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Abstract 
This thesis explores the use of structure-based virtual screening techniques, 

specifically docking, to investigate potential modulators for the bromodomains of 

Candida species, including Candida albicans and Candida auris. The aim is to 

contribute to the research of innovative antifungal drugs, especially given the 

challenges posed by multidrug-resistant Candida strains. Using computational 

methods for subsequent experimental validation, the study systematically explores 

the chemical space of molecule libraries and identifies promising candidates for 

further investigation. The results reveal a variety of molecules identified by docking 

as potential ligands for the bromodomains. Similarity analyses are then used to 

investigate potential binding modes and structure-activity relationships, identifying 

key structural features that are critical for ligand recognition. Predicted interactions 

offer valuable insights into the mechanistic details of ligand binding, paving the way 

for future experimental validation, such as through nuclear magnetic resonance 

(NMR) spectroscopy. Overall, this study underscores the importance of docking 

methods in drug discovery and provides a systematic approach to identify promising 

candidates for new antifungal agents targeting the bromodomains of Candida. 
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Kurzfassung 
In dieser Arbeit wird der Einsatz strukturbasierter virtueller Screening-Techniken, 

insbesondere Docking, untersucht, um potenzielle Modulatoren für die 

Bromodomänen von Candida-Arten, einschließlich Candida albicans und Candida 

auris, zu untersuchen. Ziel ist es, einen Beitrag zur Erforschung innovativer 

Antimykotika zu leisten, insbesondere angesichts der Herausforderungen, die sich 

durch multiresistente Candida-Stämme ergeben. Mit Hilfe von computergestützten 

Berechnungsmethoden, die anschließend experimentell validiert werden sollen, 

erforscht die Studie systematisch den chemischen Raum von Molekülbibliotheken 

und identifiziert vielversprechende Kandidaten für weitere Untersuchungen. Die 

Ergebnisse zeigen eine Vielzahl von Molekülen, die durch Docking als potenzielle 

Liganden für die Bromodomänen identifiziert wurden. Anhand von Ähnlich-

keitsanalysen werden dann potenzielle Bindungsmodi und Struktur-Aktivitäts-

Beziehungen untersucht und wichtige Strukturmerkmale identifiziert, die für die 

Ligandenerkennung entscheidend sind. Die vorhergesagten Wechselwirkungen 

bieten wertvolle Einblicke in die mechanistischen Details der Ligandenbindung und 

ebnen den Weg für eine künftige experimentelle Validierung, beispielsweise durch 

Kernresonanzspektroskopie (NMR). Insgesamt unterstreicht diese Studie die 

Bedeutung von Docking-Methoden in der Arzneimittelentdeckung und bietet einen 

systematischen Ansatz zur Identifizierung vielversprechender Kandidaten für neue 

Antimykotika, die auf die Bromodomänen von Candida abzielen.
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1 Introduction 
Candida albicans and Candida auris, pose significant threats to public health due to 

their ability to cause a wide range of infections. Infections caused by species can 

manifest as oral thrush, vaginal yeast infections, or invasive candidiasis, the latter 

of which can lead to severe systemic infections such as candidemia and 

disseminated candidiasis, resulting in septic shock and organ failure. 

Immunocompromised individuals, including those in intensive care units, cancer 

patients undergoing chemotherapy, transplant recipients, and individuals with HIV 

(human immunodeficiency virus), are particularly vulnerable to infections. Moreover, 

the widespread use of broad-spectrum antibiotics, immunosuppressive therapies, 

and invasive medical procedures has contributed to the increasing incidence of 

infections, further exacerbating the healthcare burden.1, 2 

 

Candida infections are currently exhibiting a concerning rise in mortality rate, which 

is attributed to the growing resistance of these fungi. The emergence of multidrug-

resistant Candida strains, including the notorious Candida auris, further complicates 

treatment options and underscores the urgent need for novel antifungal therapies.2 

 

Researchers have intensified efforts to identify new therapeutic targets and develop 

innovative antifungal agents in response to the escalating threat posed by Candida 

infections. One promising target for drug development is the fungal bromodomain, 

an epigenetic reader module of DNA implicated in regulating gene expression and 

virulence in Candida species.2, 3 

 

Mietton et al.3 demonstrated that the fungal bromodomain is a promising target for 

antifungal drug discovery. Their results emphasize this by successfully targeting the 

fungal bromodomain rather than the human one and demonstrating a reduction in 

fungal growth and lethality by deletion and mutation of the bromodomains.2, 3 

Targeting fungal bromodomain, therefore, opens a promising opportunity for drug 

development. However, traditional drug discovery and development approaches are 

very slow and require a vast financial investment, which results in a small number 

of potential drug candidates.4  
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Computer-aided drug design methods can help streamline the drug discovery 

process. They enable the virtual screening of vast compound libraries, significantly 

reducing the time and resources required for hit identification. Virtual screening 

methods save money and open the door to exploring a much larger chemical space, 

potentially discovering more effective and innovative drugs.5 

 

In this work, we performed structure-based virtual screening of large compound 

libraries with Glide. The most promising virtual hits will be purchased and subjected 

to NMR (nuclear magnetic resonance) binding studies with the Candida 

bromodomain structures.  

 

2 Candida 
 

2.1 Candida albicans 
Candida albicans is the leading cause of fungal infections in humans globally.6, 7 It 

is a mostly harmless pathogen that has adapted to live in a commensal way in the 

human body, which means that it benefits from the relationship without harming the 

host. The human body regulates the spread and pathogenicity of the pathogen 

through the immune system and its microbiome of the intestine and mucosal 

surfaces.1, 8, 9 

 

Candida albicans (C. albicans), a commensal member of the human microbiota, 

colonizes the gastrointestinal tract, oral cavity, and reproductive tract in healthy 

individuals without causing diseases.9 Commensal areas occupied by C. albicans 

are the oral mucosa, esophageal mucosa, gastrointestinal tract, vaginal mucosa, 

and nail beds. Candida's commensal properties, which can turn them into 

opportunistic pathogens, should be pointed out. Due to its adaptability, C. albicans 

is an excellent pathogen that thrives under different conditions. During an infection, 

C. albicans colonizes different host niches that differ in pH value, oxygen and CO2 

content, and nutrient availability.8 Moreover, this fungus can switch from yeast to 

hyphae, convert to white opaque, form biofilms, adhere to cells, and remodel the 

cell wall.10 
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2.2 Candida auris 
Candida auris, a member of the Candida species, is a multidrug-resistant fungal 

pathogen and was first isolated in 2009 from the external ear canal of a patient in 

Japan.11 It is considered one of the leading causes of nosocomial infections, 

precipitating candidemia, and various invasive conditions, including pericarditis, 

respiratory tract infections, and urinary tract infections.12, 13, 14 

 

Like C. albicans, C. auris is a member of the Candida species and the CTG clade. 

Fellows of the CTG clade translate the CTG Codon as serin rather than leucine.15 

In contrast to C. albicans, C. auris is not a commensal yeast mostly found on the 

mucosal surface or gastrointestinal tract; it predominantly colonizes the skin.12 Due 

to its affinity for human skin and abiotic surfaces, C. auris can persist for a prolonged 

period and inhabit healthcare environments and equipment despite the use of 

disinfectants. Transmission occurs from skin to skin or surface to skin.12 This fungus 

form is mainly associated with high mortality rates and bloodstream infections, 

especially in immunocompromised patients.16 

 

The risk of infection with C. auris is similar to that of C. albicans. Patients at risk 

primarily include older diabetics, patients who have recently undergone surgery, and 

patients with implanted or permanently implanted medical devices. Other risk factors 

for infection include broad-spectrum antibiotic therapy, antifungal therapy, and 

chronic kidney disease. Most C. auris infections are associated with diarrhea and 

broad-spectrum antibiotics.17 

 

One unique feature of C. auris is that it is thermostable. High temperatures above 

40°C do not affect its growth. Another characteristic is its ability to tolerate high salt 

concentrations.13 C. auris grows in vitro in different forms, such as oval-shaped, 

ellipsoidal, or elongated cells. It produces white or gray, smooth, and gleaming 

colonies that appear as single cells or aggregates clumped together.18 

 

2.3 Treatment of invasive fungal infections 
The standard approach to treating invasive Candida infections typically involves four 

classes of antimycotic drugs: polyenes (e.g., amphotericin B), pyrimidine analogs, 

echinocandins, and azoles.19 Azoles are the most frequently prescribed antimycotic 
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drugs. Their mechanism of action centers on the selective inhibition of lanosterol-

14α-demethylase, the critical enzyme in ergosterol synthesis. By targeting this 

enzyme, azoles interrupt the conversion of lanosterol to ergosterol, which leads to 

changes in membrane permeability and the activity of membrane-bound proteins, 

ultimately impeding fungal growth.20 

 

Polyenes target ergosterol in fungal cell walls. Ergosterol is only present in fungi 

and is essential for maintaining membrane fluidity and integrity and transmitting cell 

signals. By binding to ergosterols, polyenes inhibit the physiological function of the 

fungal membrane.21 Echinocandins inhibit the catalytic subunit of 1,3-β-D-glucan-

synthase. This group of antifungal drugs can only be administered intravenously, 

making long-term treatment and therapy at home impossible.2 The pyrimidine 

analog flucytosine is converted to 5-fluorouracil, which inhibits RNA and DNA 

synthesis. The antifungal activity depends on cytosine permease, cytosine 

deaminase, and uracil phosphoribosyl transferase.20 

 

Both C. albicans and C. auris have developed resistance to various mentioned 

agents through different mechanisms. The main resistance mechanisms can be 

categorized as reduction of therapeutic drug concentration, alteration of drug 

targets, and metabolic changes.19 

 

Reduction of therapeutic drug concentration is meant, e.g., increasing drug efflux or 

the number of targets, as well as the ability to sequester drugs within extracellular 

and intracellular compartments and pro-drug conversion.20 Mutation within the 

fungus, which decreases the affinity for drugs, is primarily responsible for altering 

drug targets. Metabolic changes lead to the loss of specific functions or reduced 

function in the metabolic process.19 

 

2.4 Pathogenesis  
The type and severity of the infection depend on the immune status and the extent 

to which the pathogen damages the host. Therefore, the disease caused by Candida 

is a complex outcome of these causes.9 
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On the one hand, Candida's pathogenesis depends on the expression of virulence 

factors such as germ tube formation, adhesion, phenotype switching between 

specific cell types, biofilm formation, and the production of hydrolytic enzymes.22 

Disruption of the immune system, the body's barrier functions, or the local 

microenvironment can alter the growth, gene, and protein expression, metabolism, 

and morphology of C. albicans, causing damage to the host. The severity of this 

damage determines whether the disease is acute or recurrent, which may be related 

to virulence, viability, and antifungal resistance in the environment and host.9, 6 

Transmission of C. albicans occurs shortly after or at birth from mother to child, and 

at this point, the fungus can remain commensal or cause neonatal infections.9 

 

We distinguish between two types of candidiasis for medically necessary infections 

caused by C. albicans: systemic and mucosal. Mucosal candidiasis is limited to one 

area, while systemic candidiasis can affect more regions and spread through the 

bloodstream.6 As a result, infections with Candida species are considered a severe 

problem in public health and represent one of the most prominent nosocomial 

pathogens.9 

 

2.5 Bromo- and extra-terminal domain proteins 
The majority of eukaryotic DNA is stored in the cell nucleus. The carriers of nuclear 

DNA are the chromosomes, each of which consists of a single DNA molecule with 

an envelope of packaging proteins. These packaging proteins are histone and non-

histone proteins. The histones have many alkalic amino acids: arginine and lysine.1 

Chromatin is essential in regulating DNA accessibility for gene transcription, DNA 

repair, and replication.1 It is organized into subunits, the nucleosomes, which consist 

of 147 pairs of nucleotides coiled in a left turn around a histone octamer. These 

nucleosomes each contain two copies of histone types H2A, H2B, H3, and H4, 

forming an octamer.23 

 

Three fundamental mechanisms control the regulation of specific gene expression 

programs: post-translational histone modifications, the incorporation of histone 

variants, and the precise positioning of nucleosomes.24 Histone lysine acetylation, 

an essential post-translational modification mediated by histone acetyltransferases 
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(HATs) and counterbalanced by histone deacetylases (HDACs), represents a key 

regulatory mechanism in transcription and chromatin signaling pathways.25 

 

HAT neutralizes the positive charges of lysine; acetylating weakens the interaction 

between histones and DNA, loosens the densely packed chromatin, and enables 

gene expression.1, 26 In contrast, HDAC enzymes do precisely the opposite and are 

associated with transcription repression. Acetylated lysine residues serve as 

recognition sites for protein modules known as bromodomains.26 

 

2.6 Bromodomain 
As crucial epigenetic reader modules, bromodomains are integral to the protein 

family of bromo- and extra-terminal (BET) domains. They function as chromatin-

associated proteins, playing a pivotal role in epigenetic regulation. Found in diverse 

organisms, from humans to fungi, bromodomains, and BET proteins are critical 

players in the intricate processes of chromatin remodeling and gene expression 

regulation.27 

 

Four BET family members have been identified in humans: Brd2, Brd3, Brd4, and 

Brdt. Each member contains two bromodomains (BDs) responsible for binding 

chromatin through recognizing acetylated histones and lysine residues. Canonical 

BDs bind monoacetylated peptides, while BET BDs recognize diacetylated peptides 

due to their larger binding pocket, enabling them to accommodate them. Unlike 

humans or Saccharomyces cerevisiae, C. albicans only express one 

bromodomain.2 

 

Research by Mietton et al.3 explored the potential of targeting the bromodomain 

within the BET protein family as an antifungal strategy in Candida albicans. Their 

findings suggest that bromodomains are crucial for fungal survival and virulence, as 

they are involved in chromatin remodeling during transcription. Furthermore, 

bromodomains recruit proteins involved in transcriptional regulation, including 

transcription factors, co-activators, co-repressors, and chromatin remodeling 

complexes, thereby linking histone acetylation to transcriptional control. This study 

demonstrated the crucial role of the bromodomain in vitro and in vivo mouse 

studies.3 
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BET proteins are found in the nucleolus of the Fungi. They specifically recognize 

acetylated histone tails, contributing to chromatin remodeling during transcription. 

Studies suggest that bromodomains are essential for fungal gene expression and 

their ability to cause disease.1, 3 

Histone acetylation, regulated by opposing enzymes known as histone 

acetyltransferases (HATs) and histone deacetylases (HDACs), play a crucial role in 

chromatin remodeling by loosening chromatin structure and facilitating access by 

DNA polymerase and transcription factors.28 

While human BET proteins share sequence homology with fungal BET proteins and 

target chromatin through their bromodomains, they differ sufficiently in sequence to 

develop drugs that potentially target fungal BET proteins.3 

 

2.6.1 Antifungal strategy to inhibit bromodomains 
C. albicans is a diploid organism. When one of the two BDs is deleted, the fungus's 

growth is significantly affected. Based on these experiments, the bromodomain is a 

promising antifungal therapeutic strategy. Mietton et al.3 investigated that deletion 

of Bdf1 in C. albicans leads to fungal death and that a mutation in the protein 

sequence of BDs abolishes BD-mediated ligand-binding activity, severely impairing 

growth. This confirms inhibition of BET BD as a potential antifungal strategy in C. 

albicans.3 They emphasized that combined inactivation of Bdf1 BD1 and BD2 and 

their deletion leads to death, and the single inactivation of one BD shows a reduction 

in growth. Notably, the inhibition of BD2 has a more significant effect on growth 

reduction.3 

 

2.6.2 Bromodomain protein structures 
Human bromodomains have improved as a target strategy in treating cancer and 

other non-infectious diseases but not in antifungal strategies.1 Both protein regions 

BD1 and BD2 form four helices with the same name but differ in their primary 

sequence. Two of the four helices form two loops that define the protein's binding 

pocket. We used the primary protein sequences to search the Protein Data Bank 

(PDB) for matching structures. The PDB is a publicly available database that 

contains data on biological macromolecules. (https://www.rcsb.org)39 In the PDB, 

five C. albicans bromodomain structures are available: 5N13, 5N15, 5N16, 5N17, 

and 5N18. For CaBdf1 BD1, three 3D structures can be found in the PDB as the 
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PDB codes 5N15, 5N16, and 5N17. Further, two 3D structures for CaBdf1 BD2 can 

be found in the PDB as the PDB codes 5N13 and 5N18. 

 

We used crystallized protein structures better to understand the protein structure 

and its possible interactions. Fungal bromodomains have four alpha right-handed 

helices (Z, A, B, C), which are shown in Figures 1, 2, and 3. The well-conserved 

binding pocket is defined between the loops ZA and BC. The binding pocket shows 

hydrophobic properties and contains water molecules inside.3 

 

Figure 1 shows CaBdf 1 BD 1 from PDB 5N17 as cartoon with the four alpha right-

handed helices and two loops forming the binding pocket bound to the co-

crystallized ligand 8FK. The protein binding site is located between the ZA- and BC-

loop where the ligand 8FK binds to the protein due to different interactions. 

 

 

 
Figure 1 - PDB 5N17 showing the Bdf1 BD 1 with the co-crystallized ligand 8FK, the four helices, and the loops. 

Figure 2 shows CaBdf 1 BD 2 from PDB 5N18 as cartoon with the four alpha right-

handed helices and two loops forming the binding pocket bound to the co-
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crystallized ligand 8HZ. The protein binding site is located between the ZA- and BC-

loop where the ligand 8HZ binds to the protein due to different interactions. 

 

 

 
Figure 2 - PDB 5N18 showing the Bdf1 BD2 with the co-crystallized ligand 8HZ, the four helices, and the loops. 

 

The third protein structure investigated is C. auris BD. Figure 3 shows the homology 

model of C. auris BD homology model by using the “Swiss model”, as no resolved 

3D was available at the time of our study. Since protein folding is conserved in 

bromodomains, the four alpha right-handed helices (Z, A, B, C) with the two loops 

(ZA and BC) that define the binding pocket are also found in this case. 
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Figure 3 - Homology model structure of C. auris BD resolved with “Swiss model with the four helices, and the 
loops 

 

2.6.3 Protein-ligand interactions  
Zhou et al.29 performed MD analyses to investigate the binding pocket of CaBdf1 

BDs. Like mammalian BDs, the C. albicans BDs contain a highly conserved binding 

pocket within five water molecules in unbound conformation. These water molecules 

form hydrogen bonds with the protein main and side chains.29 The authors 

postulated that the water molecules reduce the volume of the binding pocket, which 

can have a crucial role in protein-ligand identification since they can interact via 

hydrogen bonds with the ligand and establish the interaction and connection 

between the protein and its ligand. Furthermore, they showed that the stability of 

those water molecules varies between both domains and single molecules.29 

The primary interaction in CaBdf 1 BD1 of the co-crystallized ligand is the hydrogen 

bond with ASN in position 291 shown in Figure 4.  
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Figure 4 - CaBdf1 BD1 (PDB 5N17) represented as cartoon showing interactions as yellow dashes with the co-
crystallized ligand 8FK. 

The interactions within the 5N18 binding pocket, shown in Figure 5, are a hydrogen 

bond formed between the ligand and ASP in position 468 and a π-π-interaction 

between the ligand and phenyl in position 467. Those interactions are also found in 

the docking validation. 
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Figure 5 - CaBdf1 BD2 (PDB 5N18) represented as cartoon showing interactions as yellow and blue dashes 
with the co-crystallized ligand 8HZ. 

 

2.7 Virtual screening  
Virtual screening (VS) is a computational method for investigating the potential 

interaction between small molecules and a target molecule. Due to its cost-

efficiency, virtual screening is becoming increasingly essential compared to 

traditional lead discovery tools.30 

VS is prominent for lead identification, lead optimization, and scaffold hopping.5 

This method offers two primary approaches: ligand-based and structure-based. 

These methods can be further distributed into different techniques.  

 

2.7.1 Structure-based virtual screening  
In general, structure-based virtual screening (SBVS) docks compound databases 

into the target of interest. Overall, structure-based screening results in predictions 

of the ligand-target complex and a ranking from the docking.31 This approach 

requires knowledge of the target (e.g., receptor, channel, protein). In the first step, 
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target identification and validation should be made, and modeling the 3D protein 

structure of the biological component of interest is mandatory.32 

The 3D structure is mainly determined through experimental methods like X-ray 

crystallography and NMR or computational methods like homology modeling or 

alpha fold. Computational algorithms dock the target protein with huge libraries and 

databases of small molecules.32 

 

2.7.1.1 Homology model 

If no 3D structure is available to work with in docking, this issue can be resolved by 

creating computer-aided models of the 3D structures. The sequence of the target 

must be known for modeling. Those modeling tools use templates with sequence 

similarity, and predicting the structures is based on extrapolation experimental 

information from related protein structures.33, 34 

 

2.7.2 Ligand-based virtual screening 
Another method in virtual screening is the ligand-based approach. This method uses 

information from several active ligands, not information from the target protein's 

structure. Based on the ligand information, this is the method of choice if the 3D 

target structure is not available or unknown, e.g., a G-protein-coupled receptor or 

protein structures resolved in the apo form. By establishing this method, an 

assumption was made that similar structures show similar biological activities. The 

active compounds were selected for this process to match the screening 

candidates.5, 35 

 

2.7.3 Docking 
Molecular docking generally aims to predict the ligand-receptor complex structure 

using computation methods.36 

Furthermore, molecular docking is a powerful tool for high-throughput virtual 

screening of large compound libraries. In the field of drug discovery, structure-based 

drug design (SBDD) utilizes molecular docking simulations to predict the interaction 

between a small molecule (ligand) and a biological target (usually a protein). This 

simulation mimics the natural binding process, allowing researchers to estimate the 

binding mode (ligand orientation) and affinity (strength of the interaction) between 

the two molecules. Due to its effectiveness in predicting these crucial aspects, 



 14 

molecular docking has become widely used in drug design research. Glide is 

software that leverages this approach, employing semi-empirical calculations to 

estimate the free energy of the ligand-target complex, which serves as an indicator 

of binding affinity.37 

 

2.7.3.1 Scoring function 

The scoring function, a crucial component of the docking process, assigns values 

to the binding affinity between ligands and the target using suitable valuing 

functions. Glide was designed with a focus on efficiency, enabling it to 

comprehensively search positions, orientations, and conformations for the ligand in 

the Binding pocket at a consistent calculation pace for screening, providing 

reassurance about its effectiveness.38 

 

The scoring function in Glide is instrumental in assessing the suitability of a ligand 

within a protein's binding site, quantifying its binding affinity. It aims to rank ligand 

poses based on their potential to form stable complexes with the protein. The terms 

in the scoring function collectively compute a score for each ligand pose, with lower 

scores indicating stronger binding affinity. Glide subsequently ranks ligand poses 

based on these scores, facilitating prioritization for further investigation or 

optimization.38, 39, 40 

When calculating the scoring function, van der Waals interactions, Coulomb 

potential, hydrogen bonds, entropy, torsional stress, ligand, and protein desolvation 

penalty are taken into account.39 
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2.8 Aim of this thesis 
This master thesis aims to apply structure-based virtual screening techniques using 

Glide software to the protein structures of bromodomains of the Candida species C. 

albicans and C. auris. The main aim is to generate results through virtual screening 

using docking that will subsequently inform and guide NMR (Nuclear Magnetic 

Resonance) studies focusing on the bromodomain structures of Candida species. 

This approach will contribute to identifying potential modulators for the research of 

innovative antifungal agents and potent targets to combat Candida infections, 

especially in view of the increasing challenges posed by multidrug-resistant strains 

such as Candida auris. Furthermore, using computational methods in drug 

discovery, this study aims to streamline the process and reduce the time and 

resources required while expanding the chemical space to discover new and 

effective drug candidates. 
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3 Methods 
 

3.1 Protein structure and co-crystallized ligands 
As part of our initial information-gathering on the CaBdf 1, we conducted a literature 

review based on the primary sequence. This helped us gain a better understanding 

of the targets general knowledge and interactions, among other things. We also 

used the primary protein sequences to search the PDB for matching structures. The 

PDB is a publicly available database that contains data on biological 

macromolecules. The structure can be searched for in the PDB using the PDB code, 

information about the macromolecule, or the primary sequence itself. 

(https://www.rcsb.org)41  

 

Our research led us to opt for structure-based virtual screening using a docking 

approach since we were not aware of any active small molecules. For our docking 

process, we utilized two structures of CaBdf 1 from the PDB and one structure for 

Candida auris. Unfortunately, at the time of our study, no resolved 3D structure was 

available for Candida auris. However, we were able to determine it through 

homology modeling using the "Swiss model". In the PDB, five C. albicans 

bromodomain structures are available: 5N13, 5N15, 5N16, 5N17, and 5N18.  

 

We extracted the 3D structures of fungal bromodomains from the PDB. The 

structures were created using X-ray diffraction and have a resolution of 1.6 Å for 

CaBdf1 BD1 (5N17) and 1.45 Å for Ca Bdf1 BD2 (5N18).  

 

3.2 Databases 
To facilitate docking, we utilized various compounds from different libraries. Our first 

round of VS focused on natural compounds available from MolPort. 

(https://www.molport.com/shop/index). For the second round, we used the NMR 

department's in-house library. Lastly, we docked molecules with molecular weights 

ranging from 250 to 320 Da from MolPort to find hits suitable for NMR studies. These 

databases generally store compounds in line representations, such as SMILES, 

SMARTS, and InChI, which require careful attention to ensure accurate assignment 

of stereochemistry, partial charges, and ionization states during conversion. 
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3.3 Schrödinger Platform  
For this thesis, the Schrödinger Platform for small-molecule drug discovery was 

used to perform the preparation and docking steps. The docking algorithm employed 

was Schrödinger’s Glide algorithm.42 

 

3.4 Protein preparation 
Protein preparation was carried out using Maestro's Protein Preparation wizard. It 

was utilized to prepare the proteins for docking. The first step involved importing the 

structures from the target. The protein structures were downloaded from the PDB 

(PDB entries 5N17 and 5N18). 

For preparation, default settings were applied, except for missing side chains, for 

which the “Filling missing side chains using Prime” setting was used. Next, all 

unnecessary atoms and molecules, such as solvents and water, with a distance 

greater than 3 Å were removed from the workspace.  

In the subsequent step, the H-Bond assignment was performed using default 

settings, and redundant waters were deleted, except for conserved waters in the 

binding pocket. These binding-site water molecules may play a crucial role in ligand 

binding affinity. They can, for example, increase the binding strength and build 

hydrogen bonds between the ligand and the target.43 

 

3.5 Ligand preparation  
Ligands for docking were obtained from MolPort in either SDF or CSV format and 

from Assoc.-Prof. Julien Orts. The CSV format was converted to SDF. Conversion 

was accomplished using Maestro, DataWarrior, and Python3 directly from the 

command line. The primary objective of ligand preparation is to convert the 2D 

structures into suitable 3D structures, considering tautomerism and 

stereochemistry. Consequently, the potential ligands should be prepared in a 

manner that allows for subsequent use in docking. 

Regarding ligand preparation, there are two approaches: the first involves 

performing the preparation directly within Maestro using the LigPrep tool. 

Alternatively, this task can be carried out from the command line. This work 

employed both methods.44 
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LigPrep from the command line was done with this script:  

import os 
import multiprocessing as mp 
from datetime import datetime 
 

def run(input_file): 
   input_dir = '/data/local/ebajric/Fragment_database/Split_sdf/Splitted_files/' 
   output_dir = '/data/local/ebajric/Fragment_database/Split_sdf/ligprep_files_split/' 
   os.system('/data/shared/software/schrodinger2021-1/ligprep -isd '+input_dir+'/'+input_file+'  
-WAIT -ma 90 -bff 16 -pht 0.0 -epik -s 1 -osd '+output_dir+'/'+input_file) 
 

if __name__ == "__main__": 
    start_time = datetime.now() 
    input_dir = '/data/local/ebajric/Fragment_database/Split_sdf/Splitted_files/' 
 
 #get jobList for multiprocessing 
    jobList = [] 
     
    for file in os.listdir(input_dir): 
     if file.endswith('.sdf'): 
      jobList.append(file) 
 
    pool = mp.Pool(processes=30) 
    pool.map(run, jobList) 
    pool.close() 
    pool.join() 
    print('Finished in:') 
    print(datetime.now()-start_time) 

 

 

3.6 Receptor grid generation 
After completing the protein and ligand preparation, the next step involves 

generating the receptor grid, which is crucial for docking. This step entails examining 

the binding pocket with the co-crystallized ligand and selecting the ligand. Upon 

selecting the ligand, a purple box appears on the screen, confirming the correct grid 

selection and that no further settings were made. In this process, the binding site is 

calculated and represented as a grid. The grid can be set differently to refine the 

scoring function during docking. This step was performed only once for each target. 

Before running Glide, we ensured that this process was successful. Redocking was 

performed using Ligand-docking with Glide and the co-crystallized ligand. The 

primary purpose of the Receptor Grid Generation tool is to define the active-site 

properties.45 
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3.7 Redocking 
A redocking was carried out to validate the grid. During redocking, the co-

crystallized ligand was prepared and docked to the protein, and then the redocking 

poses were evaluated to determine if the fit was the same.  

 

3.8 Glide 
All docking steps were performed with Glide. Docking was performed in two different 

ways. First, docking with the natural products from the MolPort library was 

performed directly within the Maestro tool “Glide.” The previously prepared ligands 

and the respective grid-receptor were selected as inputs, and three poses were 

generated. All other settings were kept on default.  

The experiments were performed from the command line to scan small fragments. 

One more step was required: first, a Glide input had to be created, and then Glide 

could be performed.  

Performing Glide input:  

import os 
import sys 
 
# usage 
# python run_glidefile.py   
 
list = 
os.listdir("/data/local/ebajric/Fragment_database/Split_sdf/ligprep_files_split/")  #
directory of input ligands 
grid =  "/data/local/ebajric/Fragment_database/glide-
grid_1_small_frag_5N18.zip" 
target_name = '5N18'  # depends on how you named your grid.... 
 
for in_file in list: 
  #if (in_file[-4:] == ".mae" and in_file[:36] == "iissc-002-500-000--002-999-
999_prep_8") : 
 outfile_name = 

"/data/local/ebajric/Fragment_database/Split_sdf/glide_input_files/" + 
target_name + in_file[:-4] + "_glide.in" 

 outfile = open(outfile_name, 'w') 
 print ("Preparing glide file for file: " + in_file) 
 file_content = "FORCEFIELD   OPLS_2005\nGRIDFILE   " + grid \ 
   + 
"\nLIGANDFILE   /data/local/ebajric/Fragment_database/Split_sdf/ligprep_files_s
plit/" + in_file \ 
   + "\nPOSES_PER_LIG   3\nPRECISION   SP" 
 outfile.write(file_content) 
 outfile.close() 
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Utilizing the terminal for docking to run glide with this script:  

import os 
from datetime import datetime 
 
if __name__ == "__main__": 

start_time = datetime.now() 
input_dir = '/data/local/ebajric/Fragment_database/Split_sdf_5N17_1-
300/Glide_Input_files_1-300_no_water/' 

 
for file in os.listdir(input_dir): 

if file.endswith('.in'): 
input_file=input_dir+'/'+file 
os.system('/data/shared/software/schrodinger2021-1/glide -WAIT -
OVERWRITE -adjust '+input_file+' -HOST localhost:32') 
 

print('Finished in:') 
print(datetime.now()-start_time) 

 

In the end, we received 30 files for the docking, which should be merged to obtain 

the docking results in one file.  

For this, we run from the command line:  

outfile_name = '/data/local/ebajric/Fragment_database/Split_sdf/merge_input.lst' 
 
outfile = open(outfile_name, 'w') 
for i in range(1,30): 
 file_content = 

"/data/local/ebajric/Fragment_database/Split_sdf/glide_results/5N18Selec
tion_of_2023-12-19_molport_molecularWeight_600-
restPart"+str(i)+"_glide_pv.maegz\n" 

 outfile.write(file_content) 
 
outfile.close() 

 

To combine the results, we executed:  

/data/shared/software/schrodinger2021-1/utilities/glide_merge -o all_pv.maegz -r all.rept 
-f merge_input.lst & 

 

Next, we ranked the best docking results:  

/data/shared/software/schrodinger2021-1/utilities/glide_sort -o top10k_pv.maegz -r 
top10k.rept -n 10000 all_pv.maegz & 
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3.9 Principal component analysis 
Principal component analysis is one of the oldest and most widely used statistical 

techniques for reducing dimensionality in data analysis and pattern recognition.46, 

47, 48 

PCA was performed with six descriptors to present the chemical space of the 

structures used for docking. The descriptors were total molar weight, partition 

coefficient for n-octanol to water (cLogP), number of hydrogen bond donors and 

acceptors, polar surface area, and rotatable bonds.  

 

The PCAs were determined with DataWarrior 6.1.0.49 The two main components, 

which effectively capture the largest parts of the variance within the dataset, were 

plotted. 

 

3.10 Clustering 
Clustering was performed to subdivide the results of similar compounds and to 

check if there were similar clusters of docking results. We first clustered all results 

by ring fragments to see if the resulting hits were similar and if and how they differed 

from the co-crystallized ligands. 

 

3.11 Hardware 
The computational methods used hardware from an in-house setup consisting of a 

Linux computer with CentoOS Stream 8 as the operating system, 1 GPU (NVIDIA 

GeForce RTX 3090 with 24 GB of memory), and 32 CPU cores (AMD Ryzen 9 

7950X 16-Core Processor). The 32 CPU cores were used for docking. 
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4 Results 
We performed a virtual screening of libraries with more than one million molecules 

by using a docking approach. In total, we docked four different libraries: two 

databases of Assoc. Prof. Dr. Julien Orts, the MolPort collection of natural 

compounds and the MolPort library with molecular weight between 250 and 320 

Dalton to the targets CaBdf 1 BD1, BD2 and the homology model of C. auris BD. 

 

By manually inspecting the hit lists, we identified more than 60 promising potential 

modulators for the C. albicans BDs and the C. auris BD. These modulators were 

selected based on their docking score, interactions with key residues, and fit with 

the binding pocket, taking molecular surface complementarity into account. Here, 

we will present the docking poses of some selected molecules with the most 

promising properties, including high docking scores and interactions with key 

residues in the bromodomain binding pocket. 

 

In addition, we analyzed the chemical space of the virtual libraries by using principal 

component analysis with calculated physicochemical descriptors to highlight the 

differences and similarities in the properties of our hit list. Moreover, we performed 

a similarity analysis between the hits and the co-crystallized ligands of the 

bromodomains of C. albicans and C. auris, with the results also discussed here.  

 

These top candidates will be further analyzed in vitro by NMR to validate their 

binding to the Candida bromodomain and to evaluate their potential as antifungal 

agents. All potential hits are listed in the Tables S1, S2, S3, S4 and S5 in the 

appendix according to the target and their respective physicochemical properties. 

 

4.1 Database analysis  
For the virtual screening, four different databases were utilized. The MolPort library 

of natural compounds was recommended by Assoc.-Prof. Dr. Julien Orts due to its 

high chemical diversity, encompassing numerous molecules that are either natural 

compounds or derivatives thereof with established pharmaceutical applications. The 

molecular weight of substances in the natural products library is between 45,04 

g/mol and 8099,25 g/mol, and it contains more than 113.000 chemical structures. 

This database comprises both natural products and natural-like products. 
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Given the considerable variance in size and molecular structure among natural 

compounds, a subset of the whole MolPort database with more than 886.000 

chemical structures with a molecular weight between 250 and 320 Da was employed 

during the docking study. This specific molecular weight range was selected to 

identify molecules suitable for subsequent NMR studies, ensuring their solubility for 

further experimentation. 

 

The molecule list provided by Assoc. Prof. Dr. Julien Orts includes his existing 

compounds in the laboratory, which were screened to determine the molecules 

already available for in vitro studies on bromodomains. The molecular weight in this 

database was between 109.13 g/mol and 404.40 g/mol for a total of 896 

compounds. In addition, the FDA database which contains drugs, was curated by 

Assoc. Prof. Dr. Julien Orts was consulted to assess the docking affinity of 686 

substances already on the market with the target proteins under investigation.  

 

4.2 Docking results 
The analysis revealed 65 molecules suitable for in vitro NMR studies. A hit is defined 

as a molecule that, on one hand, exhibits the same interactions as the co-

crystallized ligand or more interactions than the ligand, and, on the other hand, fits 

into the binding pocket, considering molecular surface complementarity. Hits are 

primarily ranked based on a scoring function; the lower the score, the better the 

binding in the binding pocket described by the docking algorithm. While interactions 

between the ligand and target are of primary importance, it is crucial to assess 

complementarity by analyzing surfaces and to consider this when determining 

whether the pose is well accommodated in the binding pocket. 

 

4.3 Predicted hits  
 

4.3.1 Predicted hits for the target Candida albicans bromodomain factor 1 
bromodomain 1 

For the CaBdf1 BD1 target to which the subset of the MolPort library was docked, 

we identified 24 molecules based on 18 different scaffolds. The ones we identified 

as the most promising hits are based on two different scaffold types. All scaffolds 

are shown in Table S1 in the appendix. The docking poses in Figures 6, 7, and 8 
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illustrate the precise interactions between the protein and the most potential 

scaffolds. 

 

First, they were selected based on the docking score results. All results showed a 

docking score between -9,7 and -8. Second, there were very similar interactions 

with the protein, identical to the co-crystallized ligand but with even more 

interactions. Furthermore, our docked molecules adopted positions deeper in the 

binding pocket and showed a nicer molecular surface complementarity than the co-

crystallized ligand.  

 

MolPort-014-136-309 docked on the target CaBdf1 BD1 in Figure 6, which contains 

water inside the binding pocket, shows hydrogen bonds with the residues PRO 233, 

ASN 291, and TYR 248. The hydrogen bond with PRO 233 is formed between the 

oxygen carbonyl of PRO233 and the secondary amino group of the ligand. Together 

with its secondary amino group, ASN 291 forms a hydrogen bond with the carbonyl 

oxygen of the thiazepine ring. The next interaction in Figure 1 is a hydrogen bond 

mediated via water in position 514 between TYR 248 and thiazepine’s carbonyl 

oxygen.  

 

 

 
Figure 6 - Protein structure CaBdf1 BD1 represented as cartoon, with the MolPort-015-136-309 from the subset 
of MolPort library, shown as aquamarine sticks and the amino acid residues forming interactions represented 
as gray sticks. The predicted interactions are shown as yellow dashes. 
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Our second hit for CaBdf1 BD1, MolPort-006-821-342, shown in Figure 7, is 

predicted to form four key interactions with the target. The ligand forms two 

hydrogen bonds with the residue ASN 291. One interaction is predicted to establish 

a hydrogen bond between the secondary amino group of the pyrimidine ring and the 

carbonyl oxygen of ASN 291. Another interaction with ASN 291 involves the amino 

group of the amino acid and a nitrogen atom of the pyrimidine. Additionally, a 

hydrogen bond is formed between the nitrogen of the imidazole ring and PRO 233. 

Another hydrogen bond is observed between the second nitrogen of the imidazole, 

mediated through a water molecule in position 514, and TYR 248. 

 

 

 

 

 
Figure 7 - Protein structure CaBdf1 BD1 represented as cartoon, with the MolPort-006-821-342 from the subset 
of MolPort library, shown as aquamarine sticks and the amino acid residues forming interactions represented 
as gray sticks. The predicted interactions are shown as yellow dashes. 

 

The third ligand, MolPort-046-848-539, at the target CaBdf1 BD1, is predicted to 

establish the same interactions as the previously described ligand MolPort-006-821-

342 in Figure 8. 
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Figure 8 - Protein structure CaBdf1 BD1 represented as cartoon, with the MolPort-046-848-539 from the subset 
of MolPort library, shown as aquamarine sticks and the amino acid residues forming interactions represented 
as gray sticks. The predicted interactions are shown as yellow dashes. 

 

In the results of the docking run for CaBdf1 BD1 with the natural compound 

database, we identified six promising compounds based on four different scaffold 

types. The scaffolds are shown in Table S2 in the appendix. The detailed 

interactions between the protein and the most potential scaffolds are shown as 

docking poses in Figure 9 and in Figure 10. 

 

The hits were analyzed according to the docking score, which was between -9,2 

and -8 in this case. Finally, they were evaluated as hits based on their interactions 

and interactions compared to those of the protein's co-crystallized ligand and their 

fit in the binding pocket. Again, all the molecules we selected showed good 

complementarity of the molecular surface with the protein’s surface. 

 

Our first docking pose for the MolPort natural compound database in Figure 9 

illustrates the interaction between the hit compound MolPort-008-348-689 from the 

MolPort natural compound database and CaBdf1 BD1. This docking pose highlights 

several hydrogen bonds between the ligand and the protein. The first hydrogen bond 

at the bottom of Figure 9 is formed between the hydroxyl group of the phenol moiety 
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in the ligand and the carbonyl oxygen in the backbone of MET 283. Additionally, a 

water molecule within the binding pocket mediates a hydrogen bond between TYR 

248 and the ligand’s phenol hydroxyl group. One more hydrogen bond is formed 

with the ASN 291 residue.  

 

 

 

 

  

 
Figure 9 - Protein structure CaBdf1 BD1 represented as cartoon, with the MolPort-008-348-689 compound from 
the MolPort natural compound library, shown as aquamarine sticks and the amino acid residues forming 
interactions represented as gray sticks. The predicted interactions are shown as yellow dashes. 

 

Figure 10 shows the second compound MolPort-005-909-990, which was evaluated 

as a hit docked on the target CaBdf1 BD1. This compound shares almost the same 

interactions with the same amino acid residues as the MolPort-008-348-689 

compound. However, MolPort-005-909-990 forms a hydrogen bond with the other 

MET in position 256, where the nitrogen from the piperazine moiety interacts with 

the amino residue. 
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Figure 10 - Protein structure CaBdf1 BD1 represented as cartoon, with the MolPort-005-909-990 from the 
MolPort natural compound library, shown as aquamarine sticks and the amino acid residues forming interactions 
represented as gray sticks. The predicted interactions are shown as yellow dashes. 

 

 

4.3.2 Predicted hits for the target Candida albicans bromodomain factor 1 
bromodomain 2 

For the target CaBdf1 BD2, we identified 24 molecules as promising in the docking 

results with the subset of the MolPort library based on 16 different scaffold types. 

The scaffolds are shown in Table S3 in the appendix. The detailed interactions of 

the most potential scaffolds with the protein are shown as docking poses in Figure 

11, 12, 13 and 14. 

 

First, the results were selected based on their docking score. All results showed a 

docking score between -9.5 and -8. Secondly, they interact very similarly with the 

protein as its co-crystallized ligand but show even more interactions. Our docked 

molecules also showed good surface complementarity in the binding pose and are 

adopting deeper positions in the binding pocket. 

 



 29 

Figure 11 shows MolPort-019-801-991. In this docking pose, water molecules are 

present in the binding site. All hydrogen bonds in Figure 11 are mediated by water 

molecules. The ligand's pyrimidine structure forms a water-mediated hydrogen bond 

in position 640 with PRO 410. The other hydrogen bond is formed between the 

phenol's hydroxyl group and VAL 460 via the water molecule in position 633.  

 

 

 

 
Figure 11 - Protein structure CaBdf1 BD2 represented as cartoon, with the MolPort-019-801-991 from the 
MolPort natural compound library, shown as aquamarine sticks and the amino acid residues forming interactions 
represented as gray sticks. The predicted interactions are shown as yellow dashes for hydrogen bonds and as 
blue dashes for π-π-interactions. 
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MolPort-003-997-631 in Figure 12 displays the same interactions as MolPort-019-

801-991 with PRO 410 and VAL 460.  

 

 

 

 
Figure 12 - Protein structure CaBdf1 BD2 represented as cartoon, with the MolPort-003-997-631 from the 
MolPort natural compound library, shown as aquamarine sticks and the amino acid residues forming interactions 
represented as gray sticks. The predicted interactions are shown as yellow dashes for hydrogen bonds and as 
blue dashes for π-π-interactions. 

 

In Figure 13, MolPort-038-415-941 is docked into CaBdf1 BD2 without water 

molecules in the binding pocket. The molecule is docked slightly deeper in the 

binding pocket and shows interactions with PRO 410 and ASN 468.  

ASN 468 forms two hydrogen bonds with the ligand. One bond is located between 

the secondary amino group of the ligand and the carbonyl oxygen of ASN 468. The 

next bond is between the pyrimidine of the ligand and the amino group of ASN 468. 

The hydrogen bond with PRO 410 is predicted to establish an interaction between 

prolines carbonyl oxygen and the ligand’s secondary amino group.  
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Figure 13 - Protein structure CaBdf1 BD2 represented as cartoon, with the MolPort-038-415-941 from the 
MolPort natural compound library, shown as aquamarine sticks and the amino acid residues forming interactions 
represented as gray sticks. The predicted interactions are shown as yellow dashes for hydrogen bonds and as 
blue dashes for π-π-interactions. 

 

Figure 14 illustrates the docked molecular structure of MolPort-001-026-787 and its 

interactions with the target CaBdf1 BD2. The ligand forms a hydrogen bond with 

ALA 413 via its secondary amino group to the carbonyl oxygen of ALA 413. 

Additionally, three hydrogen bonds are formed with the carbonyl oxygen of PRO 

410. The third hydrogen bond is predicted to establish an interaction between the 

carbonyl oxygen of the ligand and the amino group of ASN in position 416. MolPort-

001-026-787 forms a π-π interaction between TYR 425 and the benzene ring of the 

ligand in this docking pose. 
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Figure 14 - Protein structure CaBdf1 BD2 represented as cartoon, with the MolPort-001-026-787 compound 
from the MolPort natural compound library, shown as aquamarine sticks and the amino acid residues forming 
interactions represented as gray sticks. The predicted interactions are shown as yellow dashes for hydrogen 
bonds and as blue dashes for π-π-interactions. 

 

In the results of the docking run with the natural compound database, we identified 

seven compounds of interest based on six different scaffold types. All scaffolds are 

shown in Table S4 in the appendix. The detailed interactions of the most promising 

scaffolds with the protein are shown as docking poses in the Figure 15 and Figure 

16. 

 

The compounds were analyzed based on their docking scores ranging between -10 

and -8,6. Finally, they were evaluated as hits based on their interactions with the 

protein and their fit within the binding pocket. All our selected molecules exhibited 

good complementarity between the molecular and protein surfaces. 

 

One of our hits from the natural product database for the target CaBdf1 BD2, with 

MolPort-000-672-474, shown in Figure 15, exhibits completely different interactions 

compared to the co-crystallized ligand. The compound forms two hydrogen bonds: 

one with MET 433 and another with PRO 410. The hydrogen bond with MET 433 is 

formed via the hydroxyl group on the phenol moiety to the carbonyl oxygen of 
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methionine in position 433. The other hydrogen bond is formed via a nitrogen atom 

in the pyrimidine ring to the carbonyl oxygen of PRO 410. 

 

 
Figure 15 - Protein structure CaBdf1 BD2 represented as cartoon, with the MolPort-000-672-474 from the 
MolPort natural compound library, shown as aquamarine sticks and the amino acid residues forming interactions 
represented as gray sticks. The predicted interactions are shown as yellow dashes. 

 

Figure 16 shows the second molecule, MolPort 001-732-545, from the natural 

product database, which we classified as a promising hit concerning the target 

CaBdf1 BD2. This molecule also forms the two hydrogen bonds already mentioned 

in Figure 15 with the amino acids MET 433 and PRO 410. Here, the phenol hydroxyl 

group forms a hydrogen bond with the carbonyl oxygen of MET 433. Additionally, 

the ligand forms a hydrogen bond between a nitrogen atom of the imidazole and the 

carbonyl oxygen of PRO 410. Furthermore, the hydrogen bond already observed in 

the co-crystallized ligand with ASN 468 is present; here, the second nitrogen of the 

imidazole ring forms a hydrogen bond with the primary amino group of ASN 468. 
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Figure 16 - Protein structure CaBdf1 BD2 represented as cartoon, with the MolPort-001-732-545 from the 
MolPort natural compound library, shown as aquamarine sticks and the amino acid residues forming interactions 
represented as gray sticks. The predicted interactions are shown as yellow dashes. 

 

Figure 17 shows the last hit for the target CaBdf1 BD2 with the predicted interactions 

from the MolPort natural products Database with the MolPort-001-759-343. This 

molecule shows the already-known interaction with MET 433. In position 233, you 

can see a hydrogen bond between the ligand's primary amine group and MET 233 

carbonyl oxygen.  

The next hydrogen bond is between the carbonyl oxygen of the ligand and the 

hydroxy group of TYR 425. TYR 425 shows another interaction, namely a π-π-

interaction between the tyrosine phenol and the ligand's pyrrole ring. 
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Figure 17 - Protein structure CaBdf1 BD2 represented as cartoon, with the MolPort-001-759-343 from the 
MolPort natural compound library, shown as aquamarine sticks and the amino acid residues forming interactions 
represented as gray sticks. The predicted interactions are shown as yellow dashes for hydrogen bonds and as 
blue dashes for π-π-interactions. 

 

4.3.3 Predicted hits for the target Candida auris bromodomain 
For the target C. auris, we identified four compounds of interest based on two 

different scaffold types for the docking run with the MolPort natural compound 

database. All scaffolds are shown in Table S5 in the appendix. The detailed 

interactions of the most promising scaffolds with the protein are shown as docking 

poses in Figure 18. 

 

The compounds were also analyzed based on their docking scores, which ranged 

between -9,1 and -8,5. Finally, the compounds were evaluated as hits based on 

their interactions with the protein and their fit within the binding pocket. All our 

selected molecules exhibited good complementarity between the molecular and 

protein surfaces. 

 

The docking analysis of ligand MolPort-000-840-542 with the bromodomain of C. 

auris reveals several key interactions. The amino group of ASN 101 forms a 

hydrogen bond with the carbonyl oxygen of the quinoline moiety, while the nitrogen 
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of the quinoline forms a hydrogen bond with the backbone’s carbonyl oxygen of 

PRO 43. Additionally, the amino group of the quinoline interacts with the carbonyl 

oxygen in the backbones of MET 93 and MET 66. 

 

 

 
Figure 18 - Protein structure C. auris represented as cartoon, with the MolPort-000-840-542 from the MolPort 
natural compound library, shown as aquamarine sticks and the amino acid residues forming interactions 
represented as gray sticks. The predicted interactions are shown as yellow dashes. 
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4.4 Chemical space analysis 
The PCA results complement the docking analysis by providing an overview of the 

molecular landscape investigated in the study. While docking analysis provides 

detailed information about the interactions between a compound and the target 

protein, PCA offers a comprehensive perspective on the overall distribution of our 

hits in the different libraries we used for docking. 

 

4.4.1 Chemical space analysis of MolPort compounds with molecular 
weight between 250 and 320 Daltons 

 

4.4.1.1 Chemical space analysis of MolPort compounds with molecular weight 

between 250 and 320 Daltons for the target Candida bromodomain factor 1 

bromodomain 2 

A principal component analysis (PCA) shown in Figure 19 was performed to 

visualize the distribution of a subset of the MolPort library with a molecular weight 

range of 250-320 daltons and the chemical space of the more than 800.000 

molecules contained in this database. 

 

Figure 19 shows the MolPort docked against the target CaBdf1 BD2 based on their 

physicochemical properties (H-bond-acceptors, H-bond-donors, total molecular 

weight, topological surface area, rotatable Bonds, cLogP). The first two principal 

components (PC1 and PC2) are shown, explaining 35,47% and 29,34% of the 

variance in the data, respectively. The orange circles represent the investigated hits 

identified during the docking process, while the blue circles represent the remaining 

compounds in the MolPort library that are not considered hits. The distribution of 

data points across the PCA space indicates various physicochemical properties 

within the screened library according to the chosen descriptors. Notably, the 

investigated virtual hits (orange circles) are not segregated within a specific region 

of the PCA plot, they are rather central but relatively far apart in general. 

Occasionally, however, a few hits are closer together than others. 
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Figure 19 - The PCA scatter plot illustrates the chemical space covered by the subset of the MolPort database 
with the obtained docking hits for the target CaBdf 1 BD2, calculated by six physicochemical properties: H-bond 
acceptors, H-bond donors, total molecular weight, topological surface area, rotatable bonds, cLogP. 

 

4.4.1.2 Chemical space analysis of MolPort compounds with molecular weight 

between 250 and 320 Daltons for the target Candida bromodomain factor 1 

bromodomain 1 

For the same subset MolPort database again a PCA calculation was performed but 

this time for the target CaBdf1 BD1. Figure 20 shows the MolPort database 

distribution as blue circles and our hits in orange circles. The blue circles cover more 

than 800.000 molecular fragments with the obtained hits for the target CaBdf1 BD1.  

 

As in Figure 19 the same six molecular descriptors were used for calculating the 

PCA. The first two principal components (PC1 and PC2) are shown and explain 

35.47% and 29.34% of the variance in the data, respectively. For this target, the 

PCA shows no clusters or favorable hit-regions. They show a large distribution over 

the central area of the scatter plot.  
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Figure 20 - The PCA scatter plot illustrates the chemical space covered by the subset of the MolPort database 
with the obtained docking hits for the target CaBdf 1 BD1, calculated by six physicochemical properties: H-bond 
acceptors, H-bond donors, total molecular weight, topological surface area, rotatable bonds, cLogP. 

 

4.4.2 Chemical space analysis of MolPort natura compound library  
 

4.4.2.1 Chemical space analysis of MolPort natural compounds with docking hits 

Candida albicans bromodomain factor 1 bromodomain 2 

Figure 21 shows a principal component analysis for the MolPort natural compound 

database in blue colored circles and the obtained hits for the target CaBdf1 BD2 as 

orange circles. The PCA was performed to visualize the chemical space and 

distribution of the natural compound library from MolPort used for docking the target 

CaBdf1 BD2 based on their physicochemical properties. The first two principal 

components (PC1 and PC2) are shown, explaining 60.8% and 22.59% of the 

variance in the data, respectively. As already mentioned, orange circles represent 

our investigated hits, identified during the docking process, while the blue circles 

represent the remaining compounds in the library that were not considered as hits. 

The chemical space is covered by more than 113.000 chemical structures from the 

natural product database of MolPort.  

 

The distribution of data points across PCA space attests to the diversity of 

physicochemical properties within the library, as indicated by the descriptors chosen 
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(H-bond acceptors, H-bond donors, total molecular weight, topological surface area, 

rotatable bonds, cLogP). The hits are generally concentrated in the upper right 

quadrant of the scatter plot and are relatively close to each other, apart from a single 

hit.  

 

 
Figure 21 - The PCA scatter plot illustrates the chemical space covered by the MolPort database natural 
compounds with the obtained docking hits for the target CaBdf 1 BD2, calculated by six physicochemical 
properties: H-bond acceptors, H-bond donors, total molecular weight, topological surface area, rotatable bonds, 
cLogP. 

 

4.4.2.2 Chemical space analysis of MolPort natural compounds with docking hits 

Candida albicans bromodomain factor 1 bromodomain 1 

The subsequent scatter plot, visualized in Figure 22, was also performed with 

DataWarrior. Figure 22 shows the PCA of the MolPort natural products database 

with the obtained hits of the target CaBdf1 BD1. Here, the PCA was also performed 

to visualize the chemical space and the distribution of the natural compound library 

from MolPort used for docking to the target CaBdf1 BD1 based on their 

physicochemical properties. The chemical space is covered by the chemical 

structures of the natural compound library and the six identified promising hits of 

CaBdf1 BD1.  
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The PCA was calculated using these six key descriptors: H-bond acceptors, H-bond 

donors, total molecular weight, topological surface area, rotatable bonds, and 

cLogP.  

The first two principal components, PC1 and PC2, are instrumental in our analysis. 

PC1 accounts for a significant portion of the variance in the data, explaining 60.8% 

of it. PC2, while less impactful, still contributes significantly, explaining 22.59% of 

the variance.  

In Figure 22, the chemical space of the database is shown as blue circles, and our 

promising hits are orange circles. The hits for the target CaBdf1 BD1 are localized 

in the upper part of the database and divided into three clusters. The outer two 

clusters represent only one hit each. The remaining hits are very close to each other 

and between the two outer hits. 

 

  
Figure 22 - The PCA scatter plot illustrates the chemical space covered by the MolPort database natural 
compounds with the obtained docking hits for the target CaBdf 1 BD1, calculated by six physicochemical 
properties: H-bond acceptors, H-bond donors, total molecular weight, topological surface area, rotatable bonds, 
cLogP. 

 

4.4.2.3 Chemical space analysis of MolPort natural compounds with docking hits 

C. auris 

The last scatter plot in Figure 23 again represents the chemical space and the 

distribution, from the MolPort natural product database, but this time with the results 

of docking to the C. auris bromodomain. In this PCA, the same chemical properties 
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(H-bond acceptors, H-bond donors, total molecular weight, topological surface area, 

rotatable bonds and cLogP) were used to calculate the PCA as in Figures 21 and 

22. The more than 116,000 natural products and natural product-like molecules are 

shown as blue circles and the potential ligands for C. auris as orange circles. In 

Figure 23, the hits are located next to each other in the upper left corner, but no 

clear distribution pattern was detected for them. 

 

  
Figure 23 - The PCA scatter plot illustrates the chemical space covered by the MolPort database natural 
compounds with the obtained docking hits for the target C. auris, calculated by six physicochemical properties: 
H-bond acceptors, H-bond donors, total molecular weight, topological surface area, rotatable bonds, cLogP. 

 

4.5 Clustering  
To further analyze the docked hits and identify potential scaffolds showing promising 

activity, clustering by ring fragments was performed using the DataWarrior. This 

analysis was applied to hits obtained from docking to the three targets: CaBdf1 BD1, 

CaBdf1 BD2 and the homology model of C. auris. Ring analysis with DataWarrior 

extracted the ring fragments from our hit lists, for showing promising scaffolds which 

are interacting with the proteins. The aim of this analysis was to identify potential 

structural clusters among the hits for each target. The clustering results can be 

found in the Appendix in the Table S1, S2, S3, S4 and S5 in column Ring fragments. 
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4.6 Similarity analysis  
 

4.6.1 Similarity analysis of the co-crystallized ligand of Candida 
bromodomain containing factor 1 bromodomain 1 and hits obtained 
from MolPort natural compounds  

Figure 24 shows the calculation of the similarity between our promising hits of the 

natural compound library and the co-crystallized ligand (8FK) of CaBdf1 BD1. The 

calculation was performed with RDKit based on Tanimoto similarity. Figure 24 

represents a bar chart where each bar represents a molecule from our hit-list in blue 

color. The similarity score is located on the y-axis and indicates the similarity in 

percent with respect to the co-crystallized ligand.  

 

We have also calculated an average similarity, which is shown as a red dashed line 

in the chart. The average similarity score across all docking hits was approximately 

15%, indicating a moderate structural resemblance to the reference ligand. Our 

docking predictions suggest that the structure of the co-crystallized ligand has not 

been fully optimized. This could be relevant for further ligand optimization and 

identifying more suitable scaffolds.  

 

 
Figure 24 - The bar chart shows the similarity between our promising hits of the natural compound library and 
the co-crystallized ligand (8FK) of CaBdf1 BD1. Hits are represented as blue bars, and the average similarity 
as a red, dashed line. 
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4.6.2 Similarity analysis of the co-crystallized ligand of Candida 
bromodomain containing factor 1 bromodomain 2 and hits obtained 
from MolPort natural compounds 

Figure 25 shows the calculation of the similarity between our promising hits of the 

natural compound library and the co-crystallized ligand (8HZ) of CaBdf1 BD2. The 

calculation was performed with RDKit based on Tanimoto similarity. Figure 25 

represents a bar chart where each bar represents a molecule from our hit-list in blue 

color. The similarity score is located on the y-axis and indicates the similarity in 

percent with respect to the co-crystallized ligand.  

 

We have also calculated an average similarity which is shown as a red dashed line 

in the chart. The average similarity score across all docking hits was approximately 

12%, indicating a low structural resemblance to the reference ligand. Based on our 

docking predictions, this suggests that the structure of the co-crystallized ligand has 

not been fully optimized. This could be relevant for further ligand optimization and 

identifying more suitable scaffolds.  

 

 
Figure 25 - The bar chart shows the similarity between between our promising hits of the natural compound 
library and the co-crystallized ligand (8HZ) of CaBdf1 BD2. Hits are represented as blue bars, and the average 
similarity as red dashed line. 

 

Among all docking results with the MolPort natural product library, the average 

similarity scores showed no significant similarities between the co-crystallized 

ligands off both targets and their hits. 
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4.6.3 Similarity analysis of the co-crystallized ligand of Candida 

bromodomain containing factor 1 bromodomain 1 and hits obtained 
from MolPort compounds with molecular weight between 250 and 320 
Daltons 

Figure 26 illustrates the calculation of similarity between our promising hits from the 

subset of MolPort library compounds with molecular weights between 250 and 320 

Daltons and the co-crystallized ligand (8FK) of CaBdf1 BD1. The calculation was 

performed using RDKit based on Tanimoto similarity. Figure 25 presents a bar chart 

where each bar represents a molecule from our hit list in blue bars, with the similarity 

score shown on the y-axis indicating the percent similarity to the co-crystallized 

ligand. 

We have also computed an average similarity, depicted as a red dashed line in the 

chart. The average similarity score across all docking hits was approximately 15%, 

indicating a low structural resemblance to the reference ligand. According to our 

docking predictions, this suggests that the structure of the co-crystallized ligand may 

not be fully optimized. This finding could be significant for further ligand optimization 

and the identification of more suitable scaffolds. Notably, no docking result exhibited 

significant similarity with the co-crystallized ligand. 

 

 
Figure 26 - The bar chart shows the similarity between our promising hits of subset of MolPort library and the 
co-crystallized ligand (8FK) of CaBdf1 BD1. Hits are represented as blue bars, and the average similarity as red 
dashed line. 
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4.6.4 Similarity analysis of the co-crystallized ligand of Candida 
bromodomain containing factor 1 bromodomain 2 and hits obtained 
from MolPort compounds with molecular weight between 250 and 320 
Daltons 

Figure 27 depicts the calculation of similarity between our promising hits from the 

subset of MolPort library compounds with molecular weights between 250 and 320 

Daltons and the co-crystallized ligand (8HZ) of CaBdf1 BD2. The calculation was 

conducted using RDKit based on Tanimoto similarity. In Figure 27, each bar 

represents a molecule from our hit-list in blue color, with the similarity score on the 

y-axis indicating the percent similarity to the co-crystallized ligand. The average 

similarity score across all docking hits was approximately 24%, indicating a 

moderate structural resemblance to the reference ligand. According to our docking 

predictions, this implies that the structure of the co-crystallized ligand may not be 

fully optimized, which could be pertinent for further novel ligand finding optimization. 

 

The compound MolPort-007-611-328 exhibited outstanding similarity, with a score 

of approximately 65% or higher. This could suggest a similar binding mode as the 

co-crystallized ligand and can be used for further optimization.  

 

 
Figure 27 - The bar chart shows the similarity between our promising hits of subset of MolPort library and the 
co-crystallized ligand (8HZ) of CaBdf1 BD2. Hits are represented as blue bars, and the average similarity as red 
dashed line. 

Similarity analysis for C. auris was not performed because no existing co-

crystallized structure or information about active small molecules existed.   
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5 Conclusions 
Multidrug-resistant Candida strains pose increasing challenges to public health. We 

employed structure-based virtual screening techniques to identify potential 

modulators for the bromodomains of Candida species.  

PCA revealed the diverse chemical space of the investigated compound libraries 

and further provided insights into the distribution and physicochemical properties of 

the 65 compounds identified as promising hits. Similarity analysis revealed 

compounds with structural similarity to co-crystallized ligands. This allowed us to 

determine potential binding modes and indicate dissimilar structures or evaluate 

different molecules with potentially good binding features that can be used for affinity 

studies, further optimization, and ligand discovery. 

The scaffold analysis identified common structural motifs that may be important for 

ligand binding, providing valuable insights into the possibility of deeper ligand 

optimization and drug discovery. 

The predicted interactions provide detailed mechanistic insights into the potential 

binding modes of the identified hits and elucidate the potential fundamental 

interactions that govern ligand binding to the target proteins. This analysis highlights 

the importance of specific residues and structural features for ligand recognition and 

binding affinity. 

The results should be tested and validated in the laboratory to confirm or deny the 

predictions. Suppose the tests with the compounds are positive, and the interactions 

can thus be confirmed. In that case, these results can accelerate further NMR-

studies on these target molecules, as the scaffolds could be used to focus on 

specific molecules with specific properties. However, reprocessing the docking 

screen should be necessary if the laboratory studies yield negative results and the 

predicted interactions are not confirmed. 

Future research could focus on validating the in vitro stability of the water molecules 

in the binding pockets, thus investigating the influence of ligands on water molecules 

during the binding process. In addition, our collaboration partner, Assoc.-Prof. Julien 

Orts, from the University of Vienna, will perform experimental validation of the hits 

by NMR.  
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APPENDIX 
Summary of all predicted hits for the target Candida albicans bromodomain 
factor 1 bromodomain 1 
Table S1 shows the most promising potential docking hits for the CaBdf 1 BD1 target 

that were identified through molecular docking studies conducted with a subset of 

the MolPort library. Each hit includes its 2D structure, MolPort-ID, docking score, 

SMILES code, cLogP value, and ring fragments. The DataWarrior platform was 

used to determine the cLogP values and cluster affiliations by ring fragments. 

 

Structure MolPort-ID SMILES Docking 
score cLogP Ring 

fragments 

 

MolPort-
047-031-
444 

O[C@H](CCC[C@
H]1NC(C[n]2c(cccc
3)c3nc2)=O)[C@@
H]1O 

-10,148 0,177 
 

 

MolPort-
021-769-
752 

CC(C)(CCc1cccc(C
(N2Cc3c[nH]nc3CC
2)=O)c1)O 

-9,741 1,854 
 

 

MolPort-
002-793-
815 

O=C(c(cccc1)c1N[C
@@H]1c2ccc[o]2)N
1c(cc1)ccc1F 

-9,601 2,827 

 

 

MolPort-
001-757-
542 

Cc(c(N(C(c(cccc1)c
1N1)=O)C1=S)ccc1
)c1Cl 

-9,158 3,571 
 

 

MolPort-
007-557-
541 

Cc(ccc(N(C(Nc1c2c
ccc1)=O)N2O)c1)c1
Cl 

-9,151 2,819 
 

 

MolPort-
019-711-
408 

O=C(c([s]cc1)c1N1)
N(c2cc(F)cc(F)c2)C
1=S 

-9,143 2,689 
 

 

MolPort-
001-576-
890 

CCc(cccc1)c1N(C(c
(cccc1)c1N1)=O)C1
=S 

-9,093 3,380 

 

 

MolPort-
039-221-
586 

C[n]1nc(CCCC2)c2
c1C(N(CC1)CC2=C
1N=CNC2=O)=O 

-9,081 0,165 

 

 

MolPort-
046-848-
748 

COc(cc1)ccc1N(Cc(
cccc1)c1N1)C1=S -9,062 2,380 

 

 

MolPort-
002-795-
427 

ON([C@@H](c(ccc(
Cl)c1)c1Cl)Nc1c2cc
cc1)C2=O 

-9,051 2,342 
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MolPort-
019-822-
148 

CCc(cccc1)c1N(C(
Cc(cc1)ccc1O)=NN
1)C1=O 

-8,743 3,209 

 

 

MolPort-
015-136-
309 

CCN(c(cc(cc1)N)c1
Sc1c2cccc1)C2=O -8,675 3,110 

 

 

MolPort-
046-848-
539 

Nc1nc(Nc2cccc3ccc
cc23)c2[nH]cnc2n1 -8,569 2,747 

 

 

MolPort-
000-856-
140 

Nc(nc1Nc2cccc(C(F
)(F)F)c2)nc2c1[nH]c
n2 

-8,397 2,401 

 

 

MolPort-
002-003-
653 

CC(Nc1n[n]2c(-
c3ccccc3)ccnc2n1)
=O 

-8,381 1,083 

 

 

MolPort-
046-188-
559 

O[C@H](CN(C1)C(
c2c[nH]nc2-
c2cccc(F)c2)=O)[C
@@H]1F 

-8,298 0,897 

 

 

MolPort-
006-821-
342 

Nc1nc(NC2CCCCC
2)c2[nH]cnc2n1 -8,266 1,225 

 

 

MolPort-
020-230-
745 

Oc1cc(-c2ncc[n]2-
c2cc(-
c3ccn[nH]3)ccc2)cc
c1 

-8,254 2,223 
 

 

MolPort-
003-119-
795 

Cc(ccc(Nc1nc(NC)n
c2nccnc12)c1)c1Cl -8,172 2,665 

 

 

MolPort-
035-856-
148 

CC(C)([C@@H](CC
1)CN1C(c1ccnc2cc
ccc12)=O)O 

-8,139 2,554 
 

 

MolPort-
047-716-
206 

Cc1c(-
c2nc(CC(N)=O)n[n]
2-
c2ncccc2)[n](C)cn1 

-8,119 0,544 
 

 

MolPort-
020-217-
535 

OCCc(cccc1)c1-
[n]1c(-
c2cccc(F)c2F)ncc1 

-8,113 2,960 
 

 

MolPort-
028-913-
593 

CC(C)c1n[n]2c(-
c(ccc(F)c3)c3OC)cc
nc2n1 

-8,090 2,117 
 

 

MolPort-
006-808-
255 

Nc(nc1NCCc2ccc[s]
2)nc2c1[nH]cn2 -8,056 1,384 

 
Table S1 - The most promising docking results for CaBdf 1 BD1 were identified by molecular docking with the 
subset of MolPort library. In the Table, the following information is contained: compound number, 2D structure, 
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MolPort-ID, docking score, SMILES code, cLogP value, 2D ring fragment structure, and cluster by ring 
fragments. 

Table S2 shows the most promising potential docking hits for the CaBdf 1 BD1 target 

that were identified through molecular docking studies conducted with the MolPort 

natural products library. Each hit includes its 2D structure, MolPort-ID, docking 

score, SMILES code, cLogP value , and ring fragments.  

 

Structure MolPort-ID SMILES Docking 
score cLogP Ring 

fragments 

 

MolPort-
009-763-
100 

CC(c(ccc(OC
C(N(CCN1)C1
=O)=O)c1C)c
1O1)=CC1=O 

-8,234 1,039 
 

 

MolPort-
009-762-
489 

Cc(c(O1)c(cc2)C(C)
=C(C)C1=O)c2OCC
(N(CCN1)C1=O)=O 

-8,201 1,479 
 

 

MolPort-
008-348-
806 

O=C(COc(cc1)cc(O
2)c1C=CC2=O)N(C
CN1)C1=O 

-8,332 0,617 
 

 

MolPort-
008-348-
689 

Oc1cccc(C[C@@H]
(c(cccc2)c2N2)C2=
O)c1 

-9,198 2,544 
 

 

MolPort-
005-909-
990 

CC(c(c(OC)cc(OC)
c1)c1O1)=C(CC(N
(CCN2)CC2=O)=O
)C1=O 

-8,447 0,533 
 

 

MolPort-
005-330-
758 

O=C(CN(C=Nc1c2c
ccc1)C2=O)N(CCN
1)C1=O 

-8,491 0,003 
 

Table S2 - The most promising docking hits for CaBdf 1 BD1 were identified by molecular docking with the 
MolPort natural products library. In the Table, the following information is contained: compound number, 2D 
structure, MolPort-ID, docking score, SMILES code, cLogP value, 2D ring fragment structure, and cluster by 
ring fragments. 

 

Summary of all predicted hits for the target Candida albicans bromodomain 
factor 1 bromodomain 2 
Table S3 shows the most promising potential docking hits for the CaBdf 1 BD2 target 

that were identified through molecular docking studies conducted with a subset of 

the MolPort library. Each hit includes its 2D structure, MolPort-ID, docking score, 

SMILES code, cLogP value, and ring fragments. 
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Structure MolPort-ID SMILES Docking 
score cLogP Ring 

fragments 

 

MolPort-
038-415-
941 

Nc1nc([C@H](C2)
C[C@H]2O)cc(NC
C(F)(F)F)n1 

-10,002 1,332 
 

 

MolPort-
001-026-
787 

NC(c(cccc1)c1NC(
Nc1ccccc1)=S)=O -9,890 2,285 

 

 

MolPort-
007-611-
328 

Cc(cc1)ccc1Nc1c(-
c(cc2)ccc2O)nc2[n]
1cccc2 

-9,706 4,232 
 

 

MolPort-
002-978-
614 

Oc(cc1)ccc1-
c1c(Nc2ccccc2)[n](
ccnc2)c2n1 

-9,599 2,888 
 

 

MolPort-
002-979-
075 

Cc1cccc(Nc2c(-
c(cc3)ccc3O)nc3nc
cc[n]23)c1 

-9,356 3,491 
 

 

MolPort-
002-511-
602 

NC(c1cc(-
c(cc2)ccc2O)nc2cc
ccc12)=O 

-9,325 2,467 
 

 

MolPort-
035-773-
380 

CN(C)c(nc(cc1C(F)
(F)F)-
c(cc2)ccc2O)c1Cl 

-9,204 3,765 
 

 

MolPort-
001-740-
277 

O[C@@H](C1)[C
@@H](c(cc2)cc(O)
c2O)Oc2c1c(O)cc(
O)c2 

-8,969 1,509 
 

 

MolPort-
003-997-
631 

Oc(cc1)ccc1-
c1c[n](CCS2)c2n1 -8,908 1,845 

 

 

MolPort-
019-801-
991 

CC(C)c1nc(C(F)(F)
F)nc(-
c(cc2)ccc2O)c1 

-8,863 3,480 
 

 

MolPort-
003-665-
792 

O[C@H](C1)[C@
@H](c(cc2)ccc2O)
Oc2c1c(O)cc(O)c2 

-8,786 1,854 
 

 

MolPort-
003-665-
797 

Oc(cc1)ccc1C(Oc1
c2ccc(O)c1)=CC2=
O 

-8,758 2,681 
 

 

MolPort-
000-344-
658 

Oc(cc1)ccc1N(C(/C
(\S1)=C/c2ccccc2)
=O)C1=O 

-8,739 2,892 
 

 

MolPort-
000-344-
747 

Oc(cc1)ccc1N(C(/C
(\S1)=C/c2cnccc2)
=O)C1=O 

-8,718 1,891 
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MolPort-
047-793-
342 

Oc(cc1)ccc1-
c1ncc[n]1[C@@H]
1CSCC1 

-8,657 1,995 
 

 

MolPort-
046-749-
795 

OCC1(CO)[C@@H
](C2)[C@H]1CN2C
(c(ccc(O)c1)c1F)=
O 

-8,644 0,562 
 

 

MolPort-
000-738-
714 

Oc(cc1)ccc1-
c1nc2ccccc2nc1 -8,548 2,502 

 
Table S3 - The most promising docking hits for CaBdf 1 BD2 were identified by molecular docking with the 
subset of MolPort library. In the Table, the following information is contained: compound number, 2D structure, 
MolPort-ID, docking score, SMILES code, cLogP value, 2D ring fragment structure, and cluster by ring 
fragments. 

 

Table S4 shows the most promising potential docking hits for the CaBdf 1 BD2 target 

that were identified through molecular docking studies conducted with the MolPort 

natural compound library. Each hit includes its 2D structure, MolPort-ID, docking 

score, SMILES code, cLogP value, and ring fragments. 

 

Structure MolPort-ID SMILES docking 
score cLogP Ring 

fragments 

 

MolPort-
001-732-
545 

Oc1cc(-c2nc(-
c3ccccc3)c(-
c3ccccc3)[nH]2)ccc
1 

-9,024 4,618 
 

 

MolPort-
000-672-
474 

Oc1ccc([C@@H](N
c2c3cccc2)NC3=O)
cc1 

-9,022 1,444 
 

 

MolPort-
004-065-
770 

COc(c(OC)c1)cc2c1
N=CN(CC(N)=O)C2
=O 

-8,999 -0,594 
 

 

MolPort-
009-758-
267 

C=C1N(CC(N)=O)C
Cc2c1cccc2 -8,965 1,203 

 

 

MolPort-
000-672-
474 

Oc1ccc([C@H](Nc2
c3cccc2)NC3=O)cc
1 

-8,935 1,444 
 

 

MolPort-
001-759-
343 

NC(Cc1c[nH]c2c1cc
cc2)=O -8,927 0,784 

 

 

MolPort-
000-005-
166 

[O-
]C(c(cc1)cc(N2)c1N
(CCC1)[C@@H]1C
2=O)=O 

-8,890 -1,731 
 

Table S4 - The most promising docking hits for CaBdf 1 BD2 were identified by molecular docking with the 
MolPort natural compound library. The Table contains the following information: compound number, 2D 
structure, MolPort-ID, docking score, SMILES code, cLogP value, 2D ring fragment structure, and cluster by 
ring fragments. 
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Summary of all predicted hits for the target Candida auris bromodomain  
Table S5 shows the most promising potential docking hits for the C. auris BD that 

were identified through molecular docking studies conducted with the MolPort 

natural compound library. Each hit includes its 2D structure, MolPort-ID, docking 

score, SMILES code, cLogP value, and ring fragments. 

 

Structure MolPort-ID SMILES docking 
score cLogP Ring 

fragments 

 

MolPort-
008-348-
673 

O=C([C@H]1Cc2c(
cc[nH]3)c3ccc2)Nc2
c1cccc2 

-9,104 2,929 
 

 

MolPort-
000-840-
542 

CC(Nc(cc1)c2cc1N)
=CC2=O 

-8,935 0,851 
 

 

MolPort-
002-521-
114 

CC(CCC1=C(C)Nc(
ccc(N)c2)c2C1=O)=
O 

-8,864 1,601 
 

 

MolPort-
019-950-
253 

C[n]1c2cccc(C(Nc3
c(cc[nH]4)c4ccc3)=
O)c2cc1 

-8,856 3,019 
 

Table S5 - The most promising docking hits for C. auris were identified by molecular docking with the MolPort 
natural compound library. In the Table, the following information is contained: compound number, 2D structure, 
MolPort-ID, docking score, SMILES code, cLogP value, 2D ring fragment structure, and cluster by ring 
fragments. 

 

 


