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Zusammenfassung

Aufgrund seiner Rolle in vielen natürlichen Prozessen als auch seiner anomalen Ei-
genschaften steht Wasser im Mittelpunkt zahlreicher Forschungen. Der Atomkern von
Wasserstoff besteht aus einem einzelnen Proton, dessen geringe Masse dazu führt, dass
Wasser bedeutend von Kernquanteneffekten betroffen ist. Diese Effekte können in Ab-initio
Simulationen mit Hilfe des quantenmechanischen Pfadintegralformalismus berücksichtigt
werden. Bei der Pfadintegral-Molekulardynamik wird jedes Teilchen als ringartiges
Polymer dargestellt, was allerdings den ohnehin schon hohen Rechenaufwand weiter
steigert. Um dem entgegenzuwirken, können Methoden neuronaler Netzwerke hinzugezo-
gen werden, was die Rechengeschwindigkeit erhöht und bei vergleichbarer Genauigkeit
relevante Größen- und Zeitskalen zugänglich macht. In dieser Arbeit wird ein neuronales
Netzwerk-Potential anhand von Energie- und Kraftberechnungen trainiert, die von Di-
chtefunktionaltheorieberechnungen der Potentialhyperfläche von Wasser in der Revised
Perdew–Burke–Ernzerhof Näherung mit Dispersionskorrekturen stammen. Der Einfluss
von Kernquanteneffekten auf die Grenzfläche zwischen Wasser und Wasserdampf wird
untersucht, indem das neuronale Netzwerkpotential sowohl mit als auch ohne Hinzun-
ahme von Pfadintegral-Molekulardynamik ein System von Wasser simuliert. Strukturelle
und thermodynamische Eigenschaften werden entlang der Wasser/Dampf-Koexistenzlinie
berechnet um Einsicht in Leistung und Verhalten der Kombination von neuronalen
Netzwerk- und Pfadintegralmethoden zu erlangen. Die Ergebnisse zeigen unter Anderem
die erwartete Verschiebung des kritischen Punktes bei Inklusion der Kernquantenef-
fekte, als auch Veränderungen in der bevorzugten Struktur der Wasseroberfläche. Die
präsentierten Rechenergebnisse wurden zum Teil am Vienna Scientific Cluster (VSC)
erzielt.
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Abstract

Due to its role in many natural processes as well as its anomalous properties, water remains
the center of focus for a number of researches. The nuclei of hydrogen atoms are formed
by a single proton, whose low mass leads to water being prominently affected by nuclear
quantum effects. To include these effects in first principles simulations, a computational
method based on the quantum mechanical Feynman path integral formulation is used.
Known as path integral molecular dynamics, each particle is treated as a ring polymer to
approximate their quantum nature, which further increases the already high computational
cost. However, through the use of neural network methods, the speed of calculations
can be improved to make the size and time scale needed for meaningful evaluations
feasible while retaining high accuracy. In this work, a neural network potential is
trained based on reference energies and forces of the density functional theory potential
energy surface of water in the Revised Perdew–Burke–Ernzerhof approximation corrected
for dispersion. To gauge the impact of nuclear quantum effects on the water/vapor
interface, that neural network potential is used both with and without employing path
integral molecular dynamics to simulate an interfacial water system. Structural and
thermodynamic properties are calculated along the liquid/vapor coexistence line to garner
insight of the performance of the combination of path integral molecular dynamics and
neural network potentials. The results show the expected shift of the critical point upon
inclusion of the nuclear quantum effects, as well as changes in the preferential structure
at the water’s surface. The computational results presented have been achieved in part
using the Vienna Scientific Cluster (VSC).
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1. Introduction

While machine learning applications such as ChatGPT [1] or latent diffusion model-based
image generation tools [2] have only recently received wider recognition in the public
eye, the usage of artificial neural networks (ANN) in natural sciences has been explored
for decades, from event filtering in high energy physics [3] to the solving of systems of
ordinary differential equations [4]. Their use can be motivated easily: When knowing
the input of a process - for example the mass and acceleration of a body - as well as the
corresponding output - for example the force acting on the body - it is of interest to find
a function that links these quantities together. In this simple case, we are looking for
Newton’s second law of motion, which allows to predict the output force for any given
input mass and acceleration. For more complex processes however, it may be unfeasible to
use the exact function, as the computational cost of predicting the output to a given input
is too high. In other cases, the exact function may not be known at all so a prediction is
impossible. A more productive approach can be to find an approximation function by
tuning the parameters of a model until the known inputs are convincingly mapped to the
corresponding outputs. The exact form of the approximation function is of little interest
as long as it produces the correct predictions. ANNs can be used to achieve exactly that:
Predicting an output to a given input, ideally with faster evaluation times and without
sacrificing too much accuracy, by training the ANN beforehand, using either experimental
data or data of other models that the ANN should emulate.

1.1. Artificial neural networks in computational physics

One field where the approximation of functions, which would be otherwise costly in terms
of computing time, is desirable, is the field of computational physics. When considering a
potential energy surface (PES) [5], which describes the relationship between the energy
of a system of atoms and their positions, one could solve the Schrödinger equation for
each atom to calculate a point on the PES. When performing molecular dynamics (MD)
simulations [6], where the calculation of many points on the PES is needed, this approach
is usually unfeasible. Approximate ab initio methods where forces are obtained "on the
fly" from electronic structure calculations, for instance based on density functional theory
(DFT) [7], alleviate these difficulties, but are still practically limited concerning system
size and simulation time. At this point, ANNs may be utilized as an approximation
function to speed up DFT-based energy and force evaluations while still maintaining a
high degree of accuracy. For this, the PES data obtained from DFT calculations is used
to train an ANN as a neural network potential (NNP) which in turn can be used in MD
simulations to carry out calculations. A popular DFT model is the PBE functional by
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1. Introduction

Perdew, Burke and Ernzerhof [8], which was further developed into the revised RPBE
density functional [9]. As van der Waals forces could still not be described with RPBE,
correction schemes were devised to create the RPBE-D3 functional [10]. This was later
shown by Morawietz [11], also with the help of NNPs, to be an important step as van der
Waals corrections are crucial to accurately model water.

A successful approach to implement NNPs for use in MD was made by Behler and
Parrinello in 2007 [12], with applications to many materials having reached accuracy on
par with DFT simulations since then [13]. Behler describes the advent of this type of
NNPs in 4 generations [14]: The first generation, emerging in the 1990s, was restricted to
the global description of low-dimensional systems, while the second generation, employed
in this work, is applicable to high-dimensional systems by only describing the short-ranged
local atomic energies. The third generation introduced local atomic charges to include
long-range electrostatics and dispersion interactions, and the current fourth generation
aims to also treat non-local interactions, i.e. global charge (re-)distributions, which are not
captured with the local atomic charges approach. Other advancements in the field include
the kindred approach of deep potentials, which may incorporate long-range interaction
models and for which the powerful DeePMD-kit software package was recently updated
[15], and message passing neural networks, which pass information from atom to atom to
extend the interaction range and for which the efficient MACE architecture was recently
developed [16].

In this work, the NNP approach by Behler and Parrinello is applied to investigate
the water/vapor interface of a system of water in slab geometry, expanding on a similar
work recently carried out by Oliver Wohlfahrt [17]. For this, the n2p2-package written
by Andreas Singraber [18] is used to create an NNP based on RPBE-D3 calculations.
Originally, it was planned to employ here the very NNP used by Wohlfahrt in his work,
but due to it being created on a very early version of n2p2, it was not possible to make
it run on the current version of the software. Instead, Wohlfahrt’s data was used for
comparison with the results generated in this work.

1.2. Nuclear quantum effects and path integrals

Nuclei of light elements can exhibit significant quantum mechanical behaviour such
as delocalization, zero point energy and quantum tunneling. Such effects are known
as nuclear quantum effects (NQE). They prominently occur in hydrogen atoms, since
their nuclei consist only of a single proton, and consequently play an important role in
determining the properties of water. It is thus of great interest to understand NQEs
and to that end devise methods to incorporate them in simulations of water or other
aqueous solutions. A comprehensive review by Ceriotti from 2016 details recent methods,
developments and challenges [19].

Perhaps the most prominent approach to include NQEs is based on the Feynman
path-integral formulation of quantum mechanics [20], where the formalism is used to
relate equilibrium quantum many body theory to classical statistical mechanics in the
form of an isomorphism [21]. This leads to the mathematical description of each atom
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1.3. Thesis Structure

as a cyclic polymer chain of P points or "beads", where each bead is connected to the
adjacent beads via a harmonic potential [22]. Applying this isomorphism to MD gives
rise to path integral molecular dynamics (PIMD), with a variety of methods already
implemented [23, 24] which are able to sample equilibrium and dynamical properties
[25, 26]. Among other findings, PIMD was successfully used to investigate how NQEs
affect bond orientations at the water/vapor interface [27], the surface of mixtures of light
and heavy water [28] and the influence of NQEs on the vibrational dynamics of surface
water molecules [29]. It must be noted that due to the additional interactions that must
be evaluated, the computational demands to include NQEs by performing PIMD increase.
This may be alleviated by employing the neural network methods described above, which
was already done to explore the thermodynamics and phase diagram of water [30, 31].

Normal mode path integral molecular dynamics (NMPIMD) is a type of PIMD which
utilizes a normal mode representation that allows for shorter computation times com-
pared to primitive PIMD [23]. In this work, NMPIMD is employed to simulate the
aforementioned water system, using the i-PI program developed by Ceriotti et al. [32] in
conjunction with force calculations carried out by the LAMMPS Molecular Dynamics
Simulator [33], which in turn is aided by an NNP. The goal is to obtain values for the
surface tension and critical point, extract mass density and intrinsic profiles of the system,
and investigate the microscopic structure of the system, especially near the water/vapor
interface. These results are then compared to a simulation additionally performed without
PIMD and thus disregarding NQEs.

1.3. Thesis Structure

Chapters 2 and 3 present the theoretical foundations of NNPs and PIMD, respectively.
In Chapter 4, the software used in this work is introduced and some of their methods
explained. Chapter 5 deals with the training of the NNP later used for simulations as
well as a brief treatment of DFT and the density functional the training data is based on.
In Chapter 6, the simulations are detailed, from the initial equilibration phase using the
empiric SPC/F model over further equilibration using the previously trained NNP up
to the productions runs using PIMD methods as well as non-PIMD simulations carried
out for comparison. Chapter 7 explains the observables gathered from the simulational
data and how to calculate them, while Chapter 8 presents the results of the simulations
in regards to these aforementioned observables. Lastly, Chapter 9 provides a discussion
on the results and methods used.
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2. Artificial Neural Networks

As their name suggests, the underlying idea of ANNs borrows from biology, where the
nervous system transmits electrochemical signals through the use of a network of neurons.
Neurons receive signals from one or more other neurons and in turn relay signals to
again one or more different neurons, creating in a most conceptualizing view a system
that turns input data into output data. The notion of an artificial neuron was first
described by McCulloch and Pitts in 1943 [34], introducing the idea of neurons that
receive mathematical input from other neurons and forwarding the resulting output to
different neurons. The further development of the concept of artificial neurons was also
aided by contributions from the field of psychology, namely the considerations of Hebb in
1949 of how synapses learn and how the connection between neurons are weighted [35].
This eventually led to the development of perceptrons by Rosenblatt, first published in
1957 [36] and further detailed in 1962 [37].

In this chapter, Section 2.1 explains the basics of perceptrons and their mathematical
description, while Section 2.2 deals with the application of this concept to computational
physics problems in the form of NNPs in the approach by Behler and Parrinello [12].
Lastly, Section 2.3 takes a look at how ANNs can be trained and introduces the Kalman
filter [38] as a training algorithm.

2.1. Perceptrons

Rosenblatt originally described a perceptron as a system consisting of 3 subystems: The
sensory system, containing S-units that receive sensory input; the association system,
containing A-units that evoke an output based on the algebraic sum of input pulses they
receive from connected S-units and whose output may vary with the system’s history;
and the response system, containing a small number of R-units that are activated when
the signals received from connected A-units exceeds a critical level and which will then
provide an output signal.

In a more schematic view, let there be n input nodes, so that each node i provides an
input xi. In addition, let there be a "0th" input node of constant value b called bias node.
These nodes shall be collectively called the input layer. Then, an output node is defined
by the n+ 1 connections coming in from the input nodes, the set of weights wi defining
the strength of the connection to each input node i, and the activation function f . Let
this output node be called the output layer. The value of the output node is then based
on the product of the transferred input xi of node i with the respective weight value wi
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2. Artificial Neural Networks

of each incoming connection, yielding

f

(︄
b · w0 +

n∑︂
i=1

xi · wi

)︄
. (2.1)

In Rosenblatt’s description, the summation and evaluation of inputs presented as the
argument of the function in Eq. 2.1 corresponds to the association system, while the
evaluation of the function itself and the output of its result corresponds to the response
system. This type of algorithm is known as single-layer perceptron and can be seen as a
single neuron fed by a group of preceding neurons. While at first regarded as promising,
the single-layer perceptron fails to deal with non-linearly seperable patterns, famously
shown by Minsky and Papert in 1969 when they proved that this class of ANN is incapable
of learning an XOR function [39].

An advancement of the perceptron concept, the multilayer perceptron (MLP1), was
proven to be able to solve problems that a single-layer perceptron cannot [40]. MLPs are
comprised of a minimum of three layers: One input and one output layer as described
above, as well as one or more hidden layers in between them. Each node from each
hidden layer receives signals from incoming connections from the previous layer and
each incoming connection possesses its own adjustable weight value. The MLP belongs
to the class of feedforward neural networks (FFNNs), which are defined by the feature
that information only travels in one direction, from each layer to the subsequent one,
as opposed to recurrent neural networks which allow connections to previous layers or
to nodes in the same layer [41]. If the topology of an FFNN is so that every node of
every layer has outgoing connections to every node of the subsequent layer, the FFNN is
called fully connected. Such a fully connected MLP is depicted in Figure 2.1. Alternative
topologies may also include short cuts, where the outgoing connection of a node skips one
or more layers and thus links to a node of a later layer than the subsequent one.

2.1.1. Mathematical description of multilayer perceptrons

To start describing an MLP, some notations need to be introduced. The number of hidden
layers L is called the depth of the network. The input layer is treated as the 0th layer and
the output layer is defined as the (L+ 1)th layer. The number of nodes of the lth layer,
ignoring the aforementioned bias nodes, is called the layer’s width and is denoted as m(l).
The bias nodes are treated as the 0th node of each layer, except the output layer, which
does not have a bias node. The weight wl−1

ij is associated with the connection coming
from the ith node of layer l − 1 and pointing to the jth node of layer l. ylk denotes the
output value of the kth node of the lth hidden layer, with the bias node being bl = yl0.
xk is the value of the kth node of the input layer and is synonymous with y0k. The graph
in Figure 2.1 is an example using these notations. Now one can calculate the value of

1Not to be confused with machine learning potentials, which may also be abbreviated as MLP.
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Figure 2.1.: Example of a fully connected multilayer perceptron with a depth of L = 2 (2
hidden layers) and a width of m(l) = 2 for every layer (2 nodes per layer).

each node, except the input nodes, similarly to Equation 2.1:

ylk = f lk

⎛⎝bl−1wl−1
0k +

ml−1∑︂
i=1

yl−1
i wl−1

ik

⎞⎠ . (2.2)

Here, f lk is the activation function of the kth node of the lth layer. The argument of the
activation function is called the activation of the corresponding neuron and is composed of
the sum of all weighted inputs. As the bias nodes are of constant value, their contribution
to the activation can be absorbed in their corresponding weights if their value is set to
bl = 1. Then, the activation ulk of the kth neuron of the lth layer can be written as

ulk = wl−1
0k +

ml−1∑︂
i=1

yl−1
i wl−1

ik (2.3)

and the node value becomes ylk = f lk(u
l
k).

Formally, an MLP can be described analytically as a nested function
Φ : Rm(0) → Rm(L+1) . Let yl be the vector of length m(l) that contains the values
of the nodes of layer l and let w be the vector of all weight parameters of the MLP as well
as wl be the vector containing the weights of all connections going from layer l to layer
l + 1. To set them apart from the other layers’ values, the vector of values of the input
layer is also denoted as y0 = x. If one now defines the functions φl : Rm(l) → Rm(l+1)

that each map the output values of the nodes of the lth layer yl onto the values of the
nodes of the (l + 1)th layer yl+1, one can write:

Φ(x,w) = φL(wL, φL−1(wL−1, φL−2(. . . , φ0(w0,x) . . .))) . (2.4)

7



2. Artificial Neural Networks

Lastly, a distinction between the weight parameters on the one hand and parameters like
depth, width, as well as the parameters used to optimize an MLP on the other hand,
should be established. To that end, the latter shall be denoted as hyperparameters.

2.1.2. Activation functions

As among the uses of the original perceptron was the mapping of Boolean functions onto
a neural network, the most obvious choice for the activation function is the Heaviside
step function

H(x) =

{︄
1, x > 0

0, x ≤ 0
(2.5)

Considering this choice in Equation 2.1, one can set a negative bias b and interpret it as
the threshold that the sum of signals must overcome to activate the neuron, which then
yields a binary response.

The choice of activation functions can greatly influence the success of an ANN and some
activation functions may be better suited for certain applications than others. The desire
to approximate complicated functions through the use of ANNs gave rise to universal
approximation theorems. These concern under which circumstances FFNNs have the
capabilities to approximate any given function and thus be what is called universal
approximators. The relevant result here is the following finding: For every continuous
function g : K → Rm with compact K ⊆ Rn, there exists an MLP with one or more
hidden layers and corresponding activation functions that are continuous, bounded and
non-constant, so that |g(MLP )(x) − g(x)| < ϵ, where g(MLP ) is the approximation of
the function g generated by the MLP, x ∈ K and ϵ > 0 is an arbitrarily small number.
This theorem thus implies that any function may be successfully approximated by an
MLP, hence they are universal approximators, and was proven in 1989 by Stinchombe,
White and Hornik [42], the latter of whom has also shown that the potential of being a
universal approximator stems from the neural network architecture of FFNNs themselves
rather than the choice of their activation functions [43]. However, this theorem does not
provide a method for constructing such an MLP and its weights, but merely states that
the construction is possible. Especially for MLPs with only one hidden layer, such a
construction may be impractical, as the theorem holds for a single hidden layer of arbitrary
width, which may be unfeasibly large. It also does not state that the activation functions
of an MLP must be continuous, bounded and non-constant to successfully approximate a
function, but merely that these criteria ensure a successful approximation, taking into
account the above caveat. There exist other universal approximation theorems dealing
with MLPs of bounded width and arbitrary depth as well as MLPs with both bounded
depth and width, though these will not be discussed in this work.

Having established the desired properties of activation functions for MLPs, one can
identify two common choices that meet the criteria for the universal approximation
theorem: The logistic function

fs(x) =
1

1 + e−x
(2.6)

8



2.2. Neural network potentials by Behler and Parrinello

and the hyperbolic tangent function

ft(x) = tanhx =
ex − e−x

ex + e−x
, (2.7)

which are depicted in Figure 2.2, though many more functions are possible. To generate
a meaningful output, the activation of a neuron should lead to these activation functions
being evaluated somewhere in their characteristic nonlinear region. While in the case of
the Heaviside step function, the bias shifted the argument to represent a threshold, in the
case of these functions, the bias shifts the argument to ensure a meaningful evaluation in
the nonlinear region of the function. Usually when constructing an MLP, the same type of

Figure 2.2.: Logistic function and hyperbolic tangent function.

activation function is used for every node of the same layer, while potentially varying the
activation function from layer to layer. The output layer often uses the identity function
as the activation function of all of its nodes, which does not contradict the universal
approximation theorem, as it only concerns the activation functions of the hidden layers.
Many other types of activation functions are possible, whether they satisfy the criteria
of the universal approximation theorem or not, as there is no general right choice of
activation function for any specific problem and the success of a chosen activation function
may depend on the optimization algorithm used and its hyperparameters.

2.2. Neural network potentials by Behler and Parrinello

In the framework described above, neural networks may be used in computational
chemistry and physics to approximate potential energies of systems of multiple atoms.

9



2. Artificial Neural Networks

Recent achievements, efforts and works have been summarized by Handley and Popelier
[44] as well as Behler [45, 13, 14]. Some challenges that occur when trying to approximate
the PES through the use of an NNP that must be dealt with are a number of invariances
that should hold. In the case where no external forces are acting on the atoms of a system,
an NNP should be invariant with respect to translation of the whole system, as well as
invariant to rotation of the system. These properties arise from the fact that a PES is
also invariant in these regards. Additionally, an NNP should be invariant with respect to
the order of atoms of the same element, once again as this generally also holds for PESs.
Lastly, while not an invariance, an NNP’s approximation capabilities should not depend
on the number of atoms in the system. If for example, an NNP is structured as an MLP in
a naive fashion, where the input layer contains 3N nodes, corresponding to the Cartesian
coordinates of the atoms of a system of N atoms, then this NNP can only be applied to
systems with N atoms. Larger systems would have additional atom coordinates that are
not accounted for in the structure of the MLP, while smaller systems have too few atom
coordinates to populate all input nodes with data. Furthermore, simulations in the grand
canonical ensemble, where the number of atoms changes, would be impossible for obvious
reasons. This is not to say that such an NNP is unusable, but one would need to train a
separate NNP for each desired system size, which makes the approach inflexible and may
be deemed unsatisfactory.

This work follows the approach by Behler and Parrinello [12], which is suited for
creating NNPs that approximate high-dimensional PESs, also called high-dimensional
neural network potentials (HDNNP), and overcomes the aforementioned challenges using
so called symmetry functions, as well as their own MLP subnet for each atom type. The
main idea is to represent the total potential energy Epot of a system of N atoms as the
sum of the energy contributions ϵi of each atom i:

Epot =
N∑︂
i=1

ϵi . (2.8)

Let X⃗i denote the vector of the Cartesian coordinates of atom i and let X be the column

vector containing all 3N coordinates of the systems atoms2, i.e. X =
(︂
X⃗

T

1 , . . . , X⃗
T

N

)︂T
.

Then there is a vector Gi for each atom i, whose entries are a set of functions of all 3N
atom coordinates, so that the µth entry, of the vector corresponding to the ith atom, can
be written as the function

Gµ
i = Gµ

i (X) . (2.9)

These functions shall be known as symmetry functions (SF) and will be explained in
detail in the following sections. In a first step, X is plugged into each symmetry function
to gather the vector of symmetry function values Gi for each atom i. These Gi can be
regarded as generalized coordinates that describe the local environment of atom i. For

2Regarding vector notation: In this work, three-dimensional vectors containing Cartesian coordinates
shall be accented by an arrow, while higher-dimensional or more general vectors (or matrices) are
denoted by being printed in boldface.
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2.2. Neural network potentials by Behler and Parrinello

each atom i there is now an atomic MLP denoted as subnet Si that yields the energy
contribution ϵi, which when summed up yields the total potential energy Epot. To ensure
the invariance of Epot with respect to the order of atoms, the structure of all subnets
as well as their weights must be identical for each Si. This last constraint actually may
be weakened a bit when keeping in mind that the invariance must only hold for atoms
of the same element. If one defines the set χ = {χ1, . . . , χc} of the c chemical elements
that occur in the system, then there are also c different subnets Sχ. Each atom i, whose
element shall be denoted by χi, then uses the corresponding subnet Sχ for the calculation
of its energy contribution, and only the subnets of the same element are constrained to be
identical. The topology for a simple system containing a single water molecule is shown
schematically in Figure 2.3.

X⃗1 G1 SH ϵ1

X⃗2 G2 SH ϵ2 Epot

X⃗3 G3 SO ϵ3

Figure 2.3.: Scheme of an NNP as described by Behler and Parrinello for a system
containing a single water molecule. The system consists of two hydrogen
atoms (quantities indexed with subscript 1 and 2) and one oxygen atom
(quantities indexed with subscript 3). The generalized coordinates Gi of atom
i depend on the Cartesian coordinates X⃗i of all atoms in the environment and
enter their respective subnets. As there are two elements, χ = {H,O} and
thus there are two subnets, SH and SO, i.e. the subnets of the two hydrogen
atoms corresponding to the indexes 1 and 2 are identical. The atomic energy
contributions ϵi yielded by each subnet are then summed to get the total
potential energy Epot. Note that arrows do not indicate weighted connections
of a neural network, but rather symbolize that the object at the end of each
arrow is derived from the object at the start of the arrow.

2.2.1. Symmetry functions

The purpose of SFs is to fulfill the NNP’s invariance with respect to translation and
rotation of the system and with respect to the permutation of atoms. To motivate the
last invariance, consider a single water molecule, whose atoms’ positions are described
by the vectors x⃗O, x⃗H1 and x⃗H2 . Since the hydrogen atoms are identical, it should not
matter if they swap positions, as the energy prescribed by the PES, symbolized here as a

11
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function E, would stay the same:

Epot = E(x⃗O, x⃗H1 , x⃗H2) = E(x⃗O, x⃗H2 , x⃗H1) . (2.10)

This is not guaranteed when approximating the PES by means of an NNP and must thus
be accounted for by the NNP’s structure. Relative quantities like interatomic distances are
naturally invariant with respect to translation and rotation of the whole system and can
furthermore be used to construct symmetry functions that are invariant with respect to
permutation of atoms [46]. Let the interatomic distances be denoted as rOH1 = |x⃗O− x⃗H1 |
and rOH2 = |x⃗O − x⃗H2 |. Then one can construct the SFs

G+ = |rOH1 + rOH2 | (2.11)
G− = |rOH1 − rOH2 | (2.12)

that are invariant to the permutation of the positions of the hydrogen atoms. This is of
course a very simplistic example, but the idea can be easily expanded to larger systems
of N atoms by constructing SFs that contain the absolute value of sums or differences of
other interatomic distances, or the absolute value of the sum or differences of these sums
or differences, and so on. In the end, each position vector of the N atoms must enter
each SF via at least one interatomic distance to ensure the invariance with respect to all
permutations. This is also the disadvantage of this approach, as constructing these SFs
becomes increasingly complex as the system size increases. Furthermore, the problem of
inflexiblity remains unsolved, as the NNP could only be used for systems with constant
N .

The above example is an attempt at creating SFs that describe the whole system. A
different approach is to use SFs that describe only the local environment of each single
atom, called the central atom of its respective symmetry functions. A system of N atoms
hence requires N sets of SFs. This does not yet solve the problem of permutational
invariance however, as when gathering all SF values as the input vector of a single MLP,
the MLP only yields a certain output for that exact order of SF values in the input vector.
Swapping the position of two otherwise identical atoms leads to a different vector of SF
values and therefore to a different output. If the vector of SF values of each atom is
forwarded to its own atomic MLP is when the invariance with respect to permutation is
ensured. The first implementation of this idea was done by Hobday [47], who gathered
the SF values from information such as bond lengths and torsional angles from all atom
triplets the central atom i could form with its first neighbors. Here, each atom i has
its own atomic MLP subnet and the size of the input vector depends on the number of
triplets that include atom i, which means that the subnets must be of variable size. A
refinement of this idea was developed by Bholoa [48], who used quadruplets of atoms,
where each quadruplet consists of atoms that are first neighbors with another atom of
the quadruplet.

In contrast to this approach, which utilizes atomic MLPs of variable size, stands the
method of Behler and Parrinello [12], where the atomic MLPs are of constant size, even if
the local environment of the central atom changes. The information of the environment is
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similarly gathered from the relative positions of groups of atoms that include the central
atom. However, the SFs of Behler and Parrinello sum up values over multiple of these
atom groups, where in Hobday’s approach each value would constitute its own SF. For
instance, if the latter would utilize as an SF the function f(rij), with rij being the distance
between the atoms i and j, then the Behler-Parrinello-approach would yield the sum

Gi =
N∑︂
j ̸=i

f(rij) (2.13)

as the SF.

2.2.2. Cutoff functions

As the sum in Equation 2.13 would theoretically include all atoms of the systems, a cutoff
radius rc is used that limits the local environment from which information is collected.
This is realized by multiplying each term of the sum by a continuous cutoff function
fc, so that only neighbors within the cutoff radius to the central atom are considered
when calculating the value of the SF. Another reason for the use of continuous cutoff
functions is the calculation of forces, which requires the calculation of the spatial gradient
of each SF. If a hard cutoff were to be used, i.e. using the Heaviside step function as the
cutoff function, the discontinuity could give rise to inaccuracies when performing MD [49].
Using an appropriate cutoff function ensures a smooth decay of the SFs value and slope
to zero at the cutoff radius. The cutoff function first proposed by Behler and Parrinello
was [12]

fc,1(rij) =

{︄
1
2

[︂
cos
(︂
π
rij
rc

)︂
+ 1
]︂
, 0 ≤ rij ≤ rc

0, rij ≥ rc
, (2.14)

where rij is once again the distance between the central atom i and some other atom j.
This function’s second derivative however still has a discontinuity at the cutoff. Among
many others, the following function has also been proposed, which possesses continuous
first and second order derivatives [50]:

fc,2(rij) =

{︄
tanh3

(︂
1− rij

rc

)︂
, 0 ≤ rij ≤ rc

0, rij ≥ rc
. (2.15)

Both functions and their derivatives are shown in Figure 2.4

2.2.3. Radial symmetry functions

The first type of SF introduced by Behler and Parrinello [12] uses the interatomic distance
rij to collect radial information about the central atom’s environment and consists of
Gaussians multiplied by the cutoff function

gij = e−η(rij−rs)2fc(rij) , (2.16)
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Figure 2.4.: Cutoff functions and their first and second order derivatives. The second
derivative of fc,1 does not decay to zero at the cutoff radius.

so that the SF is

G2
i =

N∑︂
j ̸=i

gij =
N∑︂
j ̸=i

e−η(rij−rs)2fc(rij) . (2.17)

The parameters η and rs control the width of the Gaussians and how much the Gaussians’
centers are shifted, respectively (see Figure 2.5). Tuning these two parameters allows
to sample different regions of the environment around the central atom. As mentioned
in the previous section, the cutoff function ensures a smooth decay of the SF to zero.
Additionally, since the cutoff functions decrease monotonically, neighbors closer to the
central atom have a stronger influence on the value of the SF.
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Figure 2.5.: Function graph of a single summand gij of the radial SF G2
i for differ-

ent values of η and rs. Values are given in terms of the Bohr radius
a0 = 5.29 · 10−11 m. The cutoff function fc,2 (Equation 2.15) was used
with a cutoff radius of rc = 12 a0. The parameters chosen here constitute a
set of 8 SFs as they will be used for hydrogen-hydrogen interactions later in
this work.

2.2.4. Angular symmetry functions

The second type of SF introduced by Behler and Parrinello [12] describes the local
environment through the use of atom triplets (i, j, k), with i ̸= j ̸= k, in addition to
the interatomic distances of each atom pair present in this triplet, rij , rik and rjk. This
represents the many-body terms of all atomic positions inside the cutoff radius. The
contribution of each triplet of the SF is

gijk = 21−ζ · [1 + λ cos (θijk)]
ζ · e−η[(rij−rs)2+(rik−rs)2+(rjk−rs)2]

· fc(rij)fc(rik)fc(rjk) , (2.18)

where θijk is the angle between the three atoms of the triplet, centered on the central
atom i. η and rs are analogous parameters as for the radial SF G2

i , and λ = ±1 and ζ
are new parameters (see Figure 2.6). To again ensure a smooth decay to zero in the case
of large interatomic separations, each summand is multiplied with a cutoff function for
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each atom pair. Summing over all atom triplets yields the SF

G3
i =

N∑︂
j ̸=i

N∑︂
k ̸=i
k>j

gijk =

N∑︂
j ̸=i

N∑︂
k ̸=i
k>j

21−ζ · [1 + λ cos (θijk)]
ζ · e−η[(rij−rs)2+(rik−rs)2+(rjk−rs)2]

· fc(rij)fc(rik)fc(rjk) . (2.19)

To gather all angular information about the local environment, SFs processing even larger

Figure 2.6.: Function graph of the angular contribution f(θijk) = 21−ζ · [1 + λ cos (θijk)]
ζ

of the angular SF for different values of λ and ζ. The parameters chosen here
correspond to another set of SFs that will be used in this work.

atom groups — i.e. quadruplets, quintuplets, and so on — would be needed. However,
the usage of only group sizes up to triplets is still justified to find a balance between
accuracy and computational cost.

2.2.5. Element-dependent symmetry functions

It remains to be discussed how SFs distinguish elements. This distinction is important for
systems containing atoms of more than just one element, as SFs should provide different
values depending on the element of the central atom’s neighbours, even if their relative
positions would otherwise be the same. This can be formally done by modifying the SFs
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with the Kronecker delta

δji =

{︄
1, i = j

0, i ̸= j
. (2.20)

If the element of the central atom i is again denoted by χi, then an SF can be restricted
to only gather information if the central atom is of some specific element α by writing

Gi{α} = Gi · δαχi
. (2.21)

Here, the curly brackets signify a version of the function that only collects information
about central atoms of the element in the brackets. For SFs that use the interatomic
distances of central atom i and its neighbouring atoms j, this formalism can be extended
to require each atom j to be of a certain element β. In the case of G2

i , this leads to

G2
i {α, β} = δαχi

N∑︂
j ̸=i

gij · δβχj
. (2.22)

Note that α and β may or may not be the same element. The same approach can be
used for SFs that acquire their value from atom triplets (i, j, k) by requiring that the two
atoms j and k are of the elements β and γ. Additional care must be taken however, since
the SF should not distinguish the order of the elements of the atoms j and k, but only
check if one of them is of element β and the other of element γ. In the case of G3

i , this
leads to

G3
i {α, β, γ} = δαχi

N∑︂
j ̸=i

N∑︂
k ̸=i
k>j

gijk ·
(︂
δβχj

δγχk
+ δγχj

δβχk

[︂
1− δγβ

]︂)︂
. (2.23)

The term in the square brackets ensures the correct behaviour of the function for the case
where χj = χk = β and β = γ.

To construct an efficient set of SFs, one would therefore choose multiple variations of
G2

i and G3
i for different element combinations. For an NNP that describes a system of

molecular water containing only the elements H and O, one could create a set of radial
SFs G2

i {H,H}, G2
i {H,O}, G2

i {O,H} and G2
i {O,O}, as well as angular SFs G3

i {H,O,H},
G3

i {H,O,O}, G3
i {O,H,H}, G3

i {O,O,H} and G3
i {O,O,O}. Each of these SF would then

still have multiple variants using different function parameters.

2.3. Training a neural network

Keeping in mind that the width of the output and input layer of an MLP with L hidden
layers is denoted as m(0) and m(L+1) respectively, one can introduce training data in the
form of patterns. Each training pattern a consists of a vector of input data Xa ∈ Rm(0)

and the corresponding output vector Ya ∈ Rm(L+1) . The training itself is then the process
of feeding the MLP these training patterns and adjusting the weights of the MLP to
reproduce the expected output Ya as closely as possible. The measure of how well the
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MLP approximates the data is given by a cost function Γ, commonly chosen as the
root-mean-square error

Γ =

⌜⃓⃓⎷ 1

M

M∑︂
a=1

(︂
Ya − yL+1

a

)︂2
, (2.24)

where M is the number of training patterns and yL+1
a is a vector whose entries are the

values of the output nodes of the MLP when receiving the input Xa. There are different
optimization algorithms that achieve the minimization of the cost function by successively
adjusting the weight parameters, many of which utilize the derivatives of Γ with respect
to the weight parameters. To calculate these derivatives one can use a method called
backward propagation of errors, or backpropagation for short, which was shown to be
applicable to the training of neural networks by Werbos in 1974 [51]:

Remembering the formulation of the neural network as a function Φ of nested functions
and weights (see Equation 2.4), it is clear that the cost function can also be described as
a function of Φ, and thus of the network’s weight parameters w:

Γ = Γ(Φ(x,w)) = Γ(φL(wL, φL−1(wL−1, φL−2(. . . , φ0(w0,x) . . .)))) . (2.25)

Now, let γlij denote the derivative of the cost function Γ with respect to the weight wl
ij :

γlij =
dΓ

dwl
ij

. (2.26)

Then it can be shown through use of the chain rule that γlij can be calculated for each
layer iteratively by using the result of the gradient of the next layer, until one arrives at
the output layer. This gives rise to the formula

γl−1
ij =

m(l−1)∑︂
k=0

γl0kw
l
jk

df lj

dulj
yl−1
i , (2.27)

which holds for all l ≤ L− 1.

2.3.1. Kalman filter training

The original Kalman filter algorithm [38] optimizes the estimate of linear dynamical
systems’ unknown states by using their complete history of possibly noisy measurements
instead of just a single data point of an observable. This allows to minimize the root-
mean-square error with respect to an entire available data set. The algorithm is also
designed recursively, storing only the last state and an error covariance matrix, which
are updated with each new data set. The soon after developed extended Kalman filter is
also able to deal with non-linear systems and was later found to be applicable to neural
network training [52].

Let theM available training patterns again be described as a vector of input data Xa and
the vector corresponding to the values of them output nodes Ya = [Y1(Xa), . . . , Ym(Xa)]

T ,
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where a = 1, . . . ,M signifies the different training patterns. The set of training patterns
can be seen as a time series of measurements, where for each measurement, the error
between reference data and neural network prediction is calculated. The Kalman filter
iteratively optimizes the weight parameters for each measurement to yield a minimum
error for all training patterns in the time series. Let the current state vector be the
vector containing all n of the neural network’s weight parameters and be denoted as
w(t) = [w1(t), . . . , wn(t)]

T , where t shall be the iteration time step where training pattern a
is used to update the state vector. Further, let ya(t) = [y1(w(t),Xa), . . . , ym(w(t),Xa)]

T

be the predicted output values of the neural network to the input vector Xa with the
current weights. A single Kalman filter iteration then goes as follows:

The error vector is calculated as

ξ(t) = Ya − ya(t) . (2.28)

The derivative matrix H, a n×m matrix containing the derivatives of the error vector
with respect to all weight parameters, whose elements are written as

Hij(t) =
∂

∂wi
ξj(t) , (2.29)

is calculated. The m×m scaling matrix A is introduced as

A(t) =

(︃
1

η(t)
I + HT (t)P(t)H(t)

)︃−1

, (2.30)

where the learning rate η(t) is a free hyperparameter that may be varied over time, I is
the identity matrix, and P is the error covariance matrix with dimension n× n. With
this, the Kalman gain matrix K can be calculated:

K(t) = P(t)H(t)A(t) . (2.31)

The iteration step is then finally concluded by updating the state vector w and the error
covariance matrix P according to

w(t+ 1) = w(t) + K(t)ξ(t) (2.32)

P(t+ 1) = P(t)− K(t)HT (t)P(t) + Q(t) , (2.33)

where Q is the process noise covariance matrix, which introduces artificial noise to improve
the fit quality and prevents trapping in poor local minima [53]. Iterating the steps of
equations 2.28 through 2.33 for all M training patterns is referred to as one neural network
training epoch. Over the course of one epoch, the cost function

Γ =
∑︂
t

ξT (t)ξ(t) (2.34)

is minimized, where the sum runs over the time steps covering all training patterns used in
the epoch. It should be noted that a fixed order of training patterns used in every epoch
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should be avoided due to the recency effect [54], where groups of reference data being
treated in the same order over and over leads to an overemphasis of their characteristics,
reducing the overall quality of the training results.

The remaining problem, influencing the quality of the training results, is the initialization
of η, P and Q. Recommendations in literature [54] suggest a learning rate η between
10−3 and 1. The error covariance matrix can be initialized as

P(0) = ε−1I , (2.35)

where ε lies between 10−3 and 10−2. The artificial process noise is commonly added via

Q(t) = q(t)I , (2.36)

where q(t) is fixed somewhere between 10−6 and 10−2. Alternatively, it can be added
with

q(t) = max (q0e
−t/τq , qmin) , (2.37)

choosing the hyperparameters in a way so that the noise reaches a minimum value after a
few training epochs.

2.3.2. Application of Kalman filter training to HDNNPs

To apply the Kalman filter method to HDNNPs in the Behler/Parrinello-approach, the
formalism is extended to include both total potential energies and atomic forces [18]. In
this case, instead of patterns, the training data set comprises atomic structures, their
total potential energies and their atomic forces, calculated from some reference method.
The reference potential energy of structure a shall be denoted as Eref

a and the forces of
the Na atoms in structure a as Fref

a1 , . . . ,F
ref
aNa

. In the same vein as Equation 2.8, the
total predicted energy is then written as a sum of atomic energy contributions

Ea =

Na∑︂
i=1

ϵχai(wχai ,Gi(Xa)) , (2.38)

where χai denotes the chemical element of atom i in the reference structure a and ϵχai is the
value of the output neuron of the atomic subnet for that element. When Sχ is the number
of symmetry functions for element χ, then Gi(Xa) = {Gχai

i,1 (Xa), . . . , G
χai

i,Sχai (Xa)} is the
set of symmetry functions of atom i, which are fed the input data in the form of the

atomic coordinates Xa =
(︂
X⃗

T

a1, . . . , X⃗
T

aNa

)︂T
. The vector wχ =

[︁
wχ
1 , . . . , w

χ
nχ

]︁T contains
all nχ weight parameters of the subnet for the atomic species χ. When again having c
such chemical elements, the weight vectors for each can be gathered in a combined weight
vector that fully describes the state of the system:

w =
(︂
wχ1T , . . . ,wχcT

)︂T
. (2.39)

Since there are now 3Na reference forces per structure, but only one reference energy,
it is randomly chosen whether a Kalman filter weight update is based on an energy or
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a force component. This way an overemphasis on reference forces is prevented and the
energies and forces are treated as independent information that form the artificial time
series of training patterns. Depending on whether the weight vector update is based on
an energy or a reference force in α-direction, the error vector takes the form

ξ(t) =
[︂
Eref

a − Ea(w(t))
]︂

(2.40)

or
ξ(t) =

[︂
β(F ref

ai,α − Fai,α(w(t)))
]︂
, (2.41)

where the hyperparameter β controls the importance of force updates relative to energy
updates. The force is computed by the HDNNP analytically by

Fai,α = −∂Ea(w(t))

∂xai,α

= −
Na∑︂
j=1

∂

∂xai,α
ϵχaj (wχaj (t),Gj(Xa))

= −
Na∑︂
j=1

Sχaj∑︂
k=1

∂ϵχaj

∂G
χaj

j,k

(wχaj (t),Xa)
∂G

χaj

j,k

∂xai,α
(Xa) .

(2.42)

Using these adjusted equations with the Kalman filter from Equations 2.28 through 2.33,
the weight vector w is optimized to minimize the cost function

Γ =
M∑︂
a=1

(Eref
a − Ea)

2 + β2
M∑︂
a=1

Na∑︂
i=1

(F⃗
ref

ai − F⃗ ai)
2 (2.43)

within one epoch. It remains to clarify how the derivative matrix H from Equation 2.29
is calculated, which in this case is now a derivative vector. For energies, the lth vector
entry, assuming the weight l belongs to the subnet of element χ, is

Hl(t) = −
Na∑︂
i=1

δχai
χ

∂

∂wχ
l

ϵχ(wχ,Gi(Xa)) , (2.44)

which can be calculated via backpropagation (see Equation 2.27). In the case of forces,
one finds the more involved derivative

Hl(t) = −β ∂

∂wχ
l

Fai,α = β
∂Ea(w(t))

∂wχ
l ∂xai,α

= β

Na∑︂
j=1

Sχ∑︂
k=1

δχai
χ

∂2ϵχ

∂wχ
l ∂G

χ
j,k

(wχ(t),Xa)
∂Gχ

j,k

∂xai,α
(Xa) .

(2.45)

Since the subnets of other elements do not depend on wχ
l , the sums only contain terms of

element χ, facilitated here by the Kronecker delta. This shows that subnets of different
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2. Artificial Neural Networks

species are very loosely coupled during Kalman filter training, which can be further
exploited to reduce computational efforts. Every term of Equations 2.28 through 2.33 may
be indexed with a χ to create independent per-element Kalman filters. The per-element
definitions of the error vectors for energy updates

ξχ(t) =

[︃
Nχ

a

Na
(Eref

a − Ea(w(t)))

]︃
, (2.46)

where Nχ
a is the number of atoms of element χ in the training structure a, and for force

updates

ξχ(t) =

[︃
β
Nχ

ai

Nai
(F ref

ai,α − Fai,α(w(t)))

]︃
, (2.47)

where Nai is the number of neighbouring atoms within the cutoff radius rc and Nχ
ai is the

number of neighbours with element χ, were found to give suitable results comparable to
using a global Kalman filter [18].
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3. Path Integral Molecular Dynamics

Although equivalent to the Heisenberg and Schrödinger pictures of quantum mechanics,
the formulation of Feynman provides an easier connection to statistical mechanics with
his use of path integrals [20, 55]. To give a brief introduction, as well as a more detailed
explanation of the application to molecular dynamics in the following sections, this chapter
roughly follows the work of Tuckerman [22], which provides an excellent explanation of
the topic.

First, consider a particle localized at point x that evolves unobserved to point x′. So, the
exact path the particle takes before arriving at x′ is impossible to know, not only because
it is not observed, but also because of its quantum mechanical nature. In Feynman’s
picture, it is not unknown which path the particle takes, but rather the particle follows
all infinitely many possible paths simultaneously. To find the complete amplitude of the
process, the amplitude of each path must be calculated, which are then summed up. If
each path has an amplitude Ai, then the total amplitude is A = A1 +A2 +A3 + . . . and
the corresponding probability becomes

P = |A1 +A2 +A3 + . . . |2 . (3.1)

The cross terms resulting from the square of this sum of these complex amplitudes are
then the interference terms between the paths. In other words, the infinitely many paths
are interfering alternatives, whose interference gives rise to the interference patterns we
know from processes such as the double-slit experiment.

A helpful heuristic visualization by Feynman [55] is to imagine a large number of
gratings between points x and x′. For each grating, the particle may pass through any of
a grating’s slits before reaching the next grating, where it can again move through an
arbitrarily chosen slit, and so on. The number of possible paths the particle can take
increases with the number of gratings and the number of slits in the gratings. If one now
takes the limit of infinitely many gratings, each with infinitely many slits, then there are
infinitely many possible paths and the picture essentially reverts to a particle in empty
space. This visualization is shown in Figure 3.1.

The relevant theoretical foundation of path integrals is laid out in Section 3.1 and
applied to molecular dynamics in Section 3.2. Section 3.3 discusses NQEs as the motivation
of using PIMD, as well as their occurance in water.
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3. Path Integral Molecular Dynamics

x x′ x x′

Figure 3.1.: Two possible paths from x to x′ through multiple intermediate gratings (left)
and in free space (right).

3.1. Mathematical Description of Feynman Path Integrals

To formally discuss the mathematics of path integrals, it is easiest to start with a single
one-dimensional particle. The Hamiltonian of this particle is

Ĥ =
p̂2

2m
+ U(x̂) ≡ K̂ + Û (3.2)

with the mass of the particle m, the potential U and the momentum- and position
operators p̂ and x̂. As in the example above, the particle of interest is initially prepared
at a point x and the question is what the amplitude for detecting the particle at point x′

will be. Now, let the coordinate-space matrix elements of the canonical density matrix
ρ̂ (β) be

ρ(x, x′;β) ≡ ⟨x′|e−βĤ |x⟩ , (3.3)

where |x⟩ and |x′⟩ are eigenstates of the position operator, and β = 1/kBT is the inverse
temperature with the Boltzmann constant kB and temperature T . Note that through
formal manipulation, one can find that the density matrix

ρ̂ (β) = e−βĤ = e−
i
ℏ (−iβℏ)Ĥ (3.4)

is the quantum-mechanical propagator evaluated at the imaginary time t = −iβℏ. Con-
versely, one can say that the density matrix yields the propagator when evaluated at the
imaginary inverse temperature β = it/ℏ:

ρ̂ (it/ℏ) = e−
i
ℏ tĤ (3.5)

This paints the picture of the density matrix being a propagator in imaginary time.
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3.1. Mathematical Description of Feynman Path Integrals

Since Ĥ is a sum of two non-commuting operators, K̂ and Û , the operator e−βĤ can
not be easily evaluated. Here, the Trotter theorem [56] can be used, which states for two
operators Â and B̂ for which the commutator

[︂
Â , B̂

]︂
̸= 0,

eÂ+B̂ = lim
P→∞

(︂
eB̂/2P eÂ /P eB̂/2P

)︂P
, (3.6)

where P is an integer. This allows to write

e−β(K̂+Û) = lim
P→∞

(︂
e−βÛ/2P e−βK̂/P e−βÛ/2P

)︂P
. (3.7)

Defining now an operator Ω̂ by

Ω̂ = e−βÛ/2P e−βK̂/P e−βÛ/2P (3.8)

and substituting Equations 3.7 and 3.8 into Equation 3.3 yields:

ρ(x, x′;β) = ⟨x′|e−β(K̂+Û)|x⟩ = lim
P→∞

⟨x′|
(︂
e−βÛ/2P e−βK̂/P e−βÛ/2P

)︂P
|x⟩

= lim
P→∞

⟨x′|Ω̂P |x⟩
(3.9)

One can now insert an identity operator

Î =

∫︂
dx |x⟩⟨x| (3.10)

between each factor of Ω̂
P
, introducing a total of P − 1 integrations and resulting in the

expression for the density matrix

ρ(x, x′, β) = lim
P→∞

∫︂
dx2 · · · dxP ⟨x′|Ω̂|xP ⟩⟨xP |Ω̂|xP−1⟩⟨xP−1| · · · |x2⟩⟨x2|Ω̂|x⟩ . (3.11)

This step is analogous to the insertion of P − 1 gratings, as described in the heuristic
picture above and depicted in Figure 3.1. The integration over each variable xi represents
the summation over all possible paths a particle can take through each grating. As P
goes to infinity, more gratings are inserted, until one once again arrives at the picture of
free space.

Considering a general matrix element as it appears in Equation 3.11

⟨xk+1|Ω̂|xk⟩ = ⟨xk+1|e−βÛ/2P e−βK̂/P e−βÛ/2P |xk⟩ , (3.12)

one can now evaluate this element in closed form. Since Û = U(x̂) is a function of the
position operator, and |xk+1⟩ and |xk⟩ are position eigenvectors, they are also eigenvectors
of exp (−βU(x̂)/2P ) with eigenvalues exp (−βU(xk+1)/2P ) and exp (−βU(xk)/2P ), re-
spectively. Thus, Equation 3.12 can be written as

⟨xk+1|Ω̂|xk⟩ = e−βU(xk+1)/2P ⟨xk+1|e−βK̂/P |xk⟩e−βU(xk)/2P . (3.13)
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3. Path Integral Molecular Dynamics

To evaluate exp (−βK̂/P ) = exp (−βp̂2/2mP ), one can again insert a identity operator
of the form

Î =

∫︂
dp |p⟩⟨p| , (3.14)

which leads to the operator acting on one of its eigenvectors, yielding

⟨xk+1|e−βK̂/P |xk⟩ =
∫︂
dp ⟨xk+1|e−βK̂/P |p⟩⟨p|xk⟩

=

∫︂
dp ⟨xk+1|p⟩⟨p|xk⟩e−βp2/2mP .

(3.15)

For position and momentum eigenstates, it holds that

⟨x|p⟩ = 1√
2πℏ

eipx/ℏ (3.16)

and applying this formula to Equation 3.15 leads to

⟨xk+1|e−βK̂/P |xk⟩ =
1

2πℏ

∫︂
dp eipxk+1/ℏe−ipxk/ℏe−βp2/2mP . (3.17)

Completing the square in the exponents found in Equation 3.17

− β

2mP
p2 +

i(xk+1 − xk)

ℏ
p = − β

2mP

[︃
p2 − 2imP (xk+1 − xk)

βℏ
p

]︃
= − β

2mP

{︄[︃
p− imP (xk+1 − xk)

βℏ

]︃2
+
m2P 2(xk+1 − xk)

2

β2ℏ2

}︄

= − β

2mP

[︃
p− imP (xk+1 − xk)

βℏ

]︃2
− mP (xk+1 − xk)

2

2βℏ2
(3.18)

and substituting

p̃ = p− imP (xk+1 − xk)

βℏ
(3.19)

allows to carry out the momentum integration as a Gaussian integral:

⟨xk+1|e−βK̂/P |xk⟩ =
1

2πℏ
e−mP (xk+1−xk)

2/2βℏ2
∫︂ ∞

−∞
dp̃ e−βp̃2/2mP

=

(︃
mP

2πβℏ2

)︃1/2

exp

[︃
− mP

2βℏ2
(xk+1 − xk)

2

]︃ (3.20)

Combining this with the findings from Equation 3.13 leads to the general matrix element

⟨xk+1|Ω̂|xk⟩ =
(︃

mP

2πβℏ2

)︃P/2

exp

[︃
− β

2P
(U(xk+1) + U(xK))

]︃
· exp

[︃
− mP

2βℏ2
(xk+1 − xk)

2

]︃
. (3.21)
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Going back to Equation 3.11 and evaluating all P matrix elements according to Equation
3.21 yields the density matrix

ρ(x, x′, β) = lim
P→∞

(︃
mP

2πβℏ2

)︃P/2 ∫︂
dx2 · · · dxP

· exp

{︄
−1

ℏ

P∑︂
k=1

[︃
mP

2βℏ
(xk+1 − xk)

2 +
βℏ
2P

(U(xk+1) + U(xk))

]︃}︄⃓⃓⃓⃓
⃓
xP+1=x′

x1=x

, (3.22)

where x1 and xP+1 are fixed as the original starting and end points of the path, x and x′,
respectively. The integrations over x2 to xP are the summations over all possible paths
in the imaginary time −iβℏ, or, in the case of finite P , linear paths between discrete
imaginary time points.

3.1.1. The Canonical Partition Function

To approach the application of path integrals to molecular dynamics, the canonical parti-
tion function, which is important for statistical mechanics, can be derived. Considering the
canonical partition function Q(L, T ) for a system at temperature T confined to x ∈ [0, L]
and using Q(L, T ) = Tr[exp (−βĤ)], where Tr is the trace, one can evaluate the trace in
the coordinate basis:

Q(L, T ) =

∫︂ L

0
dx ⟨x|e−βĤ |x⟩ =

∫︂ L

0
dx ρ(x, x;β) . (3.23)

The diagonal elements of the density matrix correspond to Equation 3.22 when setting
x1 = xP+1 = x. If instead naming the integration variable x1, the partition function
becomes

Q(L, T ) = lim
P→∞

(︃
mP

2πβℏ2

)︃P/2 ∫︂
dx1 · · · dxP

· exp

{︄
−1

ℏ

P∑︂
k=1

[︃
mP

2βℏ
(xk+1 − xk)

2 +
βℏ
2P

(U(xk+1) + U(xk))

]︃}︄⃓⃓⃓⃓
⃓
xP+1=x1

. (3.24)

Using that

1

2

P∑︂
k=1

[U(xk) + U(xk+1)] =
1

2
[U(x1) + U(x2) + U(x2) + U(x3) + . . .

. . .+ U(xP−1) + U(xP ) + U(xP ) + U(x1)] =

P∑︂
k=1

U(xk) , (3.25)
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the canonical partition function can finally be written as

Q(L, T ) = lim
P→∞

(︃
mP

2πβℏ2

)︃P/2 ∫︂
dx1 · · · dxP

· exp

{︄
−1

ℏ

P∑︂
k=1

[︃
mP

2βℏ
(xk+1 − xk)

2 +
βℏ
P
U(xk)

]︃}︄⃓⃓⃓⃓
⃓
xP+1=x1

. (3.26)

The condition xP+1 = x1 means that the paths are restricted to begin and end at the
same point, i.e. they are cyclic paths.

3.1.2. Expectation Values and estimators

To receive the expectation value of a Hermitian operator Â , it is first noted that

⟨Â ⟩ = 1

Q(L, T )
Tr
[︂
Â e−βĤ

]︂
=

1

Q(L, T )

∫︂
dx⟨x|Â e−βĤ |x⟩ , (3.27)

with the trace being expanded in the coordinate basis. If Â is only a function of x̂, then
|x⟩ is an eigenvector of Â (x̂) with eigenvalue a(x). Thus one finds

⟨Â ⟩ = 1

Q(L, T )

∫︂
dx a(x)⟨x|e−βĤ |x⟩ . (3.28)

Using Equation 3.22 with x = x′ leads to

⟨Â ⟩ = 1

Q(L, T )
lim

P→∞

(︃
mP

2πβℏ2

)︃P/2 ∫︂
dx1 · · · dxP a(x1)

· exp

{︄
−1

ℏ

P∑︂
k=1

[︃
mP

2βℏ
(xk+1 − xk)

2 +
βℏ
P
U(xk)

]︃}︄⃓⃓⃓⃓
⃓
xP+1=x1

. (3.29)

This path integral expression for the expectation value of Â (x̂) unfortunately only
evaluates a(x) at that point, which is problematic for practical uses. All points x1, . . . , xP
are however equal for the cyclic path, which can be shown by the invariance of the
exponential’s argument under a cyclic relabeling of the coordinate variables:

x′2 = x1, x′3 = x2, . . . x′P = xP−1, x′1 = xP . (3.30)

Applying this relabeling to Equation 3.29 yields the equivalent expression

⟨Â ⟩ = 1

Q(L, T )
lim

P→∞

(︃
mP

2πβℏ2

)︃P/2 ∫︂
dx′1 · · · dx′P a(x′2)

· exp

{︄
−1

ℏ

P∑︂
k=1

[︃
mP

2βℏ
(x′k+1 − x′k)

2 +
βℏ
2P

(U(x′k+1) + U(x′k))

]︃}︄⃓⃓⃓⃓
⃓
x′
P+1=x′

1

. (3.31)
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This type of relabeling can be performed P times, yielding an equivalent expression with
a(x′′3), a(x′′′4 ) and so on. Adding all these expressions together and dividing them by P
then leads to

⟨Â ⟩ = 1

Q(L, T )
lim

P→∞

(︃
mP

2πβℏ2

)︃P/2 ∫︂
dx1 · · · dxP

[︄
1

P

P∑︂
k=1

a(xk)

]︄

· exp

{︄
−1

ℏ

P∑︂
k=1

[︃
mP

2βℏ
(xk+1 − xk)

2 +
βℏ
P
U(xk)

]︃}︄⃓⃓⃓⃓
⃓
xP+1=x1

. (3.32)

This expression treats all P coordinates x1, . . . , xP as equal.
The expectation value from Equation 3.32 can be approximated for finite P through

the use of an appropriate estimator depending on the P coordinates x1, . . . , xP . Firstly,
dropping the limit from Equation 3.26 leaves a discrete partition function

QP (L, T ) =

(︃
mP

2πβℏ2

)︃P/2 ∫︂
dx1 · · · dxP

· exp

{︄
−1

ℏ

P∑︂
k=1

[︃
mP

2βℏ
(xk+1 − xk)

2 +
βℏ
P
U(xk)

]︃}︄⃓⃓⃓⃓
⃓
xP+1=x1

, (3.33)

which becomes the partition function Q(L, T ) again in the limit P → ∞. With Equation
3.33, the probability distribution function

f(x1, . . . , xP ) =
1

QP (L, T )

(︃
mP

2πβℏ2

)︃P/2

· exp

{︄
−1

ℏ

P∑︂
k=1

[︃
mP

2βℏ
(xk+1 − xk)

2 +
βℏ
P
U(xk)

]︃}︄⃓⃓⃓⃓
⃓
xP+1=x1

(3.34)

can be defined. An appropriate estimator for ⟨Â ⟩ from Equation 3.32 is obviously

aP (x1, . . . , xP ) =
1

P

P∑︂
k=1

a(xk) (3.35)

that yields the approximate expectation value by averaging it with respect to the probab-
ility distribution function f(x1, . . . , xP ). This shall be written as

⟨Â ⟩P = ⟨aP (x1, . . . , xP )⟩f , (3.36)

where the true expectation value ⟨Â ⟩ is recovered in the limit P → ∞ as

⟨Â ⟩ = lim
P→∞

⟨Â ⟩P . (3.37)
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This scheme can be directly applied to yield the estimator for the potential energy of the
system, given by

UP (x1, . . . , xP ) =
1

P

P∑︂
k=1

U(xk) . (3.38)

Other expectation values and their estimators may not be as straightforward to derive
and it must also be noted, that when Â is a function of the momentum operator,
the expectation value is no longer a cyclic path, which leads to slow convergence and
increasingly worse performance with increasing P .

Some expectation values can be evaluated via thermodynamic relations. The average
energy

E = ⟨ p̂
2

2m
+ U(x̂)⟩ (3.39)

is a function of both the momentum and position operator, which would otherwise be
cumbersome. Here it can be used that

E = − ∂

∂β
lnQ(L, T ) = − 1

Q(L, T )

∂Q(L, T )

∂β
, (3.40)

which yields

E =
1

Q(L, T )
lim

P→∞

(︃
mP

2πβℏ2

)︃P/2 ∫︂
dx1 · · · dxP εP (x1, . . . , xP )

· exp

{︄
−1

ℏ

P∑︂
k=1

[︃
mP

2βℏ
(xk+1 − xk)

2 +
βℏ
P
U(xk)

]︃}︄⃓⃓⃓⃓
⃓
xP+1=x1

= lim
P→∞

⟨εP (x1, . . . , xP )⟩f

(3.41)

Here,

εP (x1, . . . , xP ) =
P

2β
−

P∑︂
k=1

[︃
mP

2β2ℏ2
(xk+1 − xk)

2 +
1

P
U(xk)

]︃
(3.42)

is the estimator for the energy that converges to the true thermodynamic energy E when
taking ⟨εP (x1, . . . , xP )⟩f in the limit P → ∞. Similarly, the thermodynamic relations of
the canonical ensemble may be used to derive estimators for other quantities. Due to the
convergence problems mentioned above, other energy estimators were devised, like the
virial energy estimator based on the virial theorem [57]

εvir(x1, . . . , xP ) =
1

P

P∑︂
k=1

[︃
1

2
xk
∂U

∂xk
+ U(xk)

]︃
, (3.43)

which handles fluctuations much better than its primitive counterpart from Equation 3.42
and is insensitive to P .
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3.2. Application of Path Integrals to Molecular Dynamics

Knowing the framework of path integrals, their application to molecular dynamics may
be explored. The discrete partition function from Equation 3.33 can be manipulated to
resemble the classical canonical partition function of a cyclic polymer chain. By defining
m′ = mP/(2πℏ)2, the prefactor in Equation 3.33 can be expressed as the Gaussian
integrals over the variables p1, . . . , pP∫︂

dp1 · · · dpP e−β
∑︁P

k=1

p2k
2m′ =

(︃
2πm′

β

)︃P/2

=

(︃
mP

2πβℏ2

)︃P/2

. (3.44)

When additionally introducing the chain frequency

ωP =

√
P

βℏ
, (3.45)

Equation 3.33 can be written as

QP (L, T ) =

∫︂
dp1 · · · dpP

∫︂
dx1 · · · dxP

· exp

{︄
−β

P∑︂
k=1

[︃
p2k
2m′ +

1

2
mω2

P (xk+1 − xk)
2 +

1

P
U(xk)

]︃}︄⃓⃓⃓⃓
⃓
xP+1=x1

. (3.46)

This was coined as classical isomorphism [21], as it represents a classical cyclic polymer
chain of P points, or "beads" (see Figure 3.2), with a nearest-neighbor coupling constant
mω2

P moving in a classical potential U(x)/P . Due to its origins in the density operator
or imaginary time propagator, the P beads are also indexed by their "imaginary time
index". Sampling the partition function of a classical cyclic polymer chain thus allows to
sample the approximate quantum canonical distribution and obtain approximate quantum
properties, which become more exact as P increases. Note that the "mass" m′ appearing
in the kinetic energy term can be chosen freely, as it stems from a prefactor that does not
affect equilibrium averages.

Figure 3.2.: Cyclic polymer chain with P = 4.
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3.2.1. Normal Mode PIMD

The equations of motion that can be derived from Equation 3.46 suffer from slow con-
vergence due to a broad spectrum of normal mode frequencies. That is, since the time
step chosen for any MD simulation must be small enough to accommodate the highest
frequency, the large-scale changes of the cyclic polymer chain associated with the low
normal mode frequencies are only adequately sampled for very long simulation times. To
alleviate this, one can try to uncouple the harmonic term in Equation 3.46 and replace the
masses in a way so that only a single harmonic frequency remains. One way to achieve
this is to use what is called a normal mode transformation [23] that can be constructed
in the following way:

First, generate the matrix

Ai,j = 2δi,j − δi,j−1 − δi,j+1 (3.47)

with i, j = 1, . . . , P . Then, diagonalize the matrix, yielding the eigenvectors as well as
the eigenvalues

λ2k−2 = λ2k−1 = 2

[︃
1− cos

(︃
2π(k − 1

P

)︃]︃
. (3.48)

From the eigenvectors, construct the matrix Oi,j that diagonalizes A. The set of normal
mode variables u1, . . . , uP are then constructed according to

uk =
1√
P

P∑︂
l=1

Ok,lxl , (3.49)

with the inverse transformation

xk =
√
P

P∑︂
l=1

OT
k,lul . (3.50)

This allows to write
P∑︂

k=1

(xk+1 − xk)
2 =

P∑︂
k=2

λku
2
k . (3.51)

Thus, the harmonic term is now separable. Defining lastly the masses

mk = mλk

m′
1 = m

m′
k = mk

(3.52)

the transformed partition function becomes

QP (L, T ) =

∫︂
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, (3.53)
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where xk(u) represents the coordinates transformed via Equation 3.50. Equation 3.53
can be evaluated using the classical Hamiltonian

H =
P∑︂

k=1

[︃
p2k
2m′

k

+
1

2
mkω

2
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2
k +

1

P
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]︃
(3.54)

with the equations of motion

u̇k =
pk
m′

k

ṗk = −mkω
2
Puk −

1

P

∂U

∂uk
.

(3.55)

The forces on the normal mode variables are obtained by applying the chain rule
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(3.56)

If coupled to a thermostat, these equations of motion can be integrated by an MD
algorithm of choice to sample the quantum canonical distribution. Furthermore, a
convenient property of the normal mode transformation is that the variable u with
imaginary time index 1 is the average over all path variables and corresponds to the
center of mass of the cyclic polymer chain, also known as the "path centroid", and the
force acting on u1 is the average force, as can be seen in the first line of Equation 3.56.

The scheme presented in this section can easily be extended to N Boltzmann particles
in d dimensions. Let r(1)i , . . . , r(P )

i be the d-dimensional coordinates of the P beads of
the path that represents particle i. Noting that the subscript i denotes the particle and
the superscript (k) denotes the imaginary time index of the beads, the discrete partition
functions takes the form

QP (N,V, T ) ∼
∫︂ N∏︂

i=1

dr(1)i · · · dr(P )
i dp(1)

i · · · dp(P )
i
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U(r(k)1 , . . . , r(k)N )

]︄}︄
(3.57)

with r(P+1)
i = r(1)i . The potential U(r(k)i , . . . , r(k)N ) only acts between beads with the same

imaginary time index, as is illustrated in Figure 3.3. Also, in this case the virial estimator
from Equation 3.43 can be used to yield an estimator for the kinetic energy as [57, 58]

TP (r1, . . . , rN ) =
N

2β
+

1

2P

N∑︂
i=1

P∑︂
k=1

(r(k)i − rci ) ·
∂U(r(k)1 , . . . , r(k)N )

∂r(k)i

, (3.58)
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Figure 3.3.: Two quantum particles represented as cyclic polymer chains with P = 4.
Only beads with the same imaginary time index interact with each other, as
indicated by the dashed lines.

where

rci =
1

P

P∑︂
k=1

r(k)i (3.59)

is the centroid coordinate of the polymer ring representing the particle i.
A classical Hamiltonian can again be constructed from Equation 3.57 by carrying out a

normal mode transformation for each particle:
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. (3.60)

The equations of motion and forces are acquired analogous to Equations 3.55 and 3.56.

3.3. Motivation: Nuclear Quantum Effects

Finally it would be appropriate to address, why path integral methods are needed and
when they are used. Thanks to the path integral formalism, simulations can be carried
out that treat atoms, or more precisely their nuclei, quantum mechanically. This allows
to capture NQEs, such as quantum tunneling and zero-point motion. These effects are
most likely to be exhibited by light nuclei, such as hydrogen, for which NQEs occur even
at room temperature [59, 60]. So, whenever NQEs are expected to be important, PIMD
may be used to include them, while for simulations of heavier elements or when NQEs can
be neglected, classical molecular dynamics can be safely applied instead to not further
the computational cost.

It is also important to consider the type of potential-energy model used when deciding
whether or not to use PIMD for a given application. When using an empirical potential-
energy model with parameters that are derived from fits to experimental data, using
PIMD would "double count" NQEs, since the experiments the model is based is naturally
quantum mechanical and NQEs thus implicitly included. However, empirical potentials
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may be adapted for use with path integral methods by parameterizing them to reproduce
certain quantities in quantum instead of classical simulations. This has been done for
example with the popular TIP4P water model, creating the q-TIP4P/F model [61]. On
the other hand, when potential energies and forces are calculated from the electronic
structure via ab initio methods [62], NQEs are explicitly not included. Such models are
thus only completely correct when using them with PIMD or other methods incorporating
NQEs.

3.3.1. Nuclear Quantum Effects in Water

As suggested before, hydrogen is the prime candidate for the study of NQEs. The low
mass of the single proton nucleus allows for phenomena such as proton tunneling, zero-
point energy and delocalization, which in turn affect the static and dynamic properties
of water. Understanding these NQEs is vital to understanding these properties and
the anomalous behaviour of water. Interestingly, quantum effects can affect water in
seemingly contradicting ways: One the one hand, NQEs allows protons to be more strongly
delocalized between hydrogen-bonded pairs of water molecules, enabling a lengthening
of the covalent bond and effectively strengthening the bond. On the other hand, the
delocalization of the proton also allows for a greater angular deviation from and thus
distortion of the bond, weakening it [63, 64]. Which of these effects — stretching or
bending — dominates depends on the distance between the oxygen (O) atoms of the
pair of hydrogen-bonded water molecules, with short bonds getting stronger through
the inclusion of NQEs and long bonds getting weaker. This interplay has been dubbed
"competing quantum effects".

The effect of NQEs in water may be gauged by exploring isotope effects. By substituting
the hydrogen (H) in water with deuterium (D) or tritium (T), the comparison of heavy
water (D2O) and tritiated water (T2O) with water reveals the differences in properties
caused by NQEs. Note however that while D and T are heavier than H, they are still not
free from NQEs, as they are light enough to exhibit them themselves, albeit less than
H. Thus, it is more a study of "strong NQEs vs. weak NQEs", instead of "NQEs vs. no
NQEs". Experimental results have shown that the water dimer dissociation energy of the
O-D bond in the gas phase (14.88 kJ/mol) is 12.7% higher than that of the O-H bond
(13.2 kJ/mol) [65, 66], suggesting a significantly stronger hydrogen bond as NQEs get
weaker. A number of observations support this view and even extend it lower temperatures,
where for example the melting point of water increases upon deuteration and tritiation by
3.82 K and 4.49 K, respectively, indicating that stronger hydrogen bonds lead to a higher
stability of ice [67, 68, 69]. X-ray scattering experiments provide further evidence that at
room temperature, the hydrogen bonds of D2O are stronger than those of H2O [70].

While the above mentions are consistent with the idea that NQEs weaken the hydrogen
bond, care must be taken, as competing quantum effects may impact thermodynamic
properties in counter-intuitive ways. Molar densities show a slight increase in liquid H2O
compared to D2O and T2O [68], which could be interpreted as the presence of stronger
hydrogen bonding in H2O. However, stronger hydrogen bonding can actually lead to a
decrease in density due to the directional nature of those bonds, which was also observed
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in DFT simulations [71]. Ab initio PIMD simulations performed for various H-bonded
systems indicate the trend that weak hydrogen bonds are weakened by NQEs while strong
hydrogen bonds become stronger upon their inclusion [63]. The critical temperature of
H2O (647.10 K) is higher than the ones of D2O (643.85 K) and T2O (641.66 K) [67, 68],
which suggests that NQEs strengthen hydrogen bonds at higher temperatures. The
liquid/vapor surface tension also shows seemingly anomalous behaviour, with values
decreasing slightly from 71.98 mN/m to 71.87 mN/m upon deuteration at 25 °C [68],
which could pay tribute to the modulation of the local hydrogen-bonded structure in
different phases or at interfaces [27]. It must also be noted that competing quantum
effects may almost completely cancel each other out, making their study a delicate matter
[72].

Seeing how some of the above results either stem from simulations or were experiments
augmented by simulational data, the usefulness of PIMD in the study of water is obvious.
Still, PIMD is computationally quite expensive, which is why the field is very active in
developing new algorithms and methods to accelerate simulations, and progress is further
facilitated through new hardware and the successful inclusion of machine learning and
ANNs [30, 31, 73]. As always, great care must be taken to prevent mispredictions of
numerical methods, as was shown that this can happen with DFT calculations, though
correction schemes can alleviate such problems [74, 75, 76].
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To perform NMPIMD simulations using HDNNPs, multiple software has to work in
tandem. The universal force engine i-PI [32] acts as a server that deals with the nuclear
motion of the system in a given thermodynamic ensemble and applies the PIMD scheme.
The calculation of the forces used to propagate these nuclear motions are outsourced to
other software, that connects multiple instances of itself to i-PI akin to clients of the
server. In this case, LAMMPS [33] will be used to handle the force calculations. The
n2p2 package [18] contains the tools to train an HDNNP and provides an interface to
let LAMMPS use the HDNNP for its force calculations. Afterwards, the Pytim package
[77] provides the means to investigate the configurations resulting from the simulations in
regards to a systems different phases. In this chapter, these four software packages and
some of their methods will be briefly discussed.

4.1. LAMMPS

LAMMPS [33] stands for Large-scale Atomic/Molecular Massively Parallel Simulator and,
as the name suggests, is a code designed for classical molecular dynamics simulations using
multiple CPUs parallelly. With a focus on materials modeling, it contains a plethora of
options to model different atomic and molecular interactions and potentials and is usable
for both soft matter and solid-state materials, each on the atomic, meso or continuum scale.
The code’s strength lies in its parallel algorithm that decomposes the simulation domain
and assigns each processor a fixed spatial region, allowing for efficient parallelization and
to make good use of the computational power of high-performance computing (HPC)
clusters [78]. LAMMPS offers an abundance of functions to accommodate the simulation
of a wide variety of problems, which is further extended by the ability to add custom
code due to being open source under the GNU General Public License v2.0.

4.1.1. NVT ensemble in LAMMPS

In LAMMPS, commands that apply operations to the simulated system during time
stepping or minimization are known as "fixes". Such operations could be the updating of
atom positions and velocities during time integration or the controlling of the temperature
through the use of a thermostat. As this work deals with systems with constant particle
number, volume and temperature, the fix used to sample the NVT ensemble is of interest.

The NVT fix propagates atoms using the equations of motions by Shinoda et al. [79],
which in turn are integrated using either the velocity-Verlet or the r-RESPA algorithm
[80]. The fix also applies a thermostat in the form of a Nosé-Hoover chain, or, if the
chain’s length is set to 1, a standard Nosé-Hoover thermostat.
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4.2. n2p2

n2p2 [81, 18] is a C++ based package containing libraries and applications used for
training HDNNPs in the Behler-Parrinello-approach as well as applying these HDNNPs
to MD calculations. Before training, a data set, containing atomic configurations together
with forces and total potential energies, is needed as reference data for the PES one wants
to approximate. For these configurations to cover the possible atomic environments and
resulting high-dimensional PES densely enough to safely interpolate between reference
points, a number of reference structures of the order of 103 − 104 should be aimed for.
Also needed is an input file that details the topology of the HDNNP to be trained, i.e.
the width and depth of the MLPs and the types of activation- and symmetry functions
used, and sets the hyperparameters used for the training. As a mandatory step, the
n2p2 component nnp-scaling computes and normalizes the SFs set in the input file.
Optionally, the data set can also be normalized with the component nnp-norm. The
component nnp-train performs the actual training of the NNP, using the given reference
data to optimize the weight parameters based on the Kalman filter method.

Various additional components are also included in the n2p2 package, some to further
optimize reference data and hyperparameters, others to directly apply the resulting NNP
to a problem. Most notably, the package includes a library to interface the NNP created
with nnp-train with other applications, such as LAMMPS. That way, the option to
perform force calculations with the newly trained NNP becomes available in LAMMPS
[82].

4.2.1. Multistream Extended Kalman Filter

By and large, the nnp-train routine uses the Kalman filter method as it was explained
in Section 2.3.2. To better utilize multi core processor architecture however, the approach
was refined to an algorithm called the multistream extended Kalman filter (MS-EKF).
As the time series of sequential training patterns is fictitious and only pieces of the
entire reference data are used for updating the state vector w at any one time, the
opportunity for parallelization seems obvious. While for the regular Kalman filter training
of an HDNNP, one input and one output vector of a single "measurement" optimize the
unknown weights, multistream training uses multiple input-output pairs at the same time
with the simultaneous measurements sharing the same weights. Formally, the error vector
is extended to contain data from s measurements or "streams"

ξ(t) =
[︁
ξT1 (t), . . . , ξ

T
s (t)

]︁T (4.1)

and the derivative matrix is appropriately enlarged to include the derivatives from the
respective streams

H(t) =

[︃
∂

∂w1
, . . . ,

∂

∂wn

]︃T
ξT (t) = [H1(t), . . . ,Hs(t)] . (4.2)

All other expressions from Equations 2.30 through 2.33 are unchanged save for the dimen-
sions of matrices A and K, which are extended accordingly. The training performance can
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be significantly improved this way [83, 84], as multiple data sets enter for a coordinated
weight update accommodating all involved training patterns. The application of the
MS-EKF to HDNNP training is as simple as letting data from multiple reference structures
enter into the error and derivative vectors.

4.2.2. Warnings

As detailed before, the vectors Gi contain the general coordinates, i.e. the SF set values,
of each central atom i. Each SF vector describes the central atom’s chemical environment
and can be seen as a point in a multidimensional space spanned by the SFs. Since
the number of SF vectors appearing in a training set is limited, NNP simulations are
practically guaranteed to run into new SF vectors that did not occur during training. The
larger the distance between these points in multidimensional space, representing the SF
vectors from training and the new SF vectors during simulation, is, the higher the chance
that the prediction of the NNP is poor. While n2p2 could theoretically warn users when
that happens, there is no clear rule how large the distance may be before warranting a
warning. Additionally, the calculation of the distance between one point to a plethora of
others in multidimensional space is computationally expensive.

Another problem which may occur concerns extrapolation. During an NNP simulation,
whenever at least one component of an SF vector is smaller than the minimum value or
greater than the maximum value of the same component obtained during training, the
NNP is extrapolating when predicting its output. This is undesirable, as NNPs show poor
performance when extrapolating. n2p2 constantly checks if SF vector components lie
below the minimum value or above the maximum value of the corresponding components
appearing during training and issues a warning if that happens during an NNP simulation
[85]. It should be noted, that an NNP simulation without extrapolation warnings is not
automatically correct and, vice versa, NNP simulations showing extrapolation warnings
are not automatically incorrect. However, a high number of extrapolation warnings
justifies enlarging the training set to eliminate the extrapolation errors or otherwise
investigating the cause of the warnings.

4.3. i-PI

i-PI [86, 32] is a Python package used for path integral molecular dynamics according to
the methods explained in Chapter 3, created by Ceriotti as well as many collaborators.
It uses a socket interface, allowing external driver codes (such as LAMMPS) to perform
the calculations of inter-atomic forces and potential energies and sharing them with i-PI.
The clients can communicate with the sockets via internet or locally using UNIX-domain
sockets. i-PI itself then performs the time integration by means of molecular dynamics or
Monte Carlo as well as the output of properties, before relaying the updated atom positions
back to the external code for the next time step’s force and energy calculations. Since in
the PIMD scheme, each atom is represented by a ring polymer of P beads, the complete
atomic system can be seen as a collection of P replica systems, each corresponding to the

39



4. Software

beads with the same imaginary time index. When P instances of the driver code connect
to i-PI, each client can then deal with one of the replicas, before the data from each client
is gathered by i-PI again for time integration. This also fulfills one of the self-stated goals
of i-PI, which is to provide an easily implementable method of dealing with quantum
nuclear effects, independent of the particular client code. Figure 4.1 shows a schematic
overview of the client-server-model used.

i-PI

evolve nuclei

di
st

ri
bu

te
re

pl
ic

as

output properties

client 1

...

nuclei coordinates X,
simulation box dimensions

energy, forces, stress tensor

client 2

client P

Figure 4.1.: Schematic of the server-client interaction of i-PI. P clients of the driver code
are connected to i-PI. The client code is only sent nuclei coordinates (X) and
the dimensions of the simulation box, and computes the energy, forces and
stress tensor, which are then used by i-PI to evolve the nuclei.

i-PI incorporates many other features that aid PIMD in some way. Perhaps the most
important endeavor is the reduction of computation time: If P replicas of the same system
are evolved, one could expect that the computational cost would be P times as high
as if treating the system classically. The number of beads required to reach converged
results depends on the model considered. For example, 6 beads are typically enough when
simulating a rigid-body water model, whereas flexible water models need up to 40 beads.
i-PI uses polymer contraction schemes to reduce the effective number of beads without
sacrificing accuracy [87, 88].

4.3.1. NVT ensemble in i-PI

For the integration of the equations of motion, i-PI splits the Hamiltonian into the sum
of a free ring polymer part
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(4.3)
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and the remaining potential energy part (see also Equation 3.60) and uses the exact
evolutions of both parts in a symplectic integration scheme [58]. Herein, the free ring
polymer part underwent the normal mode transformation detailed in Section 3.2.1. The
scheme exactly evolves the system half a time step under the potential energy part,
transforms to the normal mode representation for a full time step of exact evolution
under the influence of the free ring polymer part HP , and then performs another half
time step under the potential energy part after transforming back from the normal mode
representation.

Among many other choices, i-PI implements a white noise Langevin equation thermostat
that is applied before and after the integration steps mentioned above. While formally
sampling the canonical distribution in classical statistical mechanics, it can be applied
to PIMD as it is simply classical statistical mechanics in an extended phase space. As
all degrees of freedom and all beads are thermostatted locally, it is referred to as path
integral Langevin equation local (PILE-L) thermostat. It however may inhibit the proper
sampling of properties sensitive to the slow, collective motion of all atoms of the system.
This is why it can be combined with a global velocity rescaling thermostat that replaces
the local thermostat of only the centroid mode, creating the global PILE-G thermostat
[89, 90]. The full integration scheme including the description of PILE thermostats can
be found in a paper by Ceriotti et al. [58], where they have shown that these thermostats
perform as well as Nosé-Hoover chain thermostats while being computationally cheaper.

4.4. Pytim

When examining the water/vapor interface, one might be interested in the properties of the
surface layers of the liquid phase, and it is thus helpful to be able to identify said surface
layer by layer. In this work, the Python-based Pytim package [77] is employed, which
utilizes the framework provided by the MDAnalysis package [91] and provides several
methods to identify and analyse interfaces, their surface layers, and their properties.

One method to identify which molecules of a given interfacial configuration belong
to which surface layer is the Identification of Truly Interfacial Molecules (ITIM) [92]
algorithm, implemented by Pytim. For ITIM, a ficticious probe sphere of radius Rps is
moved along a number of straight test lines to approach the interface in question. The
test lines are perpendicular to the interface and either arranged randomly or in a grid, but
ultimately close enough that the probe sphere can cover the whole area of the interface.
When the probe sphere moves along a test line coming from one phase, as soon as it
hits a molecule of the other phase, the probe sphere is stopped and the molecule that
stopped it is regarded as interfacial (see Figure 4.2). A sensible choice for the radii must
be made: To determine when an atom is hit, it must have a defined radius, which may be
the atom’s van der Waals radius or a fraction of its Lennard-Jones distance parameter
σ. The probe sphere radius Rps must also be taken into account, as values too small
may lead to a rugged surface and values too large may lead to a smoothed out surface.
Sensible choices of this free parameter depend on the system, but are usually of the same
order of magnitude as the size of the particles making up the phase to be studied. In
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principle, the process is then repeated for all test lines, though the algorithm may be
sped up by going over all molecules instead and check for test lines along which a probe
sphere would be stopped by the given molecule. After having identified all molecules in
the first surface layer, the process may be repeated ignoring the molecules of the first
layer, yielding the second surface layer, and so on.

Figure 4.2.: Visualisation of the ITIM method on the example of a water molecule. The
dashed lines and circles represent the test lines and probe spheres, respectively.
The surface can be estimated by taking the intersection of the test lines and
the probe spheres at the position where they were stopped, pictured here as
solid black circles connected by bold lines signifying the estimated surface.
Note that the leftmost probe sphere is not stopped by the water molecule
and would continue on its path.

To aid with the separation of phases, a given configuration may be prefiltered by
employing the Density Based Spatial Clustering of Applications with Noise (DBSCAN)
algorithm [93]. It uses the notions of "density reachability" and "density connectivity"
to differentiate clusters from noise, or in this context, phases of high density (i.e. the
liquid phase) from phases of low density (i.e. the vapor phase). Simply put, the algorithm
defines molecules as part of the same cluster when a certain number density threshold in
the neighbourhood around the molecules is exceeded. In the Pytim implementation, this
threshold is determined automatically [94]
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To use an HDNNP for computations in an MD simulation, it must first be trained. This
chapter details the data used for training and the models used to generate this data
(Section 5.1), the training process and the structure of the HDNNP created (Section 5.2),
and the training results and relevant metrics (Section 5.3).

5.1. Data used

The NNP was trained using data provided by Dr. Marcello Sega and can be found online
as a Zenodo repository [95]. The training data set consists of 8007 reference structures of
water, including interfacial configurations of the water/vapor interface. Each structure is
made up of up to a few hundred atoms and contains the configurational data as well as
the forces and total energies used for the training, totalling 1085016 atoms, 3255048 force
components and 8007 energies.

The training data set is based on DFT simulations employing the RPBE-D3 functional
[9, 10], which were carried out by Morawietz et al. [11] using the Fritz Haber Institute
"ab initio molecular simulations" (FHI-aims) code package [96]. Wohlfahrt augmented
this data set with 400 configurations of the liquid/vapor interface generated with the
Flexible Simple Point-Charge (SPC/F) empirical model [97], which were perturbed for
improved sampling of the neighborhoods of the free energy minima. After computing the
DFT forces and energies of this augmented data set with FHI-aims, an NNP was trained
with the results and used to create a trajectory, from which 500 frames were taken and
added to the augmented data set in a self-consistency refinement step, yielding the final
training data set [17].

5.1.1. Density Functional Theory

To perform a truly ab-initio MD simulation of a set of atoms, one would need to solve the
full Schrödinger equation for the system of electrons and nuclei. This approach quickly
becomes unfeasible even for small systems, which makes approximations and numerical
methods necessary. DFT is a popular method to calculate the ground state-energy of
electrons of many body systems. It makes a number of approximations, the first of which
is the Born-Oppenheimer approximation [98]. It states that due to the big mass difference
between the electrons and the nuclei, it can be assumed that the electrons adiabatically
follow the nuclei. The nuclei act on the electrons only as a static external potential, and
the electrons are at each instant in the ground state corresponding to the configuration of
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the nuclei [99]. Then, the problem left to solve for an n-electron molecule is

ĤΨ = EΨ , (5.1)

with the wave function Ψ, energy E and the Hamiltonian, in atomic units (ℏ = e = m = 1),

Ĥ = −1

2

n∑︂
i=1

∇2
i +

n∑︂
i=1

v(r⃗i) +
∑︂
j

∑︂
i>j

1

|r⃗i − r⃗j |
. (5.2)

Here, r⃗i is the position vector of electron i and v(r⃗i) denotes the potential energy

v(r⃗i) = −
∑︂
α

Zα

|r⃗i − R⃗α|
(5.3)

between electron i and the nuclei, with the position vectors Rα
⃗ and atomic numbers Zα.

This quantity, called the external potential acting on electron i, is only dependent on the
position vector r⃗i of the electron as variables, as the nuclei positions are assumed to be
fixed. Treating Equation 5.1 as a variational problem to find the ground state-energy is
still a hard problem to solve, as the wave function Ψ depends on 3n spatial and n spin
coordinates. In contrast, DFT utilizes the continuous electron probability density, which
is a function of only three spatial variables

ρ(r⃗) = n

∫︂
dr⃗1dr⃗2 · · · dr⃗n−1|Ψ(r⃗, r⃗1, r⃗2, . . . , r⃗n−1)|2 . (5.4)

Hohenberg and Kohn showed that for molecules with a nondegenerate ground state, the
ground state electron probability density ρ0 uniquely determines the ground state energy
E0 and ground state wave function Ψ0, as well as other electronic properties [100]. Giving
the theory its name, E0 is thus the functional of ρ0

E0 = E0[ρ0] (5.5)

and Equation 5.1 can be recast as a variational problem minimizing E by varying ρ
instead of Ψ

E0 = min
ρ
Ev[ρ] . (5.6)

The subscript v denotes the dependence of E0 on the external potential v(r⃗). Furthermore,
one can write

Ev[ρ] =

∫︂
ρ(r⃗)v(r⃗)dr⃗ +

1

2

∫︂
ρ(r⃗)ρ(r⃗′)

|r⃗ − r⃗′|
dr⃗dr⃗′ + F [ρ] . (5.7)

The first and second terms on the right hand side represent the interaction energy of the
electrons with the external potential and the classical Coulomb energy, respectively. The
remaining functional F , uniquely defined by ρ, is not dependant on the external potential
and contains all contributions necessary to make Equation 5.7 equal to the sought after
expectation value E0. However, while the theorem of Hohenberg and Kohn states that
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it is possible to calculate ground state properties from ρ0, it does not specify how. For
practical application, F must be approximated.

Kohn and Sham introduced the concept of fictitious non-interacting electrons, that
have the same density as the true interacting system [101]. This allows to write

Ev[ρ] =

∫︂
ρ(r⃗)v(r⃗)dr⃗ +

1

2

∫︂
ρ(r⃗)ρ(r⃗′)

|r⃗ − r⃗′|
dr⃗dr⃗′ + 2

∑︂
i

⟨︃
ψi

⃓⃓⃓⃓
−∇2

2

⃓⃓⃓⃓
ψi

⟩︃
+ EXC [ρ] . (5.8)

The third term is the kinetic energy of the non-interacting electrons and the functional
EXC [ρ] contains the additional energy contributions to make Equations 5.7 and 5.8 equal.
EXC [ρ] is called the exchange-correlation energy functional, containing an exchange
energy contribution and a correlation contribution to the kinetic and potential energy of
the electrons. This functional must again be approximated and the further methods of
DFT deal with approaches on how to do that with the best accuracy.

A convenient approach to approximate EXC [ρ] is to define the exchange and correlation
energy per electron εXC(r⃗):

EXC [ρ] =

∫︂
dr⃗ ρ(r⃗)εXC(r⃗) . (5.9)

Perdew, Burke and Ernzerhof used the generalized gradient approximation (GGA) ap-
proach for their functional, which is suitable for dealing with rapidly changing electron
densities. With GGA, one treats the exchange and correlation energy per electron as a
function of the electron density as well as its gradient:

EGGA
XC [ρ] =

∫︂
dr⃗ ρ(r⃗)εGGA

XC (ρ(r⃗),∇ρ(r⃗)) . (5.10)

The result of their work is the simple but effective PBE functional [8]. By adjusting
empirical coefficients, Zhang and Yang created the revised revPBE functional, which
improved the atomic total energies and molecule atomization energies when applied to
calculations [102]. Hammer, Hansen and Nørskov found that the revPBE functional
also improved the chemisorption energetics of atoms and molecules on transition-metal
surfaces and reformulated the PBE functional into the RPBE functional, which yields
the same improvements [9]. By adding D3 dispersion corrections to the RPBE functional
[10], which are crucial to accurately model water displaying van der Waals forces [11],
one finally arrives at the RPBE-D3 functional.

5.1.2. Simple point charge models

The original simple point charge (SPC) model is an empirical effective pair potential
devised for liquid water, which was first published in 1981 [103]. In this model, each water
molecule consists of three interaction sites coinciding with the centers of the two hydrogen
atoms and the oxygen atom. The hydrogen atoms each possess a partial charge qH and
the oxygen atom a partial charge qO, with qO = −2qH to ensure charge neutrality. In
addition to Coulomb interactions between all sites of different molecules, a Lennard-Jones
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5. Training the neural network potential

potential is applied to oxygen atoms, leading to the effective intermolecular potential
between molecules a and b

Vab = 4ϵ

[︄(︃
σ

rOO

)︃12

−
(︃

σ

rOO

)︃6
]︄
+
∑︂
i on a

∑︂
j on b

ke
qiqj
rij

. (5.11)

Here, ϵ and σ are parameters of the Lennard-Jones potential and rOO is the distance
between the oxygen atoms of molecule a and b. In the Coulomb term, ke = 1

4πϵ0
is the

Coulomb constant with ϵ0 being the electric constant, qi is the partial charge of atom i of
molecule a, qj is the partial charge of atom j of molecule b and rij is the distance between
these two atoms i and j. The first sum runs over all atoms of molecule a and the second
sum over all atoms of molecule b. Furthermore, the SPC model fixes the O-H bond length
rOH and the H-O-H bond angle θHOH as constant values, creating a rigid molecule with
no intramolecular potential energy. The geometry of an SPC water molecule is sketched
in Figure 5.1.

qO

qH qH

θHOH
rOH

Figure 5.1.: Geometry of an SPC water molecule.

A derivative of the SPC model is the flexible SPC/F model [97]. Here, rOH and θHOH

are not fixed, but rather the equilibrium values of the bond lengths and angles. The now
flexible bonds and angles are driven to their equilibrium value via harmonic potentials.
This gives rise to the intramolecular potential energy

Vintra =

N∑︂
i

kr
2

[︂(︁
rOHi,1 − rOH

)︁2
+
(︁
rOHi,2 − rOH

)︁2]︂
+
kθ
2

(θHOHi − θHOH)2 . (5.12)

Here, kr and kθ are the spring constants of the harmonic potentials, rOHi,1 is the distance
between the oxygen atom and the first hydrogen atom of molecule i, rOHi,2 is the distance
between the oxygen atom and the second hydrogen atom of molecule i, and similarly
θHOHi is the molecular angle of molecule i. The summation runs over all N molecules of
the system. Defining now the total intermolecular energy as

Vinter =

N∑︂
a<b

Vab , (5.13)
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the total potential energy of the SPC/F model is given by

Vtot = Vinter + Vintra . (5.14)

Table 5.1 shows the values of all parameters needed for the SPC/F model.

SPC/F parameter Value
σ [Å] 3.145
ϵ [kcal/mol] 0.1615
qO [e] -0.78
qH [e] 0.39
kr
2 [kcal/mol Å2] 554.1347992
rOH [Å] 1
kθ
2 [kcal/mol rad2] 45.76959847
θHOH [°] 109.47

Table 5.1.: Parameters of the SPC/F model [104]. Values are given in units corresponding
to the LAMMPS real units style. Note that LAMMPS uses the thermochem-
ical calorie so that 1 kcal = 4184 J [105].

5.2. Training process

The training of the HDNNP was performed on the Vienna Scientific Cluster (system
VSC4) using the n2p2 package and its implementation of the MS-EKF. All SFs use fc,2
from Equation 2.15 as their cutoff function, and the radial and angular SFs are of the
form G2

i from Equation 2.17 and G3
i from Equation 2.19, respectively. The symmetry

function parameters agree with the ones used in Reference [11] and can be found in full
in Appendix A. The NNP consists of 2 hidden layers with 25 nodes each. The activation
function for the hidden layers is ft(x) from Equation 2.7, while the output layer uses the
identity function fl(x) = x. The initial weights of the network were chosen randomly
from a uniform distribution on the interval [−1, 1].

The training ran for 500 training epochs, though much less were actually needed, as
adequate root mean square errors (RMSE) of predicted energies and forces were already
reached even before epoch 50. 10% of the reference structures were kept as the testing
data set and the hyperparameter β controlling the relative weight of force updates with
respect to energy updates was chosen as 10. The update candidates were chosen randomly
with all energies and 0.41% of forces being used per update. Energy update candidates
were set to always be accepted, while force update candidates had to exceed the RMSE
of the previous epoch’s RMSE. If they did not, a different candidate was tested, and if
no appropriate candidate was found after 3 trials, the candidate with the highest RMSE
was chosen. The MS-EKF used 32 streams, as numbers as little as 4 or as high as 48
seem to lose the benefits of the multistream scheme [18]. The hyperparameters for the
Kalman filter are ε = 0.01 for the initialization of the error covariance matrix, q0 = 0.01,
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5. Training the neural network potential

qmin = 10−6 and τq = 2.302 for the addition of artificial process noise, and η = 0.01 for
the learning rate.

5.3. Training results

Figure 5.2 shows the learning curves of the training process for both energies and forces.
The final NNP, which will be used in the further simulations, yielded an RMSE of
0.76 meV/atom for the training energies and an RMSE of 38.36 meV/Å for the training
forces. The force components computed by the NNP during training are further analyzed
and compared to the reference forces in Figures 5.3 and 5.4: The former shows around
100000 randomly chosen force components calculated by the NNP as a function of the
respective reference forces they were trained with, while the latter shows the distribution
of how much the force components deviate from their reference values as a function of
these reference values.
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5.3. Training results

Figure 5.2.: Top: Learning curve in terms of energy RMSEs for the first 50 training
epochs. Bottom: Learning curve in terms of forces RMSEs for the first 50
training epochs. The insets show the respective learning curve for the full
500 training epochs. 49



5. Training the neural network potential

Figure 5.3.: Predictions of force components computed by the NNP compared to the force
reference values. The dashed line signifies where the forces are identical, i.e.
Fref = FNNP .
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5.3. Training results

Figure 5.4.: Histogram of the difference ∆F between the force components obtained by the
neural network during training and the reference force values, as a function of
the reference forces. The innermost contour encloses the area where roughly
68% of the data points lie, the intermediate contour encloses 95% and the
outermost contour 99.7%.
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To investigate the water/vapor interface, all simulations were performed using a slab
geometry in the NVT ensemble. The simulation box of size lx × ly × lz = 25× 25× 80Å3

used periodic boundary conditions and contained 512 water molecules. Trajectories were
created for the 7 different temperatures 300 K, 350 K, 400 K, 450 K, 500 K, 550 K and
600 K, with additional trajectories created later on at 440 K and 620 K. For each
temperature, the SPC/F empirical model was used to perform an initial equilibration
phase (Section 6.1.1), with a second equilibration phase performed afterwards using the
NNP detailed in the previous chapter (Section 6.1.2). The resulting configurations were
then used as the respective starting points for the NMPIMD production runs (Section 6.2).
Most computations were done using the Vienna Scientific Cluster (systems VSC-4 and
VSC-5) with additional test runs or equilibrations being performed on home computers.

6.1. Equilibration

6.1.1. First equilibration phase

In a first equilibration phase, the system started from a randomized slab configuration of
water molecules centered in the middle of the simulation box. The starting configuration
consists of 512 water molecules where oxygen atoms are placed equidistantly in a simple
cubic crystal structure so that if the simulation box were to be reduced to a cube with
25 Å side length, the density of the system roughly corresponds to that of liquid water.
The first hydrogen atom of each molecule was placed in a random direction at a distance
of 1 Å to the oxygen atom while the second hydrogen atom was placed at the same
distance in a random direction that fulfills the condition of creating a molecular angle of
109.47°.

Simulations were performed in the NVT ensemble with LAMMPS, using the velocity-
Verlet algorithm for time integration. The system is brought to the target temperature
by employing a standard Nosé-Hoover thermostat with a relaxation time of 0.1 ps. All
interactions were modelled according to the SPC/F model from Section 5.1.2. The
Lennard-Jones potential used a cutoff distance of 9.2 Å while long-range Coulomb forces
were evaluated using the particle-particle particle-mesh (PPPM) method [106] with a
relative accuracy of 10−5, which means the RMS error of per-atom forces calculated by the
long-range solver will be 100000 smaller than a representative reference force determined
by LAMMPS [107]. The timestep of integration was chosen to be 0.5 fs. After 0.5 ns of
simulation time, the configuration was saved as a starting point for a second equilibration
phase. This process was repeated for each target temperature, individually generating an
equilibrated configuration each time.
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6.1.2. Second equilibration phase: Adding the NNP

The second equilibration phase starts from the equilibrated configuration created using
the SPC/F model. The simulation was again run by LAMMPS in the NVT ensemble,
using the same thermostat settings and the same integration scheme with a timestep
of 0.5 fs. However, the SPC/F model is replaced by the NNP trained in Chapter 5 via
the LAMMPS interface provided by n2p2, which now computes the interaction energies
and forces between atoms. Note that while the LAMMPS data file for the SPC/F
model requires the definitions of atom bonds and angles, the NNP calculations are solely
based on the relative positions of the atoms and thus there are formally no bonds and
angles defined for the molecules. This also means that in contrast to the SPC/F model,
bond breaking and reformation is not prohibited, though it was not observed during the
following simulations.

The nnp pair style for LAMMPS requires additional keyword values. Firstly, it must
be defined how extrapolation warnings are handled. The maxew keyword determines
how many extrapolation warnings may occur before the simulation is aborted, and was
set to a sufficiently high number (109) to always continue the run. The showewsum and
resetew keywords were set to 1000 and yes respectively, meaning the sum of accumulated
extrapolation warnings for each 1000 steps are displayed in the output. Then, the
cflength and cfenergy keywords set the conversion factors if the units used in the NNP
training differ from the units used by LAMMPS. Since the training used the Bohr radius
and Hartree energy, these were converted to Ångström and kcal/mol used by the LAMMPS
real unit style by setting cflength to 1.8897261 and cfenergy to 1.5936014 ·10−3. Lastly,
the cutoff radius of the pair style is set to 6.4 Å, which is slightly larger than the cutoff
radius of the symmetry functions of the NNP (6.35013 Å), as advised by the n2p2
documentation [85] to account for potential rounding errors, as the cutoff of the pair style
must not be smaller than the cutoff of the NNP.

This second equilibration phase ran for 0.5 ns, at which point no energy drift could be
observed. The process was of course carried out for each temperature and a configuration
saved at the end of the 0.5 ns run time as the starting point for the production runs each
time.

6.2. Production runs

6.2.1. NMPIMD simulation

To acquire trajectories that include nuclear quantum effects, NMPIMD simulations were
performed using the i-PI package. Multiple instances of LAMMPS were connected to i-PI
to deal with force and energy evaluations, while i-PI covered time integration. LAMMPS
again relied on n2p2 and the NNP trained in Chapter 5, in the same way the calculations
for the equilibration in Section 6.1.2 were done. The equilibrated configurations from said
section were used as a starting point for the production runs. The number of replicas
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used was P = 32. As the chain frequency

ωP =

√
P

βℏ
=

√
P

ℏ
kBT (6.1)

scales with the temperature T , the time step was adjusted as higher temperatures were
sampled, to accommodate the increased frequencies. The run at 300 K used a time step
of 0.4 fs, the ones from 350 K to 500 K used 0.25 fs, and upwards of 550 K used 0.2 fs.
Simulations were performed in the NVT ensemble by employing a PILE-G thermostat with
friction and scaling coefficients τ = 50 fs and λ = 0.5, respectively. Each trajectory had a
simulation time of 5 ns, during which the configurational data as well as temperature-,
energy- and pressure quantities were dumped every 0.5 ps. The dumps from the first
0.5 ns were discarded to allow additional equilibration of the now fully quantum system,
and no energy drift was observed after this time window. The number of extrapolation
warnings was summed and dumped every 1000 steps and is shown for each temperature
in Table 6.1.

T [K] PIMD Classical
300 1.3 0
350 2.1 1.5 · 10−6

400 3.6 2.9 · 10−5

440 5.9 2.6 · 10−4

450 6.6 6.6 · 10−4

500 11.2 5.3 · 10−3

550 16.6 1.8 · 10−2

600 22.2 3.3 · 10−2

620 23.9 3.9 · 10−2

Table 6.1.: Number of extrapolation warnings per time step given by n2p2 during the
production runs.

During the runtime of the 450 K simulation, technical problems occurred at the Vienna
Scientific Cluster. This led to the crash of the simulation and, due to a change in
infrastructure, the need to re-setup in a slightly different way regarding the number of
processors, how jobs were distributed among them, versions of packages used etc. While
the simulation could be recovered where it stopped and restarted at that point, it may
have lead to inconsistencies, which will be discussed later. To bolster the available data,
the trajectory at 440 K was created. The trajectory at 620 K was created later on to
bolster the data available for the phase diagram and critical temperature calculations.
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6.2.2. Non-PIMD simulation

To gather a basis of comparison, trajectories of each temperature were also generated
without the use of NMPIMD. These classical1 trajectories were created in the same way
and with the same settings as the second equilibration phase detailed in Section 6.1.2.
The simulation was run for 5 ns and the quantities of interest as well as the configurations
were acquired with the same frequency as the NMPIMD production runs, dumping data
every 0.5 ps. The number of extrapolation warnings can be found in Table 6.1.

1"Classical" may be seen as a slight misnomer, as the underlying force calculations are based on
the very quantum mechanical density functional theory. By not using PIMD, one only excludes
nuclear quantum effects, not all quantum mechanical aspects. However when speaking of "classical"
simulations in this context here, only the exclusion of quantum nuclear effects is meant.
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After generating the trajectories, the obtained data must be processed to extract the
properties of interest. This chapter discusses the observables that can be gleaned from
the available data and how they are calculated to yield the structural and thermodynamic
quantities presented later on.

7.1. Bond lengths, angles and orientations

When looking at the resulting configurations yielded by a molecular dynamics simulation,
the simplest observable one can analyze are the distances and angles between atoms. As in
this NNP approach, the oxygen atom and hydrogen atoms that make up a water molecule
are in no way assigned to each other in a predetermined way but rather stay as a molecule
through the assumptions made by the NNP, the atoms of each configuration must first
be gathered as molecules. In this case, this was done by using the k-d-tree-algorithm
implemented in the open source Python library Scipy [108], assigning the nearest two
hydrogen atoms to each oxygen atom. The OH bond lengths are then trivially given by
the distance between the oxygen atom and each of the two associated hydrogen atoms
and the HOH molecular angle is given by calculating the angle between these two bonds.
From this, distributions of the OH bond lengths and HOH molecular angles can easily be
created. As an intermediate step, the surface layers of the liquid slab can be identified
before calculating the lengths and angles, so that one can compare their distributions for
molecules of a certain surface layer, the bulk or simply the whole system (see Figure 7.1).

7.1.1. Distribution of the angle between bonds and the surface normal

Examining the angle between bonds and the surface normal can shed light on the
differences of preferred orientations of the molecules whether they are located in the bulk
of the slab or near the interface. To investigate this behaviour, the angle between the
OH-bond (i.e. the vector pointing from an oxygen atom to one of its hydrogen atoms)
and the z-axis shall be defined as ψ (see Figure 7.2). This assumes that the molecule is
located closer to the upper surface of the liquid slab; for molecules closer to the lower
surface, the negative z-axis is used instead. Note that for each water molecule, two angles
ψ are calculated, one for each OH-bond. The configuration is also prepared for each frame
by shifting all atoms along the z-axis by the same amount so that the center of mass of
the liquid slab has the same z-coordinate for each frame. The values of each cos(ψ) and
the z-coordinate of the oxygen atom the bond belongs to can then be paired and gathered
in a 2-dimensional histogram.
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Figure 7.1.: Left: Orthogonal view of the water slab. The black rectangle symbolizes the
simulation box. The red, orange and yellow molecules are those which were
identified as the first, second and third surface layers, respectively. The grey
water molecules are defined as the bulk. Right: Example of a density profile,
corresponding to the sketched system on the left.

7.1.2. Bivariate angle distribution

To further investigate the orientation of the surface molecules, the following angles are
defined: Let N⃗ be the unit surface normal vector of the interface between liquid water
and vapor (pointing into the vapor phase) and d⃗ be the unit vector in the direction of
the water dipole. Then the angle θ is defined through N⃗ · d⃗ = cos(θ). Further, the angle
ϕ shall be the dihedral angle between the molecular plane and the plane defined by N⃗
and d⃗ [109]. In other words, ϕ is the angle which the molecule must be rotated around
its dipole moment to have the molecular plane perpendicular to the surface. Figure 7.3
depicts how θ and ϕ are defined. Gathering the tuples of (cos(θ), ϕ) in a 2-dimensional
histogram gives a bivariate distribution of these measures of orientation, which can be
further refined by only looking at the angles of the molecules of certain surface layers.
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Figure 7.2.: Definition of ψ as the angle between a OH-bond and the z-axis.

7.2. Density profile

The density profile is the mass density of the system along some spatial dimension. As
the system is configured to have the water/vapor interface perpendicular to the z-axis,
the density will be calculated as a function of the position on the z-axis. For this, the
simulation box is divided into k identical slices of thickness ∆z so that

∆z · k = lz . (7.1)

Thus, each slice signifies the interval Ii = [∆z · (i− 1),∆z · i) with i ∈ {1, 2, ..., k}. Let us
now define the number of H- and O-atoms in slice i as nH,i and nO,i. Then, the density
of each slice can be written as

ρi =
nH,i ·mH + nO,i ·mO

lxly∆z
(7.2)

with mH and mO being the atomic masses of hydrogen and oxygen respectively, and lx
and ly being the size of the simulation box in x- and y-direction. For each frame that
these densities are calculated for, the atom positions are once again corrected in a way so
that the center of mass is at the same position for each frame. Atoms that move beyond
the periodic boundaries reenter the system on the opposite side and are considered in
their new position for the purpose of calculating the center of mass. In the end, the
density of each slice is averaged over all time frames considered. An example of such a
density profile is sketched in Figure 7.1.

The resulting profiles yield the densities of the coexisting liquid and vapor phase, ρL
and ρV , either by taking the average of the densities in the center region of the liquid
and the vapor phase, or by fitting the equation

ρ(z) =
1

2
(ρL + ρV )−

1

2
(ρL − ρV ) tanh

(︃
z − z0
d

)︃
(7.3)
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Figure 7.3.: Definition of θ as the angle between surface normal vector N⃗ and direction
of water dipole d⃗ (left) and ϕ as the dihedral angle between the molecular
plane and the plane defined by N⃗ and d⃗ (right).

to the profile data, where z0 is the location of the middle of the interface and d is the
thickness of the interface [110]. However, as the real profile does not exactly follow this
sigmoidal fit, it may introduce a bias to the estimate of the bulk densities.

7.2.1. Intrinsic density profile

While the above profile shows the density by correlating molecular positions to the center
of mass, the intrinsic mass profile [111] correlates molecular positions with the local
position of the interface. If the z-coordinate of the rugged interface at each coordinate
(x, y) is written as ζ(x, y), then the intrinsic mass density profile is given by

ρI(z
′) =

1

lxly

⟨︄
N∑︂
i

miδ(z
′ − zi + ζ(xi, yi))

⟩︄
. (7.4)

Here, the angular brackets denote again the average over all time frames considered and
the sum is taken over all N atoms, with mi being the mass and xi, yi and zi being the
coordinates of the ith atom. By convention, z′ = 0 signifies the surface layer, with positive
values of z′ being located in the vapor phase. The delta peak arising from the surface
molecules located at z′ = 0 shall be omitted in graphical representations.

7.3. Critical point

The liquid/vapor critical point of water is the point in the phase diagram where both
liquid and vapor phase coexist at the critical temperature TC and critical pressure pC , or
more relevantly, the same critical density ρC [112]. Once the densities ρL and ρV of the
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liquid and vapor phase at different temperatures T are known, the location of the critical
point can be found by extrapolation using a fit to the expression proposed by Wilding
[113]

ρ(T ) = ρC + a|T − TC | ± b(T − TC)
β , (7.5)

where a, b and β are fitting parameters. The plus-minus sign implies the usage of the
plus sign for the liquid branch and the minus sign for the vapor branch.

7.4. Surface tension

The surface tension γ is the ratio of the change in energy of a liquid W to the change of
surface area of the liquid ∆A [112], i.e.

W = γ ·∆A . (7.6)

To calculate γ of the planar liquid/vapor interface the formula

γ =
lz
2

⟨︃
Pzz −

Pxx + Pyy

2

⟩︃
(7.7)

is used [114, 115]. Here lz is the length of the simulation box in the direction of the
interface normal and Pij is the ijth element of the pressure tensor. Once acquired, the
surface tensions of the system at different temperatures T can be fitted to the interpolation
equation proposed by Vargaftik, Volkov and Voljak [116]

γ = A

(︃
1− T

TC

)︃µ [︃
1 +B

(︃
1− T

TC

)︃]︃
, (7.8)

where TC is the critical temperature of the system and A, B and µ are fitting parameters.
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8. Results

This chapter presents the results for the structural properties (Section 8.1) and the
thermodynamic properties (Section 8.2). By comparing the results from the PIMD
simulations including NQEs and the classical simulations where NQEs are absent, the
impact of these effects can be directly investigated.

8.1. Structural Properties

Each trajectory, both PIMD and classical, yielded 9000 configurations. In a first step,
Pytim was used to identify the surface layers of the liquid phase for each configuration,
where ITIM was set to use a probe sphere radius of 2 Å. This created four sets of molecules:
The first surface layer, the second surface layer, and the bulk, defined as all molecules of
the liquid phase that don’t belong to the surface layers, as well as the fourth set containing

Figure 8.1.: Molecular angle distribution in the first surface layer and the bulk for the
PIMD data set at 300 K. The inset shows the difference between the surface
and bulk distributions.
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Figure 8.2.: Bond length distribution in the first surface layer and the bulk for the PIMD
data set at 300 K. The inset shows the difference between the surface and
bulk distributions.

all molecules of the configuration. The length of the O-H bonds and the molecular angles
were calculated for each set along all configurations and gathered in histograms, which
take the form of slightly right skewed normal distributions. No significant difference
can be seen in the distributions of the different sets, apart from statistical noise (see
Figures 8.1 and 8.2). Figure 8.3 shows the molecular angle and bond length distributions
of the 14 original trajectories, as well as the mean values of those quantities for their
respective datasets. All graphs show a similar trend where the classical distributions
have a more defined peak while the PIMD distributions are slightly broadened. The
bond length distributions experience a clear right shift for the quantum case, which is
consistent with the observation of scattering experiments that NQEs make the O-H-bonds
longer [117]. For the molecular angles, the mean values of the distributions reveal that
while the angles are initially larger for the quantum case, there is a trend reversal at high
temperatures, where the molecular angles become smaller for the PIMD data compared
to the classical data. This could indicate how NQEs affect properties differently for high
and low temperatures.
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Figure 8.3.: Top: Molecular angle distributions of the bulk data set. Bottom: Bond
length distributions of the bulk data set. The solid lines are the distributions
gathered from the PIMD trajectories while the dashed lines represent the
classically obtained distributions. The insets show the mean values of the
distribution for each temperature.
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Looking at the orientation of the water molecules, Figure 8.4 shows how the O-H bonds
are oriented relative to the z-axis, as defined by the angle ψ in Section 7.1.1, for a few
select temperatures. One can see the preferential orientation of water molecules near the
surface, where at low temperatures, the O-H bonds tend to point directly inward into
the slab or in an acute angle to the water surface outward. In contrast, the probability
of finding bonds pointing directly outward are drastically reduced and this trend can
also be seen at temperatures as high as 450 K. These trends are present in both the
PIMD and the classical case. At even higher temperatures, the structure of the slab is
expectedly washed out. The distributions of all original temperatures can be seen in
Appendix B. The structure of the first two surface layers is further examined by creating
the bivariate distributions of angles θ and ϕ defined in Section 7.1.2. Figure 8.5 shows
such distributions for 300 K in terms of the free energy F via the relation F = −kBT ln p,
where p is the probability of finding a molecule with that orientation. In the first layer,
one can appreciate the drastically higher free energy for OH-bonds dangling into the vapor
phase (i.e. cos(θ) ≈ 1) for the PIMD case compared with the classical results. This means
that such spatial orientations are roughly 40% less probable in the PIMD simulations.
There is also a center region around ϕ ≈ π/4 that is roughtly 10% less preferred compared
to other values of ϕ or the classical case in general. The second layer also seems to show
a slightly higher free energy for low θ values, but this trend quickly disappears for higher
temperatures (see Figure 8.6). The behaviour of the first surface layer mentioned above
continues to show though, before most of the structure is lost in noise when approaching
the critical temperature. Further bivariate distributions can be found in Appendix B.
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8.1. Structural Properties

Figure 8.4.: Distribution of the angle ψ between O-H bonds and the z-axis (or negative
z-axis for molecules located in the lower half of the slab). The left column
shows the distributions gathered from the PIMD data, the right column
the classical results. While preferential orientations can be seen at lower
temperatures, this trend gradually disappears with increasing temperature.
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Figure 8.5.: Bivariate distributions of the angles θ and ϕ in terms of free energy for
300 K. The top figure offers a visual guide how the molecule is oriented (with
the view direction being parallel to the surface, where the liquid phase is below
the molecule and the vapor phase above) in that region of the distribution.
The center row shows the distributions gathered from the PIMD data, the
bottom row shows the classical case and the first and second column show
the first and second surface layer, respectively.
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8.1. Structural Properties

Figure 8.6.: Bivariate distributions of the angles θ and ϕ in terms of free energy for
450 K. The top figure offers a visual guide how the molecule is oriented (with
the view direction being parallel to the surface, where the liquid phase is below
the molecule and the vapor phase above) in that region of the distribution.
The center row shows the distributions gathered from the PIMD data, the
bottom row shows the classical case and the first and second column show
the first and second surface layer, respectively.
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8.2. Thermodynamic Properties

Figure 8.7 reports the mass density profiles for both PIMD and classical trajectories, where
the broadening of the water slab with increasing temperature can be seen. Simultaneously,
the density of the liquid phase decreases and the density of the vapor phase increases.
One can see that the density of the liquid phase is higher when using PIMD compared
to without PIMD, which is in accordance with the observations mentioned in Section
3.3.1. The rugged profile at 300 K indicates an over-ordering in the liquid phase that
could be the fault of finite size effects, an inconvenience that fortunately disappears for
the other higher temperatures. From these profiles, values for the densities of the liquid
and vapor phases are extracted by averaging the profiles’ values in a 10 Å thick region
centered in the middle of the respective phase, except for the trajectories for 600 K and

Figure 8.7.: Mass density profiles calculated from the trajectories of different temperatures.
For each graph, the center portion of higher density represents the liquid
phase while the vapor phase appears as the low density edges. The solid lines
are the profiles gathered from the PIMD simulations while the dashed lines
represent the classical simulations.
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8.2. Thermodynamic Properties

T [K] ρL,PIMD ρL,classical ρL,OW ρV,PIMD ρV,classical ρV,OW

300 904(2) 897(1) 899(1) 0.020(3) 0.031(3) 0.03(1)
350 881(1) 873(1) 876(1) 0.279(8) 0.241(8) 0.20(2)
400 844(1) 834(1) 836(1) 1.47(10) 1.42(3) 1.41(5)
440 807(1) 795(1) 797(1) 3.36(7) 3.68(10) 3.9(2)
450 798(1) 784(1) 788(1) 4.30(7) 4.56(8) 4.7(1)
500 739(1) 724(1) 728(1) 11.8(2) 13.4(2) 12.7(2)
550 669(1) 649(1) 657(1) 26.8(2) 28.8(2) 31.2(3)
600 569(1) 535(1) 550(1) 62.7(4) 77.5(3) 86(1)
620 508(2) 455(1) 509(1) 94(2) 116(3) 132(2)

Table 8.1.: Densities of liquid phase ρL and vapor phase ρV in kg/m3, given at different
temperatures. The subscripts of the quantities denote whether they stem from
the PIMD or classical simulations, and the subscript "OW" denotes the values
reported in [17], displayed here for comparison with the classical values.

TC [K] ρC [kg/m³]
PIMD 644(5) 296(5)
classical 629(3) 294(5)
Wohlfahrt 2020 632(2) 310(3)
IAPWS 647.096(100) 322(3)

Table 8.2.: Critical temperatures TC and critical densities ρC resulting from fits. The
data from Wohlfahrt [17] is included for comparison with the classical values,
as well as the literature value of the critical point by the IAPWS [68].

620 K, in which case the thickness of the center region was chosen as 5 Å. The resulting
densities are gathered in Table 8.1, which also shows the higher densities of the PIMD
data compared to the classical in the liquid phase, and vice versa in the vapor phase.
Also included are the results of the 2020 paper by Oliver Wohlfahrt [17]. In this paper,
Wohlfahrt used a similarly trained RPBE3/D3-based NNP to explore the water/vapor
interface, however of a larger system with 1024 molecules and without the use of PIMD.
Thus the density values reported there lend themselves for comparison with the classical
results in this work. While it was attempted to create an NNP comparable to that of
Wohlfahrt, the density values drift apart at higher temperatures though. The location of
the critical point is extrapolated by fitting Equation 7.5 to the density data of 400 K and
higher, creating a coexistence curve. The fit was done by using the optimize.curve_fit
routine of the open source Python package SciPy [108]. The fit of the classical data
yielded the fitting parameters a = (0.55 ± 0.03) kg/m3K, b = (86 ± 7) kg/m3K and
β = 0.29±0.02. The parameters for the PIMD data came out as a = (0.53±0.02) kg/m3K,
b = (83± 7) kg/m3K and β = 0.30± 0.02. The critical point locations are reported in
Table 8.2. The resulting fits are shown in Figure 8.8, along with the IAPWS95 equation of
state [68], the data from [17] as well as from the empirical TIP4P/2005 model [110]. One
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can see how the PIMD coexistence curve inches upwards towards the IAPWS95 equation
of state compared to the classical results. However, while the critical temperature is closer
to the literature value, the critical density of both the PIMD and classical data seems
to be underestimated. Moreover, the liquid branch of the coexistence curves of all NNP
calculations displayed here are much further off from the IAPWS line, whereas empirical
models show better agreement.

Figure 8.8.: Coexistence curves. The symbols represent the measured densities, the dashed
lines are the respective fits and the crosses mark the critical point resulting
from the fit. Also included is the IAPWS95 equation of state (solid line)
[68], the data from Wohlfahrt [17] as well as from the empirical TIP4P/2005
model [110].

Figure 8.9 shows the intrinsic mass density profiles, which give insight into the local
structure of the interface. At low temperatures, the liquid phase shows a prominent peak
as well as a clear shoulder. The bottom figure in 8.9 shows the vapor phase in greater
detail, where the profile also displays a less prominent peak next to the interface, though
all these features start to disappear when approaching the critical point. Using each
configurations pressure tensors, the surface tension γ can be calculated for each trajectory
via Equation 7.8. The results are gathered in Table 8.3, once again along with Wohlfahrt’s
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8.2. Thermodynamic Properties

T [K] γPIMD γclassical γOW

300 68(3) 65(3) 68(2)
350 54(3) 53(3) 57(2)
400 47(3) 47(3) 46(2)
440 42(3) 39(4) 40(2)
450 45(3) 37(3) 36(2)
500 27(4) 27(3) 28(2)
550 15(4) 12(4) 15(2)
600 7(4) 4(4) 8(2)
620 6(4) 5(4) 3(2)

Table 8.3.: Surface tension γ in mN/m, given at different temperatures. The subscripts of
the quantities denote whether they stem from the PIMD or classical simulations,
and the subscript "OW" denotes the values reported in [17], displayed here
for comparison with the classical values.

data. The classical data of this work and [17] are in good agreement, while the PIMD
results tend to lie slightly higher. With these values, fits are created using Equation 7.8,
where TC = 647.096 K was assumed fixed. The resulting fits are displayed in Figure 8.10
and have yielded the parameters A = 186 mN/m, B = −0.47 and µ = 1.19 for PIMD,
and A = 260 mN/m, B = −0.73 and µ = 1.45 for the classical case. Unfortunately, the
errors of the parameters are very large, ranging from 15 to 58% of their best fit value, and
thus must be taken with a grain of salt. They can still serve as a visual guide, showing the
PIMD curve getting closer to the experimental surface tension values than the classical
one. Figure 8.10 includes experimental values for both H2O and D2O, however the impact
of the isotope effects between these two data sets is almost imperceptible, while the
observed difference between the PIMD results and classical results is significant. Whether
this discrepancy can be traced back to the difference between isotope effects and the full
inclusion of NQEs is hard to say from the available data.

It should also be noted the γPIMD-value at 450 K: The data point may seem like an
outlier and arises from a simulation that had to be halted and resumed due to technical
difficulties. Restarting the simulation pointed to the convergence at a comparable value
after around one fifth of the original simulation time, so these events may have been
coincidental. Furthermore, analysis has shown that the data point still lies just around 2
standard deviations away from the fitting curve, and some other data points also lie quite
below the fitting curve when observing the values at 350 K and 550 K, so it stands to
reason that the number of measurements were simply not enough to properly fit such
a fluctuating quantity like the surface tension. This is also why additional trajectories
at 440 K and 620 K were created, but the computational effort needed did not allow to
produce more data feasibly.
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Figure 8.9.: Top: Intrinsic mass density profiles calculated from the trajectories of different
temperatures. z = 0 is set to be the location of the surface and the resulting
delta-like spike there is omitted, explaining the gap in the graph. The left
hand side is the liquid phase and the right hand side is the vapor phase.
The solid lines are the profiles gathered from the PIMD simulations while
the dashed lines represent the classical simulations. Bottom: Intrinsic mass
density profiles of the vapor phase in semi-logarithmic scale.
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8.2. Thermodynamic Properties

Figure 8.10.: Surface tensions. The coloured symbols represent the measured values
including error bars and the dashed lines are the respective fits. Also included
is the data from Wohlfahrt [17]. The black symbols are the experimental
values for H2O [116] and D2O [68].
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9. Discussion

As mentioned in the introduction, the work of Wohlfahrt [17] is supposed to serve as
a basis of comparison for this work. The results showed a few deviations, especially at
higher temperatures and in the intrinsic mass density profiles of the vapor phase. The
question arises if these can be traced back solely to finite size effects, as Wohlfahrt used
a larger system of 1024 water molecules opposed to the system of 512 water molecules
in this work. To investigate this further, a system of 1024 molecules and identical box
size (lx × ly × lz = 30× 30× 100 Å3) was created, equilibrated and run at a few select
temperatures using the NNP classically, i.e. without the use of PIMD. Figure 9.1 shows a
comparison of the intrinsic mass density profiles of this new system and the 512 molecule
system used everywhere else in this work. It can be seen that while the profiles in the
liquid phase are nearly identical, the peaks in the vapor phase are much more pronounced

Figure 9.1.: Classically gathered intrinsic mass density profiles for a system of 1024 water
molecules (solid lines) and the 512 molecule system used everywhere else in
this work (dashed lines).
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in the larger system, indicating the impact of finite size effects on the behaviour of the
molecules in the vapor phase near the interface. Using the larger system also improved the
agreement of the liquid phase density at high temperatures, coming in at 548(2) kg/m3

at 600 K, as opposed to 535(1) kg/m3 for the small system, compared to Wohlfahrt’s
550(1) kg/m3. However, when looking more closely at the intrinsic mass density profiles
of the vapor phase of the 1024 water molecule system (see Figure 9.2), the data from this
work is still missing a distinctive "crossover" between the graphs of different temperatures,
a feature which can be observed in Wohlfahrt’s work [17]. Thus, the discrepancies seem
to stem from both finite size effects and differences in the NNP. Unfortunately, when
again migrating to PIMD, the computational effort of using larger systems to alleviate
the impact of finite size effects is substantially higher, so great care must be taken to
balance the size of the system, the simulation time of trajectories and the number of
trajectories desired.

Figure 9.2.: Semi-logarithmic plot of the intrinsic mass density profiles of the vapor phase
for the classical 1024 molecule (solid lines) and 512 molecule (dashed lines)
systems.

It arises the remaining question how to deal with the extrapolation warnings of NNP
based PIMD simulations. Naively one could believe that using P = 32 replicas of the
system leads to 32 times as many extrapolation warnings. Table 6.1 shows that this is
obviously not the case, as the PIMD case has 103 to 106 as many extrapolation warnings
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as the classical case (see also Figure 9.3). The increased number of warnings is logical
however, when considering that the NMPIMD method treats each atom as a ring of P
beads whose centroid coordinates represent the approximate real location of the atom. In
other words, the position of all beads is shifted from the atom’s real location, generating
a differing environment probed by the symmetry functions of the NNP for which the
training data set does not account for. From Figure 9.3, it can also be seen that in the
classical case the onset of extrapolation warnings starts around 450 K to 500 K, while
for PIMD the increase happens immediately. For high temperatures beyond 500 K, the
increase in extrapolation warnings with temperature seems to be linear, though at a
much higher level for the PIMD simulations. Despite all this, the results of the PIMD

Figure 9.3.: Left: Extrapolation warnings per step for the PIMD simulations. Right:
Extrapolation warnings per step for the classical simulations.

simulations are still in good accordance with the expected NQEs.
Nevertheless, care must be taken when choosing this combination of methods, also

in regards to how the training datasets are crafted, and the exploration of different
approaches may seem wise. For example, instead of simply training an NNP with DFT
data and then performing PIMD using this NNP, one could retrain a new NNP with
data computed for configurations sampled with PIMD. This would essentially create
a purpose-built quantum NNP which can be used with classical MD and still capture
NQEs. However, the generation of such training datasets that accurately and adequately
sample the PES needed may be especially cumbersome, but may be carried out for small
systems aided by the original DFT-based NNP here. Kapil et al. successfully used such
an approach to perform first-principles vibrational spectroscopy of aqueous interfaces [73].

Another point worthy addressing is how the second generation of Behler-Parrinello-
networks are limited to short-range interactions. As the lack of long-range interactions
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9. Discussion

may lead to inaccurate results, especially at interfaces [118], it could be interesting to
study the water/vapor interface with an adapted NNP that includes such contributions.

9.1. Conclusion & Outlook

The comparison of NNP aided classical and PIMD simulations in this work shows trends
consistent with the expectations of NQEs. The classical data shows shorter O-H bond
lengths, lower liquid densities, a lower critical temperature and a lower surface tension,
all in agreement with isotope effects observed when deuterating water. The inclusion of
NQEs showed a strong impact on the interface structure, with energetically unfavourable
orientations of the water molecules in the first surface layer being much less probable.
The coexistence curve shown in Figure 8.8 displays how properties may inch closer to real
world data, even if at the moment some are more accurately reproduced using empirical
models.

The approximative capabilities of NNPs work well in the context of PIMD, but the
implications of the increase in extrapolation warnings should not be ignored. A study of
the number of extrapolation warnings and how they may relate to parameters such as the
number of beads in the polymer rings could perhaps elucidate this problem.

The effect of the inclusion of long-range interactions on the system setup considered here
still remains to be seen. However, as both neural networks and path integral approaches
are becoming more and more mainstream, the execution of such an adapted study using
the newest generation of NNPs should be quite feasible.
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A. Symmetry Functions

No. Element j Element k η rs λ ζ rc
1 H - 0.001 0.0 - - 12
2 H - 0.010 0.0 - - 12
3 H - 0.030 0.0 - - 12
4 H - 0.060 0.0 - - 12
5 H - 0.150 1.9 - - 12
6 H - 0.300 1.9 - - 12
7 H - 0.600 1.9 - - 12
8 H - 1.500 1.9 - - 12
9 O - 0.001 0.0 - - 12
10 O - 0.010 0.0 - - 12
11 O - 0.030 0.0 - - 12
12 O - 0.060 0.0 - - 12
13 O - 0.150 0.9 - - 12
14 O - 0.300 0.9 - - 12
15 O - 0.600 0.9 - - 12
16 O - 1.500 0.9 - - 12
17 O H 0.010 0.0 -1 4 12
18 O H 0.010 0.0 1 4 12
19 O H 0.030 0.0 -1 1 12
20 O H 0.030 0.0 1 1 12
21 O H 0.070 0.0 -1 1 12
22 O H 0.070 0.0 1 1 12
23 O H 0.200 0.0 1 1 12
24 O O 0.001 0.0 -1 4 12
25 O O 0.001 0.0 1 4 12
26 O O 0.030 0.0 -1 1 12
27 O O 0.030 0.0 1 1 12

Table A.1.: Parameters for the radial (no. 1-16, using G2
i ) and angular (no. 17-27, using

G3
i ) symmetry functions for hydrogen. η is given in Bohr−2 and rs and rc are

given in Bohr.
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A. Symmetry Functions

No. Element j Element k η rs λ ζ rc
1 H - 0.001 0.0 - - 12
2 H - 0.010 0.0 - - 12
3 H - 0.030 0.0 - - 12
4 H - 0.060 0.0 - - 12
5 H - 0.150 0.9 - - 12
6 H - 0.300 0.9 - - 12
7 H - 0.600 0.9 - - 12
8 H - 1.500 0.9 - - 12
9 O - 0.001 0.0 - - 12
10 O - 0.010 0.0 - - 12
11 O - 0.030 0.0 - - 12
12 O - 0.060 0.0 - - 12
13 O - 0.150 4.0 - - 12
14 O - 0.300 4.0 - - 12
15 O - 0.600 4.0 - - 12
16 O - 1.500 4.0 - - 12
17 H H 0.010 0.0 -1 4 12
18 H H 0.010 0.0 1 4 12
19 H H 0.030 0.0 -1 1 12
20 H H 0.030 0.0 1 1 12
21 H H 0.070 0.0 -1 1 12
22 H H 0.070 0.0 -1 1 12
23 O H 0.001 0.0 -1 4 12
24 O H 0.001 0.0 1 4 12
25 O H 0.030 0.0 -1 1 12
26 O H 0.030 0.0 1 1 12
27 O O 0.001 0.0 -1 4 12
28 O O 0.001 0.0 1 4 12
29 O O 0.030 0.0 -1 1 12
30 O O 0.030 0.0 1 1 12

Table A.2.: Parameters for the radial (no. 1-16, using G2
i ) and angular (no. 17-30, using

G3
i ) symmetry functions for oxygen. η is given in Bohr−2 and rs and rc are

given in Bohr.
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B. Bivariate distributions

Figure B.1.: Distribution of the angle ψ between O-H bonds and the z-axis (or negative
z-axis for molecules located in the lower half of the slab) for 300 K and
350 K.
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B. Bivariate distributions

Figure B.2.: Distribution of the angle ψ between O-H bonds and the z-axis (or negative
z-axis for molecules located in the lower half of the slab) for 400 K and
450 K.
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Figure B.3.: Distribution of the angle ψ between O-H bonds and the z-axis (or negative
z-axis for molecules located in the lower half of the slab) for 500 K, 550 K
and 600 K.
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B. Bivariate distributions

Figure B.4.: Bivariate distributions of the angles θ and ϕ in terms of free energy for
300 K.
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Figure B.5.: Bivariate distributions of the angles θ and ϕ in terms of free energy for
350 K.
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B. Bivariate distributions

Figure B.6.: Bivariate distributions of the angles θ and ϕ in terms of free energy for
400 K.
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Figure B.7.: Bivariate distributions of the angles θ and ϕ in terms of free energy for
450 K.
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B. Bivariate distributions

Figure B.8.: Bivariate distributions of the angles θ and ϕ in terms of free energy for
500 K.
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Figure B.9.: Bivariate distributions of the angles θ and ϕ in terms of free energy for
550 K.
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B. Bivariate distributions

Figure B.10.: Bivariate distributions of the angles θ and ϕ in terms of free energy for
600 K.
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