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Abstract

This thesis explores the application of machine learning (ML) techniques for
phenotyping using multispectral and multitemporal airborne data, focusing on
the identification of yellow rust in wheat. The primary aim is to evaluate the effi-
cacy of aerial ML-based phenotyping as an alternative to traditional in situ meth-
ods. A pioneering aspect of this study is the creation of a novel dataset compris-
ing time series multispectral images, each depicting an experimental plot within
a wheat field, alongside corresponding yellow rust disease scores provided by
experts. A comparative analysis is then conducted between various basic ML
models and deep learning models to predict yellow rust using the dataset. Our
findings reveal the challenges faced by basic ML models in accurately predicting
yellow rust, contrasting with the promising results achieved by a deep learning
model utilising the ResNet34 feature extractor. These results underscore the po-
tential of ML approaches in remote phenotyping for plant breeding, particularly
when integrating deep learning models with attention mechanisms. The study
provides valuable insights into remote phenotyping techniques, with implica-
tions for enhancing disease monitoring and crop management practices. How-
ever, further refinement is necessary. The observed lower performance on one
of the test sets suggests a scarcity of data essential for ensuring model robust-
ness and generalisation capabilities. Future research could explore additional
spectral indices and automated spectral band selection. Finally, with more data,
the model could also be trained to be more robust to arbitrary time steps, a crit-
ical property for its practical usability.
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1 Introduction

The issue of global food security is becoming increasingly pressing as the world’s pop-
ulation is projected to double its demand for crop production by 2050, as reported
by Ray et al. 2013. However, the agricultural industry faces a formidable challenge to
meet this surge in demand. As reported by Ray et al. 2012, crop yields would need to
increase at 2.4% per year, exceeding the current average increase rate of 1.3%. More-
over, up to 40% of land under cereal production has experienced stagnant yields and
climate change intensifies severe drought phenomena and flooding. Despite signif-
icant advances in breeding and agronomy over the past 50 years, achieving such an
ambitious goal remains an uphill battle.

Fortunately, as Araus and Cairns 2014 suggests, machine learning and remote
sensing techniques may provide valuable assistance in tackling this complex chal-
lenge. With their ability to acquire and analyse vast amounts of data, these technolo-
gies can provide critical and accurate insight into the state of crops, as illustrated in
Gracia-Romero et al. 2019. This, in turn, can enable more effective and targeted inter-
ventions, such as precision agriculture (PA), which can contribute to increasing crop
yields. Those technologies can also provide another key insight: phenotype trait pre-
diction. This becomes particularly valuable since ongoing advances in breeding tech-
niques offer the potential to significantly accelerate crops’ genetic improvement rate.
In particular, remote sensing and machine learning now allow breeders to select the
best crops, while research on the genetics of quantitative traits, such as yield, water
stress, and resistance to fungi, has proven highly effective, as demonstrated in previ-
ous studies such as Gracia-Romero et al. 2019 and Oerke 2020. These breakthroughs
in breeding and genetics have the potential to transform the agricultural industry by
enabling breeders to develop crops that are better adapted to challenging growing
conditions and more efficient in their use of resources. Therefore, these tools hold
great potential in tackling the pressing challenge of global food security amidst the
impact of climate change.

1.1 Project Description

In this particular context, the Lower Austrian state government initiated a project
to enhance the yield of Winter Wheat. The project, spanning three years, involves
technical assistance from the Austrian Institute of Technology (AIT) and the exper-
tise of Saatzuch Edelhof, a long-standing private entity renowned for conducting field
breeding experiments. The primary goal of the project is to identify suitable genetic
material for the field experiments planned in the second and third years. To achieve
this objective the various research entities have different roles.

Saatzuch Edelhof oversees soil preparation, seed preparation, planting, fertilisa-
tion, irrigation, and harvesting during field experiments, as well as recording weather
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data via mobile weather stations.
The AIT provides drone technology to enable fast collection of RGB, multispec-

tral, and thermal image data over large-scale fields. Airborne data is acquired every
two weeks for three years during the growing season, depending on the weather. Fur-
thermore, the AIT offers data processing pipelines and predictive tools to automate,
improve, and expedite the process of predicting phenotypic traits during field exper-
iments. The overall role is to define and create a standardised way of acquiring and
processing agricultural time-series data.

In this framework, the thesis comprises two distinct parts, partially covering one
project work package. In the first part, field data, specifically airborne multispectral
and Red, green, and blue (RGB) band data will be prepared for machine learning anal-
ysis. The second part involves using statistical methods to analyse the refined field
data to unveil fundamental relationships and dependencies. One machine learning
pipeline is deployed in the subsequent stages. This pipeline will predict a pheno-
typic trait: the yellow rust disease scores. Experimental activities will be carried out
in Obersiebenbrunn, focusing on the study of 1062 field lines of winter wheat, as il-
lustrated in Figure 1.

Figure 1: RGB-encoded orthorectified image mosaic of the Edelhof facility obtained
with Pix4D.
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1.2 Fungi Infection and Disease Score

The phenotype under investigation in this thesis is the disease score, which is re-
lated to the health assessment of winter wheat crops affected by yellow rust (Puccinia
striiformis, also known as stripe rust). Disease scoring involves a thorough visual in-
spection, meticulously examining parameters such as the colour, texture, and size of
leaves and stems.

This crucial task is carried out by the professionals stationed at the Edelhof facil-
ity. The results are translated into a disease score scale that ranges from 1 to 9. This
scoring system offers a comprehensive representation of the extent of disease infes-
tation within the plants. A score of 1 signifies plants unaffected by any biotic stress,
while a score of 9 corresponds to plants experiencing severe disease symptoms. A
detailed explanation can be found in Appendix A. It’s important to note that distinct
disease scores can be assigned to different plant diseases, tailoring the assessment
to the specific context.

In this particular study, the disease scoring system chosen adheres to the Austrian
standard and is advocated by the AGES (Austrian Agency for Health and Food Safety).
Detailed information on this scoring system can be found in the Appendix (see Ap-
pendix A), providing the reader with a comprehensive understanding of the evalua-
tion methodology and criteria. This comprehensive approach to disease scoring en-
sures a well-rounded analysis of the impact of yellow rust on winter wheat crops and
serves as a foundation for the learning objectives of this thesis.

The ability to visually recognise the distinctive pustules of yellow rust on winter
wheat leaves suggests the potential applicability of machine learning models for the
same task. These recognisable features visible in the RGB bands provide valuable
data that can be used to train algorithms to autonomously identify and classify dis-
ease symptoms accurately (Su et al. 2021, Mi et al. 2020). By bridging traditional visual
assessment with modern machine learning, there is an opportunity to enhance dis-
ease detection efficiency and objectivity, advancing crop management practices and
boosting operational speed.

Moreover, the use of multispectral data adds another layer of potential to the de-
tection of diseases in crops, as proved by Franke and Menz 2007. Multispectral imag-
ing captures information beyond the visible spectrum, enabling the differentiation
of subtle variations in plant health and disease development that might not be dis-
cernible to the naked eye.
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1.3 Research Question

The main objective of this thesis is to investigate the viability of ML-based aerial phe-
notyping as a substitute for traditional in situ data phenotyping for disease scores.
The research question that this thesis addresses is:

"To what extent is aerial ML-based phenotyping a viable
alternative to traditional in situ phenotyping?"

This research question holds significant importance, considering the potential of
machine learning to support agronomists in measuring resource-intensive and time-
consuming phenotypic traits. The emphasis of this thesis lies in introducing a novel
element to the airborne phenotyping task—time series analysis. To narrow the scope,
the investigation focuses on a single phenotype: the yellow rust disease score.

To comprehensively address the primary research question, it is essential to dive
into various interconnected subquestions. These subquestions encompass the ex-
ploration of optimal techniques for preparing raw remote sensing data, the identifi-
cation of effective algorithms for accurate disease scoring prediction, a study on the
general capabilities to scale a phenotyping approach and how to convey temporal
information into a machine learning model.

"How can remote sensing image data be transformed and
aggregated to extract characteristics for predicting disease

scores?"

The effective handling of raw drone-acquired data is a crucial consideration, laying
the groundwork for the development of a robust machine learning model to address
the primary research question. AIT’s drones, equipped with an Altum camera, cap-
ture thermal and multispectral images at an altitude of 60 meters, resulting in a sub-
stantial dataset of approximately 50 GB per acquisition. These images span various
bands, including RGB, panchromatic, Long Wave Infrared (LWIR), and Near Infrared
(NIR).

Processing this voluminous dataset involves indispensable steps such as radio-
metric calibration, orthonormalisation, rectification, and translation into a structured
format suitable for machine learning. Moreover, taking advantage of the resulting
raster structure, the normalised vegetation index (NDVI) is a crucial parameter to be
computed (Wójtowicz et al. 2016). Managing photogrammetric processing is stream-
lined with Pix4D, a commercially available tool adept at handling high-resolution,
large-scale images suitable for machine learning pipelines (Rasmussen et al. 2016).
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Leveraging Pix4D facilitates the acquisition of a set of geographically coherent re-
flectance maps. An illustrative example of an aerial image obtained through Pix4D
is depicted in Figure 1.

Conversely, the latter part of this investigation entails the use of QGIS and the
Pillow Python library to efficiently manage and visualise georeferenced data. This
process includes associating a raster with each experimental plot, leading to the ex-
traction of sub-images from the reflectance maps. These sub-images contribute to
the creation of a geographically coherent stack of multispectral maps, commonly re-
ferred to as multispectral cubes.

This subquestion stands as a foundational centrepiece for aerial machine learning-
based phenotyping, enabling the precise extraction of essential characteristics from
aerial data. The incorporation of advanced techniques and tools enhances the via-
bility of aerial-based phenotyping as a potential alternative to labour-intensive tra-
ditional in situ methods.

"To what extent can predictions of yellow rust scores be made
effectively using images acquired by mid-altitude UAVs, compared
to data obtained from both low-altitude UAV and handheld image

captures?"

This subquestion is directly aligned with our primary research objective, focusing on
a crucial aspect of the viability of aerial machine learning (ML)-based phenotyping.
The choice of unmanned aerial vehicle (UAV) altitude is pivotal in gauging the practi-
cality and effectiveness of our approach. The current body of literature encompasses
diverse approaches for wheat plant phenotyping, ranging in complexity. Notably,
studies such as Mi et al. 2020 and Koc et al. 2022 employ on-site image data from field-
level tools, showcasing the effectiveness of machine learning methods in addressing
predictive challenges.

Conversely, other methodologies rely on low-altitude UAV flights. For instance,
Zhang et al. 2019 utilise hyperspectral data collected at a low altitude of 30 meters to
successfully predict the presence of yellow rust. Our contribution aims to emphasise
the potential for yellow rust prediction through flights at an altitude of 60 meters.
Although challenging, the use of pre-trained image models, such as ResNet, could
tackle this challenge effectively. In fact, the initial layers of this model excel at detect-
ing low-resolution patterns, which is particularly relevant for higher-altitude flights.
If successful, this approach could provide a valuable tool to bridge the gap and scale
our methodology to an industrial level, enabling a faster and less data-burdensome
approach to large-scale yellow rust prediction.

"How can we effectively predict phenotypic traits in crops,
particularly focusing on disease scoring, considering the trade-off

between model simplicity and complexity?"
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In the pursuit of precise prediction of phenotypic traits in wheat, with a specific em-
phasis on disease scoring, a critical focus is on striking a delicate balance between
model simplicity and complexity. In alignment with an iterative framework advo-
cated in the literature (Virnodkar et al. 2020, Singh et al. 2018, Nguyen et al. 2023), our
research is geared towards establishing a systematic approach. We initiate the pro-
cess by constructing foundational models utilising well-established machine learn-
ing techniques, specifically linear regression, Support Vector Machines (SVMs) and
Random Forests (RFs), aiming to create a robust baseline. This foundational frame-
work, anchored in the recognised efficacy of simpler models for distinct facets of phe-
notypic trait prediction, is further reinforced by insights from Nguyen (Nguyen et al.
2023), endorsing the practicality of SVM and RF models in crop phenotyping. Signifi-
cantly, we emphasise a comprehensive evaluation of the performance of these basic
models against deep learning methods, particularly Convolutional Neural Networks
(CNNs). This research approach underscores our commitment to discerning the rel-
ative efficacy of conventional and advanced methodologies, contributing substan-
tially to the ongoing discourse in the field of crop science.

"In the context of evaluating the viability of aerial machine
learning-based phenotyping as an alternative to traditional in situ
phenotyping, how can a machine learning model be designed to
validate its performance, leveraging domain-specific agricultural

knowledge?"

For robust generalisation in machine learning models, evaluating the significance
of internal feature maps is crucial, especially when considering the temporal dimen-
sion. In our latest deep learning architecture, we introduce an attention mechanism,
inspired by neuroscience concepts (Zhao et al. 2018), to address this challenge. This
mechanism computes a weighted sum of time and space feature maps. Additionally,
we incorporate sparse L1-norm regularisation to penalize the model based on these
weighted sums, optimising channel weights and mitigating overfitting. This reduc-
tion in features not only enhances model training efficiency but also acts as a strate-
gic defense against overfitting. The attention mechanism enables adaptive selec-
tion of influential input features, providing a dynamic framework for testing domain-
specific hypotheses. This approach empowers machine learning practitioners and
agronomists to systematically explore the decision-making process within the model
by granting autonomy to determine the relative importance of spatial and temporal
components.

1.4 Contribution

Our thesis aims to explore the potential advantages of incorporating multispectral
information for yellow rust characterisation using UAV-based multispectral images.
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What sets our study apart is the acquisition of expert assessment ground truth data
during Edelhof’s scoring campaign, a methodologically crucial element that is both
challenging to obtain and expensive to carry out.

The usage of ground control points significantly enhances geolocalisation preci-
sion. This precision enables us to precisely select the portion of the field where crops
are growing without the need for a preliminary NDVI analysis to differentiate between
soil and plant areas, as done in the study by Zhang et al. 2019.

Adding to this, our research introduces a novel element with a comprehensive
dataset spanning the entire growth cycle, captured at a high temporal resolution of
two weeks. This design not only expands the incorporation of time complexity into
our network, initially introduced by Wang and Ma 2011, but also facilitates the cap-
ture of dynamic changes in plant development and physiological characteristics over
time. Using data from different growth stages allows us to explore the contribution
of each stage to prediction accuracy and gain insight into the relative importance of
growth stages in determining plant phenotypic traits.

To our knowledge, the integration of multispectral and thermal data, coupled
with an in-depth analysis of the complete growth cycle, remains novel in the con-
text of automated phenotyping for yellow rust score prediction. Our research aims
to fill this gap and offer valuable insights into the feasibility, potential benefits, and
implications of these approaches.

Despite the ongoing advances in deep learning techniques, basic methodologies
continue to provide effective tools for predicting phenotypes. The decision to employ
machine learning methods for prediction tasks depends on factors such as technical
capabilities, computational resources, and monitoring infrastructures. Notably, ba-
sic correlation methods can still yield accurate predictions, as discussed earlier. Our
scientific challenge lies in investigating whether a basic approach could suffice to pre-
dict the abundance of yellow rust based on a ground-truth target.

We anticipate a significant challenge arising from the relatively restricted dataset,
encompassing a total of 1064 expertly assessed scores along with their associated
spectral measurements. This limitation poses a hurdle in crafting a well-generalising
model. Nevertheless, we intend to surmount this obstacle by employing a combi-
nation of anti-overfitting techniques. Our goal is not only to address the immediate
challenge but also to propose an approach that can be adopted in subsequent stud-
ies. We aim to provide a clear and reusable pipeline for creating a training dataset
and effectively training it.

The project encompasses significant challenges in terms of data management
and extraction, particularly considering the influence of time and geographical fac-
tors. Our approach offers a potential advantage compared to others, as we aim to de-
velop machine learning tools that have the potential to predict disease scores through-
out the entire wheat plant growth cycle, without relying solely on commonly used
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data sets and offering new avenues to scale up phenotyping in large-scale fields.

1.5 Structure

The subsequent chapters feature a comprehensive review of the literature, accompa-
nied by a detailed explanation of the tools used in this study. Subsequently, we will
thoroughly account for the data acquisition and processing methodologies. More-
over, we will conduct a benchmark comparison between the restricted and unre-
stricted datasets, followed by a comprehensive evaluation of the machine learning
outcomes. Lastly, we will discuss the findings of this study and explore further av-
enues for research and insight generation.
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2 Related Work

The following sections provide an overview of the scientific context of this thesis. We
will begin by presenting a historical background on remote sensing and its signifi-
cance in ecological research. Subsequently, we will explore the applications of un-
manned aerial vehicles (UAVs) in remote sensing for agricultural purposes, highlight-
ing the comparison between traditional phenotype acquisition methods and remote
sensing-based approaches. Finally, we will delve into the emergence of novel ma-
chine learning techniques for yellow rust prediction, with a focus on the indispens-
ability of deep learning in UAV-based applications. Emphasis will also be placed on
the importance of time series analysis within the machine learning framework.

2.1 Satellite Remote Sensing

Remote sensing, the process of scanning the Earth using satellites or high-flying air-
craft to gather information, has witnessed significant development since the 1960s.
As Slotten reports (Slotten 2002), the space race between the Soviet Union and the
United States played a crucial role in advancing satellite technology. Initially driven
by the need for intelligence and military surveillance, satellite-based remote sensing
technology rapidly evolved, as extensively discussed by Cloud and Clarke (Cloud and
Clarke 1999). In 1957, the Soviet Union launched Sputnik 1, the world’s first artificial
satellite, followed by the successful launch of Explorer 1 by the United States in 1958.
These groundbreaking events marked the inception of satellite-based remote sens-
ing and laid the groundwork for subsequent advancements in the field. Following the
successful launch of TIROS-1, the inaugural meteorological satellite in 1960, a notable
milestone was achieved, allowing for the capture of images that facilitated ecological
and geographic research. Subsequently, the United States embarked on the ground-
breaking Landsat program in 1972, marking the initiation of the first Earth resource
satellite initiative (Wulder et al. 2019). This program was designed to gather data from
the Earth using remote sensing techniques. Over the past 45 years, the Landsat pro-
gram has been ongoing, culminating in the launch of its most recent satellite, Landsat
8, in 2013.

Initially focused on military operations, remote sensing quickly found its way into
civil research. In fact, since the Landsat 1 launch in 1972, remote sensing has under-
gone remarkable advancements. Today, the field has experienced a transformative
evolution, with a multitude of satellites orbiting the Earth, equipped with cutting-
edge sensors and imaging technologies. These advances have revolutionised remote
sensing capabilities, enabling precise and comprehensive data collection and analy-
sis across various applications.
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2.2 Emergence of UAV Remote Sensing

The reliability of satellite technology has paved the way for the development of use-
ful tools such as the Google Maps satellite view. However, the limitations of this tech-
nology become apparent when higher image resolutions are required. While high-
resolution satellites like QuickBird, which was operational till 2015, offered resolu-
tions of up to 0.6 meters 1, commonly used satellite networks like the European Sen-
tinel operate within a spatial resolution range of 10 to 60 meters. The WorldView fleet,
on the other hand, provides commercially available panchromatic imagery of 0.46 m
resolution, and eight-band multispectral imagery with 1.84 m resolution represent-
ing one of the highest available space-borne resolutions on the market (E.S.A. 2023),
although expensive. Those satellite networks play a crucial role in covering expan-
sive areas surpassing high-resolution satellites’ coverage capability. This is primarily
due to the operational costs associated with the latter; this trade-off is illustrated by
Valenzuela (Valenzuela et al. 2022).

An active line of research in the field is currently trying to further enhance that
measures1, that are not costly or publicly available, using Enhanced Super-Resolution
Generative Adversarial Network (ESRGAN). ESRGAN, a deep learning model based
on Generative Adversarial Networks (GANs), enhances image resolution by training
a generator network to generate high-resolution images from low-resolution inputs,
ultimately producing visually appealing results (Salgueiro Romero et al. 2020). Yet
again, the results in this field are noteworthy. For example, an image acquired with a
resolution of 10 metres is enhanced by a factor of 4 (Soufi and Belouadha 2023). Since
the information is synthetically generated, some domain-specific high-resolution op-
erations might still encounter difficulties and challenges with this approach. Even
acknowledging those performances, they are not sufficient for several modern-day
tasks. In the larger context of ecological research, there are many cases where even
higher resolutions are needed. For example, to count canopy heads in a wheat field
(see Ma et al. 2022) or to monitor and classify wetland areas (Martins et al. 2020).

In the case of counting canopy heads, the small size and close proximity of the
heads make their identification and enumeration a complex undertaking. Similarly,
in the context of monitoring wetland areas, the detection and classification of smaller
patches require higher-resolution images to ensure comprehensive coverage and ac-
curate identification.

In this context, the use of Unmanned Aerial Vehicle (UAV) scanning has emerged
as a pivotal technique for acquiring high-resolution images. This topic has been ex-
tensively explored in the past two decades and documented in the comprehensive
study conducted by Alvarez (Alvarez-Vanhard et al. 2021). By strategically controlling
the flight altitude of the UAV, researchers can capture images at remarkably fine reso-
lutions, enabling them to obtain complex and detailed visual data. Resolution is not

1This is an important line of research, and this introduction reports that as insight and not as its goal
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the sole advantage derived from the implementation of this technology. There are
other significant benefits, such as the ease of acquiring the data without the need for
costly bookings of measurements. Additionally, the measurements can be conducted
with flexibility, taking advantage of favourable weather conditions.

However, this approach still presents limitations, for instance, stable weather con-
ditions are required to ensure uninterrupted drone flight, as gusts of wind can disrupt
operations. Furthermore, for extensive applications, the battery capacity of the drone
may present challenges. However, ongoing research is actively addressing this prob-
lem through the optimisation of pathing options and battery replacement techniques
(Saha et al. 2011). The exponential increase in data volume resulting from finer im-
age resolution poses notable limitations. As captured images become finer in resolu-
tion, the volume of data expands exponentially, giving rise to significant challenges in
storage, transmission, and computational requirements. Managing and processing
such substantial data necessitates careful consideration of storage capacities, data
transfer bandwidth, and computational resources. Practical implementations often
confine operations within a resolution range of 1 meter to 1 centimetre. This range ef-
fectively balances the capture of fine-grained details with the constraints associated
with data size and processing capabilities (Aasen et al. 2018).

The integration of UAVs in the field of image acquisition and analysis exhibits sig-
nificant promise (Nex et al. 2022). Leveraging the potential of UAVs allows researchers
to unlock high levels of spatial detail in large-scale applications, providing better im-
ages to characterise the phenomena under investigation. Consequently, further ex-
ploration of UAV-based acquisition methodologies represents an avenue for advanc-
ing the field of precision agriculture and phenotyping.

2.3 Precision Agriculture

Precision agriculture, a term that emerged in the 1980s, has since gained significant
recognition as a transformative scientific discipline. This multidisciplinary field en-
compasses the integration of technologies and principles aimed at enhancing crop
performance while simultaneously mitigating environmental impact. In practice, pre-
cision agriculture research aims to establish a decision support system (DSS) for com-
prehensive farm management, focusing on optimising input returns while simulta-
neously safeguarding resources and mitigating pollution (Ceccarelli et al. 2022). One
particular area of interest within this field is phenotyping, which has witnessed no-
table advancements in automation. In traditional agricultural practices, crop state
assessment is based primarily on indices and manual measurements. However, the
advent of automated airborne phenotyping has introduced a range of benefits over
conventional approaches. Foremost among these advantages is its high-throughput
capability, enabling rapid data collection across large numbers of plants. By bypass-
ing the phenotyping bottleneck that often hinders breeding programmes, this tech-
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nology accelerates the pace of genetic gain (Gill et al. 2022). 2

Following the overview proposed by Xie (Xie and Yang 2020), automated remote
phenotyping has several important advantages. A key benefit is its non-destructive
nature, which allows repeated measurements on the same plants over time. In con-
trast, traditional methods can be laborious, time-consuming, and costly and might
require the destruction of the plant to analyse it. The use of automated airborne phe-
notyping also facilitates the acquisition of high-resolution data, which is essential for
evaluating and selecting the most promising cultivars in crop breeding and pheno-
typing and identifying biotic and abiotic stress sources, like pests or water scarcity.
Additionally, this technology contributes to improved accuracy by enabling the iden-
tification of crucial genes to enhance photosynthesis and reduce overall stress. As
the crop phenotype emerges from the intricate interplay between genetic makeup
and environmental factors, the high-throughput nature of remote sensing serves as
a tool for the timely detection and monitoring of crop responses.

At the beginning of the 20th century, precision agriculture’s full potential had yet
to be realised due to inadequate consideration of the space-time continuum in crop
production, which adds complexity to its implementation (Pierce and Nowak 1999).
However, considering advances in both remote sensing technology and automation,
significant progress has been made in the past two decades to increase acquisition
rates and the resolution of acquired images. Moreover, the new airborne and space-
borne platforms acquire images that are processed by software capable of adapting,
rectifying, and radiometrically calibrating raw images, boosting their overall quality.
Concurrently, a new set of best practices has emerged (Ozdogan et al. 2010), provid-
ing comprehensive and timely coverage of agricultural fields and exploring the value
of archived data for temporal image comparisons. Within this context, machine learn-
ing has naturally found a role, further enhancing the phenotyping capabilities of pre-
cision agriculture tools.

2.4 UAV Sensors for Precision Agriculture

UAV-based phenotyping incorporates various sensors, including multispectral, ther-
mal, hyperspectral, and standard RGB. These sensors enable a range of applications
in agriculture.

Multispectral data collected by UAVs offer significant advantages, allowing farm-
ers to effectively monitor crop health and stress (Virnodkar et al. 2020), detect dis-
eases and pests promptly (Prabhakar et al. 2011), and optimise crop yields (Zhou et al.
2021). Unlike traditional RGB images, multispectral data capture information across
different spectral bands, including green, red, and near-infrared (NIR). This enables
the calculation of vegetation indices such as NDVI and GNDVI. Using these indices,

2Note that increasing the pace of genetic gain is the ultimate goal of the WheatVIZ project
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farmers can identify areas of the field that experience stress or exhibit low vegetation
density.

Hyperspectral remote sensing plays a role in solid monitoring, in particular: min-
eral identification, nutrient, organic carbon, moisture, salinity, and soil texture of
agronomic and ecological systems (Yu et al. 2020). Hyperspectral sensors typically
operate in the visible and near-infrared (VNIR) wavelength range of 450 nm to 10,000
nm. Nevertheless, some applications cover a wide spectral range, ranging from ultra-
violet (0.35 µm circa) to thermal infrared (12 µm circa).

Thermal remote sensing, conducted predominantly within the wavelengths of 3-
5 µ m and 8-14 µ m, has potential, as it is a method to assess leaf pathogens by mea-
suring the temperature of plant leaves(Oerke et al. 2005).

UAVs can be used to generate an orthomosaic (referred to as reflectance maps
alternatively), a high-resolution georeferenced image created by combining multiple
aerial or satellite images of a particular geographic area.

2.5 Machine Learning for Precision Agriculture

This subsection comprises two distinct segments. The first part involves an explo-
ration of common practices and techniques utilised in precision agriculture that lever-
age machine learning. The second part focuses on a review of specific approaches
used in predicting yellow rust.

2.5.1 Machine Learning in Phenotyping

Machine learning plays a pivotal role in the agricultural revolution (Tantalaki et al.
2019). It empowers machines to learn and make predictions without explicit pro-
gramming. Combined with modern sensors and high-tech machinery, machine learn-
ing offers diverse applications in agriculture. According to Sharma et al. 2020, these
applications include predicting soil parameters such as organic carbon and mois-
ture content and plant parameters, such as crop yield, diseases and water status.
While the traditional methods employed by plant breeders can monitor important
vegetation parameters, they may suffer from inherent approximations and compro-
mised accuracy. One widely used method is the analysis of the Normalised Differ-
ence Vegetation Index (NDVI) (Huang et al. 2021). The NDVI calculates the ratio be-
tween the "red" spectral band (600-700 nm) and the "near infrared" spectral band
(700 - 1300 nm), leveraging the reflection or absorption characteristics of vegetation
in these bands. Through the NDVI, essential parameters such as leaf area index (LAI)
or chlorophyll content can be derived through correlations. However, machine learn-
ing techniques can be employed for a more precise determination of these parame-
ters. Deep learning methods outperform basic approaches in phenotyping due to
their ability to handle vast amounts of noisy and diverse data (Ansarifar et al. 2021).
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These techniques provide rapid and precise analysis crucial for high-throughput phe-
notyping. For example, Li et al. 2019 achieved an r-square3 score of 0.84 using a
random forest predictor for leaf area index estimation from images acquired by un-
manned aerial vehicles (UAVs), getting a better measurement than a correlation with
the NDVI.

Furthermore, deep learning approaches can generate predictions for intricate and
uncertain phenomena, which is essential in plant stress phenotyping from both biotic
and abiotic sources. This, along with advancements in computational capabilities,
has led to the prominence of deep learning methods. Deep learning, coupled with
computer vision, facilitates the classification of crop images, enabling monitoring of
crop quality and assessment of yield and water stress (Wang et al. 2023; Chandel et al.
2022). Convolutional neural networks (CNNs) play a crucial role in image-processing
machine learning pipelines, particularly in feature extraction. The convolution oper-
ation, achieved through the application of filters to small regions of input data, gener-
ates feature maps that capture local patterns and structures. This spatial information
helps the network learn important features and extract higher-level representations,
which is valuable in precision agriculture applications. Ansarifar et al. 2021 proposed
a model stating that: "plant phenotype is determined by genotype (G), environment
(E), management (M), and their interactions (G × E × M)". Deep learning methods ex-
cel in capturing the inherently nonlinear interactions among these variables. Singh et
al. 2018 reviewed various deep learning architectures, such as AlexNet, GoogLeNet,
VGG CNN, and Inception-v3, that have been successfully employed to identify and
classify diseases and stresses in plants. To address the challenge of training large
deep models, transfer learning and fine-tuning techniques have been utilised, en-
abling high accuracy even with limited training datasets. Deep learning models have
been successfully applied to detect diseases and pests in different crops, including
tomatoes, apples, soybeans, and cassava. For instance, Mohanty et al. 2016 trained a
deep CNN using a publicly available dataset of 54,306 images of diseased and healthy
plant leaves, achieving an accuracy of 99.35% in identifying 14 different crop species
and detecting 26 diseases on a separate test set. Deep learning models have also been
developed for quantifying plant stress severity and predicting water stress. Giménez-
Gallego et al. 2019 proposed an automatic drought detection system for the middle
growth stage of maize, utilising Gabor filters for texture feature extraction and a con-
volutional neural network for feature extraction and classification. The experimental
results showcased an average recognition rate of 98.84%. In the review by Zhou et al.
2021, which focused on modelling crop water stress, basic statistical regression meth-
ods were found to have limitations due to the non-linear relationship between the
crop water stress index (CWSI) and physiological indicators. They also showed that

3The r2 score, or the coefficient of determination measures the proportion of variance in the depen-
dent variable explained by the independent variables in a regression model, ranging from 0 - indicating
a poor fit - to 1 - representing a perfect fit).
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deep learning models, on the other hand, provide a reliable alternative for captur-
ing complex associations and have been successfully employed to predict the CWSI
using various environmental factors. Furthermore, they claim that the integration of
multispectral sensors with thermal cameras holds promise for a comprehensive eval-
uation of crop physiological conditions and stress.

2.5.2 Machine Learning for Yellow Rust Prediction

Transitioning from phenotyping in general to solutions tailored for yellow rust pre-
dictions, the following section provides an overview of the primary methodologies
for yellow rust prediction. The underlying principle is to move beyond predictions
limited to individual leaves and embrace broader generalisations across the entire
field.

Single leaf analysis and ground image acquisition
One of the earliest studies to forecast yellow rust using machine learning was under-
taken by Moshou et al. 2004. In this study, high-resolution images of wheat canopies
were input into a Self-Organising Map (Kohonen 1990) to map the high-dimensional
images onto a one-dimensional discrete lattice of neuron units, extracting the most
relevant features. This feature representation was then fed into a multi-layered per-
ceptron (MLP) to predict over two classes. The significance of this paper lies in show-
casing the superiority of deep learning over basic machine learning, with the Multi-
Layered Perceptron (MLP) outperforming the Bayes selector by 4%, achieving a final
accuracy of 99%.

A crucial observation here is the ease of developing a model analysing leaf-level
images to predict whether a leaf is infected. This task is inherently straightforward,
given the model’s ability to recognise disease patterns akin to an expert. Support-
ing this, numerous studies have demonstrated efficiency in predicting yellow rust on
a leaf level, for instance Kukreja and Kumar 2021, which utilised 1486 wheat plant
images and 514 wheat stripe rust images acquired by hand-held devices. The study
proposes a Deep Convolutional Neural Network (DCNN) for wheat rust disease clas-
sification, effectively distinguishing between healthy and diseased plants. The archi-
tecture involves convolution, pooling, and fully connected layers, achieving a 97.16%
classification accuracy for wheat rust diseases.

Additionally, Koc et al. 2022 illustrated the processing of phenocart-acquired4

data together with expert-acquired disease scores, in a similar fashion as the scores
employed in this thesis. The raw data acquired by the phenocart are 119 spectral
image-based predictors. After automatic outlier removal and handling of missing
data, the dataset had 439 and 505 instances at two time points. To train the model,

4A phenocart is a mobile platform with sensors and imaging devices designed for efficient, non-
destructive high-throughput phenotyping in agriculture, providing detailed data on plant traits and
health conditions to support research in crop improvement and breeding programs.
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recursive feature elimination, employing random forest regression, was used for su-
pervised feature selection. The final models were trained, tuned, and evaluated. The
results were that phenotypic characterisation showed considerable yellow rust infec-
tion, with correlation analyses revealing associations between sensor data and dis-
ease scores. Recursive feature elimination identified important predictors, predom-
inantly the commonly used spectral indices (e.g.; NDVI). The Random Forest models
achieved prediction accuracies of 0.50 and 0.61 for the datasets associated with both
time points, demonstrating a linear trend between observed and predicted scores. In
the broader frame of the research, this study hinders the direction that the different
time steps might contribute differently to the prediction of yellow rust. One of the ob-
jectives of this thesis is to verify whether this can be exploited for better predictions.

Moreover, Mi et al. 2020 introduces a comprehensive approach to wheat stripe
rust disease grading, assigning grades from 0 (healthy) to 5 (severely diseased). It
utilises deep learning, incorporating a C-DenseNet network architecture enriched with
a Convolutional Block Attention Module (CBAM). Image preprocessing and augmen-
tation techniques, including a blade mask method for cropping and data augmen-
tation, contribute to improved model performance. The proposed architecture out-
performs classical ResNet, showcasing accuracy (24%), precision (25%), recall (25%),
and F1 score (26%). The study also underscores the effectiveness of placing attention
modules between dense blocks.

These successful studies demonstrate the feasibility of predicting the degree of
yellow rust infection using plant images at the leaf level. However, a scientific chal-
lenge arises when attempting to scale up to predict infection across a set of plants in
a field trial.

UAV-based acquisition
Two studies that employ Unmanned Aerial Vehicle (UAV)-based images are presented.
In Tang et al. 2023, a UAV flies at a height of 1.25 meters above wheat canopies, ac-
quiring high-resolution field images. The study employs a RustNet model based on
ResNet-18 for predicting wheat stripe rust through image classification. The ResNet-
18 architecture, pre-trained with ImageNet data, is fine-tuned for two classes, effec-
tively distinguishing disease and non-disease classes. Training involves tile images
resised to 224×224 pixels, with parameters retrained over 100 epochs using the Adam
optimiser. The architecture incorporates shortcut connections in residual blocks, with
a Grad-CAM method for visualisation, providing insights into critical regions for dis-
ease prediction. Image labelling, facilitated by the Rooster software, employs a semi-
automatic approach, enhancing efficiency and accuracy through cyclical supervision.
RustNet demonstrates robust performance across diverse scenarios, including inde-
pendent validation in various locations, platforms, and wheat types. The study, in-
volving manual labelling of 56 images, reveals that RustNet’s accuracy for stripe rust
detection progressively increases through semi-automatic image labelling, reaching
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an Area Under the Curve5 (AUC) of 0.85 in Stage 3. Comparative performance analysis
with 20,360 tile images showcases AUC values of 0.64, 0.78, and 0.87 for RustNet at
Stages 1, 2, and 3, respectively, demonstrating the effectiveness of automatic labels
and the potential for consistent results through thorough ResNet18 training during
RustNet development.

In contrast, Zhang et al. 2019 employ hyperspectral data collected at a mid-altitude
flight altitude of 30 meters to forecast the presence of yellow rust. This prediction oc-
curs at an individual pixel level, utilising a ResNet neural network and automatically
labelled data as targets. Pixels are categorised based on the NDVI assessment, ini-
tially distinguishing between ground and vegetation before grouping pixels into rust-
affected areas and healthy regions during the yellow rust occurrence. Pixels with an
NDVI value exceeding 0.3 are labelled as rust or healthy, while the rest are categorised
differently. The study utilises 10,000 hyperspectral image blocks for training and vali-
dation (80%) and 5,000 blocks for testing the proposed model’s performance. Results
reveal that a model with four Inception-ResNet blocks outperforms other configura-
tions. In comparison with a spectral-based basic machine learning method (random
forest), the proposed Deep Convolutional Neural Network (DCNN) achieves higher
accuracy (0.85 vs. 0.77). Additionally, the DCNN demonstrates improved accuracy
for yellow rust detection, particularly in the later stages of the crop growth season,
reaching a recall rate of 0.86 for the rust class on datasets collected on 15 May 2018.

Similarly, very recently (mid-way through the thesis, since we started in March),
Nguyen et al. 2023 adopted a similar set-up as the one presented in this study for
the spring wheat. The startling difference is the fact that the flights were conducted
at an operative height of 20 m, therefore our interest in seeing what was employed
to identify healthy, mildly infected, and severely infected wheat plots. Additionally,
a custom 3-dimensional convolutional neural network (3D-CNN, consisting of 3 con-
volutions intervalled by max-pooling layers and an MLP on top of this feature map)
achieved a 60% detection accuracy as early as 40 days after sowing, increasing to 79%
for the spectral-spatio-temporal fused data model. This model aggregated the image
dataset with images acquired at different times, to train the deep learning model. Our
area of interest is explicitly including the temporal information within the model, en-
abling even higher pattern recognition

In a parallel development, emerging midway through our thesis that commenced
in March, Nguyen et al. 2023 embraced a setup resembling the one outlined in our
study for spring wheat. The key deviation lies in the operational altitude of 20 meters
during their flights, prompting our exploration into the viability of utilising a flight
height of 60 meters for identifying infected wheat plots. Additionally, Nguyen et al.

5The AUC is a metric used in ML to assess the performance of a binary classification model through
the Receiver Operating Characteristic (ROC) curve. A higher AUC, ranging from 0 to 1, signifies better dis-
crimination, with 0.5 indicating performance equivalent to random chance and 1.0 representing perfect
discrimination.
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categorised wheat into three classes—healthy, mildly infected, and highly infected;
while our objective is to establish a regressor spanning a score range of 1 to 9, allowing
for a more nuanced disease descriptor.

Concerning the model, a custom 3-dimensional convolutional neural network (3D-
CNN), consisting of three convolutions interspersed with max-pooling layers and a
multilayer perceptron (MLP) atop the resultant feature map, achieved a 60% detec-
tion accuracy as early as 40 days after sowing. This accuracy rose to 79% for the
spectral-spatio-temporal fused data model, integrating the image dataset with im-
ages acquired at different times to train the deep learning model. Significantly, our
emphasis explicitly extends to the incorporation of temporal information within the
model, facilitating heightened levels of pattern recognition.

To conclude this section it is important to mention Wang and Ma 2011. Their study
focuses on the temporal dimension of the yellow rust regression problem. In fact, in-
stead of utilising spectral data, this study relied on weather data and historical read-
ings of yellow rust abundance in trial fields in China. By employing kernelised SVM,
the study achieved high accuracy, demonstrating the method’s effectiveness in pre-
dicting the disease based on past-year data. Building on this success and capitalis-
ing on the subsequent advancements in drone technology. We think that leveraging
multi and hyperspectral data for monitoring yellow rust levels within the yearly grow-
ing season might be beneficial to innovate this field.
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3 Background

The scientific background of this study encompasses a diverse array of concepts cen-
tral to the investigation of wheat spectral measurement and predictive modelling.
As we delve into the intricacies of agricultural research, it is important to establish a
foundational understanding of key components that underpin our exploration. This
section provides a broad overview of the scientific landscape, encompassing spec-
tral measurement, data preprocessing techniques, predictive models, and evaluation
metrics.

3.1 Spectral Measurement and NDVI

Here we briefly report some of the most common spectral bands acquired in precision
agriculture (Lu et al. 2020). We employed those to create the dataset for the disease
score prediction.

Table 1: Spectral bands acquired in the Wheatviz project.

Channel Description Wavelength Use in Precision Agriculture

Red (R) 620-750 nm Monitoring plant health,
identifying stressed

vegetation.
Green (G) 495-570 nm Assessing chlorophyll content

and plant vigor.
Blue (B) 450-495 nm Analysing water content in

vegetation.
Red Edge (RE) 690-750 nm Detecting subtle changes in

plant health and stress.
Near Infrared (NIR) 780 - 2500 nm Provide high-resolution

imagery for detailed field
analysis.

LWIR (Long-Wave Infrared) 8-14 µm Measuring temperature
variations in crops and soil.

Those spectral measurements already carry useful information concerning the
state of plants. Nevertheless, we also computed the NDVI since it is the most com-
monly used vegetation index in remote sensing. It quantifies the amount of live green
vegetation in an area based on the reflectance of light in the visible and near-infrared
spectral regions. The NDVI is also specifically instrumental in detecting changes in
plant growth over time. When analysed through time, NDVI can reveal where vegeta-
tion is thriving and where it is under stress (Berra et al. 2019).
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The formula for calculating NDVI is as follows:

NDVI =
NIR − Red
NIR + Red

where:

• NIR: represents the reflectance in the near-infrared band.

• Red: represents the reflectance in the red band.

NDVI values range from -1 to 1, with higher values indicating healthier and more
abundant vegetation. Negative values often represent non-vegetated surfaces like
water or barren land, while values near zero may indicate sparse or stressed vegeta-
tion. Positive values close to 1 suggest dense and healthy vegetation.

3.2 Data Preprocessing

In this subsection, we introduce techniques for transforming quadrilateral images
into rectangular forms, emphasising the role of kernel functions and their impact on
the reconstructed image. This part in instrumenthal to the dataset creation from the
multispectral orthomosaics.

3.2.1 Projective Transformation

This thesis utilises a projective transformation to reshape an image from a quadrilat-
eral to a rectangular form, a frequent task in image processing and computer vision.
The projective transformation, distinguished by its non-linear mapping of points from
one perspective to another, holds substantial value in machine vision by fostering a
more regular input and substantially enhancing generalisation (Fan et al. 2022). Fur-
thermore, this method confers a notable advantage by facilitating the creation of a
standardised dataset comprising annotated images, a valuable resource for future re-
search endeavours. The spatial operation can be delineated into two distinct phases:
homography and resampling.

Homography
Mathematically, a homography is described as:x′y′

1

 = M

xy
1

 (1)

where (x, y)are the original coordinates in the source image, (x′, y′)are the trans-
formed coordinates in the destination image, andM is the 3x3 transformation matrix:
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M =

m11 m12 m13

m21 m22 m23

m31 m32 m33


To find the values of the transformation matrixM in the projective transformation

equation 1, you typically use a set of corresponding points in both the source and
destination images. Easy examples are the extremal points of two quadrilaterals. It
follows a set of linear equations that solves for the elements of M .

Let’s consider a set of n corresponding points:

(x1, y1) 7→ (x′1, y
′
1)

(x2, y2) 7→ (x′2, y
′
2)

...
(xn, yn) 7→ (x′n, y

′
n)

For each corresponding pair, two equations (one for x and one for y) can be set
up:

x′i = m11xi +m12yi +m13

y′i = m21xi +m22yi +m23

This can be written in matrix form as:

[
x′i
y′i

]
=

[
m11 m12 m13

m21 m22 m23

]xiyi
1


For all n corresponding points, you can stack these equations into a single matrix

equation: 
x′1 y′1
x′2 y′2
...

...
x′n y′n

 =


x1 y1 1
x2 y2 1
...

...
...

xn yn 1


m11 m12 m13

m21 m22 m23

m31 m32 m33


This system of equations can be solved using various techniques such as the Sin-

gular Value Decomposition (SVD) method. The solution will provide the values of the
elements in the matrix M . In Python, libraries like OpenCV 2 often provide functions
to find the homography matrix, which encapsulates this process and can handle the
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solution numerically. In the provided code, "cv2.findHomography" is used to com-
pute the homography matrix given the corresponding points.

Resampling
The previously discussed section addresses the recalibration of each pixel’s position
in the new plane. However, adjusting pixel locations falls short of achieving a compre-
hensive image transformation. To complete this process, the intensity of each pixel
in the transformed image ought to be computed, necessitating the application of re-
sampling and reconstruction techniques.

Resampling plays a critical role in determining the intensity values of pixels at
non-integer coordinates within the transformed image. This becomes particularly
crucial since, in general, the transformed coordinates (x′, y′) are not integers, whereas
pixel values are defined at discrete integer coordinates. Resampling methods es-
timate pixel intensities at these non-integer coordinates by leveraging information
from nearby integer coordinates. The determination of pixel weights in this context
is facilitated by kernel functions (refer to Section 3.2.2). These kernel functions inher-
ently possess finite support, indicating their nonzero values exclusively within a spe-
cific neighbourhood of the point being interpolated. The calculated weighted sum
of pixel intensities subsequently furnishes the estimated intensity at the non-integer
coordinate.

In mathematical terms, the resampling operation can be expressed as follows:

I ′(x′, y′) =
∑
x,y

I(x, y) ·K(x′ − x, y′ − y)

where,

• I ′(x′, y′)denotes the value of the resampled image at the new coordinate (x′, y′).

• I(x, y) represents the original pixel value at the coordinates (x, y) in the source
image.

• K(x′ − x, y′ − y) refers to the resampling filter or the kernel function. This
function delineates how values from the original image are weighted and amal-
gamated to compute the new value at (x′, y′), contingent upon the specific re-
sampling method utilised.

This formulation affords a discernible advantage: each reconstructed pixel en-
capsulates information from proximate pixels, ensuring a seamless transition between
the quadrilateral image and its rectangular projection. The following section will il-
lustrate the four kernel functions employed in this thesis.
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3.2.2 Resampling Kernel Functions

Kernel filters dictate how original image pixels contribute to generating new pixel val-
ues. Here, we introduce the four main kernels utilised:

Nearest neighbours: this method, while computationally efficient, assigns the
value of the nearest source pixel to the destination pixel. It is commonly chosen for its
speed, yet it may introduce blocky artifacts, especially when upscaling images (Stud-
ley and Weber 2011). The operation is represented as follows:

I ′(x′, y′) = I(round(x′), round(y′))

where I ′(x′, y′) denotes the value of the resampled image at the new coordi-
nates (x′, y′) and I(x, y) represents the original pixel value at coordinates (x, y) in
the source image.

Bilinear: bilinear interpolation computes the new pixel value as a weighted aver-
age of the four nearest neighbouring pixels, offering smoother transitions compared
to nearest neighbours. It strikes a balance between simplicity and image quality,
making it suitable for real-time applications or web graphics:

I ′(x′, y′) = (1−α)(1−β)I(x, y)+α(1−β)I(x+1, y)+(1−α)βI(x, y+1)+αβI(x+1, y+1)

where α and β are the interpolation weights of x′ and y′ respectively.
Bicubic: bicubic interpolation employs a more sophisticated model, calculating

new pixel values based on a weighted average of surrounding pixels. It uses a larger
context window than the bilinear kernel. This results in smoother transitions and
higher-quality resampled images, making it ideal for applications where image fi-
delity is crucial, such as photography and graphic design:

I ′(x′, y′) =
2∑

i=−1

2∑
j=−1

I(x+ i, y + j) · w(i, x′ − x) · w(j, y′ − y)

wherew(i, x′−x)andw(j, y′−y)are the interpolation weights, calculated based
on the distance between the new coordinates (x′, y′) and the original pixel coordi-
nates (x, y).

Lanczos: Lanczos interpolation is renowned for its ability to preserve image de-
tails by employing a weighted sinc function. It ensures accurate resampling while
minimising aliasing artifacts, making it suitable for resising images with fine details
and sharp edges. However, it may demand more computational resources compared
to simpler methods:
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I ′(x′, y′) =

∑a
i=−a

∑a
j=−a I(x+ i, y + j) · sinc(x′ − x− i) · sinc(y′ − y − j)∑a
i=−a

∑a
j=−a sinc(x′ − x− i) · sinc(y′ − y − j)

wherea represents the width of the chosen window function. Moreover, sinc(x′−
x− i) and sinc(y′ − y − j) are the sinc functions, which interpolate the pixel values
based on their distances from the original and resampled coordinates.

As a summary, Table 2 presents how many pixels each interpolation method uses
in reconstructing the signal:

Table 2: Summary of interpolation methods and neighbouring pixels used.

Interpolation Method Number of Neighboring Pixels Used

Nearest neighbour Only the neighbouring pixel at the closest integer coordi-
nates.

Bilinear 4 neighbouring pixels at the corners of the nearest integer
coordinates.

Bicubic 16 neighbouring pixels within a 4x4 grid around the near-
est integer coordinates.

Lanczos Variable number of neighbouring pixels determined by
the chosen Lanczos window size (a), typically more than
the bicubic approach.

3.2.3 Feature Scaling

Feature scaling, also known as min-max normalisation, is a key technique in machine
learning.

Let I be the original pixel intensity in an image with values in the range [Imin, Imax].
The min-max normalisation for image pixel values is given by:

I ′ =
I − Imin

Imax − Imin

where:

• I ′ is the normalised pixel intensity.

• Imin is the minimum pixel intensity among all in the original image.

• Imax is the maximum pixel intensity among all in the original image.
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This normalisation process ensures that pixel intensities are re-scaled to a range
between 0 and 1, facilitating consistent representation across different images. En-
suring uniform scales across images is a fundamental preprocessing step critical to
the stability of the optimisation process in our model. The occurrence of large plateaus6

within the loss function landscape can pose significant challenges during training
since they can impede the effective updating of model parameters. This phenomenon
is especially problematic when the norms of the gradients computed during back-
propagation approach zero, leading to what is commonly referred to as the "van-
ishing gradient" problem. When gradients vanish, the model struggles to learn and
adapt to the nuances present in the data, hindering the overall training efficacy.

By maintaining uniform scales across images through min-max normalisation (as
detailed in Section 3.2.3), we mitigate the risk of encountering these plateaus. This
normalisation process ensures that all input features share a consistent range, pre-
venting certain features from dominating the optimisation process due to their scale.

3.3 Loss Functions and Metrics

The selection of an appropriate loss function plays a critical role in the training and
evaluation of machine learning and deep learning models.

3.3.1 Mean Squared Error

In this thesis, the Mean Squared Error (MSE) emerged as the default choice, unless
explicitly mentioned otherwise. The reason for this selection lies in the unique char-
acteristics of MSE and its compatibility with machine learning approaches. MSE, as a
loss function, quantifies the average squared difference between the predicted and
actual values, thereby providing a measure of how well the model’s predictions align
with the true data. The mathematical representation of MSE is as follows:

J0 = MSE =
1

N

N∑
i=1

(yi − ŷi)
2

where N represents the total number of data points. yi denotes the actual or
ground truth value. ŷi represents the model’s predicted value and J0 is how the loss
function will be addressed in the next sections. It is worth mentioning that MSE holds
particular significance in deep learning because MSE’s mathematical simplicity makes
it computationally efficient and easy to optimise during the training process. This
is especially important given the computational load of deep network approaches.

6Plateaus are regions where the loss function exhibits minimal changes.
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Nonetheless, it’s important to note that in certain situations, alternative loss func-
tions (e.g., L1 loss) have been considered, but we decided not to use them in our op-
erations.

3.3.2 Mean Absolute Deviation

Mean Absolute Deviation (MAD) provides an alternative perspective on prediction ac-
curacy when compared to the Mean Squared Error (MSE). Unlike MSE, MAD measures
the average absolute difference between the predictions of our model and the true
values. The mathematical representation of MAD is as follows:

MAD =
1

N

N∑
i=1

|yi − ŷi|

here,N represents the total number of data points,yi denotes the actual or ground
truth value, and ŷi represents the model’s predicted value.

For both MSE and MAD, lower values signify more accurate predictions. MAD’s
simplicity in interpretation makes it an insightful metric, offering a clear understand-
ing of the average absolute discrepancies between predicted and actual values.

3.3.3 r2 Score

The r2 score, commonly known as the coefficient of determination, plays a crucial
role in regression analysis, serving as a key metric to evaluate model performance.
Ranging from 0 to 1, the r2 score indicates the proportion of variance in the depen-
dent variable that can be predicted by the model’s independent variables. A perfect
fit is denoted by an r2 score of 1, implying precise predictions, while a score of 0 sug-
gests the model’s inability to explain any variance around the mean.

Mathematically, the r2 score is expressed as:

r2 = 1−
∑N

i=1(yi − ŷi)
2∑N

i=1(yi − ȳ)2

here, N represents the total number of data points, yi denotes actual values, ŷi
signifies the model’s predictions, and ȳ is the mean of the actual values. Lower r2
values indicate less accurate predictions.

3.3.4 r2 Score Adjusted for Model Complexity

For deep learning models, we introduce the adjusted r2 score to address concerns
related to model complexity. The adjusted r2 score enhances the regular r2 by con-
sidering the impact of the number of trainable parameters (k) on model performance
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when training with N data points. This adjustment is particularly relevant in the con-
text of deep learning models, which often involve a higher number of predictors.

The formula for the adjusted r2 score is:

r2Adj = 1− (1− r2)× (N − 1)

N − k − 1

where r2Adj represents the adjusted r2 score, which is a modified version of the
coefficient of determination (r2). r2 is the coefficient of determination, representing
the proportion of the variance in the dependent variable that is predictable from the
independent variables in a regression model. N denotes the number of observations
in the dataset. k represents the number of independent variables in the regression
model.

Adjusting for the number of predictors penalises the inclusion of excessive or irrel-
evant predictors, providing a more conservative and balanced evaluation. This con-
sideration becomes especially significant in deep learning, where models tend to ex-
hibit higher complexity and a larger number of predictors. The adjusted r2 enables a
more accurate assessment, crucial for discerning the genuine explanatory power of
the model.

3.4 Models

In this thesis, we present different models and techniques for supervised machine
learning. We differentiate between basic machine learning approaches (such as lin-
ear models and SVMs) and deep learning approaches. Basic models offer the advan-
tage of quick training, allowing the application of comprehensive hyperparameter se-
lection techniques like grid search. In grid search, coupled with cross-validation, the
dataset is divided into multiple folds. Iteratively, one fold is designated as the valida-
tion set while the model is trained on the remaining folds. This process is repeated
for each combination of hyperparameters, ensuring a robust training procedure. The
scores for each opted-out fold are averaged, representing the performance of each
hyperparameter configuration. The best configuration is then selected and tested on
the remaining test set to provide an unbiased evaluation of the model’s generalisa-
tion to unseen data.

Linear Regression, a fundamental technique in statistical modelling and machine
learning, aims to establish a linear relationship between the independent variable(s)
and the dependent variable. It serves as a versatile tool for predicting numerical out-
comes based on input features.

Consider a dataset withnobservations, where yi represents the true value for the
i-th instance of the dataset targets:
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Minimize: J0(w) =
1

2n

n∑
i=1

(yi −wTXi)
2

where J0 symbolizes the cost function or objective function to be minimised. w
is the vector to be determined and X is the independent variables matrix.

The aim is to determine the values of w that minimize the sum of squared dif-
ferences across all observations. While this model is crucial, it has its limitations. To
address this, two variations are introduced to enhance the efficiency of solving the
regression problem.

3.4.1 Lasso Regressor

Lasso, which stands for Least absolute shrinkage and selection operator, is a basic
regularised version of the much simpler linear regressor. It introduces a regularisa-
tion mechanism, encouraging sparsity in the weight coefficients depending on a reg-
ularisation constant.

For the lasso regressor, we can formulate the optimisation problem as:

Minimise: J0(w) + λ∥w∥1

where J0 represents the chosen original loss function,λ is the regularisation con-
stant, ∥w∥1 is the L1 loss of w and m is the number of components of the weight
vector w.

The goal of this technique is to balance the fit of the model to the data and the
sparsity of the coefficients (L1 regularisation). This encourages a parsimonious model
with only the most relevant features while reducing overfitting. The regularisation hy-
perparameter (λ) controls the trade-off between these two objectives. This regulari-
sation approach is really versatile, and, under different conditions, can be exploited
in other contexts, as we will explain later.

3.4.2 Ridge Regressor

For the Ridge regressor, the optimisation problem can be formulated as:

Minimise: J0(w) + λ∥w∥2

where J0 represents the chosen original loss function,λ is the regularisation con-
stant and ∥w∥2 is the L1 loss of w.

The goal of this technique is to balance the fit of the model to the data and the
shrinkage of the coefficients (L2 regularisation). This encourages a model that retains
all features but with smaller, less volatile coefficients, reducing the risk of overfitting.
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The regularisation hyperparameter λ controls the trade-off between these two ob-
jectives.

This procedure helps mitigate overfitting effects and might be employed to gain
further insights into the model’s behaviour. In particular, L1 regularisation has the
potential to result in interpretable artificial intelligence tools, as explained in the next
section.

3.4.3 Support Vector Machine

A Support Vector Machine (SVM) is a robust regression model, that identifying sup-
port vectors and constructs a hyperplane to optimise the margin between these sup-
port vectors and data points. In the context of regression, SVM aims to minimize the
following regularised formula:

Minimize:
1

2
∥w∥2 + C

n∑
i=1

max
(
0, |yi − (wTXi + b)| − ε

)
(2)

where w represents the weight vector to be optimised, C is a regularisation hy-
perparameter controlling the trade-off between maximising the margin and minimis-
ing the error, Xi denotes the i-th row of the input data, yi represents the i-th target
values vector y, n in the total number of instances in the dataset, b is the bias term,
and ε is a positive constant that defines the acceptable margin of error for prediction.
Briefly, choosing higher values of C encourages a smaller-margin hyperplane, result-
ing in better classification of all training points. On the contrary, smaller values of C
encourage larger-margin hyperplanes, leading to a more robust model, at the cost of
increasing the training loss.

In non-linear regression tasks, SVM is valuable when kernels are employed to bol-
ster the model’s generalisation capabilities. The theoretical basis of this approach
comes from functional analysis, in particular from Mercer’s theorem and the Kernel
Trick. See Appendix F for a formal formulation of these theorems.

Many kernel functions are used, but one of the most common is the Radial Basis
Function (RBF), also known as the Gaussian kernel. The formula for the RBF kernel is
expressed as follows:

K(x,x′) = exp

(
−∥x− x′∥2

2σ2

)
where K(x,x′) represents the kernel function’s output. x and x′ denote the in-

put feature vectors. σ is a hyperparameter that controls the shape of the kernel and
influences the smoothness of the decision boundary.

The RBF kernel is particularly effective when dealing with non-linear regression
tasks as it allows SVM to transform the input space into a higher-dimensional space,
making it capable of capturing intricate patterns and relationships in the data.
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3.4.4 Random Forest Regressor

A Random Forest (RF) Regressor stands as a robust ensemble machine learning model
known for its ability to handle intricate non-linear relationships, making it particu-
larly effective for regression problems. In the context of this thesis, the RF Regressor
plays a crucial role in addressing the inherent non-linearity embedded in the tabular
dataset (see 4.2.3).

The Random Forest model is constructed from multiple individual decision trees,
each tailored to optimise predictions for continuous target variables. These decision
trees partition the dataset into subsets based on feature values, allowing them to
capture complex data relationships. During model construction, a predefined num-
ber of decision trees are generated, each utilising a random subset of the training
data through bootstrapping and a random subset of input features. As the model is
trained, these trees evolve by iteratively dividing the dataset into subsets to make
predictions.

The individual optimisation problem for a single decision tree in a Random For-
est Regressor revolves around finding the optimal splits at each node to minimize the
variance of the target variable. Unlike the traditional classification tasks, the focus of
this model is on reducing the variability in predictions rather than minimising impu-
rity7 (Louppe 2014). The mean squared error (MSE) serves as a common metric to
quantify this variance reduction.

Here’s a simplified explanation of the individual optimisation problem for each
single decision tree:

1. Objective function: the optimisation process aims to minimize the variance of
the target variable at each node.

MSE(t) =
1

Nt

∑
i∈It

(yi − ȳt)
2

where Nt is the number of samples at node t, It is the set of indices of samples
in node t, yi is the target value for sample i, and ȳt is the mean target value for
node t.

2. Feature Selection: the algorithm searches overall features and possible split
points to find the feature and value that result in the greatest reduction in vari-
ance. For each feature, the algorithm considers different split points and calcu-
lates the variance reduction for each. The feature and split point that maximise
the reduction are chosen.

7Gini impurity, used in decision trees for classification, measures the probability of misclassifying a
randomly chosen element and is calculated as 1 −

∑C
i=1(pi)

2, where C is the number of classes and
pi is the proportion of instances in class i.
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3. Recursive Splitting: once the optimal split is found, the dataset is divided into
two subsets based on the selected feature and split point. The process is then
recursively applied to each subset until a stopping criterion is met, for example
reaching a maximum depth of the decision tree.

By iteratively optimising splits at each node based on variance reduction, the de-
cision tree aims to create a structure that effectively captures patterns in the data.
This tree-based approach suffers notably from overfitting. Nevertheless, harnessing
the potential of the ensemble model, random forest mitigate this overfitting if prop-
erly trained. In fact, the final prediction generated by the Random Forest results from
aggregating the predictions of all constituent trees: for each input x, the ensemble
prediction ŷRF(x) is computed by averaging the predictions of all decision trees in
the Random Forest. Mathematically, it is expressed as:

ŷRF(x) =
1

Ntrees

Ntrees∑
i=1

ŷi(x)

whereNtrees is the total number of decision trees, and ŷi(x) represents the predic-
tion of the i-th tree for inputx. This ensemble approach enhances predictive accuracy
and mitigates overfitting, offering a powerful tool for regression tasks.

The ensemble nature of Random Forest enhances its predictive accuracy and gen-
eralisation capabilities.

3.4.5 Convolutional Neural Network

Convolutional Neural Networks (CNNs) are a pragmatic choice for analysing 8-channel
multispectral images and are first popularised in the paper "Gradient-based learning
applied to document recognition" (LeCun et al. 1998). They excel in dealing with im-
ages because they efficiently capture spatial hierarchies across the various electro-
magnetic measures present in these images. This spatial invariance allows CNNs to
detect patterns and structures across channels, regardless of their positions. Oper-
ations that extract features from the images can be mathematically expressed as 2D
convolutions.

(I ∗K)(x, y) =
∑
i

∑
j

I(x+ i, y + j) ·K(i, j)

where I is the input image and K is the convolutional kernel. I(x, y) is the pixel
value at position (x, y) in the input image. K(i, j) is the value of the convolutional
kernel at position (i, j). i and j range over the dimensions of the kernel. x and y
represent the position in the output feature map where the result of the convolution
is calculated.
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The resulting feature map dimensions, after the input tensor passes through M
convolutional layers, represented by width (W ′) and height (H ′), are influenced by
the convolutional kernel size, stride, and padding applied in each layer. Specifically,
using square kernels of size (K ×K), with a stride of S and padding P in each layer,
the new parameters after traversing a CNN layer are calculated as:

W ′ =
W −K + 2P

S
+ 1

H ′ =
H −K + 2P

S
+ 1

This iterative process is repeatedM times consecutively, determining the dimen-
sionality of the final feature maps. The parameter M is crucial as it directly impacts
the granularity of details discernible by the model. In contrast, the number of chan-
nels in the output feature map is contingent upon the quantity of filters or kernels
used in each convolutional layer. Specifically, with N filters in a layer, the resulting
feature map will possess N output channels. The intermediate product within the
feature extractor will exhibit the shape [N, W’, H’].

In conclusion, CNNs are well-suited for multispectral data as they automatically
learn features, obviating the need for extensive manual feature engineering. They
also provide regularisation in the form of inductive biases, which is crucial for man-
aging the complexity of such data.

3.4.6 Long Short-Term Memory

Long Short-Term Memory (LSTM) networks are a powerful choice for analysing se-
quential data, allowing for the modelling of dependencies and patterns over time.
These networks efficiently capture temporal relationships and patterns, fully harness-
ing the information brought by the time series of multispectral images used in this
study. It is first introduced in the paper "Long short-term memory" (Hochreiter and
Schmidhuber 1997).

The time modelling capabilities of this network are their ability to maintain and
update internal states, allowing them to remember and utilise information from pre-
vious time steps while selectively forgetting irrelevant details. The core component is
the LSTM cell because it manages the flow of information by using a system of gates
that control the interactions and updates of the cell state and hidden state. These
gates, namely the input gate (it), forget gate (ft), and output gate (ot), regulate the
feature map output by the cell. The functioning of each gate is as follows:

• Input Gate (it): the input gate, operating on both the current input (xt) and
the previous hidden state (ht−1), determines the inclusion of new information
into the cell state (Ct). Consequently, for each element in the cell state, the
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input gate controls the degree to which new information (C̃t) is assimilated into
the cell state (Ct). In this component a sigmoid activation (σ) is used to bound
values within the 0 to 1 range.

• Forget Gate (ft): the forget gate is responsible for deciding whether to retain
or discard information from the previous cell state (Ct−1), considering both
the current input (xt) and the previous hidden state (ht−1). This is achieved
through element-wise multiplication of ft andCt−1, representing the selective
inclusion or exclusion of information from the cell state. Similarly to the input
gate, the forget gate employs sigmoid activation to control the extent of infor-
mation retention.

• Output Gate (ot): the output gate, which considers both the current input (xt)
and the cell state (Ct), feeds information to the upcoming hidden state (ht).
Within the output gate, a sigmoid activation regulates the influence of infor-
mation from the cell state on the hidden state. In addition, a hyperbolic tan-
gent (tanh) activation re-scales the values of the cell state, confining them to
a range between -1 and 1 to regulate the output. The final outcome, the new
hidden state (ht), is achieved through the element-wise multiplication of ot and
tanh(Ct).

Mathematically, the above operations within an LSTM cell can be described as
follows:

• it = σ(Wi · [ht−1, xt] + bi) (Input Gate)

• ft = σ(Wf · [ht−1, xt] + bf ) (Forget Gate)

• ot = σ(Wo · [ht−1, xt] + bo) (Output Gate)

• C̃t = tanh(WC · [ht−1, xt] + bC) (Cell State Update)

• Ct = ft · Ct−1 + it · C̃t (Cell State)

• ht = ot · tanh(Ct) (Output)

where it, ft, and ot are the input, forget, and output gates, respectively. C̃t repre-
sents the candidate cell state. Ct denotes the cell state. ht is the output of the LSTM
cell. Wi, Wf , Wo, and WC are weight matrices. bi, bf , bo, and bC are bias vectors.

This mechanism empowers LSTMs to capture and retain long-term dependencies
and relationships within sequential data.
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3.4.7 Residual Network

Residual Networks (ResNet) were initially introduced in the paper “Deep Residual
Learning for Image Recognition” (He et al. 2015). The key innovation lies in the in-
troduction of the paradigm of residuals to address the degradation problem encoun-
tered in deep networks. The fundamental concept of residual learning is the resid-
ual unit. It allows layers to explicitly approximate a residual function, denoted as
F (x) := H(x)− x, instead of directly fitting the desired mapping H(x). In practice,
the network learns to optimise the easier task of adjusting the input x by the residual
mapping (F (x)) to approximate the desired output as F (x) + x.

Figure 2 presents a visual representation of a residual module.

Figure 2: Residual learning block as presented in He et al. 2015. F(X) refers to the
passage of X through the first convolutional layer.

Each Residual Module learns a residual function, denoted as F (x), rather than a
direct mapping. This approach facilitates the model to learn not just a standard trans-
formation of the feature representation, but also the identity function, H(x) = x.
Achieving this involves driving F (x) towards zero, which can be accomplished by
setting the weights and biases in F (x) to zero. Additionally, ResNets utilise short-
cut connections, which enable the gradient to be directly backpropagated to ear-
lier layers, bypassing intermediate layers. This mechanism addresses the vanish-
ing/exploding gradient problem and allows layers that do not enhance performance
to effectively approximate an identity function, thus being disregarded during train-
ing. These characteristics not only collectively facilitate the successful training of
very deep networks but also incorporate identity mappings through shortcut con-
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nections, introducing neither extra parameters nor computational complexity.
For our specific implementation, we decided to use ResNet-34 as implemented in

Pytorch. The rationale behind it is that it is still a relatively small model, compared to
later versions and, at the same time, it outperforms the first version of ResNet, as pro-
posed in He et al. 2015. ResNet-34 is a deep convolutional neural network consisting
of 34 layers. Its architecture is outlined as follows:

1. The network begins with a convolutional layer comprising 64 filters, each with
a kernel size of 7× 7, followed by a max-pooling layer.

2. Subsequent layers are convolutional and organised in pairs, owing to the in-
corporation of residual connections.

3. The number of filters in these layers doubles at each stage, starting from 64. At
each stage, since the number of filters doubles, the first convolutional layer in
this new stage has the number of filters that is half the number in the previous
stage.

4. The network concludes with an average pooling layer, followed by a softmax
function.

The design of ResNet-34 effectively addresses the degradation problem commonly
encountered in deep neural networks. It is important to note that the ResNet-34 model
is pre-trained on the ImageNet dataset, which comprises over 100,000 images span-
ning 200 distinct classes. This pretraining enables the model to develop a compre-
hensive understanding of various image categories, thereby enhancing its performance
in image classification tasks.

3.4.8 Average Pooling Layers

An average pooling layer is a crucial component in neural networks (CNNs), specifi-
cally designed for downsampling and reducing the spatial dimensions of feature maps.

In this layer, a sliding window traverses the input feature map, and for each win-
dow position, the average value of the elements within the window is calculated. This
operation is applied independently to each channel of the input feature map, result-
ing in a downsampled output feature map. The sliding window’s size is determined
by the specified height (P ) and width (Q), and a stride (S) defines the step size of the
window as it moves across the input.

Mathematically, the average pooling operation can be expressed as:

O(i, j, c) =
1

P ×Q

P−1∑
p=0

Q−1∑
q=0

I(i · S + p, j · S + q, c)
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here, O(i, j, c) represents the value in the output feature map at position (i, j, c),
and I(i ·S+ p, j ·S+ q, c) denotes the value in the input feature map corresponding
to that location.

The usage of average pooling is particularly beneficial in CNNs for several rea-
sons, including its ability to reduce spatial dimensions, control overfitting, and main-
tain translational invariance, making it a widely adopted technique in modern deep
learning architectures.
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4 Methodology

This chapter provides a comprehensive overview of the methodology employed and
the tools we developed to answer the research questions presented in Section 1.3.

Figure 3 illustrates the workflow from initial data acquisition to the development
of the predictive machine learning model. This diagram is sourced from a paper writ-
ten in the context of the WheatVIZ project (Chang-Brahim et al. 2023). In this section,
our focus includes the following components: cleaning, preprocessing, and organ-
isation of UAV data (upper section of Figure 3); creation of the dataset (upper right
section of Figure 3); and implementation of supervised machine learning techniques
(right side of Figure 3).
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Figure 3: Figure from Chang-Brahim et al. 2023. This figure represents the whole
workflow for this research project. It illustrates the passages from the in situ mea-
surements in the field to the deployment of the machine learning models.

4.1 UAV Data Collection

In this project, a custom Hexacopter8, based on a modified Tarot 690 Pro frame using
a Cube Orange flight controller running Ardupilot, is deployed. This device can carry
heavy loads such as a multispectral camera. The camera used is a 0.5 kg Altum model
and acquires RGB, NIR, LWIR and panchromatic images. The UAV maintains a flight

8A hexacopter is an unmanned helicopter having six rotors
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altitude of 60 meters, resulting in a spatial resolution of 2.5 centimetres. This choice
is instrumental in answering the second research subquestion (see 1.3).

The multispectral data were acquired between March 1st and July 11th, 2023. Ta-
ble 3 reports the measurement dates.

Table 3: Dates of data acquisition.

Date of the flight
March 22, 2023
April 18, 2023
April 27, 2023
May 15, 2023
May 24, 2023
June 5, 2023

June 14, 2023

We initially planned to conduct a flight each week during May 2023, the most im-
portant month for the yellow rust emergence for wheat plants (Chen et al. 2014).
Unfortunately, due to heavy rainfall in May, acquiring multispectral data weekly, as
planned, became unfeasible. Drone flights were hindered by the weather, a common
limitation of UAV-based technologies. Additionally, the drone sustained damage af-
ter the June 14th flight, requiring a three-week repair period, resulting in a missed
opportunity for subsequent measurements.

AIT’s UAV systematically flies over the agricultural field. Equipped with a cam-
era capturing RGB, thermal, long-wave infrared (LWIR), panchromatic, and red-edge
measures (see Table 1) during each flight.

Two images acquired by the drone are presented below in Figure 4 as a reference.

(a) Survey of plot lines. (b) Image acquired during lift-off.

Figure 4: Panchromatic drone acquisition images captured on April 18th.
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4.2 Feature Engineering: from Reflectance Maps to Plot-level Data

Our research involves partitioning the experimental field into georeferenced plots,
with domain experts collecting phenotypic data. This data serves as the ground truth
for all the machine learning approaches in this thesis. Having in situ phenotypic data
represents an uncommon practice due to its cost but holds great value for the ma-
chine learning pipeline (Nguyen et al. 2023, Tang et al. 2023). The grid-like struc-
ture aligns with established practices in various research studies, ensuring consis-
tency with conventions in controlled crop cultivation conditions (Haghighattalab et
al. 2016; Bai et al. 2016; Volpato et al. 2021). Figure 3 visually outlines the grid struc-
ture and individual plots.

Using Pix4D photogrammetry software, we processed the collected data to pro-
duce a reflectance map9 (for details see Section 4.2.1). The quality of the map pri-
marily relies on the extent of pixel overlap in the images. Typically, maintaining 5 or
more images per pixel serves as a reliable threshold for quality (Pix4D Support 2024).
In Figure 5 it is clear that the field area is covered by 5 or more images per pixel.

Figure 5: Orthomosaic pixel overlap: Red/yellow areas indicate low overlap, decreas-
ing the quality of the resulting pixels. Green areas have over 5 images per pixel, en-
suring good quality with sufficient key point matches (see Stitching in Section 4.2.1).

9A reflectance map illustrates the varying reflectance properties across the field
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Before we describe the creation of the dataset that is employed in the machine
learning part, two passages are relevant: stitching the images together (Section 4.2.1)
and extracting the plot-level information (Section 4.2.2).

4.2.1 Orthomosaic Creation

Pix4D mapper has emerged as one of the most prominent tools for creating ortho-
mosaics (see Section 2.4). In this thesis, we employ the Pix4D mapper (version 4.8).
It features advanced photogrammetry algorithms that ensure accurate image stitch-
ing, resulting in precise orthomosaics and 3D models. Furthermore, Pix4D mapper
offers robust georeferencing capabilities, aligning the outputs with the desired real-
world coordinates for future integration into a Geographic Information Systems (GIS).
In particular, it can generate accurate reflectance maps and enable practitioners to
manipulate them as raster images (Rasmussen et al. 2016).
Each set of multispectral images is processed by Pix4D following the following pro-
cessing steps (Beltrame et al. 2024, Pix4D Manual 2024):

• Image matches: align spatial features in adjacent images in the surveyed area.
This process identifies key points, i.e. common points between two images that
match. The images are not merged yet, since they need to be orthorectified and
radiometrically and geographically corrected.

• Geolocation: assign geographic coordinates to each pixel in the image for pre-
cise spatial referencing. This involves determining the camera’s position and
orientation during capture relative to Ground Control Points (GCPs). Through
triangulation using GCPs’ known ground positions and their corresponding po-
sitions in the images, Pix4D estimates the location of every pixel, ensuring ac-
curate alignment with real-world coordinates.

• Orthorectification: correct for terrain-induced distortions due to different ter-
rain heights. This step ensures an accurate representation of features on the
earth’s surface. Project the image onto a planar surface using a Digital Eleva-
tion Model (DEM) to account for terrain relief effects.

• Mosaicing/stitching: combine multiple orthorectified images to create a cohe-
sive orthomosaic of the study area. This process blends pixel values from over-
lapping images for a consistent representation of the landscape.

• Calibration: calibrate the camera to make the sensor function as accurately as
possible, ensuring uniformity across all images acquired in the same flight. Ra-
diometric calibration, a critical component, ensures consistency in pixel val-
ues by correcting for sensor response, atmospheric conditions, and illumina-
tion differences. It also utilises reference targets of known reflectance, such as
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metal plaques, to establish a correlation between sensor output and surface
properties, which is then applied to all pixels in the image.

Among these steps, the most innovative for airborne-acquired agriculture data is
the incorporation of Ground Control Points (GCPs). GCPs are chessboard-like plaques
positioned on the ground and precisely geolocated using a GNSS. An example of a
GCP is reported in Figure 6.

Figure 6: A close-up view of GCP in the field, guiding the way to accurate georeferenc-
ing. The GCP is the chequerboard-like plate.

This thesis underscores their significance in enhancing pixel geolocation in the re-
sults section 5.1. We outline the disparity between the original georeferenced images
and those corrected post-GCP implementation.

In Appendix E, we also present the punctual procedure to create the radiometri-
cally calibrated orthomosaic using Pix4D. This procedure is applied to all 7 flights we
acquired in the measurement campaign.

In Figure 7 a reconstructed orthomosaic, displaying the NDVI is presented as a
reference.
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Figure 7: This high-resolution image depicts the NDVI over the experimental field. The
acquisition height is 60 m while each plot is 1.5 m x 10 m. The brighter areas represent
vegetation, while the darker ones represent soils or the road.
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4.2.2 Plot-level Information Extraction

Subsequently, Edelhof’s team utilises high-precision GNSS geolocalised reference points,
which correspond to the extremal points of each field plot, to generate binary image
overlays that extract the pixels belonging to each plot. This step proves to be neces-
sary because we need to identify univocally the contour of each plot.

As a reference, a depiction of the overlays in Obersiebenbrunn is presented in
Figure 8.

Figure 8: Overlays created using the data provided by the Edelhof team. The under-
lying map is provided by Open Street Map and represents the facility in Obersieben-
brunn. Each orange quadrilater is a single plot-level overlay.

The agriculture field on which the overlays are applied is presented in Figure 9:
The reflectance maps are then used to retrieve the plot-level data for each plot.

We retrieve reflectance maps’ pixels beneath the overlays, obtaining a small portion
of non-zero pixels (corresponding to the plots) fully embedded in zeroes, since the
overlays introduce them. Those images are then trimmed to reduce their size, ensur-
ing that the outermost non-zero values touch one of the borders of the images. As the
plot orientations are not aligned, adjustments are necessary, since the overlays in-
troduce zeros, potentially causing artifacts or distortions in the image data (Hashemi
2019). These artefacts could hinder machine learning algorithms by adding unneces-
sary information or altering spatial relationships within the image. Ensuring images
are rectangular can prevent these issues, improving machine learning model accu-
racy (Belcher et al. 2023). Hence, we reoriented the images and conducted resam-
pling to ensure precise image reconstruction, as detailed in Section 3.2.

An example of a resampled image for the RGB band is Figure 10.
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Figure 9: Detail of the field acquired at the operational height of 60 m in the panchro-
matic band. The image had already been orthonormalised, calibrated and read-
justed. Each plot is 1.5 m x 10 m.

Various resampling filters, such as interpolation algorithms and nearest neigh-
bour approaches, were considered to resample the images when applying the projec-
tive transforms to reorient the images (see Section 3.2.1). In particular, we selected
four resampling procedures: the nearest neighbours (NN), bilinear, bicubic and Lanc-
zocs (for additional information see Section 3.2.2).

In the process of selecting the most appropriate interpolation method for image
resampling, a thorough analysis of our available options was conducted in Section
5.2. The primary objective was to strike a harmonious balance between the preserva-
tion of details of the image, the minimising of potential artefacts and ensuring seam-
less transitions between pixels. Bicubic interpolation consistently emerged as a ro-
bust performer, effectively retaining fine image details.

While Lanczos interpolation yielded results similar to bicubic, it was observed to
have a slow processing speed, as evidenced in Figure 21. Conversely, the nearest
neighbour and bilinear methods, at times, introduced undesirable irregularitied, as
visible in Figure 19.

It is worth emphasising that our decision-making process extended beyond quan-
titative assessments presented in Section 5.2. Qualitative visual inspections by a pho-
togrammetrist played a significant role in our evaluation, allowing for the assessment
of overall image quality and clarity. Moreover, an in-depth analysis of pixel-level de-
tails was undertaken to ensure the chosen interpolation method aligns closely with
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Figure 10: A panchromatic figure showcasing a resampled plot captured on April 27,
2023, from an altitude of 60 meters. The image, reconstructed using a bicubic kernel,
measures 372 pixels in width and 64 pixels in height, representing real-world dimen-
sions of 10 meters by 1.5 meters.

our objective of preserving image fidelity. This comprehensive approach reinforces
the rationale behind our selection of bicubic interpolation as the preferred method,
given its ability to effectively balance image quality and computational efficiency.

Once plot images have been extracted and resampled in each spectral band for
every conducted flight (refer to Table 3), we restructure this data to yield 7448 ten-
sors, one for each plot and flight. In subsequent sections, these will be referred to as
"multispectral cubes". This data is organised in a time-series manner, with multispec-
tral cubes associated with the same plot merged and ordered by acquisition date (see
Table 3). The result is a dataset comprising 1064 elements, each an entry containing a
4-dimensional tensor consisting of acquisition date (referred to as time step from now
on), spectral channel, width, and length. The time series is composed by 7 timesteps.
The channels have a dimensionality of 7 (panchromatic has been dropped since it is
useful only to calibrate the RGB images and in further analysis would be co-linear with
RGB information since it is their composition). Width has a dimensionality of 64 and
length has a dimensionality of 372.

4.2.3 Two-dimensional Tabular Data Preparation

Two-dimensional tabular data is essential for training and utilising various basic ma-
chine learning models, including linear models, support vector machines (SVM), and
random forests. Before describing the models employed, we survey how we prepared
the data for the basic machine learning approaches.

To obtain a tabular dataset from the multispectral cubes we gather data associ-
ated with each plot and calculate pixel distribution statistics for each channel, which
includes mean, standard deviation, kurtosis and the 25th, 50th, and 75th percentiles.
This results in a vector of six statistics for each spectral channel, totalling a dimen-
sionality of 42. This resulting vector is associated with the disease score related to its
plot (see Section 1.2 and Appendix A). The choice to prioritise easily calculable global
descriptors over the usual local descriptors in image analysis stems from the deci-
sion to create simple baseline models using basic machine learning (refer to Section
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4.4) and to use them to evaluate the performance of machine learning approaches
(refer to Section 4.5). This tabular data representation is a recurring theme in our
basic ML approaches, aimed at simplifying and streamlining spectral data analysis.
This feature design choice proved insufficient to predict yellow rust abundance using
the basic models. A more refined version of this, which includes time information,
constitutes an interesting direction for further research.

However, it is worth noting that in the more advanced deep learning section, we
implicitly incorporate both local and global descriptors (as a reference see Figure 13).
We achieve this by employing convolutional layers and pre-trained models, which ex-
cel at capturing fine-grained details within images, alongside pooling layers for data
aggregation. This combined approach allows for a balanced extraction of both local
and global information, providing a comprehensive representation of the data.

To summarise, we use tabular data for the basic models. The choice of not in-
cluding time information determines problems for the basic models, as explained in
Section 6.1. Nevertheless, in more complex deep learning methods, intricate local
descriptors are employed, but the chosen network design remains centred on aggre-
gating pixel-level information (see Section 4.5).

4.3 Experimental Set Up

In this section, we explain how we record the machine learning results of the exper-
iments conducted, the managing of the models’ hyperparameters and how we split
the dataset.

4.3.1 Experiment Tracker and Configuration System

In this thesis, experiments are meticulously parameterised through exhaustive con-
figurations, represented by YAML files. Each experiment possesses its unique "exper-
iment config," detailing how to override the overarching "default config" for repro-
ducibility. The "default config" is used to provide a comprehensive list of all the pos-
sible models’ parameters and hyperparameters. We create the default configuration
with the idea of managing both training experiments for basic ML models and also
for deep learning models. We also include the experiment configuration to perform
evaluation experiments and data preprocessing. This way, we keep track of all the
operations we performed and ensure the complete reproducibility of the experimen-
tal results. This hierarchical parameter overwriting is a commonplace practice across
various config management libraries10. Specifically, we adopt the YAECS library (Gol-
ubev 2024). Using open-source config systems such as this makes the scientific pro-
cess:

10Examples of configuration system managers include YACS, OmegaConf and HYDRA, widely used for
automating and managing configuration and deployment in IT environments.
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• more robust by implementing safeguards against typos and errors.

• more efficient by making it easy to start new experiments and keep all previous
results accessible.

• more ethical by helping make each experiment distinct, meaningful, and trivial
to reproduce.

In this thesis, we also leverage ClearML (ClearML 2016), a commercial tracker renowned
for its intuitive interface for manipulating and storing experiment results. ClearML
systematically organises and documents research progress, simplifying the monitor-
ing of changes, tracking of experiments, and management of experiment results. When
combined with YAECS, it also ensures reproducibility and validation by maintaining
comprehensive records of parameter and hyperparameters values and enabling the
efficient fetching of experiment results. Additionally, it fosters collaboration by pro-
viding a transparent platform for sharing and discussing work.

4.3.2 Dataset Split: Balancing Training, Validation, and Test Sets

In this section, we introduce a method for splitting the datasets defined in Sections
4.2.1 and 4.2.3. As each dataset instance corresponds uniquely to an experimental
plot, we propose a split of the plot IDs, which consequently divides the dataset in-
stances. For brevity and clarity, we term this process ’Dataset Splitting’. We decide
not to perform split in the time configuration because we want to use the full infor-
mation carried by the time series, since each time step refers to a different stage of
development of the plant.

To evaluate the performance of the trained models, we use both one validation
and three test sets. Therefore we organise the plots into five distinct groups (one
training set, one validation set and three test sets), based on Edelhof’s experimental
design in Obersiebenbrunn. The rationale behind the decision to employ 3 test sets
is to explore whether the model can generalise well also on plots containing plants
with different phenological properties, such as a different irrigation status or a differ-
ent breed (or genotypes).

The field experiments performed by Edelhof categorise plots into various groups.
Each plot is characterised by three codes:

• Replication:

– "Replication 1" signifies a normal experiment plot.
– "Replication 2" designates the control group plot.

• Water State:

– "W" denotes the absence of artificial irrigation.
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– "W0" indicates the presence of artificial irrigation.

• Wheat Breed/Genotype: The wheat variety used in a particular plot is denoted
by the letter "B"11 followed by a number representing the year in which the
genetic material of the seed was acquired:

– "B1": Refers to a wheat breed selected for the year 2021.
– "B2": Refers to a wheat breed selected for the year 2022.
– "B3": Refers to a wheat breed selected for the year 2023, the most recent

one.

Incorporating wheat varieties from previous generations used in 2022 and 2021
enables breeders to assess the yield and characteristics of the current gener-
ation under different weather conditions as those experienced in prior years.
Additionally, when using the same variety, breeders can evaluate how a refined
selection of seeds (the breed selected in 2023) from the same lineage (the breed
selected in 2022 or 2021) would perform in the same weather conditions, allow-
ing for a comparative analysis of field results from previous years in standard-
ised conditions.

It is important to notice that each breed of wheat has 4 plots, two per irrigation
state and 2 per replication, and that our data contains seeds selected across several
past years.

For clarity, a plot obtained from seeds selected in the 2022 generation, with arti-
ficial irrigation and being used as a replication will be identified with the following:
[Replication 2, W0, B2] or, in short, 2-W0B2. Similarly, the replication 1 plot is identi-
fied by 1-W0B2.

Figure 11 is a schematic representation of plot data in the field experiments in
Obersiebenbrunn. It contextualises the previously mentioned characteristics.

11B is a shorthand to replace the scientific name of the breed of wheat used. For example, B can be
substituted with "SU Habanero" or "SE 432-22", two different breeds of winter wheat.
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The setup on-site
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Figure 11: Organisation of experimental trials conducted in Obersiebenbrunn. Each
breed of wheat has 4 plots, two per irrigation state and 2 per replication. This image
is sourced from Beltrame et al. 2024.

We establish three distinct test sets, each associated with different plant traits.
We constitute test sets 2 and 3 from our plots associated with breeds selected in 2021
(and only those), resulting in a total of 40 plots. These are then divided into two sets
based on water status, yielding two sets, each comprising 20 plots. The identifiers
for these sets follow the format: 1-W0B1 and 2-W0B1 for test set 3, 1-WB1 and 2-WB1
for test set 2, where ’B’ represents ten possible breeds from the generation selected
in 2021. Both sets include replication 1 and replication 2 plots, serving to evaluate
the model’s performance in predicting phenotypes for plants originating from seeds
selected in previous years under different water regimes.

Subsequently, we randomly sample 10 genotypes from the remaining plots, en-
compassing seeds selected for the years 2023 and 2022, as well as replication 1 and 2,
and both irrigated and non-irrigated cases, to evaluate the models’ performance on
unseen breeds (or genotypes). The plots in this set are identified by: 1-W0B3, 1-W0B2,
1-WB3, 1-WB2, 2-W0B3, 2-W0B2, 2-WB3.

To establish training and validation sets, we leverage the inherent structure of the
remaining data, particularly its replication plots. With a limited dataset comprising
only 984 instances, we aim to maximize training data while ensuring robust model
performance. Recognizing the scarcity of data, we allocate 50% of replication 2 sam-
ples to the training set alongside the replication 1 plots, comprising plots identified
by: 1-W0B3, 1-W0B2, 1-WB3, 1-WB2, 2-W0B3, 2-W0B2, 2-WB3, and 2-WB2. By incorpo-
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rating replication 2 data in our training set, we seek to enhance the model’s robust-
ness and generalization capabilities despite the small dataset size. The remaining
data constitute the validation set, comprising plots identified by 2-W0B3, 2-W0B2, 2-
WB3, and 2-WB2. In this approach the validation set is intended as a set to confirm
that the model is able to predict data similar to the training set and to perform hyper-
parameter tuning independently from the training set.

Table 4: Distribution of data split for machine learning. In test set 1 B̂ stands
for breeds that were not previously selected. There is no overlap between
breeds/genotypes represented by B̂ and B.

Split Cardinality Description Identifiers

Train 738 Training set comprising plots
identified by replication 1 and 2,
both irrigation states, and various
wheat breed samples

1-W0B3, 1-W0B2,
1-WB3, 1-WB2,
2-W0B3, 2-W0B2,
2-WB3, 2-WB2

Validation 246 Validation set consisting of repli-
cation 2 samples, both irrigation
states, and different wheat breed
samples

2-W0B3, 2-W0B2, 2-
WB3, 2-WB2

Test 1 40 Test set with plots associated with
10 opted-out breeds. Plots are
replication 1 and 2, subject to
both irrigation states, and differ-
ent wheat breed samples

1-W0B̂3, 1-W0B̂2,
1-WB̂3, 1-WB̂2,
2-W0B̂3, 2-W0B̂2,
2-WB̂3, 2-WB̂2

Test 2 20 Test set for evaluating model per-
formance on seeds selected in
2021 in a non-irrigated state

1-WB1, 2-WB1

Test 3 20 Test set for evaluating model per-
formance on seeds selected in
2021 in an irrigated state

1-W0B1, 2-W0B1

This rigorous train test split is instrumental in answering the research question
"How can remote sensing image data be transformed and aggregated to extract char-
acteristics for predicting disease scores?" since we propose a way to aggregate the re-
mote sensing data (defined in Sections 4.2.1 and 4.2.3) based on the Edelhof field de-
sign to create a framework to conduct rigorous machine learning experiments. More-
over, it also contributes to the question "In the context of evaluating the viability
of aerial machine learning-based phenotyping as an alternative to traditional in situ
phenotyping, how can a machine learning model be designed to validate its perfor-
mance, leveraging domain-specific agricultural knowledge?" since having a train-test-
validation split is one of the best practices in Deep learning. Moreover we made de-
sign choices, in particular the inclusion of replication 2 instances in the training set, to
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mitigate the problem of data scarcity. In Figure 49 we present the disease scores dis-
tribution for the training and the validation sets. In Figure 50 we present the disease
scores distribution for the three test sets.

4.3.3 Loss Function and Evaluation Metrics

During training, we employ MSE (see Section 3.3) as the loss function. In the regu-
larised version of the basic algorithms, as detailed in Sections 3.4.1 and 3.2.2, and in
the deep learning models, as elaborated in Sections 4.5.5 and 4.5.6, we also incorpo-
rate the regularisation terms.

As the evaluation metrics, we use the Mean Absolute Deviation (MAD, see Sec-
tion 3.3.2), and the r2 score (see Section 3.3.3). Additionally, we introduce the ad-
justed r2 score, specifically selected for deep learning models due to its capability to
address concerns related to model complexity and the number of predictors.

4.4 Basic Machine Learning Models

Basic machine learning models are not computationally intensive when compared
to most deep learning approaches on small datasets, as in our case. As explained
in Section 3.4, Grid Search Cross-validation (CV) is a rigorous technique for hyperpa-
rameter selection for basic machine learning models. Even if there are more sophisti-
cated approaches to hyperparameter selection, such as Bayesian search, we decided
to seek simplicity and efficiency and optimising further the hyperparameter selection
for baseline models would be outside the scope of this thesis.

In addition to this, for the basic machine learning model, we chose to use the
procedure detailed in Section 4.2.3 to convert the time series of multispectral cubes
(see Section 4.2.1) into a tabular format. To do so, we select only the components of
the time series associated with the day 24th of May, the day of disease score acquisi-
tion. The rationale behind this choice is that, even though deep learning approaches
use sequential data, the basic ML models constitute the first simple approach and
therefore we decide to constraint the dataset. At the beginning of the experiments,
we thought that the acquisition date was the most important day for our regression
problem. Nevertheless, this assumption will be revealed to be incorrect, since, as de-
tailed in Section 5.5.4, the deep learning procedure selects the dates after the 24th of
May as the ones that contribute the most to the model performances. Nevertheless,
this choice serves its role in kickstarting our analysis.

We start our exploration of machine learning models with linear regression. Given
its simplicity and minimal hyperparameters, it serves as an initial point of reference.
Following this, we delve into regularised versions of the linear model and introduce
SVMs. We conclude with the random forest model.
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4.4.1 Linear Models

We explore three model variations: the standard linear model and two regularised
counterparts. The Ridge regressor (see 3.4.2) is employed to alleviate multicollinear-
ity12 by shrinking all coefficients towards zero (Kennedy 2003). Additionally, the lasso
regressor (see 3.4.1) is considered, promoting sparsity by encouraging specific fea-
ture coefficients to be precisely zero. The only hyperparameter we fine-tuned for the
regularised models is the strength of the regularisation (α). For both the lasso and
the ridge the constant is selected between the values reported in Table 5.

Table 5: Values of the α hyperparameter for lasso and ridge regressors.

α Values

Lasso 0.001, 0.01, 0.1, 1, 10
Ridge 0.001, 0.01, 0.1, 1, 10

4.4.2 Support Vector Machine

Support Vector Machines (SVMs), especially their kernelised variations, present ver-
satile and powerful modelling tools for creating simple yet effective models. To ad-
dress the non-linearity inherent in the aggregated image data (refer to Section 4.2.3),
we initially employed the classical SVM, as detailed by the optimisation problem in
Equation 2. Subsequently, we explored kernelised versions, specifically utilising the
Radial Basis Function (RBF) and sigmoid kernels. While we also experimented with
polynomial kernels of second and third orders, their run times quickly became im-
practical, prompting a focus on the more efficient RBF and Sigmoid kernels. This
methodology aims to leverage the flexibility of SVMs, especially in handling non-linear
relationships in the high dimensional space given by the statistics of the images.

In practice, we employed the scikit-learn13 implementation of this algorithm (Pe-
dregosa et al. 2011). For the bandwith of the kernel we use the default setting of
scikit-learn. During the tuning of the hyperparameters, we focused on the following
configuration:

• Kernel: The type of kernel function used, in particular, linear, polynomial, Gaus-
sian and sigmoidal.

• C: The regularisation hyperparameter. A smaller C encourages a smoother de-
cision boundary, while a larger C allows for a more complex decision boundary

12Multicollinearity occurs when independent variables in a regression model are highly correlated,
making it challenging to discern their individual effects on the dependent variable

13We use scikit-learn version 1.4.0
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that closely fits the training data. The values selected for this approach are:
[0.001, 0.01, 0.1, 1, 10].

• Degree: For polynomial kernels, this hyperparameter represents the degree of
the polynomial. Only the polynomials of second and third orders are consid-
ered for CV.
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4.4.3 Random Forest Regressor

Random forest is a well-established model. Its ensemble nature creates a robust model
to get better predictions than previous linear models. In this thesis, we employed the
scikit-learn implementation and fine-tuned a range of hyperparameters to optimise
model performance. These hyperparameters include:

• the number of decision trees in the forest (N Estimators).

• the maximum depth of individual trees (Max Depth).

• the minimum number of samples required for a split (Min Samples Split).

• the minimum number of samples in a leaf node (Min Samples Leaf).

• the maximum number of features considered per split (Max Features).

• the maximum number of leaf nodes in each tree (Max Leaf Nodes).

• the maximum number of samples used in each tree (Max Samples).

• the decision whether a node splits based on the impurity decrease (Min Impu-
rity Decrease).

• the decision whether the bootstrapped sampling techniques are used (Boot-
strap ).

The hyperparameters presented in Table 6 provides ample flexibility for tailoring
the Random Forest model making it an adaptable and powerful tool for addressing
complex regression challenges.

Table 6: Hyperparameters and values for the RF CV.

Hyperparameter Values

N Estimators 10, 20, 50, 100, 200, 500
Max Depth 3, 6, 10, 20, 30, 50, 100, None
Min Samples Split 2, 5, 10, 20
Min Samples Leaf 1, 2, 4, 10
Max Features 1, auto, square root of samples, log2 of samples
Max Leaf Nodes 2, 5, 10, 20, 50, 100, None
Max Samples 0.5, 0.7, 0.9, 1.0 (i.e.; no bootstrap sampling)
Min Impurity Decrease 0, 0.01, 0.05, 0.1, 0.5
Bootstrap True, False
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4.5 Deep Learning Approaches

In this section, we provide an overview of deep learning architectures and their as-
sociated methodologies, with a specific emphasis on elucidating the underlying rea-
sons behind the design decisions.

4.5.1 Data Augmentation

In Section 4.2.1, we discussed the preprocessing steps involved in transitioning from
raw data to well-structured multispectral images. In Figure 12 it is possible to see a
visual representation of an instance of the dataset.
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Figure 12: Schematic representation of the deep learning inputs. R stands for Red,
G for Green, B for Blue, RE for Red Edge, NIR for Near Infrared, LWIR for Long Wave
Infrared and NDVI is the Normalised Difference Vegetation Index. The seven timesteps
refer to the 7 flights, as illustrated in Table 3.

The training images undergo a min-max normalisation, re-scaling them to the in-
terval [0, 1] (see as detailed in Section 3.2.3). The min-max normalisation is applied
independently to each time step and each channel. For each time step and each chan-
nel, we compute the maximum and the minimum value of the pixel over the width
and length dimension and we use them to normalise the image. As a result, the algo-
rithms’ gradient descent can more effectively navigate the loss landscape, facilitating
the convergence of the model during training (Hestness et al. 2017).

During each epoch, the multispectral cubes are subject to data augmentation.
Data augmentation strengthens the model’s robustness and helps to learn invariants
to generalise better on unseen data, by employing diverse transformations, such as
image flips. Thereby, it helps mitigate the pervasive risk of overfitting and improving
adaptability to real-world scenarios (Rebuffi et al. 2021). Additionally, data augmen-
tation plays a role in balancing class distributions and optimising the usage of limited
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data (Ottoni et al. 2023). Augmentation in a standard procedure in ML, hence we per-
form it.

In the data augmentation process, we have incorporated a set of transformations
to enhance the richness of our dataset. These transformations include horizontal
flipping, vertical flipping, the introduction of random noise, and the application of
salt and pepper noise. The latter is a technique where random pixels are either com-
pletely black (pepper) or completely white (salt), simulating noise and further diver-
sifying the dataset. We also acknowledge the existence of numerous other augmen-
tation techniques within the temporal domain (Wen et al. 2020), and we remain open
to exploring these possibilities in future iterations of our work.

For the following formulas, we adopt the convention that x and y represent the
coordinates of a pixel in the original reference system, while x′ and y′ denote the
transformed pixel. W and H stand for the width and height of the image.

• Horizontal Flipping: This transformation involves reflecting an image hori-
zontally. Mathematically, it is described as:

x′ = W − x and y′ = y

• Vertical Flipping: This operation mirrors the image along the vertical axis and
can be expressed as:

x′ = x and y′ = H − y

• Random Noise: The introduction of random noise simulates small data varia-
tions. Moreover, it also combats overfitting in cases where the Gaussian noise
has no real-world interpretation and might stabilise training by preventing the
model from becoming overconfident which would cause it to fall into local min-
ima (Shorten and Khoshgoftaar 2019). This technique involves adding random
values to the pixel intensities of the image. Mathematically, it can be expressed
as:

I ′(x, y) = I(x, y) +Nσ,0

where Nσ,µ is Gaussian noise with standard deviation σ and mean µ = 0, and
I(x, y) are the pixel values in the original image and I ′(x, y) in the modified
one.

• Salt and Pepper Noise: This technique introduces random pixels with either
complete black (pepper) or complete white (salt) intensities. Mathematically,
it can be expressed as:

I ′(x, y) =


0 with probability pp · ps & p

1 with probability ps · ps & p

I(x, y) else
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here, pp and ps represent the probabilities of introducing pepper and salt pix-
els, respectively. ps & p is the probability of performing the salt and pepper aug-
mentation. I ′(x, y) is the transformed value of the pixel and I(x, y) is the orig-
inal value. This additional transformation contributes to the robustness of the
model by introducing different types of noise and variations into the dataset.

These augmentations are sequentially applied, each with an independent prob-
ability. Consequently, their effects can accumulate. The rationale behind stacking
transformations lies in the idea of exposing the model to a more comprehensive set
of variations within the data. For instance, horizontal and vertical flipping can sim-
ulate changes in orientation or perspective, while the introduction of random noise
replicates the inherent uncertainties or variations present in real-world data. By com-
bining these transformations, we aim to capture a broader spectrum of potential vari-
ations, enabling the model to generalise better and perform well on unseen data by
learning to recognise different perspectives and variations, ultimately improving its
ability to handle different scenarios during inference. Table 7 presents an overview
of the probabilities relative to each augmentation.

Table 7: Table representing the probabilities that a data instance is augmented with
the respective transformations.

Augmentation Probability

V-flip 0.5
H-flip 0.5
Salt and Pepper (ps & p) 0.3
Gaussian 0.3

We tested different augmentation probabilities, but we settled on this configura-
tion for efficiency’s sake. We assigned a 0.5 probability to the flip transformation as
it doesn’t alter the image. Additionally, we refrained from using higher values for salt
and pepper augmentation to avoid excessively prolonging the convergence epoch.
A more structured approach to this problem might be investigated in the follow-up
research of this work.

4.5.2 Convolutional Neural Network

In this thesis, we use two convolutional neural networks as the feature extractors of
the model (see Figures 13 and 14): the first is a simple stack of convolutional layers
(see Section 3.4.5), while the second is ResNet34 (see Section 3.4.7). In this final ap-
proach, this pre-trained CNN model leverages multispectral transfer learning to alle-
viate data scarcity (He et al. 2015). The main challenge that arises, in this case, is how
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to convert 2-dimensional CNNs to offer a practical solution for effectively fusing in-
formation from different spectral bands to reveal valuable insights within 8-channel
multispectral images across a range of applications. An in-depth discussion of this
approach can be found in Section 4.5.6.

4.5.3 Average Pooling Layer

Average pooling layers (see Section 3.4.8) are employed to reduce the size of feature
maps in the deep learning pipelines (see Figures 13 and 14). In the case of our investi-
gation into yellow rust abundance, the disease score depends on the collective con-
tribution of plants within an experimental plot, where the count of diseased plants
influences the agronomist’s assessment. To mirror the real-world disease score ac-
quisition as closely as possible, we opt to integrate an average of the feature map
instead of a max pooling layer.

This decision stems from a concern that a max pooling layer might yield dispro-
portionately negative scores in cases where a small batch of diseased plants coexists
with an otherwise healthy population, thus neglecting the contribution of the latter.
We believe that employing an average would offer a fairer representation of the over-
all health of the plot.

Due to time constraints, we are unable to explore the potential impact of includ-
ing max pooling layers in our model within the scope of this thesis.

4.5.4 Long Short-Term Memory

As we discussed in Section 3.4.6, LSTMs excel at capturing time dependencies within
the data. We Since the data employed in this study are image data, the features to be
fed to the LSTM cells need to be extracted from the images themselves. In this case,
the feature maps extracted by the CNN, after an averaging pooling layer (see Section
3.4.8), might constitute a prime input. Regarding the output of the model, an LSTM
network outputs a sequence of hidden states, each representing the network’s in-
ternal memory and encoding relevant information about the input sequence in each
time step.

On this premise, we can transition to our first deep learning setup.
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4.5.5 CNN-LSTM Network

This is the first model among the ones proposed that considers explicitly both the
spatial and time dependency inherent in our data. In the context of this thesis, this
is a deep learning baseline that would serve as a benchmark for the more refined
approach proposed in Section 4.5.6. Nevertheless, this architecture can predict phe-
notypes, even though it does not generalise well, as explained in Section 5.4. Figure
13 presents the schematic representation of the model. The hyperparameters of this
architecture can be found in Appendix B.1, in Table 36.
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Figure 13: Illustration depicting our custom CNN-LSTM model architecture. In the ini-
tial phase, a feature extractor (stacked convolutiona layers in this case) is employed
to capture spatial information from each plot at every time step. Subsequently, the
rigth hand side leverages the abundant time information available to enhance the
model’s temporal understanding.

The model can be divided into two parts: CNN extracting spatial features and
an LSTM combining those features over different timesteps. The feature extractor is
based on an adjustable number of convolutional layers (the CNN in Figure 13). The
spatial feature extractor takes as input all bands for a plot at a single time step, which
is a tensor image with shape [C, W, H], where C is the number of channels (7) and W
and H are respectively the width and length. The adaptable number of channels was
implemented to make it possible to have a scalable architecture to make it possible
to add new spectral bands and indices in future iterations of this work.

When the input tensor passes through M convolutional layers, the shape of the
output feature map (filters in Figure 13) is calculated using the procedure presented
in Section 3.4.5. This procedure takes into account the local features and patterns
of the multispectral images. To get a more compact representation of the spatial in-
formation, an average pooling layer (see the description is 3.4.8) is added after the
convolutional layers to downsample the feature map thus reducing its dimensional-
ity while retaining essential information, therefore obtaining non-local features. The
pooling layer (average spatial information in Figure 13) operates with fixed-size rect-
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angular windows that compute the mean value within the window independently for
each channel in the feature map. The result is a feature map reduced to a single ele-
ment with unchanged channel depth (raw extracted features in Figure 13). This down-
sampling process reduces the risk of overfitting, leading to a feature map with shape
[C, 1, 1], where C is the number of channels. To implement it practically we used the
standard PyTorch implementation, using the torch.nn.AvgPool2d module. This mod-
ule automatically computes the features to downsample to the desired width and
height of the resulting feature map.

After this procedure is applied to all the multispectral cubes, the features have
shape [L, C, 1, 1], where L is the number of time steps in the time series.

The feature maps are then used as the input of an LSTM cell (LSTM in Figure 13).
The assumption and experimental ansatz here is that the network until this point can
learn the spatial and spectral features well enough to be able to generalise. From
this point onwards in the network, we will be using the LSTM to model the temporal
dependencies. As described in subsection 3.4.6, the output of the LSTM is a tensor
with shape [L, C]. In this LSTM, we only consider a single timestep, therefore the final
output of this model would be a tensor of shape [C]. This is a fixed-size representa-
tion of the time dependencies between the extracted spatial features of all preceding
timesteps.

The number of LSTM modules is a tunable hyperparameter. Moreover, the acti-
vation of each LSTM, excluding the last one is subject to a ReLu layer and a drop-out
layer before the next LSTM module. This approach helps mitigate overfitting.

Finally, an Artificial Neural Network (ANN in Figure 13) is added to control the
model’s output more efficiently and to apply dimensionality reduction to get a sin-
gle scalar as the output. The number of hidden layers and the number of neurons are
tunable parameters. Similarly to the LSTM case, ReLu and dropout layers are inserted
between the hidden layers to mitigate overfitting.
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4.5.6 ResNet-LSTM Network

This represents our most comprehensive model for addressing the prediction of the
yellow rust phenotype. Figure 14 illustrates the model architecture, replacing the
CNN layers in the feature extractor with a pre-trained ResNet network (He et al. 2015).
We chose ResNet for its simplicity compared to more modern networks (e.g., Tang et
al. 2023) and its ability to capture spatial features crucial for our application. The
approach prioritizes efficiency and generalisation over higher-resolution methods.
ResNet’s effectiveness in crop disease prediction has been demonstrated in previous
studies (Zhang et al. 2019).

In practice, we utilised the feature extractor module of ResNet34, optimising the
depth of the feature map by analising the "index_out" hyperparameter (see Section
3.4.7 and the timm library timm 2024).
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Figure 14: Illustration depicting the custom ResNet-LSTM model architecture. On the
left-hand side, a feature extractor (ResNet) captures spatial information from each
plot at every time step. Subsequently, on the right-hand side, it leverages the time in-
formation contained in the time series. The way spatial attention works is presented
in Figure 16

.

Each data instance is subject to a preprocessing step that, for each timestep, di-
vides the initial 7-channel multispectral cube into three 3-channel cubes, as described
in Figure 15. The flow of the network then involves partitioning each multispectral
cube (described in Figure 15) into chunks along the width dimension, resulting in
CChunks chunks of 3 channels. The rationale behind this choice is that partitioning
the plot areas into sub-plots would take into account different areas with different
distances from the edges of the plot. This is intended to account for microclimate
variations of the plant biome, between the plants close to the external environment
and plants deep into the plot. Each component is subsequently independently pro-
cessed by ResNet, and the subsequent feature maps undergo batch normalisation
and ReLU before being merged into a single feature representation using the spatial
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attention mechanism detailed in Figure 16.
After extracting spatial features, we perform an average over each resulting chan-

nel of the feature map on the width and height dimensions (see "average spatial di-
mension" in Figure 14). Subsequently, a L1 regularised linear layer selects important
features, creating a representation fi for each time step. This process is repeated for
each time step, and the resulting tensors are fed into an LSTM, providing a new feature
representation considering the intrinsic time dependencies in the data. This repre-
sentation undergoes batch normalisation, ReLU and then a weighted average atten-
tion mechanism, merging all time information into a single representation tweighted

(see Figure 17 for details), which is then fed into an ANN to obtain disease scores.

Data preparation
Before delving into the specifics, we discuss a further process of data preparation.
Pre-trained models are typically trained on RGB images, and this presents a challenge
when working with multispectral data. The fundamental issue lies in the inability to
directly deploy these models for processing multispectral data due to their unique
characteristics. To overcome this challenge, we have developed another data prepro-
cessing approach. Each multispectral cube is equipped with 7 distinct channels. We
grouped our input channels 3 by 3 to create tensors compatible with our pre-trained
model’s input shape. Figure 15 provides a schematic representation of the process.

7 channels

Data instance

RGB

Red Edge, NIR and LWIR

NDVI

3 channels

3 channels

3 channels

Figure 15: Preprocessing step to get 3 channel multispectral cube for the ResNet-
LSTM network.

The three resulting tensors are:

• Standard RGB Cube: this tensor retains the original RGB cube (see upper mul-
tispectral cube in Figure 15). The model can effectively generalise patterns and
discern underlying insights from this standard cube.
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• Aggregated Long Wave Multispectral Cube: in this tensor, we amalgamated
Near-Infrared (NIR), Long-Wave Infrared (LWIR), and red-edge measures into a
single multispectral cube (see middle multispectral cube in Figure 15). This
aggregation was motivated by the longer wavelengths of visible light in these
measures, which share similar physical properties. Incorporating this cube en-
hances the ability of the model to capture thermal properties and related pat-
terns.

• NDVI-Enhanced Multispectral Cube: this tensor is composed of three repli-
cates of a Normalised Difference Vegetation Index (NDVI) raster image (see bot-
tom multispectral cube in Figure 15). By tripling the NDVI representation, we
over-represent this index due to its significance in agriculture.

Essentially, our stratification process restructures multispectral data into three
tensors, each finely tuned to convey distinct physical information to the feature ex-
tractor. As far as the author knows, this is a novel adaptation and it enables a model
pre-trained on RGB data to employ multispectral data by creating pseudo-RGB cubes.
To comprehensively study this phenomenon an ablation study is necessary, but this
goes beyond the scope of this thesis.

Each multispectral cube of the triplets presented in Figure 15 undergoes an addi-
tional normalisation as per ResNet’s specifications. Specifically, the three channels
of each cube are re-normalised using the values reported in Table 8.

Table 8: ResNet-specified mean and standard deviation values for each channel, orig-
inally corresponding to RGB bands but in our application representing multispectral
cubes (see 4.5.6).

Channel 1 (R) Channel 2 (G) Channel 3 (B)

Mean 0.485 0.456 0.406
Standard deviation 0.229 0.224 0.225

Regularisation and attention mechanisms
To improve the model’s performance and to make the model determine which spa-
tial and temporal components are the most important, we incorporate two regular-
isation strategies. Those utilise weighted average attention mechanisms. The first
one is a spatial attention mechanism, while the second one employs a time attention
mechanism. Figure 16 provides a schematic representation of the spatial attention
procedure while Figure 17 is a representation of the time attention.

For each time step, instead of directly feeding each multispectral cube into the
feature extractor, we divide the input into a predefined number of chunks CChunks.
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Figure 16: Spatial attention module in the spatial processing pipeline. This procedure
is applied to each channel and for each spectral band, spatially selecting the most
relevant spatial information. BN refers to the Batch Normalisation module and ReLU
is the Rectified Linear Unit. The tensor is represented on the left side of the figure in
any of the three presented in Figure 15. All three multispectral cubes are processed
independently from the feature extractor.

Then, these fragments are passed through the ResNet feature extractor (ResNetFE)
to produce feature maps. Each feature map undergoes weight averaging to create
a consolidated spatial representation to assign weights based on their significance.
The weights used in this operation were then subjected to L1 regularisation and inte-
grated into the loss function to encourage sparsity. This process can be mathemati-
cally represented as follows:

xweighted =

CChunks∑
i=1

wi · ReLU(BN(ResNetFE(xi))) =

CChunks∑
i=1

wi · x̂i (3)

where x is the input data passed through the feature extractor (ResNetFE), followed
by Batch Normalisation (BN) and Rectified Linear Unit (ReLU) activation. The result-
ing CChunks feature maps are then combined using weights (wi) derived from the
attention mechanism. These weights are applied to the feature maps and the final
weighted sum (xweighted) is obtained.

The normalised weights w, also known as importance scores, are normalised us-
ing a softmax function, hence, for each component:

wi =
eŵi∑n
j=1 e

ŵj
(4)
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where wi is the output probability for the i-th element, ŵi is the i-th element of the
attention weights vector, and n is the number of elements in the input vector. In the
spatial attention n is the number of chunks (CChunks) or the number of time steps (T)
in the time attention

The same procedure detailed in Equation 3 is applied to the feature representa-
tion (tweighted) that aggregates all the time information. Figure 17 provides a schematic
representation of the time attention procedure.
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Figure 17: Time attention module in the time processing pipeline. This module
is applied to each spatial feature representation output by the spatial processing
pipelines. The attention mechanism selects which timesteps of the time series con-
tribute the most to the model predictions. BN refers to the Batch Normalisation mod-
ule and ReLU is the Rectified Linear Unit.

Equation 3 can be rewritten as follows:

tweighted =

T∑
i=1

vi · ReLU (BN (ti))) =

T∑
i=1

vi · t̂i

where ti represents the temporal features processed through Batch Normalisation
(BN) and Rectified Linear Unit (ReLU) activation. The resulting feature vectors, de-
noted as t̂i, are then combined using weights (vi) obtained from a temporal attention
mechanism. These weights are applied to the feature tensors and the final weighted
sum (tweighted) is calculated by summing over all i from 1 to T .

This procedure lets the model itself determine which element of the time series
contributes the most to the prediction problem after its spectral and spatial informa-
tion are aggregated by the spatial and feature processing modules (see Figure 14).
This procedure improves its ability to recognise relevant patterns and reduces the
impact of redundant information.
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Cost Function
As for the cost function, sparsity is introduced by adding the spatial regularisation
term to the original mean Squared Error (MSE) cost function (J0). This modified cost
function (J ′) is given by:

J ′ = J0 + λ

CChunks∑
i=1

|wi| (5)

whereλ controls the strength of L1 spatial regularisation,wi is the i-th element of the
spatial attention weights w, and J ′ is the new cost function.

Similarly, building on Equation 5, the cost function is expressed as:

JAttention = J ′ + γ

T∑
i=1

|vi| = J0 + λ

CChunks∑
i=1

|wi|+ γ

T∑
i=1

|vi| (6)

here, γ governs the strength of L1 time regularisation, vi is the i-th element of the
time attention weightsv, and JAttention is the cost function incorporating spatial and
temporal attention.

The final cost function incorporates regularisation by the feature selector over
weights ϕi (lasso in Figure 14):

J = JAttention +Ω

T∑
i=1

|ϕi| = J0 + λ

CChunks∑
i=1

|wi|+ γ

T∑
i=1

|vi|+Ω

T∑
i=1

|ϕi| (7)

here,Ω controls the strength of L1 feature regularisation,ϕ represents time attention
weights, and J is the final cost function combining three regularisation techniques.

Extending this to include L2 regularisation introduced with weight decay, the cost
function becomes:

JFinal = J + β

NParams∑
j=1

(Λj)
2 (8)

here, JFinal incorporates attention, L1 feature regularisation, and weight decay. The
hyperparameterβ controls the strength of weight decay,Λj is the j-th trainable weight
parameters of the DL model, and NParams is their the total number.
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5 Results

In this section, we examine the outcomes of our research, evaluating the performance
of the various models utilised, including SVMs, linear models, and RFs, with a specific
emphasis on deep learning models. Additionally, we will visualize the learning curves
for our ML models. It is essential to acknowledge that our research encountered lim-
itations stemming from diverse data-related issues, and we will discuss these limita-
tions alongside our findings.

5.1 Impact of Ground Control Points

Ground Control Points (GCPs) significantly enhance the precision of geolocation. Fig-
ure 18 illustrates the difference between pixel coordinates derived solely from GNSS
data, i.e.: the image that would result by skipping the GCP part in the procedure de-
scribed in Section 4.2.1, and those refined through triangulation with GCPs. Each
column in Figure 18 denotes the average difference between the geographical coor-
dinates in each of the seven flights performed.

Figure 18: Barplot depicting the average error between all the coordinates that are
not corrected with GCPs and the corrected ones for each orthomosaic obtained. The
numbers on the x-axis correspond to the flights in Table 3. Notice the scale of the y-
axis changes in the three different plots.

The contribution of GCPs plays an important role in data quality assessment. In
fact, given that the plots are 1.5 meters wide, an error of 1 meter could misidentify one
plot from another, potentially compromising data reliability by incorrectly geolocal-
ising one pixel, with all its associated information to the wrong plot. Moreover, the
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correction on the Z axis is useful to correct the obtained terrain model, in the "Mo-
saicing" passage of the procedure in Section 4.2.1. The usage of GCPs significantly
mitigates this effect by obtaining sub-pixel geolocation errors in the 3 directions.

5.2 Orthomosaic Reconstruction Error

In Figure 19, we present an example of reconstructed images using various resam-
pling algorithms. The quality of the reconstruction is easily appreciable for both the
bicubic and the Lanczocs kernels14, while nearest neighbour and bilinear kernels do
not reconstruct well the underlying image details.

(a) Nearest neighbour.

(b) Bilinear.

(c) Bicubic.

(d) Lanczos.

Figure 19: Plot images reconstructed with different resampling techniques for the
same NDVI acquisition.

Figure 20 illustrates a benchmark analysis comparing resampling algorithms. Mean
Squared Errors (MSEs) were calculated for each kernel (nearest neighbours, bilinear,
and bicubic) considering an image reconstructed with them and one reconstructed

14The difference in the reconstructed images between these two kernels has been validated qualita-
tively by Phillipp Fanta-Jende, a photogrammetrist, even though it is present only in very small details,
such as in the right-hand side of the plot.
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with the Lanczocs resampling. MSEs and runtimes are averaged across the recon-
struction of 1064 images for each of the 7 channels considered. The normalisation of
MSEs allows for easier comparison, particularly considering the difference between
the wavelength of the RGB band (400 - 495 nm) and the LWIR band (8000 - 14000 nm).
This determines different orders of magnitude in the errors between pixel values and,
therefore we can not compare these two bands. To solve this problem, all MSEs are
divided by the variance of the pixels in the original plot image (i.e.; before the pro-
jective transform described in Section 4.2.2) in the chosen channel. This procedure
helps to present the data more effectively and makes the comparison possible.
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Figure 20: Comparison of images resampled with different methods with the Lanc-
zos resampled image. Mean Squared Errors are normalised to account for variance,
acknowledging the wavelength difference in orders of magnitude between RGB and
the LWIR band. The error bars are computed using the standard error of the mean.

Resampling processes exhibit varying runtimes. In our setup, average runtimes
for reconstructing 1064 multispectral images are detailed in Figure 21.

The observed outcomes align with expectations. While Lanczos resampling dis-
played superior accuracy, the incremental benefit over Bicubic did not justify the
doubling of runtime. This suggests that considering the scalability of the model, we
achieved a favourable trade-off. Conversely, the accuracy of NN and bilinear resam-
pling was not as high, as evident from the reconstructed images and Figure 20.
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Figure 21: Average runtimes for different resampling algorithms. Results represent
an average of 1064 runs, with each run reconstructing a single image.

5.3 Basic Machine Learning Models

In this section, we will present the results of the machine learning models we utilise.
These models have limitations as, due to the data preprocessing procedure to gen-
erate the tabular dataset (see Table 4.2.3), we choose not to exploit the potential of
a time series analysis. For all the basic models the hyperparameters are selected us-
ing Cross-Validation (CV) using the training set. As previously discussed in Section
4.4, these models serve as baseline models and early trials before the introduction
of more complex models. The rationale behind this decision is that we want the ba-
sic models to use the same number of training instances as the deep learning ap-
proaches (see Section 4.5). This choice contributes to keeping the experimental ap-
proach standardised and answering the research question "How can we effectively
predict phenotypic traits in crops, particularly focusing on disease scoring, consider-
ing the trade-off between model simplicity and complexity?".

Since none of the approaches yielded satisfactory results on the validation set,
for the sake of brevity and to avoid redundancy, we did not report the values of the
metrics of the three test sets (see Section 4.3.2).

Among the basic models, only the random forest produced satisfactory results
on the training set; however, its performance on the validation set is poor (see Figure
26).
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5.3.1 Linear Model

Linear models, as expected, fell short of generating meaningful predictions due to
the inherent challenge of representing multispectral cubes solely through statistical
features, as evident in Table 9. In Figure 22 it can also be appreciated how the model
substantially predicts the average value of the target for all the instances. Hence the
model is not able to predict the higher and lower disease scores.

In reality, the tabular data employed did not reveal any inherent data patterns,
resulting in a loss of valuable information. Nevertheless, it holds significance to have
a reference point for comparison, even if the linear models did not yield substantial
results, as this allows us to contrast our more complex models’ performance against
the baseline and not against a random model.
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Figure 22: This figure presents the predictions given by the linear model on the vali-
dation set. The green dotted line is the average of the disease scores of the validation
set, while the orange line is the mean of the predictions for the validation set.

The r2 score suggests that on average the linear model is predicting the average of
the data distribution; therefore it is not learning even on training data. We can better
appreciate this effect looking at the horiziontal lines in Figure 22.
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Table 9: Metrics and CV results for the linear regression model. The hyperparameters
of the best model are selected via CV and the metrics on training and validation are
computed using them. The CV is performed using 5 folds.

CV results k=5
Average MSE 3.91337
Average r2 -0.02202
Average MAD 1.60620

Training set
MSE 3.71598
r2 0.04015
MAD 1.57500

Validation set
MSE 3.41317
r2 -0.01598
MAD 1.48025

The linear model exhibits limitations in predicting disease scores, resulting in bad
overall performance. Consequently, metrics were not computed for the test sets.
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5.3.2 Lasso Regressor

The lasso regressor yield similar results to the previous approach, showcasing that
regularisation is only marginally more effective in solving the regression problem.
The CV selected α = 0.01 as the strength of regularisation. In Table 10 we can ap-
preciate that the cross-validated results are poor, having a model that essentially
predicts, on average, the average of the target data. Figure 23 shows that the lasso
regression reduced even further the variance of the prediction on the validation set.
This brought a marginal increase of the r2 score because the classes with target 1 and
2 are the most populated.
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Figure 23: Predictions against ground truth for the validation dataset for the lasso
model. The green dotted line is the average of the disease scores of the validation
set, while the orange line is the mean of the predictions for the validation set.
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Table 10: Cross-validated results for lasso Regression, the validation and training sets
are evaluated using the best performing model of the CV. The CV is performed using
5 folds.

CV results k=5
Average MSE 3.83166
Average r2 -0.00143
Average MAD 1.59143

Training set
MSE 3.80245
r2 0.01781
MAD 1.58922

Validation set
MSE 3.35168
r2 0.00233
MAD 1.46674

5.3.3 Ridge Regressor

The ridge regressor yields similar results to the previous approach, showcasing that
regularisation is only marginally more effective in solving the regression problem. It
similarly selects α = 0.01 with the CV as the strength of regularisation. In Table 11
we can also appreciate that the cross-validated results are poor, having a model that
essentially predicts, on average, the average of the target data. Figure 24 shows that
the Ridge regression reduced less the variance of the prediction on the validation set.

Table 11: Cross-validated results for ridge regression, the validation and training sets
are evaluated using the best performing model of the CV. The CV is performed using
5 folds.

CV results k=5
Average MSE 3.67137
Average r2 −0.00031
Average MAD 1.60414

Training set
MSE 3.87137
r2 0.00016
MAD 1.60414

Validation set
MSE 3.36866
r2 -0.00273
MAD 1.47734
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Figure 24: Predictions against ground truth for the validation dataset for the ridge
model. The green dotted line is the average of the disease scores of the validation
set, while the orange line is the mean of the predictions for the validation set.
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5.3.4 Support Vector Machine

The Support Vector Machine (SVM) regressors outperform the Linear and lasso re-
gressors, yet they encounter challenges in effectively generalising to the test set. The
RBF kernel exhibited superior performance compared to the polynomial kernel and
also offered significantly faster processing. Dealing with high feature counts rendered
even second-order polynomial operations extremely resource-intensive. The best hy-
perparameters for the SVM regression model included a regularisation hyperparam-
eter (C) of 0.1, and an automatically determined gamma value for the RBF kernel,
contributing to enhanced model performance. The results for the best model are pre-
sented in Table 12 and Figure 25.
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Figure 25: This figure presents the predictions given by the SVM model on the valida-
tion set. The green dotted line is the average of the disease scores of the validation
set, while the orange line is the mean of the predictions for the validation set.

As in the previous cases, the predictions are close to the average value of the tar-
gets and the model struggles to predict higher disease scores.
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Table 12: Metrics and CV results for the SVM regression model. The best model is
selected via CV and the metrics on training and validation are computed based on it.

CV results k=5
Average MSE 3.04099
Average r2 0.20338
Average MAD 1.25889

Training set
MSE 2.1647
r2 0.4408
MAD 0.9670

Validation set
MSE 3.1225
r2 0.0705
MAD 1.3698

5.3.5 Random Forest Regressor

The best parameters used for the random forest model are presented in Table 13.

Table 13: Best hyperparameters for the RF regressor.

Hyperparameter Value
Number Estimators 50
Maximum Depth 10
Minimum Samples to Split 5
Minimum Samples per Leaf 4
Maximum Features per Node 1
Maximum Leaf per Nodes None
Maximum Bootstrap Training Samples’ fraction 1
Minimum Impurity Decrease 0
Bootstrap True

Random Forest was trained on the same data set as the last regressors and showed
the same issues. However, in this case, the model was able to learn the training data
quite well, as can be seen in Table 14 and Figure 27.

Table 14: Results for the RF regressor. The CV is performed using 5 folds. The valida-
tion and training sets are evaluated using the best-performing model of the CV.

CV results k=5
Average MSE 3.04099
Average r2 0.20338
Average MAD 1.25889

Training set
MSE 1.3762
r2 0.6445
MAD 0.9085

Validation set
MSE 3.1334
r2 0.0673
MAD 1.4285

The r2 score on the training data suggests a strong overfitting, where the model
only learns to predict the data present in the training, but then simply predicts the
average for the test dataset.

In Figures 26, the graph presents the model’s difficulty in accurately predicting
higher values of the disease score. This phenomenon is consistent with the perfor-
mance of the model on the training data, as is evident in Figure 27. In an attempt to
mitigate this issue, oversampling was implemented to improve the representation of
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under-represented data. However, the outcomes remained comparable, indicating
that an effective model should aim to discern the underlying patterns within the im-
ages, rather than rely solely on statistical representations. This element corroborated
the need for a deep learning model in the next pages.
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Figure 26: This figure presents the predictions given by the RF model on the validation
set. The green dotted line is the average of the disease scores of the validation set,
while the orange line is the mean of the predictions for the validation set.
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Figure 27: This figure presents the predictions given by the linear model on the train-
ing set. The green dotted line is the average of the disease scores of the train set,
while the orange line is the mean of the predictions for the train set.
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5.4 CNN-LSTM Network

This section presents the results of the simple deep learning baseline we chose. The
process is described in Section 4.5.5. Since this is a deep model we did not perform
cross-validation, but, on the contrary, we fine-tuned the model on our validation set.
To select the best hyperparameters we applied a greedy search, based on the impor-
tance that we assigned to each hyperparameter.

5.4.1 Procedure of Hyperparameter Selection

Our procedure began with a deliberate decision to initialize the hyperparameters based
on the default values provided by PyTorch. This initial setup served as a founda-
tion, establishing a baseline for our subsequent investigations. Accordingly, we man-
ually fine-tuned the initially chosen hyperparameters to ensure convergence in the
model’s loss. Following this, we delved into the critical hyperparameter of network
depth, as discussed in Section 4.5.6, recognising its impact on the model’s perfor-
mance on the validation dataset. The analysis unveiled that adding layers, be them
convolutional layers within the feature extractor or LSTM cells (refer to Figure 13), did
not yield performance enhancements. Notably, networks with more than two convo-
lutional layers consistently produced a negative r2 score on validation, indicating a
failure to capture the data variance adequately. This prompted a more in-depth in-
vestigation into the repercussions of network depth, as elucidated in Appendix B.2.1.
The dependence on the depth is presented in Figure 40, 39, 41a and 41b and in Table
15 and 16.

Table 15: Model performance for different numbers of convolution layers. The met-
rics are computed on both the training and the validation sets.

Description MSE val. MSE train r2 val. r2 train

3 conv. layers 6.190 5.649 -0.847 -0.422
2 conv. layers 9.858 10.025 -1.942 -1.523
1 conv. layer 2.124 1.655 0.366 0.583

Adding complexity to a model typically enhances validation results. However, Ta-
ble 16 indicates a degradation in training set performance over time for weight decay
values of 0. This phenomenon could be attributed to difficulties in reaching conver-
gence by the network. A reason for that would be that operating with approximately
800 training image samples is often deemed insufficient (Bengio et al. 2013). In this
scenario LSTMs may induce sparsity in the generated feature map, potentially leading
to a sparse setup where only the model bias contributes significantly to predictions.
To investigate this hypothesis, we conducted an experiment introducing increasing
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Table 16: Model performance for different number of LSTM layers. The metrics are
computed on both the training and the validation sets.

Description MSE val. MSE train r2 val. r2 train

5 LSTM layers 5.231 5.619 -0.561 -0.414
4 LSTM layers 7.976 6.798 -1.380 -0.711
3 LSTM layers 9.308 9.162 -1.777 -1.306
2 LSTM layers 3.589 2.784 -0.071 0.299
1 LSTM layer 2.124 1.655 0.366 0.583

levels of L2 weight decay (the sole source of regularisation in this architecture) to con-
trast that. We then assessed performance for models with 1, 2, and 3 layers. Figure
28 illustrates the results on the training set.

An observation arises by comparing Figure 28 with the results in Table 16, where
a weight decay of 0 is applied. The behaviour of the three-layer network in the figure
and the table present significant disparities in the performances of the r2 scores on
training - -1.3 compared to 0.42. Since the experimental setup remained consistent
in both, it suggests potential instability in the convergence of these networks, likely
stemming from the limited data available. A comprehensive investigation of this phe-
nomenon would necessitate repeated experiments for statistical analysis. This is un-
feasible to conduct given its computational burden in the scope of this thesis. There-
fore, considering this as a preliminary model to assess the performances of our final
model, we opted for a shallow network, selecting a stable yet superior-performing
single LSTM layer network. We kept this approach also with the number of ANN Neu-
rons, as evident in Table 18.

The next hyperparameter tested is the number of neurons in the LSTM layers. The
results are presented in Table 17.

Table 17: Model performance metrics for different numbers of neurons in the LSTM
layer. The metrics are computed on both the training and the validation sets.

Description MSE val. MSE train r2 val. r2 train

32 LSTM neurons 3.157 2.692 0.058 0.322
64 LSTM neurons 2.132 1.898 0.364 0.522
128 LSTM neurons 2.079 1.686 0.380 0.576
256 LSTM neurons 2.124 1.655 0.366 0.583
512 LSTM neurons 1.620 1.230 0.517 0.690

The variant featuring an LSTM layer with 512 neurons demonstrated superior per-
formance on the validation set. Therefore, this configuration was employed in sub-
sequent explorations. Then, we tuned the width of the output layer. Given the poor
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Figure 28: r2 scores on the training set across varying LSTM layer depths. To enhance
clarity, the y-axis is shown in the interval [-0.3, 1], all the values for weight decay equal
to 1 are negative both on training and validation.
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results of increasing the network depth, we always kept 1 single hidden layer in the
output ANN (see Figure 13). Nevertheless, the number of neurons of the head ANN is
benchmarked and the results are presented in Figure 42a and 42b; as well as in Table
18.

Table 18: Model performance for different numbers of neurons in the output ANN
layer. The metrics are computed on both the training and validation sets.

Description MSE val. MSE train r2 val. r2 train

32 neurons ANN 2.024 1.453 0.396 0.634
64 neurons ANN 1.743 1.304 0.480 0.672
128 neurons ANN 2.009 1.690 0.401 0.575
256 neurons ANN 1.620 1.230 0.517 0.690
512 neurons ANN 1.773 1.448 0.471 0.635

Regarding data augmentation, our investigation revealed that incorporating flips
enhances the model’s performance on the validation dataset by effectively expanding
our training sample. We conducted experiments and fine-tuned various augmenta-
tion hyperparameters throughout the thesis work. We identified the most impactful
ones listed below and we used them to select which combination of augmentation is
optimal in this study. We also experimented with other augmentation hyperparame-
ters, in particular different values of salt and pepper noise, but we did not report them
in the thesis for brevity since they did not present good performance on validation.
The results obtained are presented in Table 19.

Table 19: Metrics computed on both training and validation sets. The augmentations
listed are applied on training data during training. The vertical and horizontal flips
are applied in all the listed cases.

MSE val. MSE train r2 val. r2 train Pepper Pr. Salt Pr. Gaussian Std. Dev.

1.599 1.246 0.523 0.686 0 0 0.04
1.620 1.230 0.517 0.690 0 0 0.02
1.667 1.467 0.502 0.631 0.02 0.02 0.01
1.999 1.682 0.403 0.577 0.01 0.01 0.01
2.123 1.790 0.366 0.549 0.01 0.01 0.02
2.481 2.325 0.260 0.415 0.02 0.02 0.04
2.674 2.440 0.202 0.386 0.01 0.01 0.04

The network presents the best performance when no salt and pepper noise is
applied. The Gaussian standard deviation has an impact on the validation perfor-
mances, but, instead of using other hyperparameters, we decided to change the ar-
chitecture itself i. Even if other alternative optimisation strategies were possible, we
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opted for an easy one, to meet the typical time constraints of a Master Thesis.

5.4.2 Best Performing Model

After the procedure as mentioned earlier, the best results correspond to the hyperpa-
rameters reported in Table 20 the best performing model. For a complete description
of the hyperparameters see Table 36.

Table 20: Best hyperparameters for the custom CNN-LSTM architecture.

Data Augmentations

Salt Pr. Pepper Pr. Gaussian Noise Factor Hor. Flip Ver. Flip
0 0 0.08 True True

Models

Num. LSTM Neurons Num CNN Filters Kernel Size Num Conv Layer
512 256 3 1
Padding Stride Num LSTM Layer Num ANN Layers
1 1 1 1
Dropout CNN Dropout LSTM Dropout Output Num. ANN Neurons
0 0 0 256

Training Parameters

Batch size Learning Rate Weight Decay (β) Scheduler Gamma
16 0.0001 0 0.85
Scheduler Step Size Clipper Max Norm
50 epochs 1

In Figure 29, we showcase the learning curve depicting the loss function. Figure 30
illustrates the r2 values on both training and validation sets throughout the training
process. Additionally, the evolution of the MSE is presented in Figure 31.
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Figure 29: Loss function of the best-performing model during training.

Figure 30: r2 score of the best performing model.
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Figure 31: MSE of the best-performing model.

Those models provide a decent baseline for developing a model that uses explic-
itly all the time complexity and space complexity at the same time.

To conclude, the resultant metrics of the model on the three test sets defined in
Section 4.3.2 are presented in Table 21.

Table 21: Evaluation results on the three test sets described in Section 4.3.2.

Test set 1 Test set 2 Test set 3

MSE 1.795 0.588 0.834
r2 -0.084 0.451 0.268
MAD 1.054 0.624 0.423
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5.4.3 Learnable Parameters

We hereby report the table of the learnable parameters for the best performing model.

Table 22: Model components and trainable parameters for the custom CNN-LSTM
model.

Model Component Parameters

Spatial attention weights 8
Time attention weights 7
Convolutional module 19,200
LSTM module 1,576,960
Output layer ANN 131,585
Batch normalisation after LSTM 1,024
Batch normalisation after spatial attention 7,168
Batch normalisation before spatial attention 28,672

Total Trainable Parameters 1,764,624
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5.5 ResNet-LSTM Network

This section presents the outcomes of the final model we introduced. As anticipated,
this model outperformed all the alternatives we experimented with. Much like the
preceding Section 4.5.5, we refrained from conducting cross-validation due to its im-
practicality.

5.5.1 Procedure of Hyperparameter Selection

Before attaining a functional model, for a period, we dealt with substantial bugs in
both the image processing pipeline and the model’s information flow. Despite these
challenges, we gained valuable insights into how regularisation parameters influence
the model. This understanding proved pivotal, as subsequent bug corrections re-
sulted in a model that aligned with the performance levels detailed in Section 5.4.1
on the validation set. The initial configuration details are presented in Table 40 and
Figure 46. Table 23 presents the initial performances.

Table 23: Metrics obtained before starting the procedure of hyperparameter selec-
tion. The results are reported on the validation and training sets.

MSE val. MSE train r2 val. r2 train

1.648 1.087 0.508 0.727

Following this milestone, we achieve overfitting on the training set using the new
architecture, as illustrated in Figure 47 and outlined in Table 42. This procedure is
obtained by running multiple experiments where we set the dropout probability to
zero, and then we increase the depth of the LSTM as well as the number of neurons
per layer. This outcome holds significance, indicating that our model can effectively
learn the data while surpassing the performance of the Custom CNN-LSTM architec-
ture. Table 24 presents the performances achieved when overfitting. In the subse-
quent experiments, we further explored the configuration space for the LSTM hyper-
parameters, but we did not observe substantial deviations from the first overfitting
results. Hence, we retained the LSTM configurations identical to those of the over-
fitting model. However, we opted not to maintain the same dropout settings. Our
rationale behind this decision was based on the experimental approach that, given
the model’s ability to overfit, reinforcing the regularisation component was crucial.
Nevertheless, this adjustment increased the time needed for training the models.

Subsequently, we focused on benchmarking two critical hyperparameters: the
feature representation extracted from ResNet (idx out), linked to complexity and level
of detail, and the strength of regularisation, particularly for L1 feature regularisation.
We opted to benchmark the former before the latter, following the sequence in Figure
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Table 24: Metrics of the overfitting model. The metrics are computed both on the
training and validation sets.

MSE val. MSE train r2 val. r2 train

1.483 0.145 0.558 0.963

14, after introducing dropout between the LSTM layers. Table 25 presents the bench-
mark between the different performances.

Table 25: Benchmark of different architectures with different depths of ResNet34 (hy-
perparameter "Index Out") on the validation and training sets.

Description MSE val. MSE train r2 val. r2 train

3 idx out 1.213 0.747 0.638 0.812
2 idx out 1.174 0.722 0.650 0.819
1 idx out 2.348 1.161 0.299 0.708
(1,2) idx out 1.530 1.006 0.543 0.747
4 idx out 1.221 0.797 0.636 0.799
(2,3) idx out 1.217 0.755 0.637 0.810

In this case, as we were expecting, the intermediate output of the ResNet feature
extractor provides the best results. We then selected the value 2 for the index out hy-
perparameter. In Table 26 the results for the benchmark of the strength of the feature
regularisation are presented.

Table 26: Benchmark of different architectures with different values for the L1 regu-
larisation term for the lasso regressor (see Figure 14). The results are reported both
on the validation and training sets.

Description MSE val. MSE train r2 val. r2 train

Ω : 0.01 1.141 0.838 0.659 0.789
Ω : 0.001 1.142 0.693 0.660 0.826
Ω : 0.00001 1.190 0.615 0.645 0.845
Ω : 0 1.197 0.613 0.643 0.846
Ω : 0.0001 1.201 0.626 0.642 0.842

Since we have several regularisation mechanisms we decided to benchmark the
hypothesis where the global weight decays, following the L2 norm, to benchmark its
effect. The results are presented in Table 27.
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Table 27: Benchmark of different architectures with different values of weight decay.
The results are reported both on the validation and training sets.

Description MSE val. MSE train r2 val. r2 train

β : 0.001 1.094 0.685 0.673 0.827
β : 0 1.126 0.758 0.664 0.809

This observation underscores the worst generalisation achieved by eliminating
weight decay. We thus decide to keep performing it.

While there was potential interest in conducting a comprehensive benchmark to
assess the significance of the multiplicative constants for time (γ) and space (λ) at-
tention, we decided against it. The decision was influenced by the fact that these at-
tention mechanisms penalise the model based on the norm of unnormalised weights
— before they are subjected to the softmax function. Given our earlier observations
revealing a discernible hierarchy in the relative importance of scores, we chose to
streamline our efforts and forgo the detailed benchmarking of these constants.

The next important hyperparameter we analysed is the dropout probability in-
side the LSTM. Table 28 presents the comparison. Notice that we did not compute
benchmarked the dropout probability in the ANN output. In our design, the dropout
module is not present when the ANN network has only one layer.

Table 28: Benchmark of different architectures with different values for the dropout
probability inside the LSTM module (see Figure 14). The results are reported both on
the validation and training sets.

Description MSE val. MSE train r2 val. r2 train

Dropout: 0 1.089 0.649 0.675 0.837
Dropout: 0.1 1.190 0.662 0.645 0.833
Dropout: 0.2 1.167 0.689 0.652 0.826
Dropout: 0.3 1.156 0.667 0.655 0.832
Dropout: 0.5 1.194 0.698 0.644 0.824

The key observation from our experiment is that the application of dropout didn’t
significantly enhance the performance on the validation set. This could be attributed
to a couple of factors.

Firstly, in our model, spatial dependencies appear to have a higher significance
compared to time dependencies. As a result, the ResNet feature extractor, which pri-
marily handles spatial dependencies, does most of the heavy lifting. This reduces the
impact of dropout, which is applied to the ResNet.

Secondly, we’re already implementing a robust data augmentation technique by
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introducing salt and pepper noise with a probability of 0.01 for both salt and pepper.
This technique randomly alters some features during the learning process, similar to
the effect of dropout. Therefore, the additional application of dropout might have a
marginally negative effect.

Lastly, since we suspect a strong impact of augmentation on the performance,
we present the results of the benchmark of different augmentation techniques on
our data. We decided to keep this as the last benchmark because we wanted to get a
model that could generalise well with the same, reasonable, type of data augmenta-
tion. Table 29 presents the benchmark.

Table 29: Benchmark of different augmentation techniques applied on the data pro-
cessed by the best-performing model obtained. We consider both the validation and
training sets during the evaluation.

MSE val. MSE train r2 val. r2 train Gauss. Factor Salt Prob. Pepper Prob.

1.089 0.649 0.675 0.837 0.1 0.05 0.05
1.132 0.842 0.662 0.788 0.0 0.0 0.0
1.135 0.770 0.661 0.806 0.05 0.05 0.05
1.152 0.758 0.656 0.809 0.05 0.05 0.05
1.143 0.764 0.659 0.808 0.0 0.0 0.0
1.181 0.697 0.648 0.825 0.01 0.01 0.01
1.159 0.706 0.654 0.822 0.0 0.0 0.0
1.193 0.684 0.644 0.828 0.02 0.02 0.02
1.247 0.638 0.628 0.839 0.02 0.02 0.02
1.189 0.661 0.645 0.834 0.01 0.01 0.01
1.250 0.590 0.627 0.852 0.01 0.01 0.01

We conducted additional crucial experiments involving the unfreezing of the ResNet
feature extractor and fine-tuning the model on multispectral data. To evaluate the
impact of this modification, we compared the performance of the top-performing
model with a frozen feature extractor against variations where the feature extractor
was unfrozen after 25 epochs of training. This specific epoch threshold was chosen
based on the observation that in previous experiments (as depicted in Figure 34), the
model exhibited near-convergence around the 25th epoch. Notably, we varied the
depth at which we extracted the feature map from ResNet (i.e.; the hyperparameter
"Index Out") and the number of LSTM layers. Table 30 presents the results of these
experiments.

In Figure 32 we present the evolution of the MSE on the training set.
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Table 30: Benchmark between the best-performing model and various models that
were warm started. The warm start consists of training the first 25 epochs with the
ResNet34 weights frozen and then unfreezing them from the 26th epoch. Several
depths of the ResNet34’s feature extractor were considered as well as different num-
bers of LSTM layers. The metrics are reported both on the validation and training sets.

MSE val. MSE train r2 val. r2 train Index =ut Num. LSTM layers Warmstart

1.088 0.648 0.675 0.836 2 3 No
4.639 4.825 -0.384 -0.214 2 3 Yes
4.979 5.369 -0.485 -0.352 3 3 Yes
5.421 5.647 -0.617 -0.421 2 4 Yes
5.481 5.763 -0.635 -0.451 1 3 Yes
6.010 6.419 -0.793 -0.615 2 5 Yes
8.216 7.889 -1.451 -0.985 2 2 Yes
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Epoch 25

Figure 32: Benchmark between the best-performing model and some of its variations,
when the weights get unlocked at the 25th epoch. Only the best-performing model
previously selected has a label indicating we did not unfreeze the model. All the other
models were warm-started. "Idx out" refers to the depth of the ResNet34’s feature
extractor.
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The detrimental impact of unlocking the weights of the feature extractor on MSE
is evident. This issue may stem from two factors: the disparity between the num-
ber of trainable parameters and the limited dataset, and a potential misalignment in
the initialisation of batch normalisation layers. Concerning the former, the ResNet34
feature extractor boasts 21,284,672 trainable parameters, while our model, with the
frozen feature extractor, has 1,873,168 trainable parameters. Consequently, unfreez-
ing the model increases the trainable parameters by twenty-fold, surpassing the ca-
pacity of the limited dataset to adequately train the significantly deeper model. Re-
garding the latter, the batch normalisation within the network and ResNet adjusts to
the activation maps derived from the frozen ResNet feature extractor weights. Un-
locking the weights may introduce instability, leading to higher errors during train-
ing. In-depth investigations beyond the scope of this thesis are imperative to better
understand and address this issue.

In summary, after choosing the hyperparameters highlighted in bold within Table
29, we arrived at the ultimate configuration for this architecture. The validation re-
sults are promising. Although superior performances could be attained, a more thor-
ough evaluation of the hyperparameters would have not suited the time constraint of
this thesis. Nevertheless, the good performances guide our research direction, estab-
lishing baseline results that pave the way for more precise mid-height disease score
predictions.

5.5.2 Best Performing Model

After the procedure detailed in Section 5.5.1, the best results correspond to the hyper-
parameters reported in Table 31. For a complete description of the hyperparameters,
see Table 37.

In Figure 33, we showcase the learning curve depicting the loss function. Figure 34
illustrates the r2 values on both training and validation sets throughout the training
process. Additionally, the evolution of the MSE is presented in Figure 35.
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Table 31: Best hyperparameters for the custom ResNet-LSTM architecture.

Data Augmentations

Salt Pr. Pepper Pr. Gaussian Noise Factor Hor. Flip Ver. Flip
0.01 0.01 0.01 True True

Models

Num CNN Filters Kernel Size Num. LSTM Neurons
128 3 200
Num. ANN Neurons Num LSTM Layer Num ANN Layers Dropout LSTM
256 3 1 0
Dropout Output
0

Training Parameters

Batch size Learning Rate Weight Decay (β) Scheduler Gamma
32 0.001 0.001 0.85
Scheduler Step Size Clipper Max Norm
50 epochs 1
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Figure 33: Loss function of the best-performing model during training.

Figure 34: r2 score of the best performing model.
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Figure 35: MSE of the best-performing model.

To conclude we present the results on the three test datasets in Table 32.

Table 32: Metrics evaluated on the 3 test sets defined in Section 4.3.2.

Test set 1 Test set 2 Test set 3

r2 0.181 0.797 0.620
MSE 1.564 0.247 0.380
MAD 0.960 0.402 0.364

We adopt a bootstrap approach to compute the confidence intervals (using a 95%
coverage probability). The results are displayed in Table 33.

In Figure 36, we showcase the histograms employed in assessing the model’s per-
formance through bootstrapping. The sampling size used is 40 elements for test set 1
and 20 elements for test sets 2 and 3. The instances are drawn with replacement. This
choice is the number of elements in the respective sets. The number of repetitions is
5 · 105.

The results show that the only test set in which we are generalising better than
in the validation is test set 2 (see Section 4.3.2). The other two perform worse than
the validation set. This might be closely linked to the inherent distribution of the
test samples. In fact, the distribution of the target variable is unbalanced, as visible
in Figure 50. In particular, the profile of the peaks in the bottom part of Figure 36
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Figure 36: Bootstrap histograms representing different metrics on the three test sets
defined in Section 4.3.2. The bootstrap procedure generated 5 ·105 different subsam-
ples with repetitions with a sample size equal to the size of the test set considered (40
for test set 1 and 20 for both test set 2).
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Table 33: Test evaluation results with confidence intervals (95% coverage probabil-
ity). The bootstrap procedure generated 5 ·105 different subsamples with repetitions
with a sample size equal to the size of the test set considered (40 for test set 1 and 20
for both test set 2).

Test set 1 Test set 2 Test set 3

r2 0.027 (-1.117, 0.637) 0.712 (0.035, 0.917) 0.516 (0.208, 0.670)
MSE 1.563 (0.548, 2.886) 0.247 (0.109, 0.416) 0.379 (0.059, 0.980)
MAD 0.960 (0.584, 1.390) 0.402 (0.261, 0.556) 0.364 (0.161, 0.650)

suggests that one of the samples gets incorrectly classified with a large error. The
peak structures represent the probability that the sample is drawn at random during
the bootstrap procedure. This problem needs to be addressed in future iterations
of this work to evaluate better and be more confident about the model’s ability to
generalise.

This configuration of the developed deep learning architecture shows a quantifi-
able performance increase compared to the Custom CNN-LSTM model (see Section
5.4). This is mainly obtained by leveraging the power of transfer learning, avoiding
the problem arising by not having enough data for training.

5.5.3 Learnable Parameters

As a result of the experiment reported in Figure 36, the learnable parameters of the
best-performing model are reported. ResNet’s feature extractor was frozen, therefore
it had no learnable parameters.

Table 34: Trainable parameters for the ResNet-LSTM network using the best perform-
ing model. The scheme of the architecture is reported in Figure 14.

Model Component Parameters

Spatial attention weights 8
Time attention weights 7
LSTM model 1,579,008
Lasso regressor 196,608
ANN head 257
Batch norm after LSTM 512
Batch norm after spatial attention 10,752
Batch norm before spatial attention 86,016

Total Trainable Parameters 1,873,168
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5.5.4 Model Intepretation

The ResNet-LSTM deep learning model has several regularisation mechanisms. In
particular, the attention weights, and their relative importance scores, provide a built-
in interpretability of the model performances. In broader terms, we could refer to it as
interpretability by design in the contest of Explainable Artificial Intelligence (XAI). We
propose two interpretable results: a spatial interpretation and a time interpretation.
Spatial Interpretability
The spatial attention scores, derived from Equation 4, were computed for 105 exper-
iments meeting the criterion of r2 scores on validation larger or equal to 0.5. Each
score corresponds to one of eight plot segments detailed in Section 16. To address
potential symmetries, distances of data points from the central point of the plot - 5
m from a side - were calculated. These distances were then binned, each represent-
ing an interval from the central point to an edge. Within each bin, importance values
associated with each chunk were aggregated. The resulting distances were sorted in
ascending order, aligning with their respective importance. This systematic approach
provides insights into spatial patterns and outliers within the dataset. Figure 37 dis-
plays these results.

Figure 37: Position inside the experimental plot against the importance score. The
models represented have an r2 score on validation higher than 0.5. The position in-
side the plot is referred to as the centre of each chunk.
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The initial key observation drawn from the plot reveals that the outer edges have a
diminished impact on the model’s predictive capacity compared to the central region.
This trend is notably prominent within the initial 3 meters of the experimental plot.
However, in the central area, the distinction is less pronounced.
Time Interpretability
Similarly, as in the last section, the time attention scores are reported considering the
same 105 experiments. The main difference with the precedent plot is that we simply
binned the time attention scores associating them to the time step they relate to. The
representation of the time importance score is an insight to recognise time patterns
and outlier experiments in the training process. Figure 38 displays these results.

Figure 38: Time step against the importance score. The models chosen had a r2 score
on validation higher than 0.5. Two regression models are presented, one before the
disease emergence and one considering all the time steps.

Initially, when we were designing this experiment we were expecting to measure
a linear trend. Instead, we can observe that for the first time steps, noticeably the
acquisitions before the "scoring day" show, over multiple independent experiments,
that there is a clear downward trend for the importance scores, as evidenced by the
blue line in Figure 38. The other expected, but still interesting trend is that the im-
portance score is constant after the "scoring day". This might be since the spectral
properties of the plants do not change further during the senescence phase of the
plant.

In the previous regression analysis, two critical observations emerge. Firstly, it
is evident that our current models lack the ability to generalize effectively. This de-
ficiency may introduce bias into the regression analysis concerning the importance
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scores, as these scores are influenced by the model’s inability to generalize appro-
priately. Secondly, it’s noteworthy that the machine learning experiments are not
statistically independent from one another. They share the same dataset for both
training and validation, and most employ a similar hyperparameter pool due to our
use of a greedy procedure for hyperparameter selection. This lack of independence
is further underscored by the remarkably small p-values obtained from all regression
analyses, which are less than 10−22. Despite these challenges, it’s intriguing to note
that all models capable of making predictions consistently assign identical weights
to the importance scores.
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6 Discussion of the Results

To address the central research question "To what extent is aerial ML-based pheno-
typing a viable alternative to traditional in situ phenotyping?", this thesis reports a
comprehensive exploration of machine learning applications in aerial phenotyping,
focused on yellow rust disease scoring. The significance of this thesis is the potential
of machine learning to optimise the labour-intensive and time-consuming aspects of
traditional phenotypic trait measurement.

6.1 Data Processing

Our methodology initially adresses the research question, "How can remote sensing
image data be transformed and aggregated to extract characteristics for predicting
disease scores?". The first phase involves the development of a standardised proce-
dure for processing raw data acquired from AIT’s drones. This comprehensive dataset
undergoes preprocessing, including radiometric calibration, orthonormalisation, and
conversion into a structured format suitable for machine learning applications (see
Sections 4.2.1, 4.2.2 and 4.2.3). The application of tools such as Pix4D and QGIS stream-
line the extraction of geographically coherent multispectral reflectance maps, serv-
ing as the cornerstone for aerial-based phenotyping.

The introduction of Ground Control Points (GCPs) marks a significant enhance-
ment to the entire data processing pipeline. GCPs play a pivotal role in mitigating
potential biases in the data, particularly errors in geolocalisation that could lead to
the misattribution of pixel groups to different plots. The inclusion of GCPs repre-
sents a substantial contribution to data quality, preventing the corruption of ground
truth data. Figure 18 illustrates instances of geolocalisation bias, reaching up to 2.77
meters in the x-dimension, a critical consideration given the 1.5-meter height of the
plots. The potential incorrect assignment of some pixels to a different plot might de-
grade data quality severely.

Subsequently, to standardize the dataset, we implement image processing mea-
sures to ensure uniform orientation for each image. This involves employing two fun-
damental techniques: image resampling and projective transformations. Recognis-
ing the time-intensive nature of this process and the availability of different resam-
pling procedures, we introduce a benchmark (Figure 20) to evaluate the performance
of various kernels in image reconstruction.

Despite Lanczos resampling being theoretically considered the most reliable method
for image reconstruction, our practical observations reveal minimal differences com-
pared to the bicubic filter. Notably, the runtime for bicubic is half that of Lanczos,
as depicted in Figure 21. Consequently, we opt for the bicubic approach, consider-
ing its comparable effectiveness and significantly reduced processing time. Those
are critical factors when contemplating scaling the procedure within a larger frame-
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work, where computing time becomes a decisive and economic consideration in this
pipeline.

This approach, while present in other scientific domains such as forestry manage-
ment (Miller et al. 2021), is novel in the context of airborne yellow rust disease scoring
applications. The lack of application in previous studies, such as Tang et al. 2023 or
Nguyen et al. 2023, can be attributed to the lower operational altitude of the drones,
eliminating the need for complex image processing and geolocalisation. Our success-
ful implementation paves the way for UAV automated disease scoring, opening new
possibilities for creating standardised and reusable open-source data sets for yellow
rust prediction and smart plant breeding.

6.2 Predictive Power at Different Altitudes

In this thesis, we address the question: "To what extent can mid-altitude UAV-acquired
images effectively predict yellow rust scores, compared to low-altitude UAV and hand-
held captures?". Our best predictive model shows promising performance, as out-
lined in Table 35.

Table 35: Synthesis of past studies on yellow rust prediction.

Study Key Findings UAV Bin. target

Moshou
et al.
2004

Demonstrated the superiority of deep learning with a Multi-
Layered Perceptron (MLP) achieving 99% accuracy in single
leaf detection.

No Yes

Kukreja
and Ku-
mar 2021

Utilised a Deep Convolutional Neural Network (DCNN) for
wheat rust disease classification, achieving 97.16% accuracy
in distinguishing healthy and diseased plants at the leaf level.

No Yes

Koc et al.
2022

Processed phenocart-acquired data to predict yellow rust in-
fection, revealing considerable infection and exploring the in-
fluence of different time steps on prediction.

No Yes

Mi et al.
2020

Introduced a C-DenseNet architecture for wheat stripe rust
disease grading, achieving a test accuracy of 97.99%. The
dataset classifies leaf images with 6 levels of stripe rust infec-
tion.

No 6 Classes

Tang et
al. 2023

RustNet, based on ResNet-18, achieved accuracies between
0.79 and 0.86 on low-height flights.

Yes Yes

Zhang
et al.
2019

Used hyperspectral data at 30 meters altitude to forecast
yellow rust presence, achieving higher accuracy (0.85) with
Deep Convolutional Neural Network (DCNN) compared to ba-
sic methods.

Yes Yes

Nguyen
et al.
2023

Explored a similar setup for spring wheat, emphasising the in-
corporation of temporal information in a 3D-CNN, achieving
detection accuracy of 79% for spectral-spatio-temporal fused
data.

Yes 3 classes
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Table 35 provides a comprehensive overview of studies in yellow rust prediction,
showcasing diverse approaches and their key findings. These studies employ various
methodologies, from machine learning techniques to utilising different altitudes and
sensors for image acquisition.

It is evident from our investigation that predicting disease scores from leaf-level
images presents an inherently simpler task compared to using airborne images. The
higher resolution of leaf-level images allows for the application of diverse augmenta-
tion techniques, resulting in exceptional performance in single-leaf studies (see Table
35). However, as we transition to UAV-based studies, including our own, a noticeable
decline in performance becomes apparent, as corroborated by the metrics in Table
35.

In contrast, among UAV-based models, our approach, despite being marginally
surpassed by Nguyen et al. 2023, stands out due to our unique deployment of the
drone at substantially higher operational heights. While benchmark studies by Tang
et al. 2023 and Zhang et al. 2019 outperform our model, it’s important to note that
they had access to considerably more data and higher-resolution images that might
explain their superior performance. Moreover, our approach introduces a prediction
scale from 1 to 9, deviating from the easier binary classification problem, used in the
other two papers. Notably, this decision aligns more closely with field operations and
presents a more meaningful approach for biologists and plant breeders.

Moving forward, the inclusion of additional data, involving an increase in the num-
ber of flights and an enhancement of ground truth disease score resolution at the
sub-plot level, holds the potential for substantial improvements in our model. Our
best model achieves an encouraging r2 score of 0.67 on validation. Substantial work
remains to be done, since the results of test sets 1 and 3, see Figure 36, exhibit the
effect typical of an unbalanced target distribution, in particular for test set 3 (see Sec-
tion 4.3.2). In future iterations of this work, a clear strategy to define the test sets will
be the topic of the research question itself.

Despite the inherent challenges associated with our design choices, operational
height and target selection that characterise our more realistic and nuanced approach,
we believe that increasing the dataset size will further enhance the relevancy of our
model. This expansion will allow for more robust data augmentation, synthesis, and
a reduction in the generalisation error, contributing to the potential for even more
meaningful results.

6.3 Balancing Model Simplicity and Complexity

Throughout this thesis, we embrace an iterative approach to model development.
Beginning with the simplest model—a linear regressor trained on plot statistics—we
progress to explore transfer learning. Guided by this approach, we addressed the
research question: "How can we effectively predict phenotypic traits in crops, focus-
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ing on disease scoring, while considering the trade-off between model simplicity and
complexity?".

Basic models, including regularised and non-regularised linear regression, Sup-
port Vector Machines, and Random Forests, are ineffective in predicting disease scores.
The omission of time considerations in the feature design for these models results in
poor performance. However, utilising basic models alongside sequential data and
more nuanced features (as demonstrated in Kohonen 1990) could present an intrigu-
ing avenue for further research, particularly due to the simplicity and ease of deploy-
ment of these models. Nonetheless, we opt to delve deeper into deep learning ap-
proaches, given their prevalence in recent cutting-edge papers on yellow rust pheno-
typing (Nguyen et al. 2023, Shahi et al. 2023).

A significant limiting factor in our exploration into machine learning is the insuffi-
cient data at our disposal for independent network training. Transfer learning, specif-
ically utilising ResNet feature extraction capabilities, partially mitigates this challenge
by leveraging a pre-trained model. However, attempts to unfreeze the model weights
reveal a decline in performance, attributed to the disparity in the number of images
used during ResNet34 training and our available dataset.

This discrepancy is further influenced by the fact that ResNet is designed for RGB
data, while only one of the three multispectral data cubes (see Section 4.5.6) in this
thesis is RGB. The unique pixel disposition in other bandwidths potentially impacts
the model’s adaptability. Further investigation in the future might seek to identify
whether the performance drop is attributed to non-RGB spectral cubes impacting the
overall model quality.

Overall the model that we use, even though it is a deep learning one, is relatively
simple, since we are using only the 3rd-level feature representation of the ResNet fea-
ture extractor (see Section 3.4.7) and a small LSTM module and a small ANN output
network. The ResNet module does not have any learnable parameter, since we are
keeping it frozen, while the LSTM and the ANN, together with the attention weights
and the lasso feature selector total 1,873,168 learnable parameters, as detailed in Ta-
ble 34.

This is still a simple model compared to deep learning models such as ResNet,
with 21,797,672 learnable parameters for ResNet34. If we went deeper, as detailed in
Section 38, we would start to observe degraded performances since the information
would not propagate well downstream in the network. Hence, overall, we strike the
balance between a relatively simple deep learning model. This is also a base to start
the construction of more complex models when the 2024 field acquisition campaign
is finished.

AI for Airborne Phenotyping 110/138



University of Vienna - AIT

6.4 Designing a Domain-Specific Machine Learning Model

Our investigation concludes by addressing the intricate challenge of developing a
machine learning model for aerial phenotyping that incorporates domain-specific
agricultural knowledge. The introduction of an attention mechanism, inspired by
neuroscience concepts, provides a framework to evaluate the significance of internal
feature map elements. This addition enables the model to autonomously discern the
relevance of elements within time series, plot specifics, and wavelength components,
deepening our understanding of the decision-making process within the model.

The key findings are presented in Figure 37 and 38. The first figure highlights the
significance of incorporating domain-specific knowledge in interpreting spatial im-
portance scores. The higher importance scores on central plot segments in Figure 37
hold implications for understanding disease dynamics, particularly in the emergence
and spread of fungal infections from the plot’s centre outwards. This insight gains
credibility as each plot segment undergoes independent processing by the feature
extractor, hence attributing greater importance to inherently significant segments.

Another significant aspect pertains to its relevance for plant breeders. Initially,
upon observing trends in Figure 37, we speculated that agronomists might exhibit
bias towards monitoring the central plot sections due to the aggregation of disease
measures. However, during discussions with wheat researchers from Edelhof and
RWA they noted that the model’s capability to consider micro-climate differences be-
tween the central and side plot sections prompted further investigation on their part.

These findings offer valuable insights that not only prompt new research direc-
tions but also suggest potential revisions in scoring practices. Thus, our study con-
tributes meaningfully to the breeding community and advances the quest for XAI
knowledge discovery in wheat breeding.

Another aspect prompting research questions is related to time attention weights.
During network design, we expected that days after the disease’s emergence would
be most significant in model predictions. This assumption relied on the notion that
the disease would alter the spectral properties of wheat leaves, with longer-lasting ef-
fects leading to changed spectral properties and higher importance scores. This trend
is observable in Figure 38. However, an unexpected trend is observed: the first flight
contained substantial information for the model’s predictive capabilities. We posit
that the information from the initial flights carries details about nuances not strictly
related to plants. Consequently, L1 regularisation assigns lower importance scores to
all time steps except the first in the period antecedent to the disease explosion. This
inference arises from the circumstance that during those dates, the UAV could scan
the ground directly without any interference from plants. This unexpected insight
catalysed raising questions within Edelhof’s team, prompting further investigations
on their part. This impetus for research synergises effectively with the development
of domain-specific models.
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In conclusion, regularisation techniques offer valuable insights into model be-
haviour for both breeders and wheat researchers, as well as for machine learning
practitioners. These techniques enable the integration of domain knowledge during
model tuning and design, enhancing the overall effectiveness and applicability of the
models and bridging the knowledge gap with experts.

7 Conclusion and Future Perspectives

In conclusion, this study explores the potential of aerial machine learning-based phe-
notyping as a viable alternative to traditional, labour-intensive in situ methods, with
a particular focus on yellow rust disease scoring. Through a comprehensive inves-
tigation encompassing data processing methodologies, predictive power analysis at
varying altitudes, and the delicate balance between model complexity and computa-
tional time, we provide valuable insights for crop monitoring and develop standard-
ised data acquisition procedures, contributing to novel phenotyping techniques in
agriculture.

Our findings demonstrate the significance of incorporating domain-specific agri-
cultural knowledge in the design of deep learning models for aerial phenotyping. By
introducing attention mechanisms inspired by neuroscience concepts, we provide a
framework for evaluating the significance of internal feature map elements, thereby
deepening our understanding of the decision-making process within the model.

Furthermore, our analysis reveals promising results in predicting disease scores
from aerial images, particularly at mid-altitudes. While our approach may not outper-
form all existing models, its unique deployment at substantially higher operational
heights presents a novel perspective that aligns more closely with field operations.
Additionally, our decision to introduce a prediction scale from 1 to 9, rather than a
binary classification approach, offers a more nuanced and meaningful approach for
biologists and plant breeders.

In summary, our study contributes valuable insights to the interdisciplinary field
of aerial phenotyping, bridging the gap between machine learning practitioners and
agricultural experts. By leveraging domain-specific knowledge and innovative method-
ologies, we strive to advance the quest for knowledge discovery and facilitate mean-
ingful applications in agricultural research and practice.

Future Perspectives
Looking ahead, our study lays the groundwork for future research directions in aerial
phenotyping and machine learning. By addressing the inherent challenges associ-
ated with model design, data processing, and predictive power analysis, we identify
areas for further exploration and refinement. These include the incorporation of ad-
ditional data, as well as the exploration of more complex deep learning architectures.
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While our study primarily focuses on spatial augmentations, we recognise the un-
tapped potential of incorporating time augmentations to further enhance dataset
variability and improve model performance (Wen et al. 2020). However, due to the
scope of our project and resource constraints, our current emphasis has been on op-
timising spatial augmentations. We also intend to incorporate a spectral attention
module in the Resnet-LSTM network to automatically select the channels contribut-
ing the most to the regression problems. This would enhance the model’s perfor-
mance and likely generate insights into the most significant bandwidths and spectral
indices.

In our future endeavours, we envisage more elaborate approaches that may re-
quire a larger volume of data than currently available. To address this, we are plan-
ning a new and improved measurement campaign over the next two years. This ini-
tiative aims to acquire sub-plot level ground truth disease scores, effectively qua-
drupling the dataset size. Additionally, we intend to increase the frequency of drone
flights to capture a more extensive range of temporal data.

Furthermore, we aim to introduce "general plant fitness" indices earlier in the
plant development phase. This will enable us to generate a richer supervision signal
for the model through data aggregation. Moreover, we plan to modify the model to
consider various intervals between UAV acquisitions, facilitating the development of
a context-aware model capable of generalising across different atmospheric condi-
tions. This adaptation is crucial for practical applications in breeding, as it expands
the model’s usability beyond multispectral data acquired during specific timeframes.

An essential consideration for the upcoming experimental design is a new resam-
pling procedure to ensure a balanced dataset. This strategic approach aims to miti-
gate the challenges observed in the bootstrapping procedure, as depicted in Figure
36. By establishing balanced train-test-validation splits, we aim to enhance the ro-
bustness and reliability of our model evaluations.

In summary, our future perspectives underscore our commitment to advancing
aerial phenotyping methodologies through comprehensive data collection, model
refinement, and methodological enhancements. These initiatives are important steps
towards harnessing the full potential of machine learning in agricultural research and
practice.
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Appendices

A AGES Disease Scores

This is the official scoring proposed by AGES, it is on a scale from 1 to 9 as the scientific
standard requires.

• 1: no occurrence

• 2: very low to low occurrence (only individual pustules)

• 3: low occurrence (high number of plants with low occurrence or low number
of plants with average occurrence; frequent, but low number of pustules)

• 4: low to medium occurrence

• 5: medium occurrence (high number of plants with medium occurrence or low
number of plants with high occurrence; all plants show pustules)

• 6: medium to high occurrence

• 7: high occurrence (all plants show medium occurrence or a high number of
plants show high occurrence; high number of plants are covered in pustules)

• 8: high to very high occurrence

• 9: very high occurrence (all plants are covered in pustules)
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B Custom CNN

In this section we will present the intermediate results that we used to fine-tune and
optimise the models based on the custom CNN architecture.

B.1 Description of the Hyperparameters

Table 36: Explanation of the hyperparameters for the custom CNN_LSTM architec-
ture.

Hyperparameter Meaning
pretrained_model Indicates if pre-trained model is used

(False means not using pre-trained).
batch_size Number of samples processed in each

batch during training.
dropout Dropout rate, a regularisation technique to

prevent overfitting. Used between
convolutional and LSTM layers.

dropout_output Dropout rate for the output layer.
epochs Number of times the training dataset is

passed through the neural network.
freeze Indicates whether to freeze layers during

training (True means freezing layers).
kernel_size Size of the convolutional kernel.
learning_rate Step size in each iteration toward

minimising the loss function.
loss_function Loss function for regression tasks.
num_ann_layers Number of layers in the neural network

output module.
num_ann_neurons Number of neurons in neural network

hidden layers.
num_conv_layer Number of convolutional layers.
num_filters Number of filters in convolutional layers.
num_LSTM_layer Number of Long Short-Term Memory

(LSTM) layers.
num_LSTM_neurons Number of neurons in each LSTM layer.
padding Padding added to input data before

convolution.
stride Step size for moving the convolutional

kernel across the input.
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Table 37: Explanation of the hyperparameters for the ResNet_LSTM architecture.

Hyperparameter Description
batch_size Number of samples processed in each

batch during training.
dropout Dropout rate between LSTM layers.
dropout_output Dropout in the ANN output network
freeze Indicates whether to freeze layers during

training (True means freezing layers).
index_out Index for the output layer.
L1_reg_chunks L1 regularisation strength for chunks.
L1_reg_gamma L1 regularisation strength for gamma.
L1_reg_timesteps L1 regularisation strength for timesteps.
learning_rate Step size in each iteration toward

minimising the loss function.
loss_function Loss function for regression tasks.
num_chunks Number of data chunks.
num_LSTM_layers Number of Long Short-Term Memory

(LSTM) layers.
num_LSTM_neurons Number of neurons in each LSTM layer.
random_initialisation_FE Indicates if random initialisation is used

for feature extraction.
augmenting_probability Probability of data augmentation.
Gaussian_noise Indicates if Gaussian noise is applied to the

input data.
h_flip Indicates if horizontal flip augmentation is

applied.
pepper_prob Probability of pepper noise in

salt-and-pepper augmentation.
salt_and_pepper Indicates if salt-and-pepper noise

augmentation is applied.
salt_prob Probability of salt noise in salt-and-pepper

augmentation.
v_flip Indicates if vertical flip augmentation is

applied.
warmstart_epoch Epoch at which the ResNet weight are

unfrozen.
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B.2 Graphs of Hyperparameters Selection

Figure 39: Benchmark between different numbers of convolutional layers.

Figure 40: Benchmark between different numbers of convolutional layers.

AI for Airborne Phenotyping 117/138



University of Vienna - AIT

(a) Benchmark between different numbers of LSTM layers. The r2 score on the validation
data.

(b) Benchmark between different numbers of LSTM layers considering the MSE score on the
validation data.

Figure 41: Benchmark based on the number of LSTM layers. The metrics are reported
both on training and validation sets.
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(a) Benchmark between different numbers of ANN neurons in the output layer. The r2 score
is computed on the validation set.

(b) Benchmark between different numbers of ANN neurons in the output layer. The MSE is
computed on the validation set.

Figure 42: Benchmark based on the numbers of neurons in the output layer. The met-
rics are reported both on the validation and the training set.
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B.2.1 Deep Network Failure

In the usage of deeper networks, it became evident that the model encountered chal-
lenges in generating predictions. This was particularly emphasised by the manifes-
tation of negative values for the r2 score. To illustrate, we showcase the outcomes
of the custom CNN_LSTM architecture, employing the hyperparameters specified in
Table 38.

Table 38: Hyperparameters for the CNN_LSTM architecture for the custom version.
The performances in this configuration are poor.

Hyperparameter Value
pretrained_model False
batch_size 32
dropout 0
dropout_output 0
epochs 100
freeze True
kernel_size 3
learning_rate 0.001
loss_function MSE
num_ann_layers 1
num_ann_neurons 256
num_conv_layer 3
num_filters 128
num_LSTM_layer 3
num_LSTM_neurons 256
padding 1
stride 1

To present the difficulties in generalisation of the model we will include solely the
r2 score, in Figure 45, and the MSE, in Figure 44, for both training and validation sets.
As well as the loss function, in Figure 43.

AI for Airborne Phenotyping 120/138



University of Vienna - AIT

Figure 43: Loss function in the deep CNN-LSTM network. With multiple convolutional
layers, the CNN-LSTM model does not converge.

Figure 44: MSE on the training and validation sets for the CNN-LSTM model.
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Figure 45: r2 scores for training and validation sets for the CNN-LSTM model. The
model does not explain any variance in the predictions.
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C ResNet-LSTM Model

In this part, we present the fine-tuning of the model.

C.1 Initial Configuration

Table 39: Data augmentation configuration.

Data Augmentations Value
Salt Probability 0.05
Pepper Probability 0.05
Gaussian Noise False
Horizontal Flip True
Vertical Flip True

Models Value
Batch size 64
Num LSTM neurons 200
Num LSTM Layer 3
Num ANN Layers 0
Dropout Output 0
Dropout LSTM 0.6
Num ANN Neurons 256
Freeze True
Index Out 1
Constant L1 for chuncks 0.001
Constant L1 for features 0.001
Constant L1 for timesteps 0.001
Learning Rate 0.001
Number Chunks 8

Table 40: ResNet-LSTM initial configu-
ration before starting the fine-tuning.

This configuration was the very first that produced results with an r2 score on the
validation set that was comparable with the best model in the custom CNN and LSTM
set-up. Figure 46 presents the r2 score on training and validation data.
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Figure 46: r2 score for the first ResNet-LSTM model that obtained the same perfor-
mances as the CNN-LSTM model.
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C.2 Overfit

Table 41: Data augmentations configuration.

Data Augmentations Value
Salt Probability 0
Pepper Probability 0
Gaussian Noise False
Horizontal Flip False
Vertical Flip False

Models Value
Batch size 32
Num LSTM neurons 256
Num LSTM Layer 3
Num ANN Layers 0
Dropout Output 0
Dropout LSTM 0
Num ANN Neurons 256
Freeze True
Index Out 3
Constant L1 for chunks 0.001
Constant L1 for features 0.002
Constant L1 for timesteps 0.001
Num. Chunks 8
Learning Rate 0.001

Table 42: ResNet-LSTM model config-
uration when achieving overfit.
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Figure 47: Overfit experiment for the ResNet-LSTM model.
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C.3 Graphs for the Selection of Hyperparameters

(a) Benchmark between different L1 regularisation factors for the lasso regressor (see Figure
14). The r2 score is computed on the validation set.

(b) Benchmark between different L1 regularisation factors for the lasso regressor (see Figure
14). The MSE score is computed on the validation set.

Figure 48: Benchmark based on the strength of the L1 regularisation in the ResNet-
LSTM model. The metrics are computed both on training and validation sets.
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D Disease Scores Distributions

We report the Histogram representing the distribution of the disease scores in all the
data set splits reported in Section 4.3.2. Figure 49 presents the results for the training
and validation sets and Figure 50 for the test sets. The specifics regarding the train,
test and validation split are described in Section 4.3.2.
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Figure 49: Distribution of the disease score in the training and in the validations sets.
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Figure 50: Distribution of the disease scores in the three test sets.
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E Pix4D Procedure

Now we will introduce the operative procedure that we defined to pass from the raw
images to the orthomosaics is to first load the folder inside the Pix4d mapper.

• Open Pix4D and start a new project. Load the images, subdivided in the same
folder structure as the one acquired by the camera. In our case, we used an
"Altum" camera that divided the single images in spectral bands.

• In the new project window, navigate to "Advanced" settings and change the
altitude of the input images to 0.

• Select ETRS (European Terrestrial Reference System) as the output coordinate
system and set the output ellipsoid to 1980.

• In the processing options, uncheck "point cloud" and "mesh," leaving only the
initial processing to reduce the load on your hardware.

• Proceed to the 3. DSM (Digital Surface Model) tab and choose GeoTiff as the
output format. Select "Merge Tiles" since the orthomosaic is not needed for
this project.

• Select the chosen indices, the 7 spectral bands and the precomputed NDVI, to
have a standardised output.

• In the index calculator, ensure that it selects the area over the calibration tile.
Click on "Calibration," but do not calibrate the LWIR parameter, as the camera
is precalibrated.

• In the reflectance map section, click on "Merge Tiles".

• In the automatically generated quality report, verify the preview to ensure you
have the desired coverage and that the point cloud is flat.

• After accessing the "Manage GCPs" panel, change the GCPs coordinate system
to WGS84 (World Geodetic System 1984) and update the Geoid height accord-
ing to the specifics of the acquisition system. In our project, the height is -49.54
m.

• Proceed to import GCPs. In our operations, we removed the GCPs 6 and 7 from
the list, since they were deployed for preliminary experimental analyses.

• Measure the GCP in the image. Zoom out to locate the chess pattern and pre-
cisely click in the middle between 15 to 20 images. This number leads to a re-
constructed mean error of less than a single pixel.
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• After measuring the GCPs, go to "Process" and choose "Reoptimise".

• Now, unclick the initial processing and select the 2nd and 3rd processes. Click
"Start" to initiate the processing with the selected options.

F Kernel Trick and Mercer’s Theorem

An exhaustive explanation of the kernel Trick can be found in Schölkopf 2000.

Proposition 1 (Kernel Trick). Let X be the input space and ϕ : X → H be a feature
space mapping. Consider a kernel function K : X × X → R that satisfies Mercer’s
conditions. For any input vectors x, y ∈ X , the dot product in the feature space H can
be expressed using the kernel function:

⟨ϕ(x), ϕ(y)⟩H = K(x, y)

The SVM with the kernel trick implicitly operates in the feature space H without ex-
plicitly computing the transformation ϕ, enabling the algorithm to efficiently handle
non-linear relationships and high-dimensional feature spaces.

Theorem 1 (Mercer’s Theorem). Let X be a non-empty set and K : X × X → R
be a symmetric function. K is a valid kernel function, meaning there exists a mapping
ϕ : X → H to a reproducing kernel Hilbert space H such that for all x, y ∈ X , the
kernel function can be expressed as an inner product in H:

K(x, y) = ⟨ϕ(x), ϕ(y)⟩H

Additionally, for any finite set of points x1, x2, . . . , xn ∈ X , the corresponding kernel
matrix Kij = K(xi, xj) must be positive semi-definite, i.e., for any vector c ∈ Rn, the
inequality holds:

n∑
i,j=1

cicjK(xi, xj) ≥ 0

This condition ensures that the kernel matrix is positive semi-definite for any set of input
points, guaranteeing the existence of a feature space and the validity of the kernel trick
in SVMs.
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G German Abstract

In dieser Arbeit wird die Anwendung von Techniken des maschinellen Lernens (ML)
für die Phänotypisierung unter Verwendung multispektraler und multitemporaler Daten
aus der Luft untersucht, wobei der Schwerpunkt auf der Identifizierung von Gelbrost
bei Weizen liegt. Das Hauptziel besteht darin, die Wirksamkeit der ML-basierten Phäno-
typisierung aus der Luft als Alternative zu herkömmlichen in-situ-Methoden zu bew-
erten. Ein bahnbrechender Aspekt dieser Studie ist die Erstellung eines neuartigen
Datensatzes mit multispektralen Zeitreihenbildern, die jeweils eine Versuchsparzelle
in einem Weizenfeld zeigen, zusammen mit entsprechenden Gelbrost Krankheitsbe-
wertungen durch Experten. Anschließend wird eine vergleichende Analyse zwischen
verschiedenen grundlegenden ML-Modellen und Deep-Learning-Modellen zur Vorher-
sage von Gelbrost anhand des Datensatzes durchgeführt. Unsere Ergebnisse zeigen
die Herausforderungen, denen sich ML-Basismodelle bei der genauen Vorhersage von
Gelbrost gegenübersehen, im Gegensatz zu den vielversprechenden Ergebnissen eines
Deep-Learning-Modells, das den Merkmalsextraktor ResNet34 verwendet. Diese Ergeb-
nisse unterstreichen das Potenzial von ML-Ansätzen bei der Fernphänotypisierung
für die Pflanzenzüchtung, insbesondere wenn Deep-Learning-Modelle mit Aufmerk-
samkeitsmechanismen integriert werden. Die Studie liefert wertvolle Einblicke in
die Techniken der Phänotypisierung aus der Ferne, was sich auf die Verbesserung
der Krankheitsüberwachung und der Anbaupraktiken auswirkt. Allerdings ist eine
weitere Verfeinerung erforderlich. Die beobachtete geringere Leistung bei einem der
Testsätze deutet auf einen Mangel an Daten hin, die für die Gewährleistung der Ro-
bustheit des Modells und seiner Verallgemeinerungsfähigkeit unerlässlich sind. Kün-
ftige Forschungsarbeiten könnten zusätzliche Spektralindizes und die automatische
Auswahl von Spektralbändern untersuchen. Schließlich könnte das Modell mit mehr
Daten auch so trainiert werden, dass es robuster gegenüber beliebigen Zeitschritten
ist, was eine entscheidende Eigenschaft für seine praktische Anwendbarkeit ist.
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