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Abstract

The ability to manipulate the movement of individual vortices and to achieve ultrahigh vortex

velocities is a subject of extensive investigations, triggered by the longing to use vortices in

novel fluxonic devices where vortices would replace the role of electrons used in traditional

nano- and microelectronics and by the longing to enhance superconducting single-photon de-

tectors. In this regard, we employ a highly accessible method to study the vortex dynamics

using current-voltage (I-V ) curves measurements. Particularly the shape of the curves and

the presence of an abrupt current-biased jump into a highly resistive state, the flux flow in-

stability, serve as a method to extract information about the vortex dynamics, the maximal

vortex velocity v∗, and the relaxation of quasiparticles (unpaired electrons) in a superconduc-

tor. Here, we investigated how the thickness of an amorphous MoSi film and a polycrystalline

Nb film influences its superconducting parameters and compare the results with known mod-

els. We have observed that whilst most superconducting parameters worsen with decreasing

thickness, v∗ and the speed of relaxation improves. Therefore, films should be chosen to

have middle range thicknesses depending on the intended use and material. The study has

also shown that the currently employed models to derive the relaxation time τϵ only poorly

describe real experimental data in thin films. We ascribe this to the neglect of local flux-flow

instability and edge barrier effects in these models. To justify this, in the second part of this

thesis, we investigate 15-nm thick MoSi films with rough and smooth edges produced by laser

etching and milling by a focused ion beam. The dependency of the relaxation time on the

edge is an indicator that the relaxation time derived using the currently employed models is

not an intrinsic property as would be desired. The films with smooth edges lead to between 10

to 20 times larger v∗, a factor of 3 larger critical currents, and a factor of couple tenths shorter

relaxation times. In addition, we observed an improvement in the fits of the models for the

films with smooth edges for which edge barrier effects should be less prominent. In the very

last section of this thesis, artificially created slits in the edges of 15-nm thick MoSi films were

studied. Firstly, the unique vortex dynamics of such structures are described by studying

transverse voltage both analytically and experimentally. Secondly, kinks in I-V curves are

used to determine the number of fluxons crossing the slitted structures in order to precisely

determine v∗ at low magnetic fields. Our findings in the scope of this thesis are essential

to improve how superconducting material parameters are derived from I-V measurements in

thin films.
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Zusammenfassung

Die Fähigkeit, die Bewegung einzelner supraleitender Wirbel zu manipulieren und ultrahoch

Wirbelgeschwindigkeiten zu erreichen, ist Gegenstand umfangreicher Untersuchungen, um

solch supraleitende Wirbel in neuartigen fluxonischen Bauelementen zu verwenden, in denen

Wirbel die Rolle von Elektronen in der herkömmlichen Nano- und Mikroelektronik ersetzen

und um supraleitende Einzelphotonendetektoren zu verbessern. In diesem Zusammenhang

setzen wir eine leicht zugängliche Methode zur Untersuchung der Wirbeldynamik ein, in-

dem wir Stromspannungskurven (I-V ) messen. Insbesondere die Form der Kurven und das

Vorhandensein eines abrupten stromabhängigen Sprungs in einen hochohmigen Zustand, die

Flussstrominstabilität, dienen als Methode, um Informationen über die Wirbeldynamik, die

maximale Wirbelgeschwindigkeit v∗ und die Relaxation von Quasiteilchen (ungepaarte Elek-

tronen) in einem Supraleiter zu gewinnen. In dieser Arbeit haben wir untersucht, wie die

Dicke eines amorphen MoSi-Films und eines polykristallinen Nb-Films die supraleitenden

Parameter beeinflusst und die Ergebnisse mit bekannten Modellen verglichen. Wir haben

festgestellt, dass sich die meisten supraleitenden Parameter mit abnehmender Dicke ver-

schlechtern, während sich v∗ und die Relaxationsgeschwindigkeit verbessern. Daher sollten

je nach Verwendungszweck und Material Schichtdicken im mittleren Bereich gewählt werden.

Die Studie hat auch gezeigt, dass die derzeit verwendeten Modelle zur Ableitung der Relax-

ationszeit τϵ reale experimentelle Daten in dünnen Filmen nur unzureichend beschreiben. Wir

führen dies auf die Vernachlässigung lokaler Flussstrominstabilitäten und Randbarriereeffekte

in diesen Modellen zurück. Um dies zu rechtfertigen, untersuchen wir im zweiten Teil dieser

Arbeit 15-nm dicke MoSi-Schichten mit rauen und glatten Kanten, die durch Laserätzen

und Fräsen mit einem fokussierten Ionenstrahl hergestellt wurden. Die Abhängigkeit der

Relaxationszeit von der Beschaffenheit der Kante ist ein Indikator dafür, dass die mit den

derzeit verwendeten Modellen abgeleitete Relaxationszeit keine intrinsische Eigenschaft ist,

wie es wünschenswert wäre. Die Filme mit glatten Kanten führen zu 10 bis 20 Mal größeren

v∗, um den Faktor 3 größeren kritischen Strömen und um den Faktor von einigen Zehnteln

kürzeren Relaxationszeiten. Außerdem beobachteten wir eine Verbesserung der Anpassun-

gen der Modelle für die Filme mit glatten Kanten, für die Kantenbarriereeffekte weniger

ausgeprägt sein sollten. Im allerletzten Abschnitt dieser Arbeit wurden künstlich erzeugte

Schlitze an den Kanten von 15 nm dicken MoSi-Filmen untersucht. Zum einen wird dabei die

besondere Wirbeldynamik solcher Strukturen beschrieben, indem die Transversalspannung

sowohl analytisch als auch experimentell untersucht wird. Zum anderen werden die Knick-
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stellen in den I-V -Kurven zur Bestimmung der Anzahl der Fluxonen, welche die geschlitzten

Strukturen durchqueren, verwendet, um v∗ bei niedrigen Magnetfeldern genau zu bestimmen.

Unsere Erkenntnisse im Rahmen dieser Arbeit sind wichtig, um die Ableitung von Parametern

supraleitender Materialien aus I-V - Messungen in dünnen Schichten zu verbessern.
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Chapter 1

Introduction

Since the year 1911, when Kamerlingh Onnes discovered the unexpected behavior of close

to zero electrical resistivity whilst performing measurements on mercury [1], which is now

known to be one of the signature characteristics of superconductors, superconductors can be

seen used in a broad range of applications in various fields. The ability of superconductors

to transfer current with virtually no losses makes them a great material for coil assembly to

be used in very effective electromagnets [2, 3], while the ability of superconductors to expel

magnetic field from their interior is essential, for example, for the working principle of levi-

tating trains [4]. The quantum condition between an applied electromagnetic wave frequency

and an electric voltage through a Josephson junction [5] (a thin, electrically insulating bar-

rier between two superconducting electrodes) provides the perfect tool for the preparation

of accurate and stable voltage standards [6, 7]. Furthermore, the superconducting magnetic

flux quantization [8, 9] along with the Josephson effect are utilized for the fabrication of

very precise magnetometers, SQUIDs (abbreviated from Superconducting Quantum Inter-

ference Device) [10], and the sharp transition from low to high voltage when moving from

the superconducting state to a higher conducting state is the underlying principle utilized in

superconducting single-photon detectors (SSPDs) [11].

In this work, we will be exploring yet another important characteristic of a specific group of

superconductors, namely the Shubnikov state present in the so-called type II superconductors

[12]. The indicator of the Shubnikov phase is the appearance of spatially confined magnetic

flux quanta surrounded by superconducting circular currents in the presence of a magnetic

field, Abrikosov vortices [13]. In the 1960s, experiments supported by theory introduced

the concepts of the ”flux flow” [14, 15], the movement of Abrikosov vortices through the

superconductor under the action of the current-driven Lorentz force. Contrary to the efforts

of many to pin vortices in order to preserve the nondissipative state in higher transport

currents, in recent years, as well as in this work, the study of guided movement of vortices

and of achieving high vortex velocities is of interest. Although moving vortices are responsible

for energy dissipation, and at high velocities they are the activators of the flux-flow instability

(FFI) [16], an abrupt jump into the normal conducting state, their movement also unleashes

1



new interesting applications and phenomena. The ability to manipulate the movement of

individual vortices similar to electrons in nano- and microelectronics can be utilized to design

fluxonic devices [17–20]. In order to develop these new fluxonic devices one must first learn

a lot about the properties and dynamics of these objects.

A considerable part of this work is devoted to the study of the vortex dynamics via

current-voltage (I-V ) curve measurements accompanied by time-dependent Ginzburg-Landau

(TDGL) simulations. Many techniques, like the scanning tunneling microscopy (STM) [21],

the magnetic force microscopy (MFM) [22] or the magneto-optical imaging [23], to name a

few, make it possible to directly visualize static or slowly moving superconducting vortices,

yet these techniques are deficient when trying to observe high-speed vortices. Despite recent

striking advances in the development of a technique that allows one to directly observe the

properties of fast-moving vortices, nanoscale SQUID-on-tip (nanoSOT) microscopy [24], its

availability to the majority of researchers is limited. However, a technique broadly available is

the technique of measuring I-V curves. In these curves, simply explained, a voltage increase

is directly linked to the movement of a vortex through the superconductor. A more detailed

description of an I-V curve and its meaning is given in the theory part of this thesis in Section

2.2.3. In addition, the presence of an FFI in the I-V curve presents a way to calculate the

highest achievable vortex velocity v∗ and the quasiparticle energy relaxation time τϵ, both of

which are of great interest.

Vortices moving with v∗ higher than a certain threshold velocity vth of possible excita-

tions in a given system can trigger Cherenkov-like responses. Previously explored were the

generation of sound [25, 26], and in superconductor/ferromagnet heterostructures generation

of spin waves [27, 28] by fast moving vortices. It is therefore necessary to search for materials

and ways to achieve high enough vortex velocities, on the order of a few km/s.

The second referred to derivable parameter, τϵ, plays an essential role in the field of

superconducting detectors. The relaxation processes, of which electron-phonon scattering and

phonon escape are the most relevant, described by τϵ are directly related to the performance

of these detectors. The reset time, the time the detector needs to detect another signal, for

SSPDs [29, 30], as well as hot-electron bolometers (HEB) [31, 32] is strongly dependent on

τϵ. A good candidate for a superconducting detector has therefore a very short τϵ.

The key finding of this work is the experimental observation and discussion of the effects of

sample thickness and sample edge quality on vortex dynamics. Samples of amorphous molyb-

denum silicon (MoSi) and polycrystalline niobium (Nb) were prepared in different thicknesses.

As a result of experiments on the listed samples, we were able to put together tables summa-

rizing their superconducting parameters, which are influenced by their preparation method,

crystallization, and geometry. From the study performed on this data, we observed that the

currently often utilized FFI models cannot replicate what is seen in the experiments on thin

films. We theorize what might be the reason for this by referring to the edge-controlled FFI

model [33] developed by Vodolazov. In this model, the author theoretically describes the

local current density maxima near the edge of a superconducting strip. This region allows
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for vortex entry due to local suppression of superconductivity and lowering of the entrance

barrier. It is this local suppression of superconductivity that leads to a local FFI. In previous

models, FFI was always considered as a global phenomenon. We assume that in thin films the

local FFI plays a crucial role. Hence, we cannot fit the experimental data of thin films with

non-local global models. To put this to the test, we fabricated an environment, where we

suppose the local FFI to be suppressed, which should result in better fits of non-local models.

For this purpose, two MoSi samples with two different edge qualities were fabricated. One

sample was laser cut, creating a rather rough edge, while the edges of the second sample were

smooth because of preparation with focused ion beam (FIB) milling. A difference in the onset

of the FFI proved that the sample with the rough edge had a local domain with high density

and high temperature that locally triggered the FFI. We also observed an improvement in

fitting the non-local models to the data of the sample with the smooth edge.

In the very last part of the thesis two additional phenomena are discussed that followed

from the carried out work on vortex dynamics. First is the analytical and experimental

work on transverse voltages in slitted superconductors, and second is a method to count

vortices at zero magnetic fields. At higher magnetic fields, one can estimate the number of

vortices simply by comparing the intervortex distance a as defined by Abrikosov [13] and

the sample geometry. It is important to mention that the intervortex distance, if calculated

from the external magnetic field, omits the fact that vortices are also being created through

the self-field generated by the transport current. At higher magnetic fields these estimates

are sufficient, but at low and zero magnetic fields, where the number of vortices that are

created by the self-field is in the same order of magnitude as the number of vortices created

by the external field, one needs to look for additional methods to calculate the number of

vortices. The experiments on slitted superconductors were inspired by the theoretical work

of Aslamazov and Larkin [34] on kinks in I-V curves of superconducting bridges. Here, they

explained how these steps appear everytime the number of vortices in the sample is increased

by one. We observed such kinks in slitted superconductors. This allows one to count the

vortices present in the sample in low magnetic fields during the FFI event and improve the

way one calculates the maximal vortex velocity v∗.

The thesis is concluded with a summary of the obtained results and statements, and with

an outlook to the future of vortex dynamics.
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Chapter 2

Theoretical background

Despite superconductivity being first observed by Onnes in 1911 [35], it took nearly 50 years

to develop the first microscopic theory. Proposed by Bardeen, Cooper and Schrieffer, today

the theory is known after its founders as the BCS theory [36]. The BCS theory extends the

calculation of the Cooper problem. The Cooper problem solves the Schrödinger equation for

two electrons just outside the Fermi level in the presence of an attractive pairing potential

between these two electrons. As a result, the calculation shows that the attractive potential

is responsible for creating a bound state, the superconducting state, with an energy below the

energy 2EF , which is the energy of the original ground state of two unpaired electrons. This

makes the pairing energetically favorable. The two paired electrons are collectively called a

Cooper pair, and the unexpected attractive force between two electrons is understood to be

mediated via phonon interactions. Only electrons near the Fermi surface and with opposite

spin create Cooper pairs. The total spin of the pair is therefore zero, and the pair behaves

boson-like. Many pairs occupy the same quantum state, which is then described by a single

macroscopic wave function ψ = |ψ|eiϕ, with amplitude |ψ| and phase ϕ. The superconducting

state is thus protected against a collapse into the normal state by the existence of a couple

meV wide gap around the Fermi level, where there are no states that can be occupied by

electrons. It is also this gap and the macroscopic coherence between a large number of

electrons that prevents low-energy excitations and scattering, which otherwise lead to energy

dissipation and non-zero electrical resistivity. For that reason, superconductors are ideal

conductors. The gap is greatest at temperature T = 0 and with increasing temperature

decreases because the binding energy weakens with temperature, until a critical temperature

TC is reached, where the gap vanishes completely and superconductivity disappears. The

energy gap at T = 0 can be approximated using the following:

∆(0) ≈ 1.76kBTC , (2.1)

where kB is the Boltzmann constant.

The existence of a superconducting state is further limited by the magnetic field strength.

The way a superconductor behaves in a certain magnetic field categorizes it into the group

of type I or type II superconductors.
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2.1 Type I and II superconductors

A type I superconductor is characterized and limited by a critical magnetic field HC(T ).

While the values of an external magnetic field are lower than HC(T ), the external magnetic

field Hout is being fully expelled from the interior of this type of superconductor. This effect

was discovered in 1933 and received the name Meissner-Ochsenfeld (MO) effect [37]. The MO

effect uniquely characterizes the superconducting state. Uniquely, because solely the property

of superconductors being ideal conductors does not explain the expulsion of the field. In fact,

ideal conductors actually trap magnetic flux inside. The presence of the Meissner state has

also the consequence that the superconducting state is a thermodynamic equilibrium state.

In a H-T diagram, the resulting state is the same as the state for the same set of H-T

parameters independent of the path along which this point was reached.

The field expulsion is mediated via the occurrence of circulating shielding currents that

flow on the surface. These shielding currents generate a magnetic field, similar to that in

an electric coil, that is directed opposite to the external magnetic field. Considering that

the internal field Hint = 0 = Hout +M , the magnetization is equal to the negative of the

applied field, which means that superconductors behave as perfect diamagnets with magnetic

susceptibility χ = −1.

The shielding currents flow only within a specific depth, the London penetration depth

λL, from the surface. It was the London brothers in 1935 that took this depth of shielding

currents into account in their phenomenological model, and they were the first to explain the

MO effect [38]. Their calculations, based on the Drude model for electrical conductivity of

which the scattering term for superconducting electrons was omitted, led to the establishment

of two London equations. The London equations explain the shielding of time-varying as well

as static magnetic fields. The magnetic field has an exponential decrease from the surface of

the superconductor given by: H(x) = H(0)e(−x/λL), with x being the depth coordinate (x = 0

corresponds to the surface). In conclusion, the London brothers explained the existence of

the MO effect, but also showed that the magnetic field penetrates a small distance into the

superconductor in spite of the MO effect.

Once the external magnetic field is equal to HC(T ) a phase transition, from the super-

conducting state to a normal conducting state, takes place. At HC(T ) the energy advantage

of the superconducting state given by the condensation energy GC , is lost due to the need

for high energy to build up shielding currents, the magnetization energy GM . HC(T ) is well

approximated by a parabolic law, HC(T ) ≈ HC(0)(1− (T/TC)
2). Figure 2.1 (a) depicts the

phase diagram of a type I superconductor.

In contrast, type II superconductors are described by two such critical fields, a lower

critical field HC1(T ) and an upper critical field HC2(T ). Bellow HC1(T ) the type II super-

conductor experiences a full expulsion of the magnetic field and is in the Meissner state.

However, cross-over of the HC1(T ) causes magnetic flux quanta to penetrate into the interior

of the superconductor. This phase between the two critical fields is called the Shubnikov
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Figure 2.1: Magnetic phase diagrams of type I (a) and type II (b) superconductors portraying

the Meissner, Shubnikov and normal phase. Inside each phase an insert of a superconductor

in this phase is depicted. Blue arrows represent the magnetic field lines.

phase [12]. The magnetic flux quanta, further referred to as vortices, carry a quantized flux:

Φ0 = h/(2e) = 2.07× 10−15 Tm2, (2.2)

and are surrounded by supercurrent shells, keeping the rest of the material superconducting.

They are arranged in a triangular-shaped lattice with lattice spacing a ≃ 1.07
√

Φ0
B . This

lattice is widely known as the Abrikosov lattice [13], named after Aleksei Abrikosov, who

described how these vortices can penetrate type II superconductors. Only once the external

magnetic field increases above HC2(T ) a transition to a normal conducting state takes place.

Figure 2.1 (b) shows the phase diagram of a type II superconductor.

If it is energetically favorable for a material to let in vortices, and hence be a type

II superconductor, is given by the characteristic value of the Ginzburg-Landau parameter

κ. Owing to the fact that the Rutgers formula for phase transitions of the second order

describes the discontinuity in the specific heat of superconductors at T = TC , in the year 1950

Ginzburg and Landau (GL) developed a theoretical model based on the Landau theory for

phase transitions of the second order [39]. In this theory, the free energy is written as a series

expansion of functions of even power of an order parameter. The chosen order parameter must

be non-zero under the critical temperature and zero above the critical temperature. Ginzburg

and Landau therefore chose the absolute value of the superconducting wave function, |ψ|, to
be the order parameter in their new theory. The absolute value of the superconducting

wave function squared is equal to ns, the density of the superconducting particles. This

parameter originates from the two-fluid model where with ns = 1 one describes a state where

all particles are superconducting, whilst the density of normal conducting particles is given

as nn = 1− ns. Minimizing the free energy in the GL-theory at zero external field gives rise

to the proportionality expression ψ ∝ e
±i x

ξ0 , where ξ0 is the GL-coherence length. Therefore,

the GL-coherence length describes the decrease of ns approaching the surface. Both of the

mentioned characteristic superconducting parameters λL and ξ0 are depicted in figure 2.2

(a,b) at a vacuum/superconductor boundary. We compare ξ0 with the mean electron free
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Figure 2.2: Characteristic superconducting parameters λL and ξ0 for a type I (a) and type

II (b) superconductor on the barrier between vacuum (light blue) and the superconductor

(x>0). Further depicted is the wall energy α for type I (c) and type II (d) as the sum of the

positive magnetization energy GM and the negative condensation energy GC . In (e) are the

characteristic parameters shown for a vortex. The gray area corresponds to the vortex core

and the blue arrows are the circulating currents.

path l to differentiate between dirty and clean superconductors. If ξ0 < l the superconductor

is in the clean limit, if ξ0 > l it is in the dirty limit.

The GL-theory further introduces the domain-wall energy α needed to create an interface

that separates the normal and superconducting regions. A positive domain-wall energy de-

scribes a stable equilibrium of volumes of two phases and describes type I superconductors.

It was only Abrikosov that first suggested the possibility of a negative domain-wall energy

to explain type II superconductors [13]. In this case, it is energetically favorable for the

superconductor to increase the number of interfaces by letting vortices in. This domain wall

energy is determined as the sum of the positive magnetization energy GM and the negative

condensation energy GC . The magnetization energy for Hint(x) = 0 is
µ0H2

C
2 and falls to

zero with a raising field toward the surface. The condensation energy for ns(x) = 1 is given

as −µ0H2
C

2 and approaches zero with a decrease in ns. This gives the condensation energy a

dependence on ξ0 and the magnetization energy a dependence on λL. As can be observed

from the example in figure 2.2 (c,d), careful calculation is required to calculate the crossover

point from negative to positive domain-wall energy. This crossover was found to occur at

κ = λL/ξ0 = 1/
√
2. With κ smaller than 1/

√
2 we recognize type I superconductors and with

larger than 1/
√
2 type II superconductors.

The characteristic superconducting parameters λL and ξ0 also play a role in the description

of a single vortex as seen in figure 2.2 (e). The GL order parameter is zero on the vortex axis

and is suppressed around the axis with the radius r of the order of ξ0. This means that at

the core of the vortex there are normal conducting electrons. The magnetic field of a vortex
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core has a logarithmic decrease ln(λ/r) when the distance r from its axis is between ξ0 and

λL, and an exponential decrease e(−r/λ) in large distances from the cores’ center.

ξ0 and λL can be calculated using:

ξ0 ≈

√
ℏD
∆(0)

(2.3)

and

λL [m] ≈ 1.05 10−3

√
ρ [Ωm]

TC [K]
, (2.4)

where D is the diffusion constant and ρ is the normal resistivity. The diffusion coefficient can

be calculated from [40]:

D = − 1.097

dBC2/dT
. (2.5)

One shall not forget that the validity of the GL-theory is limited to close to TC temper-

atures.

2.2 Vortex dynamics

In this, as well as all the following chapters, we will be dealing with type II superconductors.

Type II superconductors make up the majority technically relevant superconductors. Pre-

viously we have already mentioned two critical parameters that limit superconductivity, the

critical temperature TC and the critical field HC(T ). Since superconductors major attrac-

tiveness for industry comes from the never ending flow of current due to the zero resistivity,

it is important to look at the superconductivity limit caused by current flowing through a

superconducting sample. The Silsbee hypothesis explains how the flowing current produces

a magnetic field that in addition to the external magnetic field, can exceed the critical field

HC(T ) and break the superconducting state. The current density at which it comes to this

breakage is called the depairing current density Jdep(T,B). However, in type II superconduc-

tors we recognize a raise in resistivity at current densities well before Jdep(T,B) is reached.

This was recognized by Anderson to be a consequence of the vortices moving around in the

sample and dissipating energy [41]. Scientists therefore invest a lot of energy into new ways

how to pin vortices down and limit their movement, hence pushing the zero resistivity state

into higher and higher current densities. In this thesis, on the other hand, we are interested

in enabling the movement of vortices and study their velocity, motion patterns and trajectory

manipulation. The study of vortex dynamics is crucial to understanding how vortices can

be used in future fluxon devices. The major interactions contributing to the complex dy-

namics of vortices are the vortex-current interaction, vortex-defect attraction, vortex-vortex

repulsion, and vortex-surface interaction.
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Figure 2.3: A schematic sketch of possible vortex interactions.

2.2.1 Vortex interactions

The schematic sketch in figure 2.3 is a visual guide for all interactions to follow.

Vortex-current interaction

An electric current of density j passing through a type II superconductor causes the raise of a

Lorentz-like force [42] (for simplicity further refered to as just the Lorentz force) that acts on

each individual vortex and moves them in a direction that is perpendicular to the quantized

magnetic field of the vortex flux lines and the applied electric current. The Lorentz force on

a single vortex is expressed as FL = j ×Φ0. The movement of vortices in turn generates an

electric field E = −v×B, where v is the average velocity of all vortices and B is the magnetic

induction in the sample (which is approximately the same as the external magnetic field). The

electric field E and the applied electric current I are parallel, which leads to electric losses.

This means that the flowing current will experience losses and will not flow infinitely long.

The movement of vortices in steady motion is termed flux flow, and the resulting resistivity

due to this motion is called flux flow resistivity ρf . If no pinning is available, the Lorentz

force is only opposed by friction of the medium, j × Φ0 = ηv, where η is the viscous drag

coefficient. The flux flow resistivity is then

ρf =
E

J
=
BΦ0

η
. (2.6)

Bardeen and Stephen (BS) used a rather simplified model to calculate the viscous drag

coefficient from the dissipation of energy of the moving vortex core [43]. In their model, they

considered a fully normal conducting vortex core abruptly switching to fully superconducting

state at radius a = ξ0. Substituting their result for η in the equation 2.6 for flux flow

resistivity, one obtains the BS flux flow resistivity

ρBS = ρn
B

HC2
, (2.7)
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where ρn is the resistivity of the normal conducting state. The viscous damping accounts for

an Ohmic conductivity, which means that the voltage increases linearly with current.

Vortex-defect interaction

The energy ϵ needed for a vortex to form inside a superconductor has two contributions. The

self-energy of a flux line per unit of length ϵ1 and the interaction energy ϵ12. In the scenario

where an entire flux line, including circulating currents, lies within a normal conducting area

(nl-area), the entire energy ϵ multiplied by the volume of the flux line lying inside the nl-area

VD is spared. The energy saved is ∆E = ϵVD. This makes the normal conducting spot a

preferred site for the flux line compared to the superconducting matrix. The force with which

the line is held at this spot is called the pinning force FP and it is proportional to ∆E/λL .

Now we consider a different scenario, where the nl-area is smaller and only the flux line

core fits inside but the circulating currents do not. In this case, it is the condensation energy

GC that is spared. The saved energy is ∆E = GCVD and FP is proportional to ∆E/ξ0.

Not only nl-areas, but also areas with local decrease in superconducting parameters act as

preferred pinning sites. Defects like impurities, holes, grain boundaries, thickness variations,

and other spatial inhomogeneities can cause these local variations, many of which can be

created purposefully and in a controlled manner. The pinning force is an opposing force to

the Lorentz force and can guide vortices in a chosen direction or anchor vortices to avoid

energy dissipation. The depinning current density J∗
C is now described as the maximum

current density allowed before the vortices start to move and the resistivity starts to increase

from zero, FP = FL = J∗
C × B [44]. If the pinning force is strong enough, it can preserve

the perfect conductor properties even at high driving currents. However, thermally activated

hopping from one pinning site to another can occur. This effect is called the flux creep. It

should also be mentioned that the elasticity of the flux line comes into play when pinning

to point defects, for instance. This makes the study of pinning mechanisms an extremely

difficult field.

Vortex-vortex interaction

The interaction energy ϵ12 between vortex 1 at position r1 and vortex 2 at position r2 re-

sults from the field of vortex 1 being present at the position of vortex 2 and vice versa.

The interaction is repulsive, similar to two wires with current running through them in the

same direction. The acting interaction force F12 on vortex 1 can be calculated as the spatial

derivation of the interaction energy. We obtain F12 = J2(r1) ×Φ0, where J2 is the super-

current density due to vortex 2s’ field at position of vortex 1. In an array of vortices, the

repulsive forces between them are the reason for the formation of the triangular Abrikosov

lattice [13], as this leads to the greatest separation between neighbors. The vortex mutual

repulsion causes them to move in bundles once the Lorentz force exceeds the pinning force

in a certain volume. In the case of a vortex and antivortex that have opposite directions of

field, this force is attractive.
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Vortex-surface interaction

The forces that act on a vortex trying to enter or exit a superconductor have two different

natures [45]. The first force can be understood on the basis of the concept of an imaginary

antivortex. At the surface, the supercurrent perpendicular to the surface must be zero to

ensure continuity. This can be ensured by mirroring a vortex at the surface into an antivortex

with Φ∗ right outside the surface. As mentioned above, the vortex and antivortex attract

each other, making the first part of the vortex-surface force FS1 attractive. The second force

is due to the penetration of the external field Hext into the surface at the edges. The field is

shielded by a superconducting circulating current js. This results in a repulsive vortex-surface

force FS2. The joint forces create an energy edge barrier for flux motion in both directions,

in and out of the superconductor, at the surface boarder. For x≫ λ and high external fields

the repulsive force dominates, whilst at H = 0 only the attractive force takes action. The

barrier has as a consequence that vortices may not enter the interior at the GL calculated

HC1, but only at a certain higher field HS , once the attractive force is dominated by the

repulsive one. Exiting from the superconductor, when an external field is being lowered, on

the other hand, is only possible at zero external magnetic fields. The delayed escape can be

observed as a hysteresis in magnetization measurements.

Note that surface defects can locally exceed the HS , lowering the edge barrier, and hence

act as points of preferred entry for the vortices.

2.2.2 Langevin equation

Using a single vortex approximation, one can describe certain essential physical phenomena

resulting from moving vortices very well. Calculations based on the Langevin equation offer

a rather simple technique but can address various dynamic states. We consider the vortex

being subjected to all the forces we introduced in the previous section and a fluctuating

(”random”) force in the form of a white noise thermal force Fth. These forces are opposed by

the already mentioned friction and a Magnus force. The Magnus force takes effect because

of the circulating currents around a vortex moving through the medium. The Magnus force

causes a transverse motion, giving rise to Hall conductivity. The final Langevin equation for

a single vortex is then given as:

η0v + αΦ0 × v = FL + FP + F12 + Fth, (2.8)

where α is the Hall coefficient. This equation allows for instance to observe effects in nano-

engineered pinning sites or slits.

2.2.3 Current-voltage curves

A convenient method to make observations and conclusions about the dynamics in experiment

is the measurement of current-voltage curves. In the section on vortex-current interactions

we learned that moving vortices cause an increase in the electric field. This can be observed
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Figure 2.4: A typical current-voltage curve for a type II dirty superconductor. The regions

are: I.) the pinned vortex state, II.) the linear flux flow regime, III.) the nonlinear flux flow

regime, IV.) the FFI and V.) the normal conducting state.

as an increase in voltage since V = −El, where l is the distance between voltage contacts.

Figure 2.4 depicts a typical current-voltage curve of a dirty type II superconductor. We

recognize the following sections: I.) the pinned vortex state ending at J∗
C , II.) the linear flux

flow regime with V ≈ ρf lj, III.) the nonlinear flux flow regime, IV.) the flux-flow instability

at coordinates I∗-V ∗, and V.) the normal conducting state with V ≈ ρnlj.

The linear regime is an quasi-equilibrium state, but moving vortices initiate non-equilibrium

phenomena connected to various relaxation processes. These phenomena become stronger

and visible in regions III.) and IV.) The next chapter is dedicated to these non-equilibrium

mechanisms that are at the core of the study of this thesis. Regions III.) and IV.) are also

addressed in more detail.

To calculate the vortex velocity from the measured voltage, we transform the equation

for generated electric field E = −v ×B = −V/l. The velocity can thus be calculated with

v = V/Bl. (2.9)

Here we assume that the induced magnetic field B in the sample is the same as the

external applied magnetic field.

2.3 Non-equilibrium phenomena

As non-equilibrium phenomena we understand phenomena as a result of processes that have

a certain time dependence that cannot be omitted. All of these processes have their own

relaxation times. Introducing time dependence into the GL theory gives rise to the time-

dependent Ginzburg-Landau theory (TDGL), which can model some nonstationary processes

in superconductors.
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2.3.1 Time-dependent Ginzburg Landau equations

Using the TDGL model one can establish relationships for the time derivative of the GL order

parameter at a certain location, essentially mapping the movement of a vortex. It further

explains how the dissipation function has two contributions. First is the dissipation caused

by relaxation of the order parameter with relaxation time τ△. As Tinkham explains, due to

the movement of the vortex, the order parameter at a certain location varies in time. This

introduces a relaxation of the order parameter that gives raise to dissipation [46]. The second

contribution explained by Bardeen and Stephen is due to the presence of a normal conducting

current in the vortex core [43]. This process is characterised by the relaxation time τj . Both of

these mechanisms give contributions to the newly defined effective flux flow resistivity. This

flux flow resistivity is proportional to the BS flux flow resistivity from expression 2.7. At low

magnetic fields the known expression is complemented by u, the ratio between τ△ and τj , and

by a, a function covering the contributions of dissipation from the two mentioned processes.

At high fields the additional term of βA, the Abrikosov parameter determined by the structure

of the lattice, is added. Once again the response has an Ohmic character and regions III.) and

IV.) from figure 2.4 can not be described. This lays in the limitations of the TDGL theory.

The TDGL theory is similarly to the GL theory only valid at close to TC temperatures.

A further necessary restriction is that one can only use the TDGL model for essentially

gapless superconductors with small and slow deviations of the order parameter from the

equilibrium state [47]. A generalized TDGL was written that made the theory applicable to

dirty gapped superconductors but only when their inelastic electron-phonon diffusion length

is smaller then ξ0 [48], thus the deviations of the order parameter must happen slower than

the electron-phonon scattering time τep. The TDGL and generelized TDGL work only in a

so-called local equilibrium approximation. This means the quasiparticles must essentially be

in equilibrium with the heat bath. Vodolazov coupled the TDGL to the heat conductance

equation, which allowed him to observe faster changes of the order parameter than τep [33],

but this method is limited by requiring the electron-electron scattering time τee to be smaller

than τep. Numerical modeling using these models allow for discovery and visualization of

previously hidden physical phenomena. Namely the spatial change of the Abrikosov lattice,

and the appearances of vortex rivers and phase slips [49, 50]. This happens due to the finite

τ△. A moving vortex leaves behind a wake of suppressed superconductivity that attracts

the vortices behind it to flow in its path [51]. Yet a very important phenomena is being

left out from all these models, the diffusion of the quasiparticles from the moving vortex

core into the superconducting matrix, changing the shape and size of the vortex. This idea

was first introduced by Larkin and Ovchinnikov (LO) and is essential for the explanation

and understanding of one of the causes of the nonlinear regime and the flux flow instability

(FFI).
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2.3.2 Flux flow instability

Larkin and Ovchinnikov model

Larkin and Ovchinnikov were the first to address the nonlinear electrical resistivity in the

I-V curve of a dc-driven vortex system and described the FFI emerging at temperatures close

to TC [16]. The FFI is an abrupt jump from a low resistive state into a normal conducting

state. The FFI can simply occur due to self-heating in the sample caused by moving vortices.

This is essentially Joule heating from the vortex core normal conducting electrons. Yet, the

FFI is present even in thin films coupled to low-temperature baths. LO described jumps

as a consequence of high vortex velocities and a finite energy relaxation time τϵ. The order

parameter of a vortex moving with velocity v changes on the time scale of τ△ ≈ ξ0/v.

Considering that the time τ△ is shorter than the normal electron energy relaxation time

(i.e., the inelastic scattering time) τϵ, the energy of normal excitations increases in the wake

behind the vortex and decreases inside the vortex core. Thus, the quasiparticle distribution

function inside the core is changed. Near Tc, the order parameter is very sensitive to the

quasiparticle distribution function, leading to a shrinkage of the vortex core [52]. Since τ△ is

becoming shorter with v, more and more electrons are left behind, and the diameter of the

vortex is becoming smaller with increasing velocity. LO further calculated how the change of

the vortex size affects the viscous drag of the medium. They found the following dependence

on the velocity

η(v) =
η(0)

1 +
(

v
v∗

)2 . (2.10)

v∗ is the newly defined critical velocity. The viscous drag decreases with increasing velocity

and the friction force Fη = η(v)v increases until it reaches a maximum at v∗ and then starts

to decrease. Adding this force to the opposite directed FL results in the final force Ftot on

the vortex as

Ftot = FL + Fη = ηv +
η(0)

1 +
(

v
v∗

)2 v. (2.11)

The viscous drag constant η is chosen here in a way to ensure a transition to the normal

state at the pair breaking current. The plot of the absolute value of Ftot is shown in figure 2.5

(a). For η(0) > 8η, the force has an N-shaped dependency [53]. Hence, for a voltage-driven

measurement, the measured current will experience the same N-shaped dependency with a

peak at V ∗ = v∗Bl, where l is the distance between the voltage contacts. For a current-

driven measurement, however, there is an upward curvature followed by a sudden switch to

the higher conductive state. Driving the current up and then down again reveals a hysteresis

behavior as shown in figure 2.5 (b). The upward curvature is what we previously described as

the nonlinear region, and the sudden jump is the FFI. LO directly linked the critical velocity

v∗ to τϵ with
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Figure 2.5: The N-shaped dependency of the total force on a vortex in (a) has the same shape

as the voltage driven I-V measurement. The current driven measurement in (b) reveals a

hysteresis with a transition during current-ramp-down at I∗hys and V ∗
hys .

v∗ =
D1/2[14ζ(3)]1/4(1− t)1/4

√
πτϵ

, (2.12)

where D, ζ and t denote the electron diffusion coefficient, Riemann zeta function and the

reduced temperature T/TC , respectively. This expression is again valid only for temperatures

close to TC , usually a good agreement with experiment is down to 80% of TC .

Klein et al. used a simple model to further refine the LO mechanism [54]. A vortex motion

creates an electric field that accelerates the quasiparticles within the vortex core. They start

to bounce of the boundary between the normal vortex core (N) and the superconducting ma-

trix (S) by the laws of Andreev reflection. This states that an electron with energy lower than

the superconducting gap at the N/S interface can only penetrate into S by creating a Cooper

pair in S and reflect back a hole into N. A similar Cooper annihilation and electron creation

process occurs when a hole interacts with the N/S boundary. At each of the reflections the

quasiparticle energy gets raised. Once the energy is in the order of twice the superconducting

gap, the quasiparticle can escape the moving core, provided that the single-electron diffusion

free path is larger than the vortex core size. The escape of the electron causes a shrinkage

of the vortex core. It is further argued that a narrower vortex core can move more easily

through the material because of a decrease in the viscosity and its velocity grows. A higher

vortex velocity again leads to more dissipation. Ultimately, an avalanche process is kicked

off, causing the FFI to occur.

Following these principles, Klein obtained the same expression for η as LO in 2.10. He also

similarly attributes the finite τϵ to cause the nonlinearity in the I-V curves. His expression

for v∗ differs from that of LO, nevertheless has the same dependence on T and τϵ. The

experiments though revealed a further dependence of v∗ and that on the applied magnetic

field.
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Bezuglyj and Shklovskij model

Whilst LO assumed the phenomena of nonlinearity and FFI only as a consequence of finite

τϵ, these can also be a consequence of self-heating as mentioned in the beginning of this

chapter. Bezuglyj and Shklovskij (BS) noted that self-heating of electrons is significant at

large magnetic fields, due to a slow rate of heat removal in the sample that is inevitable in

experiment [55]. Combining the LO model with the heat balance equation, they calculated

the transition field BT . For applied magnetic fields B lower than BT the FFI is caused

mainly by the LO mechanism, and at fields higher than BT overheating dominates as the

FFI mechanism due to weak heat removal. The transition field is given as

BT = 0.374 k−1
B e0R□ h τϵ, (2.13)

where kB, e0, R□ and h are the Boltzmann constant, the elementary charge, sheet resistance

and the heat transfer coefficient.

Heat removal can be carried out in two different ways depending on the relation between

the mean free phonon length lep and the effective thickness deff [56]. The effective thickness

is defined as deff = d/α, where d is the sample thickness and α is the mean probability of

phonon transmission from the superconducting film into the substrate. If lep ≪ deff , the

excited phonons are reabsorbed in the superconducting film and the film temperature rises

above the substrate temperature. This process is known as Joule heating. If, on the other

hand, lep ≫ deff , then the phonons relax into the substrate. This process is called the

electron overheating process and in this regime the heat transfer coefficient h is dependent

on the electron-phonon scattering time τep.

The BS theory, moreover, introduces an approach how to analyze FFI data in order to

gain information about τϵ, h and BT . The following scaling law was found :

E∗

E0
=

(1− f(b))(3f(b) + 1)

2
√
2f(b)3/4(3f(b)− 1)1/2

,

j∗

j0
=

2
√
2f(b)3/4(3f(b)− 1)1/2

(3f(b) + 1)
. (2.14)

Here E∗ is the electric field defined as the critical FFI voltage V ∗ divided by the length

of the voltage contacts l. j∗ is the critical current density that corresponds to the current

density at which the FFI was observed. The remaining parameters are

E0 = 1.02BT (D/τϵ)
1/2(1− t)1/4, (2.15)

j0 = 2.62(ρn e0)
−1(D τϵ)

−1/2kBTC(1− t)3/4, (2.16)

f(b) = [1 + b+ (b2 + 8b+ 4)1/2]/[3(1 + 2b)] (2.17)

with the reduced magnetic field b = B/BT . The physical meaning of j0 is the current density

j∗ where the FFI point has V ∗ = 0. This should be the jump occurring at zero applied

magnetic field.
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By fitting the measured FFI data one obtains results for j0 and E0. The expressions for

power

P ∗ = E∗j∗, (2.18)

P0 = E0J0 =
h

d
(TC − T ) (2.19)

allow then to calculate the heat transfer coefficient h. Plotting P ∗/P0 vs B and fitting to

P ∗/P0 = (1− f(b)) (2.20)

yields BT .

Finally, from equation 2.13 we obtain the energy relaxation rate τϵ. In the overheating

regime, one can hence determine both τep and and τee. τep is defined from

h =
ced

0.22τep
(2.21)

with ce being the electron specific heat defined by ce = (π2/3)k2BN(0)T (here N(0) =

m2vF /π
2ℏ3 is the density of states). We use an estimate for the Fermi velocity, vF = 108cm/s,

and the value 224 J/m3K for ce. τee is then determined from from the fitted τϵ. BS defined

the inverse of the energy relaxation τϵ to be equal to the sum of the inverse of the electron

phonon τep and inverse of the the electron electron relaxation times τee.

In the BS theory v∗ ∝ h(1 − t)1/4B−1/2. This is in agreement with the experimentally

observed v∗ dependence on low magnetic field that could not be explained by the LO theory

alone. Refinements of the LO theory were done by Doettinger that include the same B−1/2

dependence as found in the BS theory.

Doettinger model

LO assumed that the non-equilibrium electron distribution is spatially uniform throughout

the entire sample, but Doettinger noted that this is only true whilst v∗τϵ is larger than

the intervortex distance a. As the applied magnetic field gets smaller and the intervortex

distance grows, we get to a point where a = v∗τϵ := acr, causing the distribution to be

strongly spatially inhomogeneous. At fields below the cross-over field Bcr = 1.14Φ0(v
∗τϵ)

−2

the system is recovering to a spatially homogeneous state by allowing v∗ to grow accordingly

to the increase of a with decrease in the applied magnetic field. Since a ∝ B−1/2, v∗ exhibits

the power law v∗(B) ≈ B−1/2 for all fields lower than Bcr [57]. For magnetic fields above

Bcr, v
∗ is constant, which is consistent with the LO theory. The exact definition of v∗ in the

Doettinger (DO) model is

v∗ =
D1/2[14ζ(3)]1/4(1− t)1/4

√
πτϵ

(
1 +

a√
Dτϵ

)
. (2.22)

We see that in high fields when a≪
√
Dτϵ, the equation approaches the LO defined, constant

in field, v∗.
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Pinning effects on FFI

The experiments on Nb films performed by Grimaldi et al. found a second crossover magnetic

field Bcr1 for the evolution of v∗(B) [58]. For fields smaller than Bcr1, v
∗ increases with in-

creasing applied magnetic field. For fields above Bcr1 the dependence crosses over to the one

found in the DO model, v∗ decreases with increase in field. Note that this behavior is present

for samples with strong disordered pinning. As discussed by Silhanek et al. this behavior

can be explained by taking into account the intensity, type, and distribution of the pinning

centers present [59]. Weaker pinning allows for coherent dynamics and stronger ordering of

the vortices, which results in a very narrow delta-function-shaped velocity distribution. How-

ever, strong pinning to strongly disordered defects leads to a broad distribution of velocities.

Since the FFI is an avalanche process, it is enough for a single vortex velocity to reach v∗ for

the entire system to collapse. However, the velocity measured in the experiment is the mean

velocity ⟨v⟩. In the case of weak pinning, the narrow distribution accounts for a smaller de-

viance between ⟨v⟩ and v∗ in comparison to a larger deviance in the broad distribution present

for the strong pinning case. According to this study, weaker pinning accounts for a higher v∗.

This explains the initial v∗ increase with field for very low fields. At these low fields, as the

field is being raised and the density of vortices compared to the number of pinning centers

grows and the vortex-vortex interaction grows, pinning is effectively decreased. Vortices are

hence ordering themselves and the velocity distribution narrows, which in end-effect makes

the measured v∗ to grow. In 2017 Shklovskij et al. found similar observations of the pinning

effects on v∗ based on a phenomenological study. In their work, they incorporated pinning

into the combined BS-LO theory [60].

Local flux-flow instability model

LO in their theory described a FFI that occurs after the nonlinear part of the I-V. In ex-

periments, the FFI is often observed already in the linear part. Bezuglyj et al. attributed

this to be a consequence of localized normal conducting regions. Unlike in the LO theory

where the FFI is assumed to happen all at once all over the sample region, an FFI can be

triggered by only a minority of vortices at a certain location. One can observe such behavior

in superconducting films with specific areas of defects or granularity. The defected areas pin

vortices down, whilst vortices in-between them can move very fast. These moving vortices

overheat and a temperature gradient along their path builds up [61]. If the temperature is

higher than TC , a switch to the normal conducting state occurs, but only along this path.

A study on resistive domains showed that a normal conducting domain will grow past the

S/N boundary only if the current density is higher than the minimum current density for

the propagation of a normal domain JP [62]. JP depends on the ratio between Joule heating

of the normal domain and its heat transfer. If the current density of the normal domain

is lower than JP , the normal domain will eventually shrink and the superconductivity will

be recovered. However, if the current density is larger, the normal domain spreads into the

entire sample, and an FFI is observed. The location of the FFI in this scenario is in the
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linear part of the I-V curve. The found phenomena are supported by calculations of the

BS-model-electron-overheating in a narrow bridge, where vortices are moving but are pinned

everywhere outside of this bridge. This model is a refinement of the original BS model.

Edge-controlled instability model

A theoretical study of the FFI with consideration of sample edge effects was published by

Vodolazov based on TDGL linked with the heat balance equation [33]. The use of the heat

balance equation for the description of FFI is known to us from the BS model. However,

in the BS model the heating and cooling effects were spatially averaged throughout the

entirety of the sample, which covers the local effects caused by moving vortices. The edge-

controlled instability model is another localized model. In this model, the heat balance

equation is applied to each individual quasi-particle. In addition, the model takes vortex-

surface interactions into account. Chapter 2.2.1 covers vortex-surface interactions. The

edge barrier for vortex entry causes a local area with higher current density at the edge

of the sample, leading to larger Joule dissipation and higher temperatures. Close to I∗

vortex rivers with suppressed superconductivity are created across the sample starting at

the hot edge. Abrikosov-Josephson-type vortices move in an ordered way along these normal

conducting rivers. Returning to the considerations of Silhanek [59] this ordered motion allows

the vortices to move very fast. The group of Embon et al. also reported an observation of

Abrikosov-Josephson vortices in vortex rivers in a sample with a constriction using a nanoscale

SQUID-on-tip imaging technique [24]. To examine the theoretical predictions of Vodolazov,

Dobrovolskiy et al. realized an experiment on a sample with a close-to-perfect edge barrier

and achieved vortex velocities of 10-15 km/s [63]. An experiment on a sample with a single

notch milled on one side of a superconducting sample causes the so-called current crowding

effect in the sample, leading to a higher current density at the tip of the notch and acting

as a preferred site for vortex entry. This additional single defect causes symmetry breaking,

destroys the ordered motion present for the perfect edge sample, and reduces v∗. One of

the goals of this thesis was to perform experiments on samples with different quality edges

as a result of different fabrication techniques and to compare how it influences the vortex

dynamics and location of the FFI. The results of this study can be found in the chapter 5.

The edge-controlled instability model is made for materials, where τee ≪ τep, this is

essentially the case for dirty superconductors. The energy relaxation time in this model is

then expressed as

τϵ = τep/4.5 + τesc(1 + Ce/Cp). (2.23)

Here, τesc is the time it takes for non-equilibrium phonons to escape into the substrate,

and Ce and Cp are the heat capacities of electrons and phonons at TC .
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Further FFI mechanisms

Throughout the years, various other mechanisms, distinct from the LO mechanism, were

studied as additional causes of an FFI, e.g., crystallization of the vortex system [64], thermal

runaway effect due to Joule heating at the current contacts [65], the Kunchur hot-electron

instability [66] at low temperatures, phase-slip centers and lines [67], or formation of localized

normal domains due to an inhomogeneous current distribution [49]. To exclude Joule heating

as the cause of the FFI in all presented measurements, we looked at the power dissipation

P in various fields. P has shown a clear field dependency. This contradicts a Joule heating

caused FFI, where P should be independent of the magnetic field [68].

2.3.3 Relaxation times

In the beginning of this chapter on non-equilibrium phenomena, we mentioned that these phe-

nomena are characterized by relaxation times. Some have already been mentioned throughout

the chapter. Here we also summarize the information in the following table.

TDGL very large τ△

Generelized TDGL τ△ > τep

LO and DO Model τϵ ≃ τep

BS Model 1/τϵ = 1/τep + 1/τee

TDGL + heat balance equation τee ≪ τep and τϵ = τep/4.5 + τesc(1 + Ce/Cp)

Table 2.1: Relaxation times of non-equilibrium phenomena as used in various theories

All of the derivable relaxation times from these theories are for temperatures close to TC .

2.4 Superconducting single photon detectors

One of the reasons why we are interested in energy relaxation times is to improve SSPDs

(figure 2.6). The working principle of an SSPD is the detection of a photon by measuring a

voltage jump across the detector. This voltage jump appears as a consequence of the photon

colliding with the superconducting detector. The energy of the photon is translated into heat

that locally raises the temperature above TC and superconductivity is locally broken down,

creating a hot spot [11, 69]. In order to detect even the smallest of energies, it is important

to operate the detector at temperatures and bias currents that put the detector in a close-to-

pair-breaking state. Depending on the properties of the material and the detector shape, the

hot spot can either spread and a normal conducting band will stretch throughout the entire

width of the detector, or only a hot spot remains with current having to flow around the hot

spot. Whilst in the first case the voltage jump appears due to what is essentially a Josephson

weak link, in the second case the voltage jump is a FFI appearing due to fast vortex motion

triggered by the current crowding around the hot spot [70]. In both cases though, the energy
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Figure 2.6: The working cycle of a superconducting single photon detector. First the incident

photon (yellow) creates a hot spot (red). Through inelastic scattering the spot widens and

the current is redirected to flow around it, locally raising the current density. If the current

density exceeds critical values a normal conducting band (pink) across the detector appears

and a voltage jump is registered (t1 in the V -t curve). If no heated band is created, increased

current density initiates vortex-antivortex flow (grey spots). The fast vortex flow leads to

a FFI voltage raise (t1 in the V -t curve). In both cases the hot spot eventually shrinks,

superconductivity is recovered and the voltage returns back to its initial low state (t2 in the

V -t curve).

eventually dissipates, superconductivity recovers, and the voltage returns back to its initial

low state. Only once the voltage fully returns back is the detector ready to detect another

photon. This means that there is a certain dead time, when the detector cannot detect any

new incoming photons. A good detectors dead time should be held at minimum, and thus a

quick energy relaxation, short τϵ, is important.

In SMSPDs (micrometer-sized SSPDs) the voltage jump mechanism is theorized to appear

due to the fast vortex FFI [70, 71]. Therefore, the vortex motion itself and the location of the

FFI is important. In this thesis, all studied structures are patterned to replicate the shape

of a SMSPD.

21



Chapter 3

Methodology

The following chapter includes details on sample fabrication and sample characterization,

details of all the equipment and procedures used during measurements, and information

about programs and methods used for numerical simulations.

3.1 Film fabrication methods

All films studied in this thesis were produced using DC magnetron sputtering. To perform

electrical transport measurements on these films, the samples were structured using three

different techniques: laser beam etching, focused ion beam (FIB) milling, and UV lithography

in conjunction with lift-off.

3.1.1 DC magnetron sputtering

A sketch of the dc magnetron sputtering method can be found in figure 3.1. This method is

categorized into a group of methods that apply physical vapor deposition (PVD) to thinly

coat desired surfaces. PVD works by letting a solid target transition into a vapor phase

that later condenses onto a surface. In order for the transition to take place, one can utilize

various methods, for instance heat sources (evaporation PVD), or, as in this case, sputtering.

A negative voltage is applied to a conductive target material, whilst the substrate is placed

under the positive anode. The entire chamber space where the target and substrate are placed

must be evacuated to at least 10−7 mbar before an inert gas, argon, is inserted. Electrons

accelerated in the electric field ionize the argon gas. This leads to a plasma (of argon ions

and secondary electrons) formation with a visible glow discharge. The positively charged

argon ions (Ar+) are then accelerated towards the cathode, where, due to their relatively

high mass, they are able to sputter out the target atoms. These then travel back through

the inert gas towards the substrate, where they form a set of tightly bound atomic layers.

When the pressure in the chamber is high, the sputtered target atoms collide with the inert

gas a lot on their way towards the substrate, causing them to scatter. The scattered target

atoms approach the surface under nonperpendicular angles, making them stick to protruding
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Figure 3.1: Sketch of the dc magnetron sputtering process. Ar inert gas atoms get ionized

by electrons in the localized plasma and are accelerated towards the target cathode, where

they sputter out atoms of the target material. The target atoms afterwards travel towards

the substrate underneath the anode, where they form thin layers of the sputtered film.

atoms, which, in turn, causes a very nonuniform coating due to shadowing. However, lowering

the pressure in the chamber would decrease the ionization efficiency and thus lowering the

sputtering rate.

The trick to lowering the sputtered target-atom scattering but keeping the ionization ef-

ficiently high is in localizing the plasma. This is done by placing permanent magnets below

the cathode area. The crossed electric and magnetic fields result in a Lorentz force acting on

the secondary electrons being ejected from the cathode. This force traps them in a circular

motion around and close to the cathode. In the cathode region they ionize argon and create

a very dense localized plasma even at low inert gas pressures due to the confined space. The

dense plasma results in many collision events between Ar+ and the target, keeping the sput-

tering rate high, whilst the now possible low inert gas pressure (10−3 mbar compared to 10−2

mbar with no magnetic field) ensures low scattering and consequently a uniform coating. An-

other advantage of utilizing magnetic fields in the process of magnetron sputtering is a lower

operating voltage at the same efficiency rate when compared to classical dc sputtering (couple

hundred V instead of couple kV). Comparing dc magnetron sputtering to evaporation PVD,

magnetron sputtered target-atoms have much larger energies than evaporated atoms. Whilst

evaporated atoms have energies corresponding to their binding energy, typically somewhere

around a single eV depending on the target material, magnetron sputtered atoms can have

energies anywhere between 5 and 50eV. The high energy atoms give magnetron sputtering

the advantage of fast coating procedures (∼100Å/s, but only ∼1Å/s for dielectrics), as well

as uniformity of the sputtered film compared to films made through evaporation. All of this

makes dc magnetron sputtering a great technique to create thin, uniform films.

The inert gas pressure, voltage, sputtering time, substrate temperature, target-substrate

distance, and target and substrate material have all an impact on the final thickness and
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texture of the sputtered film.

The Nb films were sputtered by Sebastian Kölsch at the Goethe University in Frankfurt

am Main, Germany, on a custom-build setup. The MoSi films were sputtered by Mikhail

Mikhailov at the B. Verkin Institute for Low-Temperature Physics and Engineering of the

NAS of Ukraine in Kharkiv.

3.1.2 Laser beam etching

By pulsating a laser source, we can hit the surface of a thin film with high-energy photons

at specific intervals. The energy used must be high enough to heat the film up to its melting

point. The material then melts and is locally displaced. In thin films laser etching can

electrically isolate regions from one another by completely removing the films material in the

etched path and leaving a non-conductive spacing between the two regions. Laser etching is

thus used to cut bridges and contact pads for electrical transport measurements. Our samples

were etched using the LGI-505 gas laser source with a 337-nm wavelength, a pulse duration

of 7 ns, and with an efficiency of up to 1000 pulses per second. The laser beam leaves behind

an overlapping circle pattern that resembles that of a pattern left after metal welding (figure

5.1 (a)). The laser beam has a focal spot diameter of about 6 µm and causes a further

evaporation of the film within a distance of an additional 2–3 µm around the spot size. The

edge of the laser pattern determines the edge of the film. This edge has a sawtooth-like strip

edge profile, meaning that laser etching leaves behind a fairly rough edge. The power of the

laser beam, focal spot size, and speed of beam rastering determine the exact appearance of

the edge.

3.1.3 Focused ion beam-induced milling

The ion beam source in an FIB system is a liquid metal ion source (LMIS). In our case,

the metal used was gallium. In an LMIS a tungsten needle is submerged in a melted metal

reservoir (figure 3.2 (a)). The metal is melted by passing current through a heating coil.

The melted metal then flows towards the ∼ 4µm wide tip of the needle. An electric field is

created between the reservoir and a torus-shaped extraction electrode, placed in front of the

needle, by applying a high voltage between the two. The liquid gallium is drawn by the field

into a conical shape and forms a Taylor cone at the tip of the needle with a radius down to 2

nm in size. Here, it comes to field evaporation in the form of ion emission at the cone apex.

Once the ion beam hits the film surface, ions with keV energy have a penetration of only a

couple of atomic layers. On impact, due to their high mass compared to electrons, it comes to

displacement of atoms in the film and to sputtering of atoms, ions, and secondary electrons.

The gallium ions can either be backscattered or stay implanted in the film. In thin films the

beam can etch away material, and so can be similar to laser etching used for film patterning.

FIBs are often integrated in scanning electron microscopes, which gives these systems a great

advantage of a live SEM image to monitor the FIB processing. For our samples, we have

used the dual-beam SEM/FIB system FEI Nova NanoLab 600 at 30 kV (30 pA). The spot
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Figure 3.2: Sketch of a liquid metal ion source (a) and a Schottky electron gun (b).

size is about ∼ 20 nm in size and the gallium ions are implanted in the sample another ∼ 10

nm from the spot. Overall, FIB milling leads to creating much smoother edges as compared

to laser etching.

3.1.4 UV-lithography in conjunction with lift-off

Whilst the previous two techniques followed only after the film was dc magnetron sputtered

to pattern it, the method of UV-lithography to pattern films has steps that precede the

magnetron sputtering phase. Any photolithography starts with the coating of the substrate

with a photoresist. Photoresists are light-sensitive materials that change their response to

photoresist developers after exposure to light. In case of positive resists, light exposed areas of

the resist will decompose in the developer, whilst in negative resists, shielded areas decompose

and the exposed areas stay put. By placing photomasks over resists we can control which

areas get exposed to light and which remain shielded. Hence, we can create patterned layers

of resist on the surface of substrates. These can then be coated by a metallic layer. The layer

sticks both on top of the resist and in the resist-free spots directly to the substrate. After

the remaining resist is removed by a chemical solvent, the metallic layer remains in place

only where it was deposited directly on the substrate. Here, we will describe the detailed

fabrication steps using a positive resist. This calls for a photomask that only allows light in

areas where in the end we want our metal deposited.

1. Cleaning: To ensure that the substrate is clean, dry, and free of organic particles, the

substrate must be rinsed in acetone and isopropyl alcohol (IPA) and bathed for about

4 minutes in an ultrasound IPA filled bath. Nitrogen gas is used to dry the substrate.

2. Spin coating: LabSpin 6 by SÜSS MicroTec is used to spread a droplet of positive

UV-photoresist AZ 701 MIR by fast rotation in an even layer over the substrate. See

figure 3.3 (2).

3. Soft bake: This process is required to harden the resist as well as to improve its adhesion

and to improve the stability of the lithographic performance. For this purpose, the

coated substrate is heated to 90◦C for 90 s (depending on the resist used).
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Figure 3.3: Shown are the UV-lithography steps: (2) Spin-coating, (4) Exposure, (5) Post

exposure bake, (6) Development, (7) DC magnetron sputtering and (8) Lift-off.

4. Exposure: The MA8 mask aligner from SÜSS MicroTec was used to align the pho-

tomask in direct contact with the substrate. The coated substrate is then illuminated

through the photomask with a UV dose of 270 mJ/cm2 generated by a Hg lamp with

a wavelength range of 350-450 nm. See figure 3.3 (4).

5. Post-exposure bake: This process is recommended to maximize the process latitude

(a wider range of light exposures will lead to acceptable results) and to weaken the

standing-wave effect. The standing wave effect is caused by the back scattered light

from the substrate that interacts with the light passing downwards, resulting in a ripple

edge of the resist after development. The post-exposure bake temperatures should be

in the 110 to 115◦C range. See figure 3.3 (5).

6. Development: A compatible developer to the resist must be used to decompose the light

exposed positive resist. In this case for AZ 701 MIR the used compatible developer is the

AZ 726 MIF. The substrate is bathed for 60 s in the developer, washed with deionized

water, and dried with nitrogen gas. See figure 3.3 (6).

7. DC magnetron sputtering: The sample is then covered with a metallic layer in the

process described in section 3.1.1. See figure 3.3 (7).

8. Lift-off: The last step is to remove the remaining resist that is now covered with a

layer of metal. Removing the resist will lift it off together with the metal layer leaving

behind a metallic film only where it was deposited directly onto the substrate. The used

chemical solvent for lift-off is a dimethylsulfoxid (DMSO) based solvent, TechniStrip

Micro D350, at 90◦C for 1 to 1.5 hours. In the end a final cleaning of 4 minutes in an

IPA filled ultrasound bath is performed. See figure 3.3 (8).

The edges of films pattered with UV-lithography have a roughness between the roughness

of the very rough laser beam etched films and the considerably smooth FIB milled films, but
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Figure 3.4: The incident beam consisting of primary electrons (PE) can lead to the emis-

sion of the Auger electrons (AE), the secondary electrons (SE), the characteristic X-ray, the

continuum X-ray (Bremsstrahlung), and of the backscattered electrons (BSE). Electrons de-

tected on the opposite side of the sample (grey) are the transmitted electrons (TE). In (a) is

shown the depth of origin of these detectable signals and in (b) is a schematic explanation of

the events creating the signals in an atom.

closer to the FIB milled edges.

3.2 Film characterization methods

For characterization of the films the used techniques were scanning electron microscopy

(SEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM),

atomic force microscopy (AFM), and optical microscopes. Many of the about to follow tech-

niques use electrons for investigation and imaging of samples. The reason for this is their

very good resolution compared to, for instance, visible light used in optical microscopy. Res-

olution is related to wavelength, as smaller wavelengths can resolve greater details. Due to

the wave-particle duality, electrons have a wavelength given by the de Broglie wavelength:

λB = h
p , where p is the particle momentum. Expanding this relation with the relativistic

energy-momentum relation we get: λB = hc√
E2−E2

0

= hc√
E2

kin−2EkinE0
. Here E0 is the rest

energy of the electron (= m0c
2) and Ekin is the kinetic energy of the electron. We see that

the more energetic the electrons are, the smaller is their wavelength and the better is their

resolution. For instance an electron accelerated with 200 kV voltage has a 2.51 pm wave-

length, compared to hundreds of nanometers for visible light. This allows electronmicroscopy

to have an atomic or close to atomic resolution.

3.2.1 Scanning electron microscopy

In an SEM instrument, a beam of electrons is shined onto an examined sample. These, what

we call the primary electrons (PE), can interact with the sample in various ways. They

can lead to emission of Auger electrons (AE), secondary electrons (SE), characteristic X-

ray or continuum X-ray (Bremsstrahlung), or they can be reflected back as backscattered
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electrons (BSE) (for understanding, see figure 3.4). The choice of detector then establishes

the observation particle/radiation and thus the measurement. The detection of characteristic

X-rays for elemental analysis is described in the following section. AE, SE and BSE differ in

the penetration depth as well as the energy they have when exiting the sample. SE are the

lowest energetic ones with energy on the order of 50 eV, and they originate from a depth of

2-50 nm. They are the most commonly used imaging mode for SEM. The primary beam scans

the sample surface point by point. For SE the resolution is about 10nm. The intensity of the

detected signal given by the number of emitted SE is what gives the final image. When the

primary beam hits an angled surface, like the edge of a mound or a valley, more SE escape at

this point compared to a flat surface. This angled region is then displayed lighter in the final

image. SE detection in SEM is therefore a great technique to image surface morphology, such

as roughness or shape of the surface. Imaging of non-conducting surfaces might be difficult

though, because charging effects, where the primary electrons accumulate on the surface,

cause various distortions in SE imaging.

BSE have a much higher energy and reach into larger depths than SE (∼ 1µm). This

lowers their resolution, but the scattering process is dependent on the elements present. BSE

get scattered much more on larger atoms (large Z) than on small ones (small Z). The intensity

is thus larger for elements with larger Z and they appear lighter in the final image. Detection

of BSE can not be used for exact elemental analysis and stoichiometry deduction, but it can

visualize different phases and elements well.

Some SEM instruments can also have an AE detector. This was not the case in the used

dual beam FEI Nova 600 NanoLab SEM/FIB. AE have desecrate energies given by the three

shells involved in AE creation. The desecrate energies can be directly linked to the atomic

number Z and thus provide elemental composition. In this thesis, the elemental analysis was

instead performed using EDX spectroscopy as described in the following section.

In the SEM instrument, the electron beam is produced by a Schottky electron emitter

(figure 3.2 (b)). A very sharp tungsten tip is heated to 1800 K. This temperature is still

too low for thermoelectrons to emit. The tungsten-tip emitter is surrounded by the Wehnelt

cylinder that is set to a negative electrical potential relative to the emitter. A strongly

positively biased, relative to the emitter, anode is placed in front of the Wehnelt cylinder.

The strong electric field between the anode and the emitter can be used to lower the escape

energy of electrons, whilst the Wehnelt cylinder focuses the e-beam. The electrons are emitted

with keV energy. FEI Nova 600 NanoLab has in-lens electron detectors. SE are guided by

a magnetic field upward along the optical axis of the objective lens towards a detector, an

anode that detects an electron by a voltage rise.

3.2.2 Energy-dispersive x-ray spectroscopy

This elemental analysis technique is used to determine the composition stoichiometry of

the fabricated films. This technique analyzes the characteristic radiation created during a

fluorescence event. An incident beam (which can be an electron or X-ray) knocks out an
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electron. The hole left behind can be filled by an electron from an orbital that is further

placed from the nucleus. The difference in their binding energies is then released in the form

of a characteristic X-ray. Moseley’s law is an empirical law calculated from the binding energy

difference between two levels with quantum numbers ni and nf (ni > nf ). The law connects

the energy of the characteristic X-ray and the atomic number Z as follows

E = Eni − Enf
= RH

(
1

n2f
− 1

n2i

)
(Z − b)2, (3.1)

where RH is the Rydberg constant (=13.6 eV) and b is a screening constant dependent on

the type of spectral line. For instance for the spectral line Kα, corresponding to a transition

from L-shell into the K-shell, the b constant is 1. For the spectral line Lα, corresponding to

a transition from M-shell into the L-shell, the b constant is 7.4.

The energy of the characteristic X-rays is detected via a semiconductor diode Si(Li)

detector. Photons interact with the detector mainly by a photoelectric effect, creating a

swarm of electron-hole pairs. These travel to the opposite sides, and a voltage pulse is

detected that can be recalculated into energy. Because the b screening constant reduces

the nucleus charge to an effective value depending on the spectral line, a single chemical

element in the EDX spectrum has peaks by multiple energy values corresponding to different

transitions. The positions of these peaks for individual elements are known and can be

fitted. The stoichiometry can then be calculated from the intensity of these peaks. Internal

standards of known concentration are used to calibrate the calculation.

In this work, the EDX was performed in an SEM equipped with an EDAX Genesis 2000

spectrometer running at 5 kV (1.6 nA). Notably, EDX works well for elements with Z>11.

Elements with lower Z have a higher chance that the initial interaction will result in creation

of an Auger electron rather than a characteristic X-ray, so they are hard to detect.

3.2.3 Transmission electron microscopy

TEM can be used for imaging or electron diffraction to gain information about the crystal-

lographic structure. Similarly to SEM an e-beam is shined onto the sample, but unlike in

SEM, detected is what gets transmitted through the sample, transmitted electrons (TE). In

this manner TEM provides information on the inner structure of samples, but is limited to

very thinly sliced samples (below 150 nm). After the e-beam travels through the sample it

follows through a series of objective electromagnetic lenses and, in the end, is focused on

a scintillator that converts electrons to photons that can be recorded by a charge-coupled

device (CCD) camera. A CCD is an array of capacitors that can accumulate charge and

convert them to a measurable voltage pulse. An image of the specimen is then reconstructed

from the individual array elements, where each element represents one pixel. Different shades

of the image correspond to different densities within the sample. By choosing the aperture

location below the sample, one can choose to visualize only the scattered electrons (dark

mode), or only the nonscattered electrons (bright mode). In dark mode denser materials
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Figure 3.5: The working principle of AFM: The cantilever is oscillated at a constant frequency

w = wop above the sample. When the sample is closer to the tip (in distance d2), attractive

forces change the resonance frequency w0 (of distance d1) to the new resonance frequency

weff . This change is registered as a change in amplitude A of the laser spot oscillation on

the detector from A1 to A2.

appear lighter, whilst in bright mode denser areas appear darker. One can also distinguish

the high Z elements, that cause more scattering, from low Z elements. The TEM instrument

used was the Tecnai F30.

3.2.4 Selected area electron diffraction

Another analysis technique executable on the TEM instrument is the selected area electron

diffraction (SAED) technique. Given the discussed wave-particle duality, electrons obey the

Bragg’s rule during diffraction. An electron wave diffracted on a crystal lattice will interfere

constructively only when 2dsinθ = nλ. Here, d is lattice plane distance, θ is the angle of

incidence, and n is an integer number. By adjusting the magnetic lenses in such a way that

the back focal plane rather than the image plane lands on the CCD camera, one can observe

diffraction patterns. Single crystals result in a collection of bright spots, a larger number of

differently oriented crystallites result in bright rings, and amorphous solids result in no clear

concentration of signal.

3.2.5 Atomic force microscopy

This surface analysis technique is part of a group of scanning-probe-microscopy techniques.

What connects all these techniques in this group is the use of a physical probe that scans

the surface. Another technique from this group is the scanning tunneling microscope (STM).

However, STM is limited to conducting samples. AFM does not have this restriction, and

when compared to further microscopy techniques such as the SEM or TEM, AFM allows

for vertical resolution of the surface, making it a great technique for creating topology maps

and checking the height of structures and quality of edges after fabrication. A sketch of the

working principle of AFM can be found in figure 3.5. The working principle is based on the

atomic forces between a very sharp AFM measuring tip (≈ 10 nm) and the probe surface.

The most prominent of these forces are the short-range repulsive Pauli-exclusion force and the
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long-range attractive Van der Waals force. The final force F (d), plotted against the distance

between the tip and the surface d, is thus shaped as the Lennard-Jones potential.

The measuring tip is located at the free end of a cantilever. The cantilever moves vertically,

either away from the sample or toward it, depending on d. The deflection of the cantilever

∆z is proportional to Hooke‘s law as: F (d) = −k∆z, where k is the spring constant of the

cantilever. Hence, measuring ∆z gives us information about the force F (d), and this gives

us information about the distance d and consequently the surface height. The use of this

technique can be damaging to the surface, so to avoid contact of the tip with the sample

during rastering, which can damage the sample surface, one uses the non-contact, dynamic

mode instead. In this mode, piezoelements oscillate the cantilever above the sample surface

with a certain frequency. The resonance frequency of the cantilever is given as w0 =
√

k0
m , just

as in a free harmonic oscillator. When the cantilever approaches the sample, the attractive

Van der Waals forces change the effective spring constant to keff = k0− ∂F
∂z , and the resonance

frequency changes to a new effective resonance frequency weff . To detect changes to weff ,

one actually drives the cantilever at constant frequencies wop just above w0 and looks for

the change in the amplitude of the oscillation. The amplitude change ∆A at frequencies just

above w0 is highly sensitive to changes in resonance frequency and hence in sample height.

The deflection of the cantilever ∆z and the oscillation amplitude A are measured by

shining a laser on the backside of the cantilever and observing the location of the reflected

laser spot via a photodiode array. The resolution of an AFM is with ≈ 0.1 − 10 nm on

the atomic scale. In this work, two AFM instruments were used, the Dimension Icon by

BRUKER and the Nanosurf EasyScan 2.

3.3 Transport measurements

The transport measurements were performed using the 4-point technique. The sample is

prepared in the form of a bridge with 4 leads leading to the bridge from contact pads. Two

outer leads are used to pass current through (I + and I -), and the two inner leads are used for

voltage readout (V+ and V -). The 4-point technique reduces the contribution of the wires to

the final resistance measurement. The experimental geometry of the transport measurements

can be seen in figure 3.6. First we will introduce the used contacting techniques and afterwards

describe the two used systems on which transport measurements were performed.

3.3.1 Bonding techniques

To contact the sample pads to the holders of the used devices, silver paint bonding or the

wire bonder machine were used depending on the size of the bonded pads.

Silver paint bonding is performed by gluing down a 50 µm gold wire using a conductive

paint. The paint is an adhesive loaded with silver particles. The volume resistivity is about

1 mΩcm. Usually, the end of a 0.3 mm diameter copper wire was used to leave a droplet of

the paint on the pad, and the gold wire was then pushed into the droplet from the side and
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Figure 3.6: Transport measurement geometry for a sample of width w, length l and thickness

d. The Lorentz force FL gives raise to a measurable finite voltage.

Figure 3.7: Examples of sample silver paint bonding on the holder of the He bath cryostat

from Oxford (a) and on to the PPMS puck (b). Wire bonder bonding is shown on the PPMS

puck in (c).

let to dry.

The bonder machine used was the HB10 Wire Bonder from tpt. It is a wire bonder

with an automatic z-axis movement. The wire bonder was used with a gold wire of 25 µm

diameter. There are many attachment techniques, of which the wedge bonding technique was

used. During wedge bonding, the wire is threaded angled under the tip of a sharp needle.

The needle is then lowered down to the surface of the pad, and an ultrasound is applied. The

wire is thus pressured down and vibrated at kHz frequencies. This causes the atoms of the

metal wire and the metal substrate to mix. After a couple milliseconds, the two materials fuse

together. The parameters to optimize from material to material are the ultrasonic energy

(US), the bonder downward force (F), and the ultrasonic bond time (t). Metals actually

never get into a melted phase during the bonding procedure, so this bonding is often called

friction welding or cold welding. Following parameters were used to bond the pads of the

PPMS holder (Bond 1) to golden pads of the sample (Bond 2):

Bond 1 → US=220, t= 210ms, F=300mN; Bond 2→ US=240, t= 210ms, F=350mN.

Silver paint bonding is sturdier and does not require any parameter adjustments when

bonding to different samples, but due to the bonding performed manually it can get very

difficult once the pads are smaller than 1mm in either direction. When the pads are very

small, the silver paint can spread to surrounding pads and short-cut them with each other.
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The wire bonder, on the other hand, can bond in an area of 25 µm diameter. The difficulty

of using the wire bonder is that it requires one to find the correct parameters to use for

your samples. The wire bonder bonds are also very fragile, and the bond sturdiness is very

dependent on the surface roughness. For measurements on the Oxford magnet system, only

silver paint bonding was done because the other end of the gold wires had to be glued to the

magnet holders pins, something that is not possible using the wire bonder. Some examples

of bonding are shown in figure 3.7.

3.3.2 Physical property measurement system

The PPMS, as it’s name suggests, is a very versatile system to measure various physical

phenomena. Here, we will describe the general operation of the cryostat and the magnet, as

well as the working principles of using the PPMS for transport measurements. A photo of the

setup and a schematic drawing can be found in figure 3.8. The PPMS consists of a nitrogen

jacketed dewar. The liquid helium container can hold up to 87 l of helium. This container is

then isolated by a vacuum space and additionally cooled by a 48 l container of liquid nitrogen

placed above the helium container. All of this is then surrounded by superinsulation.

The PPMS probe that is submerged in the helium consists of a 9-T Nb-Ti superconducting

magnet surrounding the well-isolated sample chamber. On the bottom of the sample chamber

are a 12-pin connector, where the sample puck (or measurement rods) can be inserted, two

thermometers in good thermal contact with the sample puck (one for low temperatures and

one for high temperatures), and a heater. The sample chamber has another heater at its neck

and is surrounded by a cooling annulus and insulation layers.

The top of the PPMS probe ends in a probe head that sits on top of the dewar. All

electrical wiring from the sample chamber leads out to the probe head. Additionally, two

helium-fill ports and the ports connecting the helium container, the sample chamber, and

the cooling annulus to a vacuum pump are also located here. The sample chamber can

be accessed from here by removing the stainless steel flange that covers the opening. This

can only be done when the sample chamber is warmed up to room temperature to prevent

condensation, when no field is being applied, and when the ”vent continuously” mode is on,

meaning that the chamber is flushed with helium gas from the helium container to avoid air

entering the chamber space. Once the sample chamber is closed again, a couple of cycles of

venting with the helium gas and pumping it out must be performed to clean the space from

remaining air.

On the bottom of the PPMS probe is the impedance assembly that is directly submerged

in the liquid helium.

The operation of the PPMS is controlled by the model 6000 PPMS controller and the

model 6700 magnet controller. The MultiVu application is the software application for the

controllers.
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Temperature control

To cool the sample chamber, liquid helium is pumped into the tubes of an impedance assembly

from the helium container at the bottom of the PPMS probe. For temperatures above 4.2

K, the helium is firstly vaporized in the impedance tubes by a heater and only then pumped

as a vapor gas into the cooling annulus, which consequently cools down the sample chamber.

However, for temperatures below 4.2 K, the cooling annulus is pumped directly with liquid

helium. This is the so-called ”pot-fill” mode and it can take up to 45 minutes to fill the

cooling annulus (and about the same time once it needs to be emptied). Once the annulus is

full, the heater connected to the impedance tube heats up, which leads to vaporization of a

small amount of liquid helium inside the impedance tube and creation of a bubble that blocks

further liquid helium from being pumped inside of the cooling annulus. By pumping, we can

then lower the pressure in the cooling annulus, which lowers the liquid heliums boiling point

below 4.2 K. Temperatures as low as 1.9 K can be reached in this way.

To raise the temperature of the sample chamber, the heaters at the bottom of the sample

chamber and the neck of the chamber are turned on, and the liquid helium from the annulus

is vaporized. The impedance tube helium-gas flow is restored. The samples in the sample

chamber can achieve temperatures between 1.9 and 400 K (1000 K for VSM with the oven

option).

Magnetic field control

For static fields the magnet is switched to a ”persistent” mode. In this mode the magnet does

not dissipate any energy, as the current is trapped in the SC-wire winding of the magnet that

is fully submerged in the liquid helium. Changing of the field requires changing the current

flowing in the winding. To do this, the magnet is switched to a ”driven” mode. In this mode,

the power supply that is in parallel connection to a small portion of the SC winding is turned

on, and the current is matched to the one in the SC winding. Then a heater switches the

part of the magnets winding that is parallel to the power supply non-superconducting. This

forces the current of the SC magnet to flow through the power supply. Now, the current can

be switched to a new value, the heater can be turned off, and all of the winding is back to

being superconducting. The new current value is now trapped in the winding.

The PPMS probe is equipped with a helium meter. In order to operate the SC magnet

the helium level cannot drop below 60%. Otherwise, the magnet is exposed and will quench.

Resistivity option

The resistivity option of the PPMS provides a standard PPMS sample puck, where up to three

samples can be connected to pads for a 4-point transport measurement. THE PPMS comes

with preexisting hardware and software to perform transport measurements with a 5 mA

upper current limit and about 20 nV voltage resolution. Due to the need for larger currents

and high resolution, almost all measurements were performed with external hardware. A
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6221 Keithley dc and ac current source and a 2182A Keithley 2 channel nanovoltmeter were

used.

The highest achievable current of the current source is 105 mA. To protect the samples

from burning through, the applied current should be limited by the maximum current density

that the sample and wires can pass before melting. Most of the time, there is only a rough

estimate to this upper limit as exact calculations are quite difficult. The heat generated by

a passing current of a sample of thickness t, given by Q = I2Rt, not only turns into internal

thermal energy, but is also lost by radiation to the surroundings. Rough estimate for the

maximal current Imax can be calculated by setting the heat equal to just the internal thermal

energy as follows:

I2Rt = cpρVAl(T − T0) → Imax =

√
cpρVA2(Tm − T0)

ρt
, (3.2)

where cp is the specific heat, ρV is the mass density, A is the cross-sectional area through

which the current flows, l is the length, T is the temperature to which the sample heats up,

T0 is the starting temperature and Tm is the melting temperature. We see that the maximal

current is highly material dependent (through cp, ρV , and ρ) and decreases with smaller A.

Note that as the temperature of the sample increases, the percentage of heat lost to radiation

increases. This means that the sample will melt only at currents that are higher than those

calculated by this simple approximation.

The nanovoltmeter on channel 1 can achieve a resolution down to 1 nV, on channel 2 to

10 nV.

The measurements can be automated by a program in Python using the Spider devel-

opment environment written by Sabri Koraltan. From here one can operate the PPMS

temperature and magnetic field, set the current, and note the voltage read-outs.

3.3.3 Helium bath cryostat with superconducting solenoid

The second system used for transport measurements was the cryostat by Oxford Instruments.

A photo of the setup and a schematic drawing can be found in figure 3.9. The cryostat

consists of a vacuum and Mylar sheet-isolated helium dewar that can hold up to 34 l of

helium. Submerged in it is another vacuum isolated dewar, the variable temperature insert

(VTI). The VTI is surrounded by the solenoid NbTi-Nb3Sn superconducting magnet. The

VTI leads up to an opening at the top of the cryostat system, where one can insert the sample

rod. The sample rod ends with a space to glue down a sample and 10 pins to contact to to

perform transport measurements. In addition, the sample rod is equipped with a heater and

a temperature sensor. The VTI also has its own heater and a temperature sensor. Similarly

to the PPMS, for loading and unloading a sample, the VTI has to be warmed up to room

temperature and continuously vented by gaseous helium.
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Figure 3.8: A photo of the PPMS cryostat (a) and of the PPMS and magnet controller

(b). In (c) is the schematic drawing of the PPMS cryostat. Here, blue represents the liquid

helium, purple liquid nitrogen, light gray vacuum isolated space and in red are temperature

sensors and heaters. Pictured are only some of the main parts of the cryostat for a better

understanding of the setup.
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Temperature control

The VTIs main function is to control the temperature of the sample space. An opening of

a capillary, connecting the liquid helium dewar and the VTI, can be operated by twisting a

needle valve. Through an open capillary, liquid helium is siphoned inside the VTI and can

then be pumped out in its gaseous form by a rotary pump placed at the top of the VTI.

This allows for cooling of the sample space by evaporation of the helium liquid, followed by

cold gas flow around the sample rod. Strong pumping can lower the pressure in the VTI and

temperatures below 4.2 K can be reached. The temperature is also regulated by a Lakeshore

336 temperature controller that reads out the values of the temperature sensors placed inside

the VTI and at the bottom of the sample rod. Then it can send power through the heaters

as needed. The samples inside the Oxford system can reach temperatures between 1.4 and

400 K.

Magnetic field control

The superconducting solenoid can produce magnetic fields up to 13 T when operating at a

helium liquid temperature of 4.2 K. The helium dewar is equipped with a lambda plate above

the magnet. The lambda plate is connected to a vacuum pump and has a valve that can be

opened to suck a small amount of liquid helium inside. The low pressure inside brings the

lambda plate liquid helium temperature down, and this in response cools the helium liquid

remaining in the dewar. Using the lambda plate assembly, one can operate the magnet below

4.2 K temperatures and reach up to 15 T fields. The magnet is powered by the Oxford

PS120-10 power supply. Changing of the field works on the same principle as described for

the PPMS.

The helium dewar is equipped with a helium meter. In order to operate the SC magnet

the helium level cannot drop below approximately 20%. Otherwise, the magnet could quench.

The same can happen if one does not follow the recommended maximum field ramp rates for

the system.

Resistivity option

The same external hardware was used as described for the PPMS. All measurements were

operated using a computer connected to the devices via a GPIB interface. Using the program

written by Bernd Aichner in the programming environment TestPoint, one can control the

magnetic field, set the current, and take note of the voltage read-outs.

3.4 Numerical simulations

Numerical simulations in the scope of this thesis were performed using either the TDGL alone

or the modified TDGL in conjunction with the heat balance equation.
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Figure 3.9: A photo of the helium bath cryostat with superconducting solenoid (a) and of

the setups devices (b). In (c) is the schematic drawing of the cryostat. Here, blue represents

the liquid helium, gray the vacuum isolated space and in red are temperature sensors and

heaters. Pictured are only some of the main parts of the cryostat for a better understanding

of the setup.
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The ordinary TDGL was modeled with link variables to facilitate the preservation of the

gauge invariance under discretization. The zero electric potential gauge was chosen. The

computational grid is a uniform square grid. As boundary conditions, one uses the condition

that the normal component of the supercurrent to the surface must be zero. Defects inside

the superconductor are modeled by changing the GL parameter κ. More information on these

simulations can be found in the bibliography entry [72].

In the modified TDGL in conjunction with the heat balance equation, Vodolazov modi-

fied the ordinary TDGL by introducing the superconducting current defined by the Usadel

equations and a finite electron temperature Te. This allows one to observe non-equalibrium

phenomena. The heat balance equation is solved to find Te as well as the phonon temper-

ature Tp. The boundary condition is again that the normal component of the supercurrent

to the surface must be zero. Used are also additional boundary conditions for Te and the

order parameter depending on the edge (along or perpendicular to the current). The simula-

tions are described in more detail in the bibliography entry [29]. The local consideration of

temperature in this model uncovers local FFI and local non-equilibrium phenomena.
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Chapter 4

Thickness dependencies

The superconducting properties of two materials of various thicknesses are described in this

chapter. We study the thickness dependence of amorphous MoSi and of polycrystalline Nb

samples. Both of these are in the dirty limit. The reason we chose to work with dirty limit

superconductors is that dirty limit electrons need more energy to escape the vortex core

and therefore they result in larger v∗ and shorter τϵ as compared to clean superconductors

[73]. The edge-controlled instability model that we want to test is made for materials where

τee ≪ τep. This is true for dirty limit superconductors.

4.1 Molybdenum silicon

The molybdenum silicon films were prepared on substrates consisting of a Si wafer with a

thermally grown 230-nm-thick dielectric SiO2 layer. The sample was then cosputtered using

dc magnetron sputtering (3.1.1) with a molybdenum target and a silicon target. First, a 3

to 5-nm thick Si buffer layer was sputtered. On top of this layer, a MoSi layer was sputtered

with the aim of achieving the composition stoichiometry of Mo70Si30. Lastly, all was covered

with a 3-nm thick Si capping layer. The produced thicknesses of the MoSi layer were 6, 10, 15

and 25 nm. The correctness of the composition stoichiometry was checked by EDX (3.2.2).

Cross-section images using TEM (3.2.3) of the cut out vertical lamellas from the sample

are given in figure 4.1 a) for a 15-nm thick MoSi sample, where one can clearly distinguish

between the various layers of the sample. In figure 4.1 b) the missing ring structure in the

SAED (3.2.4) pattern of the film provides evidence of the amorphousness of the film. The

AFM (3.2.5) measurements have shown that the roughness of the sample surfaces is less than

0.1 nm.

All MoSi samples characterized in this chapter were cut out for transport measurements

using laser beam etching 3.1.2 to bridges of specific width w and length between the voltage

contacts l. In figure 4.1 c) is an example of one of the MoSi films laser cut for a 4-point

transport measurement and contacted using silver paste and gold wires. All data of the 6, 10

and 15 nm samples were obtained at the Oxford magnet system. Data of the 25 nm sample

were taken on the PPMS.
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Figure 4.1: MoSi film characterization: Pictured is the TEM image of the vertical cross-

section (a), the SAED of the film (b) and the experimental geometry (c) with the sample

bridge highlighted in red. The contacts for passing current are I1 and I2, and for measuring

voltage V1 and V2.

4.1.1 Cooling curves and critical temperature

For the basic characterization of the samples, cooling curves were taken for all samples.

In the 4-point geometry, voltage was noted for a constant current of 0.1 mA from room

temperature down to below TC temperatures. The voltage is then recalculated to resistivity

with ρ = V (wd)
Il . The final curves for the thinnest and thickest sample are depicted in figure

4.2 (a). Apart from the clearly visible drop in resistivity at what we define as TC , we

also observe a rise in normal resistivity (for all T>TC) with decreasing temperature. This

transition is called the superconductor-insulator transition (SIT), as opposed to the more

frequently seen superconductor-metal transition (SMT), where normal resistivity drops with

increasing temperature. SIT is typical for disordered films and is known to be induced by

reduced film thickness. The nature of this behavior is not fully understood, but one of the

contributors to this behavior is the weak localization of the electrons as a result of quantum

interference effects of the electron waves in disordered electron systems [74, 75]. This weak

localization leads to corrections to resistivity due to superconducting phase fluctuations [76–

78] and/or increase in the Coulomb interaction [79]. Our MoSi samples, as proven through

previously mentioned measurements, are amorphous, which already on its own makes them

disordered systems. The further suppression of thickness of the films causes increased surface

scattering, and hence lowers their electron mean free path, which increases their effective

disorder. It is clearly seen in figure 4.2 (a) that the width of the SIT transition is larger

for the thinner sample, which supports the previously mentioned theories that SIT is more

pronounced for systems with higher disorder. The calculated residual resistivity ratio RRR,

defined here as the ratio between resistivity at 300 K and 10 K, falls from 0.95 to 0.87 for

the 25 nm and the 6 nm sample, respectively. A better representative of the SIT growth is

the width between resistivity at 300 K and 10 K, ∆R. The results for all thicknesses can be
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Figure 4.2: MoSi cooling curves: Resistive curves taken for temperatures from 260 down to

3K for the thinnest (6 nm) and thickest (25 nm) studied MoSi sample (a). Highlighted area

shows the raise in resistivity between 260 and 10 K. The inset shows the sheet resistance

curves. Further is plotted the sheet resistance and resistivity at 10 K for all thicknesses (b).

found in the table 4.1.

The sheet resistance Rsq above the transition, as seen in the inset of figure 4.2 (a) and in

(b), increases with decreasing thickness. In MoSi, we are dealing with a metallic amorphous

system, but much can be learned from previous studies done on pure metals or metallic

multilayered structures [80–83]. In these studies it is shown that there exits a range of

thickness with ρ ∝ d−1. Considering that the normal state resistivity, as defined in the Drude

model, is also proportional to l−1, the implication is that the mean free path l is limited by

the thickness of the layer. As mentioned above, this can be simply understood as an increase

in the scattering from the surface, hence the decrease of l, as the thickness is lowered. ρ

saturates for large d in ρ of the bulk material, and for very small d to ρ(l ≃ a0),where a0

is the interatomic spacing. The latter follows from the Ioffe-Regel rule [84]. The rule limits

the value of l to equal and above the values of a0, because smaller values do not allow for

metallic transport.

Although all of this gives a good general insight into the topic, the enhancement of Rsq

as well as the change in other superconducting properties in amorphous films are much more

complicated. It should also be noted that in our results ρ did not show a linear behavior with

thickness as described in the mentioned theories, but instead has a peak at 10 nm (figure

4.2(b)). Only Rsq increases monotonically with decreasing thickness. Several models were

developed to link Rsq with d, but also to TC . Hence, let us first look at the development of

TC with thickness.

Figure 4.3(a) shows the resistivity normalized by its value at 10 K for temperatures in

the vicinity of the transition for all sample thicknesses. The vertical lines point to the critical

temperatures TC . These are chosen as the point where the 0.75 horizontal line intersects the
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cooling curve, known as the 75% criterion. The intersections of the 0.1 and 0.9 horizontal

lines with the cooling curve line-out the width of the SC transition ∆TC . The SC transition

width is here pictured for the 6 nm sample as the green highlighted area. We detect a decrease

of TC and an increase in ∆TC with decreasing sample thickness d. This is summarized in

figure 4.3 (b).

The decrease in TC is also observed in experiments in which the samples are increasingly

irradiated with higher fluence [85, 86]. Here, researchers link this decrease with the decrease

in the long-range order parameter S due to defects that are introduced into the lattice by

irradiation [87]. This suggests that systems with higher disorder will have lower TC . This

is in alignment with the previously mentioned hypothesis that lower thickness accounts for

higher effective disorder and thus we observe TC decrease. In addition, we can compare

the broadening of ∆TC with fluence in irradiation experiments [88], with the broadening

of ∆TC we observe with decreasing thickness. In irradiation experiments this behavior is

explained as the creation of microregions with different TC from the matrix. Similar con-

clusions have been derived for amorphous films. Researchers found that in SC amorphous

thin films superconducting phase fluctuations in homogeneous disorder can create regions

with superconducting islands immersed into a normal/metallic matrix around the transition

[89–91]. This means that in the surroundings of the critical temperature region there exists a

spatially inhomogeneous superconducting state in homogeneously disordered systems. As the

temperature decreases, the density of these islands increases. This allows proximity-induced

coupling between them, and eventually a full superconducting state is reached [92, 93].

For the shape of the TC-d curve is known, it has a very slow to no decrease in thick films.

Here, TC can be considered constant and equal to TB, the bulk critical temperature. Then,

starting from a certain thickness, a decrease in TC starts to be more and more pronounced

as proximity-coupled SC islands appear in the critical temperature region.

For the analytical description of the TC-d curve, Simonin derived an equation by inserting

a surface energy term into the Ginzburg-Landau equation [94]. The resulting dependence goes

as follows:

TC = TB(1−
d

dc
), (4.1)

where dc is a fitting parameter that represents the thickness bellow which superconducting

properties will disappear. In figure 4.3 (b) the dotted curve is the Simonin fit to our data.

Both TB and dc are taken as fit parameters. We observe that the data point for the 6 nm

sample deviates from the curve that fits the data points of the other thicknesses. The 6 nm

sample is also the one that showed a rather unexpected decrease in ρ. The possible reason

for the unexpected behavior will be addressed in a later part.

The fitted TB = is 6.93 K. This is in fairly good agreement with the literature where for

a 200 nm thick MoSi sample, with the same composition as ours, a TC of 6.6 K was reported

[95]. The offset from the literature value can perhaps be due to the usage of a different

criterion (such as the 75% we used) to determine TC . The second parameter dc with a value

of 1.06 nm is also in a rather good agreement with recent studies on MoSi thin films, where
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Figure 4.3: MoSi critical temperature: Superconducting transitions for all studied MoSi

samples presented as the disappearance of the normalized resistivity (a). The vertical dashed

lines point to the individual critical temperatures TC . Highlighted green area represents ∆TC

for the 6 nm sample. All values of ∆TC and TC are plotted against their thickness in (b).

The dashed line is the Simonin fit to the TC curve.

a dc of 1.46 nm was reported [96]. In these studies, MoSi had a stoichiometry of 83-17, in

contrast to our 70-30.

Simonin law was not specifically developed for amorphous films, but rather to describe the

TC evolution with thickness for any superconducting thin films. To specifically address the

case of amorphous films, Finkel’stein developed a model modifying the BCS equation to take

into account the change in Coulomb interactions due to homogeneous disorder. He observed

that TC scales better with Rsq than it does with thickness. The relationship between TC and

Rsq is as follows:

TC = TBe
γ


(

1
γ + r

4 −
√

r
2

)
(

1
γ + r

4 +
√

r
2

)


1√
2r

, (4.2)

where γ is the fitting parameter and :

r =
e2

2π2ℏ
Rsq. (4.3)

The result of the fit to the data is in figure 4.4 (a). Again, no god fit was found to include

the data of the 6 nm sample. As a result of the fitting we obtained a TB of 6.75 K, not far

from what we derived with the Simonin law, and a γ of 6.9. This is in the order of values for

other homogeneously disordered materials like TiN with γ between 6.8 and 6.2 [90], MoGe

with γ = 8.2 [97], or even MoSi (83-13 stoichiometry) with γ = 7.66 [96].

For the 6 nm sample that seems to be misaligned compared to the rest of the taken data

points, we can only draw some assumptions. From the data we gathered, if we assume that

the fitting models are correct, it seems that the sample is actually thinner and has a lower
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Figure 4.4: MoSi fitting models for Rsq and TC : Dashed lines are fits to the Finkel’stein

model (a) and Universal scaling law (b)

Si content than what we thought. Whilst a thinner sample accounts for the lower TC we

observed, a stoichiometry deviating from 70-30 to one with a higher Mo and lower Si content

accounts for the lower ρ we observed. The Finkel’stein fit to include the 6 nm data point has

a higher TB and a higher γ than the one fitted for the rest. Once again a lower Si content

MoSi has a higher TB and as we see in ref. [96] also higher γ. This again supports our

assumptions.

This stoichiometry and thickness change in the 6 nm sample could have happened if some

of the Si from the MoSi layer stuck to the Si buffer and/or capping layer, effectively lowering

the thickness and Si content of the MoSi layer. In thicker samples this might have been also

the case, but because of the larger thickness, the stoichiometry in the middle of the sample

stayed as desired and the change in thickness was negligible. In the cross-sectional TEM

figure 4.1 (a) one can actually observe how the Si (lighter dots) at the edges of the MoSi layer

is more concentrated.

Lastly, we tried to fit the data with the Universal scaling law developed by Ivry et al.[98].

The proposed scaling law is suggested to fit the data better and reduce scatter compared to

the previously fitted models by linking TC to both RS and d. The scaling law is the following

power law:

dTC = AR−B
sq , (4.4)

where A and B are fitting parameters. For amorphous films B should be larger than 1.

Despite the great success of the law to fit an extremely large library of data of different

materials and thicknesses, it has failed to fit our data as seen in figure 4.4 (b).

All findings of this subsection are summarized in table 4.1. The energy gap ∆(0) for all

samples is also included, estimated by equation 2.1.

45



d

[nm]

w

[µm]

l

[µm]

TC

[K]

∆TC

[K]

ρ10K

[µΩcm]

Rsq(10K)

[Ω/sq]

Rsq(300K)

[Ω/sq]

∆R

[µΩcm]
RRR

∆(0)

[µeV]

6 200 1000 5.15 0.38 117 195 170.3 24.7 0.87 781.06

10 200 1000 6.2 0.34 154 154 147 7 0.95 940.28

15 182 616 6.43 0.22 147 98 95.5 2.5 0.97 985.78

25 200 1000 6.64 0.17 61 24.4 23.2 1.2 0.95 1007

Table 4.1: MoSi critical temperature and resistivity summary. The table consists of results

for the sample width w, voltage contact length l, critical temperature TC , transition width

∆TC , normal resistivity at 10 K ρ10K , square resistance at 10 K and 300 K Rsq(10 K) and

Rsq(300 K), width of the resistivity raise ∆R, residual resistivity ratio RRR and the energy

gap ∆(0).

4.1.2 Upper critical field

Figure 4.5 depicts the normalized resistive curves measured from no applied magnetic field

and then up to magnetic fields where no transition is anymore visible, or up to the highest

magnetic field achievable by the setup. These measurements are shown for the 6 nm (a), 10

nm (b), and 25 nm (c) samples. The 15 nm sample results are found in the following chapter,

figure 5.2. We note that the broadening of the transition with an increasing field is more

pronounced in the thinner samples. This again hints at the presence of an inhomogeneous

superconducting state in the thinner samples. The intersections with the dashed horizontal

line at 0.75 give the value of TC at the curves corresponding applied field. In figure 4.5 (d)

the result of this analysis, the upper critical field BC2 versus temperature, is plotted for all

thicknesses.

To obtain BC2 for T=0, one must perform a fit procedure to the measured data. Since in

high magnetic fields superconductivity can be destroyed due to orbital pair breaking and/or

the action of the spin-paramagnetic effect, the upper critical field BC2(0) is limited by these

effects. Whilst the orbital pair breaking happens as aftermath of the Lorentz force acting

on paired electrons, spin-paramagnetic effect breaks superconductivity as a result of Zeeman

splitting when the Pauli-paramagnetism energy is equal to the superconducting condensation

energy. Werthamer, Helfand and Hohenberg (WHH) derived a description for the tempera-

ture dependence of BC2 from the Gor’kov theory taking into account the effects of the orbital

and spin-paramagnetic effect, and also spin-orbital scattering [99]. The WHH equation is

expressed as:

ln
1

t
=

(
1

2
+
iλso
4γ

)
ψ

(
1

2
+
h+ λso/2 + iγ

2t

)
+

(
1

2
+
iλso
4γ

)
ψ

(
1

2
+
h+ λso/2− iγ

2t

)
−ψ

(
1

2

)
with t =

T

TC
; h =

4BC2(0)

π2(−dBC2/dT )t=1
; γ =

[
(αh)2 − (λso/2)

2
]1/2

. (4.5)
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Figure 4.5: MoSi upper critical field: Normalized resistive curves taken at various magnetic

fields for a MoSi 6 nm- (a), 10 nm- (b) and 25 nm-thick (c) film. The dashed line represents

the 75% criterion at which values for the upper critical field were taken from. In (d) the

resulting upper critical field are plotted against temperature. The solid line is a fit to the

WHH equation.
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Here, λso is the spin-orbit scattering constant, α is the Maki parameter, and ψ(x) is the

digamma function.

When λso and α are equal to zero, BC2(0) is the same as the orbital limiting field Borb(0).

In the presence of the spin-paramagnetic effect BC2(0) is reduced due to the existence of

a paramagnetically limited field BP (0). BC2(0) has then values bellow Borb(0). The ratio

expressing the contribution of the two limiting fields Borb(0) and BP (0) to the final BC2(0)

is given by the Maki parameter α, where

α =
√
2Borb(0)/BP (0). (4.6)

In samples where spin-orbit scattering is strong (λso > 0), electron spins can be randomized.

This weakens the effect of the spin-paramagnetic limiting.

The fittings to the WHH equation 4.5 can be seen as the solid lines in figure 4.5 (d). The

used slope (dBC2/dT ) in the equation for all samples was taken in the vicinity of TC and can

be found in the table in figure 4.5 (d). The WHH equation describes the data quite well for

the 6, 10 and 15 nm sample. The 25 nm sample showed a rather unexpected temperature

development with a sharp increase in upper critical fields below 4 K. Since this behavior

has previously not been observed in any MoSi measurements, we suspect that the high fields

might have dislodged a corner of the sample from the holder and thus the angle between the

external magnetic field B and the sample area A was differentiating from the original 90◦.

In figure 4.6 (a) we compare upper critical field curves for the 15 nm sample at a 90 and

0◦ angle. We conclude that an angle smaller than 90◦ would indeed lead to observing the

measured positive upturn in the upper critical field. Remeasurement of the 25 nm sample

at high fields is needed, but for the current purpose the WHH equation 4.5 for the 25 nm

sample was made only for the low field data.

The fitted parameters λso and α can be found in figure 4.6 (b). Here we also find BC2(0)

taken from the WHH fitted curves at 0K. The plotted orbital limiting field Borb is calculated

using equation

Borb(0) = −0.693(dBC2/dT )T=TC
TC . (4.7)

This equation is derived from the WHH equation for λso and α equal zero and can be rewritten

as Borb(0) = 0.693BC2(T )[1 − (T/TC)]
(−1). In this form we see that apart from the 0.693

prefactor, it is consistent with the Maki and de Gennes (MDG) microscopic description for

the temperature dependence of BC2 in the dirty limit (l ≪ ξ(0)) [100, 101].

Lastly, the paramagnetically limited field BP plotted in figure 4.6 (b) is calculated using

equation 4.6.

The parameter α is highest for the thinnest sample and is reduced as the thickness in-

creases. This means that the Pauli limiting field is very large for thick samples and bulk

MoSi samples. In these samples, BC2(0) is only limited by the orbital field. Based on our

results, where the Pauli limiting field is even lower than the orbital limiting field, we can

conclude that spin-paramagnetism and spin-orbit scattering should be taken into account for

thin films, as they have influence on the final appearance of the curve BC2(0). We observe
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Figure 4.6: MoSi WHH fitting: In panel (a) is the comparison of upper critical field curves

for the 15 nm sample at an external field that is perpendicular (dark blue) and parallel (light

blue) to the surface. Solid lines are fits to WHH equation. In panel (b) we see the WHH

fitted parameters λso and α, and all the limiting fields at 0K.

that the BP (0) curve resembles that of the TC dependence on d. This is in line with the

origin of the Pauli limiting upper critical field that limits superconductivity when the Pauli

paramagnetism energy GP is equal to the superconducting condensation energy GC . The

Pauli limiting field is then calculated as:

GP = GC

1

4
(gµB)

2N(0)B2
P =

1

2
N(0)∆2

0

BP =

√
2∆0

gµB
≈

√
2 1.76kBTC
gµB

≈ 1.86TC , (4.8)

where g is an electron g-factor, µB is the Bohr magnetron, N(0) is the density of states at

the Fermi level, and ∆0 is the superconducting gap that is ≈ 1.76kBTC .

Borb can be derived from the Ginzburg-Landau-Abrikosov-Gor’kov (GLAG) theory as

Borb = κ
√
2BC [102]. In the dirty limit Gor’kov Goodman derived κ = κB + C1

√
γρ, where

κB is the bulk value of the Ginzburg-Landau parameter, γ is the Sommerfeld coefficient, and

C1 is a constant [103]. GLAG theory further defines BC = C2TC

(
1− T

TC

)√
γ with a C2

constant. Combining all gives us the orbital upper critical field in the dirty limit as defined

by GLAG theory:

Borb = C3TC

(
1− T

TC

)
γρ, (4.9)

where C3 is a constant. From this equation we can understand the shape of the Borb(0)

curve in figure 4.6 (b). As the thickness of the samples is reduced the slight decrease in
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TC is compensated by ρ growth, hence we observe only a slow increase of Borb(0). At very

low thicknesses the sharp TC decrease then overpowers the ρ contribution to Borb(0) and we

observe a decrease in the parameter. A further decrease in the field is expected for even

thinner samples. This is in agreement with a previous result found in amorphous ultrathin

films of Niobium [91]. The final BC2(0) is then resulting from the combination of the two

limiting fields.

d

[nm]

dBC2/dT

[T/K]

Borb

[T]

BC2

[T]

WHH

α

WHH

λso

Bp

[T]

D

[cm2/s]

ξ0

[nm]

λL

[nm]

Λ

[µm]

6 -3.7 13.21 7.2 2.4 0.5 7.78 0.296 4.998 499.517 83.173

10 -3.1 13.32 9.6 1.9 1.2 9.91 0.354 4.977 522.307 54.56

15 -2.8 12.61 9.74 1.6 1.2 11.15 0.392 5.115 498.383 33.118

25 -2.7 12.42 10.43 1.5 2 11.71 0.406 5.153 317.645 8.072

Table 4.2: MoSi upper critical fields summary: Table contains results for the slope, orbital

limiting field Borb, upper critical field BC2, Maki parameter α, spin orbit scattering constant

λso, Pauli limiting field Bp, diffusion constant D, coherence length ξ0, penetration depth λL

and Pearl length Λ.

All results of this subsection are summarized in table 4.2. Included are also results for

the diffusion constant D (eq. 2.5), the coherence length ξ0 (eq. 2.3), the penetration depth

λL (eq. 2.4) and the Pearl length Λ. Pearl length is calculated from

Λ = 2λ2L/d (4.10)

and its results categories all of our samples as wide strips for which w > Λ.

4.1.3 Critical current and current-voltage curves

Figure 4.7 (a) shows an I-V measurement for the 10nm sample at 5.0K temperature chosen

at random. However, the behaviors to be described are found in all samples and at all

temperatures. The logarithmic representation allows one to see all regions of the I-V curve as

described in the subsection 2.2.3. Each section is labeled in the figure with the corresponding

section number. The nonlinear section III. is very subtle to non-existent, because the FFI

jumps occur already in the linear regime. The pinned region I. with a constant very low

voltage ends in the depinning current I∗C . Because it is usually difficult to observe this regime

change, due to oscillations or complete absence of the pinned regime, one uses a voltage

criterion to define a critical current IC . The criterion is seen as the dashed horizontal line in

figure 4.7 (a). Where ever the I-V curve crosses the dashed line is where we set the critical

current IC . We have chosen a voltage of 0.5 mV as the voltage criterion. This might seem

quite high and is clearly positioned high into the linear flux-flow regime, but we have chosen

this criterion to later be able to define the critical current for all applied magnetic fields
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Figure 4.7: Shown are the MoSi I-V curves for the 10 nm sample in 5.0 K temperature in

logarithmic scale (a). They are measured at external magnetic fields that correspond to the

color code in the scale bar. The vertical line at 0.5 mV is the criterion for the defined critical

current IC(0) plotted in (b) for all sample thicknesses. Whilst symbols are measurement data

points, solid lines are the pair-breaking currents. The matching colors represent the same

thickness.

without having to interpolate many curves. In this chapter, we were only interested in the

zero magnetic field IC(0T ), crossing with the most right curve. The results for all sample

thicknesses and measured temperatures are found in figure 4.7 (b). Data points for the 25

nm sample are interpolated from lower currents. To protect the samples from burning, we

have not measured using currents above 20 mA. We observe that the thinner the sample, the

lower IC it has. We assume that this is a consequence of a smaller number of pinning centers

present in a thinner sample that can pin down vortices. Vortices will be present in the sample

even at zero applied magnetic field due to the field created by currents flowing through the

sample. We also compare our results to the theoretically highest achievable pair-breaking

current defined for dirty superconductors at zero magnetic field by Romijn et al. [40] as

follows:

Idep = Idep(0)

[
1−

(
T

TC

)2
]3/2

(4.11)

with the zero Kelvin Idep(0) calculated as [104]:

Idep(0) = 0.74
w[∆(0)]3/2

e0Rsq

√
ℏD

1√
1 + w/(πΛ)

. (4.12)

The factor 1/
√
1 + w/(πΛ) must be included for wide strips, like ours, to take into account the

non-uniformly distributed current throughout the width of the sample. The resulting curves

can be found as the dashed lines in figure 4.7 (b). Matching colors correlate the calculated

pair-breaking current with the measurement data of the same thickness. We observe the
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same thickness dependence and similar temperature dependence. We also observe that the

25 nm sample is in a not yet normal state, but in a high resistive state (corresponding to

0.5 mV), already at about 60% of the theoretical Idep. The 15 and 10 nm samples reach the

high resistive state with 30-50% of Idep, and the 6 nm sample is already highly resistive at

about 16% of Idep. Again we attribute the reaching of the higher resistive state at a smaller

percentage of Idep in the 6 nm sample to a lower number of pinning centers. But, as for

all sample thicknesses, IC is not reaching high enough values that would be of interest for

applications. The following chapter introduces an idea how to alter these samples to push

the IC values closer to the theoretically predicted values. The table 4.3 contains the results

for IC and Idep(0).

In figure 4.8 are the I-V curves in linear scale for the 6 (a,b), 10 (c,d), 15(e,f) and 25

nm (g,h) sample. The panels on the left side are taken at about 88% of TC and the panels

on the right at about 78%. They are measured at external magnetic fields that correspond

to the color code in the scale bar. Straight vertical lines correspond to region IV., the FFI

region, from subsection 2.2.3. For each curve, we take note of the voltage V ∗ and current

I∗, where the FFI raises from. An example of this procedure is given in figure 4.8 (g) by the

black arrows. For the thickest sample in figure 4.8 (g,h), the I-V curves for low magnetic

fields do not end in FFI jumps. This is because we have limited the highest applied currents

to 20 mA to protect the samples from burning, and the jumps for these low fields only occur

at currents above this security limit.

4.1.4 Critical velocity

Once we have collected the data we can calculate the critical velocity v∗ as introduced in

subsection 2.3.2 with v∗ = V ∗/Bl. The results are plotted in figure 4.9. As described in

subsection 2.3.2, we use various models to obtain information about energy relaxation time

τϵ.

LO and DO models

The first model to be fitted is the LO model. LO predicted v∗ to be constant in all external

magnetic fields B. Hence we set v∗ to a single value by fitting a horizontal line to the data

at higher magnetic fields. Setting this value into equation 2.12 gives the result for τϵ as

defined by LO. The results for two temperatures and all samples can be found in figure 4.9

(a,b). From this analysis we conclude that τϵ increases with thickness and has values raging

from 76 to 412 ps when the temperature is at about 88% of TC and from 149 to 1358 ps at

about 78%. τϵ also raises with dropping temperature. In the LO model τϵ ≃ τep. A drop

in temperature causes fewer electron-phonon interactions and hence explains the higher τϵ.

Many effects like contributions of τee to τϵ, effects of self-heating, or the dependence of v∗ on

field at low magnetic fields are left out from the LO model. This suggests that the results of

this model might be far from the real value of τϵ. To address the magnetic field dependency

we have tried to fit the DO model that takes this into account. The data were fitted to
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Figure 4.8: MoSi I-V curves for the 6 (a,b), 10 (c,d), 15 (e,f) and 25 nm (g,h) samples. They

are measured at external magnetic fields corresponding to the color code in the scale bar.

Panels on the left side are taken at about 88% of TC and on the right at about 78%.
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Figure 4.9: MoSi maximal velocity v∗ for all thicknesses fitted by LO model (a,b) and by DO

model (c,d). Panels on the left side are taken at about 88% of TC and on the right at about

78%. Symbols are measured data, solid lines are fitting curves. Resulting fitting parameters

are given in the tables included in each panel.
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equation 2.22 from the DO model. Since this models uniqueness comes from being able to fit

the low magnetic field data, we have concentrated on fitting the data at only low magnetic

fields. Fitting the entire magnetic field range was not possible, as good fits at low magnetic

fields result in very bad fits at high magnetic fields. Furthermore, in addition to τϵ, we had

to leave the parameter of slope, present in the equation in the definition of the parameter

D, as a free parameter. The resulting curves and the fitted parameters are found in figure

4.9 (c,d). No curve is fitted to the 78% TC 25 nm data because of the lack of data points

for low magnetic fields as a consequence of the security current limit mentioned. The slope

fitted values are much lower than previously found from the BC2 measurements (compare

with the values in table 4.2) and suggest a not observed rash increase in BC2 in the vicinity of

TC . Further, the dependency to thickness is flipped compared to before and is mostly raising

with thickness. The same goes for the resulting τϵ that is now shortening with thickness and

dropping temperature in contrast to the results of the LO model. All of this suggests that

the DO model fails to represent the data correctly in low magnetic fields and the resulting

τϵ, with values between 800 to 4500 ps, is incorrect. All the fitted parameters of the LO and

DO model can be found in table 4.3 and the resulting τϵ for both models in table 4.5.

MoSi (≈78% TC) (≈88% TC)

d

[nm]

Idep(0)

[mA]

IC

[mA]

v∗LO

[m/s]

(dBC2/dT )DO

[T/K]

IC

[mA]

v∗LO

[m/s]

(dBC2/dT )DO

[T/K]

6 89.27 3.5 351 -0.18 1.68 425.9 -0.1

10 123.37 12.29 315 -1 6.2 366 -0.93

15 159.78 13.47 295 -1.08 6.8 332 -2.8

25 388.11 65 139 - 29 214 -1.03

Table 4.3: Table contains results for the zero-temperature pair-breaking current Idep(0),

critical current IC , critical velocity from the LO model v∗LO and the slope from DO model

(dBC2/dT )DO for two temperatures for MoSi.

BS model

The BS model was fitted by fitting the equations 2.14 to the FFI measured data plotted

as current density j∗/j0 against the electric field E∗/E0. For the value j0 was taken the j∗

value at zero applied magnetic field. This is an extrapolated value for the 25 nm sample,

because of the security current limit. The only fitting parameter is E0. From equation 2.19

we calculated h. The results of this fitting can be found in figure 4.10 at 5.0 K for the 10

(a), 15 (b), and 25 nm (c) sample and at 5.5 K for the 25 nm sample (d). Whilst the points

are measurement data points, the solid lines are fits. It is clear that the fits are deviating

extremely from our data points. The difference between the measurement and the fitting

curve is further highlighted by the colored area. It seems that the thinner the films get, the
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Figure 4.10: MoSi measurement data fitted to the BS model at 5.0 K for the 10 (a), 15(b)

and 25 nm (c) sample and at 5.5 K for the 25 nm sample (d). Symbols are measured data,

solid lines are fitting curves. Colored areas highlight the deviance from the model. All fitted

and calculated values are listed inside the panels.
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larger is the deviation from the fit. From this trend, one could expect that the data would

fit the BS model well for bulkier samples. The authors of the BS model in their paper [55]

tested their theory on a 58 nm thick In sample, which is more than twice as thick as our

thickest sample. Due to the deviation, it was not possible to fit the thinnest sample of 6

nm to the model. Nevertheless, we continue our analysis by plotting P ∗/P0 against B and

fitting to the equation 2.20 for the remaining three thicknesses. The fitting parameter is the

transition field BT . The fitted values and fitting curves can be found in the insets of the

panels in figure 4.10. Finally, from equation 2.13 we obtain results for the energy relaxation

time τϵ. We observe the same dependence of τϵ on thickness and temperature as in the LO

model. Increase in τϵ with increasing thickness and decreasing temperature. However, the

value of τϵ is an order of magnitude smaller compared to the values derived from the LO

model.

MoSi (≈78% TC)

d

[nm]

E0

[V/cm]

j0

[mA/µm2]

h

[W/Kcm2]

BT

[mT]

τep

[ns]

τee

[ps]

6 - - - - - -

10 1.5 5.7 0.71 50 1.436 10.577

15 1.15 4.5 0.54 80 2.834 35.233

25 0.33 5.8 0.29 85 8.795 285.688

Table 4.4: Table contains results for the fitted electric field E0, current density j0, the heat

transfer coefficient h, the transition field BT , the electron-phonon relaxation time and the

electron-electron relaxation time from the BS model for MoSi.

The transition field BT increases with increasing thickness, but decreases with increase

in temperature. Since BT separates the regions where either the LO effect or overheating

dominates the FFI mechanism, the dependence found on temperature seems correct. A higher

setup temperature surely will cause overheating to occur sooner, and hence lowers the BT

value. We also note that none of the found BT values can explain the deviating results

obtained by fitting the DO model at low magnetic fields. Fitted were fields up to only 40

mT, so crossing of BT and with that connected overheating should not have been a problem.

If we consider that we are in the overheating regime as described in the BS model, we can

also calculate the electron-phonon τep and electron-electron relaxation τee times. Considering

to be in the overheating regime seems to be well validated for thin films. The equation 2.21

is used to determine τep and the equation of the BS model from table 2.1 to determine τee.

The Fermi velocity is for this purpose assumed to be 106m/s for all samples. The results of

the BS model fitting can be found in table 4.4, and the results for τϵ for all models to be

compared with one another in the section summary table 4.5.

In conclusion, we saw that none of the models used to find τϵ fit our thin film data
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well. The reason for this is the lack of consideration of pinning, localized overheating, and

localized flux-flow instabilities in these models. Looking back to figure 4.9 we note that we

do not observe any transition field Bcr1 as defined in chapter 2.3.2 subsection Pinning effects

on FFI. This is because MoSi is only weakly pinning. Nerveless pinning must be taken into

account to explain the models not fitting the data points.

We suppose that the edge quality of the samples is the main reason for the bad fits. In the

following chapter 5, we will investigate whether fabricating a sample with a close-to-perfect

edge will improve the fits and result in reasonable values for τϵ. Since we are interested in

MoSi for its use in SSPDs, we would like samples with the highest possible IC and lowest

τϵ, so they can operate at high currents and recover quickly. From our thickness study, we

saw that while τϵ is getting smaller for thinner samples, IC is also getting smaller. Hence we

compromise with a middle thickness of 15nm to study further.

MoSi (≈78% TC) (≈88% TC)

d

[nm]

τϵ (LO)

[ps]

τϵ (DO)

[ps]

τϵ (BS)

[ps]

τϵ (LO)

[ps]

τϵ (DO)

[ps]

τϵ (BS)

[ps]

6 149 3711 - 76 4506 -

10 205 862 11 116 1242 -

15 277 808 35 177 616 15

25 1358 - 278 412 925 -

Table 4.5: Table contains results for the fitted energy relaxation times τϵ as found using the

LO, DO and BS model for two temperatures for MoSi.

4.2 Niobium

Niobium films were prepared on sapphire (Al2O3) substrates. The films were dc-magnetron

sputtered (3.1.1) and lithographically structured (3.1.4) into Hall bars. The dc-magnetron

sputtering was performed at room temperature. The room temperature sputtering of Nb

creates dirty limit granular Nb films [105]. All films were covered with a 7 nm Si capping

layer. The produced Nb films were 11, 20 and 40 nm thick. An example of one of the final

Nb Hall bar of width w and with a distance between the voltage contacts l can be seen in

figure 4.11. The sample in the image is contacted by silver paint to gold wires, as is required

for transport and hall measurements. Data for all thicknesses were taken using the PPMS.

4.2.1 Cooling curves and critical temperature

The cooling curves for niobium were measured at a constant current of 0,1 mA. They were

taken from room temperature down to bellow TC temperatures. The measured voltage was
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Figure 4.11: Nb experimental geometry with the sample bridge zoomed in and highlighted

in red. The contacts for passing current are I1 and I2, and for measuring voltage V1 and V2.

The contact VH was made for Hall measurements.

recalculated to resistivity with ρ = V (wd)
Il . The final curves for the thinnest and thickest

sample can be seen in figure 4.12 (a).

Nb, unlike the previously analyzed amorphous MoSi, has a polycrystalline structure down

to at least a thickness of 4 nm. Zaytseva et al. found a transition to an amorphous state for

thicknesses below 3.3 nm [91], but since our thinnest sample is of 11 nm thickness, all our

samples are polycrystalline. We observe this on the lack of the SIT that was observed for

MoSi. The normal resistivity of Nb drops with the decreasing temperature, a signature of an

SMT. The high residual resistivity ρ10K with values between 18 and 29 µΩcm suggests that Nb

is in the granular dirty limit, where the grain boundaries make up for a significant contribution

to the residual resistivity [105]. The width of the transition for different thicknesses can be

seen in figure 4.12 (a) as the highlighted areas. We see that for different thicknesses this area

is almost the same. The RRR and ∆R for all thicknesses can be found in table 4.6. In SMT

the RRR is > 1 and depends on the purity of the sample. Thus, the thickness of the sample

should not influence the purity of the sample, and the RRR will not change. Only for very

small thicknesses, or clean limit superconductors, the substrate may influence the purity of

the sample by a substantial amount compared to the small sample thickness, and a decrease

in RRR is expected [106]. However, this decrease is expected for thinner thicknesses than

the ones described here.

As depicted in the inset of figure 4.12 (a) and then again in (b), the residual sheet

resistance increases with decreasing sample thickness. The reasoning for this is the same

as that for MoSi. In short, a decrease in thickness decreases the electron mean free path

and leads to a higher resistivity. We confirm this trend for the sheet resistance, but not for

resistivity itself. The resistivity has a peak at a thickness of 20 nm. We have also seen this in

MoSi, and we have attributed this to a change in the stoichiometry of the thinnest sample.

In Nb, we are not sure what leads to this behavior. The simplest explanation would be that
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Figure 4.12: Nb cooling curves: Resistive curves taken for temperatures from 260 down to 3K

for the thinnest (11 nm) and thickest (40 nm) studied Nb sample (a). Highlighted area shows

the drop in resistivity between 260 and 10K. The inset shows the sheet resistance curves.

Further is plotted the sheet resistance and resistivity at 10K for all thicknesses (b).

the 20 nm sample had slightly more defects compared to the other samples.

Figure 4.13 (a) shows the resistivity normalized by its value at 10K for temperatures in

the vicinity of the transition for all sample thicknesses. The vertical lines point to TC of

each sample as found by the 75% criterion. The width of the transition is highlighted for the

11 nm sample as the area between the 10 and the 90% value of the 10K-resistivity. Results

for TC and ∆TC are plotted in figure 4.13 (b). We observe a decrease in TC , but only a

very slight increase in ∆TC with decreasing thickness. The large increase in ∆TC for MoSi

was attributed to its amorphousness; therefore, it is not expected for ∆TC to grow for the

polycrystalline Nb. Whilst in MoSi the transition width grew by 10.5 mK per nm decrease

in thickness, in Nb it is only 2.5 mK. The transition is very sharp and narrow even at 11

nm, and the decrease in ∆TC might actually just be an error factor due to the insufficient

number of data points in the sharp transition.

As for the TC-d behavior from 4.13 (b), we were unable to fit the Simonin equation 4.1.

The lack of more sample thickness data and the possibility of the 20 nm sample having more

defects compared to the other two, which would make its TC lower, makes the fit unreasonable.

However, we had success with the universal scaling law, which makes a connection between

TC ∗ d and Rsq(300 K). Since a different defect structure of one of the samples would change

both TC and Rsq, its data point would only change its position on the fitted curve, but would

still fit on the same line as the rest of the data. The results of this fitting can be found in

figure 4.14. Here, the fitting parameter B lower than 1 correctly suggests a polycrystalline

structure.

Note that the Finkel’stein fit explored for the MoSi samples is specific to amorphous films

and cannot be used for Nb.
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Figure 4.13: Nb critical temperature: Superconducting transitions for all studied Nb samples

presented as the disappearance of the normalized resistivity (a). The vertical dashed lines

point to the individual critical temperatures TC . Highlighted green area represents ∆TC for

the 11 nm sample. All values of ∆TC and TC are plotted against their thickness in (b).

Figure 4.14: Nb data fitted to the Universal scaling law
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d

[nm]

w

[µm]

l

[µm]

TC

[K]

∆TC

[K]

ρ10K

[µΩcm]

Rsq (10K)

[Ω/sq]

Rsq (300K)

[Ω/sq]

∆R

[µΩcm]
RRR

∆(0)

[µeV]

11 30 100 6.25 0.12 28.59 25.99 37.42 11.05 1.38 947.9

20 30 100 6.4 0.08 30.14 15.07 21.19 10.71 1.35 970.61

40 30 100 7.69 0.04 17.71 4.43 7.62 11.19 1.63 1166.29

Table 4.6: Nb critical temperature and resistivity summary. The table consists of results

for the sample width w, voltage contact length l, critical temperature TC , transition width

∆TC , normal resistivity at 10 K ρ10K , square resistance at 10 K and 300 K Rsq(10 K) and

Rsq(300K), width of the resistivity raise ∆R, residual resistivity ratio RRR and the energy

gap ∆(0).

All findings of this subsection are summarized in table 4.6. The energy gap ∆(0) for all

samples is also included, estimated by equation 2.1.

4.2.2 Upper critical field

Figure 4.15 depicts the normalized resistive curves measured from the absence of applied

magnetic field and then up to the magnetic fields where no transition is visible anymore.

These measurements are shown for the 11 nm (a), 20 nm (b) and 40 nm (c) samples. Again

we observe that the broadening of the transition with increasing field is not very large,

especially when compared with the large broadening that occurs for the amorphous MoSi.

The intersections with the dashed horizontal line at 0.75 give the value of TC at the curves

corresponding applied field. In figure 4.15 (d) the result of this analysis, the upper critical

field BC2 versus temperature, is plotted for all thicknesses. The data is fitted with the WHH

equation 4.5. The value of the slope in the equation is taken from a linear fit in the vicinity

of TC and can be found in the table inside the figure.

The fitted parameters λSO and α can be found plotted against thickness in figure 4.16.

Further in the figure is included the resulting BC2(0) from the WHH fitting, Borb calculated

by equation 4.7, and BP calculated by equation 4.6.

We observe no paramagnetic limiting or spin-orbit scattering for the two thicker samples.

The 11 nm sample, however, seems to be limited by the paramagnetic limiting field. This

result is the same as what was found for MoSi. In bulk samples the paramagnetic limiting

field is so high that it does not have an effect on the final BC2 and therefore it is equal to

Borb.

The shape of Borb can be again understood from equation 4.9. Borb follows the shape of

the curves of ρ and TC . For polycrystalline materials Borb is known to increase with decreasing

thickness, but due to the observed peak in ρ for the 20 nm sample, we observe a drop in Borb.

BC2 is then further reduced as a consequence of finite BP . Comparing our results with those

found in [91] on Nb films, they also found the region around 10 nm thickness to be the onset
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Figure 4.15: Nb upper critical field: Normalized resistive curves taken at various magnetic

fields for a Nb 11 nm- (a), 20 nm- (b) and 40 nm-thick (c) film. The dashed line represents

the 75% criterion at which values for the upper critical field were taken from. In (d) the

resulting upper critical field are plotted against temperature. The solid line is a fit to the

WHH equation.
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Figure 4.16: Nb WHH fitting: The WHH fitted parameters λso and α, and all the limiting

fields at 0K.

of paramagnetic limiting.

All results of this subsection are summarized in table 4.7. Included are also results for

the diffusion constant D (eq. 2.5), the coherence length ξ0 (eq. 2.3), the penetration depth

λL (eq. 2.4) and the Pearl length Λ. Pearl length is calculated from

Λ = 2λ2L/d (4.13)

and its results categories all of our samples as wide strips for which w > Λ.

d

[nm]

dBC2/dT

[T/K]

Borb

[T]

BC2

[T]

WHH

α

WHH

λSO

Bp

[T]

D

[cm2/s]

ξ0

[nm]

λL

[nm]

Λ

[µm]

11 -0.85 3.68 3.57 0.25 0 20.83 1.29 9.467 224.145 9.135

20 -0.85 3.77 3.76 0.01 0 533.15 1.29 9.355 227.427 5.172

40 -0.66 3.5 3.49 0.01 0 495.47 1.662 9.704 159.352 1.27

Table 4.7: Nb upper critical fields summary: Table contains results for the slope, orbital

limiting field Borb, upper critical field BC2, Maki parameter α, spin orbit scattering constant

λso, Pauli limiting field Bp, diffusion constant D, coherence length ξ0, penetration depth λL

and Pearl length Λ.

4.2.3 Critical current and current-voltage curves

Figure 4.17 (a) shows the I-V curve of the 20 nm sample at 5.8K in the logarithmic scale to

highlight the regions described in the subsection 2.2.3. Each section is labeled in the figure

with the corresponding section number. The nonlinear section III. is missing, because the

FFI jumps occur already in the linear regime. Similarly as before, we use a voltage criterion
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Figure 4.17: Shown are the Nb I-V curves for the 20 nm sample in 5.8K temperature in

logarithmic scale (a). They are measured at external magnetic fields corresponding to the

color code in the scale bar. The vertical line at 5 µV is the criterion for the defined critical

current IC(0) plotted in (b) for all sample thicknesses. Whilst symbols are measurement data

points, solid lines are the pair-breaking currents. Matching colors represent same thickness.

to define a critical current IC . The criterion is seen as the dashed horizontal line in figure 4.17

(a). We have chosen the voltage of 5µV as the voltage criterion. This is different from the

criterion we have chosen for MoSi, but we chose this to be able to read out the data without

interpolation. The results for IC(0) for all sample thicknesses and measured temperatures

are found in figure 4.17 (b). Once again we observe that the thinner the sample, the lower

IC it has. The temperature dependence of IC is compared with the theoretically highest

achievable pair-breaking current calculated by equation 4.11 and is depicted as the dashed

lines in figure 4.17 (b). Matching colors correlate the calculated pair-breaking current with

the measurement data of the same thickness. We observe the same thickness dependence and

similar temperature dependence. At 78% TC the IC value of the thickest sample is only about

46% of the theoretically predicted value and the two thinner samples are only around 35%

of the theoretically predicted value. We attribute some of this decrease in critical current to

poor edge quality, as explained in the next chapter. A comparison of IC between the MoSi

and Nb samples should be avoided due to the different voltage criterion used to define IC .

The table 4.8 contains the results for IC and Idep(0).

In figure 4.18 are the I-V curves in linear scale for the 11 nm (a,b), 20 nm (c,d) and 40 nm

(e,f) sample. The panels on the left side are taken at about 90% of TC and the panels on the

right at about 78%. They are measured at external magnetic fields that correspond to the

color code in the scale bar. Straight vertical lines correspond to region IV., the FFI region,

from subsection 2.2.3. For the thickest sample in the lower temperature range in figure 4.8

(f), the I-V curves for low magnetic fields do not end in FFI jumps. This is because we have

limited the highest applied currents to 20 mA to protect the samples from burning, and the
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Figure 4.18: Nb I-V curves for the 11 nm (a,b), 20 nm (c,d), and 40 nm (e,f) samples. They

are measured at external magnetic fields corresponding to the color code in the scale bar.

Panels on the left side are taken at about 90% of TC and on the right at about 78%.
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jumps for these low fields only occur at currents above this security limit.

4.2.4 Critical velocity

The calculated critical velocity v∗, as introduced in subsection 2.3.2 with v∗ = V ∗/Bl, is

plotted in figure 4.19.

LO and DO models

First, ignoring the complicated field dependency of v∗, we fit the LO model to the data. We

set v∗ to a single value by fitting a horizontal line to the data at higher magnetic fields. In

cases where v∗ does not approach and settle to a single value, we set the horizontal line to

the highest achieved v∗. Then taking this value into equation 2.12 gives the result for τϵ as

defined by LO. The results for two temperatures and all samples can be found in figure 4.19

(a,b). From this analysis we conclude that τϵ increases with thickness and has values raging

from 34 to 130 ps when the temperature is at about 90% of TC and from 163 to 457 ps at

about 78% of TC . The thickness dependence is the same as that found for MoSi. However, the

values are a little bit lower, suggesting a more efficient energy relaxation in Nb compared to

that of MoSi. τϵ raises with dropping temperature. This is again consistent with findings in

MoSi and can be explained by a drop in electron-phonon interactions at lower temperatures.

Looking at the magnetic dependency of v∗ we conclude that it is much more complicated

than what is described by the DO model alone. In low fields we observe a raise in v∗ up until

a certain field Bcr1 as defined in chapter 2.3.2 subsection Pinning effects on FFI. This rise

is a consequence of strong pinning to non-homogeneously distributed defects. This pinning

weakens whilst vortex-vortex interaction raises with raising field and allows the vortices to

order themselves. Hence, a rise in measured average velocity is observed. Once all vortices

are ordered, the dependency on field is expected to switch to the one known from the DO

model. However, we have observed a further section where an increase in v∗ is present with

increasing field. This happens in the intermediate fields. This is especially dominant in the 11

nm sample at 90%TC (figure 4.19 (a)). We attribute this to very strong localized overheating

that turns a part of the film normal conducting. This would be masked as high vortex

velocity, due to the increase in voltage used to calculate v∗. The onset of this intermediate

field v∗ increase is at about 25-30mT, which is consistent with the later found transition field

BT from the DO model.

The data were fitted to equation 2.22 from the DO model. The importance was given to

fit the data at low magnetic fields. However, data points for fields lower than the crossover

field Bcr1 are omitted from the fit. Fitting the entire magnetic field range was not possible,

as good fits at low magnetic fields result in very bad fits at high magnetic fields. In addition

to τϵ, we had to leave the parameter of slope, present in the equation in the definition of the

parameter D, as a free parameter. The resulting curves and the fitted parameters are found

in figure 4.19 (c,d). No curve is fitted to the 78% TC 40 nm data because of lack of data points

for low magnetic fields as a consequence of the security current limit. The fitted values for
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slopes are lower than those previously found from BC2 measurements (compare to values in

table 4.7). The dependency on thickness is flipped compared to before and is increasing with

thickness. The same goes for the resulting τϵ that now shortens with increasing thickness and

dropping temperature in contrast to the results of the LO model. Similarly as for MoSi, the

DO model fails to represent the data correctly in low magnetic fields, and the resulting τϵ,

with values between 330 and 3000 ps, is most probably incorrect. All the fitted parameters

of the LO and DO model can be found in table 4.8 and the resulting τϵ for both models in

table 4.10.

Nb (≈ 78%TC) (≈ 90%TC)

d

[nm]

Idep(0)

[mA]

IC

[mA]

v∗LO

[m/s]

(dBC2/dT )DO

[T/K]

IC

[mA]

v∗LO

[m/s]

(dBC2/dT )DO

[T/K]

11 59 4.69 680 0.2 1.8 1142 0.035

20 90 7.3 500 1.214 3.14 728 0.36

40 206 23.6 470 - 13 700 0.569

Table 4.8: Table contains results for the zero-temperature pair-breaking current Idep(0),

critical current IC , critical velocity from the LO model v∗LO and the slope from DO model

(dBC2/dT )DO for two temperatures for Nb.

BS model

The BS model was fitted by fitting equations 2.14 to the FFI measured data plotted as current

density j∗/j0 against the electric field E∗/E0. For the value j0 was taken the j∗ value at zero

applied magnetic field. This is an extrapolated value for the 40 nm sample, because of the

security current limit. The only fitting parameter is E0. From equation 2.19 we calculated h.

The results of this fitting can be found in figure 4.20 at 78% of TC for the 11 (a), 20 (b) and

40 nm (c) samples and at 90% of TC for the 20 nm sample (d). Whilst points are measurement

data points, the solid lines are fits. Just like for MoSi, the fits are deviating in the middle

region from our data points. The difference between the measurement and the fitted curve is

further highlighted by the colored area. Previously, we have seen that the thinner the films,

the bigger the deviation from the fit. This seems to be the case again for Nb. Although we

see a big improvement in the fit going from the 11 to the 20 nm sample, we do still observe a

deviance from the fit at the 40 nm sample. The deviance is now on the opposite side of the

curve. This suggests that the model actually underestimates when the FFI occurs. Up until

now, the model overestimated the location of the FFI, which means that there was an effect

present in the measurements that triggered the FFI sooner (meaning at smaller currents and

voltage) than what BS predicted. In the next chapter, we will talk about how the edge can

trigger the FFI sooner. For the 40 nm sample the underestimation can be a consequence of

localized overheating, raising the measured voltage. Nevertheless we continue our analysis
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Figure 4.19: Nb maximal velocity v∗ for all thicknesses fitted by LO model (a,b) and by DO

model (c,d). Panels on the left side are taken at about 90% of TC and on the right at about

78%. Symbols are measured data, solid lines are fitting curves. Resulting fitting parameters

are given in the tables included in each panel.
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by plotting P ∗/P0 against B and fitting to the equation 2.20. The fitting parameter is the

transition field BT . The fitted values and fitting curves can be found in the insets of the

panels in figure 4.20. Finally, from equation 2.13 we obtain results for the energy relaxation

time τϵ. We observe the same dependence of τϵ on thickness and temperature as in the LO

model. Increase in τϵ with increasing thickness and decreasing temperature. The value of τϵ

is an order of magnitude smaller compared to the values derived from the LO model for the

11 nm and 20 nm sample. The 40 nm sample value of 479 ps is very close to the LO derived

value of 457 ps. This suggests that for bulkier samples, when the equation 2.14 fits the data

well, the obtained τϵ value will not differ much from the obtained value of the LO model.

Nb (≈ 78%TC)

d

[nm]

E0

[V/cm]

j0

[mA/µm2]

h

[W/Kcm2]

BT

[mT]

τep

[ns]

τee

[ps]

11 1.35 16 1.9 25 0.59 11.89

20 0.85 14.7 1.78 35 1.14 30.79

40 0.075 21 0.38 35 12.9 498.18

Table 4.9: Table contains results for the fitted electric field E0, current density j0, the heat

transfer coefficient h, the transition field BT , the electron-phonon relaxation time and the

electron-electron relaxation time from the BS model for Nb.

In the overheating regime as described in the BS model, we can also calculate the electron-

phonon relaxation τep and electron-electron relaxation τee times. The equation 2.21 is used

to determine τep and the equation of the BS model from table 2.1 to determine τee. The

results of the BS model fitting can be found in table 4.9 and the results for τϵ for all models

to be compared with one another in the section summary table 4.10.

Nb (≈ 78%TC) (≈ 90%TC)

d

[nm]

τϵ (LO)

[ps]

τϵ (DO)

[ps]

τϵ (BS)

[ps]

τϵ (LO)

[ps]

τϵ (DO)

[ps]

τϵ (BS)

[ps]

11 163 792 12 35 3000 -

20 315 331 30 97 671 9

40 458 - 480 130 434 -

Table 4.10: Table contains results for the fitted energy relaxation times τϵ as found using the

LO, DO and BS model for two temperatures for Nb.

In summary, we saw very similar results to those found for MoSi when it came to the

energy relaxation times. The lack of consideration of local FFI effects causes inconsistencies

in the models. The justification for this statement follows from the next chapter.
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Figure 4.20: Nb measurement data fitted to the BS model at 5.0K for the 11 nm (a) and

20 nm (b) sample, at 6.0K for the 40 nm (c) sample and at 5.8K for the 20 nm (d) sample.

Symbols are measured data, solid lines are fitting curves. Colored areas highlight the deviance

from the model. All fitted and calculated values are listed inside the panels.

4.3 Conclusions

When comparing the two samples of different crystallization, amorphous and polycrystalline,

based on their thickness dependence study, we conclude that apart from ∆TC and BC2, the

thickness dependence of all parameters seems to have the same trends despite the different

crystallization. The energy relaxation times obtained for both materials are in the same unit

scale. It is then the difference in the diffusion constant that makes MoSi a favorable material

for SSPD use. A lower D of the MoSi will ensure that the hotspot, created after a photon

strikes the SSPD, remains contained to a smaller area. This smaller area can recover quicker,

giving MoSi the advantage of a shorter dead time.
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Chapter 5

Edge barrier effects

The thickness studies from the previous chapter hinted on the presence of effects that are

not described in the present models used to obtain the energy relaxation times. Since this

parameter is used to judge materials for their potentiality for use in SSPDs, it is important

to find a reliable way to gain information about the relaxation time. We have seen how in

Nb the lack of incorporating vortex pinning in the DO model made it impossible to describe

the low field regime, but even for MoSi, which essentially is weakly pinning, the DO model

did not fit the entire region of fields, nor did it lead to convincing results of τϵ. We have

also seen that the BS model fits worsen for thinner samples. This means that effects were

present that led the FFI to occur at lower currents than what the BS model predicted.

The idea of finding the responsible effects came from the local flux-flow instability model

and the edge-controlled instability model as introduced in chapter 2.3.2. The local flux-flow

instability model recognizes that an FFI jump in the linear regime is connected to a localized

normal conducting region. This region can, under certain conditions, grow and switch the

entire sample to a normal conducting sample. This means that it undergoes an FFI jump.

However, the model introduced is very specific to the case of a heated band crossing the

sample. In our experiments, we observed the FFI jump to occur in the linear regime, but

we do not believe to have such a heated band. In the edge-controlled instability model,

similar local FFI is described. Here, the localization comes from the edge barrier for vortex

entry. Defects on the edge cause hot spots as a consequence of local suppression of the edge

barrier due to variation of the material parameters. Notches in the edge cause hot spots as

a consequence of the current crowding effect. The hot spots can then shift the occurrence

of the FFI jump. The edge-controlled instability model does not provide us with a tool to

extract energy relaxation times. In order to fit the original BS model to thin film data, we

need to suppress any defects and notches on the edge by creating very smooth, clean edges.

We also saw that the thinner the sample, the farther we were from fitting the BS model. This

is because in a thinner sample the edge effect overshadows any present volume effects.

We chose MoSi to perform the measurements on, because it did not show overheating

and had weaker pinning than Nb. MoSi is a dirty superconductor, which makes it a great
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Figure 5.1: MoSi edge roughness: SEM images of the patterned edges of the laser cut sample

L (a) and FIB milled sample F (b). Note the different scale bar in the panels. The inset in

panel (a) is the material composition near the edge of sample L.

candidate for the edge-controlled instability model that was developed for such. As for the

thickness, we have chosen to work with a 15 nm thick MoSi sample. We are essentially

interested in MoSi for its use in SSPDs and thus are looking for the highest possible IC and

lowest τϵ for quick device recovery. From our thickness study, we saw that while τϵ is getting

smaller for thinner samples, IC is also getting smaller. The mid of the range thickness of 15

nm should give us satisfying values for both IC and τϵ.

The smooth edge should, in addition to being able to fit the BS model better, lead to

higher critical velocity v∗ and faster heat removal. The following sections will introduce the

experimental and modeled results.

5.1 Edge quality

Compared were two 15 nm thick amorphous MoSi films. The preparation methods were the

same as for the MoSi in section 4.1 with the only difference in patterning. Whilst one of the

films was patterned as in section 4.1 using laser beam etching (3.1.2), the other was patterned

using focused-ion beam-induced milling (3.1.3). These methods lead to very different edge

roughness. From here on out we will refer to the laser-patterned sample as sample L, and to

the FIB milled one as sample F. SEM images for sample L (a) and for sample F (b) can be

seen in figure 5.1.

The laser beam leaves behind a pattern resembling that of a pattern left behind metal

welding. The beam power, focal spot size, and speed of rastering give rise to the final shape

of the edge of the pattern. The parameters used can be found in section 3.1.2. The laser

beam is centered to region 1 in 5.1 (a) with a focal spot size of 6 µm. The evaporation of

MoSi takes place within the focal spot and also 2-3 µm beyond the focal spot (region 2).

Region 3 is what we define as the edge region of the sample, and the red line outlines the

edge of the sample. The edge has a sawtooth-like shape, creating an irregular variation of

the edge barrier for vortex entry. About 1 µm away from the edge into the edge region 3 a
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Figure 5.2: Normalized resistive curves taken at various magnetic fields for a 15 nm MoSi

film. The data points are taken from measurements on sample L, but are representative for

both sample L and F. The dashed line represents the 75% criterion at which values for the

upper critical field were taken from.

variation of the composition is registered by EDX spectroscopy (3.2.2). The results can be

found in the inset of panel 5.1 (a). The higher oxygen content leads to the degradation of

the superconducting properties in the edge region.

FIB milling leaves behind a much smoother edge than the one created by laser. The setup

and parameters used can be found in section 3.1.3. The FIB is centered to region 1 in 5.1

(b) with a focal spot size of 20 nm. The material is removed on impact by the electrons of

the FIB hitting the surface inside the focal spot. Unlike in laser etching, there is no melting

(evaporation) of the material beyond the focal spot size. Therefore, region 2 is missing from

5.1 (b). The region 3 is again the edge region of the sample. And the line separating regions

1 and 3 is the edge of the sample. Despite the much larger magnification compared to the one

in the laser cut edge shown in (a), the edge in (b) is visually smooth. AFM measurements

have shown a deviation of only up to 0.5 nm from a perfectly straight line along the edge,

categorizing the FIB created edge as a close-to-perfect edge barrier for vortex entry. About

10 nm away from the edge into the edge region 3 a trace of implanted Ga ions can be seen

as the lighter area in region 3 and calculated from simulations.

In figure 5.2 are the normalized resistive curves measured for various applied magnetic

fields for sample L. The intersections with the dashed horizontal line at 0.75 give the value

of TC at the curves corresponding applied field. The result of this analysis, the upper critical

field BC2, is plotted in the figure of the previous chapter 4.5 (d). All the values of the

parameters in table 4.1 and 4.2, can be taken as representative of both sample L and F. The

parameters found in all the tables in the section 4.1.3, are only representative of sample L.

The values of these parameters for sample F will be presented in the following section and
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Figure 5.3: Shown are the I-V curves for sample F in 5.0K temperature in logarithmic scale

(a). They are measured at external magnetic fields corresponding to the color code in the

scale bar. The vertical line at 0.5mV is the criterion for the defined critical current IC(0)

plotted in (b) for sample F and L. Symbols are measurement data points, the solid line is the

pair-breaking current Idep.

compared with those of sample L.

5.2 Sample comparison

5.2.1 Critical current and current-voltage curves

The current-voltage curves for sample F were taken, similarly to those taken for sample L,

at various temperatures and a series of external magnetic fields. We can find the I-V curves

of sample F taken at 5 K and presented on a logarithmic scale in figure 5.3 (a). The roman

numerals are given to sections of the I-V curves as described in section 2.2.3. For the first

time in this thesis we indicate the nonlinear section III. that for all previously studied samples

was absent due to an FFI outbreak in the earlier, linear section of the curves. The difference

in the linear and nonlinear sections can be better seen in the linear scale and will be addressed

further on.

The dashed line in figure 5.3 (a) is the 0.5 mV voltage criterion chosen to define the critical

current IC . Points derived by this criterion for curves measured at close to zero magnetic field

and various temperatures can be seen in 5.3 (b) for both of the samples. We compare these

with the theoretically predicted depairing current Idep from equation 4.11. The resulting

curve is the same as in figure 4.7 (b) for the 15 nm sample. Upon comparison of the curves

for sample L and sample F, we conclude that the critical current is pushed to higher values

for sample F, closer to the theoretically predicted values. This means that the edge barrier

and the superconducting state are broken at higher driving currents when it comes to the

nice smooth edge compared to the rough edge of sample L. Already this achievement shows
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Figure 5.4: Magnetic field dependency of the critical current of sample F and L. Solid line is

a fit to 1/B. The inset is a zoomed in low field region. Here the solid lines are a fit to 1/B

on the right and a fit to a straight line on the left.

the big importance of fabrication methods in creating superconductors that are resilient to

use in higher currents.

Now deriving IC , using the same voltage criterion as before, for all magnetic fields allows

us to have a look at what might be happening inside our samples and the states the sample

goes through as the field is being raised. The magnetic field dependence of IC for both

samples is presented in figure 5.4.

Theoretically, we can calculate the magnetic field Bstop at which a switch from the vortex-

free Meissner state to the mixed state occurs. This is given in [107] by

Bstop =
Φ0

√
1 + w/(πΛ)

2
√
3πξ(T )w

. (5.1)

Here again the factor
√
1 + w/(πΛ) must be included for wide strips, like ours, to take

into account the non-uniformly distributed current throughout the width of the sample. For

our samples, we obtain the value of 0.16 mT. Only for fields smaller than this value, we

expect to see a linear decrease of IC(B). This linear decrease is a signature of the vortex-free

state and can be written as

IC(B) = IC(0T )(1−B/2Bstop). (5.2)

For fields above Bstop, the decrease in IC(B) slows down and can be fitted to the depen-

dency 1/B, and 1/
√
B for very large fields. These are the regions of the mixed state.

By fitting 1/B to the measurement data of sample F we derive Bstop as the crossing point

of this fitting curve with a linear fit to the data points at the smallest field values. We obtain

Bstop around 0.2 mT. This is very close to the theoretically predicted value. The fitted curve

of 1/B is seen as the solid line in figure 5.4. In the inset of this figure we see a zoom-in

into the smallest applied magnetic fields with both of the fitting curves and their crossing

point. The large IC(0) value and its steep decrease in small fields could be an indication of
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Figure 5.5: MoSi I-V curves for the 15 nm sample L (a) and sample F (b) at 5.0 K. They

are measured at external magnetic fields corresponding to the color code in figure 5.3 (a).

The instability voltage V ∗ and current I∗ are indicated for the curves at B = 69 mT. Panels

underneath are the current dependencies of the differential resistances for sample L (c) and

sample F (d).

the vortex-free state. The higher values of IC(B→0) compared to sample L suggest a strong

edge-barrier effect. A good fit to 1/B indicates a dominating role of the edge barrier for

vortex entry, compared to the dominating role of intrinsic (volume) pinning present when

IC(B) can be better described by 1 /
√
B. The transition to 1/

√
B dependency occurs only in

larger fields (around 300 mT) in sample F. The contribution of volume pinning in low fields is

therefore negligible. This is supported by the high structural homogeneity of the MoSi films

seen in the TEM images in 4.1 (a).

For sample L, we would expect a decrease in IC(B→0) and Bstop due to the reduction in

the edge barrier strength as a consequence of the rough edge. We observe smaller IC(B→0)

values, but it is difficult to place the correct value of Bstop from the measurements. The

IC(B→0) as seen in the inset of the figure is completely flattened. The data point curve

starts to deviate from 1/B about 2mT sooner than for sample F, followed by an almost flat

region, which can not be described by a vortex-free state. We believe that this might be a

consequence of the laser beam changing the composition of the sample in up to 1 µm from

the edge (registered by EDX spectroscopy in the inset of figure 5.1) and hence causing some

additional pinning near the edge.
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Figure 5.6: Maximal velocity v∗ for sample L and F (a) at 5.0 K. Dashed lines are fits of

the LO model and full lines are fits of the DO model. The resulting fitting parameters are

given in the table included in the panel. In panel (b) are the data of sample F fitted to the

BS model at 5.0K. Symbols are measured data, solid lines are fitting curves. All fitted and

calculated values are listed inside the panel.

The current voltage curves at 5 K for both samples in linear scale can be found in panels

(a,b) of figure 5.5. Based on these panels, we want to emphasis the broader range of the

nonlinear regime III. in sample F. This behavior is illustrated on the appearance of the I-V

curve for sample F and sample L taken at the same external magnetic field value of 69 mT.

Whilst the FFI in sample L is triggered in point AL, in sample F the low resistive I-V curve

continues beyond the AL point in a strongly nonlinear curved dependency up to the point AF ,

where FFI is triggered. This point is placed at a much higher current and voltage than the

point AL. This enhancement is most prominent for low magnetic fields. All of this suggests

a mechanism connected to the edge roughness that triggers the FFI much earlier in sample

L. The lack of, in sample L, and the switch to a broad one, in sample F, of the nonlinear

regime is also made visible in the differential resistance dV/dI in figure 5.5 (c,d).

5.2.2 Critical velocity

After taking note of the voltage V ∗ and current I∗ at which the FFI is triggered (see figure

5.5 (a) for an example), we can calculate the maximal vortex velocity given by the standard

relation v∗ = V ∗/(BL). The results are presented in figure 5.6 (a). Right on first glance,

we observe an improvement of the maximal velocity the vortices can reach in the FIB milled

sample. Whilst in high fields the velocities in sample F are about 10 times larger than in

sample L, in fields up to 200mT they are more than 20 times larger.
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LO and DO models

To calculate the energy relaxation time τϵ from the LO model, we are interested in the

velocity value, where it is constant in the field, because LO did not consider the magnetic

field dependency in their model. The chosen values can be seen in the figure as dashed lines

and in the inserted table as v∗(LO). The obtained τϵ is 277 ps for sample L (this is the same

value as in the previous chapter in table 4.5) and 2.68 ps for sample F. The DO model is

fitted using equation 2.22. The value of the slope was taken from table 4.2 for both samples

as -2.8. The only fitting parameter was therefore τϵ. The fitted curves correspond to the solid

lines in 5.6 (a). Here, the value τϵ for sample L differs from the value previously acquired

in table 4.5. There we gave the greatest importance to fit the low magnetic fields, whilst

here we fitted the entire magnetic field spectrum. The fits are obtained with τϵ=650 ps for

sample L and 17 for sample F. We note the fits are not perfect, but this is a consequence of

the neglected overheating effect, which we will derive later to be of importance for all fields

above 80 mT for both samples. For sample L, we attribute the poor fit also to the strong

local character of the FFI. Sample F fits poorly in low magnetic fields, we assume that the

number of vortices n differs from what is assumed from the relation nΦ0 = BS, where S is

the area of the sample. This assumption is essential to the DO model.

A true energy relaxation time should be an intrinsic property of the material and therefore

be the same for both samples. The different obtained values for sample L and F for both LO

and DO model are a consequence of this technique neglecting the edge quality and with it

connected localization of the non-equilibrium events. What we are essentially deducing from

these models is an effective energy relaxation time.

BS model

To include overheating the curve derived from the BS model and described by the equations

2.14 was plotted and fitted to the measured data in the representation j∗/j0 versus E∗/E0.

Whilst j0 corresponds to the zero field j∗ and can be approximated from the measurements,

E0 is the only fitting parameter. The fits can be seen as solid lines in 4.10 (b) for sample L

and 5.6 (b) for sample F. Power can be calculated as a multiplication of the electric field E

and the current density j. By plotting P ∗/P0 against B, we can fit to equation 2.20. The

fitting parameter is the transition field BT . Using equations 2.13 and 2.19, we obtain the

value for τϵ derived from the BS model. All obtained values can be found in the panels of the

fits. As discussed in the previous chapter, the fit for sample L deviates a lot in the mid range

to small magnetic fields. This deviation got worse for even thinner samples and somewhat

better for thicker samples. Sample F has the same thickness as sample L, and we observe

a very good fit. This is a huge indicator of the poor edge quality being the reason for the

deviation from the BS theory. For sample L we have derived τϵ = 34.8 ps and for sample F

τϵ = 0.57 ps. The transition field BT of 80 mT suggests an important role of overheating for

all fields above this field.

The equation 2.21 is used to determine τep and the equation of the BS model from table
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sample
E0

[V/cm]

j0

[mA/µm2]

h

[W/Kcm2]

BT

[mT]

τep

[ns]

τee

[ps]

L 1.15 4.5 0.54 80 2.834 35.233

F 16 19.5 32.73 80 0.046 0.582

Table 5.1: Table contains results for the fitted electric field E0, current density j0, the heat

transfer coefficient h, the transition field BT , the electron-phonon relaxation time and the

electron-electron relaxation time from the BS model for the 15 nm MoSi sample F and sample

L.

2.1 to determine τee. These estimates are made under the consideration that we are in the

overheating regime described in the BS theory. The results of the BS model fitting can be

found in table 5.1 and the results for τϵ for all models to be compared with each other in the

section summary table 5.2.

sample
τϵ (LO)

[ps]

τϵ (DO)

[ps]

τϵ (BS)

[ps]

L 277 650 35

F 2.68 17 0.57

Table 5.2: Table contains results for the fitted energy relaxation times τϵ as found using the

LO, DO and BS model for 15 nm MoSi films patterned with laser for sample L and with FIB

for sample F.

Let us now look at the values obtained for τϵ. At present it is not possible to deduce

relaxation times from single-photon detection experiments directly, but a method deemed

to produce successful results for the electron-phonon relaxation time τep is measuring and

analyzing magnetoconductance. We are not aware of any measurements on MoSi films, but

we can compare our results to similar amorphous WSi films [108] and highly disordered

polycrystalline granular NbN and NbTiN films [109, 110]. Here, τep is listed with sub-100 ps

values. Hence, we expect MoSi to also have τep on the sub-100 ps time scale.

Looking back at table 2.1, we note that, while in the LO and DO models the obtained

value of τϵ is essentially the same as τep. In the BS model, we must refer to the calculated τep

from table 5.1. τep for sample L takes values of 277, 650 and 2834 ps in the LO, DO, and BS

models, respectively. All of these values are highly overestimated compared to the expected

value. We should also not forget how the experimental data were poorly described by these

models, especially by the BS model. It is clear that the true intrinsic τep is hidden by events

not taken into account in the FFI derivation of τep.

Meanwhile, τep for sample F takes values of 2.68, 17 and 46 ps in the LO, DO, and BS

models, respectively. Despite the large dispersion of the obtained values, they all fall into
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the expected time scale. Since the BS model fits the data very well and takes into account

both the dependency of v∗ on B and overheating, we suspect the obtained value of 46 ps

to be closest to the intrinsic τep. It is important to stress that none of these models takes

into account the local character of the FFI, but by fabricating a close-to-perfect edge, we

have minimized the contribution of the otherwise strong symmetry breaking at the edge,

which causes the FFI to nucleate sooner. According to the edge-controlled instability theory

(2.3.2) even in sample F the FFI nucleates at the edge, but only once vortices with relatively

high velocities move in the films interior. Nucleation due to high vortex velocity is also

how the LO theory describes this nucleation. Hence, this explains why we obtain relatively

accurate results using theories based on LO for sample F despite the lack of a local character

description in these theories.

Lastly, we would like to add that the values of the BS model were calculated in the

overheating regime. This regime takes place only when lep ≫ deff , where deff = d/α and α

is the mean probability of transmission of phonons from the superconducting film into the

substrate. To ensure the overheating regime, the MoSi film was grown on top of a Si buffer

layer. Their lattice matching should ensure a high enough α to justify an overheating regime

for the thin films.

5.2.3 Numerical modeling

Further insights into the different processes occurring in the two samples is provided by solving

the TDGL in conjunction with the heat balance equation. The modeling takes into account

vortex-surface interactions. The simulation provides a spatial representation of the super-

conducting order parameter |∆|, as well as current voltage curves. Because exact modeling

of the complicated edge structure of sample L was not possible, we have instead considered a

sample with smooth edges with a single edge defect on one side of the sample. See figure 5.7

(a). A defect is simulated as a region in the simulation grid where the critical temperature

is suppressed. Simply by switching the magnetic field direction, one can trigger vortex entry

through the edge with the defect (panel A) or the smooth edge (panel A′). The panels are

snippets in simulation time just before the FFI takes place, when current I∗ flows through the

sample. The value of I∗ is different depending on the edge through which the vortices enter.

In panel A the circulating currents avoid the defect by flowing around it. This causes current

crowding just in front of it and lowers the vortex entry edge barrier. The defect becomes

a preferred vortex entry point with larger Joule dissipation. Vortex rivers of self-organized

Josephson-like junctions formed by fast-moving vortices appear. These junctions can evolve

to normal domains and spread throughout the sample, changing the sample to the normal

state, once the current density of the normal domain reaches values higher than JP from

section 2.3.2. The current crowding increases the normal domain current density and thus

the switching to normal state happens at lower driving currents compared to the smooth

edge. The simulated I-V curves can be seen in figure 5.7 (b). Apart from the shift of FFI

to lower driving currents in the edge with defect, we also observe a shift to lower voltage.
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Now this shift can be understood based on the considerations of pinning described in section

2.3.2. There, it was explained how a disordered motion resulting from randomly distributed

defects leads to a lower mean velocity, and hence to a lower voltage. Similarly, here, we

observe how the vortex rivers branch outward, causing a disordered motion. The branching

occurs as a consequence of the circulating current being deflected from its direction along the

straight edge and influencing the direction of the Lorentz force on the entering vortices. The

disordered motion leads to the lower mean velocity.

In comparison in panel A′ the circulating currents lower the edge barrier, but there is no

preferred entrance site, as the height of the barriers will be the same throughout the edge.

Vortex rivers are formed along the entire hot edge equally and allow vortices to flow in an

ordered motion. The ordered motion allows us to measure a higher mean velocity (voltage)

and due to the lack of current crowding at the entrance points, JP (FFI) is reached only at a

higher driving current. It should be noted that in the simulated sample A′ the defect on the

other side of the edge causes a faster development of the vortex river, but only for the rivers

directly across the defect.

Figures 5.7 (c) and (d) show the branching of the vortex rivers for a triangle and a

slit-shaped defect. Each case leads to a unique I-V coordinate of the FFI.

To take into account not only the change in edge shape, but also the observed change in

composition along the edge after laser etching, a simulation was performed with randomly

distributed defects of the size of 2ξc × 2ξc) in the close-to-edge region of width 25 ξc for the

strip width of 100 ξc. Here ξc = 7.8 nm. We conclude that the results of this system are very

similar to those without random defects, with suppression of V ∗ and I∗ for the sample with

a defect at the edge.

In the end, we would like to draw attention to the fact that although the simulations did

predict lower V ∗ and I∗ in the edge with defect, the difference is much smaller compared to

what was found in the experiment. Our suspicion is that the spatial spread of the FFI in

experiment differs from how it spreads in the simulations. Perhaps an adjustment of phonon

escape times and of the so-called healing length (the length it takes hot electrons to diffuse

to neighboring regions) in simulation might get us closer to what we see in experiments. The

simulation also only works with a single defect, whilst in experiment we have defects across

the entire length of the edge. More investigations should follow.

5.3 Conclusion

In conclusion we have seen that the smooth edges left after FIB patterning lead to (i) at

least twice as high zero-field critical current, (ii) a factor of 20 enhancement of the maximal

vortex velocity up to about 20 km/s, and (iii) at least a factor of 40 smaller estimate for

the electron-phonon relaxation time on the sub-50 ps time scale. Systems with high zero-

field critical currents and low electron-phonon relaxation times are very relevant for use in

SSPDs. The difference in the properties caused by the fabrication is especially important for
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SMSPDs, where the detection voltage is raised because of fast moving vortices around a hot

spot. The found increase in velocity can be exploited for studies of otherwise inaccessible

regimes, where fast-moving vortices can generate sound and/or spin waves, with rich physics

of fluxon-phonon and fluxon-magnon interactions. Our study showed the lack of a model for

analyzing thin-film FFI data to gain information about the intrinsic energy relaxation times.

Instead, if no care for the edge quality is taken, we can only talk about some ’indicative’

relaxation time that exceeds the intrinsic τϵ in the material. All findings are summarized in

the bibliography entry [111].
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Figure 5.7: Snapshots of the superconducting order parameter |∆| in a strip with a half-circle

defect on one side are shown for two magnetic field orientations and at two different current

values at T = 0.8 TC . Entrance through side with edge defect, I /Idep = 0.34 and B = 245mT

is shown in panel A. Entrance through smooth edge, I /Idep = 0.37 and B = -245mT in

panel A′. The current values in A and A′ correspond to the current values in the points A

and A′ in the simulated I-V curve in (b) for entrance through side with defect and entrance

through smooth side. Dashed lines demarcate the regions of nucleation and evolution of

vortex rivers. Further are shown examples of nucleation of vortex jets upon vortex entry

through a triangular shaped defect (c) and a narrow slit (d).
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Chapter 6

Vortex jets and vortex counting

This last chapter is devoted to two more observed phenomena connected to vortex dynamics.

The author of this thesis was not the main researcher and contributor to these works but

rather contributed with discussions and some additional simulations supporting the found

phenomena. Therefore, here we will only provide a brief summary of these works, as the

main attention of this thesis is given to the previous chapters.

6.1 Vortex jets

6.1.1 Qualitative consideration and analytical theory

When describing the figure 5.7 we have commented on how the vortex rivers fanned out

around the defect due to the deflection of the circulating current around the defect that

changes the Lorentz force direction in this area. Further away from the defect at this magnetic

field value, however, the vortex-vortex repulsion acting from all sides, due to the large number

of vortices, is recovering the Abrikosov ordering. Now, if we observe very narrow defects

(slits), the current crowding effect is strongly located at the tip of the defect, where the

Lorentz forces direction is unchanged. At a magnetic field of very low values, or even zero,

we obtain a state where all existing vortices are entering strictly through the tip of the defect

and their movement direction gives us access to observe one-on-one vortex-vortex repulsion

unaffected by the fanning out due to circulating currents. The repulsion opens up a jet of

vortices, which is narrow at the defect and expands as the vortices travel to the opposite side.

This leads to a measurable transverse voltage V⊥. The geometry of such an experiment can

be seen in figure 6.1. By patterning voltage pairs, with one on the edge of where the defect is

and one on the edge across the defect, at different distances l from the defect line (y=0), we

can gain information about the opening width of the jet. In the figure, the transverse voltage

can be measured using the voltage pair V1 − V2, whilst for regular voltage the pair V3 − V4

can be used.

If the width of the defect is larger than ξ, several vortex chains can form and open a jet

due to vortex chain repulsion. In the case where the width of the defect is approximately the
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Figure 6.1: Geometry of the bridge for vortex jet and transverse voltage measurements.

Origin of the coordinates is at the edge defect. The outer edge of the vortex jet lays at

±y0(x). Transverse voltage is measured by the V1−V2 voltage pair, whilst for regular voltage
is used the V3 − V4 pair.

size of ξ, the vortices will enter the strip consequentially. A vortex should follow the wake

(left behind track with suppressed superconductivity) of the vortex in front of it, but due

to fluctuations and inhomogeneities the vortex can escape the wake, and the vortex-vortex

repulsion will push it away from the vortex infront of it creating a jet. The width of the

jet depends on the distance from the defect in the x direction and is equal to 2y0(x). y0(x)

describes the outer edge of the jet (see the description in figure 6.1). y0(x) and the defect

line form the angle α0, the maximum deflection angle.

The trajectory of vortices results from the competing vortex-vortex, transport-current-

vortex, and edge barrier interaction. For vortices to enter in the first place, the transport

current Itr must be larger than IB, a current at which the edge barrier is broken. For Itr

close to IB, the edge barrier is also locally recovered when a vortex enters the sample. The

supercurrent circulating around the vortex is directed oppositely to Itr and thus prevents an

immediate penetration of another vortex.

Bezuglyj and Shklovskij solved equations of motion similar to the Langevin equation 2.8.

As a result they found the analytical expression for the vortex jet outer shape in a narrow

strip (ξ ≪ w ≲ 2Λ):

y0(x) =
fV w

2c2η

4πΛ(Itr − IB)2
x. (6.1)

Here, fV is the frequency of penetration into the strip through the defect. For details of

the calculation and also results for a wide strip, please refer to the bibliography entry [112].

To give the analytical expression for the transverse voltage, let us first explain where the

voltage comes from. When a vortex crosses the superconductor stretched between a voltage

pair, it acts as a weak link. The voltage in that moment can therefore be calculated using

the second Josephson equation: V = ℏ/2e dφ/dt. φ is here defined as the difference in the

superconducting phase ϕ before and after the vortex. A single vortex changes the phase

by 2π. The phase difference in time is thus 2πf , where f is the frequency with witch a
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vortex crosses the line connecting the voltage leads. Putting all the expressions together and

substituting in for the magnetic quantum (2.2) gives:

V = Φ0f. (6.2)

To calculate the transverse voltage specifically we substitute the frequency f in the equa-

tion with the frequency with which a vortex crosses the line connecting the voltage leads V1

and V2. Considering that consecutive vortices entering the sample are deflected in opposite

directions, only half of all entered vortices will be deflected in the direction of the V1 − V2

line, and from these only the vortices deflected under an angle larger than α =arctan(l/w)

will actually cross the V1−V2 line. We can therefore calculate the frequency of entry through

the V1 − V2 line with

f⊥ =
fV
2

(α0 − α)

α0
. (6.3)

Lastly, we obtain the transverse voltage as follows:

V⊥ =
Φ0fV
2

(α0 − α)

α0
(6.4)

and for a narrow strip, using equation 6.1 and y0(x) = α0x to define α0, we obtain:

V⊥(Itr) =
Φ0fV
2

(
1− 4πΛl(Itr − IB)

2

c2w3η0fV

)
. (6.5)

The found transverse voltage expression is dependent on the penetration frequency fV . It

was previously experimentally observed that for an edge defect in form of a narrowing of

the film this frequency is proportional to (Itr − IB) [24]. The exact proportionality factor is

though not yet found.

6.1.2 Experiment

The measured samples were 15-nm thick MoSi samples of 1 µm width. This width categorizes

the samples as narrow strips (refer to the values in table 4.2). The film preparation method

is the same as in 4.1. The samples were patterned using FIB milling to produce smooth

edges and a pair of voltage leads (V1 and V2) for transverse voltage measurements. On one

side of all films an artificially created edge defect of length about 20 nm was milled out. The

samples differentiate in distance l. The samples produced were samples with l = 16, 32, 48,

80 nm. The samples are labeled accordingly by their l value. A control sample without a

notch was also produced and is labeled as sample A.

The transverse voltage I-V curves for all samples are presented in figure 6.3 (a). In

all samples with a notch, the transverse voltage starts to increase once IB = 153 µ A is

reached. Afterwards, the shape of the dependency on Itr is generally the same for all samples.

We see dome-shaped dependencies. The maximum of the dome and its width is lower for

larger l. This is because the farther away from the defect line we measure, the smaller
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Figure 6.2: SEM images of the artificially created notch (defect) for sample 16 (a) and sample

32 (b). Panel (c) is a SEM image of the opposite edge of sample 32. Transverse voltage was

measured using voltage leads V1 and V2.

Figure 6.3: Transverse I-V curves for all samples with and without an edge defect (a).

Symbols are experimental data points and solid lines are fits to equation 6.5. The voltage

of sample A is multiplied with a factor of 40. In panel (b) are longitudinal I-V curves for

sample 48 and sample A. Dashed line indicates the 0.1-µV voltage criterion used for the

determination of the critical current IB. In all panels T = 5 K and B = 0.

will be the number of vortices deflected all the way to this region. The dome shape also

suggests that the jet angle is opening at the beginning and then closing again as Itr is raised.

In sample 16, which is in direct proximity to the notch, we observe a transverse voltage

maximum at about 261 µA followed by a jump to 55 µV. 261 µA is where the sample

undergoes an FFI. The domes can be fitted by the equation 6.5 written in compact form as

V⊥(Itr) = A1(Itr − IB)− αB1(Itr − IB)
2. The best fits were obtained for A1 = (0.75± 0.03)

V/A and B1 = (225± 5) mV/mA2. The fits are seen as solid lines in panel (a).

To compare these results, we have a look at sample A, where we measure transverse

voltage below 100 nV, and that even after crossing IB (observed in figure 6.3 (b)). Without

the notch, vortices can enter further apart from each other on the entire length of the edge

and will not strongly influence each others trajectory. At 302 µA, where the sample undergoes

a FFI, a jump to a higher resistive state occurs.
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The longitudinal voltage I-V curves for sample 48 and sample A can be found in 6.3 (b).

Here, we observe the same IB and I∗ values as seen in the transverse measurements. The

dashed line indicates the 0.1-µV voltage criterion used for the determination of the critical

current IB.

6.1.3 Numerical modeling

The TDGL in conjunction with the heat balance equation provided us with snapshots of

the spatial distribution of the superconducting order parameter. This allows us to analyze

the vortex patterns, and the results explain the measured transverse voltage. Modeled was a

sample with an edge defect placed in a very weak magnetic field. The defect in the simulation

is a slit with locally suppressed TC . The size of the defect is 15ξc × 2ξc and the width of the

strip is 100 ξc. Here ξc = 7.8 nm. The figure 6.4 depicts snapshots of the order parameter for

a current increase in the units of the depairing current Idep. The dashed line corresponds to

the place where the transverse voltage could be measured (the V1 − V2 line). As the current

increases above IB, vortices start to enter and form a divergent jet with two arms because

of the vortex-vortex repulsion. The increasing current increases not only the frequency with

which the vortices enter the sample but also the angle between the two arms of the jet. At

some point though, the current-vortex interaction overpowers the vortex-vortex interaction,

and the two arms of the jet start to collapse and form a vortex line and later a vortex river.

A non-zero transverse voltage is only registered when a vortex crosses the dashed line. Its

value depends on the frequency with which vortices cross it. Hence, the transverse voltage

dependency on transport current observed from the snapshots agrees well with the dome-

shaped dependence of transverse voltage from the experiment.

Simulations at various weak external magnetic fields lead to similar results with only

a difference in the number of vortices in the vortex jet arms. However, simulations in zero

magnetic field failed to reproduce vortex jets. As mentioned above, a vortex jet is formed only

in the presence of some fluctuations and inhomogeneities. Whilst these are unavoidable in

experiment, in simulation, these have to be introduced manually. In weak external magnetic

field, the vortices already present in the sample will play the role of fluctuations.

6.1.4 Conclusion

Combining theory, experiment, and numerical modeling we have shown the appearance of

transverse voltage for narrow strips with a narrow slit edge defect in weak magnetic fields.

The transverse voltage is attributed to opening of a vortex jet as a result of the one-on-one

vortex-vortex interaction.

6.2 Vortex counting

Throughout this thesis, we have used the relation v∗ = V ∗/Bl to calculate the maximal vortex

velocity. Often we were forced to omit data points for very low magnetic fields, as these lead
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Figure 6.4: Snapshots of the superconducting order parameter |∆| for a series of current

values, as indicated. Observed is the vortex trajectory evolving from straight line to jet and

lastly just before the FFI to a vortex river. The horizontal dashed lines indicate the location

of the transverse voltage leads.

to unphysically large values. An explanation of these values comes from the assumption that

has been taken in equation 2.9. There, the in-sample induced magnetic field B is considered

to be the same as the external applied magnetic field Bext. The induced magnetic field in a

sample is equal to

B = NΦ0/S, (6.6)

where N is the number of vortices in the sample and S is the sample area (=wl). If we set

B = Bext, the number of vortices N is equal to the number of vortices induced by external

magnetic field. Although this might be acceptable for larger magnetic fields, in small magnetic

fields, where the number of vortices in the sample induced by the flowing current as opposed

to the external magnetic field is dominant, this assumption can no longer be taken into

account. We could try to calculate the self-field for geometry-dependent non-uniform current

distributions, but this is a very complex problem. Instead, setting equation 6.6 into equation
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2.9, we obtain a new expression to calculate the velocity without the need for B:

v =
V w

NΦ0
. (6.7)

The obvious problem with this equation is the unknown number of vortices N present in the

sample.

The idea of a method for counting the number of vortices in a sample without the need for

direct observation came from the work of Aslamazov and Larkin (AL) [34]. They predicted

the appearance of kinks in I-V curves of wide and short constrictions whenever the number

of vortices crossing the construction is increased by one. These kinks appear as a result of the

vortex-vortex interaction. As mentioned above, a vortex that has entered the sample prevents

an immediate penetration of another vortex due to a local recovery of the edge barrier. If we

have only one vortex moving in the sample, a second vortex at this transport current value

can enter only once the first vortex has crossed the bridge. The number of vortices at all

times in the sample is thus only one. If we now raise the transport current, it comes to a

point that the edge barrier is overcome, and a vortex can enter the sample even before the

first disappears on the other end of the bridge. At this point, we have two vortices present in

the sample at the same time, but also a stronger recovery of the edge barrier now mediated

by two vortices. This causes sharp bends in the I-V curve whenever N is increased. By

counting the number of discontinuities, we obtain N .

6.2.1 Experiment

In the experiment, the conditions for such observation were realized in two 15-nm thick MoSi

samples of 2 µm width. The preparation method is the same as in 4.1. The samples were

patterned again using FIB milling. FIB milling was also used to make long narrow slits of

length lS . Because the slits are now long compared to the sample width, the w from equation

6.7 is the isthmus length (=w − lS).

We can see the I-V curve of a sample with a slit of lS = 0.2 µm in figure 6.5 (a) at a zero

applied magnetic field. Indeed, observed were predicted kinks. The first kink voltage is at V1

= 9.8 µV, and then five more voltage kinks can be recognized in the I-V curve and even more

so in the differential resistance curve shown in 6.5 (b).The curves end with an FFI jump to

the highly resistive state at V ∗ = 69.2 µV. An important difference from what was described

in the AL paper [34] is found in the voltage spacing of the kink discontinuities. Whilst in the

AL paper the kinks appear with a constant voltage spacing, we have observed the voltage

spacing to grow with each kink. We assume that this difference is caused by a formation of

a diverging jet in the experiment, whilst in theory the vortices are predicted to move on a

straight line. We have simulated that a straight line movement at all transport currents is

expected for a double-sided slit, which is similar to the constrictions considered in the AL

paper. In figure 6.6 we add a comparison of the trajectories of vortices for a single slit (a)

and a double-sided slit (b). A more detailed description of the increase voltage spacing, as
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Figure 6.5: AL predicted kinks in the I-V curves of a strip with a slit of lS = 0.2 µm at

T = 5 K (a). The inset is of the same curve in a broader range of currents. (b) is the current

dependence of the differential resistance for the same sample.

well as the TDGL simulation of this geometry that predicts these not constantly separated

voltage kinks, can be found in [113].

6.2.2 Conclusion

In conclusion, we have described and proved a method to count vortices in order to calculate

the velocities of vortices in low and zero magnetic fields with equation 6.7. It should be noted

that we obtain the same equation by deriving it from the Josephson equation 6.2 that we

used in the previous section. In this equation, the frequency with which a vortex crosses the

voltage pair line is equal to the number of vortices that cross it per a certain time value, or

NV /t. In the time a single vortex crosses from one side to the other, the number of vortices

crossing through the voltage pair line is the same as the number of vortices present in the

sample when our vortex arrives to the other end. In other words NV = N when t is the

time a vortex needs to cross the distance w with speed v(= w/t). The Jospehson equation is

then V = Φ0Nv/(w), which is the same as equation 6.7 obtained by electric field generation

consideration. Lastly, counting the number of discontinuities in the I-V curves of slitted

bridges provides us with the otherwise unknown number N .
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Figure 6.6: Snapshot of the superconducting order parameter |∆| for a single slit (a) and a

double sided slit (b) for the same transport current and field values.
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Chapter 7

Conclusions and outlook

In this thesis we have observed and described non-equilibrium phenomena, namely the FFI,

to learn more about the vortex dynamics and the energy relaxation processes. Studied were

amorphous MoSi and polycrystalline Nb thin films of various thicknesses. We have observed

that although most of the superconducting parameters showed the same thickness dependence

in both crystallization systems, the transition width and critical field did not. Especially, the

critical field dependence upon thickness for different crystallization remains rather unclear

and requires further studies on a larger batch of samples. For application in SSPDs we are

interested in materials with low values of τϵ and D, but large values of critical parameters.

As the film thickness goes down, in both crystallization systems, superconducting critical

parameters degrade, but the energy relaxation time and the diffusion constant improve.

Hence, from FFI studies, middle range thicknesses look promising for detectors. The energy

relaxation time τϵ for MoSi and Nb is very similar, but the energy diffusion constant D in

MoSi is at least half of the one found for Nb, which makes MoSi a superior candidate for use

in SSPDs.

In the same thickness study, we have seen the lack of FFI models that would properly

replicate thin film experimental I-V data. These models did not fit the thinnest of samples

completely, but showed a bit of improvement in fitting the thicker films. This is a sign of

the existence of an effect that causes the deviation from the known models, and this effect

to be more prominent in thinner samples. Triggered by the work of Vodolazov on the edge-

controlled instability model, we have assumed that the effect we are encountering is a local

FFI at the edge of the sample. A local FFI is not taken into account in any of the fitted

models (LO, DO or BS), but the edge-controlled instability model, which assumes a local

FFI, does not provide us with a tool to extract the energy relaxation time. In order to test

if our assumption that the fitting models deviate from experimental data due to the lack

of consideration of a local FFI, we have created a system where we assume the local FFI

to be suppressed and checked if now the models show an improvement in fitting. We have

fabricated two MoSi samples with rough and smooth edges. The rough edge was fabricated

using laser beam etching, whilst the smooth edge was milled by a FIB. A smooth edge should
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reduce the occurrence of local FFI at the edge of the sample. As a result, films with smooth

edges lead to between 10 to 20 times larger v∗, a factor of 3 larger critical currents, and a

factor of couple tenths shorter relaxation times. All these changes are remarkable for the

SSPD industry as it shows that the fabrication method alone can improve their detection

capabilities. The improvements are a direct consequence of the suppression of the local

FFI in the smooth-edged sample that otherwise triggers an instability at lower currents and

voltages. The sample with the smooth edge further showed an improvement in fitting the

non-local FFI models. This means that non-local FFI models can only provide us with some

indicative relaxation times that exceed the intrinsic relaxation time. We consider as the most

reliably extracted, and closest to an intrinsic value, electron-phonon relaxation time for the

15 nm MoSi, the result obtained by fitting the BS model to data from the smooth-edged

sample, with τϵ = 46 ps. This result is also in line with the results of the electron-phonon

relaxation times obtained from magnetoconductance measurements that suggest sub-100-ps

values.

Further, we have observed unphysically large v∗ at low magnetic fields that cannot be

explained by local phenomena. This was explained by a falsely assumed number of vortices

in the samples at these low fields. A technique based on the work of Aslamazov and Larkin

to count vortices in slitted superconductors was shown. By simply counting the number of

appeared kinks in their I-V curves, one obtains the number of vortices. The velocity can

then be calculated with the newly defined equation 6.7.

In slitted superconductors the votex dynamics was also of interest. Analytical expressions

and experimental data for transverse voltage confirmed numerically predicted trajectories.

The trajectories start as a 1D-line and turn into vortex jets. At high currents they collapse

back to a vortex river.

The results described and analyzed in this thesis have provided us with new information

about how to analyze I-V measurements and have shown us some new interesting vortex

dynamics. The future of vortex dynamics lies in exploring the third dimension as a result of

the growing advancements in the fabrication techniques. In order to successfully understand

and analyze these complex structures, it is important to understand and solve the one-

dimensional problems.
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[8] Doll, R. & Näbauer, M. Experimental proof of magnetic flux quantization in a super-

conducting ring. Phys. Rev. Lett. 7 (1961).

[9] B. S. Deaver, J. & Fairbank, W. M. Experimental evidence for quantized flux in

superconducting cylinders. Phys. Rev. Lett. 7 (1961).

[10] Gallop, J. C. & Petley, B. W. Squids and their applications. J. Phys. E: Sci. Instrum.

9 (1976).

[11] Kadin, A. M. & Johnson, M. W. Nonequilibrium photon-induced hotspot: A new

mechanism for photodetection in ultrathin metallic films. Appl. Phys. Lett. 69, 3938–

3940 (1996).

[12] Shubnikov, L. V., Khotkevich, V. I., Shepelev, Y. D. & Ryabinin, Y. N. Magnetic

properties of superconductors and alloys. Zh. Eksper. Teor. Fiz. 7, 221–237 (1937).

[13] Abrikosov, A. A. On the magnetic properties of superconductors of the second group.

Sov. Phys. JETP. 5, 1174–1182 (1957).

[14] Kim, Y. B., Hempstead, C. F. & Strnad, A. R. Flux-flow resistance in type-II super-

conductors. Phys. Rev. 139, A1163–A1172 (4A 1965).

96



[15] Anderson, P. W. & Kim, Y. B. Hard superconductivity: Theory of the motion of

Abrikosov flux lines. Rev. Mod. Phys. 36, 39–43 (1964).

[16] Larkin, A. I. & Ovchinnikov, Y. N. Nonlinear conductivity of superconductors in the

mixed state. J. Exp. Theor. Phys. 41, 960 (1975).

[17] Jin, B. B. et al. High-frequency vortex ratchet effect in a superconducting film with

a nanoengineered array of asymmetric pinning sites. Phys. Rev. B 81, 174505–1–7

(2010).

[18] Silhanek, A. V., Van de Vondel, J. & Moshchalkov, V. V. Guided vortex motion and

vortex ratchets in nanostructured superconductors. Nanoscience and Engineering in

Superconductivity, 1–24 (2010).

[19] Wördenweber, R., Hollmann, E., Schubert, J., Kutzner, R. & Ghosh, A. K. Pattern

induced phase transition of vortex motion in high-Tc films. Appl. Phys. Lett. 94 (2009).

[20] Dobrovolskiy, O. V. & Huth, M. Dual cut-off direct current-tunable microwave low-

pass filter on superconducting Nb microstrips with asymmetric nanogrooves. Appl.

Phys. Lett. 106, 142601–1-5 (2015).

[21] A. M. Troyanovski J. Aarts, P. H. K. Collective and plastic vortex motion in super-

conductors at high flux densities. Nature 399, 665–668 (1999).

[22] Keay, J. C. et al. Sequential vortex hopping in an array of artificial pinning centers.

Physical Review B 80, 165421 (2009).

[23] Goa, P. E. et al. Real-time magneto-optical imaging of vortices in superconducting

NbSe2. Supercond. Sci. Technol. 14, 729 (2001).

[24] Embon, L. et al. Imaging of super-fast dynamics and flow instabilities of supercon-

ducting vortices. Nat. Commun. 8, 85 (2017).

[25] Ivlev, B. I., Mej́ıa-Rosales, S. & Kunchur, M. N. Cherenkov resonances in vortex

dissipation in superconductors. Phys. Rev. B 60, 12419–12423 (1999).

[26] Bulaevskii, L. N. & Chudnovsky, E. M. Sound generation by the vortex flow in type-II

superconductors. Phys. Rev. B 72, 094518 (2005).

[27] Shekhter, A., Bulaevskii, L. N. & Batista, C. D. Vortex viscosity in magnetic super-

conductors due to radiation of spin waves. Phys. Rev. Lett. 106, 037001 (2011).

[28] Bespalov, A. A., Mel’nikov, A. S. & Buzdin, A. I. Magnon radiation by moving

Abrikosov vortices in ferromagnetic superconductors and superconductor-ferromagnet

multilayers. Phys. Rev. B 89, 054516 (2014).

[29] Vodolazov, D. Y. Single-photon detection by a dirty current-carrying superconducting

strip based on the kinetic-equation approach. Phys. Rev. Appl. 7, 034014 (2017).

[30] Korneeva, Y. et al. Different single photon response of wide and narrow superconduct-

ing MoSi strips. Phys. Rev. Appl., accepted for publication (2020).

97



[31] Klapwijk, T. M. & Semenov, A. V. Engineering physics of superconducting hot-

electron bolometer mixers. IEEE Transactions on Terahertz Science and Technology

7, 627–648 (2017).
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velocimetry for slitted superconducting thin strips. Phys. Rev. Applied 19, 034098

(2023).

102


	Titelblatt_Barbora_Budinska
	Dissertation_newBB
	Abstract
	Zusammenfassung
	Contents
	List of Tables
	List of Figures
	1 Introduction
	2 Theoretical background
	2.1 Type I and II superconductors
	2.2 Vortex dynamics
	2.2.1 Vortex interactions
	2.2.2 Langevin equation
	2.2.3 Current-voltage curves

	2.3 Non-equilibrium phenomena
	2.3.1 Time-dependent Ginzburg Landau equations
	2.3.2 Flux flow instability
	2.3.3 Relaxation times

	2.4 Superconducting single photon detectors

	3 Methodology
	3.1 Film fabrication methods
	3.1.1 DC magnetron sputtering
	3.1.2 Laser beam etching
	3.1.3 Focused ion beam-induced milling
	3.1.4 UV-lithography in conjunction with lift-off

	3.2 Film characterization methods
	3.2.1 Scanning electron microscopy
	3.2.2 Energy-dispersive x-ray spectroscopy
	3.2.3 Transmission electron microscopy
	3.2.4 Selected area electron diffraction
	3.2.5 Atomic force microscopy

	3.3 Transport measurements
	3.3.1 Bonding techniques
	3.3.2 Physical property measurement system
	3.3.3 Helium bath cryostat with superconducting solenoid

	3.4 Numerical simulations

	4 Thickness dependencies
	4.1 Molybdenum silicon
	4.1.1 Cooling curves and critical temperature
	4.1.2 Upper critical field
	4.1.3 Critical current and current-voltage curves
	4.1.4 Critical velocity

	4.2 Niobium
	4.2.1 Cooling curves and critical temperature
	4.2.2 Upper critical field
	4.2.3 Critical current and current-voltage curves
	4.2.4 Critical velocity

	4.3 Conclusions

	5 Edge barrier effects
	5.1 Edge quality
	5.2 Sample comparison
	5.2.1 Critical current and current-voltage curves
	5.2.2 Critical velocity
	5.2.3 Numerical modeling

	5.3 Conclusion

	6 Vortex jets and vortex counting
	6.1 Vortex jets
	6.1.1 Qualitative consideration and analytical theory
	6.1.2 Experiment
	6.1.3 Numerical modeling
	6.1.4 Conclusion

	6.2 Vortex counting
	6.2.1 Experiment
	6.2.2 Conclusion


	7 Conclusions and outlook
	Bibliography


