to give a reasonable trade off between granularity
and the risk of selecting too wide windows where possibly
more information is lost by averaging. From the recorded trips
200 were drawn randomly and split into 100 for training the
classifiers and 100 for evaluation. This procedure was repeated
200 times and the results were aggregated. For the synthetic
case the procedure was repeated 20 times for five different
values of δ.

For each of the subsegments achieved from algorithm SEG-
NP the label is known. However, unlike to the training case,
here it is possible that a subsegment is not fully covered
of the real segment, because the user-given information is
excluded in the breakpoint detection. To predict a segments
label, the predicted labels of subsegments σ having a non-
empty intersect with the target segment s are aggregated by a
weighted majority voting, where the weight per σ is relative
to the length of its intersect with s. This means the bigger the
ratio |σ∩s||s| the more important σ is for the prediction of the
label of s.

B. Data

1) Synthetic Data: Each simulated trip consists between
1 to 5 labeled (l ∈ {A,B,C,D}) segments (N = 5000),

each simulated by an autoregressive (AR) process plus a zero
mean random component. Table I gives the corresponding AR-
coefficients and the standard deviation (sdar) of the error term.
In real-world data walking segments show a very characteristic
ACF, and moreover, each change between transport modes can
be assumed to involve walking, so that every second segment
can be assumed to be a walking segment. In order to generate
synthetic data with similar properties we select appropriate AR
coefficients for class A and ensure that every second segment
is of class A, beginning randomly with the first or second
segment. Further a segmentation bias is simulated by attaching
a vector of biased breakpoints to each trip. The breakpoint bias
is calculated as a Gaussian random variable with zero mean
and a standard deviation sdb to be varied for different scenarios
(sdb = |s| ·δ). The parameter δ varies in a range of 0.1 to 0.5.

Label: A B C D
AR1 0.9 0.99 0.5 0.2
AR2 -0.9 0 -0.5 0
sdar 2 1 0.5 0.5

Table I: Coefficients to simulate the synthetic AR processes

2) Real-World Accelerometer Data: The data used in this
study were collected in a smartphone assisted Prompted Recall
survey by 70 volunteers under realistic circumstances and
during normal daily activities during four months. The trips
were recorded with a logging app installed on the volunteers
private Android smartphones, which transmitted the data to
a server. No instructions were given on how to carry the
phone or which routes and transport modes to choose. The
collected data includes GPS positions sampled at 1Hz and
the readings of a 3D-accelerometer at 100Hz. Positions and
acceleration measurements are synchronized based on times-
tamps associated with each acceleration and position reading.
The participants manually segmented each trip and annotated
the transport mode used in each segment by accessing their
recorded trips via a web-application, where each trip was
displayed on a map. The participants indicated the changes
between different modes of transport either by choosing a
location on the map or by specifying a point in time. In
total 386 hours of trip data were collected with transport
mode shares given in Table II. For this study we only used
acceleration data of trip segments labeled as walk, car, bus,
tram, metro, or train, and we subsumed the latter three into
a common category ”rails”. A typical accelerometer sensor

WALK CAR BUS TRAM SUBWAY TRAIN
Hours 212 81 37 19 21 16

Number 1140 257 209 125 152 58

Table II: Amount of collected real-world trips

built in smart phones (or smart watches or similar wearables)
collects 3-dimensional signals (x,y,z). Preprocessing is nec-
essary to assign a measurement of any of the 3 axes to a
direction in the real-world, since the orientation of the device
is unknown. Since no information about additional sensors was
collected (as e.g. magnetometer or gyroscope which would
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increase the battery consumption [7]) the 3 dimensional time
series is projected to a 2-dimensional (horizontal, vertical)
as described in [7]. Estimating the gravity component (the
accelerometer sensor permanently measures the gravity force)
gives an ”anchor” vector which is known to direct to the
middle of the earth. Further the admission control is applied as
described in [10] to recognize device rotations, which supports
the gravity component estimation.

C. Results

1) Synthetic Data: In the following we compare the two
models (S-NMC the model learned based on the user-given
segments, and S123-NMC learned on subsegments with algo-
rithm Segment123) on synthetic data. The confusion matrices
in Tables III and IV average the results (so these are not
integers) of all random draws and give an overview of the
simulated and predicted labels to demonstrate how S123-NMC
outperforms S-NMC. Especially the mixup with category A
for the S-NMC is due to biased feature learning. S123-NMC
compensates this bias mostly, which is consistent with the
example in the Figures 1, 2 and 3.

The number of found clusters varies per label and random
draw in the range between 2-6. Figure 5 depicts the learned
medoids of the two classifiers (S-NMC in the upper row (a)
and S123-NMC in the lower row (b)) for a single random
draw with δ = 0.5 (for this draw 2-3 clusters were found per
label). Here the evolution of the simulated segmentation bias
finds its final state in affecting the cluster representatives of the
NMCs. It can be seen that for S-NMC the typical pattern of A
(resembling a walking pattern) biases the clusters of the other
labels, whereas the new segmentation helps to filter out this
bias for learning the medoids for S123-NMC. The red dashed
lines represent the theoretical ACF corresponding to the values
of Table I, which are matched closely by the learned medoids
of S123-NMC.

To analyze the effect of the degree of a segmentation bias
the parameter δ was varied in a range of 0.1 to 0.5, where
for each value 20 different synthetic datasets were simulated.
Figure 6 gives the aggregated performance measures for both
models in terms of the Fscore1 [19]. Of course the models
perform better the smaller δ but also the differences of the
models’ Fscores increase with higher δ (5% difference of the
Fscores for δ = 0.1 and 17% for δ = 0.5).

Simulation
A B C D

Pr
ed

ic
tio

n A 70.0 11.5 0.7 0.8
B 19.1 46.5 0.0 0.0
C 48.3 0.0 61.8 1.1
D 46.6 0.0 0.5 58.1

Table III: Confusion matrix for
model S-NMC

Simulation
A B C D

A 152.3 4.6 1.9 5.0
B 22.2 53.1 0.0 0.0
C 5.4 0.2 61.1 0.0
D 4.1 0.1 0.0 55.0

Table IV: Confusion matrix for
model S123-NMC

1The Recall is the average of the share of correct predictions relative to
the number of observations per label, and the Precision is the average of the
share of correct predictions relative to the number all predictions per label.
The overall measure of performance is the Fscore, which is the harmonic
mean of Recall and Precision.

Figure 5: Medoids of the two NMC Models for Synthetic Data for one of
the random draws with a δ of 0.5. The red dashed lines are the theoretic ACF
of the simulations.

Figure 6: Results of simulated data sets, 20 runs for each δ

2) Real-World Data: Tables (V to VII) provide details how
the proposed method S123-NMC outperforms S-NMC and
show that the Fscore improves contrary to the baseline model.
As in the synthetic case the learned features from the two
classifiers differ significantly. Figure 7 depicts the medoids
of the two classifiers (in the upper row (a) S-NMC and in
the lower row (b) S123-NMC). One can recognize that in (a)
the typical walking pattern of high frequency and magnitude
biases the ACF of car, bus and rail (the 1st medoids per label,
in green). However in (b) this bias is vanished. Another biased
feature vector is the third medoid of walk (blue line in (a)) that
is probably learned falsely from a mixup of walk and rail. This
bias is also corrected in (b), that is the algorithm Segment123
did not learn this feature vector to be a representative for walk.

Model Precision Recall Fscore
S123-NMC 0.48 0.50 0.49
S-NMC 0.46 0.47 0.46

Table V: Comparison of results for real-world data

User-Input
W B C R

Pr
ed

ic
tio

n WALK 42.0 0.6 0.4 3.1
CAR 4.3 18.6 3.4 2.5
BUS 8.6 13.5 3.7 2.4

RAIL 3.4 1.0 0.6 1.6

Table VI: Confusion matrix for
model S-NMC

User-Input
W B C R

W 44.3 0.4 0.4 3.6
C 4.2 20.3 3.5 2.4
B 4.1 10.8 3.3 1.4
R 5.7 2.2 0.9 2.1

Table VII: Confusion matrix for
model S123-NMC

Precision and Recall for the real-world dataset are fairly low.
However, these figure express performance in relation to a
ground dataset, and we do not have knowledge about the actual
ground truth data. Instead, the reference data are biased due to
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Figure 7: Medoids of the two NMC Models for real-world data for one of
the random draws.

erroneous user input. Achieving a high level of performance is
hardly possible in case of extensively biased segments, where
the most important representative subsegments have different
ground truth labels than the users stated. Imagine a trip as
given in Figure 3 with a subway trip so short such that the
subsegment σ4 is shorter than the sum of the enclosing biasing
subsegments. The label of the subway segment s2 would then
be impossible to predict correct due to the extensive bias.
Tables VI and VII must be therefore interpreted with care. In
addition, we want to stress that in relation to other approaches
in the literature our approach does not use location data and
relies only on accelerometer readings.

Nevertheless we proved our method to learn cluster medoids
– based on the homogeneous subsegments – that are revised
from a bias introduced by false segmentation (Figure 7).
Therefore employing the proposed method in data collection
applications will improve the classification performance as
proven for the synthetic case.

V. CONCLUSION

This paper showed that training a classification model for
transport mode recognition with noisy ground truth data ob-
tained from raw user input can adversely impact the classifier’s
performance. In particular we showed that aside from label
noise, another reason for this phenomenon is segmentation
bias: inaccurate segmentation of the trip into segments. We
proposed a method to correct user-supplied breakpoints by
identifying changes in the signal’s variance to increase the
homogeneity within each trip segment. We showed experi-
mentally with both synthetic and real-world data, that applying
the proposed method reduces segmentation bias, resulting in
better separability between the modeled classes and improved
classification performance.

The proposed method for segmentation correction can be
incorporated in machine learning models to improve the per-
formance of activity recognition models and transport mode
classifiers by providing more homogeneous data for both
model calibration and prediction.

For future work we plan to collect real ground truth data
in a more elaborated setup with researchers having a genuine
interest in data quality who will indicate breakpoints between
travel modes during travel. This will resolve the issue of

erroneous ground truth data collected by survey respondents
and provide more realistic performance measures. Data fusion
methods will be developed to learn both from the real world
dataset used in this paper and the newly collected dataset. Fur-
ther we will focus on entangling the breakpoint detection and
clustering steps to investigate possibly iterative improvements
in homogeneity of the single segments and the clusters.
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Abstract—Detection of similar representations of a given query
time series within longer time series is an important task
in many applications such as finance, activity research, text
mining and many more. Identifying time warped instances of
different lengths but similar shape within longer time series
is still a difficult problem. We propose the novel Caterpillar
algorithm which fuses the advantages of Dynamic Time Warping
(DTW) and the Minimum Description Length (MDL) principle
to move a sliding window in a crawling-like way into the future
and past of a time series. To demonstrate the wide field of
application and validity, we compare our method against state-
of-the-art methods on accelerometer time series and synthetic
random walks. Our experiments demonstrate that Caterpillar
outperforms the comparison methods in detecting accelerometer
signals of metro stops.

Index Terms—Minimum Description Length, Dynamic Time
Warping, Accelerometer Data

I. INTRODUCTION

Time series data are ubiquitous across many fields such as
finance, medicine and activity research. Figure 1a shows an
example of a time series, illustrating the accelerometer signal
recorded by a person traveling on a metro while carrying a
smartphone. Intuitively, the red colored segments resemble
the given query pattern in Figure 1b, which represents a
typical braking-stopping-accelerating sequence at a metro stop.
Further it is obvious that in between the stations the signal has
a high variation and follows no distinct pattern. However, it
is difficult to detect these vertically shifted and time warped
instances of the query pattern.

We propose a novel technique solving the above prob-
lem and with (1) a novel modeling approach combining the
Dynamic Time Warping (DTW) and Minimum Description
Length (MDL) principle and (2) a novel algorithm – the
Caterpillar – efficiently detecting time warped fits of model
time series within longer time series. The proposed model
encodes a time series conditionally on a time warped repre-
sentation. Using simple matrix transformations the algorithm
moves a sliding window, similar to a caterpillar extending and
contracting to crawl. Figure 1a illustrates the detected metro
stops of different time extension (red numbers) and vertical
scale.

When comparing two time series, the length of the query
pattern and the time extension of typical shapes often vary,

Figure 1: Horizontal accelerometer signal component of a
person traveling on a metro while carrying a smartphone. In (a)
the Caterpillar algorithm detected the red colored time warped
(duration in seconds is plotted) and vertically shifted instances
of the query pattern in (b). In (c) the fits found by the baseline
method UCR Suite DTW and the respective distances, and the
equivalent for UCR Suite US in (d).

such as the duration of the stop or braking in the metro
smartphone example above. In many cases it is therefore
crucial to consider varying length and time extension when se-
lecting an appropriate distance measure for time series analysis
tasks such as pattern detection, classification and clustering.
Common distance measures between time series include Eu-
clidean distance, Fréchet distance, SAX [13], Uniform Scaling
(US) [15], edit distances, Dynamic Time Warping (DTW) [17],
and many more. DTW allows a non-linear alignment of two
time series and can thus match them in case of similar shape,
yet different time extensions.

Time series data analysis often boils down to the binary
question of whether a given time series sample fits to a query
time series or not. Traditionally, any distance measure requires
setting a threshold parameter. The threshold parameter value is
crucial, yet difficult to identify, and in general heavily affects
the analysis results. UCR Suite [15] (applying DTW or US) is
the state-of-the-art method for scanning longer a time series to
detect a query pattern. Given the set of distances to the query
pattern of the fits detected by UCR Suite, it is hard to identify
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a suitable threshold. Figure 1c and Fig. 1d show the result of
matching the query pattern of Figure 1b using UCR Suite with
DTW and US distances, respectively. The first segment starting
at second 0 with a DTW distance of 6 obviously resembles the
query pattern, and the one starting at second 430 with a lower
DTW distance clearly not. The same applies to the detected
segments and their US distances in Fig 1d starting at second
0 and 130 (more details in Sec. V-C).

The MDL principle is a promising tool which does not
require identifying such sensitive distance parameter values,
and can be considered as a formalization of Occam’s Razor.
The main idea is that the best model for a given data set
will be the model achieving the highest data compression
rate. MDL has been applied in many fields so far (e.g.
bioinformatics [20], text mining [5], etc.) for model selection
and also for time series analysis [2], [21], [7], [16], [22]. Yet it
is still an ongoing process to investigate the potential of MDL
for time series analysis. To the best of our knowledge there
exists no similar approach combining entropy based MDL
and DTW, thus avoiding parameter value setting for distances.

Our main contributions are:
• A novel encoding scheme fusing the MDL principle and

DTW to match time warped time series.
• The novel Caterpillar algorithm matching time series in

the future and the past to find the best alignment.
• Extensive experiments demonstrate broad applicability on

accelerometer time series and synthetic data.
We denote a univariate time series as x ..= {xi}i=1...m and

repeat the definition of the well known Euclidean distance for
two time series x and h of same length as:

√∑
(xi − hi)2.

This paper is organized as follows: The next section dis-
cusses different stepwise calculations of DTW. Section III pro-
poses the MDL encoding scheme for time series of different
lengths that is applied in the Caterpillar algorithm presented
in Sec. IV. Section V demonstrates the broad applicability of
our method by extensive experiments before we discuss our
method in the context of related work in Sec. VI.

II. FAST STEPWISE DTW CALCULATION

The Euclidean distance is not well suited to recognize
distorted patterns along the time axis in time series, since it re-
quires a 1-1 alignment between an entry of x and a single entry
of h. The work in [17] introduced the Dynamic Time Warping
(DTW) distance to find non-linear alignments between time
series of possibly different lengths. To calculate the DTW we
define the matrix of differences Δ, (Δij = xi − hj) and the
cost matrix C (Cij = |Δij |). The cumulative global cost matrix
G is calculated as follows:

Gi,j =





∑
k≤i Ck,1 j = 1∑
l≤j C1,l i = 1

Ci,j +min(Gi−1,j , Gi,j−1, Gi−1,j−1) i, j > 1

(1)

with Gnm being the DTW distance measure. The matrix
G is calculated simultaneously with the direction matrix D,

Dij ∈ {1, 2, 3}. Each element of D represents which step is
cheapest to take next, either diagonal (1), horizontal (2) or
vertical (3). The warping path ω is an excerpt of D and is the
vector of steps (diagonal, vertical, horizontal) taken to find
the cheapest path from Gnm back to G11 to align the two
time series x and h with the lowest cumulative costs. The
difference path δ is an excerpt of Δ, and constitutes the vector
of differences of the elements of x and h that are aligned to
each other as described by ω. Finally, to represent x by a
given h, we require information about the deviations (δ) and
the alignment (ω) of the time series. Figures 2a-c illustrate the
defined matrices and vectors for a simple example.

A. In-/Decremental DTW

Given the result of DTW (x,h) for h and x = {xi}i=1...m,
suppose new observations are appended at the end of x
denoted as x+ = {xi}i=1...m+k. To calculate DTW (x+,h) we
can append the cumulative costs of new observations according
to (1) to the already computed G and receive G+. Figure 2d
shows the incremental step to include a further observation of
x, 7 to the alignment to h.

The opposite of the incremental step is to omit potentially
irrelevant observations at the end of x and recalculate the DTW
distance given the results of the complete case. The matrices
Δ, C and G can be updated directly by omitting the respective
columns at the end. Figure 2e shows the decremental step to
exclude the final observation of x, 7 from the alignment to h.

Figure 2: DTW computation: Based on Δ (a) the matrix G (b)
and D (c) are computed in parallel. Next the paths ω (c) and
δ (a) are extracted from the respective matrices by tracking
back the given steps in D. Also the incremental inclusion (d)
of a new observation of x, 7 (e) the decremental exclusion of
the last element, 7 and (f) the reverse-decremental exclusion
of the first element, 1.

B. Reverse In-/Decremental DTW

In-/decremental steps allow to react to alterations of the
end of x. Can we do the same for alterations at the initial
observations of x? The answer is no, because the basic
structure of the DTW algorithm and the dynamic calculation
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of G does not allow to alter, add or omit observations at the
beginning (initial/past values of x) without changing the entire
global cost matrix. However [1] proved the DTW distance
calculation to be reversible: DTW (x,h) = DTW (←−x ,←−h ),
where ←−x is x in reverse order: ←−x ..= x(m : 1). We apply
this principle and proceed analogously to the incremental
(decremental) step to finally add (omit) initial values of x.
Figure 2f depicts the reverse time series after omitting 7. To
exclude the first element of x, 1 we calculate DTW (←−x ,←−h ).
The main advantage of the reverse-in-/decremental calculation
becomes evident when comparing results of adding or omitting
more than one initial element of x. Since for each step after
the initial step, the results from the previous calculation can be
recycled analogously to the in-/decremental DTW calculation,
again computation time can be saved (details in section IV-E).

C. Vector based Dynamic Time Warping Implementation

If one is interested in only the DTW distance measure and
not in the alignment, one can save computation time by not
allocating the matrices D, C and G for the DTW calculation.
Since the calculation of the j-th column of G, G.,j only
depends on G.,j−1, instead of allocating a new vector, the
vector storing information of G.,j−2 is overwritten with G.,j .
Incremental calculations for new observations are possible as
well, as long as the previously calculated vector G.,m is saved.
For decremental calculations we allocate an additional vector
that stores the last entries of each column, Gn,..

We stress this calculation principle (also implemented in
the R packages IncDTW [11] and rucrdtw [15] that we also
apply) since we apply it for the fusion of DTW and MDL in
Sec. IV-D.

III. DTW-BASED DESCRIPTION LENGTH

To apply the MDL principle we first normalize and dis-
cretize a time series x0 and define the discrete time series x,
∀j ∈ 1 . . .m (also done in e.g. [16], [2], [7], [21], [22]) as:

xj ..= round
( x0j −min

max−min
· 2b − 1

)
+ 1. (2)

min and max are the minimum and maximum values of x0.
For discretization of a set of time series, min and max are
replaced by global equivalents. The value of b is set to 6 which
hardly affects the accuracy of common time series analysis
tasks (such as clustering or classification) as discussed in [16].

A. Conditional Description Length

We define the number of required bits to encode a time
series of length m as the description length:

DL(x) = −
m∑

i=1

log2
(
P (xi)

)
, (3)

where P is the probability function, discussed in detail in
Sec. III-B. We apply the two part MDL principle to describe
the conditional description length and estimate the description
length by the entropy of the time series. According to Krafts
inequality, the length of any lossless code is lower bounded

by the entropy. In case the hypothesis h and x are of the same
length, the code length of x conditional on the hypothesis h
is defined similar to their Euclidean distance (in the following
called E-model):

DL(x,h) ..= DL(h) +DL(x | h) = DL(h) +DL(x− h).
(4)

We call DL(x,h) from (4) the conditional description length
(CDL) of x given h according to the E-model. For time
series of different lengths and/or different extensions in time of
typical patterns, we propose to incorporate the DTW algorithm
into the MDL principle. As discussed in Sec. II, the DTW
algorithm not only calculates the DTW distance measure, but
also the warping path ω and the path of differences δ. We use
these components to incorporate the main advantage of DTW
allowing non-linear alignments of time series of different
lengths and define the DL for x conditional on h (and call
it DTW-model):

DL(x,h) ..= DL(h) +DL(x | h)
DL(x | h) ..= DL(δ) +DL(ω) = DL(δ) + |ω|dlog2 3e.

(5)

Comparing (4) and (5), DL(x−h) is the equivalent of DL(δ).
The additional warping costs DL(ω) trade off the possibly
lower DL of differences due to non-linear alignments. As every
direction in the path is about equally frequent, we use 2 bits
to encode each element.

Given a set of time series X and a hypothesis h, a time series
x is a candidate-match if DL(x) > DL(x|h). If the sum of
the saved costs for all candidate-matches is larger than DL(h),
then the hypothesis h is accepted and the candidate-matches
are considered as true matches. Otherwise it is cheaper to
describe candidate-matches unconditionally.

In general, two time series to be compared are not of the
same length. Furthermore, depending on the application, it
might be preferable not to match the entire time series x to
a given hypothesis h, but to consider only a segment of x as
a valid match to h. Since the logarithm is additive we can
easily split a time series x(1 : m) into disjunct segments and
describe different segments independently from each other,
either unconditionally or conditionally to h. If multiple fits are
found, the saved DL is the difference between DL(x) and the
sum of encoding costs for the conditional and unconditional
segments. For lossless compression, we also need to encode
the information of the starting indices, ι of the detected
candidate fits. The index costs are defined as:

DL(indices) ..=
∑

i≥1

dlog2(m− ξi−1)e,

where ξ0 = 0. The index costs for the second fit are smaller
than those of the previous, since we make use of ι2 > ξ1. If
DL(indices) is bigger than the saved DL, the candidate fits
are discarded.

B. Probability Density Function

The applied probability density function (PDF) in (3) is
supposed to be as general as possible and applicable in many
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(a) DL for 1-1 alignment (b) DL for non-linear alignment

Figure 3: DL of differences: Logarithms of the estimated
Probability functions.

different domains and at the same time provide valid approx-
imations of the intrinsic PDFs. In contrast to the approaches
of [16], [22], we apply global PDFs for our models instead of
estimating P directly from each time series segment, since
we intensively stress the additivity of the CDL. In the
following we describe how we selected the PDF and Sec. V
will demonstrate the broad field of application for our choice.
We choose to apply a uniform PDF for the unconditional DL,
so that DL(x) = |x| · b = |x| · 6. This way the DL depends
only on the length of a time series and not on its values, which
implicates that the decision if x is described best by h depends
only on the differences and not on the values of x itself.

Further we apply different PDFs for linear 1-1 alignments of
time series of same lengths and non-linear alignments of time
series of possibly unequal lengths. For the E-model (4) we
simulate 1000 couples of random walks (x, h, each of length
= 106) independent from each other, discretize them and count
the occurrences of the difference vectors (x−h). For the DTW-
model (5) we generate 1000 couples of random walks (x, h)
independent from each other. The length m of x is chosen ran-
domly between 100 and 1000, and the length n of h is drawn
randomly out of the interval [0.5·m, . . . 2·m]. This dependency
between the lengths avoids unreasonable combinations. We
then calculate DTW and the path of differences δ and count
the frequencies per possible value. Figure 3 shows the negative
logarithms (DL for a single element of difference) of the two
populations. The non-linear alignment clearly causes a higher
density – equivalent to lower encoding costs – around 0 than
the linear 1-1 alignment.

IV. CATERPILLAR

Given two time series x and h of length m and n, with
m > n, we want to scan the longer time series x to recognize
possibly warped instances of the hypothesis-pattern h as part
of it. Before proposing our method – the Caterpillar algorithm
– we mention the baseline approach (inspired by [16] and
adapted here by applying a global P instead of segmentwise
since we make use of the additivity of the DL) applying the E-
model from (4) and denote it as PREMDL (Pattern recognition
by Euclidean distance and the MDL). For each index i ∈
1 . . .m− n, we calculate DL(x(i : i+ n),h) and evaluate if
the following two conditions ∀j ∈ {i− n, . . . , i+ n} hold to

find a match.
DL(x(i : i+ n), h) < DL(x(i : i+ n))

DL(x(i : i+ n), h) < DL(x(j : j + n),h).
A. The Caterpillar Algorithm

We propose the following Caterpillar algorithm to scan
a longer time series x to detect a warped instance of h.
Given a couple of starting indices ι (lower) and ξ (upper) the
Caterpillar algorithm performs one of the following movement
steps:

• Forward: Increase ξ: ξ+ > ξ; evaluate DL(x(ι : ξ+),h)
• Back up: Decrease ξ: ξ− ≤ ξ; evaluate DL(x(ι : ξ−),h)
• Catch up: Increase ι: ι+ ≥ ι; evaluate DL(x(ι+ : ξ),h)
• Backward: Decr. ι: ι− < ι; evaluate DL(x(ι− : ξ),h).

The CDL is calculated according to the DTW-model (5). These
4 steps enable the algorithm to move the scanning window
(ι : ξ) along h similarly to a caterpillar that is extending to
move forward or backward, and can also contract its front to
back up, or its back to catch up.

Each of the movement steps requires to compute the DTW.
To save computation time we calculate the DTW according
to the computation methods proposed in Sec. II: incremental
for forward, decremental for back up, reverse-decremental for
catch up, and reverse-incremental for backward. Figures 2d-f
give examples for the respective calculations. Finally a match
is found if:

DL(x(ι : ξ) | h) < DL(x(ι : ξ)). (6)

Algorithm 1 gives details on how these movements help the
Caterpillar algorithm to detect warped patterns similar to h
in x. Figures 4a-d depict the iterative movements of the
Caterpillar for a simple example. The Caterpillar also helps to
decide whether two time series should be matched completely
(Fig. 4b), or rather partially (Fig. 4d).

B. Find initial lower index ι
Because of the additivity of the DL definition we can initiate

the Caterpillar algorithm in parallel on different initial indices
ι. To find initials for the Caterpillar algorithm we apply the
PREMDL algorithm. The first index of a found match is
selected to be an initial lower index ι. Depending on the
application, the proposed algorithms can also detect matches
in x of the same shape as h, however vertically shifted for a
fixed shift α (compare 6):

DL(x(ι : ξ),h + α) +DL(α) < DL(x(ι : ξ)). (7)

For a given index ι we define α implicitly when the PREMDL
algorithm calculates DL(d) where d = x(ι : ι + n) − h. We
define α ..= mean(d).

C. Lower Bound for CDL: Find initial upper index ξ
In case |h| = n > m = |x| we estimate a lower bound for

the CDL for a complete match (x is matched from begin to
end to h):

DL(x,h) = DL(ω) +DL(δ) +DL(h) ≥ DL(ω) +DL(δ)

≥ |ω| · dlog2 3e − |δ| · log2 p(0) ≥ n(2− log2 p(0))
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The first inequality follows from omitting the costs for the
hypothesis, which is certainly positive. Also, in case of many
matches, the costs are not considered for the calculation of a
single match. The second inequality holds, since we suppose
the PDF for the warping path to be uniform and the cheapest
path for the differences is the one of zeros. The third inequality
holds, since the shortest warping path is the one with equal
length as the longer time series, h. So we can combine:

DL(x) = 6m
?
≤ n(2− log2 p(0)) ≤ DL(x | h) (8)

As long as inequality (8) holds no CDL for the combination
of x and h needs to be calculated. In case of the proposed
distributions of Fig. 3b we abandon calculations as long as
m ≤ n 1

6 (2− log2 p(0)) ≈ n · 0.73. Finally we use this lower
bound to determine the initial extension of the Caterpillar, the
initial index ξ (which is also the minimum extension of the
Caterpillar) for a given ι, respectively:

µ ..= 0.73 · n+ ι. (9)

If x is much longer than h, nly a segment of the time series
(y) is matched to the hypothesis and the remaining segment (z
) that is described unconditionally. The just derived estimation
of the lower bound holds also for this case, since:

DL(x) = DL(yi) +DL(zi)
?
≤ DL(yi | h) +DL(zi)

⇐⇒ DL(yi)
?
≤ DL(yi | h)

(10)

Due to the additivity of the DL , it does not matter how long
the time series x is. The lower bound estimation only depends
on the segment to be matched , y.

D. Accelerate The Caterpillar

According to the DTW-model (5), the DL is determined by
these two steps:

1 calculate the DTW, and
2 determine the DL on top of the results of step 1.

We fuse these two components to enhance the DTW-model and
the Caterpillar algorithm. That is, the DL is used to define the
cost matrix C for the DTW algorithm. In detail:

Ci,j
..= DL(xi − hj) = − log2 P (xi − hj) (11)

Then C is used as input for the DTW algorithm to calculate
G as usual and the calculated DTW distance equals DL(δ). To
take care of the additional costs for the warping path, we could
trace back G to get the warping path ω. However, since we
are only interested in the costs of warping, but not ω itself, we
skip the interim stage of calculating ω and add the warping
costs in the calculation of the global cost matrix. This way
we save computation time by not backtracking the global cost
matrix to find the warping path. We define the global cost
matrix as follows (compare 1):

Gi,j =





∑
k≤i Ck,1 + i · 2 j = 1∑
l≤j C1,l + j · 2 i = 1

Ci,j + 2 +min(Gi−1,j , Gi,j−1, Gi−1,j−1) i, j > 1

(12)

We call the DL(x, h) calculated by the DTW distance between
x and h based on (11) and (12) the fusion-DTW-model
(fDTW-model).

Since we are not interested in G itself, but only the last entry
in the last row, we apply the principle of the vector based DTW
implementation II-C and additionally save the last column for
incremental steps and the last row for decremental steps.

Algorithm 1 sketches the Caterpillar algorithm. As long as
the end (ξmax) is not reached and one of the four movements
achieves to decrease the CDL, the Caterpillar moves. Each
forward while loop increases ξ until the CDL increases. Then
the back up step potentially decreases ξ in case the last forward
step was too far and the current CDL value is below the DL(x).
Next, if no catch up has been performed yet, the Caterpillar
has the option to move backward until the start is reached
(ιmin) or the CDL increases. Finally, the Caterpillar catches
up. Without any prior knowledge, we set the initial indices
ιmin = ι = 1, ξmax = |x| (or restrict them by neighboring
initials, respectively) and ξ = µ (see 9).

Algorithm 1 Caterpillar
1: PREMDL defines the tuples (ι, ξ, ιmin, ξmax)
2: for each tuple call Caterpillar:
3: procedure CATERPILLAR(x, h, ι, ξ, ιmin, ξmax)
4: CatchUpSuccess ← FALSE
5: CDL← DL(x)
6: while ξ < ξmax ∧ CDL↘ do . as long as CDL decreases
7: repeat
8: (CDL, ι, ξ)← Forward(ι, ξ) . increase ξ to decrease CDL
9: until ξ = ξmax ∨ CDL↗

10: if CDL < DL(x) then
11: (CDL, ι, ξ)← BackUp (ι, ξ) . decrease ξ to decrease CDL
12: end if
13: if !CatchUpSuccess then
14: repeat
15: (CDL, ι, ξ)← Backward (ι, ξ) . decrease ι to decrease

CDL
16: until ι = ιmin ∨ CDL↗
17: end if
18: (CDL, ι, ξ)← CatchUp (ι, ξ) . increase ι to decrease CDL
19: if CatchUp successful then
20: CatchUpSuccess ← TRUE
21: end if
22: end while
23: return (ι, ξ) . return the indices of smallest CDL
24: end procedure

Fusing DTW and MDL (12) saves computation time by
omitting the backtracking step to find the warping path, and
enables fast versions of the two Caterpillar movements: back
up step and catch up step. To find the optimal index, we
compare all possible values since these are stored in the
already computed vectors storing information of the last row
and last column of the global cost matrix. In detail:

a) Back Up: G is already computed1 for x(ι : ξ) and
h(1 : n) = h, and w.l.o.g say ι = 1. Suppose the last
forward movement of the Caterpillar increases the total costs.
To evaluate possible back up step widths j ∈ {0, . . . ξ − µ},
we compare G(n, ι − ξ + 1 − j) + 6j = G(n, ξ − j) + 6j.

1Actually we never compute the whole matrix G, but only the last column
and row, but for simplicity we stick to this notation.
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Figure 4: The Caterpillar: After the initial alignment (a) the
forward movement concludes in the complete matching (b).
Backing up helps to exclude the final 3 observations of x (c),
and finally the catch up in (d) shows the best alignment.

In Fig. 4a the Caterpillar algorithm first aligns the time series
x and h for the indices ι = 1 and ξ = ι + 0.73 · n. Next the
Caterpillar moves forward until ξ = m, so the end is reached
(Fig. 4b), before it decides to back up three steps (j = 3) and
represent the last three elements of x unconditionally (Fig. 4c).

b) Backward/ Catch Up: To evaluate possible catch up
and backward steps, we calculate DTW (←−x ,←−h ). Then we
evaluate possible back up step widths for the reverse time
series ←−x and

←−
h – which is equivalent to the catch up of the

original time series x and h – by comparing the last row of←−G
analogously to the back up step of x and h. Further we can
evaluate possible backward steps in parallel to the catch up
step by calculating an incremental step of ←−G and comparing
the last row. In Fig. 4d the Caterpillar algorithm decides to
catch up and excludes the initial 5 observations of x from
alignment to h and finally concludes with the optimal fit.

E. Complexity

The runtime complexity of the E-model and fDTW-model
are identical to the calculation of the Euclidean distance O(m),
DTW distance O(n · m), respectively. One forward step of
the Caterpillar algorithm has O(n) complexity which is much
less than computing it again from scratch at the costs of O(n ·
(m + 1)). The decremental movement has O((1 − 0.73) · n)
complexity according to (9). The same is valid for the reverse
movements (except for the initial reverse movements).

V. RESULTS

To demonstrate that our proposed method detects time
warped instances of a hypothesis time series h, we compare
(1) the proposed encoding scheme isolated from scanning
algorithms with traditional distance based methods and similar
state of the art encoding schemes for linear and non-linear
alignments on synthetic data (Sections V-A and (2) the
Caterpillar, PREMDL and UCR Suite [15] on synthetic data
and accelerometer data (Sections V-B and V-C).

Our comparative evaluation includes two additional models
from the literature which describe a time series’ DL and CDL
based only on the cardinality c of a time series. The first
model introduced by [2] defines DL(x | h) by counting the
mismatches of x and h, and for each mismatch the costs for
one observation plus the index costs are saved (we call it C-
Model). The second additional model proposed by [21] is an

extension of the C-Model for time series of possibly different
lengths by incorporating DTW and the coding scheme of [2].
They propose to count the mismatches of x and h along the
warping path of these two time series (we call it cDTW-
Model). Both models depend on the number of mismatches,
however are independent of the magnitude of the mismatches.

Since the Caterpillar scans longer time series to detect
shorter query patterns, we compare the Caterpillar against
this task’s state-of-the-art method UCR Suite [15] (applying
DTW or US). UCR Suite compares a given query pattern with
segments of the same length of a longer time series via a
sliding window approach. The DTW distance is calculated
for each comparison (unless lower bounding avoids it), and
early abandoning aborts the calculation. The original algorithm
returns the segment with the lowest DTW distance and the
distance itself. We apply UCR Suite multiple times to return
multiple fits in time series (see Figures 1c and d). UCR
Suite US is a combination of pruning and lower bounding
techniques to accelerate calculations and a generalization of
the Euclidean Distance – Uniform Scaling – such that fits of
different lengths (we allowed scaling factors between 0.5 and
2) can be detected.

For runtime comparisons we used a standard laptop com-
puter with 2.8 GHz and 16GB RAM.

A. Determine Matches in Synthetic Time Series

To investigate under which conditions our proposed model
fDTW and others perform best, we test them independently
from heuristic pattern matching algorithms, that is we only
compare complete alignments of two time series x and h for
models incorporating DTW and selected the lowest CDL for
linear alignments (which is similar to PREMDL). With the
help of the MDL framework we decide if two time series are
either ’not close’ or ’close’ and assign them to each other. For
traditional DTW and UCR Suite we need to set a threshold
that separates ’not close’ from ’close’. We simulate couples
of discretized N(0,1) Markov Chain random walk time series
(x, h), where x0 = 0, xi = xi−1 + z and z ∼ N(0, 1).
The hypothesis h is either independently simulated from x,
or simulated as a noisy and warped instance of x. We varied
the simulation parameters of n = |h|, σ = standard deviation
of the overlaid noise and the amount of warp. In this synthetic
case, we do not consider the costs of the hypothesis, since the
models are supposed to be applied to find multiple matches
to one hypothesis. The costs of each hypothesis would be
compared to the total savings of all found fits per hypothesis.

Figure 5: F-scores per model and threshold for detecting
whether two time series are similar or not.
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Figure 5 shows different models and the according F-scores
of the classification task whether one x matches the according
h or not. The Caterpillar (the fDTW-model respectively)
performs almost as good as a classifier applying DTW and
setting the best threshold (DTWz performs z-normalisation
before the distance calculation). The low levels of the F1-
scores of PREMDL and the cardinality based models – C-
model [2] and cDTW-model [21] – are due to a low recall. The
models UCR Suite DTW [15], PREMDL and C-Model cannot
fit time series of different lengths, so they scan the longer
time series for the best fit. Figure 6 plots the F-scores per

Figure 6: F-scores per model and degree of warping for
complete alignments of synthetic time series

amount of time warp. For the methods requiring identifying a
distance threshold we set the threshold equal to values showing
best performance in Fig. 5. In case of no time warp, the
PREMDL performs best, however already at a low level of
10% warping the performance drops from 96% to 72%. As
expected, the models relying on DTW perform much better
with F1-scores above 90%, however the cDTW-model cannot
compete with DTW, Suite DTW and the Caterpillar. The C-
Model does not identify any matches in case of warped time
series, leading to F1-scores of NaN, due to division by 0.
The Caterpillar performs almost as good as the basic DTW
(with the best threshold set) with F1-scores between 90% and
96%. The performance of UCR Suite US is indendent from
the warping extend which is because the nature of US. The
accepted percentage of time warp certainly depends on the
application. As Figure 1 demonstrates a warping to the extent
of 56% (= 28/50 sec) is reasonable.

B. Scan for multiple Matches in Synthetic Time Series

We simulate x as a concatenation of multiple warped and
noisy instances of h and noise-like random walks. Since
we know the points in time when the patterns start and
end, we evaluate the techniques by counting mismatches and
measuring the relative distances of detected fits to their ground
truth instance. Figure. 7 and Fig. 8 show the performance and
computation time. The Caterpillar (8.7% deviation and 6.7%
misses) outperforms the other methods, where PREMDL is
the second best (23.2% deviation and 18.5% misses).

Since UCR Suite is designed to find the (single) segment
in a long time series best matching a given query pattern, we
need to invoke it multiple times to find multiple fits. It must
be stressed that UCR Suite (DTW and US) could be much
faster for finding multiple fits if it were adapted to detect the k
nearest segments instead of one, or alternatively all fits beyond
a predefined threshold. However, such an adaption still would

Figure 7: Errors for finding multiple fits in synthetic data

leave the open question of identifying suitable parameters.
In addition, while the computation time would be lower, the
found fits would be the same. We leave it for future work to
test computation times of such a non-trivial adapted version
of UCR Suite. Caterpillar is the most accurate method for
accurately detecting multiple fits and their extensions. The
cDTW- Model is the second best method in terms of deviation,
but misses many matches. As for PreMDL, the opposite holds.
Our algorithm clearly outperforms both methods at a minor
runtime overhead. For comparison we implemented the brute
force method of UCR Suite US [15], so the original algorithm
applying enveloping techniques would be even faster, however
the error rates are worse than most other methods here.

Figure 8: Run times for finding multiple fits in synthetic data.

C. Smartphone Accelerometer Data

To demonstrate the broad applicability of the Caterpillar we
use it to detect transport mode specific patterns. We use data
collected in an urban area by ten participants equipped with
a mobile application on their private smartphones to collect
acceleration sensor data. In total the participants collected
about 50 hours of unimodal trips of different transport modes
(bicycle 7 hours, bus 1, car 3, metro 14, train 4, tram 7, walk
15) and annotated their trips live via the app. For preprocess-
ing, we extracted the horizontal and vertical component of
the collected signal similar to [6], [12], [14] and concentrate
further only on the horizontal signal. Figure 1b depicts the
hypothesis signal h we extracted from a scripted trip that
represents a typical pattern of a metro that brakes, stops and
accelerates again. As Figure 10 shows, such patterns vary
vertically and in time extension. Depending on the circum-
stances (the metro driver, the distance between two stations,
the number of passengers, etc.), the metro’s acceleration and
braking pattern may last longer or shorter. Also, metros do
not stop for exactly the same time. Our proposed method still
finds these patterns in the acceleration time series.

To evaluate our proposed method, we need a setup with
known ground truth. A trip is classified as a metro trip
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Figure 9: F-scores for classifying accelerometer time series
as metro or non-metro

if it contains at least one fit to the hypothesis. Figure 9
demonstrates that the Caterpillar performs best in detecting
these metro-typical patterns and achieves an F-score of 80%,
which is 5% better than PREMDL and 22% better than UCR
Suite DTW (setting the best threshold). Especially UCR Suite
DTW has a high recall of 96%, and a low precision of 41%.
Setting the ideal threshold UCR Suite US is almost as good
as the Caterpillar with an F1-score of 77%. The performance
of the UCR Suite methods (dashed lines) highly depends on
setting the right threshold. We used UCR Suite in its original
form to detect single fits and in the described adapted form
to detect multiple fits (see Sec. V-B), both on the original
data and discretized time series. The F1-scores for these four
variations vary for about 2%, and Fig. 9 shows the best, the
multiple Suite DTW on the discrete data with an F1-score of
58%. We also used Suite to detect initials for the Caterpillar
(Caterpillar+Suite in Fig. 9), and achieved an F1-score of 66%.
We also used (not plotted) only those fits found by Suite below
the threshold that achieves the best performance for Suite itself
(5.8), and achieved an F1-score of 62%.

To illustrate the dilemma of setting a valid threshold,
Figure 10 zooms in the first few minutes of the trip data
introduced in Fig. 1. The initial grey segment in Fig. 10d with
a US distance of 5 to the query pattern resembles the query pat-
tern obviously much better than the following three segments
with US distances of 2, 4, and 3 which show rather random
patterns. The two light blue segments starting at seconds 200
and 280 show low distances and visually reasonable matches.
Also for the fits found by DTW in Fig. 10c, the distances
show a counterintuitive picture. The purple segment at second
280 has a DTW distance of 8 and resembles the query pattern
better than the purple segment at second 40 (distance 8) or
the light blue second 70 (distance 4). We conclude that it
is difficult to set a threshold that separates good from bad
fits. The Caterpillar fuses DTW and the MDL principle to
avoid such sensitive parameters and performs much better on
these data. Moreover the Caterpillar is capable to detect fits of
different lengths, whereas those of PREMDL and UCR Suite
DTW all have the same length as the query pattern. UCR Suite
US also detects fits of different lengths, and performs almost
as good as the Caterpillar on the accelerometer data, but as
Sec. V-B shows worse on random walk-like synthetic data.

VI. RELATED WORK AND DISCUSSION

The MDL principle has been used for controlling the model
complexity in different areas (e.g. bioinformatics [20], text

Figure 10: Zoomed version of Fig. 1. Detected fits of
Caterpillar (a), PREMDL (b), UCR Suite DTW (c) and UCR
Suite US (d)

mining [5], etc.) In time series analysis [2], [21], [7], [16],
[22], the MDL principle is useful to answer the question ’Is
a given time series x close enough to another h to consider
them as a match?’. To answer this question, the DL of one time
series is compared to its CDL given another time series (as
applied in Section V-A). In general two strategies exist in the
literature to formulate encoding models for the DL and CDL
based on MDL. The first approach is to use the cardinality of
time series to model the DL [2], [21], [7]. Here the CDL only
depends on the number of deviations of two time series, but
not the magnitude of the deviations. The second approach is
to model the DL and CDL via entropy with Huffman coding
[16], [22]. In this work we combine both approaches and
demonstrate our method to outperform similar approaches and
to be widely applicable.

DTW has been used in many works for time series analysis
[3], [9], [4]. There are different approaches how to speed up
or early abandon the DTW calculation ([9], [1], [18], [10],
[19]) which are all combinable with the here proposed fDTW-
model for complete matches of time series (as in Sec. V-A).
We leave it for future work to investigate if the Caterpillar
algorithm could further benefit from early abandoning or lower
bounding.

One of the most relevant works in the field of time series
matching is the presentation of UCR Suite [15], that facilitates
fast comparisons of many time series or scanning of longer
time series for query patterns. However UCR Suite DTW only
detects matches of the same length as the query pattern, in
contrast to our proposed method, the Caterpillar algorithm,
and UCR Suite US that we also benchmark against. Due to
selecting initials at the cost of O(n), incremental DTW calcula-
tion and recycling of former results we save computation time.
The Caterpillar efficiently and reliably detects multiple warped
fits in a long time series. Relying on the MDL Principle our
algorithm automatically fulfils this task without requring the
user to specify input parameters which are difficult to set.

The work in [1] applies the incremental calculation of DTW
and also proves it to be reversible to use it for anticipatory
pruning. We use these insights and complete the ways of piece-
wise DTW calculations for alterations of past observations:
reverse in-/decremental calculations.
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In contrast to [8], [16], [15] we normalize and discretize
time series as a whole (see 2), because of the different nature
of methods relying on sliding windows of equal lengths and
the here proposed incremental comparison of segments.

More specifically, for an incremental step of the Caterpillar,
the parameters for normalization (mean, standard deviation,
min, max) either would need to be redefined for x+, but nor-
malizing x+ with different parameters than x implicates that
former results of the DTW calculations can not be recycled,
and DTW (or the fDTW-model) needs to be recalculated from
scratch. This would make the problem of finding multiple
fits of different lengths almost unsolvable in reasonable time.
On the other, hand if the parameters are reused for x+, we
could run out of range: e.g. let h=(2,2,2,4) and x=(1,1,1,2,4),
and we start with an initial warping of h and the first four
elements of x, x1:4. For the incremental step we test to align
the last element of x, 4. If we normalize x1:5 according to
(2) with the same parameters as x1:4, the cost matrix of
DTW has entries beyond the range of P , and cannot be
encoded with the here proposed encoding scheme. We leave
it for future work to investigate possible adjustments of the
Caterpillar with running normalization for streaming data that
follows no physical constraints (as e.g. accelerometer records
of smartphones).

Further we demonstrate to outperform UCR Suite, relying
on segmentwise normalization, on accelerometer data and
synthetic data. The Caterpillar also allows vertical shifts and
can compensate a wandering baseline, such that the two
patterns (1,2,3,3,2,4) and (11,12,13,13,12,14) have the same
CDL to a query pattern (2,3,4,4,3,5), due to (7).

VII. CONCLUSION AND OUTLOOK

In this work we presented a novel encoding scheme for
time series applying the MDL framework. We compared the
proposed model against state of the art methods on synthetic
data and further we applied the model for our proposed
Caterpillar algorithm that enables to identify vertically shifted
and time warped matches of different lengths of hypothesis
time series. Finally we demonstrated the Caterpillar to identify
metro stops in accelerometer time series. For future work we
plan to investigate the potential of DTW pruning methods for
the Caterpillar algorithm and test adjustments of the Caterpillar
for streaming data as e.g. financial time series.
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Abstract

Dynamic time warping (DTW) is a popular distance measure for time series analysis
and has been applied in many research domains. This paper proposes the R package
IncDTW for the incremental calculation of DTW, and based on this principle IncDTW
also helps to classify or cluster time series, or perform subsequence matching and k-nearest
neighbor search. DTW can measure dissimilarity between two temporal sequences which
may vary in speed, with a major downside of high computational costs. Especially for
analyzing live data streams, subsequence matching or calculating pairwise distance ma-
trices, runtime intensive computations are unfavorable or can even make the analysis
intractable. IncDTW tackles this problem by a vector-based implementation of the DTW
algorithm to reduce the space complexity from a quadratic to a linear level in number
of observations, and an incremental calculation of DTW for updating interim results to
reduce the runtime complexity for online applications.

We discuss the fundamental functionalities of IncDTW and apply the package to
classify multivariate live stream accelerometer time series for activity recognition. Finally,
comparative runtime experiments with various R and Python packages for various data
analysis tasks emphasize the broad applicability of IncDTW.

Keywords: dynamic time warping, time series, k-NN, subsequence matching, distance measure,
clustering, classification.

1. Introduction
Time series are sets of observations that follow a consecutive temporal relation. Many time se-
ries data analysis tasks such as clustering, classification, outlier detection or pattern matching
require the definition of a distance measure. Many distance measures such as the Euclidean
distance are rather ill-suited whenever two time series are shifted in time, locally recorded with
different sampling rates, warped, or have different lengths. Dynamic time warping (DTW)
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was originally proposed by Sakoe and Chiba (1978), and has since been the distance mea-
sure of choice in many works for time series analysis (Berndt and Clifford 1994; Keogh 2002;
Ding, Trajcevski, Scheuermann, Wang, and Keogh 2008; Kwankhoom and Muneesawang 2017;
Oregi, Pérez, Del Ser, and Lozano 2017; Giorgino et al. 2009). DTW is capable of dealing
with deformed time series by identifying the best alignment of two time series in a dynamic
way.
The major downside of DTW are its expensive computational costs, which are particularly
unfavorable for online algorithms processing continuous data streams, where time series anal-
ysis must be faster than the elapsed time between consecutive observations. One solution
to reduce the runtime for online processing is to incrementally calculate DTW by recycling
interim results of previous calculations for every new observation. Without any loss of accu-
racy, such an incremental processing allows reducing computation time complexity towards
linear level in number of observations. Section 2.1 and 3.2 give a detailed discussion about
the runtime and space complexity of the DTW algorithm.
The groundwork for the incremental calculation of DTW was done by Rabiner, Rosenberg,
and Levinson (1978), who proposed adjustments to the DTW algorithm - open alignments.
Since then the principle of the incremental DTW computation has been applied in multiple
works, as e.g.: Dixon (2005) applied it for an online algorithm to track musical performances,
Mori, Uchida, Kurazume, Taniguchi, Hasegawa, and Sakoe (2006) for an algorithm to early
recognize gestures, Tormene, Giorgino, Quaglini, and Stefanelli (2008) to analyze multivariate
sensor readings to support neurological patients with real-time information while undergoing
motor rehabilitation, Kwankhoom and Muneesawang (2017) for online algorithms which re-
identify movement trajectories of persons captured with a 3D depth sensing camera, where
time series matching is updated as soon as new video frames are recorded, and Oregi et al.
(2017) for proposing the Online-DTW (ODTW) algorithm.
Dynamic time warping has already been applied in many research domains and also pub-
lished in different software packages and programming languages. Table 1 gives an overview
of R (R Core Team 2021) packages for DTW computation available at the Comprehensive
R Archive Network (CRAN) at https://CRAN.R-project.org/, and Python (Van Rossum
et al. 2011) packages available at the Python Package Index (PyPI) at https://pypi.org/.
The package dtw (Giorgino et al. 2009) offers functions for DTW calculation with different
step patterns (see (2) and (3)), warping path restrictions and plotting functions, also for a
profound visual analysis of warping alignments of two time series. dtwclust (Sarda-Espinosa
2019) puts emphasis on clustering time series based on DTW distances. The functions for
DTW calculations are wrappers for those of the dtw package. The package dtwSat (Maus et al.
2019) provides with the time-weighted dynamic time warping a distance method customized
to analyzing satellite image time series. rucrdtw (Boersch-Supan 2016) is the R version of
UCR Suite (Rakthanmanon, Campana, Mueen, Batista, Westover, Zhu, Zakaria, and Keogh
2012) which is a nearest neighbor search algorithm accelerated by lower bounding and prun-
ing methods. It detects the closest fit to a query time series in either one long time series
or many of the same length. To the best of our knowledge rucrdtw is – besides IncDTW –
the only R package with a vector-based implementation of the DTW algorithm, thus avoid-
ing memory allocation of matrices. However, the package does neither support multivariate
time series nor full alignments for time series of different lengths (i.e., from begin to end
for both time series). The package parallelDist (Eckert 2018) is the parallel implementa-
tion of the function dist() – of the package stats (R Core Team 2021) – by incorporating
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Package First Incre- Vector- Diff. Multi-
k-NN Description / Focus& Repo. release mental based lengths variate

IncDTW
CRAN

2017 Yes Yes Yes Yes Yes Incremental and fast
vector-based DTW
calculations, described
in this paper.

dtw
CRAN

2007 No No Yes Yes No Highly functional im-
plementation of DTW
(Giorgino et al. 2009).

dtwclust
CRAN

2015 No No Yes Yes No Time series cluster-
ing with DTW (Sarda-
Espinosa 2019).

dtwSat
CRAN

2015 No No Yes Yes No Time-Weighted DTW
for satellite images
(Maus, Câmara, Ap-
pel, and Pebesma
2019).

rucrdtw
CRAN

2016 No Yes No No No 1NN-search via DTW
(Boersch-Supan 2016).

parallelDist
CRAN

2017 No No Yes Yes No Parallel distance cal-
culation (Eckert 2018).

dtw
PyPI

2014 No No Yes Yes No Highly forked and
starred (Rouanet
2014).

dtaidistance
PyPI

2017 No Yes Yes No No Functional and fast
(Meert 2017).

cydtw
PyPI

2017 No No Yes Yes No Simple and fast (Tave-
nard 2017).

Table 1: Overview of various R and Python packages with different emphasis on calculating
and applying the DTW distance.

RcppParallel (Allaire, François, Ushey, Vandenbrouck, Geelnard, and Intel 2021) to speed
up computations. Apart from R packages for DTW computation, in the following we discuss
Python software, since, – similar to R – Python is probably one of the most taught and ap-
plied programming languages for time series analysis, and data mining tasks as clustering,
classification and pattern recognition applied on time series data. The dtw package (Rouanet
2014) is one of the highest forked and starred packages for DTW computation on the Python
Package Index (https://pypi.org/). To compute the DTW distance for multivariate time
series the package cydtw (Tavenard 2017) offers a solution, and the main computation part of
the algorithm is implemented in C via Cython (Behnel, Bradshaw, Citro, Dalcin, Seljebotn,
and Smith 2011). The package dtaidistance (Meert 2017) offers a more comprehensive set
of functions and also a vector based implementation in C via Cython, but does not support
multivariate time series. Next to the R packages, Table 1 also lists the Python packages and
Section 4.2 details a runtime experiment which compares the Python packages with IncDTW.
The main contributions of this paper and the R package IncDTW are:
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• the principle of the incremental DTW calculation ready to use in R functions,

• vector-based implementation of the DTW algorithm – also for multivariate time series
– to decrease the computation time,

• the demonstration of applying IncDTW for an online time series classification task,

• and comparative runtime experiments with other R and Python packages.

This paper is organized as follows: Section 2 gives an introduction to DTW in general and
explains the incremental calculation. Section 3 describes the R package IncDTW, discusses
the vector-based functions and how to apply the incremental calculation. Section 4 discusses
the advantages of IncDTW by hand of a typical time series classification experiment, and
shows runtime comparisons. Section 5 concludes this paper and gives an outlook of future
developments.

2. Dynamic time warping
In the following we recapitulate the classic dynamic time warping algorithm from Sakoe
and Chiba (1978) which calculates the distance measure between a query time series q and
a candidate time series c, and their alignment – the so-called warping path – providing
information which observations of q are best matched to the respective observations of c.
The distance measure DTW is defined as the minimal cumulative costs of the shortest non-
linear alignment of two time series q and c. This alignment has the following properties:

1. Boundary conditions: The first element of q is aligned to the first element of c, and
the last element of q is aligned to the last element of c. Relaxing these conditions
allows to find an open alignment, i.e., a partial alignment of two time series with lowest
DTW distance (normalized for the lengths). For a more detailed discussion on open
alignments (open-end, open-begin and open increment) we refer to the package vignette
of IncDTW (Leodolter 2021).

2. Monotonicity: Consecutive elements of q and c must not be aligned out of time order.
The DTW algorithm also returns vectors of indices of q and c defining the ordering
of the best aligned observations. These vectors must be monotonically increasing, such
that ik ≤ ik+1, where 1 ≤ ik ≤ n = |q|, and ik defines which elements of q are aligned
to c at the k-th point of time. The same applies to the indices jk ≤ jk+1 defining which
elements of c are aligned to q at the k-th point of time.

3. Non-linear alignment: In contrast to the Euclidean distance, one observation of q can
be aligned to more than one observation of c, and vice versa. Hence it is possible that
ik = ik+1 or jk = jk+1.

4. Restrictions: Global or local warping path restrictions can be applied to reduce the
space of possible alignments. The most known is the Sakoe Chiba warping window
(Sakoe and Chiba 1978), where the time difference of two aligned observations must not
exceed the window size parameter, ω: |ik − jk| ≤ ω ∀k.
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5. Local distance measure: The distance of two (possibly multivariate) observations of the
time series q and c can be defined by any distance metric. The standard metrics are
the 1-norm and 2-norm. The package vignette of IncDTW elaborates how to customize
the local distance functions.

6. Step Pattern: The step pattern defines how the local distances are accumulated to
calculate the global cost matrix and the walking path. The two popular step patterns
(2) and (3) are implemented in IncDTW. Sakoe and Chiba (1978), Rabiner and Juang
(1993) or Giorgino et al. (2009) give a more detailed discussion on step patterns.

It is worth noting that the DTW distance measure is not a metric, since it does not fulfill
the triangle inequality. Consequently, lower bounding with the help of the reverse triangle
inequality is not possible, which is a method applied for fast nearest neighbor search (Wang
2011).
For the two time series q of length n and c of length m, we define C ∈ Rn×m as the local
cost matrix, where

Ci,j
..= d(qi, cj), (1)

with d(·, ·) as a local distance function for univariate or multivariate time series as described
above. The global cost matrix G ∈ Rn×m is determined in an iterative fashion, where each
element depends on its predecessors. The step pattern defines these dependencies by weighting
and selecting the predecessors. Giorgino et al. (2009) and Rabiner and Juang (1993) present a
more detailed discussion on step patterns, here we concentrate on two of the most popular and
start with the naive step pattern that regards the direct neighboring elements in G equally
weighted:

Gi,j =





∑
k≤i Ck,1 j = 1

∑
l≤j C1,l i = 1

Ci,j + min(Gi−1,j , Gi,j−1, Gi−1,j−1) i, j > 1.

(2)

The step pattern described by Algorithm 2 – “symmetric1” – was not part of the original
work about DTW of Sakoe and Chiba (1978) since it does not admit a normalization factor.
Nevertheless, it has been applied in several works (Fu 2011; Berndt and Clifford 1994; Sakurai,
Faloutsos, and Yamamuro 2007; Keogh 2002; Rath and Manmatha 2003b; Keogh and Pazzani
2000; Rakthanmanon et al. 2012) about time series clustering, classification, indexing and
pattern mining, and so gained popularity, possibly due to its simplicity to understand and
implement.
Another typical step pattern, that is also the default step pattern in the R package dtw, is
called “symmetric2”. Here the diagonal step is weighted with a weight of 2:

Gi,j =





∑
k≤i Ck,1 j = 1

∑
l≤j C1,l i = 1

min(Ci,j + Gi−1,j , Ci,j + Gi,j−1, 2 ·Ci,j + Gi−1,j−1) i, j > 1.

(3)

The step pattern (3) is also discussed as special case of the general formulation in Sakoe and
Chiba (1978). The direction matrix D ∈ Nn×m gives information about the alignment of
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Algorithm 1 Backtracking the direction matrix D delivers the warping path w.
1: procedure Backtracking(D)
2: i ← n . n = length of the time series q
3: j ← m . m = length of the time series c
4: w, ii, jj← empty vectors
5: repeat
6: step ← D(i, j);
7: if step == 1 then
8: i ← i - 1
9: j ← j - 1

10: else if step == 2 then
11: j ← j - 1
12: else
13: i ← i - 1
14: end if
15: ii ← append(i, ii)
16: jj ← append(j, jj)
17: w← append(step, w)
18: until i < 0 | j < 0 return w, ii and jj
19: end procedure

the two time series and is calculated simultaneously with the calculation of G. The following
equation defines D for the step pattern of (2):

Di,j =





1 if Gi,j = Ci,j + Gi−1,j−1

2 if Gi,j = Ci,j + Gi,j−1

3 if Gi,j = Ci,j + Gi−1,j .

(4)

The DTW distance measure is stored in the last column of the last row of G, Gnm, and
indicates the cheapest cumulative costs to align q and c. The warping path vector w is
an excerpt of the direction matrix D and achieved by backtracking D. Starting at the last
row and last column of D, backtracking (Algorithm 1) checks the cheapest next step (1 is
diagonal, 2 is horizontal, 3 is vertical) and stores this integer in a vector. The backtracking
algorithm also returns the vectors ii and jj, the vectors of indices of q and c for the best
alignment in the respective order.

2.1. Incremental DTW calculation
Calculating the DTW distance measure is computationally expensive, especially for long time
series without a warping window, due to the quadratic runtime complexity O(n ·m), where
n and m are the lengths of the time series q and c, respectively. If the DTW distance is
calculated with a Sakoe Chiba warping window of size ω, where |m − n| ≤ ω ≤ max(m, n),
the runtime complexity reduces to O(ω · min(m, n)). Consequently, if ω increases and ap-
proaches its maximum value, then the runtime complexity approximates the quadratic level,
and conversely if ω decreases, then it approximates a linear level. The space complexity is
discussed in Section 3.2.
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To update an alignment of two time series after recording new observations, it is possible
to reuse interim results instead of calculating DTW from scratch. So, if a time series c is
observed for i = 1 . . . m, calculating the DTW distance measure to q of length n has a runtime
complexity1 of O(n ·m). As soon as new observations of c are recorded for i = m+1 . . . m+k,
calculating the DTW distance measure from scratch has a runtime complexity of O(n·(m+k)).
Contrary the incremental approach is based on storing the necessary components of the results
of the initial DTW computation after observing c for i = 1 . . . m, and recycling these interim
results when new observations are recorded. This way the incremental update of the DTW
distance at time i = m + k has a runtime complexity of O(n · k). The examples in Section 3.3
and the experiment in Section 4.1 demonstrate this principle in more detail.
The input to incrementally calculate DTW of q[1 : n] and c[1 : m + k] is the output of the
former calculation DTW(q[1 : n], c[1 : m]). This output is composed of three matrices: the
global cost matrix G0, the local cost matrix C0 and the direction matrix D0. Additional
required input is the time series of new observations of c. To calculate the global cost matrix
G1 of DTW(q[1 : n], c[1 : m+k]), we append new costs and direction entries to the previously
calculated matrices and proceed analogously to (2):

1. First we build the local cost Matrix C1:

C1
ij

..=
{

C0ij i ≤ m

dist(qi, cj) m < i ≤ m + k.
(5)

2. Next the global cost matrix is appended to the former results and new entries are defined
analogously to (2):

G1
ij

..=





G0ij i ≤ m
∑

k≤i Ck,1 j = 1
Ci,j + min(Gi−1,j , Gi,j−1, Gi−1,j−1) else

(6)

3. The direction matrix D1 is calculated simultaneously to G1.

4. Finally, the warping path needs to be calculated completely new from scratch, since in
general it can not be excluded that new observations may open up completely different
options to warp the two time series.

Equation 6 is the incremental version of (2). For (3) the definition of the new entries of G is
analogous, as for any other step pattern presented in Sakoe and Chiba (1978).
In fact, not the complete matrix G0 is required to update the DTW distance for new ob-
servations. Section 3.2 and 3.3 discuss an vector-based implementation for the incremental
calculation that only requires the very last column (and row) of G0.
Especially for live streaming data computation time is key. IncDTW (in particular the func-
tions increment(), idtw2vec() and idtw() as demonstrated in Section 2 and 4) facilitates
a fast update of time series distance measures when new observations arise. This can be of
interest for any system analyzing live data streams.

1For simplicity we reduce the following runtime complexity discussion for the general case of DTW calcula-
tion without a warping window. The derivation for DTW calculation with a warping window follows analogous
arguments.
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3. The R package IncDTW
This section describes the functions of the R package IncDTW and how to apply them to
calculate the DTW distance: (1) Matrix-based, (2) vector-based, and (3) from scratch or
incrementally. For details about further functionalities of IncDTW (e.g., an algorithm for
searching the k-nearest subsequences of a time series with DTW, or time series clustering
with DTW) we refer to the package documentation and vignette (Leodolter 2021). All results
presented in this paper are achieved with version 1.1.4.3 of IncDTW. The computationally
expensive parts of IncDTW are outsourced to C++ via the packages Rcpp (Eddelbuettel and
François 2011) and RcppArmadillo (Eddelbuettel and Sanderson 2014), and parallelized via
the packages parallel (R Core Team 2021) and RcppParallel (Allaire et al. 2021).

3.1. Matrix-based implementation
The classical DTW implementation relies on the local cost matrix C, the direction matrix D
and the global cost matrix G (see Section 2). C can be stored as matrix or calculated entry-
wise when G is calculated. Returning the matrices G and D facilitates a detailed analysis of
the alignment of two time series. Plotting Figure 2 for visual analysis is possible due to the
information provided by the warping path, which in turn is an excerpt of the direction matrix
D and is achieved by backtracking. The entry Cij is the distance between qi and cj and can
be described by any distance metric for univariate or multivariate time series dependent on
the dimension of q and c. In case of multivariate time series, they need to have the same
dimension, but still can vary in number of observations. In the univariate case the 1-norm is
equivalent to the 2-norm, which is the absolute value of the difference |qi − cj |.
The basic DTW algorithm for computing the global cost matrix G, according to (2), steps
through the local cost matrix C. The following parameters characterize in detail how the
algorithm defines G and finds the warping path:

• dist_method: The local distances are stored in C, where Cij = dist_method(qi, cj). So
the parameter dist_method defines how the local distance of observations are measured.
For O-dimensional time series the distances “norm1”, “norm2” and “norm2_square” are
defined as:

||qi, cj ||1 ..=
O∑

o=1
|qio − cjo|

||qi, cj ||2 ..=

√√√√
O∑

o=1
(qio − cjo)2

||qi, cj ||22 ..=
O∑

o=1
(qio − cjo)2.

(7)

Apart from these three predefined local distance functions IncDTW also allows to define
customized local distance functions.

• ws: The space of all possible alignments of two time series can be constrained by warp-
ing windows. As Section 2 mentions, the most popular constraint is the Sakoe-Chiba
window (Sakoe and Chiba 1978), which adjusts the DTW algorithm by setting Gij =∞
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if |i− j| > ws. So ws defines the window size of allowed warping paths. If we set ws = 0
then only the diagonal of G is used for aligning q and c, which is identical to the Eu-
clidean distance. In this case the time series must have the same length. If the lengths
of the time series differ more than ws, then obviously no valid alignment can be found.

• step_pattern: The step pattern defines how the DTW algorithm finds the cheapest
path through the local cost matrix. In (2) the most basic and broadly applied step
pattern “symmetric1” is used, where the direct neighbors are considered and all are
weighted equally. In (3) the step pattern “symmetric2” is uses a weight of 2 for the
diagonal step and 1 for the vertical and horizontal to compensate the favor of diagonal
steps. The current version of IncDTW concentrates on these two patterns and we
consider other step patterns for future developments. For a more detailed discussion of
step patterns we refer to Giorgino et al. (2009) and Rabiner and Juang (1993).

The following commands install and load the package IncDTW:

R> install.packages("IncDTW")
R> library("IncDTW")

First we define the help function rw() (which we also use in the next sections) to simulate a
Gaussian random walk. Then a basic calculation of the DTW distance is done as follows:

R> rw <- function(n) cumsum(rnorm(n))
R> Q <- rw(100)
R> C <- rw(80)
R> result <- dtw(Q, C, ws = 30, step_pattern = "symmetric2")
R> result$distance

[1] 197.1266

3.2. Vector-based implementation
The matrix-based implementation is necessary for a detailed analysis of the alignment of two
time series since it allows to calculate and return the warping path. Tasks such as nearest
neighbor search, or the calculation of a matrix of pairwise distances to cluster or classify a
database of time series require many DTW computations, and so the computation time of
DTW is a major bottleneck.
The vector-based implementation offers a solution which is faster than the matrix based
implementation, since memory allocation for matrices is not required. The space complexity
for the matrix-based implementation is O(m · n) for calculating the local and global cost
matrix, and the direction matrix. The vector-based computation principle is the same as for
the matrix-based method, but instead of allocating matrices only two vectors are needed, and
so the space complexity is reduced to O(n). To obtain the DTW distance between the time
series q and c the calculation of the j-th column of the global cost matrix G.,j solely depends
on the values of the previous column G.,j−1 and the respective distances of the time series c
and the j-th entry of q. Since there is no dependence on the column G.,j−2, the algorithm
overwrites G.,j−2 with the newly calculated vector G.,j . Figure 1 demonstrates this principle
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Figure 1: Iteratively overwriting vectors makes it obsolete to allocate matrices for DTW
distance calculation.

with a simple example, and the following lines of code perform the DTW calculation for the
same time series first via matrix based implementation (dtw) and second via vector based
implementation (dtw2vec). The global cost matrix G is also printed to compare it to the
vectors illustrated in Figure 1.

R> Q <- c(3,4,5,6)
R> C <- c(1,3,3,5,6)
R> result <- IncDTW::dtw(Q,C)
R> result$gcm

[,1] [,2] [,3] [,4] [,5]
[1,] 2 2 2 4 7
[2,] 5 3 3 4 6
[3,] 9 5 5 3 4
[4,] 14 8 8 4 3

R> dtw2vec(Q,C)$distance

[1] 3

In the first iteration step in Figure 1 the initial two vectors a and b are defined according to
the DTW step pattern and are identical to the first two columns of G. In the second iteration
the pointers p1 and p2 switch the address, so that the new entries of G.,3 overwrite a (where
p2 points to) and b (where p1 points to) stores the entries of G.,2 of the previous iteration.
Finally after four iterations the DTW distance measure (red encircled) is given in the last
row of the last vector, which is identical to the fifth column of G. Algorithm 2 formalizes this
principle for the general case.
Even though the information about the warping alignment is lost by applying the vector-
based method, the warping path still can be constrained by the parameter ws, defining the
Sakoe Chiba warping window size. To continue with the same time series we constrain the
warping path to allow a maximum deviation of the time index of q and c of 1, so |i− j| ≤ 1.
Since the warping path needs to adapt slightly the calculated distance changes from 3 to 4.
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Algorithm 2 Vector based implementation of DTW without allocating any matrices.
1: procedure Vector Based DTW(q∈ Rn×O, c∈ Rm×O)
2: p1 ← cumsum(dist(q1, c)) . initial column of G, G.,1
3: for j in 2:m do
4: p2[1] ← dist(q1, cj) + p1[1]
5: for i in 2:n do
6: p2[i] ← step

(
dist(qi, cj), min(p2[i− 1], p1[i], p1[i− 1])

)

7: end for
8: ptmp ← p1
9: p1 ← p2

10: p2 ← ptmp
11: end for
12: return p1[n]
13: end procedure

R> IncDTW::dtw2vec(Q, C, ws = 1)$distance

[1] 4

“Early abandoning” is a pruning method to break calculations if the cheapest possible align-
ment of two time series hits an upper bound (set by the user). This method helps to lower
the calculation runtime when comparing many time series. If the DTW algorithm hits this
threshold the for-loop breaks and returns NaN. We continue the example and set the threshold
to 2. Since no value in the fourth column of the global cost matrix is smaller or equal to 2,
so Gi,4 > 2 ∀i, the calculation stops here and NaN is returned.

R> IncDTW::dtw2vec(Q, C, threshold = 2)$distance

[1] NaN

3.3. IncDTW for incremental DTW calculation
For the incremental calculation of DTW we can choose between (1) the matrix based imple-
mentation to get more information about the alignment of the two time series and to facilitate
analyses of the warping paths and (2) the vector based implementation for a faster distance
calculation. For the latter the initial column in Algorithm 2 is defined as the last column of
the former calculated global cost matrix, the last pointer vector respectively. That is, instead
of passing matrices as input to the incremental DTW function, only the last column vector
of G is passed for the vector based implementation. Further the class ‘planedtw’ and its
methods deal as convenient wrapper functions around the vector based implementation. For
a better understanding the following examples first walk through the more basic matrix based
and vector based incremental update, and finally present the incremental update by hand of
the ‘planedtw’ class.
We demonstrate the principle of incrementally updating the DTW global distance matrix and
the distance measure by hand of the following example. We define the time series q and c,
and calculate the initial alignment with dtw().
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(a) Initial time series (b) Initial warping path

(c) Updated time series (d) Updated warping path

Figure 2: Initially c and q are aligned. The warping path has 4 vertical steps before the
update of c. The alignment is updated with an update of c.

R> Q <- c(1:3, 4:1, 2:4)
R> C_initial <- c(1:3, 4, 4, 3:1) + 2
R> align_initial <- IncDTW::dtw(Q = Q, C = C_initial, return_wp = TRUE,
+ return_QC = TRUE, step_pattern = "symmetric1")

Figure 2a shows the time series and the aligned observations connected with dashed lines,
and Figure 2b contains the same information but focuses on the warping path (the main
plot). One can see that the last observation of c is matched to the final six observations of
q. We plotted the results with plot(align_initial, type = "warp") and type = "QC"
respectively.
With new observations of c we can easily update the global cost matrix and the warping path
by applying idtw() and compare the initial and updated versions of G.

R> C_newObs <- Q[8:10] + 2
R> C_update <- c(C_initial, C_newObs)
R> align_inc <- IncDTW::idtw(Q = Q, C = C_initial, newObs = C_newObs,
+ gcm = align_initial$gcm, dm = align_initial$dm, return_wp = TRUE,
+ return_QC = TRUE, step_pattern = "symmetric1")
R> identical(align_inc$gcm[, 1:8], align_initial$gcm)

[1] TRUE
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As expected the first eight columns of the updated G and the initial G are identical. Figure 2c
and 2d show the updated alignment and warping path. Finally, we compare the DTW distance
of the updated calculation with the one from scratch (again using the basic function dtw())
and see that they are equal:

R> align_scr <- IncDTW::dtw(Q = Q, C = C_update, return_wp = TRUE,
+ return_QC = TRUE, step_pattern = "symmetric1")
R> align_scr$distance - align_inc$distance

[1] 0

We continue with the former example and perform the incremental calculation with the
vector based implementation with idtw2vec(). This function distinguishes between an initial
calculation and the incremental by checking whether results of previous calculations are passed
or not, particularly the argument gcm_lc.

R> alignV_init <- IncDTW::idtw2vec(Q = Q, newObs = C_initial, gcm_lc = NULL)
R> alignV_inc <- IncDTW::idtw2vec(Q = Q, newObs = C_newObs,
+ gcm_lc = alignV_init$gcm_lc_new)

Finally we compare the DTW distances of the incremental calculation (idtw2vec()) with the
one from scratch (dtw2vec()) and their matrix based counterparts. As expected they are
identical:

R> C_update <- c(C_initial, C_newObs)
R> alignV_scr <- IncDTW::dtw2vec(Q = Q, C = C_update)
R> c(align_scr$distance, align_inc$distance,
+ alignV_scr$distance, alignV_inc$distance)

[1] 16 16 16 16

Section 4.2 gives runtime comparisons for these update functions.

New observations for both time series
With the knowledge of the basics and main modules for incremental calculation of DTW,
idtw() and idtw2vec(), we apply the functions initialize_plane() and increment()
which are convenient wrappers around idtw2vec(). The former function performs the ini-
tial calculation of idtw2vec() and returns an object of class ‘planedtw’, whereas the latter
function applies the incremental calculation of idtw2vec(). The package vignette (Leodolter
2021) discusses further methods for the S3 class ‘planedtw’ that support the navigation in
the plane of possible fits, which means to adjust incrementally the partial alignment of two
time series.
If new observations for both time series are available, the update of the DTW calculation
works in a consecutive fashion, similar to the case where only one time series is updated. The
initial step is to apply initialize_plane() on the initial observations of c and q. Next we
update the calculations for the first time series with increment():
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Figure 3: Incremental update of G for new observations of c and q. The updated areas of
G are coloured in red and the areas storing the required input for the vector based update
calculation are coloured blue.

R> x <- initialize_plane(Q = Q, C = C_initial)
R> print(x)

control:
dist_method step_pattern nQ nC ws reverse

norm1 symmetric2 10 8 NULL FALSE

DTW distance:
14

Normalized DTW distance:
0.7777778

R> x <- increment(x, newObs = C_newObs)

Figure 3a visualizes relevant sections of the updated global cost matrix G. For a new ob-
servation of c the new area of G is colored red and the required column for the update in
blue. Next we update G for the new observations of q. Again the red and blue rows in
Figure 3b indicate the updated and required areas. So we switch places of q and c as in-
put for idtw2vec() and proceed analogously. Also we need to switch the last column with
the last row of the global cost matrix. Figure 3c illustrates that switching c and q and the
gcm_lr with gcm_lc is the same as transposing G. We could either switch the positions of
these elements by hand and apply idtw2vec() directly, or apply the more convenient function
increment() and set direction = "Q" to tell the function in which direction to update the
last row and column of the global cost matrix:

R> Q_newObs <- rw(10)
R> x <- increment(x, newObs = Q_newObs, direction = "Q")

Finally we compare the results with the results from scratch and see that the calculated
distance measures are equal:
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Figure 4: Typical accelerometer time series recorded while brushing teeth, drinking a glass,
or walking.

R> x$distance - dtw2vec(c(Q, Q_newObs), c(C_initial, C_newObs))$distance

[1] 0

4. Applying IncDTW
This section demonstrates the applicability of IncDTW by (1) discussing a time series clas-
sification task for live data streams solved by either the traditional DTW implementation
dtw2vec() or the incremental updating of DTW distances to speed up calculations with
idtw2vec(), and (2) discussing runtime experiments that compare IncDTW with other R and
Python packages.
In the following experiment we work with data sets (Bruno, Mastrogiovanni, Sgorbissa, Ver-
nazza, and Zaccaria 2013) downloaded from UCI machine learning repository (Dheeru and
Karra Taniskidou 2017). The data was collected by participants wearing a smart watch
recording a 3-dimensional accelerometer signal with a sampling rate of 32 Hz. Among other
actions the participants were asked to collect data during walking (walk), drinking a glass
(drink_glass) and brushing teeth (brush_teeth), Figure 4 depicts examples of the three
activities. The time series data of these experiments are included in the package IncDTW.
The package documentation and vignette (Leodolter 2021) also include further experiments
about time series clustering and scanning longer time series to detect similar representations
of a shorter query pattern.

4.1. Incremental DTW update for live data
When applying data mining methods on live streams of data, it is mandatory that the compu-
tation time of the analysis is smaller than the time in between two consecutive observations.
In this experiment we simulate the situation of dealing with data streams by iteratively in-
cluding more observations of the time series into analysis. As soon as new observations are
“recorded” we classify the time series streams by comparing their DTW distances to prototype
patterns, so we need to update the DTW calculation for each set of new observations.
We start this experiment with determining representative centroid patterns for each of the
recorded activities, stored in the accelerometer data sets walk, drink_glass and brush_teeth.
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Figure 5: Iteratively increasing the observation window. As the dashed line moves to the
right, more data is included in analysis and the DTW alignment is updated for the new
observations.

We calculate these representatives with IncDTW::dba(), which is the DTW Barycenter Aver-
aging method by Petitjean, Ketterlin, and Gançarski (2011) for averaging multiple time series
that are non-linearly aligned by DTW.
Next we calculate the initial DTW distances for the first 100 observations (about 3 seconds) of
each time series of the three data sets to the three centroids. Then we simulate the continuous
recording of new observations and apply idtw2vec() to update the DTW distance measures,
which requires to store the last columns of G (see (2)) of the previous calculations. For
comparing the computation times we fulfill the same classification task with dtw2vec(), and
of course the classification results are identical. Figure 5 depicts this simulation of a data
stream c and the query time series q, both selected from the drink_glass data set. This
plot shows the situation after the initial step – the first three seconds are already observed
(vertical solid line) – when c has already been recorded for six seconds in total (the vertical
dashed line). As the data stream continuously updates the dashed line moves to the right
and more observations are included to the DTW alignment with q.
Figure 6a plots the classification accuracy against the “observed” (used) percentage of the time
series, and shows that the accuracy increases the more observations are recorded. Already
about 75% are enough to reach an F1-score of 90%. We used 4-fold cross validation, where
we calculated the representatives via dba() on one fold and classified the remaining 3 folds.
Figure 6a shows aggregated results.
Figure 6b compares the computation times of idtw2vec() (incremental) and dtw2vec() (from
scratch) to process one set of new observations, which we represent as the set of observa-
tions recorded within one second, so 3-dimensional time series with 32 rows (since originally
recorded with 32Hz). The collection of these three data sets consists of 212 time series of
different lengths. The calculation times depend on the length of the observation window and
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(a) Prediction Accuracy. (b) Runtime: Absolute (top) for all time series, and
relative (bottom) per time series.

Figure 6: Prediction accuracy and computation time comparison for classifying multivariate
time series of the data sets walk, drink_glass and brush_teeth by simulating to observe
these time series live and update the prediction once per second.

the number of time series that are at least as long as the observation window. Since the
time series are of different lengths, with increasing observation window, more and more time
series can not be processed further until the observation window is equal to the length of the
longest time series. For this reason the graph for “scratch” in Figure 6b (top) first rises and
then drops continuously. All time series are at least 187 observations long and beyond this
observation window length the shorter time series drop out of further analysis and so are not
relevant for the total computation time. For clarification we also plot the relative times per
time series in Figure 6b (bottom). It is worth mentioning that the y-axis are log-scaled.
We conclude that the incremental update can process about 7 to 108 times more time series
than the calculation from scratch, dependent on the length of the time series, the observation
window respectively. This exemplary data analysis task would not be solvable in time by
applying dtw2vec() (which is vector-based implemented in C++ via Rcpp) since the calcu-
lation of DTW distances and classification takes longer than one second, which is the time
in-between two sets of new observations. However, the incremental method with idtw2vec()
is capable. As expected this experiment demonstrates the calculation time for the incremental
step to be independent of the total length of the time series, see Figure 6b. We performed
this experiment applying a single core of a 2.8 GHz and 16GB RAM laptop. If we split the
work for this example across multiple cores dtw2vec() would manage the classification in
time as well, however the relation of 7 to 108 remains the same, so the incremental solution
is capable to deal with much more time series updates in less time.

4.2. Runtime comparisons
In the following we compare computation times for the 3 data analysis tasks: (1) the incre-
mental update for new observations, (2) single DTW computation for two time series, and
(3) computing the matrix of pairwise DTW distances for a set of time series. Further, we
also compare IncDTW with Python packages for the second task, since this is probably the
most generic and most applied use case. To compare the calculation times of R packages
we use the package microbenchmark (Mersmann 2019). For comparisons to Python pack-
ages we measure the wall clock time. To the best of our knowledge we set the parameters
of all functions so that a fair computation time comparisons is guaranteed. So we omit to
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return additional output objects (like the warping path) which obviously would cause higher
computation times. All runtime experiments were performed on a standard laptop computer
with 2.8 GHz and 16GB RAM. We applied the following versions of the respective packages
(please see Section 1 and Table 1 for more details about the packages):

• R: IncDTW (1.0.4), dtw (1.22-3), dtwclust (5.5.6), rucrdtw (0.1.4), parallelDist (0.2.4)

• Python: cydtw (0.1.4), dtaidistance (1.2.3), dtw (1.4.0).

Incremental update of DTW
This paper emphasizes methods for accelerating DTW calculations and demonstrates how to
apply the incremental DTW calculation for updating existing results for new observations
(Section 2.1 and 4.1). The following experiment underpins that this principle of recycling
former calculated results is a considerable faster approach to compute the DTW distance
measure. For this experiment we simulate the situation of continuously recording new obser-
vations and compare the runtime for the incremental calculation with a traditional calculation
from scratch. Figure 7a shows the results. Each red point is the median of 100 computations
of the DTW distance with dtw2vec() of two univariate time series, both of the respective
length given at the x-axis. The blue points visualize the median computation time for one
incremental step (via idtw2vec()), so one new observation of c, and q of length as given by
the x-axis. Both axes are in log scale.

Single computations
Figure 7b depicts the runtime comparison in a log-scale. The only two methods using a
vector-based implementations (as discussed in Section 3.2) are rucrdtw::ucrdtw_vv() and
IncDTW::dtw2vec(), and these are considerably faster than the remaining functions. To guar-
antee a fair comparison we set the step pattern to “symmetric1” (since rucrdtw::ucrdtw_vv()
only supports “symmetric1”) and the warping window size equal 10 for all functions.

Compute a distance matrix
Time series clustering is a typical task in time series analysis and data mining. Time series
clustering based on the DTW distance measure requires a distance matrix of pairwise DTW
distances. The function IncDTW::dtw_dismat() helps to get this matrix for a list of univariate
or multivariate time series of possibly different lengths. The calculations can be performed
single threaded (ncores = 1) or multithreaded.
We compare the runtimes for calculating distance matrices for a set of 500 time series of
varying lengths and also set the window size parameter to 10. Figure 7c depicts the run-
times, where dtw_dismat_1() is the standard function dis_mat() without parallelization.
dtw_dismat_3Rcpp() splits the work via RcppParallel and dtw_dismat_3R() uses the pack-
age parallel, both with three cores (ncores = 3). For short time series parDist_3() is up to
10 times faster than dtw_dismat_3Rcpp() and for long time series it’s the other way round
(about 17 times faster).

Comparison with Python
For many data analysis tasks R and Python are interchangeable and it is just a matter of
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(a) Incremental vs. from scratch. (b) Single DTW computations for two time series.

(c) Matrices of pairwise DTW distances for a list
of time series.

(d) Single DTW without warping window com-
pared with Python packages.

Figure 7: Runtime comparisons for different data analysis tasks.

taste which to prefer. So, we compare the runtimes for calculating the DTW distance across
these two platforms. For each of the time series lengths we measured the wall clock time for
100 DTW computations in the respective programming language environment2, and averaged
it. To guarantee a fair comparison we omit the warping window parameter since the func-
tion cydtw.dtw()3 does not support warping windows. Figure 7d shows the results in log
scale. The functions dtaidistance.distance_fast() and cydtw.dtw() both are functions

2We also performed the experiment by calling the Python functions inside of R via reticulate (Ushey, Allaire,
and Tang 2021), which caused a computation overhead.

3We notate R and Python functions according to their syntax: package::function() in R and
package.function() in Python.
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written in C, via Cython, but only the former is vector based and so it is comparable fast as
IncDTW::dtw2vec().

5. Conclusion
This paper discusses the incremental calculation of the widely applied DTW distance measure
(Fu 2011). We present the R package IncDTW (Leodolter 2021) – current version 1.1.4.3
available from the Comprehensive R Archive Network at https://CRAN.R-project.org/
package=IncDTW – that mainly focuses on fast R functions for vector based and incremental
DTW computation. IncDTW also offers functions for familiar time series analysis tasks, as
time series clustering and pattern recognition. Section 4.1 showcases how to apply IncDTW
to classify three dimensional time series in a simulated live stream setting, and why the
incremental calculation of DTW is capable to process 7 to 108 times more data.
Due to the intensive computational costs of DTW, we put a special emphasis on accelerating
our algorithms. Consequently, IncDTW transfers the most intensive computations to C++
via Rcpp and stresses on the one hand the vector based implementation, and on the other
hand the principle of the incremental calculation of DTW, by recycling previous calculation
results. Section 4.2 demonstrates the benefits of these acceleration methods using runtime
comparisons for various settings. Further accelerating methods as lower bounding (Keogh,
Wei, Xi, Lee, and Vlachos 2006; Rath and Manmatha 2003a) and early abandoning methods
are also applied and discussed in more detail in the package vignette (Leodolter 2021).
Apart from stream processing, computation time is also key whenever relatively short query
patterns must be detected in longer time series, which usually requires a large number of
comparisons between many segments of the longer time series and the query pattern. For
example, the Caterpillar algorithm presented by Leodolter, Brändle, and Plant (2018) scans
long time series to detect patterns which are possibly warped or of different lengths than a
query pattern, based on a combination of incremental DTW calculation and the Minimum
Description Length. The incremental calculation of DTW enables the Caterpillar algorithm
to search the space of possible fits runtime efficiently. So, the R package IncDTW and its
functions can serve as components for building pattern recognition algorithms.
Future developments for IncDTW will incorporate a parallelized implementation of dba() and
a user-friendly solution for applying lower bounding, which is currently only implemented as
part of rundtw().

References

Allaire JJ, François R, Ushey K, Vandenbrouck G, Geelnard M, Intel (2021). RcppPa-
rallel: Parallel Programming Tools for Rcpp. R package version 5.1.4, URL https:
//CRAN.R-project.org/package=RcppParallel.

Behnel S, Bradshaw R, Citro C, Dalcin L, Seljebotn DS, Smith K (2011). “Cython: The Best
of Both Worlds.” Computing in Science Engineering, 13(2), 31 –39. doi:10.1109/mcse.
2010.118.

Berndt DJ, Clifford J (1994). “Using Dynamic Time Warping to Find Patterns in Time Se-

PAPER C. INCDTW: AN R PACKAGE FOR INCREMENTAL CALCULATION OF
DYNAMIC TIME WARPING 74



Journal of Statistical Software 21

ries.” In Proceedings of the 3rd International Conference on Knowledge Discovery and Data
Mining, AAAIWS’94, pp. 359–370. AAAI Press. URL http://dl.acm.org/citation.
cfm?id=3000850.3000887.

Boersch-Supan P (2016). “rucrdtw: Fast Time Series Subsequence Search in R.” The Journal
of Open Source Software, 1, 1–2. doi:10.21105/joss.00100.

Bruno B, Mastrogiovanni F, Sgorbissa A, Vernazza T, Zaccaria R (2013). “Analysis of Human
Behavior Recognition Algorithms Based on Acceleration Data.” In IEEE International
Conference on Robotics and Automation 2013, pp. 1602–1607. IEEE.

Dheeru D, Karra Taniskidou E (2017). “UCI Machine Learning Repository.” URL http:
//archive.ics.uci.edu/ml.

Ding H, Trajcevski G, Scheuermann P, Wang X, Keogh E (2008). “Querying and Mining of
Time Series Data: Experimental Comparison of Representations and Distance Measures.”
Proceedings of the VLDB Endowment, 1(2), 1542–1552. doi:10.14778/1454159.1454226.

Dixon S (2005). “An On-Line Time Warping Algorithm for Tracking Musical Performances.”
In IJCAI, pp. 1727–1728.

Eckert A (2018). parallelDist: Parallel Distance Matrix Computation Using Multiple Threads.
R package version 0.2.4, URL https://CRAN.R-project.org/package=parallelDist.

Eddelbuettel D, François R (2011). “Rcpp: Seamless R and C++ Integration.” Journal of
Statistical Software, 40(8), 1–18. doi:10.18637/jss.v040.i08.

Eddelbuettel D, Sanderson C (2014). “RcppArmadillo: Accelerating R with High-Performance
C++ Linear Algebra.” Computational Statistics & Data Analysis, 71, 1054–1063. doi:
10.1016/j.csda.2013.02.005.

Fu T (2011). “A Review on Time Series Data Mining.” Engineering Applications of Artificial
Intelligence, 24(1), 164–181. doi:10.1016/j.engappai.2010.09.007.

Giorgino T, et al. (2009). “Computing and Visualizing Dynamic Time Warping Alignments
in R: The dtw Package.” Journal of Statistical Software, 31(7), 1–24. doi:10.18637/jss.
v031.i07.

Keogh E (2002). “Exact Indexing of Dynamic Time Warping.” In VLDB’02: Proceedings of
the 28th International Conference on Very Large Databases, pp. 406–417. Elsevier.

Keogh E, Wei L, Xi X, Lee SH, Vlachos M (2006). “LB_Keogh Supports Exact Indexing of
Shapes under Rotation Invariance with Arbitrary Representations and Distance Measures.”
In Proceedings of the 32nd International Conference on Very Large Data Bases, pp. 882–
893. VLDB Endowment.

Keogh EJ, Pazzani MJ (2000). “Scaling up Dynamic Time Warping for Datamining Ap-
plications.” In Proceedings of the Sixth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’00, pp. 285–289. ACM, New York. doi:
10.1145/347090.347153.

PAPER C. INCDTW: AN R PACKAGE FOR INCREMENTAL CALCULATION OF
DYNAMIC TIME WARPING 75



22 IncDTW: Incremental Calculation of DTW in R

Kwankhoom W, Muneesawang P (2017). “An Incremental Dynamic Time Warping for Per-
son Re-Identification.” In 14th International Joint Conference on Computer Science and
Software Engineering 2017, pp. 1–5. IEEE.

Leodolter M (2021). IncDTW: Incremental Calculation of Dynamic Time Warping. R package
version 1.1.4.3, URL https://CRAN.R-project.org/package=IncDTW.

Leodolter M, Brändle N, Plant C (2018). “Automatic Detection of Warped Patterns in Time
Series: The Caterpillar Algorithm.” In IEEE International Conference on Big Knowledge
2018, pp. 423–431. doi:10.1109/icbk.2018.00063.

Maus V, Câmara G, Appel M, Pebesma E (2019). “dtwSat: Time-Weighted Dynamic Time
Warping for Satellite Image Time Series Analysis in R.” Journal of Statistical Software,
88(5), 1–31. doi:10.18637/jss.v088.i05.

Meert W (2017). dtaidistance. URL https://pypi.org/project/dtaidistance/.

Mersmann O (2019). microbenchmark: Accurate Timing Functions. R package version 1.4-7,
URL https://CRAN.R-project.org/package=microbenchmark.

Mori A, Uchida S, Kurazume R, Taniguchi R, Hasegawa T, Sakoe H (2006). “Early Recogni-
tion and Prediction of Gestures.” In 18th International Conference on Pattern Recognition
(ICPR’06), volume 3, pp. 560–563. doi:10.1109/icpr.2006.467.

Oregi I, Pérez A, Del Ser J, Lozano JA (2017). “On-Line Dynamic Time Warping for Stream-
ing Time Series.” In Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, pp. 591–605. Springer-Verlag.

Petitjean F, Ketterlin A, Gançarski P (2011). “A Global Averaging Method for Dynamic
Time Warping, with Applications to Clustering.” Pattern Recognition, 44(3), 678–693.
doi:10.1016/j.patcog.2010.09.013.

Rabiner L, Juang BH (1993). Fundamentals of Speech Recognition. Prentice-Hall, Upper
Saddle River.

Rabiner L, Rosenberg A, Levinson S (1978). “Considerations in Dynamic Time Warping
Algorithms for Discrete Word Recognition.” IEEE Transactions on Acoustics, Speech, and
Signal Processing, 26(6), 575–582. doi:10.1109/tassp.1978.1163164.

Rakthanmanon T, Campana B, Mueen A, Batista G, Westover B, Zhu Q, Zakaria J, Keogh E
(2012). “Searching and Mining Trillions of Time Series Subsequences under Dynamic Time
Warping.” In Proceedings of the 18th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pp. 262–270. ACM. doi:10.1145/2339530.2339576.

Rath TM, Manmatha R (2003a). “Lower-Bounding of Dynamic Time Warping Distances for
Multivariate Time Series.” MM 40, University of Massachusetts Amherst.

Rath TM, Manmatha R (2003b). “Word Image Matching Using Dynamic Time Warping.”
In IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2003,
volume 2, pp. II–II. IEEE. doi:10.1109/cvpr.2003.1211511.

PAPER C. INCDTW: AN R PACKAGE FOR INCREMENTAL CALCULATION OF
DYNAMIC TIME WARPING 76



Journal of Statistical Software 23

R Core Team (2021). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Rouanet P (2014). dtw. URL https://pypi.org/project/dtw/.

Sakoe H, Chiba S (1978). “Dynamic Programming Algorithm Optimization for Spoken Word
Recognition.” IEEE Transactions on Acoustics, Speech, and Signal Processing, 26(1), 43–
49. doi:10.1109/tassp.1978.1163055.

Sakurai Y, Faloutsos C, Yamamuro M (2007). “Stream Monitoring under the Time Warping
Distance.” In IEEE 23rd International Conference on Data Engineering 2007, pp. 1046–
1055. IEEE.

Sarda-Espinosa A (2019). dtwclust: Time Series Clustering Along with Optimizations for
the Dynamic Time Warping Distance. R package version 5.5.6, URL https://CRAN.
R-project.org/package=dtwclust.

Tavenard R (2017). cydtw. URL https://pypi.org/project/cydtw/.

Tormene P, Giorgino T, Quaglini S, Stefanelli M (2008). “Matching Incomplete Time Series
with Dynamic Time Warping: An Algorithm and an Application to Post-Stroke Rehabil-
itation.” Artificial Intelligence in Medicine, 45(1), 11–34. doi:10.1016/j.artmed.2008.
11.007.

Ushey K, Allaire JJ, Tang Y (2021). reticulate: Interface to Python. R package version 1.20,
URL https://CRAN.R-project.org/package=reticulate.

Van Rossum G, et al. (2011). Python Programming Language. URL https://www.python.
org/.

Wang X (2011). “A Fast Exact k-Nearest Neighbors Algorithm for High Dimensional Search
Using k-Means Clustering and Triangle Inequality.” In The 2011 International Joint Con-
ference on Neural Networks, pp. 1293–1299. IEEE.

Affiliation:
Maximilian Leodolter
Austrian Institute of Technology
Center for Mobility Systems
1210 Wien, Austria
E-mail: maximilian.leodolter@gmail.com

Journal of Statistical Software http://www.jstatsoft.org/
published by the Foundation for Open Access Statistics http://www.foastat.org/
September 2021, Volume 99, Issue 9 Submitted: 2019-04-08
doi:10.18637/jss.v099.i09 Accepted: 2020-03-23

PAPER C. INCDTW: AN R PACKAGE FOR INCREMENTAL CALCULATION OF
DYNAMIC TIME WARPING 77



Paper D

Rotation Invariant GPS
Trajectory Mining

License Information

This paper is licensed under the Creative Commons Attribution 4.0 International Li-
cense1. The original work was not changed for presentation in this thesis.

1https://creativecommons.org/licenses/by/4.0/

78



GeoInformatica
https://doi.org/10.1007/s10707-023-00495-4

Rotation invariant GPS trajectory mining

Maximilian Leodolter1 · Claudia Plant2,3 · Norbert Brändle1

Received: 27 December 2021 / Revised: 1 February 2023 / Accepted: 6 March 2023
© The Author(s) 2023

Abstract
Mining of GPS trajectories of moving vehicles and devices can provide valuable insights into
urban systems, planning and operational applications. Understanding object motion often
requires that the spatial-temporal matching of trajectories be invariant to shifting, scaling
and rotation. To this end, Procrustes analysis enables to transform one data set of a trajectory
to represent another set of data as closely as possible. We propose a novel shift-scale-rotation
invariant Procrustes distance metric based on the Kabsch algorithm, which calculates the
optimal rotation matrix by minimizing the root-mean squared deviation between two paired
sets of points of trajectories or trajectory segments. We present two novel runtime efficient
algorithms which are based on our proposed distance metric: 1) the sliding-shifting-scaling-
Kabsch-rotation (S3KR) algorithm for detecting recurring short query patterns in longer
motion trajectories and 2) a novel time series subsequence clustering algorithm to group
GPS trajectory data and to discover prototypical patterns. We demonstrate the potential
of our proposed sliding Procrustes analysis algorithms by applying it on real-world GPS
trajectories collected in urban and rural areas from different transport modes, as well as on
nautical GPS trajectories. We also demonstrate that our methods outperform the state of the
art in accuracy and runtime on synthetic and real world data.

Keywords Trajectory · GPS · Clustering · Distance measure

1 Introduction

The increasinglywide use ofmobile devices and sensors leads to afloodofmachine-generated
trajectory data about moving people, vehicles, vessels and other objects. A plethora of work
has been developed in different domains taking advantage of this new wealth of motion data,
proposing techniques for analyzing motion trajectory data, e.g. [25]. Understanding motion
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often requires that the spatial-temporalmatchingof trajectories be invariant to shifting, scaling
and rotation.

Traditional time series distances lack the capability to discover rotation invariant simi-
larities, and therefore require some form of preprocessing of the time series [3, 19, 24]. As
such preprocessing methods are sensitive to noise (as we demonstrate in Section 4.1), we
propose a novel distance method based on Procrustes analysis [5] and demonstrate that it
outperforms traditional methods from literature.

Procrustes analysis can be used to transform one set of data (e.g. a trajectory or shape)
to represent another set of data as closely as possible. The Kabsch algorithm [6] solves the
mathematical problem of finding the rotation matrix which minimizes the distance of the
rotated shape to another shape. In order to perform shape comparisons which are invariant to
translation/shift, scale and rotation for each time point of a long trajectory, a runtime efficient
sliding algorithm is essential.

A disadvantage of traditional Procrustes analysis is that it is computationally too expensive
for exhaustive time series analysis. We tackle this complexity problem with a new distance
measure – derived from Procrustes analysis – which is suitable for integration in a runtime
efficient algorithm. We also demonstrate that our new distance measure finds similarity
structures in a time series database identical to traditional Procrustes analysis.

We propose a novel efficient sliding technique for Procrustes analysis based on the Kabsch
algorithm, denoted as the S3KR algorithm (sliding-shifting-scaling-Kabsch-rotation). S3KR
compares a query trajectory q with all sub-trajectories x of the long trajectory, as illustrated in
Fig. 1: The left part of Fig. 1 shows the color-coded GPS trajectory of a car driving eastwards,
where the colors along the trajectory indicate the distance to the short query trajectory q (a
sharp left curve). In order to calculate the distance value for a point of the trajectory, we
extract the sub-trajectory x starting at the point where the length of x equals the length of q .
We shift, scale and rotate x to achieve y, and measure the distance of y to q . Yellow colors
indicate low distance to the query trajectory, i.e. a sharp left turn. Conversely, black indicates
large distance to the query trajectory, such as the right turn at the beginning of the trajectory.

The S3KR algorithm relies on a novel rotation invariant distance measure which is also a
metric. Having the appealing features of a metric, notably the triangle inequality, means that
this distance measure can be used in data structures enabling efficient k-NN or range queries,
such as, for example, M-Trees [2]. We also introduce an algorithm for clustering segments of
trajectories to discover typical structures and prototypical patterns in GPS trajectories. This
algorithm relies on our proposed distance metric and the sliding algorithm S3KR.

We summarize our contributions: (1) a new rotation-scaling-shifting invariant Procrustes
distance metric (see Section 3), (2) a sliding algorithm for efficient scanning of long time
series (see Sections 3.2 and 3.3), (3) an algorithm based on spectral clustering for time series

Fig. 1 GPS trajectory of a car driving eastwards, color coded according to the shift-scale-rotation-invariant
distance to the query pattern q which represents a sharp left turn
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subsequence clustering (see Section 3.4), (4) experiments on synthetic random walks and
trajectories representing handwritten characters (see Section 4), as well as two case studies
on real-world urban and maritime GPS trajectories (see Section 5). We compare our meth-
ods with traditional time series distances and related methods from literature developed for
similar problems. Our experiments demonstrate that our novel distance measure outperforms
traditional time series distances on trajectory mining problems.

2 Procrustes analysis

In order to make this paper self-contained and to introduce our notation (Table 1) we briefly
recapitulate the essentials of Procrustes analysis. We denote the mean-shift operator τμ :
Rn×m → Rn×m as

τμ(xi j ) := xi j − μ j , (1)

where τμ is the typical shift operator in Procrustes analysis such that the shifted x has zero
mean in all dimensions. For a multivariate time series x we notate the scaling operator
γ : Rn×m → Rn×m as

γ (xi j ) := xi j · (
∑

j

σ 2
j )

−1/2 = xi j · s. (2)

The scaling factor s is equal to the inverse of the rootmean squared deviation of a trajectory
to its mean, thus providing information about the extension of x in all dimensions.

Given two n × m-dimensional time series x and y, Kabsch’ algorithm [6] solves the
constrained orthogonal Procrustes problem [5] to find the rotation matrix R minimizing the
Euclidean norm ||x − y · R|| by:

H = xT · y ∈ Rm×m

H = U · D · V SVD (Singular Value Decomposition)
d = det(V ·UT ) determinant
E = diag(1, . . . , 1, sign(d)) diagonal matrix of m − 1 ones and sign(d)

R = V · E ·UT

(3)

Since wewant to preserve the direction of a trajectory, we concentrate on rotationmatrices
only, and therefore do not allow R to be a reflection matrix. Otherwise, a GPS trajectory
representing a left turn could be reflected to perfectly fit a right turn.

For x and y of equal lengths we define the rotation operator π : Rn×m ×Rn×m → Rn×m :

π(x, y) := y · R, (4)

where R is the rotation matrix according to (3).

Table 1 Notation

x , y, q, f multivariate time series ∈ Rn×m R rotation matrix

xi j , xi . the j-th or all dimensions of x at time i xT transposed matrix

τ , γ , π shift, scaling and rotation operator · matrix/scalar multiplication

μ, σ , s mean, standard deviation, scaling factor H matrix, R depends on H

{y}i,n segment of y of length n, starts at time i ||.|| Euclidean norm
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The distance function δ which is invariant to scaling, shifting and rotation is defined as
δ : Rn×m × Rn×m → R+:

δ(x, y) := ||τμ(γ (x)) − π
(
τμ(γ (x)), τμ(γ (y))

)||. (5)

3 Sliding procrustes analysis

Performing distance calculations between many time series segments is runtime expensive.
In the following we propose slight adaptions to the operators from Section 2 which enable
the sliding algorithm to reduce the number of required operations and thus save calculation
time.

3.1 Operators for sliding distance

We accompany the introduction of the computation operators with an illustration of two GPS
trajectories in Fig. 2a and b, which are two segments of the original trajectory presented in
Fig. 1. Before we calculate the distance between these two trajectories x and y, we shift both
of them to the origin. We define the zero-shift operator (that shifts a time series such that it
starts in the origin1) τ0 : Rn×m → Rn×m for a multivariate time series x as follows:

τ0(xi j ) := xi j − x0 j . (6)

Figure 2c) depicts the shifted trajectory segments τ0(x) and τ0(y). Both shifted segments
start at the origin. Next we apply γ (2) to scale the trajectories – Fig. 2d) shows γ (τ0(.)) for
x and y. The shapes remain almost identical to those from Fig. 2c), but the extensions in both
dimensions have changed, and also the scales of the axes have changed. We remark that due
to the fact that σ is invariant to translation, γ and τ0 are commutative. It therefore makes no
difference whether γ is applied first and followed by τ0, or vice versa. Before measuring the
distance between x and y, we unify their orientation in a final step. We rotate both segments
to minimize their abbreviation to one and the same reference time series (in this example
we set fi . = (0, 1) ∀ i , cf. (7)). Figure 2e) visualizes the rotated trajectory segments (after
scaling and shifting) and finally shows the similarity of x and y, meaning that both segments
are left turns. To achieve the results from Fig. 2e) we applied a rotation function defined as
follows: for a time series y and a fixed reference time series f , we define the rotation function
π f : Rn×m → Rn×m which rotates y to minimize || f − y · R||:

π f (y) := y · R, (7)

where R is the rotation matrix according to (3) for f instead of x . Consequently, for a
comparison of two time series x and y, π f rotates x and y independently of each other, but
dependent on the reference f . Section 3.3 discusses the choice of f and how this contributes
to reducing the runtime complexity of the rotation from linear to constant.

Next we calculate the distance by summing up the squared lengths of the dashed lines
in Fig. 2f), which is the Euclidean distance of the shifted, scaled and rotated time series.
Formally,we define the shift-scaling-rotation invariant distancemetric δ f : Rn×m×Rn×m →
R+:

δ f (x, y) := ||π f (τ0(γ (x))
)
, π f (τ0(γ (y))

)||. (8)

1 The benefit of τ0 will become clear in Section 4, where we compare the performance of the zero-shift and
the mean-shift operator
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Fig. 2 a) and b) are two exemplary trajectory segments extracted from the path in Fig. 1 with original lon-
gitude and latitude scaling and orientation. c) The segments shifted to the origin (0, 0). d) The shifted and
scaled segments. e) After shifting and scaling, the trajectory segments are rotated. Regarding direction: all the
segments start at the black colored points

Appendix B proves that δ f is a metric. Hence, δ f is symmetric, and δ f (x, y) = 0 ⇔ x
and y are equal after scaling, shifting and rotating to fit f . Further δ f fulfills the triangle
inequality. Section 4.3 demonstrates how this is beneficial for standard data mining tasks as
a nearest neighbor search.

3.2 Sliding distance: s3kr

The sliding distance s3kr enables to efficiently perform sliding pattern recognition (e.g. k-
NN and ε-queries), and to efficiently compare time series of different lengths. To compare a
shorter query q with segments of a longer time series y, s3kr executes this in a sliding fashion
and calculates δ f for every point of time. If q ∈ Rnq×m and y ∈ Rny×m are two time series
of different lengths nq < ny , we measure the distance between segments of y, {y}i,nq , and q
by sliding a window of length nq along y. The result is a vector of distances. We define the

sliding-shifting-scaling-Kabsch-rotation function s3kr: Rnq×m × Rny×m → R
ny−nq+1
+ :

s3kr(q, y)i := δ f (q, {y}i,nq ). (9)

Compared to a traditional distance computation, s3kr does not return a single distance
value, but a vector of distances. Each entry of the distance vector represents the distance δ f

of q to a segment of y. Figure 1 shows a color coded GPS trajectory, where a GPS position
is colored according to the distance between q (top right in Fig. 1) and the segment starting
at this position. The vector of distances (bottom right in Fig. 1) is the result of s3kr.

To find the section of the longer time series that best fits the shorter time series q , we are
only interested in the minimum of the vector of distances. For this purpose we define the
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minimum distance as min_s3kr: Rnq×m × Rny×m → R+
min_s3kr(q, y) := min(s3kr(q, y)). (10)

When one is only interested in finding the segment with minimum distance (1-NN, nearest
neighbor search), it is easily possible to identify multiple unnecessary computation steps. To
elaborate this,wefirst present an example to discuss early abandoningwith a fixed threshold ε,
and then show the adjustments for a 1-NN search. Consider the example of two univariate time
series x = (9, 1, 2, 4, 5, 9, 1, 2, 10) and q = (1, 2, 3) and an ε-query looking for segments
of x with a distance to q smaller than ε = 3. The first segment is {x}1,3 = (9, 1, 2) and has
a Euclidean distance to q of

√
82 + 12 + 12 = √

66 > ε. This segment has a distance larger
than the threshold ε = 3 and is therefore not relevant. The question is whether it is possible
to recognize this at an early stage before having finished the entire distance calculation. Here
we want to stress the monotonicity of the Euclidean distance for time series: The Euclidean
distance of two segments of two univariate time series x and y is always smaller or equal to
the distance of the same segments extended by any number of observations (k ≥ 0):

E({x}i,n, {y} j,n) =
√√√√

n∑

m=1

(xi+m − y j+m)2 ≤

≤
√√√√

n+k∑

m=1

(xi+m − y j+m)2 = dE({x}i,n+k, {y} j,n+k) ∀ i, j, n, k.

(11)

The same applies to multivariate time series, and to the squared Euclidean distance. It
is therefore also possible to compare the squared Euclidean distance with ε2, and one can
observe that already the first element in the sum of the distance calculation is above the
threshold: 82 > 32 = ε2. Hence due to (11) one can already abandon the calculation for
index i = 1 after having only compared the first elements of {x}1,3 and q . In fact, for this
example we only need to finish the distance calculation for {x}i,3 where i = 2, 3 and 7.

For the 1-NN search the threshold ε stores the distance to the nearest neighbor found so
far. And ε is updated as soon as a segment is found which has a smaller distance than all
segments evaluated so far – in this example after finishing the distance calculation for {x}2,3,
ε2 = 1. Consequently, in this example, we can early abandon the distance calculations for
all remaining segments after hitting the threshold ε = 1. For example, for x3,3 the distance
calculation already hits ε = 1 after the first element. The same applies for xi,3 for all i > 2
except for i = 7. x7,3 = (1, 2, 10), so the first two elements are identical to q , an therefore
the distance calculation must complete to recognize that the distance exceeds ε.

Early abandoning can help to drastically reduce the number of computation operations.
Since δ f is a metric, and applies dE after shifting, scaling and rotation, (11) also applies for
δ f . Section 3.3 and Algorithm 2 give details about our implementation of early abandoning
for δ f .

3.3 Sliding algorithm: S3KR

Comparison of the GPS trajectories x and the query time series q in Fig. 1 rises the following
questions:Which segments in x are similar to q , and which segments in x are dissimilar to q?
And, how can we quantify these similarities? Answering both questions requires to calculate
distances of the separate segments of x and q . To get a similarity measure independent of
scale, shift and rotation, we apply δ f . Hence, calculating s3kr(q, x) answers the questions.
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The naive brute force approach to calculate s3kr(q, x) is to extract the set of trajectory
segments from x , each equally long as nq (the length of q) and starting at the indices i for
i ∈ 1...nx − nq + 1. Then we calculate the distance δ f of all these segments to q . In a
brute force approach we calculate all these distances independently from each other, so we
need to get the parameters to shift, scale and rotate the segments independently from previous
distance calculations, even though, theremight be a relation of the parameters for consecutive
segments. Also, the naive approach does not apply early abandoning to reduce the number of
computed operations. The brute force approach would require too much computation time
for applying the method on big data sets or in a real time scenario where the analysis needs to
be completed before new data is recorded. A more efficient algorithm to calculate s3kr(q, x)
would enable a broader applicability.

We propose the algorithms S3KR (described in detail in Algorithm 1) and DELTA
(described in Algorithm 2) to calculate s3kr by efficiently making use of the relations of
the parameters for scale, shift and rotation. The procedure DELTA is called inside the algo-
rithm S3KR with the rotation matrix R and scaling factor s as input parameters, which are
updated inside of the S3KR algorithm. Algorithm 2 can calculate both δ and δ f , dependent
on the input parameter R. The former is achieved if R rotates x to fit q , and the latter if R
rotates x to fit the reference f . q is supposed to be already scaled and shifted (and rotated
to fit f ), see Line 3 in Algorithm 1. In the following we walk through the algorithms in
detail and discuss how we apply the following strategies for the respective components of
the algorithms to accelerate the calculation of δ f and s3kr:

(a) Incremental update of the dimension means and variances,
(b) Selection of a reference f ,
(c) Replacement of the SVD by the exact expression of the singular values (for m = 2),
(d) Early abandoning and decoupling of the calculation of H and R (see (3)) from the actually

scaled and shifted time series.

Figure 3 shows results of runtime experiments2, where we compare the adjusted compo-
nents of the algorithmS3KR to the brute force computation.We simulate synthetic trajectories
of variable lengths, and q is simulated to be of equal length as nx 10.

Algorithm 1 Calculate the distance vector s3kr(y, q).

1: function s3kr(y ∈ Rny×m , q ∈ Rnq×m , ε)
2: d ← empty vector
3: q ← π f (γ (τ(q))

)

4: initially calculate μ and s 
 standard formula
5: set initially H and R 
 see (14, 3)
6: d1 ← DELTA({y}1,nq , q, R, s, ε)
7: for i = 2 : ny − nq + 1 do
8: update μ and s 
 see (12)
9: update H and R 
 see (14, 3)
10: di ← DELTA({y}i,nq , q, R, s, ε)
11: end for
12: return d
13: end function

a) Incremental update: The sliding window algorithm s3kr benefits from incrementally
updating the scaling factor for γ . This is possible since the scaling factor is a function of

2 We used a standard laptop computer with 2.8 GHz and 16GB RAM for the runtime comparisons.
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Fig. 3 Runtime comparisons for S3KR: (a) to (c) show runtimes of algorithm components of S3KR relative
to the brute force counterparts. (d) shows absolute runtimes for the complete algorithm S3KR, the brute force
search counterpart and the 1-NN search via min_s3kr. (a): Incremental update of μ and σ versus calculation
from scratch for each time step (brute force). (b): Calculation of H by cross product (brute force) or fast update
due to f . (c): Get R by the exact expression of the singular values versus the SVD (brute force)

Algorithm 2 Calculate the distance δ(x, q) with scaling, shifting and rotating inside the
distance computation.

1: procedure delta(x, q ∈ Rn×m , R ∈ Rm×m , s, ε)
2: δ ← 0
3: for i = n : 1 do 
 reverse order
4: d ← s(xi . − x1.) · R − qi . 
 shift, scale and rotate inside the for-loop

5: δ ← δ +
√∑

d2 
 d is a row vector, δ is a scalar
6: if δ > ε then return NaN 
 early abandon if δ hits ε

7: end for
8: return δ

9: end procedure

the standard deviations per dimension, σ j . Having σi, j , then σi+1, j is the square root of
σ 2
i+1, j :

μi+1, j = μi, j + (xi+n, j − xi, j )

n

σ 2
i+1, j = σ 2

i, j + (x2i+n, j − x2i, j )

n − 1
+ (μ2

i, j − μ2
i+1, j )

n

n − 1
.

(12)

Figure 3a demonstrates that incrementally updating (red line) μ and σ is up to four times
faster than the brute force method (dashed black).
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b) Selecting a reference f : To demonstrate the benefit of f , we start with rotating the scaled
and shifted version of y to fit f . We need the matrix H , where H = f T · γ (τ0(y)) (see
(3)):

Hi j =
n∑

k=1

xki · (
γ (τ0(y))

)
k j =

( m∑

l=1

σ 2
l

)−1/2

︸ ︷︷ ︸
s

( n∑

k=1

fki · yk j − y1 j ·
n∑

k=1

fki
)

⇒ H = s
(
f T y − ( f T 1)y1.

)
,

(13)

where3 1 is the column vector of ones and y1. is the row vector of the first row of y, so
the observation at time i = 1. Next, we set f equal the matrix of zeros in all but the last
dimension, and ones in the last dimension. For m = 2, (13) reduces to

H = s · nq
[

0 0
μi,1 − yi1 μi,2 − yi2

]
(14)

where μi,1 is the mean of all y j1 ∀i ≤ j ≤ i + nq − 1, and μ is updated incrementally
via (12). Calculating H via (14) instead of (13) saves time since no cross-products of q
and the segment of y are necessary, so reduces the runtime complexity for updating H
from O(nq) to O(1) per sliding step. Figure 3b shows the actual effect on the algorithm
by comparing the runtime for the cross product (black dashed) to the update of H via (14)
(in red). Since the number of sliding steps increase with the length of x (x-axis), the red
line shows linear increase even though the complexity of a single sliding step is O(1).

c) Replace the SVD: For the popular case of m = 2 (e.g. 2-dimensional GPS trajectories)
we derive the rotation angle as described in Section 4.6 of [5], by making use of the exact
expression of the singular values of H in (3). Further we make use of the function atan2
to return unambiguous rotation angles for the full range of 0 to 360 degrees.

α = atan2(H1,2 − H2,1, H1,1 + H2,2)

R =
[
cosα − sin α

sin α cosα

]
.

(15)

Figure 3c illustrates that in our experiments this calculation of R is up to 60 times faster
than the brute force method which derives R according to (7).

d) Early abandoning: We come back to the example at the beginning of Section 3.3 and
ask the slightly adjusted question, where to find in Fig. 1 a) all segments having a distance
smaller than a given threshold ε to q (an ε-query), or similarly b) just the segment with the
smallest distance (the 1-nearest neighbor search, 1-NN).Again, the brute force approach is
to calculate all distances, and in a second step, for a) to decide which distances are smaller
than ε, and for b) to apply a linear search to find the minimum. To answer the ε-query and
1-NN search efficiently, we propose the algorithm S3KR (Alg. 3), that saves computation
time by abandoning as much as possible of the calculation process of distances larger
than ε. Section 3.2 already discussed early abandoning (see (11) and the accompanying
example) and next we discuss how Algs. 2 and 3 apply early abandoning.
For calculating the distance of q and a segment of y – δ f (q, {y}i,nq ) – we need to
shift, scale and rotate only the segment of y, since π f (γ (τ0(q))) is performed only
once ∀i (see Line 3 of Alg. 1). The rotation matrix R depends on H , which is the cross

3 For calculating δ(q, y) – instead of δ f (q, y) – the derivation of H is analogous to (13), but we substitute f
by q, and y1. by the vector of column means.
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product of f and γ (τ0(y)) (see (3)). However, (14) showed that we can express H as
a function of f , y and s, but independent of τ(γ (y)). Consequently we can calculate
R∗ = argminRdE ( f , τ (γ (y)) · R) before actually scaling and shifting y. Only the
scaling factor s is required, which is updated incrementally at O(1) costs, see (12). This
is necessary to plug in the operators τ , γ and π f directly into the implementation of the
distance calculation, implemented as for loop iterating over the time index (see Line 4,
Alg. 2). As soon as the accumulated distance hits the threshold ε, the for loop breaks and
further unnecessary scaling, shifting and rotation calculations are abandoned. This way of
decoupling the calculation of the rotation matrix, and scaling and shifting the time series
helps the algorithm S3KR to save computation time, since unnecessary shifting, scaling
and rotation operations are abandoned.
With the help of early abandoning of DELTA inside of S3KR we can considerably
accelerate k-NN searches and ε-queries, where all distances smaller than ε are returned.
Algorithm 3 details MIN_S3KR, which is the algorithm to calculate min_s3kr(), so to
answer the 1-NN search. The algorithm is similar to S3KR, but updates the threshold ε

dependent on the best so far detected index (see Line 12, Alg. 3). With minor adaptations
it can also answer the k-NN query: Adjust the threshold management with regard to the
latest (to guarantee no overlap) and k best so far detected distances. For details about this
threshold management we refer to [10].

Figure 3d compares the absolute runtimes of S3KR (red solid) and a brute force method
(black dashed) which does not take advantage of the discussed acceleration methods a)-c).
S3KR is 6 to 45 times faster than the brute force method. The figure also shows runtimes for
the 1-NN search by MIN_S3KR that benefits evidently from early abandoning, and needs
less than 10 ms for the nearest neighbor search with nx = 3000.

Algorithm 3 Calculate min_s3kr(x, q) and the location where to find it.

1: function min_s3kr(y ∈ Rny×m , q ∈ Rnq×m )
2: (d∗, i∗, ε∗) ← (NaN, NaN, ε)
3: q ← π f (γ (τ(q))

)

4: initially calculate μ and s 
 standard formula
5: set initially H and R 
 see (14, 3)
6: d ← DELTA({y}1,nq , q, R, s, ε)
7: if d ! = NaN then (d∗, i∗, ε∗) ← (d, i, d) 
 ε∗ ≤ ε

8: for i = 2 : ny − nq + 1 do
9: update μ and s 
 see (12)
10: update H and R 
 see (14, 3)
11: d ← DELTA({y}i,nq , q, R, s, ε∗)

12: if d ! = NaN then (d∗, i∗, ε∗) ← (d, i, d)

13: end for
14: return (d∗, i∗)

15: end function

3.4 TSS clustering with s3kr

Equipped with the presented sliding algorithm S3KR, we propose a clustering algorithm that
applies S3KR to find clusters of shift-scaling-rotation invariant segments of a trajectory.
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Figure 4a) motivates this by showing a trajectory y forming two spirals. To reveal structure
and repetitive patterns in y we want to cluster the segments of y. But, when we want to
cluster the overlapping time series subsequences (TSS) of the trajectory y, the clustering
easily becomes meaningless (as discussed in [7]), since the closest neighbor of a segment
is often the trivial neighbor with a high overlap, starting one time index earlier or later.
Hence, we propose an algorithm that avoids these pitfalls by setting distances of segments
with an overlap equal infinity. This ensures that overlapping segments can only end up in the
same cluster, if they are both close enough to a third segment, that has no overlap to either
of the two. To avoid these pitfalls of calculating meaningless cluster representatives due to
overlapping subsequences, we propose the following algorithm to cluster a time series y of
length m, with a subsequence length n and number of clusters k:

1. Distance Matrix: Apply s3kr to calculate the distance matrix D of all pairwise distances
δ f of all segments of y. So we get Di j = δ f ({y}i,n, {y} j,n).

2. Set Di j = ∞ where |i − j | < n. D now represents a weighted graph where all subse-
quences are connected, except they have an overlap.

3. Perform Spectral Clustering [23]: Two overlapping segments can only end in the same
cluster, if they are close enough to a third segment that does not overlap with either.
Consider the segments of y in Fig. 4c) (here m = 1000 and n = 30) that start at the first
and second index. Both describe the movement of a left turn, but D1,2 is set to ∞. Since
both have a small distance to segments starting after index 31, they end up in the same
cluster, describing a left turn.

4. Get cluster representatives: Say a cluster c consists of segments starting at the indices
i ∈ I c. According to step 3, a cluster can contain overlapping segments. However,
the representation of a cluster benefits from presenting only non-overlapping segments,
instead of showing redundant information. We define the degree vector for a cluster c,
gc ∈ Rm−n+1 for l ∈ (1, ... m − n + 1) as:

gcl =

⎧
⎪⎨

⎪⎩

∞, if l /∈ I c.
1

number of elements inI c,where|l− j |≥n

∑
j∈I c

|l− j |≥n

Dl j , if l ∈ I c. (16)

So, gcl is the mean of the distances of the segment starting at index l, yl,n , to all segments
in the same cluster c, y j,n , where j ∈ I c, and the segments yl,n and y j,n have no overlap.
Then gc is the vector of average cluster-internal distances. We call those segments, that

Fig. 4 a) A simulated trajectory starting at the red dot, ending at the blue cross. b) The cluster centers after
applying TSS clustering. c) The observations are colored according to the assigned clusters of the segments
starting at these observations
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represent a local minima of gc the characteristic segments of c, because these segments
represent the cluster the best. In detail, a segment yl,n is a characteristic segment (segchar )
of cluster c, if gcl = min j (gcj ) ∀|l − j | < n. The condition |l − j | < n guarantees that
characteristic segments do not overlap.

It is sometimes desirable to have a single representative time series for each cluster. In
such cases, we average the segchar of each cluster. Figure 4b) depicts the average of the
segchar for each cluster in that example, and together with Fig. 4c) emphasizes that the two
spirals look identical at first glance, but are of different directions, and so assigned to the
clusters 3 and 4. The first cluster describes the straight connection line of the two spirals, and
the second cluster represents the transition between the others.

With the spectral approach, our algorithm assigns segments that are not directly connected
to a common cluster if sufficient indirect connections via other segments exist. A density-
based clustering algorithm such as DBSCANwould achieve a similar result, indeed there are
strong theoretical relationships between spectral and density-based methods [17]. However,
unlike centroid-based methods, DBSCAN does not detect representative points for each
cluster. We obtain representative points from the degree distribution of the similarity matrix.
Those representative points greatly facilitate the interpretation of the result.

To cluster the subsequences of a set of time series we apply the former algorithm on each
single time series and collect all the segchar of all trips, to clusters these again with spectral
clustering. Again, if desired, we can average the segments without any concern of overlap,
since the segchar are defined to have no overlap.

Apart from the example in Fig. 4, we also apply this TSS clustering, (a) on a single GPS
time series in Section 5.1, and (b) on a set of GPS time series in Section 5.2, and demonstrate
that it detects meaningful clusters and cluster centers in both applications.

4 Experimental results

Section 3 elaborates the rotation-invariant distance metric δ f , the sliding algorithm S3KR
and finally the TSS algorithm, which build on each other. Before we apply δ f embedded in
S3KR or TSS, we test the key component δ f itself. In detail, the experiments in the following
sections demonstrate the following:

• Sections 4.1 & 4.2: The procrustes distances are rotation-invariant, more robust to noise,
and faster than the methods from literature.

• Section 4.3: Since δ f is a metric, we can build an M-Tree data structure with δ f as
distance metric. For a nearest neighbor search in a set of trajectories of equal lengths, the
M-Tree outperforms the brute force search.

• Section 4.4: Applied on a benchmark dataset of trajectories of varying lengths, the pro-
posed sliding algorithm s3kr performs better, in terms of accuracy and runtime, compared
to the methods from literature.

Sections 4.1 and 4.2 evaluate and demonstrate the capabilities of the procrustes distances
in an isolated setting, whereas the Sections 4.3, 4.4 and 5 demonstrate the procrustes distances
embedded in an M-Tree, a sliding algorithm and a clustering algorithm.

In Section 4.1, 4.2 and 4.3 we simulate trajectories. In Section 4.4 we make use of an
open source benchmark data set. The case studies in Sections 5.1 and 5.2 demonstrate how
to apply our methods on real world (maritime and urban) GPS trajectories. We selected this
elaborate set of experiments to demonstrate the benefits of our proposed methods.
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Table 2 Overview of the parameters used in the experiments and case studies presented in the various sections

Section 4.1 Section 4.2 Section 4.3 Section 4.4 Section 5.1 Section 5.2

k 3 4 9

σ {0, 0.2, 0.4, 0.6, 0.8, 1} 1

ws {0, 5, 10, 20, None} in % ws∗ ws∗ ws∗

k is the number of clusters for the clustering algorithm. σ is the standard deviation of added noise for simulating
synthetic trajectories. ws is the Sake Chiba [15] window size parameter for the DTW algorithm. ws∗ is the
set of ws values, which show best performance for the benchmark methods in Section 4.1. The respective
sections provide more details about the choice of the parameters

We compare our proposed methods with the following methods from literature applied
on trajectory data or time series data.

z-norm: The z-normalization (as e.g. applied in [12, 16]) combined with the Euclidean
distance dE or Dynamic Time Warping (DTW) is not rotation invariant. However, here it
deals as baseline method to point out the challenges of discovering rotation invariant patterns
in trajectories.

arc-angle: The projection of the coordinates of a trajectory into the space of arc-length
and angle ([3]) is a typical approach to measure shift and rotation independent similarities.
In the sense of a fair comparison we include a normalization step (according to (2)) to make
it scale invariant.

shape-sgnt: The shape signature is a 1-dimensional representation of 2-dimensional
shapes, by measuring distances of all points of the shape to its center. This method is often
applied in shape recognition [24], and is rotation and shift invariant. We z-normalise the
1-dimensional representation to achieve scale invariance.

cMass: The work by [19] presents a shift-scale-rotation invariant distance measure for
trajectories, that transfers the 2-dimensional longitude-latitude time series into the arc-angle
space, and then interpolates the angles to be equidistant sampled, and uses DTW to measure
the distance. This work proposes three different methods to calculate the angles: ’Exact’,
’Relative’ and ’cMass’. We evaluated all three of these in our experiments in Section 4.1
with varying window size parameters for DTW. Since cMass outperfoms the other two by
far, and also performs best in the original work [19], we compare our methods with cMass
in the remaining experiments. We set the maximum number of iterations for the modulo
normalisation algorithm (described in [19]) equal 10 for the runtime experiments, and equal
100 for the remaining experiments.

We combine the methods z-norm, arc-ang, shape-sgnt and all three variations of [19] with
dE and DTW – with the Sakoe Chiba window [15] of 5, 10, 25 and 100% of the time series
length. It is worth noting, that DTW with a window size parameter equal 0, is equivalent to
applying the dE . Our initial experiment in Section 4.1 analyses the performance of all these
methods dependent on the window size parameter. In the remaining experiments we apply
the window sizes that showed best performance in the initial experiment. Table 2 gives an
overview of the used parameters across all the experiments in this section and the case studies
in Section 5.

We4 used a standard laptop computer with 2.8 GHz and 16GB RAM for the runtime
comparisons. For a fast DTW computation we applied the R package IncDTW [9], and for
cMass we adjusted the local distance and lower bound method as described in [19].

4 To reproduce our results presented in Sections 4 and 5 all data and code are here: https://tinyurl.com/d7jrestk
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4.1 Clustering synthetic randomwalks

We simulate three 2-dimensional random walks of 50 observations as cluster centers. We
copy each of the cluster centers 20 times and randomly modify the copies by adding white
noise, scaling by a random positive factor, shifting by a random 2-dimensional vector and
rotating by a random angle between 0 and 360 degrees. Appendix hyperlinkappen1A gives
further details about the simulation of random trajectories. Then we calculate the pairwise
distancematrices and cluster these with PAM [14] (with k = 3, so searching for 3 centers). To
keep it straight forward, we set k equal to the number of clusters we simulated and focus the
presentation on the Procrustes distance performance. For each combination of the standard

Fig. 5 Clustering performance: The baselinemethods are parameterised with varying values ofws and applied
on synthetic trajectories. The rotation angle for simulating the time series is either constant 0 (left) or sampled
between 0 and 360 degrees (right)
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Fig. 6 Comparison of the proposed distance function with the variation τμ & δ f

deviation of the added noise, and whether random walks are rotated or not, we repeat the
whole experiment 30 times to exclude the possibility of a method’s superiority by chance.

We compare our proposed methods with baseline methods that rely on DTW. The perfor-
mance, as well as the runtime of DTW heavily depend on the window size parameter (ws).
When comparing two time series x and y,ws defines the maximum number of observations5

that can be matched from x to y.
To guarantee a thorough and fair comparison with the baseline methods, we first evaluate

forwhat values ofws the baselinemethods performbest. Figure 5 plots the normalizedmutual
information (NMI)s versus the standard deviation of added white noise, for rotated (right)
and not-rotated (left) random walks. Since we are interested in detecting rotation invariant
similarities, we select the best-in-class based on the performance on the right hand side of
Fig. 5 (cMass with ws = 10, arc-ang with ws = 5, znorm with ws = None, shape-sgnt
with ws = 0 so the Euclidean distance). For the rest of this work we apply the methods with
these values for ws.

We also tested δ f in combination with τμ. Figure 6 depicts, that this variation hardly
identifies any structure in the data. We concluded that the rotation towards a reference time
series that starts in the origin only shows meaningful results when both trajectories also start
at the origin, which τ0 guarantees, but τμ does not.

Finally, Fig. 7 presents the comparison of our proposedmethodswith the baselinemethods,
where the applied ws parameters are the best-in-class from Fig. 5

For a deeper visual inspection of the performance of the distance measures in Fig. 7
– independent from a clustering algorithm –, we also plot the pairwise distance matrices.
Figure 8 shows the pairwise distancematrices for all trajectories fromoneof the 30 repetitions,
where the trajectories were rotated randomly and noise was added with a standard deviation
of 0.6. One can easily identify the clear structure of the three clusters for δ f and δ, but hardly
for the shape-signature or one of the others.

This experiment demonstrates a) the Procrustes distances seem to be more robust to noise
and clearly outperform the others, and b) that traditional time series distance measures that
ignore the rotation of trajectories are incapable of measuring similarities independent of
rotations.

5 To be precise, with ws = 5 we notate that the window size is equal 5% of the length of x , ws = 0 is
identical to calculating the Euclidean distance, and a ws = ’None’ means that the alignment of x and y is not
constrained by a window at all. We refer to [15] or [10] for a detailed discussion of ws.
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Fig. 7 Amount of white noise versus NMIs for clustering synthetic time series based on different distance
measures

4.2 Runtime comparison

Section 3.3 discusses via Fig. 3d the runtimes for the sliding algorithm S3KR (with δ f , or δ),
and compares these with the brute force alternative and MIN_S3KR. Here we complement
these experiments and compare the runtimes for distance measures only, i.e. without sliding
algorithm. We simulate 2-dimensional random walks of equal lengths, ranging from 50 to
1000, and apply the same methods which show best results in Section 4.1, especially in
connection with the Sakoe Chiba window size parameter for DTW. Figure 9 shows that δ f

and δ are of similar speed, and outperform the other methods by a factor of 10 to 470.

Fig. 8 Pairwise distance matrices for a simulated dataset of 3 clusters of 2-dimensional random walks. Due
to the design of the experiment, the first 20 trajectories are part of the first cluster, the trajectories 21 to 40
belong to cluster 2, and the remaining to the third cluster
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Fig. 9 Computation runtimes given on the y-axis as factor relative to the fastest method, δ f . And the absolute
computation times in ms printed at the very right, for a length of x equal 1000

4.3 Classifying synthetic randomwalks with anM-Tree

One main advantage of our proposed distance measure δ f is, that it is a metric, and so
fulfills the triangle inequality. In this experiment we demonstrate how we can make use of
this beneficial characteristic. Similar to the previous example, we simulate 2-dimensional
random walks (1000 random walks, each of length 50 observations, standard deviation of
noise = 1, belonging to 10 different groups) and classify these with a 1-NN classifier, in
a 10-fold cross validation. The results in Table 3 demonstrate that the Procrustes distances
outperform the others in accuracy and runtime. But most importantly, we can also fulfill
this task by building an M-Tree [2], which is a special data structure for range queries and
nearest neighbor searches. Building anM-Tree6 requires as input a set of observations (in our
experiment this is the set of all the trajectories from 9 out of the 10 folds, so 900 trajectories)
and a distance function fulfilling the triangle inequality, δ f . This allows to perform a nearest
neighbor search without the need of comparison with all data in the tree.We set themaximum
node size of the M-Tree equal 3. To classify a single trajectory takes on average only 71
distance calculations to step down the tree, and find the nearest neighbor. In comparison,
without the M-Tree (as performed for all but the first column in Table 3) we need to calculate
the distances to all trajectories in the train data, so 900. So we save lots of computation
time, which is also why the runtime for the combination δ f &M-Tree is more than 10 times
faster than for δ. It is worth mentioning that for each distance calculation only one rotation is
necessary (compare Eq. 8), since the time series spanning the tree are already rotated to fit f .
Building the M-Tree involves a certain amount of work, since it requires multiple distance
calculations to setup this data structure. In this experiment we measured 4.4 seconds to set
up the M-Tree for one of the 10 folds, meaning a database of 900 trajectories. However, this
overhead is negligible for classifying a trajectory based on an already existing M-Tree. We

6 We applied the implementation of https://github.com/tburette/mtree which follows the original paper [2]
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Table 3 1st row: Average F1 scores (%) for classifying the trajectories with a 1-NN classifier and 10-fold
cross validation. 2nd row: Average runtime (in milliseconds) for calculating all distances required to classify
a single trajectory

δ f & δ f δ cMass z-norm shape-sgnt arc-ang
M-Tree [19] [12, 16] [24] [3]

F1 0.98 0.98 0.97 0.25 0.85 0.84 0.26

runtime (ms) 20 225 218 3757 574 669 3248

The bold entries emphasise the best results in the presented comparison

conclude, that δ f shows a prediction accuracy just as good, or even slightly better than δ, and
moreover that being a metric is a major advantage for performing a range query or nearest
neighbor search most efficiently.

4.4 Recognizing handwritten symbols

To compare our methods with the distance measures proposed by [19] on a benchmark
trajectory data set, we downloaded time series data from the UCI7 repository consisting of
2858 trajectories describing the movement of a pen when writing 20 different symbols [21].
These trajectories are similar to traditional GPS trajectories. The trajectories consist of the
two dimensions longitude and latitude, and are of different lengths, ranging from 60 to 182
observations. We built a 10-fold cross validation 1-NN classifier based on the same distance
measures as in the previous experiment on synthetic data (Section 4.1), but in a sliding
fashion and take the minimum of all distances if the two compared time series differ in
length. Table 4 summarizes the F1 scores and shows that our proposed Procrustes distance
with fixed reference f and zero-shift operator outperforms the others.

We also measured the computation times for calculating all required distances in this
experiment. The second row of Table 4 shows that our methods outperform the methods
from literature in terms of runtime by a factor of 1.6 to 100.

The problem statement of this experiment differs slightly from the one in Section 4.3. The
trajectories in Section 4.3 are all of the same length, which they are not in this experiment.
Consequently, here we apply another distance measure: Two trajectories are similar, if we
find a good match of the shorter trajectory in the longer trajectory. For this reason we apply
min_s3kr. This experiment showcases the sliding algorithm, and that it is capable of detecting
similar patterns.

Applying anM-Tree here would be possible, however with some complications: Consider
two trajectories x and y, and say x is longer than y, so nx > ny . For the comparison of x and
y we would need to build an M-Tree (we notate this M-Tree as Mxy) out of all the segments
of x of length ny , {x}.,ny . Similar to Section 4.3 this would require the overhead costs of
building Mxy , before finding the most similar segment of x to y, and their distance. Contrary
to Section 4.3, here the overhead costs would not be negligible, because in general Mxy

is of no further usage for comparing x with other trajectories. For comparing x to another
trajectory z, a new M-Tree Mxz would be required out of the segments {x}.,nz if nx > nz ,
or out of the segments {z}.,nx if nx < nz . Only if nz = ny (which is unlikely for real world
GPS trajectories), the former M-Tree Mxy could be reused for comparing x and z.

7 Dua,D.,Graff,C.:UCIMLrepository (2017), https://archive.ics.uci.edu/ml/datasets/Character+Trajectories
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(a) GPS record, starting at the green marker
and ending at purple. The zoomed area
(right) shows the ship at dredging.

(b) Cluster means (red) and char. segments
(black) of the trajectory. One single
right turn (orange dashed) in C3.

Fig. 10 Dredger ship’s GPS trajectory and the clusters describing the ship’s movements. The clusters C1 to
C4 consist of 32, 18, 15 and 3 segchar , respectively

We conclude, that there are use cases for both approaches (M-Tree, and sliding algorithm),
and that our proposed methods can help to efficiently perform rotation invariant pattern
recognition in both situations.

5 Case studies

The following two case studies demonstrate how the TSS algorithm helps to cluster GPS tra-
jectories and detect clusters of similar (rotation-invariant) trajectory segments. These clusters
help to gain higher level knowledge and better understand the data.

5.1 Nautical GPS trajectories

To showcase the algorithm for clustering time series subsequences (see 3.4), we analyzed
historicalGPS tracks from theAISdatabase8. Figure 10 shows an approximately 50kmextract
of a GPS track of a dredger ship in front of the Danish coast, northwestern of Copenhagen.
The record (shown in the left part) starts at the green marker, and ends at the purple marker.
The right part of Fig. 10 zooms in the area where the ship is dredging.

We applied the TSS clustering algorithm fromSection 3.4 on the approx. 2000 overlapping
segments of 500 meters length each. We set k (as we also did in Section 5.2) by visual
inspection to get the full spectrum of distinct movement patterns in the data. Figure 10 shows
that (a) the biggest cluster 1 describes a straight pattern and is mainly formed by the ship
going to the purple marker after finishing the dredging, (b) clusters 2 and 3 describe a left
curve and a left u-turn, (c) cluster 4 is small and consists of only N=3 segchar , (d) the ship
does only one hard right turn, which is the dashed orange line in cluster 3.

The clustering presented in Fig. 10 achieves a value of 92% for the share of the between-
sum-of-squares divided by the total-sum-of-squares ( bsstss ) This means a considerable amount
of the total variation in the data is explained by the clustering.

Applying the TSS algorithm requires the calculation of many time series distances, best
performed in a sliding approach, as the algorithm S3KR proposes. To point out the benefit
of S3KR compared to a brute force approach, we performed this experiment with both
approaches andmeasured the computation time. The calculated distances are identical. S3KR
needs 0.8 seconds, whereas the brute force approach needs 51.4 seconds, so S3KR is about
65 times faster. This points out the major benefit of S3KR compared to a naive method,
especially for analysing big data bases of GPS trajectory data.

8 AIS automatic identification system, https://www.dma.dk. Contains data from the Danish Maritime Author-
ity that is used in accordance with the conditions for the use of Danish public data.
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Fig. 11 Cluster centers for train (upper, red) and tram (lower, green), starting at the bottom, next to the numbers
of characteristic segments forming that cluster

5.2 Urban GPS trajectories

In the final experiment we demonstrate the algorithm for clustering time series subsequences
of a set of time series (see Section 3.4). We recorded GPS tracks while travelling by train (6
trips) and tram/light-rail (9 trips) in Vienna, Austria and Zurich, Switzerland. These 15 trips
have a total length of ca. 185km, split into 18200 segments of 200m each. We aim to discover
distinguished maneuver patterns, rather than splitting the data by the transport modes. That is
why we clustered all the train trips and tram trips separately. Figure 11 compares the results.
For both modes of transport we set k = 9. The upper row shows the red cluster centers for
train, and the lower row in green for tram. As expected some of the clusters are characterized
by straight movements. The prototypical patterns for tram show more variations for turning
movements, especially show angles of higher degrees than for the train. This is reasonable
since the rails for trains are typically shaped differently to those for trams, that are embedded
in the road network. As in Section 5.1 we also measured the ratios bss

tss for the clustering
results in Fig. 11, which are 81% for train and 76% for tram. This is just inline with what
the visual inspection of Fig. 11 shows. We see slightly more variation within some of the
clusters for tram, which means the within-sum-of-squares wss = tss − bss is higher for
tram, consequently less of the total variation is explained by the clustering, and bss

tss is smaller
for tram than for train. The results of this experiment can help a transport mode classifier
model to distinguish transport modes based on recognizing transport mode specific driving
maneuvers.

6 Related work

The unique characteristic of our method is to detect scale-shift-rotation invariant similarities
of subsequences of trajectories. Even though much work has been developed for trajectory
analysis [25], only few discuss rotation invariance, and to the best of our knowledge none
in combination with an algorithm for sliding pattern recognition (1-NN and ε-queries), or
subsequence clustering. In Section 4we compare our proposedmethods with themost related
methods from literature [3, 19, 24] and a baseline method for time series analysis [12, 16].
We outperform these in accuracy and computation time in our experiments. In the following
we give further details about these methods.

The work by [3, 19] both present approaches to project 2-dimensional trajectories in
the arc-angle space. Vlachos et al. [19] propose three different algorithms to calculate the
angles: ’Exact’, ’Relative’ and ’cMass’. Their results showed the best performance for cMass,
which we also observed in our experiments in Section 4. Feuerhake [3] apply their methods
to identify similar trajectories of ball sport athletes. They split trajectories into disjunct
segments, contrary to our sliding approach. As Procrustes analysis origins from analysing
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shapes, we also compared our methods with the shape signature, a method often applied
in shape recognition, as e.g. [24]. A shape signature is a representation of a multivariate
time series as the one dimensional time series of the Euclidean distances of the original
observations to a center point, typically the mean or gravity center.

In literature [12, 16] it is popular to apply the z-normalization before performing time
series clustering or classification based on distance measures as e.g. the Euclidean distance
or DTW. Section 4 demonstrates how this baseline method performs well on traditional time
series, but struggles with recognizing similarities independent from rotation.

More recent works such as [1] focus on queries in databases, or [11] discuss different
distance measures for trajectories, but they do neither discuss sliding approaches, nor how to
cluster overlapping segments of trajectories. Also [18] compare different similarity measures
for trajectories after scaling, shifting and rotating so that the first andfinal points of trajectories
are fixed to each other. This step is not described detailed enough so that we could not include
their method in our experiments.

Gawde and Pawar [4] present a method to represent a trajectory by multiple non-
overlapping and non-intersecting polygons, which is hardly compatible with our sliding
approach for the use case of analysing long trajectories as e.g. Fig. 10 shows. Apart from
the polygon representation [4] also apply turning functions to represent the polygons in the
arc-angle space, similar to [19], which we included in our experiments in Section 4. Yu et al.
[22] elaborate the clustering of contemporary trajectories and therefore only define a simi-
larity measure for trajectories whose recordings overlap in time, which clearly deviates from
our methods. Vochten et al. [20] propose a generalized demonstration of motion trajectories
in the field of robotics. They search for similar trajectories to a query trajectory by solving
an optimal control problem, formulated as a non-convex NLP problem.

We propose a sliding algorithm that runtime-efficiently calculates the Euclidean distance
after transformations to be rotation-scaling-shift invariant. Replacing the Euclidean distance
by another distance measure would require to replace the Euclidean distance in the formulas
(5), (8) and (9). Applying specifically DTW–DTW is a very popular distance metric for time
series analysis – would limit the applicability of our proposed sliding algorithm, and so of the
TSS clustering algorithm, since the runtime complexity of the Euclidean distance is O(n),
and for DTW it is between O(n2) and O(n×w), where n is the time series length andw is the
window size parameter (see e.g. [15]). Further, when applying DTW, our proposed sliding
algorithmwould require adjusted logic for early abandoning similar to [8] or [13]. Finally the
sliding algorithm would need major adjustment for integrating the rotation-scaling-shifting
transformation and a runtime efficient incremental computation of theDTW, as e.g. presented
by [10]. We conclude that in general our proposed method can be adjusted to integrate other
time series distance methods instead, but see it out of the scope of this paper and leave it
open for future work.

We summarize that our approach of sliding Procrustes analysis is novel and compared our
methods to those most similar from literature.

7 Conclusion

We proposed a novel shift-scale-rotation invariant distance metric for motion trajectories
based on Procrustes analysis. Further, we presented the novel algorithm S3KR, to slide
the distance calculation along a longer trajectory and detect characteristic recurring motion
patterns. Based on the distancemetric and the sliding algorithmwe also presented a novel time
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series subsequence clustering algorithm based on spectral clustering. We demonstrated our
methods to outperform the benchmark on synthetic data and a UCI benchmark trajectory data
set, in performance (8% to 58%) and runtime (by a factor of up to 470). Also,we demonstrated
the benefit of our proposed shift-scale-rotation invariant distance measure being a metric, by
applying it in anM-Tree [2] and accelerating the search by a factor of more than 10 compared
to the brute force search. Finally we applied our methods on GPS trajectories recorded when
travelling by car, train, tram, or ship, to cluster these data and discover prototypical patterns
for different transport modes. Our methods can be applied on spatial-temporal trajectory
data from various domains for an enhanced understanding of motion content and to gain
deep information about typical recurring maneuvers, and so support applications as activity
recognition, transport mode identification, automated ticketing, analysis of athletes andmany
more.
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Appendix A: Trajectory simulation

For the experiments in Section 4 we simulate 2-dimensional trajectories. The goal was to
simulate random walks that resemble motion patterns recorded by a GPS device carried by a
person or vehicle in a real world scenario. The following formulas attempt that by defining the
angle for updating the orientation of the trajectory dependent on its own past. The simulated
trajectory x is then randomly modified by adding white noise, a random rotation, scaling and
translation. The standard deviation σu for simulating the white noise u proved in experiments
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Fig. 12 Two examples of simulated trajectories. The upper left figure shows the first example and the random
modified version on the upper right hand side. The second example is in the lower two figures. The red points
indicate the initial positions of the trajectories

to be a crucial parameter, as Section 4.1 discusses.

x0 =
(
0
0

)
, xi = xi−1 +

(
cosβi
sin βi

)
· |arclengthi |

α0 = β0 = 0

αi = αi−1 + zi

βi = βi−1 + αi

yi =
(
cos γ − sin γ

sin γ cos γ

)
·
(
xi1 + ui1
xi2 + ui2

)
· |scalefac| +

(
trans1
trans2

)

zi , ui , arclengthi , transi and scalefac ∼ N (0, 1)

ui ∼ N (0, σu)

γ ∼ U (1, 360)

(17)

Figure 12 shows two examples of simulated trajectories, and their random modifications
according to (17) with σu = 0.6.

Appendix B: ıf is a metric

Theorem 1 δ f is a semimetric, such that it fulfills for any x , y, z: δ f (x, y) ≥ 0, δ f (x, y) =
δ f (y, x), and δ f (x, y) ≤ δ f (x, z) + δ f (z, y).
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Proof Since the Euclidean distance dE (induced by the Euclidean norm ||.||) is metric, also
δ f (x, y) ≥ 0 for any x and y. The symmetry follows directly from the definition. Let
x∗ = γ (τ(x)):

δ f (x, y) ≤ δ f (x, z) + δ f (z, y)

dE (x∗ · R︸ ︷︷ ︸
a

, y∗ · S︸ ︷︷ ︸
b

) ≤ dE (x∗ · R︸ ︷︷ ︸
a

, z∗ · P︸ ︷︷ ︸
c

) + dE (z∗ · P︸ ︷︷ ︸
c

, y∗ · S︸ ︷︷ ︸
b

).

Since a to c are inRn×m , and independent from each other, and since dE is metric, the triangle
inequality holds for δ f . �

The last statement is not true for the distance function δ, since the rotation matrices S on
the left side to rotate y to fit x , would be different from the rotation matrix on the right hand
side to rotate y to fit z. So, compared to δ, δ f has the major advantage of fulfilling the triangle
inequality. Consequently δ f is applicable to build database structures as e.g. an M-Tree [2],
that enables fast k-NN and range queries9.

It follows from its definition that δ f is an equivalence relation, and that in the space of all
equivalence classes induced by δ f , δ f is metric. So δ f (x, y) = 0 ⇔ x and y are equal after
scaling, shifting and rotating to fit f .
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