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Abstract

In recent decades, the substantial rise in anthropogenic greenhouse gas (GHG) emissions
has become a worldwide concern. Enhancing our understanding of these emissions is crucial
to assist policymakers in implementing effective mitigation strategies. A powerful tool
to constrain GHG emissions is inverse modeling, where atmospheric measurements are
used along with an atmospheric transport model to optimize an a priori estimate of these
emissions. This thesis focuses on developing the inverse modeling framework and applying
it to determine the global distribution of sulfur hexafluoride (SFg) emissions, the GHG with
the highest known global warming potential.

In the first part of this thesis, | investigate the uncertainties of atmospheric inversions,
when utilizing Lagrangian Particle Dispersion Models (LPDMs) to model the atmospheric
transport between emissions and measurements. In this approach, a large number of virtual
particles is released from the measurement sites and followed backwards in time to establish
a relationship between the measurements and emission sources within a chosen simulation
period. As this simulation period is limited due to computational costs, a baseline has
to be defined that accounts for all emissions that occur prior to the simulation period,
representing a large source of uncertainty. | put a main emphasis on assessing the influence
of different baseline methods and different LPDM backward simulation periods on the
inversion results. | demonstrate, that commonly employed statistical baseline methods can
encounter substantial problems and present the advantages of a Global-Distribution-Based
(GDB) approach, that leads to more robust inversion results, accounts for meteorological
variability, and allows the inclusion of low-frequency flask measurements in the inversion. |
further propose to employ relatively long backward simulation periods, beyond 5-10 days,
as this can improve the performance of the LPDM and the inversion.

In the second part of this thesis, | employ a global inversion setup that is based on the
methodological findings of the first part, to globally determine the distribution of regionally
resolved SFg emissions between 2005 and 2021. My findings show a substantial decline
in U.S. SFg emissions, indicating the positive effects of national regulation measures. |
also find a decreasing emission trend in the EU, with a substantial drop after 2017, likely
a result of the EU’'s 2014 F-gas regulation. Chinese emissions, however, show a strong
positive trend, that is even higher than the average global total emission trend. | further
demonstrate that national reports to the United Nations Framework Convention on Climate
Change underestimated the SFg emissions in the U.S., EU, and China throughout the whole
study period. The aggregation of all the regionally resolved emissions shows a relatively
good agreement with total global emissions, however, results are sensitive to the employed
a priori emission fields, likely due to the challenges in constraining emissions in regions



poorly covered by the observation network. Lastly, monthly inversion results show higher
SFg emissions in summer than in winter in the Northern Hemisphere.

This thesis contributes to the development of inverse modeling and globally enhances the
knowledge about regionally resolved SFg emissions. The developed set-up for atmospheric
inversions provides various advantages and is suitable for estimating GHG emissions on
global, regional, and local scales.



Zusammenfassung

Der starke Anstieg von anthropogenen Treibhausgasemissionen iiber die letzten Jahrzehnte
ist zu einer ernsthaften Bedrohung fiir die Umwelt geworden. Damit effektive Klimaschutz-
malknahmen getroffen werden konnen, ist die Bestimmung von Treibhausgasemissionen von
groBter Bedeutung. Die inverse Modellierung ist eine wichtige Methode um Emissionen zu
bestimmen. Hierbei wird eine erste Schatzung der Emissionen (a priori Emissionen) mit Hilfe
von atmospharische Konzentrationsmessungen und einem atmospharischen Transportmodell
optimiert. Der Fokus dieser Arbeit liegt in der Entwicklung der inversen Modellierungsmeth-
ode und ihrer Anwendung, um Emissionen des potenten Treibhausgases Schwefelhexafluorid
(SFe) global zu bestimmen.

Im ersten Teil der Arbeit untersuche ich atmospharische Inversionen, bei denen der at-
mospharische Transport zwischen Emissionen und Messungen mit "Lagrangian-Particle-
Dispersion-Models" (LPDMs) modelliert wird. Bei diesem Ansatz werden eine groRe Anzahl
virtueller Teilchen an den Beobachtungsstellen freigesetzt und zeitlich riickwarts verfolgt,
um eine Beziehung zwischen den Beobachtungen und den Emissionsquellen innerhalb eines
gewahlten Simulationszeitraums herzustellen. Da dieser Simulationszeitraum aufgrund der
Rechenkapazitdaten begrenzt ist, muss eine sogenannte "Baseline" definiert werden, die
diejenigen Emissionen beriicksichtigt, die vor dem Simulationszeitraum auftreten. In diesem
ersten Teil der Arbeit untersuche ich, wie sich verschiedenen Methoden zur Bestimmung
der Baseline auf die Inversionsresultate auswirken und welchen Einfluss unterschiedliche
LPDM-Simulationszeitraume haben. Ich zeige, dass oft verwendete statistische Base-
line Methoden erhebliche Probleme verursachen konnen und prasentiere die Vorteile einer
"Global-Distribution-Based" (GDB) Methode, die zu robusteren Inversionsergebnissen fiihrt,
meteorologische Variabilitat berlicksichtigt und die Einbeziehung von niederfrequenten Mes-
sungen ermoglicht. Ich schlage weiters vor, relativ lange LPDM-Simulationszeitraume von
mehr als 5—-10 Tagen zu verwenden, da dies zu einer besseren Modellierung der Beobach-
tungen fiihren und die Inversionsergebnisse verbessern kann.

Im zweiten Teil der Arbeit verwende ich die inverse Modellierung, um die Verteilung regional
aufgeloster SFg-Emissionen zwischen 2005 und 2021 global zu bestimmen. Meine Ergebnisse
zeigen einen deutlichen Riickgang der SFg-Emissionen in den USA, welcher auf die posi-
tiven Auswirkungen nationaler Regulierungsmanahmen hinweist. Meine Ergebnisse zeigen
ebenfalls einen negativen Emissionstrend in der Europaischen Union, mit einem deutlichen
Riickgang nach 2017, der wahrscheinlich eine Folge der EU-Verordnung zu F-Gasen von
2014 ist. Chinesische Emissionen zeigen jedoch einen stark positiven Trend, der sogar
den durchschnittlichen globalen Trend iibertrifft. Ich zeige weiters, dass die nationalen
Berichte an die Vereinten Nationen die SFg-Emissionen in den USA, der EU und China



von 2005 bis 2021 unterschatzt haben. Die Summe aller regional aufgelosten Emissionen
zeigt eine relativ gute Ubereinstimmung mit den globalen Gesamtemissionen, wobei die
Ergebnisse eine Abhangigkeit gegeniiber den verwendeten a priori Emissionen aufweisen.
Dies lasst sich darauf zuriickfiihren, dass Emissionen in Gebieten, die schlecht vom Beobach-
tungsnetzwerk abgedeckt sind, schwer zu bestimmen sind. Weiters zeigen meine monatliche
Inversionsergebnisse fiir die Nordhalbkugel hohere SFg-Emissionen im Sommer als im Winter.

Diese Arbeit tragt zur Weiterentwicklung der inversen Modellierung bei und erweitert das
Wissen liber die globale Verteilung von SFg-Emissionen. Die entwickelte Methode bietet
verschiedene Vorteile und eignet sich zur Abschatzung von Treibhausgasemissionen auf
globaler, regionaler und lokaler Ebene.
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Chapter 1

Introduction

1.1 Greenhouse gases

"It is unequivocal that human influence has warmed the atmosphere, ocean, and land" (IPCC
2021). Human influence refers to all the human-driven activities that lead to perturbations
in the Earth’s energy budget, which describes the balance between incoming and outgoing

radiation and controls the Earth's climate (Fig. 1.1).
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Figure 1.1: lllustration of the Earth’s global annual mean energy balance (Wild et al. 2015).
The numbers refer to the best estimates for the respective energy flows [in
Wm~2] of individual components.

Incoming solar radiation includes visible, ultraviolet and infrared wavelengths, collectively
referred to as short-wave radiation. Approximately 30% of the solar radiation that reaches
the Earth is reflected by the surface, clouds, and atmosphere while the rest is absorbed and
re-emitted, mainly in the form of infrared radiation. While only a small fraction is directly
re-emitted to space, most of the infrared radiation is absorbed by greenhouse gases (GHGs),
which results in a warming of the Earth's surface and lower atmosphere. This is often



referred to as the greenhouse gas effect. The change in energy balance caused by a certain
GHG is quantified by its radiative forcing, measured in Wm™2. The strength of a GHG is
most prominently quantified by its global warming potential (GWP). It is defined as the, over
a chosen time horizon (typically 100 years, GWP-100), integrated radiative forcing from
the emission of a GHG unit mass, compared to that of CO,. While the natural greenhouse
gas effect maintains the Earth’'s temperature at levels suitable for life, the emissions of
anthropogenic GHGs enhance the greenhouse effect and lead to additional warming of the
climate. Over the industrial era, atmospheric GHG concentrations have grown substantially
due to anthropogenic emissions, increasing the global surface temperature by more than
1°C since the 19" century (IPCC 2021). This warming trend manifests in many ways, such
as altered weather patterns, increased frequency of extreme weather events, sea level rise,
biodiversity loss, and disruptions in the ecosystem.

1.1.1 Anthropogenic greenhouse gases

The main anthropogenic GHGs in the atmosphere are carbon dioxide (CO,), methane
(CHg), nitrous oxide (N2O), and halogenated gases, including fluorinated gases (F-gases).
CO5 has the largest impact on the climate, due to its high atmospheric concentrations and
its long atmospheric lifetime. The gas is primarily emitted from fossil fuel combustion and
cement production, but also from land use, land-use change, and forestry (IPCC 2022),
while the ocean (e.g. Sabine et al. 2004), terrestrial ecosystems (e.g. Pan et al. 2011) and
soils (e.g. Lal 2004) have been identified as sinks. Methane is the second most abundant
anthropogenic GHG. It has a relatively short atmospheric lifetime of 11.8 years, and GWPs
of 81 and 28 over a 20- and 100-year time horizon respectively (Smith et al. 2021), which
makes it attractive for mitigation strategies, limiting near-term warming. Its anthropogenic
sources include agriculture, fossil fuel production, landfills, coal mining, oil and gas industry,
and biomass burning, while wetlands represent the major natural sources (Canadell et al.
2021). The major CHy4 sink is the destructive reaction with the hydroxyl radical (OH) in
the atmosphere. N>O has a GWP-100 of 273 and an atmospheric lifetime of approximately
109 years (Smith et al. 2021). Anthropogenic N,O is primarily emitted from agricultural
activities such as fertilizer application and livestock manure management, while microbial
activities in soils are the largest natural source. Soils can also act as a net N>O sink although
this impact is minor in comparison to the overall emissions (Canadell et al. 2021). Besides
these three GHGs, less abundant halogenated gases, and especially F-gases, also significantly
impact the climate due to their high GWPs and long atmospheric lifetimes. Figure 1.2
illustrates the global net anthropogenic GHG emissions 1990-2019 by the discussed groups
of gases, reported in gigatonnes of CO»-equivalent. While F-gases contribute roughly 2%
to the total emissions, they have undergone rapid growth since the 1990s, and their future
impact is expected to increase.
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Figure 1.2: Global net anthropogenic GHG emissions 1990 - 2019 by groups of gases,
adapted from IPCC (2022). Panel a) illustrates aggregate annual global net
anthropogenic GHG emissions reported in gigatonnes of CO»-equivalent, which
were converted based on respective GWP-100 values. The proportion of global
emissions attributed to each gas is displayed for the years 1990, 2000, 2010,
and 2019, alongside the average annual growth rate across these decades. Panel
b) shows global anthropogenic emissions, individually for every group of GHGs
(normalized relative to 100 in 1990).

1.1.2 Fluorinated gases

F-gases are a class of synthetic, volatile molecules that are defined by the inclusion of at
least one fluorine atom and their low boiling point (Sheldon and Crimmin 2022), includ-
ing chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), hydrofluorocarbons
(HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SFg). CFCs, once widely used in
refrigerants, aerosol propellants, and blowing agents, have been largely phased out due to
their significant contribution to ozone depletion in the Earth’s stratosphere (Powell 2002).



HCFCs served as temporary replacements for CFCs in refrigeration and air conditioning
applications, due to their shorter atmospheric lifetime and lower ozone depletion potential.
Consumption and production grew rapidly in developed countries until the mid-1990s (Sim-
monds et al. 2017), while especially HCFC-22 (CHCIF,) was extensively used (Saikawa et al.
2012). As HCFCs are ozone-depleting substances too, they were included in the Montreal
Protocol and its amendments, requiring developed countries to halt HCFC consumption
by 2030. HFCs were identified as direct replacements for CFCs and HCFCs, given that
they do not deplete ozone while having similar chemical and thermal properties (Sheldon
and Crimmin 2022). Consequently, their emissions have grown substantially in the past
2 decades, which introduced another environmental concern, as HFCs are potent GHGs.
In 2019, the Kigali Amendment to the Montreal Protocol entered into force aiming to
globally decrease both production and consumption of HFCs, while national regulations
limit the use of HFCs in several countries. While total (COz-equivalent inferred) HFC
emissions continue to increase, they were about 20% lower than previously projected for
2017-2019, indicating that companies might transition away from some species, such as
the very potent HFC-143a (CyHsF3) (Velders et al. 2022). PFCs are amongst the most
potent and long-lived GHGs listed under the United Nations Framework, with atmospheric
lifetimes ranging from thousands to tens of thousands of years. Despite being regulated
under the Kyoto Protocol, PFCs are extensively used in the semi-conductor and electronics
industry while also emitted as a by-product of aluminum smelting. Although abatement
measures were introduced in these industries, global mean mole fractions of important
PFCs, such as PFC-14 (CF4), PFC-116 (CyFg), and PFC-218 (C3Fg) continue to grow,
with global annual growth rates increasing again after a period of decline (Say et al. 2021).
In my thesis, | focus on SFg, the GHG with the highest known GWP and high impact on
the future climate.

1.2 Sulfur hexafluoride

1.2.1 A brief history of sulfur hexafluoride

SFe was initially produced in 1900, at the laboratories of the Faculté de Pharmacie de Paris
by Henri Moissan and Paul Lebeau. The synthesis involved a highly exothermic reaction
of fluorine with sulfur, which was obtained by electrolysis, resulting in the formation of
an exceptionally stable gas (Assael et al. 2012). Subsequently, a series of publications
studied the physical and chemical properties of SFg (e.g. Klemm and Henkel 1932, 1933;
Prideaux 1906; Schumb 1947). The remarkable gas inertness and the chemical and dielectric
properties caused the General Electric Company in 1937 to suggest its use in electrical
equipment (Heise et al. 1997). By 1939, Thomson-Houston patented the concept of
utilizing SFe in insulating cables and capacitors (Zavattoni 2014). After World War I, a
broad spectrum of SFg applications emerged. In 1947, efforts began to use SFg for the
insolation of transformers (Assael et al. 2012). SFg industrial production began in 1953
in the United States, with the introduction of SFe-insulated circuit breakers (Maiss and
Brenninkmeijer 1998). Following the market debut of gas-insulated switch gear (GIS) in the



1960s, SFg was widely manufactured for the use in electrical plant construction in Europe
and the U.S. As companies initiated a transition from oil-based systems to SFg, the gas
was adopted in many applications as an arc-quenching and insulation medium (Rabie and
Franck 2018).

1.2.2 Properties

SFg is a color- and odorless gas with a density of 6.139 % (at standard temperature and
pressure), and a molecular weight of 146 mio,, making it five times heavier than air (IEEE
2012). It has low solubility in fresh and seawater. Depending on the temperature and
salinity, its solubility coefficient ranges from 1 to 6 -10_4,_’2% (Bullister et al. 2002), which
is roughly 2 magnitudes lower than of CO, (Weiss 1974). SFg is composed of one sulfur
atom surrounded by six fluorine atoms arranged in a highly symmetrical octahedral geometry

(see Fig. 1.3).
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Figure 1.3: Illustration of the octahedral geometry of an SF6 molecule, consisting of six
fluorine atoms attached to a central sulfur atom (Benjah-bmm27 2007).

The symmetrical arrangement of the six fluorine atoms around the central sulfur atom and
the stable covalent bonds between the sulfur and fluorine atoms, lead to high chemical
stability, making SFg¢ resistant to chemical reactions under a wide range of conditions (e.g.
Shida 2013). The structure also leads to high thermal stability, with reported decomposition
temperatures between 500 and 600°C under normal atmospheric pressure (Camilli et
al. 1952). However, in instances of overheated electrical equipment, SFg may initiate
decomposition at temperatures exceeding 200°C, with substantial decomposition observed
from 350°C onwards (Wang et al. 2011). When pressurized, SFg can exhibit the same
dielectric strength as liquid insulators, withstanding high electric fields without electric
break down (Giardini-Guidoni et al. 1979). At the same time, it possesses low thermal
conductivity, restricting the transfer of heat energy within the gas. Both, the high dielectric
strength and the low heat conductivity give rise to the exceptional arc-quenching capacity
of SFe (Leeds et al. 1957), enabling it to extinguish or suppress electrical arc that forms
during a fault condition in electrical equipment, which makes it an excellent insulator. In
addition, SFg is non-explosive, non-flammable, and non-toxic. However, SFg can undergo
reactions with gas impurities at arc temperatures, leading to the formation of by-products,
which can be highly toxic (DeHope et al. 2007). While the chemical structure of SFg leads
to favorable insulating properties, it also enables it to absorb infrared radiation at various



wavelengths, with a broad absorption band centered around 948 cm~?! wavelength (Harrison
2020), which renders SFg an extremely potent GHG with the highest known GWP-100
value of 24,300, as listed in the recent IPCC ARG report (Smith et al. 2021). In addition,
SFg is one of the longest-lived GHGs in the atmosphere, due to its chemical inertness.

1.2.3 Applications and emissions
1.2.3.1 Electrical equipment

SFg is primarily used in high-voltage electrical equipment in the electrical power industry,
including GIS, transmission lines, high-voltage cables, and transformers.

Gas-insulated switch gears

SFg is used in high and medium-voltage switch gears, where it serves as an effective insu-
lating medium between electrical components within the switch gear, preventing electrical
breakdown. This includes circuit breakers (illustrated in Fig. 1.4), but also busbars, discon-
nectors, and other switching devices (depending on the specific switch gear configurations)
(IEEE 2012). It also serves as a quenching gas to rapidly suppress or extinguish arcs that
may occur during the opening or closing of electrical circuits, ensuring safe and reliable
operation of the switch gear. Due to its high dielectric strength SFg enables the design of
compact and space-saving switch gear configurations, occupying only 10-15% of the space
required by conventional air-insulated units (Solvay 2018).

Figure 1.4: SF¢ gas circuit breakers in a 420 kV switchyard (Dingy 2007).



Gas-insulated transmission lines

Gas-insulated transmission lines are transmission systems that use a gas-insulated conductor
to transmit high-voltage electricity (Koch 2011). Conventional designs are filled with pure
SFg, which serves as an insulating and arc-quenching medium (Koch 2008). New systems
are designed for managing longer distances and use a mixture of SFg and N», where SFg
can be diminished by up to 71%. With only 20% of SFg content, the insulation capability
reaches 69% of that of pure SFg under identical gas pressure conditions. To offset the
reduced dielectric strength relative to pure SFg, a pressure increase of approximately 45%
proves adequate (Koch et al. 2018).

High-voltage cables and tubular transmission lines

SF¢ also serves as an insulating and arc-quenching medium in gas-insulated high-voltage
cables and tubular transmission lines, which are used for power transmission at high and extra
high voltage in heavily concentrated industrial areas (Solvay 2018). Tubular transmission
lines serve to link power stations with transformers or switching stations and can permit
high current levels with minimal electric loss, when filled with pressurized SFg or SFg/N>
mixtures (Kunze et al. 2007).

Transformers

In transformers, the insulating medium serves the dual purpose of providing insulation and
transferring heat from the winding and core assembly to the surrounding environment
(Gouda et al. 2012). Gas-insulated transformers use SFg because of its excellent heat-
transfer capacity, non-flammability, and non-toxicity (Toda 2002). This is an advantage over
oil-insulated transformers which have limitations including the need for fire-extinguishing
equipment, long clearance length, low ignition value, costly and toxic soil remediation, as
well as the danger of explosions (Ongnenel et al. 2018). Due to their superior operational
safety, SFg-insulated transformers are commonly installed in mines and department stores
(Solvay 2018).

Emissions from electrical equipment

The electrical equipment in the power industry is considered to be the largest source of
SFg emissions. Sales data from Europe, Japan, the U.S., and South Africa (1996 - 2003)
indicate that electric utilities and equipment manufacturers for power systems consumed
80% of the produced SFg (Simmonds et al. 2020). In China, emissions from the electrical
equipment sector contributed to about 70% of total SFg emissions from 1990 to 2010
(Fang et al. 2013). In this sector, emissions occur primarily through leakage, maintenance,
and retirement of the equipment (Xu et al. 2011). Emissions during the production process
are considered negligible (Zhou et al. 2018). The emission levels of SFg are influenced by
various factors, including the age of the equipment, where older models tend to have higher
leakage rates compared to newer ones, as well as the scale of the transmission network



and the recycling practices for outdated equipment (Gambhir et al. 2017; Purohit and
Hoglund-Isaksson 2017). The typical lifespan of electrical equipment in the power sector is
3040 years, leading to a delay between SFg consumptions and emissions (Zhou et al. 2018).
In recent years, studies have shown that less potent alternative gases, such as NOVEC-4710
and NOVEC-5110 can be used to replace SFg in mid- and high-voltage electrical switch gear
(e.g. Billen et al. 2020; Owens et al. 2021; Yedinak et al. 2023) and several manufacturers,
such as Siemens, General Electric, and ABB have announced the expansion of SFg-free
technologies (Billen et al. 2020). Nevertheless, SFg can not be replaced completely, and
especially not in the short term (Zhou et al. 2018).

1.2.3.2 Magnesium and aluminum metal industry

SFe is used for blanketing or degassing for molten reactive metals, such as magnesium and
aluminum (Maiss and Brenninkmeijer 1998). In particular, the magnesium industry uses
SFe to prevent high-flammable liquid magnesium from oxidation and surface burning during
the production of primary magnesium, die casting, and recycling operations (Bartos et al.
2003). In the aluminum industry, SFe is primarily used for degassing, removing dissolved
gases like hydrogen from molten aluminum before it solidifies into a casting, to improve
mechanical properties (Schwarz and Gschrey 2009).

The magnesium industry is recognized as a significant source of SFg emissions, especially
in China, the world's largest magnesium producer and exporter. Between 1990 to 2010 Fang
et al. (2013) found its contribution to be about 10% of the total Chinese emissions, with
a consumption factor of 1.65kg SFg per ton of magnesium. In the magnesium sector, all
consumption of SFg is considered equal to its emissions to the atmosphere, as only a minor
fraction of the blanketing gas undergoes chemical reactions and thermal degradation while
the major part escapes through leakages and openings of the melting furnace (Eggleston
et al. 2006). After 2010, the consumption of SFg as a blanketing gas in Chinese magnesium
production was halted and largely replaced with SO, (Simmonds et al. 2020; Zhou et al.
2018). In 2006, SFg emissions from EU magnesium industry equaled almost 20% of the
total SFg emissions (Schwarz and Gschrey 2009). While the 2006 EU F-gas regulation
restricted SFg usage in magnesium die-casting, the 2014 EU F-gas regulation banned SFg
also in recycling magnesium die-casting. Alongside with SO,, HFC-134a emerged as an
accepted alternative to SFg. Additionally, NOVEC-612 started being used in the U.S. and
Japan in 2008, and is now available worldwide (Hort et al. 2015; Schwarz and Gschrey
2009).

1.2.3.3 Semiconductor industry

In the semiconductor sector, thin film transistor liquid crystal display manufacturing is the
major source of SFg emissions (Cheng et al. 2013), in which it is used for the cleaning of
chemical vapor deposition chambers (RoRler et al. 2005) and for plasma etching (Lee et al.
2004). Here, the gas is ionized, dissociating into sulfur and fluorine radicals and ions, which
react and remove material from the substrate surface (mostly silicon) to create specific
patterns (Hodak et al. 2008). In photovoltaic manufacturing, SFe is also used in etching



processes and to remove damages to the wafers, which are slices of silicon, the building
blocks of solar panels (Andersen et al. 2014).

Between 2000 and 2010, Fang et al. (2013) found the contribution of the semiconductor
industry to the total Chinese SFg emissions ranging from 10% to 20% and documented
emissions of 0.15 Gg in 2005 and 0.4 Gg in 2010. Cheng et al. (2013) reported Chinese SFg
emissions of roughly 0.2 Gg/yr between 2004 and 2011. According to Zhou et al. (2018)
there is a phase-out of Chinese SFg emissions in semiconductor production. Global annual
consumption by the semiconductor industry was reported to range between 0.41-0.55 Gg/yr
from 2012 to 2018 (Simmonds et al. 2020). In recent years mainly NF3, but also other
gases such as CF4 or HFC-134a have been used as a substitute for SFg in the semiconductor
industry. Further, F, produced onsite from hydrogen fluoride (HF) and SF4 have been
proven as an alternative (Cui et al. 2024).

1.2.3.4 Sulfur hexafluoride production

There are two main methods for SFg production: direct synthesis and electrolysis. In the
direct synthesis, fluorine gas is introduced directly into molten sulfur at temperatures of
120 to 180 °C. In the electrolysis method, fluorine gas is generated through the electrolysis
of fluorine-containing substances, which is then combined with elemental sulfur or sulfides
at high temperatures (Cui et al. 2024). Between 2000 and 2010, emissions from the SFg
production accounted for 6-10 % of the total SFg emissions in China (Fang et al. 2013),
who is globally the main producer of SFg. Simmonds et al. (2020) estimated annual SFg
loss from production of 0.1 Gg/yr between 1990 and 2018, using an emission factor (see
Sec. 1.3.1) of 2.2% for China (Fang et al. 2013) and 0.5% for the rest of the world.

1.2.3.5 Particle accelerators

SFg is used in research-operated, industrial (low and high voltage), and medical particle
accelerators (clinical linear accelerators) to prevent electrical breakdown, suppress electrical
arcs, and maintain stable electric fields (Schwarz 2005). In clinical linear accelerators SFg
is pressurized in the waveguide, a hollow metal tube that accelerates charged particles,
such as electrons, utilizing high-frequency electromagnetic waves (Lichter et al. 2023). In
the industry, SFg insulated accelerators serve as electron beam systems for manufacturing
purposes (e.g. polymer cross-linking) (Cleland 2006). In research, the accelerator is typically
placed together with a high-voltage generator in an SFg insulated tank where charges can
vary from five to more than ten thousand kilograms (Zille et al. 2019). These tanks must
be opened for adjustment and repair of the equipment, where SFg is pumped into a storage
tank (illustrated in Fig. 1.5), entailing considerable gas losses with emission factors up to
7% (German Environment Agency 2023; Schwarz 2005). Between 1995 and 2021 German
SFg emissions from particle accelerators were estimated to be between 4 and 5 tonnes per
year (German Environment Agency 2023).



Figure 1.5: SFg storage tank at the university of Dresden (Yeti-Hunter 2018).

1.2.3.6 Soundproof windows

In Western Europe, starting in 1975, SFg was filled in double-glazing windows to damp
acoustic pressure and improve the sound-insulating effect. In Germany, six percent of the
manufactured and installed glazing contained SFg in 1990. Since the end of the 1990s,
a change in glazing structures made the sound-insulating effect of SFg dispensable, and
the entire interspace between the glasses could be used for thermal insulating with the
gas argon (Schwarz 2005). Since 2007, the EU banned the use of F-gases in windows,
for residential uses, and expanded the ban to all windows in 2008. However soundproof
windows have a relatively long lifetime of about 25 years, and therefore emissions have been
expected to continue growing until 2020 and are still substantial in Germany and Austria
(Purohit 2024).

1.2.3.7 Car tires

From 1984, Germany has utilized SFg as a filling gas in automobile tires to maintain stable
tire pressure. It takes over 1 kg of SFg to fill a complete set of four tires. The consumption
of SFg for this purpose increased to 125 tons between 1984 and 1995 and dropped afterward
as a result of the awareness of the gas's GWP (Schwaab 2000). As emissions occur around
3 years after the filling, SFg emissions from car tyres substantially decreased between 1995
and 2002 (German Environment Agency 2023).

1.2.3.8 Sport shoes

From 1996 to 1997, SFg was used in Nike's Air model shoes, according to a letter from the
director for Nike Environmental Action Team to Greenpeace Denmark, with a total SFg
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consumption of around 288 tones. However, Nike announced phasing out its use of SFg
and replacing it with nitrogen from 2001 at the latest (Pedersen 2000).

1.2.3.9 Military applications

The military has many critical uses for SFg. It is used as an insulator in ground and airborne
radar systems, preventing electrical arcing in the antenna'’s hollow conductors during the
transmission of high-frequency energy pulses at high voltages (Zille et al. 2019). Annual
emissions of SFg from radar systems of the German NAEWF (NATO - Airborne Early
Warning and Control Force) aircraft were estimated to be 12.5 t/yr between 1995 and
2002 (Schwarz 2005). SFg also serves as an oxidant for lithium in Stored Chemical Energy
Propulsion Systems, like infrared decoys or torpedos (Koch 2004). The usage of SFg to
reduce the noise from torpedo propellers has also been documented (Christophorou et al.
1997). SFg is also assumed to be emitted as a by-product during the production of nuclear
fuel and nuclear warheads (Zille et al. 2019).

1.2.3.10 Medical applications

SFe is used as a contrast agent for ultrasound imaging (Lee et al. 2017), and for dynamic
pulmonary ventilation (Schreiber et al. 2001). Furthermore, it is used for eye surgical
procedures, where the SFg bubbles are injected into the eye, to increase its volume (Brinton
and Wilkinson 2009). In many medical applications, SFg is considered to be emitted within
one year of its purchase (Zille et al. 2019).

1.2.3.11 Tracer gas

In addition to the non-toxic and inert nature of SFg, it is detectable at very low concentra-
tions and has low atmospheric background concentrations, which makes it suitable as an
atmospheric tracer gas. It has been used as a tracer in environmental studies, to investigate
atmospheric dispersion, circulation patterns, and pollution transport (Maiss et al. 1996;
Martin et al. 2011) and for leakage detection (Wan et al. 2024). In addition, it has also
been used as a tracer in groundwater (e.g. Okofo et al. 2022), rivers (e.g. Ho et al. 2002),
and oceans (e.g. Tanhua et al. 2004). Simmonds et al. (2020) estimated a total release of
4 Mg from historical SFg tracer studies

1.2.3.12 Wind turbines

SFg is used in GIS within the offshore wind sector (Eastern Research Group, Inc. 2023).
Due to a recent BBC article (McGrath 2019) the use of SFg in the renewable energy
sector got a lot of media attention. According to an article by WindEurope (2019), leakage
emissions from Europe’s 100,000 wind turbines accounted for about 900kg of SFg between
2013 and 2019.
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1.2.3.13 Natural sources

SFe was detected in granites where fluorite is an accessory mineral. Outgassing from these
materials was estimated to lead to a natural SFg background atmospheric abundance of
0.01 ppt (Harnisch and Eisenhauer 1998).

1.2.4 Atmospheric lifetime

To determine the atmospheric lifetime of a tracer gas, its annual loss can be derived either
through measurements or modeling. In the case of measurements, one can utilize multiple
trace gases to correlate the loss of one gas with a known lifetime to that of another. In
the context of model-derived estimations, the loss from considered removal processes can
be computed at each model time step (Ray et al. 2017). SFg remains highly unreactive
from the troposphere to the middle stratosphere and is only slowly removed in the upper
stratosphere and mesosphere. Ravishankara et al. (1993) estimated an atmospheric lifetime
of 3,200 years, using a two-dimensional atmospheric model, considering loss processes
through dissociative electron attachment (SFs — SF; + F), photolysis by Lyman-al/pha
radiation, and O(1D) reaction. Morris et al. (1995) expanded the model with ion chemistry
and found that associative electron attachment (SFs + e~ — SF, ) is the major loss
process, which can reduce the atmospheric lifetime of 3,200 down to 800 years, and under
certain conditions even to 600 years. These values were, however, presented as lower
limits. Two years later Patra et al. (1997) presented a value of 1,937+432 years, computed
from measured SFg mixing ratio correlations with simultaneous measurements of N>O, and
CFC-12. Nevertheless, the value of 3,200 years by Ravishankara et al. (1993) became the
most prominent one and was used in all of the climate and stratospheric ozone assessments
and State of the Climate report, even making it into the IPCC AR5 report (Myhre et al.
2013). A more recent study by Kovacs et al. (2017) determined a SFg lifetime ranging
from 1,120 to 1,475 years, by using the Whole Atmosphere Community Climate Model,
including complex formalism for both associative and dissociative electron attachment and
a comprehensive model of ion chemistry in the lower ionosphere to account for partitioning
of electrons and negative ions below 80 km. In the same year, Ray et al. (2017) utilized in
situ measurements in the Arctic polar vortex that sampled air with up to 50% SFg loss to
compute a lifetime ranging from 580 to 1,400 years. Due to these two studies, the IPCC
ARG report (Smith et al. 2021) revised the value of SFg atmospheric lifetime from 3,200 to
1,000 years.

1.2.5 Oceanic sink

In addition to atmospheric loss, the ocean potentially serves as an SFg sink. Atmospheric
SFe can enter the ocean through air-sea exchange, with the rate of gas exchange correlating
with wind speed (Wanninkhof et al. 1985). The concentrations in the ocean’s surface layer
depend upon various factors including gas solubility, as well as atmospheric and oceanic
concentrations (Fine 2011). As SFg has low atmospheric concentration and solubility, the
concentration in surface seawater is less than 10_15”%‘3’ (Cai et al. 2016). Ko et al. (1993)
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suggested that, in addition to atmospheric removal processes, oceanic SFg sinks should
be considered, but nevertheless, estimated the effect to be very small. They stated that
the SFg lifetime due to the ocean removal would be of the order of 10 years and longer.
Therefore, in many studies, oceanic SFg sinks have been neglected (e.g. Levin et al. 2010;
Rigby et al. 2010; Simmonds et al. 2020). However, a recent study by Ni et al. (2023)
suggested, that the ocean is an important atmospheric SFg sink, removing about 7% of
the annual anthropogenic emissions. They based their estimation on calculated sea-air
fluxes of SFg, derived from simultaneous measurements of SFg concentrations in both the
atmosphere and surface seawater of the Western Pacific and Eastern Indian Ocean.

1.2.6 Impact on the climate

SFe is the gas with the highest known GWP, with values of 18,200, 24,300, and 29,000 for
a 20-, 100-, and 500-year time horizon, respectively (Smith et al. 2021). Given its very
long atmospheric lifetime, emitted SFg accumulates in the atmosphere, and warms the
climate for centuries. Since the late 1990s, global concentrations of SFg have undergone
rapid growth, increasing from 4.2 ppt in 1998 to 11.0 ppt in 2022 (see Fig 1.6).

Global Monthly Mean SFs

11r

10

SFs mole fraction (ppt)
(=]

af |
2000 2010 2020
Year

Figure 1.6: Globally-averaged, monthly mean atmospheric SFg abundance determined from
marine surface sites (Lan et al. 2024).

Radiative forcing increased from roughly 2.4 TTVQV (1998) to 6.2 ”:T‘QV (2022), given SFg's
large radiative efficiency of 0.567 %ppb (Smith et al. 2021). By the end of the 21st century,
radiative forcing of SFg could surge tenfold if the current trend in global SFg emissions
prevails (Hu et al. 2023). The global emission trend is positive, which can be deduced from
the increasing global-averaged atmospheric SFg growth rates, which represent the sum of
all SFg annually added to the atmosphere by human activities. Since 1998, atmospheric
growth rates have almost doubled, increasing from 0.20 ppt/yr in 1998 to 0.37 ppt/yr 2022
(Lan et al. 2024).
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1.2.7 Sulfur hexafluoride regulations

SFg is regulated under the Kyoto Protocol, ratified in 1997, where it was listed as one of
the six categories of major GHGs, initializing the efforts to reduce emissions. For the first
commitment period (2008-2012) the Kyoto Protocol set individual binding GHG emission
reduction targets for 37 countries, adding up to an average reduction of about 5% compared
to levels in 1990 (United Nations Framework Convention on Climate Change 1997). During
the Bali Roadmap in 2007, many countries aimed for abatement reduction targets between
25 and 40% below 1990 levels by the year 2020, which, however, were not committed
in the action plan, but inserted as a footnote (Jingmin and Dong 2008; United Nations
Framework Convention on Climate Change 2007). The 15" Conference of the Parties
(COP 15), brought a political agreement for the establishment of emission reduction targets
for developed countries and financial assistance for climate change mitigation to developing
countries (United Nations Framework Convention on Climate Change 2009). The Paris
Agreement mandated each participating nation to prepare, communicate, and maintain
nationally determined contributions (NDCs) for the reduction of GHG emissions to limit
the temperature increase to 1.5°C above pre-industrial levels (United Nations Framework
Convention on Climate Change 2015). Following the Paris Agreement, several governments
and organizations set ambitious emissions goals for realizing net zero in 2050 or earlier.
Cui et al. (2024) provide a comprehensive summary of woldwide implementations of SFg
reduction efforts.

China

Since 2012, China implemented GHG reduction policies, including regulations like GB/T-
28537-2012 and GB/T-32151.2-2015, setting standards for using SFg in high-voltage
switch gear, specifying the installation, maintenance, and disposal of the equipment, and
addressing SFe emission accounting rules (Cui et al. 2024). In addition, environmentally
friendly switch gear technologies have been introduced (An et al. 2024). The demand for
SFe emission reduction is also addressed in China's net-zero goal by 2060.

u.S.

In 1999, the U.S. Environmental Protection Agency (EPA) established an emission reduction
partnership with the electric power industry to reduce SFg emissions. In 2009, the EPA
published a regulation under the Greenhouse Gas Reporting Program, for the mandatory
reporting of GHG emissions from sources typically emitting more than 25,000 CO5 equivalent
metric tons per year, requiring the large SFg users to report annual emissions (Ottinger et al.
2015). California's Global Warming Solutions Act of 2006 (California State Legislature
2006) mandates SFg emissions to be reduced to 1990 levels by the year 2020. The 310 CMR
7.72 regulation in Massachusetts mitigates SFg emissions from GIS. It imposes a maximum
annual SFg leak rate of 1% for GIS acquisitions after 2015, while GIS owners are required
to outline measures for cutting emission rates (Massachusetts 2021). In 2021, the U.S.
State of Maine passed the LD 1503 law "An Act To Stop Perfluoroalkyl and Polyfluoroalkyl
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Substances Pollution", which requires manufacturers of products with intentionally added
PFAS (per- and polyfluoroalkyl substances, including SFg) to report the presence of PFAS
in those products from 2025 and prohibits the sale of products containing intentionally
added PFAS from 2030 (State of Maine 2021).

European Union

To achieve the reduction targets for the first commitment period to the Kyoto Protocol, the
EU passed regulation No. 842/2006 in 2006, which set rules for the containment, recovery,
use, and reporting of F-gases. In particular, the use of SFg for the filling of vehicle tyres
was prohibited from 2007 and the SFg use in magnesium die-casting (above 850 kg) was
prohibited from 2008. In addition, F-gas-filled windows and footwear were prohibited from
being put on the market (European Parliament and Council of the European Union 2006).
In 2014, EU’s F-gas regulation 517/2014 further tightened the rules, banning the use of SFg
for recycling magnesium die-casting alloys from 2018 and requiring leak detection systems
for electrical switch gear from 2017 (European Parliament and Council of the European
Union 2014). In 2024, the EU parliament adopted a new regulation for F-gases, where the
consumption of HFCs will be completely phased out by 2050 (European Parliament and
Council of the European Union 2024). The regulation requires the phase-out of F-gases in
medium-voltage switch gears by 2030 and high-voltage switch gears by 2032. Further, the
use of SFg for the maintenance or servicing of electrical switch gear equipment is prohibited
from 2035 (unless it is reclaimed or recycled).

1.3 Emission monitoring

A crucial element of the Kyoto Protocol was the establishment of a system for reporting and
monitoring GHG emissions by participating countries, to assess the progress in meeting their
emission reduction targets. Industrial countries classified as Annex-I nations are required
to annually submit reports detailing their GHG emissions to the UNFCCC, including SFg.
These national GHG inventories are almost exclusively calculated by so-called bottom-up
methods.

1.3.1 Bottom-up methods

In bottom-up methods, individual emission sources are identified and categorized, and
a large number of statistical activity data (e.g. industrial production and consumption)
is gathered, to quantify the amount of gas, which is used or produced in the different
source sectors. By applying emission factors, that represent the emissions generated by a
certain activity, total emissions from each source sector are calculated and aggregated to
obtain an emissions inventory for a specific country. However, the reliability of this complex
self-reporting system, based on bottom-up methods, has been questioned (e.g. Nilsson
et al. 2001). On one hand, its effectiveness will primarily depend on the way individual
countries implement their obligations into practice (Gupta et al. 2003). Certainly, emissions
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from spurious or even illegal activities will not be reported. And even if inventories are
prepared according to good practice and guidelines by the UNFCCC, intrinsic uncertainties
are high (Rypdal et al. 2005). The emissions from individual source sectors are based on an
assumption about the relationship between a particular activity and the resulting emissions.
These emission-producing activities are variable in space and time, making it hard to come
up with an appropriate estimate. Some processes might also be poorly understood, or not
recognized as an important source. For other activities, appropriate data is missing and the
estimates rely on approximations. Finally, the complex systems of creating and processing
data for the inventory give rise to a range of possibilities for human errors (Rypdal and
Winiwarter 2001). All of these uncertainties present large obstacles to efficient emission
reduction strategies. In the recent IPCC ARG report (Dhakal et al. 2022), uncertainties
of aggregated F-gas emissions are estimated to be 30%. For SFg, the aggregation of
bottom-up based reports to the UNFCCC has been shown to strongly underestimate global
emissions, leaving a substantial gap of 70% to 80% of non-reported emissions in the 2000s
(Levin et al. 2010). Thus, there is a growing need for independent verification of these
bottom-up estimates, which can be provided by atmospheric observation-based top-down
methods such as inverse modeling (e.g. Nisbet and Weiss 2010; Rypdal et al. 2005).

1.3.2 Inverse modeling

Inverse modeling provides a tool to optimize GHG emissions based on atmospheric measure-
ments of a certain gas. Gases released into the atmosphere disperse through atmospheric
turbulence and are transported by winds, while they are globally mixed through large-scale
circulation patterns. The atmospheric transport can be simulated by atmospheric transport
models. For inversion purposes, typically Eulerian or Lagrangian Particle Dispersion models
(LPDMs) are used. Eulerian models solve the equations of fluid dynamics on a fixed grid
system to derive the movement of pollutants, while LPDMs simulate the dispersion of
pollutants by releasing a large number of virtual particles and tracking their individual trajec-
tories over time, as they move through the atmosphere (see Sec. 2.1). In the inverse model
approach, atmospheric models are used to relate the changes in atmospheric mole fractions
(e.g. at a measurement station) to GHG fluxes from the surface. These relationships are
then used together with the observed atmospheric mole fractions and a priori information
on the emissions in an optimization process, to find the best estimate of emissions (a
posteriori emissions), that minimizes the mismatch between modeled and observed mole
fractions (see Sec. 2.2.3). Inverse modeling can be applied at different scales, from na-
tional to continental or even global scale. Recent advancements in numerical algorithms,
computer capacity, transport models, and atmospheric observations have substantially
improved this methodology (Leip et al. 2017). Consequently, it was suggested, that the
emphasis for emission estimation should be shifted away from bottom-up and towards
top-down methods (Leip et al. 2017), and that atmospheric inversion estimates should
supplement the traditional inventories, in particular in the case of F-gases (Rypdal et al.
2005). Until now, only Switzerland, the United Kingdom, and Australia have been using
top-down methods as part of their national GHG reports. Several countries have shown
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initiatives to follow their example, however, in many cases insufficient observational data
hinders the implication of inverse modeling estimates. Generally, the lack of observations is
a big problem in the global emission monitoring of GHG emissions, as there are big gaps
in detection networks (Weiss et al. 2021). While areas such as central North America,
eastern Asia, and western Europe are relatively well-sampled for the main GHGs, South
America, central, southern, and western Asia, eastern Europe, parts of Southeast Asia
and North America, New Zealand, Australia and most of Africa are covered poorly (see
Fig. 1.7 for the example of SFg). In many of these regions, emissions are expected to grow
due to industrial and economic development. Less prominent GHGs are sampled only by
a few observation stations. Thus substantial effort is required to further develop surface
measurement networks, with emphasis on the southern hemisphere and tropics. Leip et al.
(2017) estimated that roughly 500 million dollars would be required in the next 20 years
to provide a good in-situ network of about 500 stations globally, sufficient to resolve most
countries, a small amount, compared to investments in global carbon-equivalent trading
markets (Nisbet and Weiss 2010; Weiss and Prinn 2011).
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Figure 1.7: Networks of continuous SFg measurement stations (grey dots) can be used in
an inverse modeling approach to quantify regional emissions. The shown annual-
averaged emission sensitivity (also known as Source-Receptor Relationship
(SRR), see Sec. 2.1.3), which illustrates how well regions are covered by the
existing network, shows big gaps. More sites are needed to cover the global
South and large parts of the northern Hemisphere.
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1.4 Uncertainties of the inverse modeling approach

The recent IPCC ARG report states that top-down methods are useful, but "not yet capable
of verifying emission levels or trends" (Dhakal et al. 2022). Partly, this can be attributed to
the discussed lack in observation networks, however, the inverse modeling approach itself
has been argued to provide insufficient accuracy (e.g. Rypdal et al. 2005). Inverse modeling
comes with substantial uncertainties, and "most systems are not at the level of transparency,
flexibility, and accessibility needed to provide the scientific community and policy makers with
a comprehensive and robust view of the uncertainties associated with the inverse estimation
of GHG and reactive species fluxes" as stated by Berchet et al. (2021). Traditionally, the
uncertainties of inversion-derived emissions are based on Gaussian error statistics within a
Bayesian framework, using a single transport model and inversion set-up, potentially missing
major contributions to the true uncertainties (Brunner et al. 2017). Several studies (e.g.,
Bergamaschi et al. 2015; Chevallier et al. 2019; Locatelli et al. 2013) have shown that
the range of inversion-derived emissions using different inversion systems or set-ups can be
considerably larger than the uncertainties calculated by the individual inversions. Therefore,
a better understanding of the uncertainties is crucial. Errors in the simulated atmospheric
transport play a substantial role in the overall uncertainties of emission estimates from
inverse modeling, particularly at smaller spatial scales (e.g. Chevallier et al. 2019; Gurney
et al. 2003; Locatelli et al. 2013). These can be errors in the meteorological fields, or errors
in the models themselves. Another source of uncertainty is the aggregation error, arising
from the limited spatial resolution of the emission grid, when the assumption that fluxes
within the resolved area do not deviate substantially from the area’s mean, becomes invalid
(e.g. Kaminski et al. 2001). Major errors can also emerge from insufficient knowledge
about the observation and a priori emission uncertainties, and their respective correlations,
which all have to be estimated prior to the inversion process (e.g. Berchet et al. 2013;
Ganesan et al. 2014; Michalak et al. 2005). When using LPDMs for inverse modeling, the
definition of the baseline is one of the largest sources of uncertainties (Henne et al. 2016;
Katharopoulos et al. 2023; Thompson and Stohl 2014). Further uncertainties arise from
the subjective choice of the LPDM backward simulation length.

1.4.1 The baseline definition

When utilizing LPDMs for inverse modeling applications, a large number of virtual particles
are usually released from the measurement site and traced backward in time for a chosen
simulation period. The model output provides the sensitivity of the measured atmospheric
mole fractions to the emissions that occur during the chosen backtracking simulation
period. Using Lagrangian models has many benefits, such as subgrid-scale information at
the measurement point (see Sec. 2.1). A drawback, however, is that virtual particles can be
followed backward only for a limited period, due to computational constraints. The LPDM
can, therefore, only relate emissions occurring within this simulation window to observed
mole fraction values. In contrast, any emissions preceding the chosen simulation period can
not be captured by the LPDM, however, they still have to be considered when modeling
the mole fraction values. Therefore, all these emission contributions are aggregated in a
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so-called baseline that has to be added to the modeled emission contributions. Given that
errors in the baseline propagate to errors in the resulting a posteriori emissions, an accurate
baseline definition is crucial for the inversion. Numerous approaches have been proposed for
establishing this baseline.

One approach is to use statistical filter methods. These methods define the baseline
through low mole fraction measurements which are statistically selected at individual
measurement sites and which are assumed to be unaffected by emissions within the LPDM
simulation period. Baseline mole fractions have been defined as the minimum measured
values (e.g. Ganesan et al. 2014; Zeng et al. 2012) or by excluding measurement outliers,
outside a Gaussian distribution (e.g. Kim et al. 2021; Saito et al. 2010) in a selected time
interval. Similarly, Graziosi et al. (2015) and Maione et al. (2014) decomposed the overall
observed probability distribution function into a Gaussian and a Gamma distribution part,
where the Gaussian distribution part was used as the baseline. Shirai et al. (2010) determined
the baseline by using a peak analysis tool, where a rectangle is manually positioned over
each observation peak and the baseline is drawn within the two outermost points included
in that rectangle. A widely used statistical method (e.g Annadate et al. 2023; Henne
et al. 2016; Schoenenberger et al. 2018; Vollmer et al. 2016) is the robust estimation of
baseline signal (REBS) method, introduced by Ruckstuhl et al. (2012) which employs a local
linear regression model. For some stations, a statistically derived baseline from a nearby
background station was taken to estimate the baseline (Oney et al. 2017). Some statistical
baseline methods also include model information for the selection of measurements. The
UK Met Office analyzes the history of air entering the regional inversion domain as selection
criteria (see e.g. Manning et al. 2021). Stohl et al. (2009) suggested subtracting a priori
simulated mole fractions from pre-selected measurements, in order to avoid a baseline
overestimation.

A totally different baseline approach was presented by Rodenbeck et al. (2009), where
a regional transport model is nested into a global model, providing external information
beyond the boundaries of the spatial-temporal inversion domain. In such an approach, the
baseline is based on the output of the global model, which is why | refer to it as global
distribution based (GDB) approach. Trusilova et al. (2010) and Ganshin et al. (2012)
showed, that embedding a regional Lagrangian model into a global Eulerian model improved
the correlation between modeled and measured CO> mole fractions, in comparison to
using the Eulerian model alone. Rigby et al. (2011) and Monteil and Scholze (2021)
developed such an Eulerian-Lagrangian coupled system to optimize SFg and CO5 emissions,
respectively. In many regional LPDM-based inversion studies the baseline is computed by
coupling the LPDM trajectories to a global model at the location where particles leave
the spatial inversion domain (e.g. Ganesan et al. 2017; Lunt et al. 2016; Ramsden et al.
2022; Say et al. 2019). Another possibility is to do the coupling at the end of the LPDM
simulation period, where back-trajectories terminate (e.g. Thompson and Stohl 2014).

Although the treatment of the baseline is crucial for LPDM-based inversions, the influence
of chosen baseline approaches on inversion results is unclear. A systematic comparison
of various methods across different model configurations, such as the LPDM backward
simulation period, is missing.
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1.4.2 The backward simulation period

Another source of uncertainty regarding LPDM-based inversion methods is the choice
of the LPDM backward simulation period. It must be decided how long particles are
traced back in the LPDM simulation before they are terminated, as there are limitations
due to computational costs. This decision sets the temporal boundaries of the inversion,
determining which emissions can be directly related to the mole fraction measurements and
are accessible to the inversion (emissions occurring within this period) and which emissions
must be accounted for in the baseline (emissions occurring before this period). For regional
inversions, these choices are usually made, such that the majority of particles have left
the region of interest before getting terminated. For global GHG inversions, the emission
sensitivities are usually spread over large areas of the globe after 10-20 days. However,
observations are most sensitive to emissions occurring during the first few days of the
backward simulation. In practical terms this means that the biggest part of the observed
variability (e.g. pollution events) can be explained by emissions occurring within a few days
before the respective measurements. The spatially resolved information content however
decreases with temporal distance to the measurements, as virtual particles are spread over
larger areas. While, with longer simulation periods, more emissions become accessible to
the inversion, it also becomes more difficult to extract information on individual emission
sources (Stohl et al. 2009). The benefit obtained from every additional simulation day will
therefore typically decrease, while computational costs grow. Consequently, LPDM-based
inversion studies constrain the backward simulation to relatively short periods, while the
choice remains subjective. The range of simulation periods used by different studies is
therefore large, e.g., 5 days (e.g. Keller et al. 2012; Vollmer et al. 2009; Zhao et al. 2009),
7 days (e.g. Koyama et al. 2011), 10 days (e.g. Schoenenberger et al. 2018; Simmonds
et al. 2018; Thompson et al. 2017), 20 days (e.g. Fang et al. 2014; Maione et al. 2014;
Stohl et al. 2009) or 30 days (maximum, e.g. An et al. 2024; Ganesan et al. 2017). Here,
Koyama et al. (2011) and Stohl et al. (2009) are global inversion studies, while the other
listed studies apply regional inversions. A systematic analysis of the impact of the backward
simulation period is missing.

1.5 Top-down sulfur hexafluoride emissions

In 2020, Simmonds et al. (2020) published a comprehensive SFg study, where they employed
a global box model (AGAGE 12-box model; Rigby et al. 2013) together with an inversion
system, to estimate global SFg emissions between 1980 and 2018 (Fig. 1.8). Similar to
earlier studies by Levin et al. (2010) and Rigby et al. (2010), they found that, after a
peak around 1995 (6.2 Gg/yr), global SFg emissions exhibited a decreasing trend until
2000 (5.0 Gg/yr), after which they started to grow again, with a persistent positive trend
until the end of the study period (9.0 Gg/yr). The emission growth after 2000 could be
primarily attributed to emissions from non-Annex-I Asian countries (Rigby et al. 2010), due
to the expansion in electrical power, electronics, and metal industries. Specifically, East
Asian countries have been identified, to substantially contribute to the overall global SFg
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emissions (45%-49% between 2009 and 2012), with China emerging as the main contributor
(Fang et al. 2014). Between 2011 and 2021, Chinese emissions have almost doubled (from
2.6 Gg/yr to 5.1 Gg/yr) and accounted on average to about 46% of the global emissions
(An et al. 2024). Employing regional inversion systems, Simmonds et al. (2020) found,
that Western Europe emissions were around 10 times lower than those in China. In their
contribution to the UK annual report to the UNFCCC, Manning et al. (2022) presented
inversion-derived SFg emissions for North-West Europe, revealing a declining trend (0.37
Gg/yr in 2004 to 0.18 Gg/yr in 2021). A declining SFg emission trend was also found for
the United States of America between 2007 (0.83 Gg/yr) and 2018 (0.39 Gg/yr), where
emissions were suggested to be higher in the winter than in summer (Hu et al. 2023). The
SFe emissions in other regions such as Africa, Oceania or South America have been studied
on a continental scale between 2004 and 2008 by Rigby et al. (2010), however no trends
could be derived due to the poor observational constraint.

Although global SFg emissions can be well constrained by global box models, and regional
inversion systems have been used to estimate SFg emissions in specific regions, there is no
clear link between regional and global emissions and an updated, comprehensive, top-down
perspective of the global SFg emission distribution is missing. Additionally, many inversion
studies rely solely on high-frequency tower measurements or observations from specific
networks, potentially missing information. Further, the seasonality of SFg emissions, which
could help to identify seasonally dependent sources, is poorly understood.
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Figure 1.8: Global SFg emission trend (Simmonds et al. 2020). The solid blue line represents
the global emissions derived with the AGAGE 12-box model, while the red
diamonds and green circles show global emissions from Levin et al. (2010) and
the EDGAR 4.2 inventory, respectively. While reported emissions from Annex-|
countries (orange triangles) decrease after 1995, emissions from non-Annex-I
countries (grey stars) grow substantially, resulting in an increase in combined
non-Annex-I and Annex-I emissions (purple squares) from the beginning of the
20th century.
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1.6

Research objectives

The overarching objectives of my thesis are:

(1) evaluating the use of LPDMs for inverse modeling of GHGs to develop an

optimal set-up for atmospheric inversions

(2) determining the global distribution of SF emissions for the period 2005-2021

They are further discussed and refined within the following two subsections.

1.6.1 Evaluating the use of LPDMs for inverse modeling of GHGs

When using LPDMs as a basis for inverse modeling, virtual particles are released from
observation sites and traced backward in time to establish a relationship between atmospheric
concentrations and emission sources within the simulation period (see Sec. 2.1.3). The
fact, that this simulation period is limited due to computational costs, raises two essential
research questions, investigated in this thesis:

(i)

(it)

How to best define a baseline, that accounts for all emissions occurring prior to the
simulation period?

Which period length should be chosen for the backward-simulation?

To address these questions a global inverse modeling approach is applied to estimate
emissions for the example of SFg for the year 2012, while investigating:

(a)

(c)
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the effect of different LPDM backward simulation periods:

| employ various simulation periods, including 1, 5, 10, 20, and 50 days, for backtracking
virtual particles in the LPDM simulation. | then analyze the model-measurement
agreement at the individual measurement sites and the inversion results across these
different periods.

the impact of the baseline definition:

| compare three different baseline methods - the REBS method, the method proposed
by Stohl et al. (2009), and the GDB method (see Sec. 1.4.1) and explore their impact
on the model-measurement agreement and inversion results, while also investigating
their sensitivity to the backward simulation period.

the consistency with known global total emissions:

The true SFg emission distribution is unknown, and it is therefore challenging to decide
which baseline method produces the best inversion results. However, for long-lived
gases, such as SFg, the total global emissions can be relatively accurately determined
by considering their atmospheric growth rates. |, therefore, investigate the consistency
with global total emissions using different baseline methods and backward simulation
periods.



(d) the influence of biases in the baseline and a priori emissions:
| introduce artificial biases in the a priori emission fields and the baseline to explore
their influence on inversion results for the different backward simulation periods.

(e) the value of different observation types:
With the GDB method it is possible to include low-frequency measurements (e.g.
flask measurements) from fixed sites or measurements from moving platforms in
the inversion. Statistical baseline methods require short measurement intervals at
fixed sites for the statistical baseline calculation, and thus it is not possible to include
low-frequency measurements or measurements from moving platforms. | therefore
explore their value to the inversion.

1.6.2 Determining the global emission distribution of sulfur hexafluoride for
the period 2005-2021

Based on the methodological results of the first research objective, | perform global
inversions for SFg, to determine its global emission distribution from 2005 to 2021. The
inversions are based on 50-days LPDM backward simulations, the GDB baseline method,
and a comprehensive observation data set, combining continuous with flask measurements
sampled at fixed surface locations, and observations from aircraft and ship campaigns. |
investigate regional and national SFg emission trends with annual and also monthly resolution,
and compare my results with the existing regional studies (see Sec. 1.5). | further discuss
the derived global total emission trend and compare it to results from the AGAGE 12-box
model and to global emissions directly calculated from annual increases in globally averaged
atmospheric SFg mole fractions. This approach aims to answer the following research
questions, regarding:

(a) annual emissions in relatively well-monitored regions, such as Europe, the U.S.,
and China:
What are the annual SFg emission trends in Europe, China, and the U.S.7? Do they
change over time? How well do the results of such a global inversion approach agree
with the existing regional inversion studies? Do emission trends show any effects of
emission regulations? How do the inverse modeling results compare to the reported
bottom-up emissions and other emission inventories?

(b) annual emissions from poorly-monitored regions, such as Africa, South America,
Australia, and India:
Can a global inversion approach help to constrain the SFg emissions in poorly-monitored
regions? If yes, to which extent? Can any trends be derived in those regions? How
do the inverse modeling results compare to bottom-up emission inventories?

(c) annual global emissions:
How do the global inversion results agree with the relatively well-known global emissions
based on observed atmospheric growth rates? Can regionally resolved inversion results
reflect the global emission trend?
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(d) monthly SFs emissions:
Do SFg emissions follow any seasonal pattern? Do well-monitored countries, such as
Europe, China, and the U.S. show similar seasonal patterns?

(e) GDB baseline method
Can the multi-year global atmospheric inversion confirm the advantages of using the
GDB method for defining a baseline?
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Chapter 2
Theory & Methods

In this chapter | present the models used in my research and provide the relevant theoretical
background. Starting with an overview about atmospheric transport modeling, | focus on
LPDMs and discuss their use for atmospheric inversions. | introduce the LPDM FLEXPART
and its chemistry transport model extension FLEXPART CTM. Subsequently, | discuss
the general inverse model problem, its relation to Bayes theorem and present common
approaches to solve the problem, with a focus on analytic solutions which are used in this
thesis. Finally, | introduce the inversion framework FLEXINVERT+, utilized in my research.

2.1 Atmospheric transport modeling

Atmospheric transport modeling (ATM) aims to understand, predict, and simulate the
evolution of atmospheric components or tracers in the atmosphere, which can be formulated
by the advection-diffusion equation (Eq.2.1, e.g. Jacob 1999).

—— =V(DVC) — V(vC) + R (2.1)

The equation represents the continuity equation for an atmospheric component or tracer C,
describing its evolution by a diffusion term V(DVC) with diffusion coefficient D, and an
advection term V(vC) with the mean wind velocity vector v, while also considering sources
and sinks represented by R. ATMs can be classified in Eulerian and Lagrangian models.
Eulerian models solve Eq. 2.1 on a fixed coordinate system, and fluid properties are defined
within each model grid cell as functions of time. Offline models such as CHIMERE (Menut
et al. 2021) or DEHM (Christensen 1997) integrate meteorological data from external
models, while in online models such as COSMO-GHG (Jahn et al. 2020) or WRF-Chem
(Grell et al. 2005) Eq. 2.1 is typically solved together with the primitive equations. Online
models benefit from the interplay between meteorology and chemistry, however, they are
more complex and computationally more expensive than offline models (Katharopoulos
2022). Lagrangian models use a reference frame that follows individual air parcel. These
air parcels represent a portion of the atmosphere, large enough to encompass sufficient
molecules to represent macroscopic properties like temperature or pollutant concentration,
yet small enough to be considered as a point in space that represents a single value for
properties like temperature, density, humidity or pollutant concentration (Lin 2012). The
parcel's boundaries are not well defined and an imagined surface surrounding the parcels
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Figure 2.1: Visualization of the difference between Eulerian and Lagrangian models (Shadloo
et al. 2016). Eulerian models (a) solve the equations of fluid dynamics on a
fixed grid system, while Lagrangian models (b) refer to a reference frame that
follows the atmospheric flow of an air parcel. Lagrangian derivatives present
the link between the Eulerian and Lagrangian view.

would constantly be deformed due to molecular and turbulent diffusion. The link between
the Eulerian and the Lagrangian perspective (Fig. 2.1) can mathematically be expressed by
introducing the Lagrangian derivatives %, acting on an air parcel quantity ¥
%E%wa'w, (2.2)
The left hand side of Eq. 2.2 describes the change of the quantity in a reference frame
following the parcel in a velocity field v (Lagrangian perspective), which can be related to
the local change % (Eulerian perspective) with the advection term v - V1.
Using the Lagrangian derivatives, the temporal change in a parcel’s position x, can therefore
be defined as

Dx

D=
representing the trajectory. By integrating the velocity v over time, the parcel’s position x
can be determined at various time steps. The first order solution reads

v (2.3)

x(to + At) = x(tg) + v(tg)At. (2.4)

which allows the approximation of the parcel’s trajectory for short integration time steps,
given that its velocity is known at each time step. By integrating Eq. 2.3 backward in time

x(to — At) = x(to) — v(to)At (2.5)

trajectories can be also followed backwards in time, which is an important feature, especially
for inverse modeling applications.
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Lagrangian models have many advantages but also disadvantages compared to Eulerian
models (Lin 2012). By simulating the transport of a large number of particles, the Lagrangian
approach comes closer to the true nature of atmospheric flows and processes (e.g. turbulent
eddies, mixing, convection). The approach of particle tracking, also automatically ensures
the conservation of physical properties, such as mass, which is not always the case for
Eulerian models. Lagrangian models can distinguish between near-field and far-field dispersion
characteristics, a capability lacking in Eulerian models. Lagrangian models, further, exhibit
much less numerical diffusion compared to Eulerian models, enabling models to maintain the
distribution of certain properties with sharp atmospheric gradients. As Lagrangian models
are not tied to a regular grid, air parcels possess subgrid-scale information, which, for inverse
modeling applications, are particularly valuable close to the release point in the backward
mode. However, the irregularity of the grid requires additional interpolation procedures (e.g.
counting of particles within regular grid cells). Additionally, Lagrangian models operate
offline and therefore depend on the quality and resolution of meteorological fields provided
by an Eulerian model. Thus, they can not account for any interaction between meteorology
and chemistry, in contrast to online Eulerian models. Lastly, specific Lagrangian applications
with large particle ensembles and small time steps can be computationally very expensive.

a)

b) —

]
*.
|

Figure 2.2: Visualization of different Lagrangian models (Lin 2012): (a) Mean trajectory
models, (b) Box models, (c) Puff Models, (d) LPDMs

There are different Lagrangian approaches, as illustrated in Fig. 2.2. Mean trajectory
Lagrangian models (e.g. Danielsen 1961) neglect diffusion and simulate the movement of
air parcels based only on the mean wind. They are better suited to model trajectories under
laminar flow conditions, however poorly simulate the transport within the planetary boundary
layer (Stohl and Wotawa 1995). Box models (e.g. CiTTyCAT, Pugh et al. 2012) aggregate
parcels in one or more boxes, following a mean trajectory, while the box volume describes
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the extent of mixing. They are often used to simulate atmospheric chemistry and model the
concentration of a species at a specific location, from where a back trajectory is computed,
along which the box is then tracked forward, while concentration changes are calculated
(Stohl 1998). Puff models (e.g. CALPUFF, Levy et al. 2002) account for turbulent
dispersion, leading to an expansion of the air parcels, modeled with a three dimensional
Gaussian distribution. They perform best when the mean winds and turbulence remain
relatively constant (Lin 2012). LPDMs are the most sophisticated, but also computationally
expensive models, representing air parcels by a large number of particles with equal mass.
Due to the large number of particles, stochastic effects of turbulence can be accounted for.

2.1.1 Lagrangian particle dispersion models

LPDMs are stochastic Lagrangian models, simulating the trajectories for a large number
of infinitesimally small virtual particles. Each of these particles carries an attributed mass,
which can be influenced by loss processes, such as chemical loss, radioactive decay, or
dry and wet deposition. At each model time step, the transport of individual particles
is simulated based on the sum of the mean wind velocity v and the turbulent velocity
v/. The determination of v’ represents the core problem of LPDMs and is based on the
stochastic particle movement in a turbulent flow, and originates in the Langevin equation.
The so-called "general Langevin equation" describes turbulent dispersion as a Markov chain,
a stochastic process, where the future state depends solely on the present state:

dvl.’: al-(x,v/, t) dt—i—b,j(x, V,,t) dgj (2-6)

Eq. 2.6 describes the change in the particle's turbulent velocity as the sum of a deterministic
term, with acceleration a; (drift term), and a stochastic term, where d¢; represents random
Gaussian forcing, (with d¢; = 0 and d€;d€; = dtd;;), scaled by the coefficient b;;. The
specification of the coefficients a; and b;; is referred to as the selection problem. Thomson
(1987) established a comprehensive set of criteria, that have to be fulfilled by Lagrangian
stochastic models. He showed, that those criteria are met if the so-called well-mixed
condition is satisfied. The well-mixed condition ensures the compliance with the second
law of thermodynamics and demands that a well-mixed distribution of particles stays in a
well-mixed state throughout the entire simulation period. The condition serves as the basis
for deriving the parameters in Eq. 2.6 and for ensuring the model’s consistency. It induces a
unique model in one dimension as well as in three dimensions if variables in each dimension
are considered to be independent from those in the other dimensions. Following the work
of Thomson (1987), numerous specialized model formulations and applications have been
developed. A prominent application is the modeling of emission sensitivities, forming the
basis for inversion frameworks. The Hybrid Single-Particle Lagrangian Integrated Trajectory
(HYSPLIT) model (Stein et al. 2015), the Numerical Atmospheric dispersion Modelling
Environment (NAME) model (Jones et al. 2007), the Stochastic Time-Inverted Lagrangian
Transport (STILT) model (Lin 2012) and the FLEXiblePARTIicle (FLEXPART) model
(Pisso et al. 2019; Stohl 1998) have been widely used in various inversion studies.
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2.1.2 FLEXPART

The open-source model FLEXPART is one of the most commonly used LPDMs (Pisso et al.
2019). It simulates the atmospheric transport of tracers and atmospheric components,
considering turbulence, radioactive decay, dry and wet deposition, gravitational settling, and
linear chemical reactions. The implemented turbulence parameterization for the general
Langevin equation regarding the turbulent vertical wind component w has the form (Stohl
et al. 2005):

2 2 1/2
dw =Yg 4 Owgp  TwOP gy <2> G dW (2.7)
TL 0z p Oz T

where p is the density, o, is the standard deviation of w, and 7, is the Lagrangian time scale
for the autocorrelation of the vertical velocity. dW refers to a Wiener process, representing
random Gaussian forcing with zero mean and variance dt. o,, and 7; are parametrized by
the Hanna scheme (Hanna 1984) for different meteorological conditions, based on boundary
layer parameters. The second and third term on the right hand side of Eq. 2.7 represent the
drift correction (McNider et al. 1988) and density correction (Stohl and Thomson 1999),
respectively, ensuring compliance with the well-mixed criterion.

FLEXPART was developed in the mid-1990s to simulate the dispersion of chemical
species and radionuclides from nuclear accidents. Since its inception it has undergone
various developments and now covers a wide range of atmospheric research applications.
It was used to simulate the atmospheric transport of: wildfire (e.g. Paris et al. 2009)
and volcanic plumes (Sellitto et al. 2023); dust (e.g. Groot Zwaaftink et al. 2017); heat
and water (e.g. Baier et al. 2022); aerosols such as microplastics (e.g. Evangeliou et al.
2020), black carbon (e.g. Zhu et al. 2020), or biogenic aerosols (e.g. Martinsson et al.
2017); radionuclides after nuclear desasters (e.g. Arnold et al. 2015); and for ice core
interpretations (e.g. Eckhardt et al. 2023). One major application is the simulation of
emission sensitivities (e.g. Annadate et al. 2023), which build the basis for inverse modeling.

2.1.3 Emission sensitivity

If a GHG is emitted into the atmosphere, and transported towards an observation station
which measures the gas, the measured value can be related to that emission. If the emission
source is nearby and the gas is quickly transported to the station, it will produce a large
change in the measured mole fraction. Such a signal is often referred to as a pollution event.
Emissions from very distant sources will mix with a large air volume due to diffusion, before
they reach the station, and therefore only contribute to the background concentration.
In any case, there is a relationship between the emission and the measurement, which
is determined by the atmospheric transport between the source and the measurement
station. This relationship is called emissions sensitivity or Source-Receptor Relationship
(SRR). To simulate this relationship LPDMs can be operated in a backward mode, as this
is computationally more efficient if the number of emission grid cells exceeds the number of
observation sites. A large number of virtual particles is released from every measurement site,
which are tracked backwards for a chosen simulation period, while the particles’ residence
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time spent in every emission grid cell is recorded. If atmospheric loss processes can be
neglected on the timescale of the simulation period, the SRR between the mole fraction
measurement y and the emission in a certain spatio-temporal grid cell x; , can be expressed
as:

J
oy 1 At,'jn
= - = 2.8
aXi,n sz:; pj,n ( )

where J is the total number of particles, p; , is the air density, and At; ; , is the residence
time of the j particle in the spatio-temporal grid cell (i,n) (Seibert and Frank 2004).
Thus, the sensitivity is proportional to the average residence time particles spend in the
spatio-temporal grid cell of the emission, during the backward simulation. If loss processes
have to be considered, a transmission function, quantifying the loss, has to be included on
the right hand side of Eq. 2.8.

2.1.4 FLEXPART CTM

The FLEXPART CTM (chemistry transport model) is an extension of the FLEXPART
LPDM and was designed to model global 3-dimensional mole fraction fields of species,
for which atmospheric loss can be characterized as a linear process (e.g. OH reactions).
The model can be run in a domain-filling mode, where the global domain is filled with a
large number of virtual particles, proportionally to air density. These particles can carry
an air tracer and different chemical species at the same time, while they are transported
throughout the atmosphere. The model is able to account for the emissions of the species,
which are added to virtual particles, when they reside near the surface. Therefore, emission
fields have to be provided as model input, together with meteorological wind field data.
As inaccurate input data and model errors lead to biases in the global modeled fields,
FLEXPART CTM provides a nudging routine, which adjusts simulated mole fractions to
measurements. Around each observation, a symmetrical kernel is defined in which modeled
values are pushed towards the observation, while the weight of each kernel is characterized
by its spatial and temporal size. The spatial kernel weight ws for each pair of measurement
(i) and particle (j) is defined by:

1—r2 forrz<1
We ii = ] ] 2.9
=4 {O otherwise (2.9)

where r;; is defined by the kernel dimensions (hy ;, hy j, h;;)

2 2 2
> (X = Xi yi—Yi zj— 2,
W < hyi > " ( hy,/ ) * < hi > (2.10)

with x;, y;, z; and X;, Y;, Z; representing location of the particle and measurement,
respectively. The temporal kernel weight is represented by a tricubic weight function
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3 3
Wy i = (1 - ) (2.11)

where h; represents the temporal kernel width and t; is the measurement time closest to the
model time t;. The nudging tendency Amj;, representing the adjustment to the modeled
particles mass m; according to the observed mass M; (calculated from the measured mole
fractions), is computed as:

M; — m;
Amjj = Ws jjwe jj——2 = LAt (2.12)
]
where At represents the model synchronization time step and 7; is the nudging relaxation
timescale. Groot Zwaaftink et al. (2018) used the FLEXPART CTM for modeling global

CH4 mole fraction fields, while | apply it to SFg.

2.2 Inverse Modeling

2.2.1 The general inverse problem

Physical theories enable us to make predictions. If the physical system is completely
described one can predict the results of a certain measurement, using a model, usually
called the forward model. The forward problem aims to determine the consequence to
a specific cause, and has a unique solution. Inverse modeling is a method that uses the
observations of a physical system, to better quantify the variables that characterize that
system (Brasseur and Jacob 2017). The inverse problem aims to trace the consequence
back to the cause, and does not necessarily have a unique solution (Tarantola 2005). As for
the example of atmospheric inversions, if the emission distribution of a certain gas would
be known, a perfect transport model could predict the concentration at a certain location.
However there are different emission distributions possible that would result in the exact
same concentration at that location. Thus, this inverse problem has multiple solutions. It
therefore becomes necessary to include any available a priori information regarding the model
parameters in addition to the observational information. Inverse approaches have found
application across different fields, such as medicine (e.g. Ezhov et al. 2023), geoscience
(e.g. de Campos Velho et al. 2013), biology (e.g. Guzzi et al. 2018), or economy (e.g.
Horowitz 2014), among others. The main applications in atmospheric science are remote
sensing of atmospheric composition to retrieve vertical concentration profiles, chemical data
assimilation to achieve gridded 3-D concentration fields, and the application of top down
constraints on surface fluxes (Brasseur and Jacob 2017).

2.2.2 Bayes theorem

The inverse modeling theory has its origin in Bayesian statistics, which treats parameters as
random variables, described by probability distributions. In Bayesian statistics probability is
interpreted as degree of belief or uncertainty about an event, instead of long-run relative
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frequency of an event occurring over repeated trials (Fornacon-Wood et al. 2022). The
essence of Baysian theory is the Bayes' theorem, which provides a mathematical formula
to update probabilities based on new evidence and past knowledge. For a vector x, whose
elements represent the variables driving a system, and a vector y whose elements represent
measurements of that system, Bayes' theorem can be formulated as:

P(y[x) - P(x)

55 (2.13)

P(xly) =

e P(x) represents the a priori probability distribution function (PDF) of x, which
represents the best knowledge of the driving variables before including new information
from the observations.

e P(y) is the marginal PDF of y, representing the total probability of observing y over
all possible values of x.

e P(y|x) represents the likelihood of observing vector y given the driving variables x

e P(x|y) represents the a posteriori PDF of x updated through the measurements y.

Inverse modeling aims to find the best estimate for x, by considering the observational
information of y, and the a priori information of the driving variables. This best estimate is
defined by the maximum of the a posteriori PDF:

Vx[P(xly)] =0 (2.14)

2.2.3 The analytical inversion

The application of Bayes' theorem for inverse modeling, requires the formulation of PDFs to
describe the treated variables. As the error distribution of these variables is usually unknown,
one has to make an assumption. Commonly, the PDFs of all treated variables are assumed
to be Gaussian. For an n-dimensional vector x the Gaussian PDF can be fully described by
the expectation value E[x] and the error covariance matrix S:

P() <o (—i(x CEM)TS (- E[x])) (2.15)

= _.1¢
(2m)2|S|2
where |S| refers to the determinant of S. If e is the error of x, S can be defined by
E [(e — Ele])(e — E[e])"], which simplifies to E [ee”] for unbiased errors. The diagonal
elements S;; refer to the variance of the ith error component and the off-diagonal elements
S, correspond to the covariance between the ith and the jt" error element.Gaussian
distributions have the big advantage, that the combination (i.e. product) of two Gaussian
PDFs results in another Gaussian distribution, allowing for an easy formalism and an

analytical solution to Eq. 2.14. Let now
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x € RN be the vector of variables that drive the physical system. x is called the state
vector and is an element of the state space RV. In case of atmospheric inversions it
refers to all the GHG emissions on a spatio-temporal grid that should be optimized by
the inversion. However also other parameters to be optimized can be added to x (e.g.
baseline mole fractions).

e x; € RN be the vector of a priori estimated values for the driving variables. It
represents the additional information included to the inverse problem. x; is called
the a priori state vector and has the same number of elements as x. In case of
atmospheric inversion, it refers to a first estimate for emissions, often taken from
bottom-up inventories.

o B € RV*N be the a priori error covariance matrix, representing the uncertainties of
the a priori state. If e, is the error of x,, it can be expressed by e; = x — X, and is
assumed to be unbiased. B is therefore defined as E [eaeaT}. The uncertainties of
the a priori state are usually unknown and have to be estimated together with their
correlation.

e y € RM be the vector of measurements that are used to optimize the state variables.
y is called the observation vector and is an element of the observation space RM. In
case of atmospheric inversions, it refers to the measured mole fraction values.

e R € RM*M pe the error covariance matrix, representing the observation error e,. The
observation error is assumed to be unbiased and can be expressed by e, =y — Hx. It
includes the measurement error e, , the forward model error er and the representation
error e,, which reflects the mismatch between the measurement location and the
model resolution. These errors are assumed to be unbiased and uncorrelated and their
covariance matrices are therefore additive: R = E [emem’ | + E [eres" | + E [ece,T].
Given that the forward model error and the representation error are typically unknown,
R has to be estimated.

e H € RM*N be the forward operator. It maps the variables of the state space to
the elements of the observation space: H : RN — RM and can be represented by
a Jacobian matrix, if linear. In case of atmospheric inversions, H is also called the
atmospheric transport operator linking the emissions to the measured mole fractions.
Each element is a partial derivative of the change in mole fractions at the measurement
location with respect to the emission change in a certain grid cell and can be built
from the SRRs (see Sec. 2.1.3).

The Gaussian a priori PDF P(x) and the likelihood P(y|x) can be written as:

P(x) = Const. exp (—;(x —x,) "B (x — xa)> , (2.16)

P(y|x) = Const. exp (—;(y —Hx)'RY(y — Hx)) , (2.17)
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Applying Bayes' theorem gives an expression for the a posteriori PDF P(x|y):

P(x]y) = Const.exp <—;(x —x,) "B Y (x —x,) — %(y —Hx)'R (y - Hx)> (2.18)

The most probable solution for x is represented by the maximum of P(x|y), thus the
minimum of the negative exponent in Eq. 2.18. Therefore a cost function J(x) can be
defined, whose minimum represents the solution of the inverse problem:

J(x) = (x —xa)"B"1(x —x5) + (y — Hx) " R™*(y — Hx) (2.19)
The minimum X can analytically be found by solving
ViJ(X) =0 (2.20)
The solution of the inverse problem reads
o T T -1
X =X,+BH' (HBH' +R) *(y — Hx,) (2.21)
and can be expressed in a compact form as
X = X5 + G(y — Hx,) (2.22)
by defining the Gain matrix
G=BH'(HBH™ +R)! (2.23)
The Gajn matrix characterizes the sensitivity of the a posteriori state to the observations
G = g—;. It can be understood as the gain that each measurement contributes to the
estimation of the state, showing the weight that is attributed to each observation. For
some applications, where the state space is larger than the observation space and inverting

R is computationally cheap, it can be convenient to rewrite Eq.2.21 in the form (Tarantola
2005):

£=x;+(H R H+B ) TH'R }(y — Hx,) (2.24)

A big advantage of the analytical solution is that the uncertainties of the a posteriori
estimate, described by the a posteriori error covariance B, can be calculated:

B=HR!'H+B!)"!=B-GHB (2.25)
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2.2.4 Variational methods

The analytical solution to the minimization of the cost function (Eq. 2.20) exists only for
linear forward operators and under the assumption of Gaussian distributed errors. Further,
there are practical computational limits to the analytical solution, if the size of the problem
becomes too large. These restrictions can be overcome by minimizing the cost function
numerically, instead of using the analytical solution. Such methods are often referred to as
variational methods. In principle, variational methods can be seen as totally independent
from the Bayesian approach, with the general aim of finding the optimal state by minimize
a cost function that quantifies the difference between the state vector and both, its a priori
values, and the observations. However the most commonly used cost function is the least
squares approach, which takes exactly the form of the Bayesian approach in Eq. 2.19, with
the difference, that discussed limitations (linearity of the forward operator and Gaussian
distributed errors) can be lifted.

Variational methods obtain the gradient of J, which is employed to find the minimum of
the cost function. Often a steepest-descent algorithm is used, where a sequence of the
state vector xk is built, that is updated at each iteration by taking a small step (with step
size a) in the direction opposite to the gradient, subsequently approaching the minimum.

Xk+1 = Xk — aVJ(xk,) (2.26)

In conjugate gradient method the state vector update is made in a direction that is orthogonal
to the directions of the previous updates. For a linear forward operator, the VJ(xx) takes
the form:

VJ(xk) = 2B (xx — x5) + 2H" R™I (Hx, — y) (2.27)

A drawback of variational methods is that the posterior error covariance matrix is not
provided as part of the solution. While some algorithms allow the approximation of the
Hessian matrix V2J(x) representing the reciprocal of the posterior error covariance matrix,
others need the use of Monte Carlos methods to estimate the a posteriori uncertainties.

2.2.5 Markov Chain Monte Carlo methods

Markov Chain Monte Carlo (MCMC) methods offer another approach to solve the inverse
problem. MCMCs are also based on Bayes' theorem and obtain the a posteriori PDF
P(x|y) by modeling P(x) and P(y|x) directly, using a large ensemble of state vector values.
They use a Markov chain, to iteratively propose new state vector values X/, based on the
current state x which is randomly perturbed according to a transition PDF, which is often
assumed to be Gaussian. These iteratively proposed new values are then either accepted or
rejected based on a defined acceptance criterion, comparing P(y|x) with P(y|x"). MCMCs
have the advantage, that they can employ any observational and prior PDFs, and allow for
non-Gaussian errors distributions, non-linear forward operators and any additional constrains
on the a priori emissions. They, further, enable the inclusion of hyperparameters in the joint
probability distribution, which allows the estimation of state and observation uncertainties
(e.g. An et al. 2024; Ganesan et al. 2014; Lunt et al. 2016). However, MCMC algorithms
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can be computationally expensive, convergence must be ensured, and the initial choice of
parameter values is a source of uncertainty.

2.2.6 FLEXINVERT+

Flexinvert+ (Thompson and Stohl 2014) is a Bayesian inversion framework for the optimiza-
tion of emissions of tracer species, such as GHGs or aerosols. It is applicable to any species,
provided that the atmospheric loss can be characterized as a linear process. The model can
be employed to global, regional, and local problems. FLEXINVERT+ can solve Eq. 2.20
analytically to find the state vector minimizing the cost function Eq. 2.19, using either
Eq. 2.21 or Eq. 2.24, depending on the dimensions of the state and observation vector. As
the analytical solution allows for the computation of the a posteriori error covariance matrix
(Sec. 2.2.3), FLEXINVERT+ can therefore also provide a posteriori emission uncertainties.
Alternatively, the framework offers two variational methods to iteratively minimize the cost
function. One option is to use the conjugate gradient method, where the cost function's
Hessian matrix (H'R'H + B~1) is approximated using the Lanczos algorithm and used
alongside the cost function gradient to find the minimum. A second option is to use the
M1QN3 algorithm, which uses a Quasi-Newton method for the minimization, and is designed
for large numerical problems. FLEXINVERT+ optimizes emissions on a grid with varying
cell size, which is based on the emission sensitivities regarding the employed observation
network. The framework accounts for spatial and temporal emission error correlations using
a simple exponential decay model, however does not consider correlations of observational
errors. Baseline values can be computed by coupling the LPDM back trajectories to a global
model, and the baseline can optionally be optimized in the inversion. FLEXINVERT+ can
be run directly with the emission sensitivity output from FLEXPART, but in principle any
other LPDM could be used. In my thesis | employ the FLEXINVERT+ framework based
on FLEXPART emission sensitivites, and use the analytical solution (see Sec. 2.2.3) to
minimize the cost function.
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Chapter 3

A comprehensive evaluation of the use of
Lagrangian particle dispersion models for
inverse modeling of greenhouse gas
emissions

Overview

This publication applies a global inverse modeling approach for the example of SFg and
the year 2012, to investigate the use of LPDMs for atmospheric inversions. The main
emphasis of this study lies on assessing the influence of different baseline methods and
different LPDM backward simulations periods on the inversion results. | therefore employ
two statistical and one GDB approach to determine a baseline for the global inversion, while
also considering different LPDM backward simulation periods between 1 and 50 days. |
investigate the model-measurement agreement at individual measurement sites and compare
the aggregated a posteriori emissions with relatively well known global total emissions. |
further explore the influence of biases in the baseline and a priori emissions for different
LPDM simulation periods and examine the use of low-frequency flask measurements for the
inversion.

Own contributions
Conceptualization, investigation, methodology, modeling, formal analysis, visualization,
writing. My contribution to this publication is estimated to be about 90%.

Publication details

Vojta, M., Plach, A., Thompson, R. L., and Stohl, A.: A comprehensive evaluation of the use
of Lagrangian particle dispersion models for inverse modeling of greenhouse gas emissions,
Geosci. Model Dev., 15, 8295-8323, https://doi.org/10.5194 /gmd-15-8295-2022, 2022
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Abstract. Using the example of sulfur hexafluoride (SFg),
we investigate the use of Lagrangian particle dispersion mod-
els (LPDMs) for inverse modeling of greenhouse gas (GHG)
emissions and explore the limitations of this approach. We
put the main focus on the impacts of baseline methods and
the LPDM backward simulation period on the a posteriori
emissions determined by the inversion. We consider base-
line methods that are based on a statistical selection of ob-
servations at individual measurement sites and a global-
distribution-based (GDB) approach, where global mixing ra-
tio fields are coupled to the LPDM back-trajectories at their
termination points. We show that purely statistical baseline
methods can cause large systematic errors, which lead to
inversion results that are sensitive to the LPDM backward
simulation period and can generate unrealistic global total a
posteriori emissions. The GDB method produces a posteriori
emissions that are far less sensitive to the backward simula-
tion period and that show a better agreement with recognized
global total emissions. Our results show that longer backward
simulation periods, beyond the often used 5 to 10d, reduce
the mean squared error and increase the correlation between
a priori modeled and observed mixing ratios. Also, the inver-
sion becomes less sensitive to biases in the a priori emissions
and the global mixing ratio fields for longer backward sim-
ulation periods. Further, longer periods might help to better
constrain emissions in regions poorly covered by the global
SFe¢ monitoring network. We find that the inclusion of exist-
ing flask measurements in the inversion helps to further close
these gaps and suggest that a few additional and well-placed
flask sampling sites would have great value for improving
global a posteriori emission fields.

1 Introduction

Over the last few decades, the sharp increase of anthro-
pogenic greenhouse gas (GHG) emissions has become a
global concern, as it affects the Earth’s climate with possible
dangerous consequences for human health, infrastructure,
and ecosystems (IPCC, 2018). In order to prevent danger-
ous human interference with the climate system, the United
Nations Framework Convention on Climate Change (UN-
FCCC) was established. As an important commitment to
the convention, Annex-I countries (industrialized nations that
are legally bound to reduce GHG emissions) are required to
report their national emissions for regulated GHGs. These
inventories are compiled by applying bottom-up methods,
where statistical economic production or consumption data
and source-specific emission factors are used to estimate
national emissions. However, bottom-up estimates are sus-
pected to suffer from significant uncertainties, and there is a
growing need for independent verification of these estimates
(e.g., Rypdal et al., 2005; Weiss et al., 2021). Independent
verification can be provided by top-down methods, such as
inverse modeling (e.g., Leip et al., 2017; Weiss and Prinn,
2011).

Inverse modeling requires the use of atmospheric trans-
port models, either Eulerian models or Lagrangian particle
dispersion models (LPDMs). LPDMs are usually run back-
ward in time. They release a large number of virtual particles
from a given observation location and time and trace them
backward for a limited simulation period. The model out-
put gives the sensitivity of the atmospheric mixing ratio to
emissions during the backtracking time. In the inversion al-
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gorithm, the sensitivities for a large number of observations
are used to optimize a priori emission estimates such that
(with the obtained a posteriori emissions) the simulated mix-
ing ratios better fit the atmospheric observations. Most stud-
ies only use continuous in situ observations for this purpose;
however flask measurements with low sampling frequency
can be included as well (e.g., Villani et al., 2010). For certain
species, satellite measurements could also be used.

Previous studies argue that inversion methods have insuf-
ficient accuracy (e.g., Rypdal et al., 2005) and problems with
reproducibility (Berchet et al., 2021). In order to enhance the
credibility of inverse modeling, a better knowledge of the as-
sociated uncertainties is required (Brunner et al., 2017). An
important source of uncertainty regarding LPDM-based in-
version methods is the fact that they are often run backward
in time only for a few days, e.g., 5d (Keller et al., 2012;
Vollmer et al., 2009; Zhao et al., 2009), 7d (Koyama et al.,
2011), 10d (Schoenenberger et al., 2018; Simmonds et al.,
2018; Thompson et al., 2017), or 20d (Fang et al., 2014;
Maione et al., 2014; Stohl et al., 2009). Koyama et al. (2011)
and Stohl et al. (2009) are global inversion studies, while the
other listed studies apply regional inversions. The choices of
the backward simulation period used made by different au-
thors seem arbitrary, and a systematic analysis of the impact
of the backward simulation period is lacking.

The inversions can only account for the emissions that
have occurred during the backward simulation period. By
contrast, the emission contributions prior to the limited
LPDM backward simulation period are not explicitly mod-
eled but must still be accounted for in order to compare
the model results with the observations. These contributions
must be collected in a so-called baseline that is added to the
modeled contributions. As errors in the baseline translate to
errors in the a posteriori emissions, the baseline needs to be
as accurate as possible. Many different methods have been
suggested to determine this baseline.

Investigating halocarbons or fluorinated gases (F-gases)
most studies use statistical methods to calculate the base-
line by selecting low mixing ratio observations at individ-
ual stations (e.g., Ganesan et al., 2014; Prinn et al., 2000;
Saito et al., 2010; Zeng et al., 2012). Such statistical meth-
ods have been operationally applied within observation net-
works, such as the Georgia Institute of Technology method
(O’Doherty et al., 2001) used within the AGAGE commu-
nity. The general idea is to statistically identify observations
which are assumed to be unaffected by emissions within the
LPDM simulation period. A widely used statistical method
is the robust estimation of baseline signal (REBS) method,
introduced by Ruckstuhl et al. (2012), which applies a robust
local linear regression model. Statistical methods, however,
always involve subjective data selection and treatment deci-
sions, which can lead to problems. For instance, they will by
definition wrongly classify measurements during longer last-
ing pollution episodes as baseline observations and therefore
overestimate the baseline — a problem that is likely to occur
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frequently in polluted areas. It is also unclear to which degree
these methods distinguish between lightly polluted air and
measurement noise (Ryall et al., 2001). Furthermore, they
fail to identify correct baseline mixing ratios when they are
below the lowest observations (Rigby et al., 2011), especially
at polluted continental sites which virtually never receive air
masses unaffected by emissions within the backward sim-
ulation period. In addition to the statistical selection some
methods also use model information to improve the baseline.
A method applied by the UK Met Office and commonly used
within the AGAGE network (see, e.g., Manning et al., 2021)
identifies baseline measurements by analyzing the direction
and height of air entering the regional inversion domain. A
baseline method introduced by Stohl et al. (2009), further
termed “Stohl’s method”, uses model information to subtract
prior simulated mixing ratios from preselected observations,
in order to avoid an overestimation of the baseline. Never-
theless, this preselection is subjective, and prior simulated
mixing ratios depend on a priori emission estimates.

Apart from using observations at each individual station
to maintain a baseline, Rodenbeck et al. (2009) suggested a
general “nesting” scheme, where a regional transport model
— either a Eulerian or Lagrangian model — is embedded
into a global model providing information from outside the
spatiotemporal inversion domain. Such a global-distribution-
based (GDB) approach was used by many authors: Trusilova
et al. (2010) and Monteil and Scholze (2021) used Roden-
beck’s approach to estimate CO, emissions. Similarly, Rigby
et al. (2011) and Ganshin et al. (2012) developed approaches
to nest a Lagrangian model into a Eulerian model and tested
it for SFg and CO;, respectively. Estimating CO; baseline
mole fractions for inverse modeling, Hu et al. (2019) applied
two GDB approaches and a statistical method, where a sub-
set of observations with minimal sensitivity was selected to
correct a GDB baseline. Lunt et al. (2016) and Thompson
and Stohl (2014) applied GDB approaches to model CHy.
While Thompson and Stohl (2014) coupled the LPDM back-
trajectories with the global model at the end of the trajecto-
ries (which are terminated after a defined time), Lunt et al.
(2016) used the exit location of the particles, leaving the in-
version domain for the coupling. The GDB method defines
the baseline exactly in the way it is needed for the inversion
and can account for meteorological variability (i.e., transport
of air from regions with lower or higher mixing ratios, re-
spectively), which may cause sudden changes in the baseline.
The accuracy of the GDB method, however, depends on how
well the global field of mixing ratios can be modeled.

The treatment of the baseline is critical when using
LPDMs as a basis for atmospheric inversions. Still, it is un-
clear what influence the choice of a certain baseline approach
has on inversion results. Previous studies indicated that dif-
ferent approaches lead to significant mismatches in simulated
emissions (Thompson and Stohl, 2014; Henne et al., 2016).
However, different methods were never compared systemati-
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Table 1. Sites of continuous surface measurements used in the inversion and in the reanalysis.
Site ID  Station Organization Calibration scale Latitude Longitude  Altitude®  Frequency
CGO Cape Grim, Tasmania AGAGE S10-2005 40.7° S 1447°E 94 2h
JFJ* Jungfraujoch, Switzerland AGAGE S10-2005 46.5°N  8.0°E 3580 2h
MHD  Mace Head, Ireland AGAGE S10-2005 533°N  9.9°W 5 2h
RPB Ragged Point, Barbados AGAGE S10-2005 13.2°N  594°W 45 2h
SMO Cape Matatula, American Samoa AGAGE SI0-2005 14.2°S 170.6° W 71 2h
THD Trinidad Head, USA AGAGE SI10-2005 41.0°N  124.1°W 107 2h
ZEP Zeppelin, Ny-;\lesund, Norway AGAGE SIO-2005 789°N 11.9°E 474 2h
GSN Gosan, South Korea KNU/AGAGE  SI0-2005 33.3°N  126.2°E 89 2h
RGL Ridge Hill, UK UNIVBRIS SI10-2005 52.0°N  25°W 204 30 min
ZSF* Zugspitze-Schneefernerhaus, Germany ~ UBAG WMO SF6 X2006 47.4°N  11.0°E 2671 1h
BRW Barrow (now Utqiagvik), Alaska, USA  NOAA WMO SF6 X2014 71.3°N  156.6°E 11 1h
MLO*  Mauna Loa, USA NOAA WMO SF6 X2014  19.5°N  155.6°W 3397 1h
NWR#*  Niwot Ridge, USA NOAA WMO SF6 X2014  40.0°N 105.6° W 3523 1h
SPO South Pole, Antarctic NOAA WMO SF6 X2014  90.0° S 24.8°W 2841 lh
SUM Summit, Greenland NOAA WMO SF6 X2014  72.6°N  38.5°W 3238 1h
1Z0* 1zana, Tenerife, Spain AEMET WMO SF6 X2014 283°N  16.5°W 2373 1h
COI Cape Ochiishi, Japan NIES NIES-2008 432°N  1455°E 49 1h
HAT Hateruma, Japan NIES NIES-2008 24.1°N  1238°E 47 1h

2 The altitude specifies the sampling height in meters above sea level. Stations considered as mountain sites are marked with an asterisk.

cally and tested for different model setups such as the length
of the LPDM backward simulations.

Another problem of LPDM-based inversion studies is the
general lack of consistency between regional emission esti-
mates and the global emissions of a GHG. Given that the
LPDMs are only usually run backward in time for a few days,
the inversions only constrain the emissions in regions where
observation stations exist (Rigby et al., 2011). This can lead
to substantial deviations of the derived emissions from, often
well-known, global totals, a problem shared with regional in-
version studies based on Eulerian models.

In this study we (i) investigate the effect of the backward
simulation time period within the range of 0-50d, (ii) an-
alyze the impact of the baseline definition on inversion re-
sults, (iii) examine their consistency with known global total
emissions, (iv) explore the influence of biases in the baseline
and a priori emissions on inversion results for different back-
ward simulation periods, and (v) compare the value of differ-
ent observation types (flask vs. continuous) for the inversion.
We compare three different baseline methods — the REBS
method, Stohl’s method, and the GDB method — and apply
inverse modeling to the species sulfur hexafluoride (SFp).
SFg is the most potent GHG regulated under the Kyoto Pro-
tocol, with a high global warming potential of approximately
23500 over a 100-year time horizon (Myhre et al., 2013)
and an estimated atmospheric lifetime of 3200 years (Rav-
ishankara et al., 1993). SFg is a convenient choice for our
studies because it has no negative sources (as, e.g., CO3), a
very long lifetime in the atmosphere, and well-known global
emissions, and there are relatively many measurements avail-
able. However, we expect our findings to also hold for other

https://doi.org/10.5194/gmd-15-8295-2022

40

species and be informative for inverse modeling of GHGs
with LPDMs in general.

2 Methods
2.1 Measurement data

The inversion (Sect. 2.2) is performed using continuous at-
mospheric observations of SFg dry-air mole fractions from
18 observation sites, distributed around the globe. Those
measurements were provided by the Advanced Global Atmo-
spheric Gases Experiment (AGAGE; Prinn et al., 2018) net-
work, the NOAA/ESRL halocarbons in situ program (Dut-
ton et al., 2017), and a number of independent organizations,
whose data were partly included in the World Data Centre for
Greenhouse Gases (WDCGG, 2018). Measurement sites are
listed in Table 1, together with acronyms and other station-
specific information.

At AGAGE stations, SFe mixing ratios are measured us-
ing Medusa gas chromatography followed by mass spectrom-
etry (GC/MS; Miller et al., 2008). At the stations HAT and
COI, the SFg measurement system is based on cryogenic pre-
concentration and capillary GC/MS (Yokouchi et al., 2006).
At all other stations, gas chromatography followed by elec-
tron capture detection (GC-ECD) is used to measure SFg
mole fractions. Observations were calibrated with four dif-
ferent SFg scales: SIO-2005, WMO SF6 X2006, WMO SF6
X2014, and NIES-2008. We converted all observations to
the SIO-2005 calibration scale by dividing NIES-2008 cal-
ibrated data by the factor 1.013 (Takuya Saito, private com-
munication, 5 February 2021) and WMO SF6 X2014 cali-
brated data by 1.002 (Guillevic et al., 2018). To convert mole
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Figure 1. Map of sites with continuous surface measurements used for the inversion (red triangles) and flask measurements (surface: black
dots, aircraft: blue squares) that were additionally used for the reanalysis of SF¢.

fractions from WMO SF6 X2006 to WMO SF6 X2014, we
used y = ax® + bx 4 ¢, where y corresponds to SFs mole
fractions on the X2014 scale and x to mole fractions on the
X2006 scale. The coefficients a, b, and ¢ have the values of
2.6821 x 1073, 9.7748 x 107!, and 3.5831 x 102 (NOAA
ESRL, 2014), respectively.

We averaged all observation data over 3-hourly inter-
vals. For stations at low altitudes, we selected afternoon
values (12:00 to 16:00LT), to only consider time periods
with a well-mixed planetary boundary layer, when the small-
est model errors can be expected. At mountain stations,
we instead selected observations during nighttime (00:00 to
04:00LT) to avoid larger errors due to daytime small-scale
upslope winds in the complex topography around these sites,
which are unresolved in the model. Additionally, we fol-
lowed a method by Stohl et al. (2009) to identify observations
that cannot be brought into agreement with modeled mix-
ing ratios by the inversion, which we removed completely
(in contrast to Stohl et al., 2009, who assigned larger uncer-
tainties to these observations). For this, we used the kurto-
sis of the a posteriori error frequency distribution and itera-
tively excluded observations causing the largest absolute er-
rors until the kurtosis of the remaining error values fell below
5 (close to a Gaussian distribution). This method removed
0.62 % (63 data points) of the whole dataset, affecting 0 % to
2.92 % of the observations at individual measurement sites.
In total, 10 142 observations were used in the inversion for
the year 2012.

In order to generate global SF¢ mixing ratio fields required
by the GDB method, we performed a 2-year SFg reanaly-
sis (for more details see Sect. 2.5), for which we used all
the available 2011 and 2012 continuous measurements from
the sites listed in Table 1. In addition, we included flask air
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samples from 44 surface observation stations (NOAA, Dlu-
gokencky et al., 2020) and from 16 aircraft profiling stations
(Sweeney et al., 2015; NOAA Carbon Cycle Group ObsPack
Team, 2018). Surface flask measurements were available at
intervals ranging from a few days up to months. Sampling
flights were conducted irregularly with intervals between 2
and 5 weeks at individual sites. Aircraft measurements from
individual flights provide vertical SFg mixing ratio profiles
up to 8.5km above sea level, where air samples are usually
taken within less than an hour. With one exception, all air-
craft samples were collected over North America. Additional
information about the flask measurements from surface sites
and aircraft programs can be found in Tables Al and A2
(Appendix). All flask measurements were calibrated with the
WMO SF6 X2014 calibration scale, and we converted them
to the SIO-2005 calibration scale. For the reanalysis, we used
175557 in situ, 3423 surface flask, and 5581 aircraft mea-
surements amounting to 184 561 measurements in total in
2011 and 2012. Figure 1 provides an overview of all obser-
vation sites considered in the inversion and the reanalysis.

In one specific test case (see Sect. 3.2), we also used the
2012 surface flask measurements in addition to the continu-
ous measurements for the inversion.

2.2 Inversion method

In this study we use the Bayesian inversion framework
FLEXINVERTH+, described in detail by Thompson and Stohl
(2014), which was further developed since then, to make the
code more modular and to include iterative solution methods.
However, our results should be valid for all inversion meth-
ods based on LPDM calculations, and we thus only include
a brief description of FLEXINVERT+. It is based on a linear
forward operator H that represents the atmospheric transport,
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so that the forward problem reads
y=Hx+e, @

where y is the vector of observed mixing ratios, x the emis-
sion state vector, and & the sum of observation and model
error. Since H is ill-conditioned and has no unique inverse,
a priori emission estimates can be added, in order to solve
Eq. (1) for x. The inversion method applies Bayes’ theorem
to calculate a posteriori emissions, which on the one hand
minimize the difference between observed and modeled mix-
ing ratios and on the other hand stay close to the a priori
emissions and inside of predefined uncertainty bounds. As-
sumed uncertainties are Gaussian-distributed, resulting in a
minimization of the cost function (e.g., Tarantola, 2005)

1 Tp-—1
J(x)=5(x—xp) B~ (x —xp)
43— TR ), @

where B is the a priori emission error covariance matrix, R
the observation error covariance matrix, and x, the vector of
the a priori emissions. This study uses the following analyti-
cal solution to minimize J(x):

x=x,+HR'H+B H'THTR!(y — Hx)). 3)

We use a spatial emission grid (Fig. A1) with 6219 grid
cells of varying size ranging from 1° x 1° to 16° x 16°. We
define the grid by using model information to aggregate grid
cells with low emission contributions, as further described by
Thompson and Stohl (2014). For this, the emission sensitiv-
ity is taken from the LPDM 50d backward simulation, and
the resulting inversion grid is used for all inversions. The out-
put emission fields are saved at a spatial resolution of 1° x 1°.
x is assumed to not vary with time.

SF¢ has no surface sinks, and its surface fluxes can there-
fore only be larger than or equal to zero. However, the in-
version algorithm can produce negative a posteriori fluxes.
To overcome this problem we follow Thompson et al. (2015)
and apply an inequality constraint on the a posteriori emis-
sions, using the truncated Gaussian approach by Thacker
(2007). This approach, which applies inequality constraints
as error-free observations, is described by the following
equation:

£=x+APT(PAPT) ' (c — Px), o)

where P is a matrix operator selecting the fluxes violating the
inequality constraint, and ¢ a vector of the inequality con-
straint (zero in our case). x and A represent the a posteriori
emissions and error covariance matrix precalculated in the
inversion, respectively.

In contrast to many other studies (e.g., Henne et al., 2016;
Rigby et al., 2011; Stohl et al., 2009; Thompson and Stohl,
2014), we do not use the option to optimize the baseline
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mixing ratios in the inversion, except for sensitivity tests. In
any case, it is desirable to obtain a baseline that is as accu-
rate as possible prior to any optimization, which is a purely
statistical correction that may falsely compensate for errors
elsewhere (e.g., in the emissions). Waiving this option fur-
ther gives us the opportunity to better analyze the differ-
ences between investigated baseline methods and to study
their impacts on the a posteriori emissions more systemat-
ically. For the baseline optimization of the sensitivity tests,
we use a temporal window of 28 d and a baseline uncertainty
of 0.1 ppt. Increasing the uncertainty up to 0.2 ppt did not
show any significant changes in the results. For general de-
tails on the baseline optimization, see Thompson and Stohl
(2014).

2.3 Atmospheric transport

H is the so-called source—receptor relationship (SRR) in the
context of atmospheric transport. The SRR is an emission
sensitivity that relates emission changes in a given grid cell
to changes in modeled mixing ratios at a given receptor; for
further details, see Seibert and Frank (2004). The SRR value
in a specific grid cell (units of 1 sm3kg~!) measures the sim-
ulated mixing ratio change at a receptor that a unit strength
source (1kgs™!m™3) in that grid cell would create (Stohl et
al., 2009).

In this study, we use the LPDM FLEXPART 10.4 (Pisso
et al., 2019; Stohl et al., 1998, 2005) to calculate the SRR.
The model is run in backward mode as this is more efficient
than forward calculations when the number of emission grid
cells exceeds the number of observation sites. Available ob-
servations are averaged to 3-hourly means (see Sect. 2.1). For
each of these means, 50 000 virtual particles are released con-
tinuously over the averaging period and followed backward
in time. The SRR is calculated by determining the average
time the particles spend in each grid cell of the 1° x 1° out-
put grid within the lowest 100 m above the ground, assuming
that all emissions occur at or near the ground. FLEXPART
is driven by the hourly reanalysis dataset ERAS5 (Hersbach
et al., 2018) from the European Centre for Medium-Range
Weather Forecasts (ECMWEF) at a resolution of 0.5° x 0.5°
and with 137 vertical levels. Since SFg is an almost nonreac-
tive gas, removal processes are neglected in the calculation
of the SRR.

In this study, five different backward calculation periods
are investigated: 1, 5, 10, 20, and 50d. At the end of these
periods, particles are terminated, and the back trajectories
end. Figure 2 shows the 2012 annual average emission sen-
sitivities for the backward calculation period of 5d (Fig. 2a)
and 50d (Fig. 2b), respectively. On the 5d timescale large
land areas in the Southern Hemisphere (northern Australia,
South America, southern Africa) and also parts of the North-
ern Hemisphere (e.g., India, Iran) are sampled poorly or not
at all. In these areas, emissions can therefore not be deter-
mined well by the inversion. High sensitivity can only be
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found at land regions with many receptors, such as Europe.
On the 50d timescale, the SRR has higher values compared
to the 5d backward calculation. Large parts of the Northern
Hemisphere are sampled quite well, and the emission sensi-
tivities provide some information, even at areas that are far
away from the observation stations. However, emission sen-
sitivities are still low in the tropics, especially over Africa,
South America, and northern Australia. Figure 2c shows the
increase in the annual averaged SRR due to the use of flask
measurements in addition to continuous measurements in the
case of 50d simulations. One can see substantial increases
in the vicinity of the measurement sites that quickly decline
with distance to the sites. Further SRR values increase in
large parts of the Southern Hemisphere; however, the in-
creases over southern continental areas are relatively low, as
most flask measurements are not well located for inversion
purposes.

2.4 The baseline definition

The transport model can only account for mixing ratio
changes caused by emissions within the chosen backward
calculation period. Consequently, a baseline representing the
influence of all the emission contributions prior to this time
period has to be defined.

2.4.1 The REBS method

The REBS method introduced by Ruckstuhl et al. (2012) is
a statistical method using a robust local regression model to
identify background observations from each individual ob-
servation station to estimate a baseline curve. In recent years
it has been used in various studies to determine a baseline
for atmospheric inversions of several GHG species (e.g., An
et al., 2012; Brunner et al., 2017; Henne et al., 2016; Schoe-
nenberger et al., 2018; Simmonds et al., 2016; Vollmer et
al., 2016). The REBS method defines observed mixing ra-
tios y(#;) at each time step #; as the sum of a baseline signal
g(#;), an enhancement due to polluted air masses m(t;), and
the observational error E;:

(i) = g@:) +m(t) + E;. S

The method assumes that most observations are baseline
observations and therefore not influenced during pollution
episodes (m(t;) = 0). It also assumes that the baseline curve
g is smooth — so that it can be linearly approximated around
any given time. The method then applies a local linear regres-
sion model that fits the observation data, giving more weight
to data points close to the considered time and iteratively ex-
cluding data points outside a certain range. An advantage of
the REBS method is that it is simple to implement. The code
is freely available, and besides some parameters that need to
be chosen, it only depends on the observation data. This sim-
plicity, however, also means that the method is unable to take
the length of the LPDM backward calculation into account.
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Figure 2. Source-receptor relationship obtained from FLEXPART
backward simulations, averaged over the year 2012. The SRR is
shown for all considered continuous measurement stations and for
a simulation period of (a) 5 and (b) 50d. Panel (c) shows the in-
crease in the annual averaged SRR due to the use of flask measure-
ments in addition to continuous measurements for the case of a 50d
backward simulation period.

As we shall see, this leads to systematic biases in the inver-
sion results that depend on the length of the backward cal-
culation. The method also assumes a smoothly varying base-
line, which limits its ability to account for meteorological
variability. Another disadvantage is the dependence on cer-
tain parameter settings. The settings used in this study are
provided in Table A3. Finally, the method can only be used
at sites with frequent observations, not for flask measurement
sites or moving measurement platforms.
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2.4.2 Stohl’s method

The method introduced by Stohl et al. (2009) is primarily
based on the selection of observed mixing ratios at individual
observation stations but also uses the simulated SRR values
and a priori emissions to determine the baseline. In the last
few years, it has been used in several inversion studies (e.g.,
Brunner et al., 2017; Fang et al., 2014, 2015, 2019; Stohl et
al., 2010; Thompson and Stohl, 2014). We apply the method
and select the lowest 25 % of observations from individual
stations in a moving time window of 30 d to only consider ob-
servations which are weakly influenced by emissions within
the backward calculation period. Prior simulated mixing ra-
tio enhancements are subtracted from the selected observa-
tions to eliminate the emission contributions from within the
time interval of the LPDM simulation. In order to avoid an
overestimation of their contribution, only the lower half of
the prior simulated values and the corresponding observed
data points are selected. In every time window, resulting mix-
ing ratios are averaged and finally linearly interpolated to the
timestamp of the observations. By subtracting prior simu-
lated mixing ratios, the method takes the length of the LPDM
backward calculation into account and aims to avoid an over-
estimation of the baseline. However, simulated mixing ratios
are calculated using a priori emission estimates, making the
method dependent on a priori information. Further, the sub-
jective choice of the time window and the subjective selec-
tion of observations are problematic. As the REBS method,
Stohl’s method assumes a smooth baseline curve, and thus it
cannot account for sudden changes in the baseline due to me-
teorological variability. Also, the method can only be used at
sites with frequent observations.

2.4.3 The GDB method

The idea of the GDB approach (Thompson and Stohl, 2014)
is to determine the baseline directly from a 3D global
field of mixing ratios, e.g., from a reanalysis of the atmo-
spheric chemical composition. The end points of the back-
trajectories that are used by the LPDM to calculate the SRR
are utilized to determine the sensitivity at the receptor to mix-
ing ratios at the points in space and time where particles ter-
minate (see Fig. 3 for a simplified illustration). This sensitiv-
ity (termed “termination sensitivity” hereafter) in a particular
grid cell is calculated in the LPDM by dividing the number of
particles terminating in that cell by the total number released
at the receptor, while also including a transmission function
to account for loss processes (not relevant for SFg) during
the backward simulation period. The termination sensitivity
fields are saved in a 3D 1° x 1° output grid with 16 vertical
layers with interface heights at 0.1, 0.5, 1, 2, 3,4,5,7,9, 12,
15, 20, 25, 30, 40, and 50 km above ground level. For global
inversions, baseline mixing ratios are then calculated by mul-
tiplying the termination sensitivity with the mixing ratios of
the 3D global field and integrating the product over all grid
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Figure 3. Simplified illustration of the global-distribution-based
(GDB) method for baseline determination, where the backward sim-
ulation is represented by three back trajectories released at the time
and space of a particular observation. The spatiotemporal grid is
simplified to two dimensions with a vertical time and a horizon-
tal space axis. Grid cells that contribute to the modeled mixing ra-
tio through emissions are shaded blue; termination grid cells where
termination sensitivity is stored are marked with red rectangles; the
termination point is illustrated by a dashed red horizontal line.

cells. The GDB method can also be used for regional inver-
sions (not done in this study). In this case, the emission con-
tributions from outside the regional domain need to be added
to the baseline (Thompson and Stohl, 2014), but otherwise
the inversion procedure is identical as described here.

The GDB method is independent of subjective data selec-
tion and choice of parameter settings. In contrast to the REBS
method and Stohl’s method, it does not assume a smooth
baseline and has the potential to fully account for meteoro-
logical variability. As illustrated, it excludes emission con-
tributions from within the backward simulation period and
therefore provides a baseline that is fully consistent with
the length of the backward simulation. Furthermore, con-
trary to the other two methods, it can also be used at mea-
surement sites with infrequent observations or moving ob-
servation platforms. Its accuracy, however, is dependent on
the ability to minimize errors and especially biases of the
global 3D mixing ratio fields. We target this challenge using
the FLEXible PARTicle dispersion chemical transport model
(FLEXPART CTM; Henne et al., 2018) to perform a reanal-
ysis of SFe as described in the next section.

2.5 Reanalysis of SF¢ using FLEXPART CTM

In this study the LPDM FLEXPART 8-CTM-1.1 is used to
perform a reanalysis of SF¢ for the year 2012. It was de-
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veloped by Henne et al. (2018) and is based on FLEXPART
8.0. Groot Zwaaftink et al. (2018) provide a detailed descrip-
tion of FLEXPART CTM and evaluate this model for the
example of CHy. FLEXPART CTM is run in a domain fill-
ing mode where 12 million particles are randomly distributed
over the globe, proportional to the air density. In addition to
an air tracer, particles also carry the chemical species SFe.
The initialization is based on a latitudinal SFe profile based
on surface observations. We run the simulation from 2011
to 2012, using 2011 as a spin-up period. Particles are fol-
lowed forward in time, and whenever a particle resides below
the diagnosed boundary layer height, its mass is increased
due to surface SF¢ emissions. The model is driven with the
ECMWF ERAS dataset and with emission fields calculated
as described in Sect. 2.6. Mixing ratio fields are saved daily
on a 3° x 2° output grid and coupled to the backward simu-
lations.

FLEXPART CTM uses a nudging routine to keep simu-
lated SFg fields close to the observations of SFg. With this
simple data assimilation method, modeled fields of mix-
ing ratios are relaxed towards observations within so-called
nudging kernels around observation sites. For all surface ob-
servation stations in the Southern Hemisphere, we assign rel-
atively large uniform kernel sizes, since the model tends to
overestimate SFg mixing ratios in the Southern Hemisphere,
and there are only few measurement stations to correct this
bias. For the surface observation sites in the Northern Hemi-
sphere, we assigned smaller kernel sizes to measurement sta-
tions with a large observation variability to conserve SFg
spatial variability, especially over the continents (see Groot
Zwaaftink et al., 2018). For the aircraft measurements we
predefine vertical levels at 0.05, 0.15, 0.3, 0.5, 0.75, 0.1, 1.5,
2,2.5,3,3.5,4,5,6,7,8,and 9kma.g.l., co-locate the indi-
vidual measurements to the closest vertical level, and choose
kernel sizes that increase with altitude. Specific kernel set-
tings are detailed in Table A4.

2.6 A priori emissions

An a priori estimate of the spatial distribution of SFg emis-
sions for the year 2012 is determined by collecting infor-
mation on the emissions from individual countries. We use
country emissions reported to the United Nations Frame-
work Convention on Climate Change (UNFCCC, 2021) and
for East Asian countries’ emissions estimated by Fang et al.
(2014). The sum of these individual country emissions is
subtracted from the total global SFe emissions determined
by Simmonds et al. (2020), and the remaining emissions are
distributed to all other countries proportional to their elec-
tric power consumption (World Bank, 2021). Finally, total
country emissions are disaggregated according to the grid-
ded population density (CIESIN, 2018) within each coun-
try’s borders. Note at this point that the a priori emissions as
constructed agree with recognized global emissions, which
should be kept in mind when the global total is used as a
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reference value in the discussion. The a priori emission un-
certainty is estimated to be 50 % in each grid cell, with a
minimal value of 1 x 10713 kgm=2h~!. Spatial correlation
between uncertainties is considered using an exponential de-
cay model with a scale length of 250 km.

3 Results
3.1 Baselines and length of backward simulation

The three investigated baseline methods are discussed for the
example of two measurement sites, Gosan and Ragged Point,
and for five backward simulation time periods. The Gosan
observation station is located on the southwestern tip of Jeju
Island, South Korea, monitors the outflows from the Asian
continent, and is representative of stations which frequently
measure pollution events. The Ragged Point observation sta-
tion is situated on the eastern edge of Barbados, with direct
exposure to the Atlantic Ocean. Ragged Point is primarily
influenced by easterly winds providing “clean” background
air masses, uninfluenced by local emissions, and is there-
fore representative of background stations. Both Gosan and
Ragged Point periodically intercept air from the Southern
Hemisphere and therefore have a rather complex baseline.

Baseline mixing ratios are plotted together with respec-
tive observations and a priori mixing ratios for different
LPDM backward simulation periods ranging from 1 to 50d
(Figs. 4-7). A priori mixing ratios are calculated as the sum
of the baseline and the contribution originating from a pri-
ori emissions during the period of the backward simulation
(termed “direct emissions contributions” hereafter). Ideally,
the choice of the backward simulation period should have no
systematic effect on the calculated a priori mixing ratios. By
increasing the backward simulation time, and therefore en-
larging the temporal domain, additional emission contribu-
tions are included in the optimization. Per definition, these
contributions are not part of the baseline and should ide-
ally be removed from it. As a result, the baseline should be-
come lower and smoother when the simulation period is in-
creased. We investigate the agreement between modeled and
observed mixing ratios for the three methods with time series
plots (Figs. 4-7), as well as statistical parameters (bias, mean
squared error (MSE), and coefficient of determination r?)),
summarized in Table 2.

Figure 4 shows the smooth baselines calculated with the
REBS method and Stohl’s method at the measurement sta-
tion Gosan. In the case of 1d backward simulations (Fig. 4a
and d), both methods show a poor agreement between mod-
eled and observed mixing ratios, as neither the smooth base-
lines nor the small direct emission contributions can repro-
duce the observed mixing ratios during pollution episodes.
This agreement becomes much better with longer backward
simulation periods (Fig. 4b and e). The REBS baseline stays
completely unchanged for different backward simulation pe-
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Figure 4. Baseline and a priori SFg mixing ratios calculated with the REBS method (panels a—c) and Stohl’s method (panels d—f) at the
Gosan observation station, compared to SF¢ observations. Model results are shown for backward simulations of 1d (panels a and d), 10d

(panels b and e), and 50 d (panels ¢ and f).
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Figure 5. Baseline and a priori SFg mixing ratios determined by the REBS method and Stohl’s method at the Ragged Point observation
station for backward simulation times of 1d (panel a), 10d (b), and 50d (c).

riods. Therefore, a priori mixing ratios grow with increasing
simulation periods (Fig. 4b and c), as more direct emissions
contribute to the calculated total mixing ratio. For Gosan, the
bias is negative for the 1 d simulation period but becomes in-
creasingly positive for longer simulation periods (Table 2).
This systematically increasing bias is inherent to all purely
observation-based baseline methods and cannot be corrected
without adding model information. In contrast, Stohl’s base-
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line level decreases with longer backward simulation periods
as higher direct emission contributions are subtracted from
the preselected observations. Consequently, the bias of the
a priori mixing ratios changes less between 10 and 50d of
backward simulation (Fig. 4e and f). This is confirmed by sta-
tistical parameters in Table 2 also showing only little change
between 10 and 50d.
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Figure 6. Baseline and a priori SFg mixing ratios calculated with the GDB method at the Gosan observation station for backward simulation
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Figure 7. Baseline and a priori SFg mixing ratios calculated with the GDB method at the Ragged Point measurement station for backward
simulation periods of 0 (panel a), 1 (b), 5 (c), 10 (d), 20 (e), and 50d (f). The inset in panel (d) shows the termination sensitivity averaged
over all heights for the time of the marked observation low point, illustrating the method’s ability to account for baseline changes due to
episodic transport from the Southern Hemisphere.
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Table 2. Bias, mean squared error (MSE), and coefficient of determination (%) of a priori SFg mixing ratios determined by the three
investigated baseline methods with respect to observed mixing ratios. Statistical parameters are shown for three different backward calculation
periods (1, 10, and 50 d) at the stations Gosan and Ragged Point. Also reported are the bias, MSE, and r2, calculated separately for all stations

listed in Table 1 and then averaged.

Gosan ‘ Ragged Point ‘ All stations
Parameter ~ Method 1d 10d 50d | 1d 10d 50d | 1d 10d 50d
REBS ~ —0.225 0190 0267 | 0006 0007 0054 | —0.028 0012  0.061
Bias [ppt] ~ Stohl ~ —0.384 —0.016  0.008 | —0.067 —0.068 —0.065 | —0.103 —0.064 —0.051
GDB  —0.090 —0.002 —0006 | 0023 0044 0033 | 0022 0016  0.007
REBS 0420 0250 0281 | 0004 0004 0006 | 0034 0023 0028
MSE [ppt?] ~ Stohl 0525 0216 0210 | 0009 0009 0009 | 0050 0026  0.024
GDB 0303 0206 0205 | 0.005 0005 0004 | 0034 002 0021
REBS 0085 0482 0495 | 0671 0670 0712 | 0584 0647 0651
r? Stohl 0068 0474 0490 | 0649 0629 0623 | 0548 0616  0.623
GDB 0272 0499 0501 | 0631 0718 0746 | 0423 0589  0.634

At Ragged Point (Fig. 5), the a priori mixing ratios deter-
mined by the REBS method fit the observation data very well
for short backward simulation periods, where baseline and
a priori mixing ratios overlap because of small direct emis-
sion contributions (Fig. 5a and b). This is expected, since
the method determines the baseline by fitting the observa-
tion data while iteratively excluding outliers. Since regional
pollution events captured at Ragged Point tend to be very
small, no significant measurement peaks need to be excluded.
Therefore, the REBS baseline fits well through the measure-
ment data, resulting in a good statistical model—-observation
agreement (Table 2). However, the smooth baseline is unable
to reproduce the observed variability. In the case of a simu-
lation period of 50d (Fig. 5c), more direct emission contri-
butions give higher a priori mixing ratios, overestimating the
measurements and causing a large bias. In contrast, due to its
25th percentile preselection of observations, Stohl’s method
shifts the baseline curve towards the lowest observations. In
the case of Ragged Point, these lowest observations come
from southern hemispheric air masses. Hence, Stohl’s base-
line is more representative of southern hemispheric condi-
tions, which do not necessarily dominate at that site. Con-
sequently, a priori mixing ratios underestimate the observa-
tions for low direct emission contributions (Fig. 5a and b).
The resulting bias is almost unaffected by the different back-
ward simulation periods (Table 2 and Fig. 5c), showing the
method’s ability to compensate for increasing direct emission
contributions. However, the rather ad hoc 25th percentile pre-
selection of data for the baseline is obviously not justified for
a background station with few pollution episodes and south-
ern hemispheric air interceptions, leading to a systematic un-
derestimation of modeled a priori mixing ratios, irrespective
of the length of the backward simulation.

The GDB method is illustrated for all backward simulation
periods tested, including a case without any backward sim-
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ulation (0d). In this extreme case, the baseline is obtained
directly from the value of the global mixing ratio field simu-
lated with FLEXPART CTM in the spatiotemporal grid cell
of the respective observation. At Gosan, FLEXPART CTM
reproduces observed mixing ratios well, even capturing a few
pollution events (Fig. 6a). This good agreement is however
expected, since these observations were used for the nudging
in the FLEXPART CTM model. In the 1d backward simu-
lation case (Fig. 6b), the method computes a highly variable
baseline, partly representing the observed variability. This re-
sults in a much better agreement between a priori and ob-
served mixing ratios than using the REBS method or Stohl’s
method (Table 2). The GDB baseline becomes smoother and
lower with increasing backward simulation time. The loss of
variability arises from the fact that the GDB method calcu-
lates the baseline from a weighted average of grid cell mixing
ratios at the trajectory termination points. The longer par-
ticles are followed backward in time, the more widely dis-
persed over large geographical regions termination points be-
come, thus resulting in a smoother baseline. The lowering of
the GDB baseline is compensated for by the increase of the
direct emission contributions (see Sect. 2.4.3 and Fig. 3), en-
suring a seamless transition between forward (FLEXPART
CTM) and backward simulations. As a result, a priori mix-
ing ratios in Fig. 6 show no large systematic changes with an
increasing simulation period between 5 and 50 d.

Figure 6 also demonstrates the advantage of the La-
grangian backward simulation. As FLEXPART CTM is lim-
ited in resolution and particle number, it can only reproduce a
few pollution events at Gosan, and it underestimates the high-
est and overestimates the lowest measured SFg mixing ra-
tios, as demonstrated in the 0 d case (Fig. 6a). The backward
simulation is initiated at the exact location of the measure-
ment point and provides much higher resolution (Fig. 6b—f).
If the backward calculation period is long enough that back
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trajectories reach important emission regions, mixing ratio
spikes similar to the observed ones can be simulated. At the
same time, the lowered baseline for intrusions of southern air
masses during the Asian summer monsoon also allows the
lowest observed values to be captured. Table 2 shows exclu-
sively improving correlation between modeled and observed
values with increasing backward simulation periods.

Figure 7 illustrates the GDB method at the Ragged Point
station. FLEXPART CTM (Fig. 7a) reproduces the measured
mixing ratios well. However, it generates more variability
than observed at this station. This is partly due to the limited
number of particles in the domain-filling simulation, which
introduces noise into the model results. This is averaged
out by the GDB method with increasing backward simula-
tion time, as the baseline becomes a weighted average over
many grid cells. Nevertheless, the baseline maintains vari-
ability for all tested simulation periods, fitting the observed
signal well (Fig. 7b—e). It is noteworthy that at Ragged Point
a substantial part of the observed SFg variability seems to
be caused by transport from different latitudes/regions with-
out direct emission contributions, exemplified by the quite
variable baseline even for the 50 d backward simulation. In
contrast, the direct emissions accumulated over the 50d of
the backward simulation are producing an almost constant
enhancement over the baseline. This is very different from
a station like Gosan that is strongly influenced by pollution
episodes.

Notice also that for backward simulation times of 10 d and
longer, the GDB method is able to reproduce short episodes
of very low observed mixing ratios at Ragged Point that are
caused by episodic transport from the Southern Hemisphere
(see also inset in Fig. 7d). Neither the REBS method nor
Stoh!’s method could correctly reproduce these negative SFg
excursions.

Additional figures illustrating the three baseline methods
at all investigated measurement sites can be found in the Sup-
plement. Despite all the advantages of the GDB method, it
does not work well if the modeled global mixing ratio fields
are biased. At Mace Head and Zeppelin (see Figs. S17 and
S33 in the Supplement), FLEXPART CTM overestimates the
measurements, and thus the GDB method gives a baseline
that partly exceeds the observations. Possible error sources
include deficiencies in the emission assumptions driving the
model that are impossible to be compensated for through
nudging with the few available observations. It is also un-
clear whether the FLEXPART CTM nudging routine was
able to properly correct mixing ratios at higher altitudes, as
aircraft measurements were available only over North Amer-
ica (with one exception). On the other hand, statistical base-
line methods might work better at observation stations, where
the baseline termination is less complex. At Mace Head
(Fig. S18 in the Supplement) for instance, both the REBS
method and Stohl’s method lead to a very high correlation
between modeled and observed mixing ratios for the case
of a 50 d backward simulation (r2 = 0.87). Nevertheless, for
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the REBS method, the discussed growing negative bias with
longer simulation periods can be observed.

Statistical parameters (bias, MSE, and r2) were separately
calculated for every observation station, and respective av-
erages over all stations are shown in Table 2. One should
keep in mind that the REBS method and Stohl’s method are
directly based on the observations themselves, and thus the
dependency between observed and modeled a priori mixing
ratios is likely higher than in the case of the GDB method,
where observations are rather used to improve the mixing ra-
tio fields. Therefore, it is remarkable that overall the GDB
method obtains smaller bias and MSE values than the other
two methods. The REBS method shows the highest r2 values.
The main reason for this good correlation is that the method
captures the trend in the time series very well, which rep-
resents a considerable fraction of the total variability in the
data. The GDB baseline may contain a fair fraction of noise,
in contrast to the smooth baselines of the other two meth-
ods. This will lead to lower correlation. However, it is note-
worthy that for the GDB method, the r2 value improves sys-
tematically with growing backward simulation time and for
50d even exceeds the value derived by Stohl’s method. By
extending the backward calculation period from 10 to 50d,
the GDB r2 value increases by 0.045, meaning that an ex-
tra 4.5 % of the observed variability can be explained by the
model. Notice also the improvement in bias and MSE, which
can be observed for the GDB method and Stohl’s method,
when extending the simulation period from 10 to 50d. The
REBS method does not show these improvements due to its
systematical increase of bias with backward simulation time.

3.2 Inversion results

Figure 8 illustrates (a) the global distribution of the SF¢ a pri-
ori emissions 2012 as well as (b—d) the emission increments
(i.e., a posteriori minus a priori emissions) for the three in-
vestigated baseline methods using SRRs from 20 d backward
calculations. A priori emissions are allocated to regions pro-
portional to electricity use and population density. This im-
plies large a priori emissions in South and East Asia, includ-
ing China, which is estimated to be the biggest contributor to
global SFg emissions. In general, much higher a priori emis-
sions are allocated to the Northern Hemisphere than to the
Southern Hemisphere. We should also note that the emission
optimization of the inversion focuses on regions with large a
priori emissions, where also assumed uncertainties are bigger
(see Sect. 2.6), assigning more freedom to the algorithm.
The inversion increments in Fig. 8b—d show three very
contrasting pictures, illustrating the huge impact of the
choice of the baseline method on the inversion results. Using
different baseline approaches completely changes the results
of the inversions. When using the REBS method (Fig. 8b),
the inversion produces negative emission increments in al-
most all areas of the globe. As the real emissions are un-
known, this is not necessarily an unrealistic result. However,
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Figure 8. A priori SFg emissions (a) and SFg emission increments given by the inversion when using the REBS method (b), Stohl’s method
(¢), and the GDB method (d) based on 20 d LPDM backward simulations.

when considering these mostly negative increments together
with the discussed positive bias for REBS baselines in Ta-
ble 2 (especially for longer backward simulation periods),
there is reason to assume that the REBS method overesti-
mates baselines and consequently underestimates the a pos-
teriori emissions overall. In contrast, the inversion algorithm
produces positive increments almost everywhere around the
globe when applying Stohl’s method (Fig. 8c). Again, con-
sidering this together with the discussed negative biases in
Table 2, this might indicate an underestimation of the base-
lines and an overestimation of the a posteriori emissions
overall. In the case of the GDB method (Fig. 8d), negative
and positive increments are more balanced. Overall, the pat-
terns are more similar to the ones of the REBS method, ex-
cept in East Asia, where they rather resemble the patterns
of Stohl’s method. Large positive increments can be seen
in East Asian regions and parts of Europe, whereas the in-
version tends to produce slightly negative increments in the
Southern Hemisphere.

National emissions

As the verification of emission reports to UNFCCC takes
place on a national scale, the impact of baseline methods
on national emissions is of great interest (Fig. 9). In coun-
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tries with very low emission sensitivity (e.g., Brazil), inver-
sion increments are very small in all three cases, and there-
fore the baseline choice has little impact. However, consider-
ing countries with higher emission sensitivities (e.g., China),
the a posteriori emissions are very sensitive to the baseline
definition. In almost all cases, the REBS method leads to
smaller national emissions and Stohl’s method to larger na-
tional emissions than the GDB method. Due to the large
emissions in China, the differences in a posteriori emissions
become especially apparent there, with almost a factor of
3 emission difference, corresponding to almost 30 % of the
2012 global SFg emissions.

Global emissions

The 2012 SFg global emissions are shown in Fig. 10. The
bars represent inversion results using different backward cal-
culation periods between 1 and 50d (light to dark shading).
The horizontal dashed line illustrates a reference value cal-
culated by Simmonds et al. (2020) with the AGAGE 12-box
model. Notice that this is the same value used to calculate
the a priori emissions, so the line also represents the global
a priori emissions, which should be kept in mind for the in-
terpretation of the results. Since the uncertainty of the global
emissions is relatively small, global emissions derived by the
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inversion should roughly match the value of the box model,
regardless of which backward simulation period was used.

For the REBS method, calculated global emissions (red)
decrease dramatically with growing backward simulation
time, showing values between 3.15 and 9.80 Ggyr~'. This is
a consequence of the method’s incapability to remove emis-
sion contributions from the baseline when the backward sim-
ulation period expands, leading to a systematical overesti-
mation of the baseline and underestimation of the emissions.
The resulting bias increases with growing simulation period,
and as a result global emissions estimates deviate strongly
from the box model.

In the case of Stohl’s method (blue), derived global emis-
sions do not show such a systematic decrease with longer
backward simulation periods as observed for the REBS
method. This is because Stohl’s method not only selects low
mixing ratio observations, but also uses model information
to maintain the baseline. For longer backward simulation
periods, higher simulated mixing ratios are subtracted from
the preselected observations to compensate for more direct
emission contributions. Nevertheless, global emissions sig-
nificantly exceed the reference value of the box model for all
applied simulation periods, implying a systematic overesti-
mation of emissions through too low baselines. The overes-
timation of the global emissions increases with longer back-
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ward simulation times larger than 5 d. This suggests that the
method overcompensates for additional direct emission con-
tributions when the simulation period expands, subtracting
values that are systematically too high from the preselected
observations.

We further investigate whether the encountered biases
can be reduced by optimizing the baseline in the inversion.
Therefore, we repeated the inversion with exactly the same
setup, except optimizing the REBS baseline and Stohl’s base-
line as part of the inversion. Results are shown in Fig. A2. In
the case of the REBS method, the baseline optimization only
has little effect on the global total a posteriori emissions for
backward simulation periods between 1 and 10d and only
becomes noticeable after 20d. The greatest improvements
can be observed for the 50 d simulation, where the bias is al-
most halved. Still, for longer simulation periods the increas-
ing improvements through the baseline optimization cannot
compensate for the growing underestimation of the emis-
sions and substantial biases remain. Optimizing Stohl’s base-
line shows great improvements, especially for longer simu-
lation periods. These improvements increase systematically
with growing backward simulation period, and results get
very close to the box model outcome for the 20 and 50 d sim-
ulation case.
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Figure 11. SRR for individual countries and different backward cal-
culation periods between 1 to 50 d, considering all continuous mea-
surement stations in Table 1. The values shown are averages over
the grid cells of (a) France, USA, and China and (b) India, South
Africa, and Brazil for the year 2012.

Considering the inversion results based on the GDB
method, global emissions are in good agreement with the
box model result for all tested backward simulation periods,
as the global a posteriori emissions stay close to the global
a priori value. Furthermore, these global emissions stay al-
most unchanged for different backward simulation periods,
demonstrating the method’s ability to adjust the baseline ac-
cording to the sampled emissions of different simulation pe-
riods.

The advantage of longer backward simulation periods

As an argument for a relatively short backward simulation
period, Stohl et al. (2009) stated that “the value for the in-
version of every additional simulation day decreases rapidly
with time backward”. Certainly, this is true for countries and
regions that are well covered by the global monitoring net-
work. For instance, for France the SRR increases rapidly in
the first few backward simulation days but flattens to a linear
increase for longer backward simulation periods (Fig. 11a).
A similar behavior can be observed for many countries in the
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Figure 12. SFg emission increments calculated with the inversion
by using the GDB method and a backward simulation period of
(a) 1, (b) 10, and (¢) 50d.

Northern Hemisphere, although the curve’s slope for the first
few days varies. For countries poorly covered by the monitor-
ing network, however, the SRR is close to zero for the first 5
to 15 backward days, and only longer backward simulations
might provide information for the inversion (see Fig. 11b).
For these countries, the SRR increase with time only flattens
to a linear increase for very long transport times, even beyond
the 50 d used in this study.

Figure 12 further illustrates the impact of different back-
ward simulation periods on the inversion, by showing emis-
sion increments for the GDB method and for backward sim-
ulation periods of 1, 10, and 50d. In the case of 1d back-
ward calculations (Fig. 12a), the inversion only significantly
optimizes a priori emissions in East Asia and parts of Eu-
rope. As the backward simulation period is extended to 10d
(Fig. 12b), the inversion optimizes emissions in larger parts
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of the Northern Hemisphere, but in the Southern Hemi-
sphere emission increments are still small. In the case of 50d
(Fig. 12c¢), the inversion optimizes emissions even far away
from observation stations (e.g., South America or South
Africa). In India, where SRR values are also small, and a
priori emissions (and thus emission uncertainties) are high
(see also Fig. 11b), the emission increments even switch from
positive to negative by extending the period from 10 to 50d.
Also, the calculated relative uncertainty reduction increases
by extending the backward simulation period (see Fig. A3a—

c).
The use of flask samples

An advantage of the GDB method is the possibility to in-
clude flask measurements from fixed sites or moving plat-
forms in the inversion. By contrast, the REBS method and
Stohl’s method require short measurement intervals at fixed
sites for the statistical baseline calculation. Here, the base-
line could be taken from nearby or same latitude continuous
sites or represented through baselines at the domain border
in case of regional inversions (Manning et al., 2021). Fig-
ure 13a shows the relative change in a posteriori emissions
and Fig. 13b the additional relative error reduction when us-
ing flask measurements additionally to the continuous mea-
surements for the 50d backward simulation. One can see
substantial differences in the USA, eastern Europe, South
Africa, East Asia, and the Near East, where also an additional
error reduction occurs. While this additional error reduction
can be relatively large (up to 73 %) for grid cells in the vicin-
ity of the measurement sites, it quickly decreases down to a
few percent with larger distance to the measurements. Con-
sequently, flask measurements only show a small influence
on the total global emission estimate (< 1 %) but can have
a large impact on calculated national emissions of specific
countries (Fig. A4). For countries in the Near East, the addi-
tional use of flask measurements changes national emission
estimates by 40 % to 100 %. South African and American
emissions are modified by around 10 %.

Reliable global emissions can only be obtained with long
backward simulation periods

In previous sections, we have used global mixing ratio fields
from the GDB method, where great care has been taken to
avoid biases that would affect the baseline, and we have used
global a priori emissions that correspond to the rather well-
known global SFg emissions. These are optimal conditions
for the inversion that are rarely fulfilled for other species
than SFg. For many species, global emissions are less well
known, and with fewer observations than for SFe the global
distribution (and, thus, the baseline) is also more uncertain.
However, a skillful inversion should tolerate such biases and
still produce reliable results. While we lack information for
verifying that regional emissions are reliable, for SF¢ we can
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Figure 13. (a) Relative change in a posteriori emissions and (b) the
additional error reduction when using flask measurements in addi-
tion to continuous measurements for the 50 d simulation. The loca-
tions of the flask measurements are marked with black dots.

at least test whether global emissions can be determined by
our inversion in the presence of biases.

Figure 14 shows global a posteriori emissions when biases
in (1) the a priori emissions and (2) global mixing ratio fields
were added. This is shown for different backward simulation
periods between 1 and 50d and for the 50d case with the
inclusion of flask measurements. Note that for all these sen-
sitivity cases shown in Fig. 14, we use the same absolute a
priori emission uncertainties as for the original a priori emis-
sions without any artificial bias.

Comparing the inversion results for doubled (Fig. 14a) and
halved (Fig. 14b) a priori emissions clearly shows that the
corresponding biases in the global a posteriori emissions are
reduced substantially with increasing backward simulation
period and converge towards the rather well-known global
SFg emission from the box model. It seems an extension of
the backward simulation period beyond 50d would be re-
quired in order to further reduce the remaining bias. The in-
clusion of flask measurements leads to slight additional im-
provements.
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Figure 14. Global SFg emissions using the GDB method shown for different sensitivity cases, using backward simulation periods between
1 and 50d and a 50d backward simulation case in which flask measurements were also included in the inversion in addition to continuous
measurements. The sensitivity cases include (a) doubled and (b) halved a priori emissions; biased global mixing ratio fields with a uniform
bias of (¢) —0.003 and (d) +0.003 ppt in every grid cell; and combinations of the two test types; (e) doubled a priori emissions plus —0.003 ppt
global field bias; (f) halved a priori emissions plus +0.003 ppt global field bias. The dashed pink lines represent the expected relationship
between the baseline bias and a resulting emission bias if a global box model was used and the bias attributed solely to emissions in different

periods corresponding to the backward simulation times.

Another sensitivity test was performed with artificially bi-
ased global mixing ratio fields by subtracting (Fig. 14c) or
adding (Fig. 14d) 0.003 ppt from/to the FLEXPART CTM
model output in every grid cell of the 3D mixing ratio fields.
0.003 ppt is equivalent to roughly 1% of the 2012 global
mixing ratio increase and thus corresponds to about 3d of
global SFg emissions. To still fit the model to the observa-
tions, the inversion will try to compensate for such a bias
in the baseline with a bias of the opposite sign in the emis-
sions. As always, the inversion can only attribute this addi-
tional bias to emissions within the simulation period. There-
fore, shorter backward simulation periods require a greater
modification of emissions than longer periods, in order to
compensate for the baseline bias. To fully compensate for the
baseline bias equivalent to 3 d of emissions, global a poste-
riori emissions would need to deviate strongly from the ref-
erence value for the 1d case but converge towards it with
increasing backward simulation time. This is shown by the
dashed pink line, which indicates the expected relationship
between this baseline bias and a resulting emission bias if a
global box model was used and the bias attributed solely to
emissions in different periods corresponding to the backward
simulation times. In fact, with a positive baseline bias, neg-
ative emissions would be required for backward simulation
times of less than 3 d, as the baseline exceeds the observa-
tions. The inversion results do not show this extreme behav-
ior, since for short backward simulation times high SRR val-
ues are only found in small regions, and the emission changes
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there are bound by the prescribed a priori uncertainties. No-
tice that in our case of a known added bias, this is rather a
shortcoming, as this shows that the inversion is not able to
compensate for the baseline bias for short backward simula-
tion times. Only for the longest times do the emissions con-
verge towards the expected global emissions (dashed pink
lines), and only for such long backward simulation times do
baseline biases equivalent to 3 d of emissions become negli-
gible. We also investigated the inversion behavior for larger
baseline biases, subtracting/adding (Fig. A5a and b) 0.05 ppt
from/to the global fields, corresponding to roughly 50 d of the
2012 global SFg emissions. Here again, the results for short
simulation times seem unpredictable; i.e., they do not fol-
low the described expected behavior, indicated by the dashed
pink lines. Only for the 50d simulation periods do results
converge to the expected global emissions, consistent with
the respective baseline bias.

Finally, we also combined doubled a priori emissions
with a —0.003 ppt bias in the global mixing ratio fields
(Fig. 14e) and halved a priori emissions with a +0.003 ppt
bias (Fig. 14f). For both cases, the inversion becomes less
sensitive to biases in the a priori emissions and the global
fields with longer backward simulation periods.

Final remark

In this study, we show many advantages of using relatively
long backward simulation periods for the inversion. Nev-
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ertheless, the improvement of regional emission patterns is
still limited by the observation network. A lack of observa-
tions in one region cannot simply be compensated for by ex-
tending the simulations for stations in other regions to very
long periods. For backward simulation times of 20-50d, the
emission sensitivity is distributed over large areas but usu-
ally still concentrated within broad latitude bands. The ad-
ditional information to be gained from such long simulation
times, on top of the information provided by the shorter sim-
ulation times, can probably best be compared with the in-
versions done with a multi-box model such as the AGAGE
12-box model (e.g., Rigby et al., 2013), which is capable
of determining the emissions in broad latitude bands. Con-
sequently, if the emissions in certain regions with a dense
observation network are already well constrained by shorter
simulation periods, the residual emission will be attributed
correctly as an emission total to all other regions of the same
latitude band with a poor station coverage. The effective res-
olution of the obtained emissions in such data-poor regions
may be very coarse, but the result might still be informative.
Furthermore, the emission sensitivity for the 20-50d back-
ward period is still not uniformly distributed over a latitude
band and thus provides some limited regional information.
Perhaps supported with a limited number of strategically lo-
cated flask measurements, inversions with long backward
simulation times could provide coarse but robust information
on emissions in poorly sampled regions. Independently, the
growing correlation between modeled and observed mixing
ratios with increasing backward simulation length (Table 2;
averaged over all stations) also shows that longer backward
simulations hold additional information, even though the in-
formation gain decreases with every day added to the simu-
lation length and probably becomes marginal for very long
backward simulation times. However, we propose to make
use of this additional information and apply longer periods
whenever possible to make the best use of the existing obser-
vation network.

4 Conclusions

We have examined the use of LPDMs for inverse modeling of
GHG emissions by varying the backward simulation period
in the range of 1 to 50 d, testing several methods for estimat-
ing a baseline, investigating the influence of biases in the a
priori emissions and the baseline, and exploring the value of
flask measurements for the inversion. We found the follow-

ing:

— A baseline method that is purely based on the obser-
vations at the observation site itself, such as the REBS
method, may lead to unreliable inversion results that
are highly sensitive to the length of the LPDM back-
ward simulation and can lead to unrealistic a posteriori
global total emissions. For instance, for the year 2012,
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inversions with the REBS method produce a posteri-
ori global total SFs emissions ranging between 9.8 and
3.2Ggyr~! for backward simulation periods between
1 and 50d, compared to a well-known reference value
of around 8.0 Ggyr~!. Optimizing the baseline shows
little effect for simulation periods between 1 and 20d
but could halve the bias in the 50d simulation case.
Although the improvements of the baseline optimiza-
tion increase with growing backward simulation period,
the simultaneously growing bias cannot be compensated
for.

A baseline method that is based on the observations at
the site itself but corrects for emissions occurring during
the LPDM backward simulation period leads to smaller
sensitivity to the backward calculation time but may still
lead to substantially biased emissions irrespective of the
backward simulation period. For instance, inversions
with Stohl’s method overestimate the well-known 2012
SFg global total emissions by 2.2-3.6 Ggyr~! (28 %-—
45 %). Optimizing the baseline, however, shows great
improvements, especially for longer simulation periods.

A global-distribution-based (GDB) approach, where the
LPDM backward simulation is nested into a global mix-
ing ratio field, leads to a posteriori emissions that are
less sensitive to LPDM backward calculation lengths
and stay close to the global total emission value. In con-
trast to station-specific baselines, the GDB method al-
lows for the inclusion of low-frequency measurements
(e.g., flask samples) or data from mobile platforms into
the inversion.

Statistical comparisons of a priori modeled versus ob-
served mixing ratios suggest that longer LPDM back-
ward simulations outperform shorter simulations. In
particular, extending the trajectory length from 5-10 to
50d can reduce the mean squared error and increase the
correlation.

Inverse modeling is highly sensitive to biases in the a
priori emissions as well as biases in the baseline. We
could show that this sensitivity can decrease with the
length of the backward simulation period, and we find
that longer backward simulation periods can help to cor-
rect biased global emission fields. In the presented case,
it is not possible to correct strongly biased global a pri-
ori emissions with backward simulation periods of 1—
10d, while they are captured quite accurately with 50 d
backward simulations.

The additional use of flask measurements has the po-
tential to improve the observational constraint on SF¢
emissions, especially close to the measurement sites.
However, existing flask sampling sites are often not well
located for inversion purposes. Similar to Weiss et al.
(2021), we suggest that placing a few additional flask
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sampling sites downwind of potential emission regions
in currently undersampled parts of the world (in par-
ticular, tropical South America, tropical Africa, India,
Australia, and the Maritime Continent) would have dis-
proportionately large value in improving regional and
global a posteriori emission fields.

Following these results, we advise against the use of base-
line methods that are purely based on the observations of
individual sites. At least great care needs to be taken that
problems such as those demonstrated in this paper do not
occur. In order to reduce biases, the optimization of the base-
line as part of the inversion might be necessary but would
likely not be sufficient to avoid biases completely. We rec-
ommend also employing longer LPDM backward simulation
periods, beyond 5-104d, as this can lead to improvements in
overall model performance, can produce more robust global
emission estimates, and might help to constrain emissions, at
least at a very coarse resolution, in regions poorly covered by
the monitoring network. When consistency between regional
and global emission estimates is important, even longer back-
ward simulation periods than 50d may be useful. Finally,
we suggest taking additional flask measurements at conti-
nental sites in the tropics and the Southern Hemisphere as
they would greatly enhance inversion-derived global emis-
sion fields.
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Appendix A

Table Al. Surface flask measurement sites.

Site ID  Station Latitude Longitude  Altitude®
ALT Alert, Canada 82.5°N  62.5°W 190
ASC Ascension Island, UK 8.0°S 14.4°W 90
ASK Assekrem, Algeria 233°N  5.6°E 2715
AZR Serreta (Terceira), Portugal 38.8°N  27.4°W 24
BAL Baltic Sea, Poland 554°N 17.2°E 28
BHD Baring Head, New Zealand 414°8S 174.9°E 90
BKT Bukit Kototabang, Indonesia 0.2°S 100.3°E 875
BMW  Tudor Hill (Bermuda), UK 323°N  64.9°W 60
BSC Constanta (Black Sea), Romania 442°N  28.7°E 5
CBA Cold Bay (AK), USA 55.2°N 162.7° W 57
CHR Christmas Island, Kiribati 1.7°N 157.2°W 5
CPT Cape Point, South Africa 34.4°8S 18.5°E 260
CRZ Crozet, France 46.4°S 51.8°E 202
DRP Drake Passage, USA 59.0°S 63.7°W 10
DSI Dongsha Island, Taiwan 20.7°N  116.7°E 8
EIC Easter Island, Chile 27.2°S 109.4°W 69
GMI Guam (Mariana Island), USA 134°N  144.7°E 5
HBA Halley, UK 75.6°S 26.2°W 35
HFM Harvard Forest (MA), USA 425°N  722°W 1000
HPB Hohenpeissenberg, Germany 478°N 11.0°E 941
HSU Humboldt State University, USA 41.0°N  1247°W 8
HUN Hegyhatsal, Hungary 47.0°N  16.6°E 344
ICE Storhofdi, Iceland 634°N  20.3°W 127
KEY Key Biscane (FL), USA 2577°N  80.2°W 6
KUM Cape Kumukahi (HI), USA 19.5°N 154.8° W 8
LEF Park Falls (WI), USA 459°N  90.3°W 868
LLN Lulin, Taiwan, Province of China 23.5°N  1209°E 2867
LMP Lampedusa, Italy 355°N  12.6°E 50
MEX Mex High Altitude Global Climate Observation Center, Mexico 19.0°N  97.3°W 4469
MID Sand Island, USA 28.2°N 177.4°W 16
MKN Mt Kenya, Kenya 0.1°S 37.3°E 3649
NAT Natal, Brazil 5.5°S 353°W 20
NMB Gobabeb, Namibia 23.6°S 15.0°E 461
OXK Ochsenkopf, Germany 50.0°N 11.8°E 1172
PAL Pallas, Finland 68.0°N 24.1°E 570
PSA Palmer Station, USA 64.9°S  64.0°W 15
PTA Point Arena (CA), USA 39.0°N  123.7°W 22
SGP Southern Great Plains E13 (OK), USA 36.6°N  97.5°W 374
SHM Shemya Island, USA 527°N  174.1°E 28
TIK Tiksi, Russian Federation 71.6°N  1289°E 29
USH Ushuaia, Argentina 54.8°S  68.3°W 32
UTA Wendover (UT), USA 39.9°N  113.7°W 1332
UUM Ulaan Uul, Mongolia 44.5°N  111.1°E 1012
WIS Sede Boker, Israel 309°N  34.8°E 482

4 The altitude specifies the sampling height in meters above sea level.
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Table A2. Aircraft flask measurement programs.

Table A3. Setting parameters of the REBS method. For more information, see Ruckstuhl et al. (2012).
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Site ID  Aircraft programs Latitude  Longitude Altitude?®
BNE Beaver Crossing, Nebraska, USA 40.8°N  97.2°W 616-7855
CAR Briggsdale, Colorado, USA 40.7°N  104.3°W  1795-8469
CMA Cape May, New Jersey, USA 38.9°N  743°W 280-8010
DND Dahlen, North Dakota, USA 475°N  99.1°W 587-8023
ESP Estevan Point, British Columbia, Canada 49.4°N  126.4°W 246-5740
ETL East Trout Lake, Saskatchewan, Canada 543°N  104.9°W 811-7823
HIL Homer, Illinois, USA 40.0°N  87.9°W 555-8051
LEF Park Falls, Wisconsin, USA 46.0°N  90.2°W 583-4018
NHA Worcester, Massachusetts, USA 429°N  70.5°W 245-8069
PFA Poker Flat, Alaska, USA 64.8°N  1482°W 222-7444
RTA Rarotonga, Cook Islands 21.2°S 159.8°W 15-6483
SCA Charleston, South Carolina, USA 329°N  79.5°W 218-8070
SGP Southern Great Plains, Oklahoma, USA 36.6°N  97.5°W 437-5716
TGC Sinton, Texas, USA 277°N  96.7°W 250-8074
THD Trinidad Head, California, USA 41.1°N  1242°W 231-8034
WBI ‘West Branch, Iowa, USA 41.7°N  91.3°W 591-8204

4 The altitude specifies the range of sampling heights in meters above sea level.

Setting parameters

Description

b=25
span = %

maxit = ¢(10, 10)

tuning factor which governs the weight of outliers in the baseline

the ratio of observation points used to compute one baseline value (the goal is a temporal window

of 2 months), which regulates the amount of baseline smoothing
maximum number of iterations
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Table A4. Nudging kernel settings for surface and aircraft measurement sites. The kernels are set to have an equal spatial length (in m) in
the x and the y direction. For surface measurement sites in the Northern Hemisphere, an upper limit for 4y was set to 25°; gps defines the
standard deviation of measurements over the simulation period at each nudging location; omax describes the maximum value of oy from
all surface observation stations. For aircraft measurement sites, the kernel size depends on the height level above ground H. For additional
information on the parameters, see Groot Zwaaftink et al. (2018).

Surface measurement sites

Hemisphere Spatial kernel ~ Kernel height Temporal kernel ~ Kernel relaxation

width hy [°] h; [m] length A [s] time t [s]

Northern Hemisphere  /ry = 12 .2 h, =300 hy=86400. T T = 3600
Oobs Oobs

Southern Hemisphere hy =25 hz=500  hy=86400. 1% T =3600
Oobs

Aircraft measurement sites

Height H Spatial kernel ~ Kernel height Temporal kernel ~ Kernel relaxation
[km above ground] width iy [°] h; [m] length Ay [s] time t [s]
H<05 hy =10 hz; =100 h[=86400-}% T = 3600
05<H<LI1 hy =20 hz; =250 h1=86400-% 7 = 3600
1<H<L2 hy =30 hz; =500 h[=86400-}11—': T = 3600
2<H<K3 hy =40 hz; =500 h1=86400-% T = 3600
3<H<4 hy =50 hz =500 hl=86400~}11—': T = 3600
4<HKS hy =60 hz; =500 hl=86400-% 7 = 3600
S<H<6 hy =170 hz = 1000 hl=86400~];—': 7 = 3600
6<H<KT hy =80 hz = 1000 h1=86400-% T = 3600
T<H<KS hy =90 hz = 1000 h1=86400~];—': 7 = 3600
8<H<K9 hy =100 hz = 1000 h[:86400-% T = 3600
Geosci. Model Dev., 15, 8295-8323, 2022 https://doi.org/10.5194/gmd-15-8295-2022
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Figure A1. Variable-resolution grid on which emissions are optimized by the inversion.
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Figure A2. Calculated SFg global emissions when baseline concentrations are optimized as part of the inversion. Grey bars represent the
improvements obtained by the baseline optimization. Results are shown for the REBS method and Stohl’s method and for all five applied
simulation periods between 1 and 50 d. The horizontal dashed line represents the reference value of the AGAGE 12-box model with shaded
error bands.
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Figure A3. Relative uncertainty reductions (1—upost/pri) calculated with the inversion by using the GDB method and a backward simulation
period for (a) 1, (b) 10, and (¢) 50d and (d) for the 50d case in which flask measurements were also included.
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Figure A4. Relative change in national a posteriori emissions of selected countries, when flask measurements are used in addition to contin-
uous measurements in the case of 50 d simulations.

Geosci. Model Dev., 15, 8295-8323, 2022 https://doi.org/10.5194/gmd-15-8295-2022

61



M. Vojta et al.: Evaluation of Lagrangian models for GHG inversions

f. 1.

v
(@) (PN
405 87 48 )
T 25 “
2 \
[Y)
220 *
5 t.
215 .
E
o
< 10
8k — -
G s box model
[
a priori 1 5 10 20 50 flask 50
(b)
— 15
2
=)
S 10
2 box model
S
]
E o -
o a priori 1 5 10 20 ., 50 flask 50
o i
o 1
-10 -390 -72 -32 ;

. L] L] ?
A
Figure AS. Global SFg emissions using the GDB method shown
for two sensitivity tests, where a uniform bias of (a) —0.05 and
(b) +0.05 ppt is added to every grid cell of the global mixing ratio
fields. Results are shown for backward simulation periods between
1 and 50d, and for a 50d backward simulation case, where addi-
tionally to continuous measurements also flask measurements were
included in the inversion. The dashed pink lines represent the ex-
pected relationship between the baseline bias and a resulting emis-
sion bias if a global box model was used and the bias attributed
solely to emissions in different periods. For these two sensitivity
tests, a priori uncertainties were set to 500 %.

Code and data availability. The source codes of FLEX-
PART 104 and FLEXINVERT+ used (with small mod-
ifications to the original version freely available at
https://flexinvert.nilu.no/downloads/flexinvertplus.tar.gz;
Thompson, 2022; downloaded in July 2020; described
in detail by Thompson and Stohl, 2014) are provided at
https://doi.org/10.25365/phaidra.339 (Vojta, 2022), together with
input, setting, and output data. The source code of FLEXPART
8-CTM-1.1 together with a user’s guide can be freely downloaded
at https://doi.org/10.5281/zenodo.1249190 (Henne et al., 2018).
The source code of FLEXPART 10.4 is also freely available on
the FLEXPART website at https://www.flexpart.eu/downloads/66
(FLEXPART developer team, 2022) (described in detail by
Pisso et al., 2019). Atmospheric measurements of SFg mixing
ratios used in this study are freely available from the following
AGAGE data - https://agage2.eas.gatech.edu/data_
archive/agage/gc-ms-medusa/complete/ (all stations, year 2011
and 2012; Advanced Global Atmospheric Gases Experiment,
2022), NOAA ESRL data — https://gml.noaa.gov/dv/data/index.
php?parameter_name=Sulfur%2BHexafluoride&type=Insitu&
frequency=Hourly%2BAverages (all stations, hourly data; NOAA
ESRL, 2022), NOAA Carbon Cycle Group ObsPack data —
https://doi.org/10.25925/20180817 (NOAA Carbon Cycle Group

sources:
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ObsPack Team, 2018), World Data Centre for Greenhouse Gases —
https://gaw.kishou.go.jp/search/file/0077-6020-1004-01-01-9999
(World ~ Meteorological ~ Organization, 2022a) (https:
/Igaw kishou.go.jp/search/file/0071-6031-1004-01-01-9999,

World Meteorological Organization, 2022b; https://gaw.kishou.
go.jp/search/file/0003-1002-1004-01-01-9999, ‘World Me-
teorological ~ Organization, 2022c;  https://gaw.kishou.go.jp/
search/file/0053-2008-1004-01-01-9999, World  Meteorolog-
ical Organization, 2022d; https://gaw.kishou.go.jp/search/file/
0002-4020-1004-01-02-3005, World Meteorological Organiza-
tion, 2022e; year 2011 and 2012). All the listed websites were last
accessed on 27 April 2022.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-15-8295-2022-supplement.

Author contributions. MV and AS designed the study with contri-
butions from RLT. MV performed the FLEXPART, FLEXPART
CTM, and FLEXINVERT+ simulations. RLT helped with the
FLEXINVERT+ setup and simulation issues. MV made the figures
with help from AP. MV wrote the text with input from AS, AP, and
RLT.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. We thank the whole AGAGE team for pro-
viding measurement data, including Jens Miihle (Scripps Insti-
tution of Oceanography); Paul Krummel, Paul Fraser, and Paul
Steele (CSIRO Oceans and Atmosphere); Ray Wang (Georgia In-
stitute of Technology); Simon O’Doherty and Dickon Young (Uni-
versity of Bristol); Martin Vollmer and Stefan Reimann (EMPA:
Swiss Federal Laboratories for Materials Science and Technol-
ogy); and Chris René Lunder and Ove Hermansen (NILU: Nor-
wegian Institute for Air Research). AGAGE operations at Mace
Head, Trinidad Head, Cape Matatula, Ragged Point, and Cape
Grim are supported by NASA (USA) grants to MIT (NAGS-
12669, NNX07AE89G, NNX11AF17G, NNX16AC98G) and SIO
(NNXO07AER7G, NNX07AF09G, NNX11AF15G, NNX11AF16G,
NNX16AC96G, NNX16AC97G) and also by the Department for
Business, Energy & Industrial Strategy (BEIS, UK), contract no.
1537/06/2018, to the University of Bristol for Mace Head, and
NOAA (USA), contract no. 1305M319CNRMJ0028, to the Univer-
sity of Bristol for Ragged Point. Further, AGAGE operations are
supported by CSIRO and BoM (Australia), FOEN grants to Empa
(Switzerland), NILU (Norway), SNU (S. Korea), CMA (China),
NIES (Japan), and Urbino University (Italy). For Jungfraujoch,
funding is acknowledged for the project HALCLIM/CLIMGAS-
CH by the Swiss Federal Office for the Environment (FOEN) and
for ICOS (Integrated Carbon Observation System) by the Swiss

Geosci. Model Dev., 15, 8295-8323, 2022



8320 M. Vojta et al.: Evaluation of Lagrangian models for GHG inversions

National Science Foundation. In addition, measurements are sup-
ported by the International Foundation High Altitude Research Sta-
tions Jungfraujoch and Gornergrat (HFSJG). The Commonwealth
Scientific and Industrial Research Organisation (CSIRO; Australia)
and Bureau of Meteorology (Australia) are thanked for their ongo-
ing long-term support and funding of the Cape Grim station and
the Cape Grim science program. We also thank the NOAA Global
Monitoring Laboratory for providing access to their data, including
Geoff Dutton, Jim Elkins, Bradley Hall, Colm Sweeney, Ed Dlu-
gokencky, Arlyn Andrews, and David Nance and key partners, Lin
Huang (EC), Kenneth James Davis (PSU), and Sébastien Biraud
(LBNL-ARM). We further acknowledge the following people and
institutions for sharing their observation data: Takuya Saito (Na-
tional Institute for Environmental Studies, Japan); Sunyoung Park
and Mi-Kyung Park (Kyungpook National University — operations
of the Gosan station on Jeju Island, South Korea, were supported
by the National Research Foundation of Korea grant, funded by
the MSIT of South Korea, grant no. 2020R1A2C3003774); Emilio
Cuevas (State Meteorological Agency, Spain); and Daniel Say (Uni-
versity of Bristol). We also thank Christine Groot Zwaaftink, Sabine
Eckhardt (NILU), and Stephan Henne (EMPA) for their provision
and support of the FLEXPART CTM model. Further acknowledge-
ment is made for the use of ECMWEF’s computing and archive fa-
cilities provided through a special project (spatvojt) in this research.
‘We further thank Marina Diitsch, Lucie Bakels, Silvia Bucci, Katha-
rina Baier, Daria Tatsii, and Perta Seibert for their support. Finally,
we want to thank Andrea Stenke for editing our manuscript and the
two anonymous reviewers for their constructive comments, which
significantly improved our manuscript.

Review statement. This paper was edited by Andrea Stenke and re-
viewed by two anonymous referees.

References

Advanced Global Atmospheric Gases Experiment (AGAGE):
Medusa GC-MS SF6 time series, AGAGE [data set], https:
/lagage2.eas.gatech.edu/data_archive/agage/gc-ms-medusa/
complete/, all stations, year 2011 and 2012, last access:
27 April 2022.

An, X., Henne, S., Yao, B., Vollmer, M. K., Zhou, L., and
Li, Y.: Estimating emissions of HCFC-22 and CFC-11 in
China by atmospheric observations and inverse modeling, Sci.
China Chem., 55, 2233-2241, https://doi.org/10.1007/s11426-
012-4624-8, 2012.

Berchet, A., Sollum, E., Thompson, R. L., Pison, 1., Thanwerdas, J.,
Broquet, G., Chevallier, F., Aalto, T., Berchet, A., Bergamaschi,
P., Brunner, D., Engelen, R., Fortems-Cheiney, A., Gerbig, C.,
Groot Zwaaftink, C. D., Haussaire, J.-M., Henne, S., Houweling,
S., Karstens, U., Kutsch, W. L., Luijkx, I. T., Monteil, G., Palmer,
P. I, van Peet, J. C. A., Peters, W., Peylin, P., Potier, E., Roden-
beck, C., Saunois, M., Scholze, M., Tsuruta, A., and Zhao, Y.:
The Community Inversion Framework v1.0: a unified system for
atmospheric inversion studies, Geosci. Model Dev., 14, 5331-
5354, https://doi.org/10.5194/gmd-14-5331-2021, 2021.

Brunner, D., Arnold, T., Henne, S., Manning, A., Thompson, R.
L., Maione, M., O’Doherty, S., and Reimann, S.: Comparison of

Geosci. Model Dev., 15, 8295-8323, 2022

four inverse modelling systems applied to the estimation of HFC-
125, HFC-134a, and SFg emissions over Europe, Atmos. Chem.
Phys., 17, 10651-10674, https://doi.org/10.5194/acp-17-10651-
2017,2017.

CIESIN: Center for International Earth Science Information Net-
work, Columbia University, Gridded Population of the World,
Version 4 (GPWv4): Population Density, Revision 11, NASA So-
cioeconomic Data and Applications Center (SEDAC), Palisades,
NY, https://doi.org/10.7927/H49C6VHW (last access: 27 April
2022), 2018.

Dlugokencky, E., Crotwell, A., Mund, J., Crotwell, M., and
Thoning, K.: Atmospheric Sulfur Hexafluoride Dry Air Mole
Fractions from the NOAA GML Carbon Cycle Cooperative
Global Air Sampling Network, 1997-2019, Version: 2020-07,
https://doi.org/10.15138/p646-pa37, 2020.

Dutton, G., Elkins, J., Hall, B., and NOAA ESRL: Earth System
Research Laboratory Halocarbons and Other Atmospheric Trace
Gases Chromatograph for Atmospheric Trace Species (CATS)
Measurements, Version 1, NOAA National Centers for Environ-
mental Information, https://doi.org/10.7289/V5X0659V, 2017.

Fang, X., Thompson, R. L., Saito, T., Yokouchi, Y., Kim, J.,
Li, S., Kim, K. R., Park, S., Graziosi, F.,, and Stohl, A.:
Sulfur hexafluoride (SFg) emissions in East Asia determined
by inverse modeling, Atmos. Chem. Phys., 14, 4779-4791,
https://doi.org/10.5194/acp-14-4779-2014, 2014.

Fang, X., Stohl, A., Yokouchi, Y., Kim, J., Li, S., Saito, T., Park,
S., and Hu, J.: Multiannual Top-Down Estimate of HFC-23
Emissions in East Asia, Environ. Sci. Technol., 49, 43454353,
https://doi.org/10.1021/es505669j, 2015.

Fang, X., Yao, B., Vollmer, M. K., Reimann, S., Liu, L., Chen,
L., Prinn, R. G., and Hu, J.: Changes in HCFC Emissions
in China During 2011-2017, Geophys. Res. Lett., 46, 10034—
10042, https://doi.org/10.1029/2019GL083169, 2019.

FLEXPART developer team: FLEXPART v10.4, FLEXPART
[code], https://www.flexpart.eu/downloads/66, last
27 April 2022.

Ganesan, A. L., Rigby, M., Zammit-Mangion, A., Manning, A. J.,
Prinn, R. G., Fraser, P. J., Harth, C. M., Kim, K.-R., Krummel,
P. B, Li, S., Miihle, J., O’Doherty, S. J., Park, S., Salameh,
P. K., Steele, L. P, and Weiss, R. F.: Characterization of un-
certainties in atmospheric trace gas inversions using hierarchi-
cal Bayesian methods, Atmos. Chem. Phys., 14, 3855-3864,
https://doi.org/10.5194/acp-14-3855-2014, 2014.

Ganshin, A., Oda, T., Saito, M., Maksyutov, S., Valsala, V., Andres,
R. J., Fisher, R. E., Lowry, D., Lukyanov, A., Matsueda, H., Nis-
bet, E. G., Rigby, M., Sawa, Y., Toumi, R., Tsuboi, K., Varlagin,
A., and Zhuravlev, R.: A global coupled Eulerian-Lagrangian
model and 1 x 1 km CO; surface flux dataset for high-resolution
atmospheric CO, transport simulations, Geosci. Model Dev., 5,
231-243, https://doi.org/10.5194/gmd-5-231-2012, 2012.

Groot Zwaaftink, C. D., Henne, S., Thompson, R. L., Dlugo-
kencky, E. J., Machida, T., Paris, J.-D., Sasakawa, M., Segers,
A., Sweeney, C., and Stohl, A.: Three-dimensional methane
distribution simulated with FLEXPART 8-CTM-1.1 constrained
with observation data, Geosci. Model Dev., 11, 4469-4487,
https://doi.org/10.5194/gmd-11-4469-2018, 2018.

Guillevic, M., Vollmer, M. K., Wyss, S. A., Leuenberger,
D., Ackermann, A., Pascale, C., Niederhauser, B., and
Reimann, S.: Dynamic—gravimetric preparation of metro-

access:

https://doi.org/10.5194/gmd-15-8295-2022



M. Vojta et al.: Evaluation of Lagrangian models for GHG inversions 8321

logically traceable primary calibration standards for halo-
genated greenhouse gases, Atmos. Meas. Tech., 11, 3351-3372,
https://doi.org/10.5194/amt-11-3351-2018, 2018.

Henne, S., Brunner, D., Oney, B., Leuenberger, M., Eugster, W,
Bamberger, 1., Meinhardt, F., Steinbacher, M., and Emmeneg-
ger, L.: Validation of the Swiss methane emission inventory
by atmospheric observations and inverse modelling, Atmos.
Chem. Phys., 16, 3683-3710, https://doi.org/10.5194/acp-16-
3683-2016, 2016.

Henne, S., Brunner, D., Groot Zwaaftink, C., and Stohl, A.: FLEX-
PART 8-CTM-1.1: Atmospheric Lagrangian Particle Dispersion
Model for global tracer transport (8-CTM-1.1), Zenodo [code],
https://doi.org/10.5281/zenodo.1249190, 2018.

Hersbach, H., de Rosnay, P., Bell, B., Schepers, D., Simmons,
A., Soci, C., Abdalla, S., Alonso-Balmaseda, M., Balsamo, G.,
Bechtold, P., Berrisford, P., Bidlot, J.-R., de Boisséson, E.,
Bonavita, M., Browne, P., Buizza, R., Dahlgren, P., Dee, D.,
Dragani, R., Diamantakis, M., Flemming, J., Forbes, R., Geer,
A., Haiden, T., H6lm, E., Haimberger, L., Hogan, R., Hordnyi,
A., Janiskova, M., Laloyaux, P., Lopez, P., Munoz-Sabater, J.,
Peubey, C., Radu, R., Richardson, D., Thépaut, J.-N., Vitart, F.,
Yang, X., Zs6tér, E., and Zuo, H.: Operational global reanalysis:
progress, future directions and synergies with NWP, ERA Re-
port, https://doi.org/10.21957/tkic6g3wm, 2018.

Hu, L., Andrews, A. E., Thoning, K. W., Sweeney, C., Miller, J.
B., Michalak, A. M., Dlugokencky, E., Tans, P. P, Shiga, Y. P.,
Mountain, M., Nehrkorn, T., Montzka, S. A., McKain, K., Kofler,
J., Trudeau, M., Michel, S. E., Biraud, S. C., Fischer, M. L., Wor-
thy, D. E. J., Vaughn, B. H., White, J. W. C., Yadav, V., Basu, S.,
and van der Velde, I. R.: Enhanced North American carbon up-
take associated with El Nifio, Science Advances, 5, eaaw0076,
https://doi.org/10.1126/sciadv.aaw0076, 2019.

IPCC: Summary for Policymakers, in: Global Warming of 1.5°C.
An IPCC Special Report on the impacts of global warming
of 1.5°C above pre-industrial levels and related global green-
house gas emissions pathways, in the context of strengthening
the global response to the threat of climate change, sustianable
development, and efforts to eradicate poverty, edited by: Masson-
Delmotte, V., Zhai, P., Portner, H. O., Roberts, D., Skea, J.,
Shukla, P. R., Pirani, A., Moufouma-Okia, W., Péan, C., Pid-
cock, R., Connors, S., Matthews, J. B. R., Chen, Y., Zhou, X.,
Gomis, M. L., Lonnoy, E., Maycock, T., Tignor, M., and Water-
field, T., World Meteorological Organization, Geneva, Switzer-
land, 32, https://ipcc.ch/report/sr15 (last access: 27 April 2022),
2018.

Keller, C. A., Hill, M., Vollmer, M. K., Henne, S., Brunner,
D., Reimann, S., O’Doherty, S., Arduini, J., Maione, M., Fer-
enczi, Z., Haszpra, L., Manning, A. J., and Peter, T.: European
emissions of halogenated greenhouse gases inferred from at-
mospheric measurements, Environ. Sci. Technol., 46, 217-225,
https://doi.org/10.1021/es202453j, 2012.

Koyama, Y., Maksyutov, S., Mukai, H., Thoning, K., and Tans,
P.: Simulation of variability in atmospheric carbon dioxide us-
ing a global coupled Eulerian — Lagrangian transport model,
Geosci. Model Dev., 4, 317-324, https://doi.org/10.5194/gmd-4-
317-2011, 2011.

Leip, A., Skiba, U., Vermeulen, A., and Thompson, R. L.: A com-
plete rethink is needed on how greenhouse gas emissions are

https://doi.org/10.5194/gmd-15-8295-2022

quantified for national reporting, Atmos. Environ., 174, 237-240,
https://doi.org/10.1016/j.atmosenv.2017.12.006, 2017.

Lunt, M. F, Rigby, M., Ganesan, A. L., and Manning, A. J.: Esti-
mation of trace gas fluxes with objectively determined basis func-
tions using reversible-jump Markov chain Monte Carlo, Geosci.
Model Dev., 9, 3213-3229, https://doi.org/10.5194/gmd-9-3213-
2016, 2016.

Maione, M., Graziosi, F., Arduini, J., Furlani, F,, Giostra, U.,
Blake, D. R., Bonasoni, P, Fang, X., Montzka, S. A., O’Doherty,
S. J.,, Reimann, S., Stohl, A., and Vollmer, M. K.: Esti-
mates of European emissions of methyl chloroform using a
Bayesian inversion method, Atmos. Chem. Phys., 14, 9755-
9770, https://doi.org/10.5194/acp-14-9755-2014, 2014.

Manning, A. J., Redington, A. L., Say, D., O’Doherty, S., Young,
D., Simmonds, P. G., Vollmer, M. K., Miihle, J., Arduini, J.,
Spain, G., Wisher, A., Maione, M., Schuck, T. J., Stanley, K.,
Reimann, S., Engel, A., Krummel, P. B., Fraser, P. J., Harth, C.
M., Salameh, P. K., Weiss, R. F., Gluckman, R., Brown, P. N.,
Watterson, J. D., and Arnold, T.: Evidence of a recent decline in
UK emissions of hydrofluorocarbons determined by the INTEM
inverse model and atmospheric measurements, Atmos. Chem.
Phys., 21, 12739-12755, https://doi.org/10.5194/acp-21-12739-
2021, 2021.

Miller, B. R., Weiss, R. F., Salameh, P. K., Tanhua, T., Gre-
ally, B. R., Miihle, J., and Simmonds, P. G.: Medusa: A Sam-
ple Preconcentration and GC/MS Detector System for in Situ
Measurements of Atmospheric Trace Halocarbons, Hydrocar-
bons, and Sulfur Compounds, Anal. Chem., 80, 1536-1545,
https://doi.org/10.1021/ac702084k, 2008.

Monteil, G. and Scholze, M.: Regional CO, inversions
with LUMIA, the Lund University Modular Inversion
Algorithm, v1.0, Geosci. Model Dev., 14, 3383-3406,
https://doi.org/10.5194/gmd-14-3383-2021, 2021.

Myhre, G., Shindell, D., Bréon, F.-M., Collins, W., Fuglestvedt,
J., Huang, J., Koch, D., Lamarque, J.-F, Lee, D., Men-
doza, B., Nakajima, T., Robock, A., Stephens, G., Takemura,
T., and Zhang, H.: Anthropogenic and natural radiative forc-
ing, Cambridge University Press, Cambridge, UK, 659-740,
https://doi.org/10.1017/CB09781107415324.018, 2013.

NOAA Carbon Cycle Group ObsPack Team: Multi-laboratory com-
pilation of atmospheric sulfure hexafluoride data for the period
1983-2017; obspack_sf6_1_v2.1.1_2018-08-17; NOAA Earth
System Research Laboratory, Global Monitoring Division [data
set], https://doi.org/10.25925/20180817, 2018.

NOAA, Earth System Research Laboratory (ESRL): NOAA Earth
System Research Laboratoriy: Sulfur Hexafluoride (SF6) WMO
Scale, https://gml.noaa.gov/ccl/sf6_scale.html (last access: 27
May 2022), 2014.

NOAA, Earth System Research Laboratory (ESRL): SF6 time
series, NOAA, Earth System Research Laboratories [data
set], https://gml.noaa.gov/dv/data/index.php?parameter_name=
Sulfur%2BHexafluoride&type=Insitu&frequency=Hourly %
2BAverages, all stations, hourly data, last access: 27 April 2022.

O’Doherty, S., Simmonds, P., Cunnold, D., Wang, H., Sturrock, G.,
Fraser, P, Ryall, D., Derwent, R., Weiss, R., Salameh, P., Miller,
B. R., and Prinn, R. G.: In situ chloroform measurements at Ad-
vanced Global Atmospheric Gases Experiment atmospheric re-
search stations from 1994 to 1998, J. Geophys. Res.-Atmos., 106,
20429-20444, https://doi.org/10.1029/2000JD900792, 2001.

Geosci. Model Dev., 15, 8295-8323, 2022



8322 M. Vojta et al.: Evaluation of Lagrangian models for GHG inversions

Pisso, I, Sollum, E., Grythe, H., Kristiansen, N. I., Cas-
siani, M., Eckhardt, S., Arnold, D., Morton, D., Thomp-
son, R. L., Groot Zwaaftink, C. D., Evangeliou, N., Sode-
mann, H., Haimberger, L., Henne, S., Brunner, D., Burkhart,
J. F, Fouilloux, A., Brioude, J., Philipp, A., Seibert, P, and
Stohl, A.: The Lagrangian particle dispersion model FLEX-
PART version 10.4, Geosci. Model Dev., 12, 4955-4997,
https://doi.org/10.5194/gmd-12-4955-2019, 2019.

Prinn, R. G., Weiss, R. F, Fraser, P. J., Simmonds, P. G., Cunnold,
D. M., Alyea, F. N., O’Doherty, S., Salameh, P., Miller, B. R.,
Huang, J., Wang, R. H. J., Hartley, D. E., Harth, C., Steele, L. P.,
Sturrock, G., Midgley, P. M., and McCulloch, A.: A history of
chemically and radiatively important gases in air deduced from
ALE/GAGE/AGAGE, J. Geophys. Res.-Atmos., 105, 17751-
17792, https://doi.org/10.1029/2000JD900141, 2000.

Prinn, R. G., Weiss, R. F,, Arduini, J., Arnold, T., DeWitt, H. L.,
Fraser, P. J., Ganesan, A. L., Gasore, J., Harth, C. M., Her-
mansen, O., Kim, J., Krummel, P. B,, Li, S., Loh, Z. M., Lun-
der, C. R., Maione, M., Manning, A. J., Miller, B. R., Mitrevski,
B., Miihle, J., O’Doherty, S., Park, S., Reimann, S., Rigby, M.,
Saito, T., Salameh, P. K., Schmidt, R., Simmonds, P. G., Steele,
L. P, Vollmer, M. K., Wang, R. H., Yao, B., Yokouchi, Y., Young,
D., and Zhou, L.: History of chemically and radiatively impor-
tant atmospheric gases from the Advanced Global Atmospheric
Gases Experiment (AGAGE), Earth Syst. Sci. Data, 10, 985—
1018, https://doi.org/10.5194/essd-10-985-2018, 2018.

Ravishankara, A. R., Solomon, S., Turnipseed, A. A,
and Warren, R. F.: Atmospheric lifetimes of long-
lived halogenated species, Science, 259, 194-199,
https://doi.org/10.1126/science.259.5092.194, 1993.

Rigby, M., Manning, A. J., and Prinn, R. G.: Inversion of long-lived
trace gas emissions using combined Eulerian and Lagrangian
chemical transport models, Atmos. Chem. Phys., 11, 9887-9898,
https://doi.org/10.5194/acp-11-9887-2011, 2011.

Rigby, M., Prinn, R. G., O’Doherty, S., Montzka, S. A., McCulloch,
A., Harth, C. M., Miihle, J., Salameh, P. K., Weiss, R. F., Young,
D., Simmonds, P. G., Hall, B. D., Dutton, G. S., Nance, D., Mon-
deel, D. J., Elkins, J. W., Krummel, P. B., Steele, L. P., and
Fraser, P. J.: Re-evaluation of the lifetimes of the major CFCs and
CH3CCl3 using atmospheric trends, Atmos. Chem. Phys., 13,
2691-2702, https://doi.org/10.5194/acp-13-2691-2013, 2013.

Rodenbeck, C., Gerbig, C., Trusilova, K., and Heimann, M.: A two-
step scheme for high-resolution regional atmospheric trace gas
inversions based on independent models, Atmos. Chem. Phys.,
9, 5331-5342, https://doi.org/10.5194/acp-9-5331-2009, 2009.

Ruckstuhl, A. F., Henne, S., Reimann, S., Steinbacher, M., Vollmer,
M. K., O’Doherty, S., Buchmann, B., and Hueglin, C.: Ro-
bust extraction of baseline signal of atmospheric trace species
using local regression, Atmos. Meas. Tech., 5, 2613-2624,
https://doi.org/10.5194/amt-5-2613-2012, 2012.

Ryall, D. B, Derwent, R. G., Manning, A. J., Simmonds, P. G., and
O’Dobherty, S.: Estimating source regions of European emissions
of trace gases from observations at Mace Head, Atmos. Environ.,
35, 2507-2523, https://doi.org/10.1016/S1352-2310(00)00433-
7,2001.

Rypdal, K., Stordal, F., Fuglestvedt, J., and Berntsen, T.:
Introducing  top-down methods in assessing compli-
ance with the Kyoto Protocol, Clim. Policy, 5, 393-405,
https://doi.org/10.1080/14693062.2005.9685565, 2005.

Geosci. Model Dev., 15, 8295-8323, 2022

Saito, T., Yokouchi, Y., Stohl, A., Taguchi, S., and Mukai, H.: Large
Emissions of Perfluorocarbons in East Asia Deduced from Con-
tinuous Atmospheric Measurements, Environ. Sci. Technol., 44,
4089-4095, https://doi.org/10.1021/es1001488, 2010.

Schoenenberger, F., Henne, S., Hill, M., Vollmer, M. K.,
Kouvarakis, G., Mihalopoulos, N., O’Doherty, S., Maione,
M., Emmenegger, L., Peter, T., and Reimann, S.. Abun-
dance and sources of atmospheric halocarbons in the East-
ern Mediterranean, Atmos. Chem. Phys., 18, 4069-4092,
https://doi.org/10.5194/acp-18-4069-2018, 2018.

Seibert, P. and Frank, A.: Source-receptor matrix calculation with
a Lagrangian particle dispersion model in backward mode, At-
mos. Chem. Phys., 4, 51-63, https://doi.org/10.5194/acp-4-51-
2004, 2004.

Simmonds, P. G., Rigby, M., Manning, A. J., Lunt, M. F,
O’Doherty, S., McCulloch, A., Fraser, P. J., Henne, S., Vollmer,
M. K., Miihle, J., Weiss, R. F.,, Salameh, P. K., Young, D.,
Reimann, S., Wenger, A., Arnold, T., Harth, C. M., Krummel,
P. B, Steele, L. P, Dunse, B. L., Miller, B. R., Lunder, C. R.,
Hermansen, O., Schmidbauer, N., Saito, T., Yokouchi, Y., Park,
S., Li, S., Yao, B., Zhou, L. X., Arduini, J., Maione, M., Wang,
R. H.J., Ivy, D., and Prinn, R. G.: Global and regional emissions
estimates of 1,1-difluoroethane (HFC-152a, CH3CHF,) from in
situ and air archive observations, Atmos. Chem. Phys., 16, 365—
382, https://doi.org/10.5194/acp-16-365-2016, 2016.

Simmonds, P. G., Rigby, M., McCulloch, A., Vollmer, M. K.,
Henne, S., Miihle, J., O’Doherty, S., Manning, A. J., Krum-
mel, P. B, Fraser, P. J., Young, D., Weiss, R. F., Salameh, P.
K., Harth, C. M., Reimann, S., Trudinger, C. M., Steele, L.
P, Wang, R. H. J., Ivy, D. J., Prinn, R. G., Mitrevski, B., and
Etheridge, D. M.: Recent increases in the atmospheric growth
rate and emissions of HFC-23 (CHF3) and the link to HCFC-
22 (CHCIF,) production, Atmos. Chem. Phys., 18, 4153-4169,
https://doi.org/10.5194/acp-18-4153-2018, 2018.

Simmonds, P. G., Rigby, M., Manning, A. J., Park, S., Stanley, K.
M., McCulloch, A., Henne, S., Graziosi, F., Maione, M., Ar-
duini, J., Reimann, S., Vollmer, M. K., Miihle, J., O’Doherty, S.,
Young, D., Krummel, P. B., Fraser, P. J., Weiss, R. F., Salameh,
P. K., Harth, C. M., Park, M.-K., Park, H., Arnold, T., Rennick,
C., Steele, L. P, Mitrevski, B., Wang, R. H. J., and Prinn, R.
G.: The increasing atmospheric burden of the greenhouse gas
sulfur hexafluoride (SFg), Atmos. Chem. Phys., 20, 7271-7290,
https://doi.org/10.5194/acp-20-7271-2020, 2020.

Stohl, A., Hittenberger, M., and Wotawa, G.: Validation of the la-
grangian particle dispersion model FLEXPART against large-
scale tracer experiment data, Atmos. Environ., 32, 4245-4264,
https://doi.org/10.1016/S1352-2310(98)00184-8, 1998.

Stohl, A., Forster, C., Frank, A., Seibert, P., and Wotawa, G.:
Technical note: The Lagrangian particle dispersion model
FLEXPART version 6.2, Atmos. Chem. Phys., 5, 2461-2474,
https://doi.org/10.5194/acp-5-2461-2005, 2005.

Stohl, A., Seibert, P., Arduini, J., Eckhardt, S., Fraser, P., Gre-
ally, B. R., Lunder, C., Maione, M., Miihle, J., O’Doherty, S.,
Prinn, R. G., Reimann, S., Saito, T., Schmidbauer, N., Sim-
monds, P. G., Vollmer, M. K., Weiss, R. F., and Yokouchi, Y.:
An analytical inversion method for determining regional and
global emissions of greenhouse gases: Sensitivity studies and
application to halocarbons, Atmos. Chem. Phys., 9, 1597-1620,
https://doi.org/10.5194/acp-9-1597-2009, 2009.

https://doi.org/10.5194/gmd-15-8295-2022



M. Vojta et al.: Evaluation of Lagrangian models for GHG inversions

Stohl, A., Kim, J., Li, S., O’Doherty, S., Miihle, J., Salameh,
P. K., Saito, T., Vollmer, M. K., Wan, D., Weiss, R. F,
Yao, B., Yokouchi, Y., and Zhou, L. X.: Hydrochlorofluoro-
carbon and hydrofluorocarbon emissions in East Asia deter-
mined by inverse modeling, Atmos. Chem. Phys., 10, 3545-
3560, https://doi.org/10.5194/acp-10-3545-2010, 2010.

Sweeney, C., Karion, A., Wolter, S., Newberger, T., Guenther,
D., Higgs, J. A., Andrews, A. E., Lang, P. M., Neff, D., Dlu-
gokencky, E., Miller, J. B., Montzka, S. A., Miller, B. R.,
Masarie, K. A., Biraud, S. C., Novelli, P. C., Crotwell, M.,
Crotwell, A. M., Thoning, K., and Tans, P. P.: Seasonal Cli-
matology of CO, across North America from Aircraft Mea-
surements in the NOAA/ESRL Global Greenhouse Gas Ref-
erence Network, J. Geophys. Res.-Atmos., 120, 5155-5190,
https://doi.org/10.1002/2014JD022591, 2015.

Tarantola, A.: Inverse Problem Theory and Methods for Model Pa-
rameter Estimation, Society for Industrial and Applied Mathe-
matics, 1-67, https://doi.org/10.1137/1.9780898717921, 2005.

Thacker, W. C.. Data assimilation with  inequal-
ity constraints, Ocean Model., 16, 264-276,
https://doi.org/10.1016/j.ocemod.2006.11.001, 2007.

Thompson, R. L.. FLEXINVERT+, NILU [code], https://
flexinvert.nilu.no/downloads/flexinvertplus.tar.gz, last access:
27 April 2022.

Thompson, R. L. and Stohl, A.: FLEXINVERT: an atmospheric
Bayesian inversion framework for determining surface fluxes of
trace species using an optimized grid, Geosci. Model Dev., 7,
2223-2242, https://doi.org/10.5194/gmd-7-2223-2014, 2014.

Thompson, R. L., Stohl, A., Zhou, L. X., Dlugokencky, E.,
Fukuyama, Y., Tohjima, Y., Kim, S.-Y., Lee, H., Nisbet, E.
G., Fisher, R. E., Lowry, D., Weiss, R. F., Prinn, R. G.,
O’Doherty, S., Young, D., and White, J. W. C.: Methane emis-
sions in East Asia for 2000-2011 estimated using an atmospheric
Bayesian inversion, J. Geophys. Res.-Atmos., 120, 4352-4369,
https://doi.org/10.1002/2014JD022394, 2015.

Thompson, R. L., Sasakawa, M., Machida, T., Aalto, T., Worthy,
D., Lavric, J. V., Lund Myhre, C., and Stohl, A.: Methane fluxes
in the high northern latitudes for 2005-2013 estimated using a
Bayesian atmospheric inversion, Atmos. Chem. Phys., 17, 3553—
3572, https://doi.org/10.5194/acp-17-3553-2017, 2017.

Trusilova, K., Rodenbeck, C., Gerbig, C., and Heimann, M.: Techni-
cal Note: A new coupled system for global-to-regional downscal-
ing of CO; concentration estimation, Atmos. Chem. Phys., 10,
3205-3213, https://doi.org/10.5194/acp-10-3205-2010, 2010.

UNFCCC: United Nations Framework Convention on Climate
Change, https://di.unfccc.int/time_series, last access: 10 March
2021.

Villani, M. G., Bergamaschi, P., Krol, M., Meirink, J. F., and Den-
tener, F.: Inverse modeling of European CH, emissions: sensitiv-
ity to the observational network, Atmos. Chem. Phys., 10, 1249—
1267, https://doi.org/10.5194/acp-10-1249-2010, 2010.

Vojta, M.: Supplementary for Vojta et al., 2022, GMD, Universitit
Wien [code], https://doi.org/10.25365/phaidra.339, 2022.

Vollmer, M. K., Zhou, L. X., Greally, B. R., Henne, S., Yao, B.,
Reimann, S., Stordal, F., Cunnold, D. M., Zhang, X. C., Maione,
M., Zhang, F.,, Huang, J., and Simmonds, P. G.: Emissions of
ozone-depleting halocarbons from China, Geophys. Res. Lett.,
36, L15823, https://doi.org/10.1029/2009GL038659, 2009.

https://doi.org/10.5194/gmd-15-8295-2022

8323

Vollmer, M. K., Miihle, J., Trudinger, C. M., Rigby, M., Montzka,
S. A., Harth, C. M., Miller, B. R., Henne, S., Krummel, P. B.,
Hall, B. D., Young, D., Kim, J., Arduini, J., Wenger, A., Yao, B.,
Reimann, S., O’Doherty, S., Maione, M., Etheridge, D. M., Li,
S., Verdonik, D. P,, Park, S., Dutton, G., Steele, L. P., Lunder, C.
R.,Rhee, T. S., Hermansen, O., Schmidbauer, N., Wang, R. H. J.,
Hill, M., Salameh, P. K., Langenfelds, R. L., Zhou, L., Blunier,
T., Schwander, J., Elkins, J. W., Butler, J. H., Simmonds, P. G.,
Weiss, R. F, Prinn, R. G., and Fraser, P. J.: Atmospheric histo-
ries and global emissions of halons H-1211 (CBrCIF;), H-1301
(CBrF3), and H-2402 (CBrF,CBrF,), J. Geophys. Res.-Atmos.,
121, 3663-3686, https://doi.org/10.1002/2015JD024488, 2016.

WDCGG: World Data Centre for Greenhouse Gases, https:/gaw.
kishou.go.jp/ (last access: 27 April 2022), 2018.

Weiss, R. F. and Prinn, R. G.: Quantifying greenhouse-gas emis-
sions from atmospheric measurements: a critical reality check
for climate legislation, Philos. T. Roy. Soc. A, 369, 1925-1942,
https://doi.org/10.1098/rsta.2011.0006, 2011.

Weiss, R. F.,, Ravishankara, A. R., and Newman, P. A.: Huge gaps
in detection networks plague emissions monitoring, Nature, 595,
491-493, https://doi.org/10.1038/d41586-021-01967-z, 2021.

World Bank: Electric power consumption, https://data.worldbank.
org/indicator/EG.USE.ELEC.KH.PC (last access: 27 April
2022), 2021.

World Meteorological Organization (WMO): World Data Centre of
Greenhouse Gases — SF6 time series, WMO [data set], https:/
gaw.kishou.go.jp/search/file/0077-6020-1004-01-01-9999, year
2011 and 2012, last access: 27 April 2022a.

World Meteorological Organization (WMO): World Data Centre of
Greenhouse Gases — SF6 time series, WMO [data set], https:/
gaw.kishou.go.jp/search/file/0071-6031-1004-01-01-9999, year
2011 and 2012, last access: 27 April 2022b.

World Meteorological Organization (WMO): World Data Centre of
Greenhouse Gases — SF6 time series, WMO [data set], https://
gaw.kishou.go.jp/search/file/0003-1002-1004-01-01-9999, year
2011 and 2012, last access: 27 April 2022c.

World Meteorological Organization (WMO): World Data Centre of
Greenhouse Gases — SF6 time series, WMO [data set], https://
gaw.kishou.go.jp/search/file/0053-2008-1004-01-01-9999, year
2011 and 2012, last access: 27 April 2022d.

‘World Meteorological Organization (WMO): World Data Centre of
Greenhouse Gases — SF6 time series, WMO [data set], https:/
gaw.kishou.go.jp/search/file/0002-4020-1004-01-02-3005, year
2011 and 2012, last access: 27 April 2022e.

Yokouchi, Y., Taguchi, S., Saito, T., Tohjima, Y., Tani-
moto, H., and Mukai, H.: High frequency measurements of
HFCs at a remote site in east Asia and their implications
for Chinese emissions, Geophys. Res. Lett., 33, L21814,
https://doi.org/10.1029/2006GL026403, 2006.

Zeng, J., Nakajima, H., Matsunaga, T., Mukai, H., Hiraki, K., and
Yokota, Y.: Linking carbon dioxide variability at Hateruma sta-
tion to East Asia emissions by Bayesian inversion, in: Lagrangian
Modeling of the Atmosphere, Geophys. Monogr. Ser., 200, 163—
172, https://doi.org/10.1029/2012GM001245, 2012.

Zhao, C., Andrews, A. E., Bianco, L., Eluszkiewicz, J., Hirsch,
A., MacDonald, C., Nehrkorn, T., and Fischer, M. L.: At-
mospheric Inverse Estimates of Methane Emissions from
Central California, J. Geophys. Res.-Atmos., 114, D16302,
https://doi.org/10.1029/20081D011671, 2009.

Geosci. Model Dev., 15, 8295-8323, 2022



Chapter 4

A global re-analysis of regionally resolved
emissions and atmospheric mole fractions of
SFO6 for the period 2005-2021

Overview

This atmospheric inversion study determines the global distribution of SFg emissions, ana-
lyzed at both global and regional levels between 2005 and 2021. The study is characterized
by a large observational dataset employed, including continuous surface station measure-
ments, flask measurements, and data from aircraft and ship campaigns, while also multiple
a priori emission fields are considered for the inversion process. In order to determine initial
conditions, global SFg measurements are assimilated into modeled global three-dimensional
mole fraction fields, creating an atmospheric re-analysis spanning from 2005 to 2021.
National, regional, and global SFg emission trends are discussed on an annual level, while
also the seasonal variation in emissions is investigated.

Own contributions

Conceptualization, investigation, methodology, modeling, formal analysis, visualization,
writing. My contribution to this publication is estimated to be about 90%.
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Abstract. We determine the global emission distribution of the potent greenhouse gas sulfur hexafluoride (SFg) for the period
2005-2021 using inverse modeling. The inversion is based on 50-day backward simulations with the Lagrangian Particle
Dispersion Model (LPDM) FLEXPART and on a comprehensive observation data set of SFg mole fractions, in which we
combine continuous with flask measurements sampled at fixed surface locations, and observations from aircraft and ship
campaigns. We use a global distribution-based (GDB) approach to determine baseline mole fractions directly from global
SFg mole fraction fields at the termination points of the backward trajectories. We compute these fields by performing an
atmospheric SF¢ re-analysis, assimilating global SFg observations into modeled global three-dimensional mole fraction fields.
Our inversion results are in excellent agreement with several regional inversion studies in the USA, Europe, and China. We
find that (1) annual U.S. SFs emissions strongly decreased from 1.25 Gg in 2005 to 0.48 Gg in 2021, however, they were on
average twice as high as the reported emissions to the United Nations. (2) SFg emissions from EU countries show an average
decreasing trend of -0.006 Gg/yr during the period 2005 to 2021, including a substantial drop in 2018. This drop is likely a
direct result of the EU’s F-gas regulation 517/2014, which bans the use of SF¢ for recycling magnesium die-casting alloys
from 2018 and requires leak detection systems for electrical switch gear. (3) Chinese annual emissions grew from 1.28 Gg
in 2005 to 5.16 Gg in 2021, with a trend of 0.21 Gg/yr, which is even higher than the average global total emission trend of
0.20 Gg/yr. (4) National reports for the USA, Europe, and China all underestimated their SFg emissions. (5) The global total
SFg emissions are captured well by the inversion, however, results are sensitive to the a priori emission estimates, given that
substantial biases of these estimates in regions poorly covered by the measurement network (e.g. Africa, South America) can
be improved but not entirely corrected. (6) Monthly inversions indicate that SF; emissions in the Northern Hemisphere were

on average higher in summer than in winter throughout the study period.
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1 Introduction

Sulfur hexafluoride (SFg) is the greenhouse gas (GHG) with the highest known Global Warming Potential (GWP), 24,300,
over a 100-year time horizon (Smith et al., 2021). However, this GWP-100 value might still underplay the climate impact of
this gas. Once emitted, SFg accumulates in the atmosphere, as it is only slowly degraded via photolysis and electron attachment
(Ravishankara et al., 1993) resulting in a very long atmospheric lifetime, with estimates ranging from 580 to 3200 years (Kovacs
et al., 2017; Patra et al., 1997; Ravishankara et al., 1993; Ray et al., 2017). The ocean also acts as a sink for atmospheric SFg,
however, its magnitude is debated, with estimates ranging up to 7% of the global annual emissions (Ni et al., 2023). Regardless
of its exact lifetime and possible ocean sink, SFg emissions will cause a positive radiative forcing for hundreds of years. Thus,
GWPs, which are typically given for time horizons of 20 or 100 years, underestimate the climate impact of SF¢ on longer time
scales.

Since the early 2000s, global concentrations of SFg have undergone a rapid increase, more than doubling from roughly
4.5 ppt in 2000 to 10 ppt in 2020 (Lan et al., 2024). In 2020, the radiative forcing of SFg was 5.9 mW/m? (Laube et al., 2023).
This value could surge tenfold by the end of the 21st century if the upward trend in global SFg emissions persists, as pointed
out by Hu et al. (2023).

SFg plays a crucial role in various industrial applications due to its remarkable insulating properties and chemical stability
(e.g. Cui et al., 2024). It is primarily used in high-voltage electrical equipment in the power industry, such as gas-insulated
switch gears (IEEE, 2012), transmission lines (Koch, 2008), and transformers (Gouda et al., 2012), where it acts as a dielectric
and insulator. Here, emissions occur primarily during leakage, maintenance, and decommissioning of equipment (Zhou et al.,
2018). Furthermore, SFg finds applications in semiconductor manufacturing, facilitating precise etching processes (Lee et al.,
2004) and serves for blanketing or degassing in the magnesium or aluminum metal industry (Maiss and Brenninkmeijer, 1998).
Moreover, it is used in medicine (Lee et al., 2017; Brinton and Wilkinson, 2009), photovoltaic manufacturing (Andersen et al.,
2014), military applications (Koch, 2004), particle accelerators (Lichter et al., 2023), as a tracer gas (Martin et al., 2011),
soundproof glazing (Schwarz, 2005), sports shoes (Pedersen, 2000), car tyres (Schwaab, 2000), wind turbines (EPA, 2023),
and SFg measurements were used to determine OH radical concentrations in the stratosphere and troposphere (Li et al., 2018a).

SFg is regulated under the Kyoto Protocol. Thus, countries classified as ("developed") Annex-I nations must submit reports
detailing their SFg emissions to the United Nations Framework Convention on Climate Change (UNFCCC). These national
inventories are almost exclusively created by bottom-up methods, wherein statistical data of industrial production and con-
sumption are used along with source-specific emission factors to estimate the emissions. However, SF¢ emissions have been
shwn to be strongly underestimated by the bottom-up reports, underlining the need for independent verification methods (Levin
et al., 2010). Therefore, bottom-up approaches such as inverse modeling on the basis of atmospheric measurements have been
used in several studies to estimate SFg emissions (e.g., Brunner et al., 2017; Fang et al., 2014; Ganesan et al., 2014; Hu et al.,
2023; Rigby et al., 2011; Simmonds et al., 2020; Vojta et al., 2022).

Around the year 2000, there was a notable shift in the global SF¢ emission pattern from a declining to an increasing trend,

which has continued since then (Simmonds et al., 2020). This rising trend was primarily attributed to the increasing emissions
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from (“developing”) non-Annex-I Asian countries (Rigby et al., 2010). An inversion study by Fang et al. (2014) confirmed a
strong increase in East Asian SFg emissions between 2006 and 2009, and found its contribution to the global total emissions
to be 45%-49% between 2009 and 2012, with China being the largest contributor. Several other inversion studies identified
China as the major contributor to global SFg emissions (e.g., Ganesan et al., 2014; Rigby et al., 2011; Vojta et al., 2022). From
2007 to 2018 China’s annual emissions increased from 1.4 to 3.2 Gg/yr accounting for 36% of the global total emissions in
2018, according to Simmonds et al. (2020). A recent inversion study by An et al. (2024) had access to data from a relatively
dense monitoring network inside China and estimated even higher Chinese emissions, with an increase from 2.6 Gg/yr in
2011 to 5.1 Gg/yr in 2021. Simmonds et al. (2020) also constrained Western European SF emissions for the years 2013-2018
using three different regional inversion systems. Two of these inversion systems closely matched the emissions reported to the
UNFCCC, while the third one indicated substantially higher emissions. Brunner et al. (2017) found that Western European
SFg emissions were 47% higher than reported to the UNFCCC for the year 2011. As part of the UK annual report to the
UNFCCC, Manning et al. (2022) reported inversion results for SFg emissions in North-West Europe and found a decreasing
trend, dropping from 0.37 Gg/yr in 2004 to 0.18 Gg/yr in 2021. An atmospheric inversion study by Hu et al. (2023) found that
annual U.S. SFs emissions decreased between 2007 and 2018 but were on an annual basis 40 — 250% higher than calculated
by the U.S. Environmental Protection Agency’s national inventory submitted to UNFCCC. They also suggested that U.S. SFg
emissions were substantially higher in the winter than in the summer.

Up to this point, SFg inversion studies have exclusively been focusing on specific geographical areas, i.e., using regional
inversions only. Although global observation-based box models, such as the AGAGE 12-box model (e.g., Rigby et al., 2013)
are considered to be capable of accurately determining the global total emissions, a comprehensive top-down perspective of the
global SF¢ emission distribution is missing. Moreover, existing inversion studies often only use data from continuous surface
station measurements or from specific observation networks, potentially missing valuable information from other available
observations. In the absence of accurate global SFg mole fraction fields, many studies use statistical observation-based methods
to determine initial conditions for their inversions, which are suspected of introducing systematic errors in the inversion results
(Vojta et al., 2022). Lastly, the seasonality of SF¢ emissions has not been considered by inversion studies so far, with the
exception of the recent study by Hu et al. (2023).

Our study offers a comprehensive global, regionally resolved top-down perspective of SFg emissions, using inverse modeling
to determine the global emission distribution in the period between 2005 and 2021. We use all available SFg observations that
we could track down by merging continuous surface station measurements, flask measurements, and observations from aircraft
and ship campaigns. We consider multiple a priori emission fields for our inversion. For the initial conditions (Vojta et al.,
2022), we assimilate global SF¢ observations into modeled global three-dimensional SF¢ concentration fields, resulting in an
atmospheric SFg re-analysis for the period 2005-2021. We investigate regional and national SFg emission trends with annual
and also monthly resolution, and compare our results to various existing regional studies. Finally, we discuss our global total
emission trend and compare it to results from the AGAGE 12-box model and to global emissions directly calculated from

annual increases in globally-averaged atmospheric SF¢ mole fractions provided by NOAA (Lan et al., 2024).
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2 Methods
2.1 Measurement data

The SF¢ re-analysis (Sec. 2.3) and the atmospheric inversion (Sec. 2.5) are based on globally distributed atmospheric observa-
tions of SFg dry-air mole fractions collected during the period 2005 to 2021. Our data set combines both continuous on-line
and instantaneous flask sample measurements from surface stations, with observations from moving platforms. Figure 1 shows
all surface station sites included in the inversion and the re-analysis. Figure Al gives an overview of all the measurements
from moving platforms, highlighting the measurement date and altitude with different colors. In addition, Section S3 as well
as Tables S1 (continuous surface stations), S2, S3 (flask measurement stations), and S4 (moving platforms) list all the data
sets used and give further details. The measurements were provided by several independent organizations, and by international
observation networks such as AGAGE and NOAA. Table S5 lists all the individual providers and their acronyms. Most of the
data can be found in databases like WDCGG (di Sarra et al., 2022), EBAS (Tgrseth et al., 2012), and CEDA (CEDA, 2023).
‘We standardize all observations to the SIO-2005 calibration scale, as described in section S4.

For the inversion, continuous surface measurements were averaged over 3-hour intervals. Observations from moving plat-
forms were averaged on a spatio-temporal grid with a temporal resolution of 3 hours and a spatial resolution of 0.5° in latitude,
0.5° in longitude, and 300 m in height. No observation averaging was performed for the re-analysis. Our complete dataset
consists of around 2.7 million observations, while the averaged dataset comprises roughly 800,000 observations. Figure S1

shows the total number of annual observations available for (a) the entire dataset and (b) the averaged dataset.
2.2 Atmospheric transport

We use the Lagrangian particle dispersion model (LPDM) FLEXPART 10.4 (Pisso et al., 2019) to simulate the atmospheric
transport of SFg between the emission sources and the measurement locations. The model does not account for removal
processes, as SFg is almost inert in the troposphere to middle stratosphere. We run FLEXPART in backward mode releasing
50,000 particles continuously over 3-hour intervals from the measurement locations and tracking them backward in time for 50
days. For the continuous and moving platform observations, the 3-hour intervals are identical to the 3-hour averaging windows
mentioned above (Sec. 2.1). For the flask measurements, the 3-hour intervals are centered around the measurement time.
FLEXPART determines emission sensitivities shown as linear operator H, which allows us to relate mole fraction values at
the measurement location y with the corresponding emissions e occurring during the 50-day simulation period. The emissions
prior to the simulation cannot be directly related, but still contribute to the measured mole fraction value and thus must be
accounted for in the model as well (Sec. 2.2.2). Therefore, FLEXPART also determines sensitivities to the initial conditions,
which are shown as linear operator Hj;, which is multiplied by a 3-d SFs mole fraction field y; (Sec. 2.3) 50 days before the
respective measurement to obtain the baseline H;y;. The relationship between receptor mole fractions y, initial conditions y;

and emissions e is given by:
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Figure 1. Locations of stations with continuous surface measurements (red triangles) and surface flask measurements (black dots) used in

the inversion.

y = Hee + H;y; = Hx,

120
Yi-

(¢))

where H is the complete atmospheric transport operator combining H and Hj, and x is the state vector combining e and

We run FLEXPART with hourly ECMWF ERAS5 wind fields (Hersbach et al., 2018) with 0.5°x0.5° resolution, and 137

vertical levels. The global output grid has a resolution of 1°x1° and 18 vertical layers with interface heights at 0.1, 0.5, 1, 2,

3,4,5,7,9, 11, 13, 15, 17, 20, 25, 30, 40, and 50 km agl. The emission sensitivities were calculated only for the lowest layer

125 from O to 100 m agl, where most emissions occur.
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Figure 2. Annually averaged emission sensitivities for the example year 2019 obtained from FLEXPART 50-day backward simulations

2.2.1 Enmission sensitivities

Figure 2 shows the annual averaged emission sensitivities for all observations made in the example year 2019. Areas of high
sensitivity are well covered by the measurement data set, so that emissions can be well constrained by the inversion. Emission
sensitivities in the Northern Hemisphere are much higher than in the Southern Hemisphere, and the high SFg emitting countries
China and USA are reasonably well covered. The largest values are observed in North-West Europe, which is very well
monitored by the dense British observation network. However, large land areas in the Southern Hemisphere, including South
America, Southern Africa, and Northern Australia, are poorly sampled due to a lack of continuous measurements. India, which
is considered to have high SFg emissions, is also poorly covered. In these areas, the emissions cannot be determined well by

the inversion.
2.2.2 Initial conditions

Using a LPDM to calculate emission sensitivities for atmospheric inversions, we release virtual particles directly from the
measurement location and benefit from almost infinite resolution at the receptor. The disadvantage of using a LPDM is that we
have to deal with initial conditions, as virtual particles can be followed backward only for a limited period, due to computational
costs. Only emissions that occur within this LPDM simulation period can be directly related to observed mole fraction values
and are accessible to the inversion. We, therefore, need to define a baseline that accounts for all the emission contributions
prior to the simulation period that contribute to the observed mole fraction. In this study, we use the global-distribution based
(GDB) method (Vojta et al., 2022) to determine the baseline. We couple the mole fraction sensitivity at the ending points of
the FLEXPART back trajectories to a global field of SFs mole fractions (for more details see Thompson and Stohl, 2014). In

essence, this propagates the time-resolved 3-d mole fractions in space and time along the 50-day trajectories to the receptor
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location and time. As pointed out by Vojta et al. (2022), the GDB method has many advantages over observation-based filtering
methods. GDB baselines are consistent with the LPDM backward simulation length, account for meteorological variability,
and allow the inclusion of low-frequency measurements and measurements from moving platforms in the inversion. However,

the method requires unbiased global time-resolved 3-d fields of SFg.
2.3 Global SFg fields

In this study, we generate global fields of SFs mole fractions for the period between 2005 and 2021, using the LPDM FLEX-
PART 8-CTM-1.1 (Henne et al., 2018). The model is described by Groot Zwaaftink et al. (2018), who tested its performance
for CHy, while Vojta et al. (2022) applied it to SFs. We operate FLEXPART-CTM in a domain-filling mode, where 80 million
virtual particles are dispersed globally in proportion to air density. The initialization is based on a latitudinal SF¢ profile de-
termined by interpolation of surface measurements and accounts for the "Age of Air" (Stiller et al., 2021) at higher altitudes
(for more details see Sec. S5 in the supplementary materials). Released particles are tracked forward in time and carry both
an air tracer and the chemical species SFs. When they reside in the atmospheric boundary layer, the model accounts for SFg
emissions by increasing the SFg masses of the respective particles. The emission uptake of the particles is driven by the "UP"
a priori emission data set (see Sec. 2.4).

As model errors and inaccurate emission fields lead to errors and biases in the global SF fields, a nudging routine is used to
push the simulated mole fractions towards the observations within predefined kernels centered around the measurement loca-
tions. We include the entire observation data set in the nudging routine, comprising continuous surface station measurements,
flask measurements, and observations from aircraft and ship campaigns. Furthermore, we assign different kernel sizes to indi-
vidual observations, according to the observed variability in a selected time window for stationary sites, and according to the
measurement height for moving platforms. Small kernels are attributed to observations with higher variability and observations
close to the surface to preserve the spatial variability of SFs mole fractions over land masses. Detailed kernel configurations
can be found in Table S6. We run the model with the 0.5°x0.5° ERAS data set and produce daily average output with a res-
olution of 3°x2°. The daily-resolved global SFs mole fraction fields between 2005 and 2021 can be freely downloaded from
https://doi.org/10.25365/phaidra.489.

2.4 A priori emissions

We generate six different annually resolved global SFg emission fields for the period 2005 to 2021 that are used as a priori
emissions in the inversions (Sec. 2.5). One of these fields is also used to drive FLEXPART-CTM (Sec. 2.3). Our six a priori
emissions are based on three different inventories (see Table 1) and globally gridded based on different proxy information at a

resolution of 1°x1°.
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Table 1. Overview of global SFs a priori emission fields used in this study

a priori emissions
Inventory variation distribution of total national emissions
UNFCCC-ELE UpP emissions distributed according to population density

UN emissions distributed according to night light remote sensing
EDGAR E8 v8 - distribution provided by EDGAR

E7P v7 - emissions distributed according to population density

E7N v7 - emissions distributed according to night light remote sensing

GAINS GS distribution provided by GAINS

UNFCCC-ELE

For every year, we gather total national SFg emissions reported to the UNFCCC (UNFCCC, 2021) and add total Chinese
emissions estimated by Fang et al. (2014). We then subtract the total emissions of these countries from the total global SFg
emissions calculated by Simmonds et al. (2020). The residual emissions are then distributed among all other countries pro-
portionally to their national electricity generation. Gaps in the SFg emissions or electricity generation data are filled by linear
interpolation. Lastly, the attributed total national SF¢ emissions are further distributed within the respective borders of each
country according to two different proxy data sets: (1) the gridded population density (CIESIN, 2018) (UP) and (2) night light
remote sensing data (Elvidge et al., 2021) (UN), thus resulting in two different UNFCCC-ELE a priori emission versions.

EDGAR

We use the gridded annual global SFg emission inventory provided by the Emissions Database for Global Atmospheric Re-
search (EDGAR, 2023; Crippa et al., 2023), part of the recently updated data set EDGARVS.0 (ES). In addition, we also utilize
the national annual totals of SFg emissions provided by EDGARvV7.0 (EDGAR, 2022; Crippa et al., 2021), which are not
gridded. As for the UNFCCC-ELE emissions, we distribute those national totals according to the gridded population density
(CIESIN, 2018) (E7P) or night light remote sensing (Elvidge et al., 2021) (E7N).

GAINS

Furthermore, we use the GAINS gridded global emission inventory. This inventory is based on the study by Purohit and
Hoglund-Isaksson (2017) and was updated until 2020 as described in Section S6 in the supplementary material. The provided
data set was extended to 2021 by linear extrapolation (GS).

Comparison

Emission fields from the three inventories (UNFCCC-ELE, EDGAR, and GAINS) show much stronger differences than the
two variations of UNFCCC-ELE and EDGAR generated by using different proxy information for spatial distribution. In Fig. 3,
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we therefore only compare three a priori emissions (UP, E8, and GS) for 2019, as an example. It is noteworthy that these three
emission fields show similar global total SFg emissions in 2019. Figure 3 shows significantly higher emissions in the Northern
than in the Southern Hemisphere for all three fields, with China being the biggest emitter. Other high-emitting areas are Europe,
the USA, and India. While emissions in Europe are comparable across all data sets, notable differences can be seen in other
regions: (1) UNFCCC-ELE (electricity generation distributed data for non-reporting countries) shows relatively high emissions
in India and the Southern Hemisphere compared to EDGAR and GAINS. (2) EDGAR shows higher emissions in the USA than
the other two a priori fields, and (3) GAINS exhibits higher emissions in China than UNFCCC-ELE and EDGAR.

2.5 Inversion method

‘We employ the inversion framework FLEXINVERT+ (Thompson and Stohl, 2014) to calculate optimized emissions (a posteri-
ori emissions). FLEXINVERT+ uses equation 1, the atmospheric transport operator H, a priori emissions X, initial conditions
yi, and observed mole fractions y to minimize the cost function J (Eq. 2), which represents the negative exponent of the a
posteriori emissions probability distribution, derived by Bayes’ theorem (e.g., Tarantola, 2005). The a posteriori emissions
defined by the maximum of the distribution are found by minimizing the mismatch between modeled and observed mole frac-
tions weighted by the observation error covariance matrix R, and the difference between emissions x and their a priori values

x,, weighted by the a priori emission error covariance matrix B:

J(x) = %(x fxp)TB’l(x -x,)+ %(Hx —y)R ' (Hx —y), ?2)

We optimize emissions on a 6-monthly basis and average the results for each year to obtain annual emissions between
2005 and 2021. In addition to the emissions, we also optimize the baseline (H;y;) in the inversion on a monthly basis. The
uncertainty of the baseline is set to 0.15 ppt. The a priori emission uncertainty is estimated to be 70% of the a priori value in

each grid cell with a minimum value of 1-10~13 ngh. Correlations between emission uncertainties are accounted for using an

exponential decay model with a spatial scale length of 250 km and a temporal scale length of 90 days. For the inversion, we
use emission grids with different cell sizes (Fig. 4, Fig. S2, Fig. S3), defined by the aggregation of grid cells with low emission
contributions based on emission sensitivities and a priori emissions (see Thompson and Stohl, 2014, for a detailed description).
We also exclude grid cells over the oceans from the inversion. The global inversion grid has a resolution of 1° to 16°, and the
total number of grid cells varies between years, ranging from a minimum of 5841 (2005) to a maximum of 11901 (2016). To
study the seasonal emission patterns, we also perform monthly inversions, using a coarser global inversion grid of 953 grid
cells for all years and a time scale length of 30 days for the correlation between a priori emission uncertainties.

For SFs we only expect positive fluxes over land. However, the inversion algorithm may create negative a posteriori fluxes.
To address this issue, we apply an inequality constraint on the a posteriori emissions, using the truncated Gaussian approach
by Thacker (2007). A posteriori emissions X are corrected to positive values by applying inequality constraints as error-free

observations:

x=x+APT(PAPT) ! (c — Px), 3

76



https://doi.org/10.5194/egusphere-2024-811
Preprint. Discussion started: 11 April 2024 G
© Author(s) 2024. CC BY 4.0 License. E U Sp here

(a)

60°N =

20°N 4
20°5 4
global total:
9.24 Gg/Yr
60°S 4

(b)

60°N 1

20°N A

20°S 4
global total:
8.86 Gg/Yr
60°S 4

(c)

60°N -

20°N A

20°S 4
global total:
9.07 Gg/Yr
60°S 4

150I°W QO:’W . _30:’W_ i 30I°E 90“‘E 156"E
a priori emissions [pg/s/m?]

104 107 102 107 10° 10! 102
Figure 3. A priori emissions from the different sources (a) UNFCCC-ELE (UP), (b) EDGAR (E8), and (c) GAINS (GS) for the year 2019.

where P represents a matrix operator selecting the fluxes violating the inequality constraint, and ¢ a vector of the inequality

constraint. x and A represent the a posteriori emissions and error covariance matrix, respectively.
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Figure 4. Global inversion grid with variable grid cell sizes for the example year 2019.

2.6 Sensitivity tests and setup

Before deciding on our final inversion setup, we performed several sensitivity tests. We tested different: (1) a priori emission
uncertainties between 50% and 100% of the respective a priori values and minimal absolute uncertainties between 1-10~14
L10—12 _kg
and 1-107°% 4,
180 days, respectively, and (3) baseline uncertainties from 0.05 to 0.25 ppt. We found that inversion results were relatively

stable for these different settings and that the choice of the a priori emission inventory (UNFCCC-ELE, EDGAR, or GAINS)

(2) spatial and temporal correlation scale lengths of the a priori uncertainties of 100 to 300 km, and 30 to

showed the biggest influence on the inversion results. While the inversion results were similar using different variations of the
UNFCCC-ELE (UP and UN) or EDGAR (E8, E7P, and E7N) a priori emissions (see Sec. 2.4), we found substantial differences
when switching between UNFCCC-ELE, EDGAR and GAINS. Therefore, we ran inversions with all six variations listed in
Table 1 individually and averaged the results of UP and UN, as well as E8, E7P, and E7N to compile one inversion result for
each a priori emission inventory (UNFCCC-ELE, EDGAR, and GAINS). Since it is challenging to identify the most accurate

inventory, we also provide an average of these three inversion results.
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3 Results and discussion
3.1 Observed and modeled mole fractions

To illustrate the inversion optimization process, we compare observed and modeled mole fractions at the Gosan observation
station (Fig. 5a), at the Ragged Point station (Fig. 5b), and all other continuous surface measurement sites (Fig. A2, A3, and
S4-S23), using the E7P emissions field. The Gosan station is situated on the southwestern tip of the South Korean island Jeju,
monitoring pollution events from East Asia. However, during the Asian summer monsoon, typically from June to September,
clean air from the Southern Hemisphere, low in SFg, is episodically passing over the station (e.g. Li et al., 2018b), making it
challenging to accurately define the baseline during this period. The background station Ragged Point, located on Barbados’
eastern edge, primarily receives clean air masses from the Atlantic. It also exhibits intrusions of southern air masses that are low
in SFg during the summer, resulting in distinct minima in the mole fraction time series, and a complex baseline. With the GDB
method, we can address these challenges of complex baselines. As illustrated in Fig. 5, the calculated baselines capture the
low summer observations, representing a significant advantage over statistical baseline methods. This advantage also becomes
apparent for other stations with complex baselines such as Hateruma (Japan, Fig. A2) or Izafia (Tenerife, Fig. A3). Additionally,
the optimization of the baseline shows relatively little impact at all stations, implying that the GDB method and the utilized
global SFg mole fraction fields already lead to a well-fitting baseline that cannot be improved substantially by the inversion.
This is important, as the optimization can focus on improving the emissions rather than correcting a wrong baseline. Figure 5a
also illustrates the emission improvement achieved by the inversion. The optimized a posteriori emissions result in mole
fractions that are much closer to the observations than the a priori modeled values. For Gosan, the correlation (1’2) between
(detrended) observed and modeled values improves from 65% to 81% and the mean squared error (MSE) halves from 0.4 ppt?
to 0.2 ppt. Table S7 and Fig. S24 demonstrate the statistical improvements at all continuous surface stations, emphasizing
the proper functioning of the inversion. Figure 5b further illustrates the advantage of choosing a rather long 50-day backward
simulation period. With this long simulation period, we can see that this remote station is also directly influenced by emissions
(i.e., enhancements over the baseline) that can be directly optimized. With shorter simulation times (e.g., 5-10 days), no
emission contributions above the baseline could be seen, thus rendering this station useless for emission optimization. For a

detailed discussion about the LPDM backward simulation period see Vojta et al. (2022).
3.2 Inversion increments and relative error reduction

Figure 6 shows the inversion increments (a posteriori minus a priori emissions) and the relative uncertainty reductions

(1 __ a posteriori uncertainty
a priori uncertainty

) achieved by the inversion for the example year 2019, when using the a priori emission fields
UP (UNFCCC-ELE), E8 (EDGAR) and GS (GAINS). Across all cases, the emission optimization predominantly occurs in
the Northern Hemisphere, characterized by non-zero inversion increments and large error reductions. The limited number of
observations in the Southern Hemisphere results in small emission sensitivities there (see Fig. 2), limiting the effects of the
inversion primarily to Northern Hemisphere emissions. Only in the case of the UNFCCC-ELE inventory, Fig. 6a shows (neg-

ative) inversion increments and notable error reduction in Southern regions like South America and South Africa. This might
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Figure 5. Mole fraction time series at the (a) Gosan and (b) Ragged Point measurement station. Red lines represent the modeled a priori
mole fractions calculated with the E7P a priori emissions and blue lines represent the modeled a posteriori mole fractions. The green line
illustrates the baseline derived by the GDB method and the orange line shows the optimized baseline. The grey line represents the observed

mole fractions. The inset panels zoom into the year (a) 2019 (Gosan) and (b) 2020 (Ragged Point), as illustrated by the light green rectangles.

indicate that the UNFCCC-ELE a priori emissions are significantly overestimated in these areas. All three data sets show the
biggest error reduction and inversion increments in the USA, Europe, and China, where the a priori emissions are high and
many observations are available. While the increments look similar for the three a priori emissions for Europe and China,
they are very different for the USA, where the inversion produces predominantly negative increments when using the EDGAR
inventory, while only positive increments are obtained using UNFCCC-ELE and GAINS. These differences suggest that the
true 2019 U.S. emissions lie between the high EDGAR and the lower UNFCCC-ELE/GAINS estimates.
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Figure 6. Inversion increments (a posteriori minus a priori emissions; left panels) and the relative uncertainty reductions (right panels)

shown when using the priors (a) UNFCCC-ELE (UP), (b) EDGAR (E8) and (c) GAINS (GS), for the example year of 2019.

3.3 National and regional emissions

Figure 7 illustrates the global SFs a posteriori emissions for the example year 2019, averaged over all emission fields as

described in Sec. 2.6. The highest SFg emissions can be seen in the USA, Europe, China, and India, while emissions are
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Figure 7. Global a posteriori emissions for the example year 2019, averaged over the inversion results using the six different a priori

emissions.

smaller in South America, Africa, and Australia. SFg emissions of these countries and regions are discussed in more detail in
the following subsections, showing their national/regional emission time series between 2005 and 2021. National and regional
emissions are calculated by aggregating the emissions within the respective grid cells of the corresponding country or region,

employing a national identifier grid (CIESIN, 2018).
3.3.1 Emissions from the United States of America

Figure 8 shows the annual a priori and a posteriori U.S. SFg emissions for the different priors in the period between 2005 and
2021. The inversion results show a clearly declining annual emission trend of -0.054 Gg/yr, dropping from 1.25 Gg in 2005 to
0.48 Gg in 2021 (Fig. 8; a posteriori average). However, the a posteriori emissions are larger (by a factor of 2 on average) than
the emissions reported to UNFCCC (Fig. 8; a priori UNFCCC-ELE) throughout the entire study period. While the different
a priori emissions show big differences, a posteriori emissions agree within their 1-o uncertainties. At the beginning of the
study period, all three a posteriori emissions are substantially higher than the UNFCCC-reported a priori emissions, and closer
to the EDGAR a priori estimates. Between 2005 and 2012 the a posteriori emissions show a substantial decrease, after which
they approach the UNFCCC-reported values, but still remain higher. It also seems that the GAINS a priori emissions are far

too low at the beginning of our study period, while the EDGAR a priori emissions are far too high at the end of our study
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Figure 8. Annual a priori (dashed lines) and a posteriori (solid lines) SFg emissions in the U.S. for the period between 2005 and 2021 when
using different a priori emissions (UNFCCC-ELE red, EDGAR orange, GAINS blue). The a priori emissions (top panel) and a posteriori
emissions (bottom panel) are shown together with their respective 1-o uncertainties (colored shadings). The bottom panel also shows the
average a posteriori emissions (black solid line) and the results of Hu et al. (2023), which are shown with blue diamonds and vertical lines
representing their 2-o uncertainties. For better comparison, the a priori emissions (without uncertainties) are also included in the bottom

panel.

period. Our results are a bit higher compared to the regional inversion study by Hu et al. (2023), however, show a remarkably
similar declining trend in U.S. SFgs emissions between 2007 and 2018. This good agreement with a regional inversion study

focussing on the U.S. with a very different setup is reassuring.
3.3.2 Total emissions from EU countries

Figure 9 illustrates the total annual a priori and a posteriori SFg emissions from all EU countries'. Here, the three a priori data
sets show almost no trend and are very similar to each other throughout the study period, indicating a consistent framework for
bottom-up reporting of EU emissions. The annual a posteriori emissions show a decreasing trend of -0.006 Gg/yr, dropping
from 0.41 Gg in 2005 to 0.25 Gg in 2021 (Fig. 9; a posteriori average). While a posteriori emissions are relatively stable

and exceed the a priori emissions until 2017, there is a significant drop in 2018, after which they are closer to the a priori

! Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia,

Lithuania, Luxembourg, Malta, Netherlands, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, and Sweden
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Figure 9. Annual a priori (dashed lines) and a posteriori (solid lines) SFg emissions aggregated for all EU countries, shown for the period
between 2005 and 2021 when using different a priori emissions (UNFCCC-ELE red, EDGAR orange, GAINS blue). The a priori emissions
(top panel) and a posteriori emissions (bottom panel) are shown together with their respective 1-o uncertainties (colored shadings). The
bottom panel also shows the average a posteriori emissions with a black solid line. For better comparison, the a priori emissions (without

uncertainties) are also included in the bottom panel.

emissions. It seems plausible that this drop in SFg emissions in 2018 was a result of the EU’s F-gas regulation 517/2014
(European Parliament and Council of the European Union, 2014), which requires new electrical switch gear put into service
from 2017 onwards to be equipped with a leak detection system and bans the use of SFg for recycling magnesium die-casting
alloys from 2018. Our results suggest that in their reports to the UNFCCC, EU countries underestimated their SFg emissions
prior to 2018, but at the same time underestimated the positive effect of the F-gas regulation 517/2014 in cutting SFs emissions.

As one of only three countries, the United Kingdom also includes top-down inversion results in its annual UNFCCC reports
(Manning et al., 2022). As part of this top-down approach, Manning et al. (2022) also reported emissions of North-West Eu-
rope?, to which we compare our inversion results (Fig. A4). The a posteriori emissions from North-West Europe are generally
similar to EU emissions shown in Fig. 9, however, they show an even clearer negative trend of -0.009 Gg/yr. Our results agree
well, on average within 16% and better since 2012, with those reported by Manning et al. (2022). Furthermore, Simmonds

et al. (2020) presented inversion-derived emissions for Western Europe® for four different inversion setups. Our a posteriori

2Ireland, the United Kingdom of Great Britain, France, Belgium, Netherlands, Luxembourg, and Germany
3United Kingdom of Great Britain, Ireland, Benelux, Germany, France, Denmark, Switzerland, Austria, Spain, Italy, and Portugal
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Figure 10. Annual a priori (dashed lines) and a posteriori (solid lines) SF emissions from China in the period between 2005 and 2021 when
using different a priori emissions (UNFCCC-ELE red, EDGAR orange, GAINS blue). The a priori emissions (top panel) and a posteriori
emissions (bottom panel) are shown together with their respective 1-o uncertainties (colored shadings). The bottom panel also shows the
average a posteriori emissions (excluding GAINS) with a black solid line, together with various reference values. For better comparison, the

a priori emissions (without uncertainties) are also included in the bottom panel.

emissions agree very well with three of these four inversions (Fig. A5). The fourth inversion shows consistently lower emis-
sions, however, this inversion setup used fewer observation stations than the other three and is likely less accurate. It is likewise

noteworthy that the first three inversions of Simmonds et al. (2020) show an emission drop in 2018, which we also find.
3.3.3 Emissions from China

Chinese a priori and a posteriori SFg emissions are illustrated in Fig. 10. The inversion-derived a posteriori emissions reveal a
distinct positive trend of 0.21 Gg/yr (Fig. 10; a posteriori average without GAINS), with a particularly rapid increase between
2006 and 2014 (0.35 Gg/yr), followed by a stabilization thereafter. The UNFCCC-ELE a priori Chinese emissions slightly
exceed the EDGAR a priori emissions between 2007 and 2011, after which they align well. UNFCCC-ELE and EDGAR
a posteriori emissions show almost identical Chinese emissions that are also close to their a priori values. The GAINS a
priori Chinese emissions differ significantly from the other two inventories. After 2005, the GAINS a priori emissions show

a very strong upward trend, increasingly diverging from the other two priors until the end of the study period, at which point
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the GAINS Chinese emissions are almost twice as high as the other priors. In the GAINS inventory, China’s 2021 emissions
alone would account for almost all of the known total global SFg emissions (see Sec. 3.3.5), which seems unrealistic. The
GAINS a posteriori emissions for China show lower values compared to the a priori emissions, however still exceed the
UNFCCC-ELE- and EDGAR-derived results, even though there is an overlap in the uncertainty bands. It seems likely that the
inversion improves the overestimated Chinese GAINS emissions, yet it may not entirely correct them, given the considerably
overestimated a priori estimates. Due to these concerns about the Chinese GAINS a priori emissions, we provide both a
Chinese a posteriori emissions average including (see Table A3) and excluding GAINS inversions (black solid line in Fig. 10).

China is not obliged to report its national emissions but it voluntarily reported bottom-up SF4 estimates in their national
communications and biennial updates to the UNFCCC for 2005 (China, 2012), 2010 (China, 2018a), 2012 (China, 2016), 2014
(China, 2018b), 2017 (China, 2023a), and 2018 (China, 2023b). These reported values are much smaller than our a posteriori
emissions, especially in 2010, 2012, and 2014. We also compare our results to various other studies of Chinese emissions,
both using bottom-up and top-down approaches. Our results agree within 15% with the inversion study by Fang et al. (2014)
who used a similar inversion setup, based on the continuous measurements in Gosan (South Korea), Hateruma (Japan) and
Cape Ochiishi (Japan), and FLEXPART atmospheric transport modeling. Furthermore, our results align closely with a recent
inversion study by An et al. (2024) (agreeing within 12%), who had access to data from a relatively dense monitoring network
over China. Our results also agree well (within 15%) with the findings of (Lee et al., 2024), whose regional inversion study (in
preparation) utilizes observations from Gosan to estimate emissions in South-East Asia. Note that the patterns of our time series
are very similar to the ones of Lee et al. (2024), suggesting that our Chinese a posteriori emissions are highly influenced by the
Gosan observations station. Our derived emissions also agree well within 8% with bottom-up estimates by Guo et al. (2023)
after 2015 and within 18% with the bottom-up estimates by Simmonds et al. (2020). Our results are, however, higher than the
bottom-up estimates by Guo et al. (2023) between 2008 and 2015 and the inversion-derived emissions by Simmonds et al.
(2020). However, Simmonds et al. (2020) based their inversion results on only one station (Gosan), coarser meteorology, and
an inversion domain representing only 34% of China’s population, which could have resulted in a substantial underestimation

of the emissions (An et al., 2023).
3.3.4 Other regions

In this section, we present the a priori and a posteriori SFg emissions from Africa, South America, Australia, and India. It is
important to note that there are no emission reports to the UNFCCC for Africa, South America, and India. In these regions,
the UNFCCC-ELE a priori emissions are derived by distributing the emissions residuals from the global total emissions
(Simmonds et al., 2020) when subtracting the cumulative reported emissions from Annex-I countries, according to the national

electricity generation as described in Sec. 2.4.
Africa

Figure 11 shows African a priori and a posteriori SFs emissions. One can see that the GAINS inventory is very low and the
UNFCCC-ELE inventory is very high in comparison to the EDGAR inventory. Before 2018, the UNFCCC-ELE a posteriori
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Figure 11. Annual a priori (dashed lines) and a posteriori (solid lines) SFg emissions from Africa, shown for the period between 2005 and
2021 when using different a priori emissions (UNFCCC-ELE red, EDGAR orange, GAINS blue). The a priori emissions (top panel) and
a posteriori emissions (bottom panel) are shown together with their respective 1-o uncertainties (colored shadings). The bottom panel also
shows the average a posteriori emissions with a black solid line. For better comparison, the a priori emissions (without uncertainties) are

also included in the bottom panel.

emissions are lower than the a priori values and align with them afterwards. EDGAR a posteriori emissions are overall higher
than the respective a priori emissions. It seems likely that the inversion improves the UNFCCC-ELE overestimation and the
EDGAR underestimation, however cannot entirely correct them, as large parts of Africa are poorly covered by the observation
network (see Fig. 2). The GAINS a posteriori emissions are consistently higher than the GAINS a priori emissions but the
increases are very small. It seems that the GAINS a priori emissions are too small and the inversion tries to increase them
but is bound by the low uncertainties assumed, resulting only in minor corrections. Thus, even the GAINS a posteriori likely
underestimate the true emissions. Note that both, UNFCCC-ELE and EDGAR a posteriori emissions show a larger positive
trend than the a priori emissions. This is also true for the GAINS prior, however differences are very small. The averaged
a posteriori emissions are close to the EDGAR inventory and show a slowly increasing trend of 0.006 Gg/yr, growing from

0.13 Gg in 2005 to 0.25 Gg in 2021.
South America

For South America (see Fig. A6), the UNFCCC-ELE inventory is more than 10 times higher than the EDGAR and GAINS
inventory, and GAINS is on average 38% higher than EDGAR. Due to the narrow uncertainty bands and the poor observa-
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tional coverage of South America, the inversion results stay close to the a priori emissions for EDGAR and GAINS. For
UNFCCC-ELE a posteriori emissions are smaller than the a priori values, especially at the beginning of the study period.
We therefore suspect a substantial overestimation by the UNFCCC-ELE a priori inventory, given that the UNFCCC-ELE a
posteriori emissions are partly lowered considerably, despite the poor coverage. Note also that UNFCCC-ELE inversion results

show a positive trend of 0.007 Gg/yr, in contrast to the a priori inventory.
Australia

Figure A7 shows Australian a priori and a posteriori SFg emissions. All a priori emission inventories show similar values
throughout the whole study period, well below 0.01 Gg/yr. The relatively wide uncertainty bands result from the chosen
minimal a priori uncertainty, which is assigned to grid cells with low emissions (see Sec. 3), providing the algorithm with
more freedom to deviate from the a priori emissions. Nevertheless, inversion results stay close to the a priori values. This is to
be expected given that there are no SFg measurements available within the country, except the Cape Grim station in Tasmania,

which predominantly captures clean air from the Indian Ocean.
India

India can be identified as the most challenging region for SF¢ inverse modeling, where a priori emission inventories show
substantial differences but where emissions could be of global significance (UNFCCC-ELE emissions are about 8% of global
emissions in 2021) (Fig. A8). For the UNFCCC-ELE inventory, Indian inversion increments are much higher compared to
EDGAR or GAINS (see Fig. 6), resulting in large discrepancies across the a posteriori emissions of the different inventories
(Fig. A8). This can be related to the poor observational coverage (see Fig. 2) in combination with the relatively high UNFCCC-
ELE a priori uncertainties, which might allow the algorithm to excessively relate the distant high East Asian measurements
to Indian emissions. The GAINS inventory shows by far the lowest Indian a priori emission, while inversion results stay very
close to the prior values, due to the small a priori uncertainty bands. However, all inversions show a much stronger trend in a
posteriori SFg emissions than in the a priori emissions. A strong upward trend in SFg emissions may indeed be expected given
that the installed electric power generation capacity in India has almost quadrupled between 2002 and 2022 (Government of

India, 2023)
3.3.5 The global perspective

Our study aimed to incorporate all globally accessible SFg observations in the inversion, in combination with long backward
trajectories of 50 days to make the best use of the observation network (Vojta et al., 2022). These are optimal conditions for
constraining both regional and global SFg emissions. To judge the quality of our a posteriori global emission, we compare our
results with the global emissions calculated by Simmonds et al. (2020) for the years 2005 to 2018 using the AGAGE 12-box
model (e.g., Rigby et al., 2013), which we linearly extrapolated until 2021. Such box models are considered to be capable of

constraining the global total SFg emissions within a few percent, because the average atmospheric growth rate can be measured
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Figure 12. Annual total global a priori (dashed lines) and a posteriori (solid lines) SFs emissions in the period between 2005 and 2021. The
a priori emissions (top panel) and a posteriori emissions (bottom panel) are shown together with their respective 1-o uncertainties (colored
shadings). The bottom panel also shows the average a posteriori emissions with a black solid line. Reference values of the AGAGE 12-box
model (linearly extrapolated until 2021) and NOAA growth rate emissions are shown with green diamonds/rectangles and purple crosses,

respectively. For better comparison, the a priori emissions (without uncertainties) are also included in the bottom panel.

accurately and the very long atmospheric lifetime of SFg leads to small uncertainties in global total emissions. In addition, we
compare our results with global emissions directly calculated from annual increases in globally-averaged atmospheric SFg
mole fractions provided by NOAA (Lan et al., 2024), which we multiply by the factor #@ *Matm, Where Mgp, and My,
represent the molecular weights of SFg and air, and mg,, is the mass of the atmosphere. We refer to these emissions as
"NOAA growth rate emissions".

Figure 12 illustrates the a priori and a posteriori total global SFs emissions, compared to the reference values of the AGAGE
12-box model and the NOAA growth rate emissions. In general, the NOAA growth rate emissions agree well with the box
model, however, show more temporal variability. The UNFCCC-ELE a priori global emissions coincide per definition with
the AGAGE 12-box model (Sec. 2.4), while the UNFCCC-ELE a posteriori global emissions are on average 16% higher. The
uncertainties stated for the AGAGE 12-box model are only about 3%, with an additional 1% that may be attributed to SFg
lifetime uncertainties (Simmonds et al., 2020), while our uncertainties are higher. The two estimates are within the combined

uncertainties for most individual years but overall our UNFCCC-ELE a posteriori global emissions seem to be systematically
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too high. One possibility for explaining this discrepancy is a potential ocean sink of SFg that is not accounted for in the AGAGE
12-box model, leading to a potential underestimation of global emissions in the box model. Ni et al. (2023) recently suggested
that such an ocean sink may account for about 7% of the global SFs emissions. We tested this hypothesis by allowing for an
oceanic sink in our inversion. However, the inversion-derived oceanic a posteriori emissions showed either a lot of noise or no
fluxes at all (in case of optimizing ocean fluxes in one aggregated oceanic grid cell). Therefore, we were unable to confirm the
presence of oceanic SFg sinks with our inversion. Yet, another possible explanation for the increase of the global emissions
by the inversion is the positivity constraint employed on the emissions over land, which might lead to a positive bias of the a
posteriori global emissions. However, tests showed that the positivity constraint on the a posteriori emissions had very little
effect (<1%) on the total global emissions. There is a better explanation for our too-high a posteriori emissions. As discussed
in Sec. 3.2 the measurement data puts relatively strong constraints on the high emitting regions China, Europe and USA that
are responsible for the biggest part of the global SFg emissions. National inversion results showed that reported UNFCCC
emissions in these regions are predominantly underestimated. Consequently, to match the global total emission, our UNFCCC-
ELE inventory attributed too high emissions to countries not reporting their emissions to the UNFCCC (e.g., in South America,
Africa or India). Unfortunately, the emissions in these regions are very poorly constrained by the existing observation network
(see Fig. 2). As shown in Sec. 3.3.4, the inversion can reduce large biases in these regions but we cannot expect it to remove
them completely, and this leads to a positive bias in a posteriori global emissions.

The global GAINS a priori emissions are lower than all other inventories at the beginning of the study period, and its
positive trend is larger and inconsistent with the global atmospheric SFg growth postulated by the box model and the NOAA
measurements. Due to this rapid increase, the GAINS a priori emissions converge with the other emission inventories by the
end of the study period. The global GAINS a posteriori emissions are much closer to the AGAGE box model results and
NOAA growth rate emissions than the a priori emissions and align well with their trends. However, a posteriori emissions
are 15% lower on average, indicating that aggregated emissions are underestimated in poorly monitored areas. This claim
can be supported by comparing the global GAINS and Chinese GAINS a priori emissions (Fig. 10). At the beginning of the
study period GAINS seems to produce realistic Chinese emissions, while at the same time, global emissions are significantly
underestimated. After rapid growth, global emissions are close to the reference box model value, while Chinese emissions
are significantly overestimated at the end of the study period. In both cases, this suggests an underestimation of the emission
residuals between the global and the Chinese emissions. Consequently, GAINS also provides the lowest a posteriori emission
estimates in almost all shown regions except China, resulting in an underestimation of the global emissions.

In the case of EDGAR, both, the a priori and a posteriori emissions agree with the reference values of the AGAGE 12-box
model and NOAA growth rate emissions within 8-9%. While the a priori emissions are on average biased low by 6%, the a
posteriori emissions show on average almost no bias (0.1%) compared to the reference values. We, therefore, conclude that
EDGAR provides a good estimate for the accumulated SFg emissions also from poorly monitored areas, well suited for global
inversions.

The average of the total global emissions of the different discussed cases provides a very good estimate for the global SFg

emissions, showing an average bias of +1,4% compared to both, the AGAGE box model and the NOAA growth rate emissions,
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Figure 13. Inversion results from monthly SFg inversions for the Northern Hemisphere: (a) monthly a posteriori emission in the period 2005-
2021, (b) detrended a posteriori emissions averaged for each month across all years, and (c) semi-annual a posteriori emissions. Distinct
months are highlighted with different colors. In panel c, the specified summer (April - September) and winter periods (October - March) are

shown in red and white respectively.

with an agreement within 10%. Its trend shows an increase until 2014 followed by a stabilization thereafter (similar to the
Chinese emission trend). This is a pattern that can be also observed for the annual increases in the globally-averaged NOAA
atmospheric SFg mole fractions, and derived emissions. Notice that the average global trend of 0.20 Gg/yr is slightly smaller
than for Chinese emissions (0.21 Gg/yr), supporting the finding of An et al. (2024) that Chinese emissions alone have offset
the overall decreasing emissions from all other countries.

Despite some potential problems with our inversion setup that can lead to biased a posteriori global emissions (as could be
clearly seen and explained with the UNFCCC-ELE and GAINS a priori emissions), overall our a posteriori global emissions
seem to be quite accurate, with average biases to the box model and NOAA growth rate emissions of +16%, 0.1%, and -15%
for UNFCCC-ELE, EDGAR, and GAINS respectively. Even strongly biased global a priori emissions, as for GAINS until
2015, could be brought relatively close to the known values. This is beneficial, since our regional estimates combined are then
consistent with the global emissions, which has rarely been achieved before. We attribute this capability of simultaneously
constraining both regional as well as global emissions mostly to our long backward calculation period of 50 days (Vojta et al.,
2022) and our extensive observation data set. However, the uncertainties of the inversion-derived emissions remain large in
India and the Southern Hemisphere. While the aggregated emission in these regions is also quite well known as the residual
between global emissions and emissions in well-monitored areas, the distribution of the emissions between and within these
regions is less well known. Nevertheless, in most cases, the regional results at least indicate a clear direction in which a priori

emissions need to be corrected even for these poorly monitored regions.
3.3.6 Seasonality of SFg emissions

Our a priori emission data sets contain no seasonal information and are assumed to be constant throughout the year. Figure 13

shows the monthly resolved a posteriori total SFg emissions in the Northern Hemisphere using the E7P a priori emission
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inventory both for the whole time series (Fig. 13a) and as monthly averages over the whole time period, after detrending the
time series (Fig. 13b) . While different years have unique seasonal patterns, a notable emission minimum can be observed at
the beginning of every year (January/February) and emissions tend to be highest in the summer. This is most clearly seen in the
averaged seasonal cycle (Fig. 13b), which shows a minimum in February and a broad maximum from May to September. To
better demonstrate the consistency of this seasonal cycle throughout the entire period of our study, Fig. 13c shows semi-annual
SF¢ emissions in the Northern Hemisphere, derived by averaging seasonal emissions for winter (October - March) and summer
(April - September). In line with panels a) and b), Fig. 13c shows higher emissions in summer than in winter, and this pattern
is found in almost every individual year.

However, the seasonal SFg emission patterns vary by region (shown for China, USA, and EU in Fig. A9). While there is no
clear seasonal cycle in the EU emissions, the Chinese seasonality is similar to the one in the Northern Hemisphere (Fig. 13b).
For the USA, we find an even stronger seasonal variation with a May/June peak of SFg emissions. This result is in contradiction
to Hu et al. (2023), who suggested U.S. SFg emissions to peak in winter. Hu et al. (2023) argued that many U.S. companies
maintain electrical equipment in the winter rather than in the summer and that cold temperatures can cause sealing materials in
electrical equipment to become brittle, resulting in more leaks. We suspect that the contradictions between our two studies are
mainly due to the different baseline treatments. As discussed in Sec 3.1, our baseline lowers in the summer for several stations,
a feature which we argued is realistic and reflects the transport of different, cleaner air masses over the respective stations.
Neglecting such a lowered baseline would lead to underestimated summer emissions. In addition, our inversion results for the
USA are mainly driven by the high-frequency measurements from Trinidad Head (THD) and Niwot Ridge (NWR), which have
not been used by Hu et al. (2023). A possible explanation for the summer emission maximum might be the seasonal variability
of electricity generation, which peaks in summer for most of the Northern Hemisphere. In addition, the increasing SFg pressure
at high summer temperatures and heat stress of the electrical equipment could lead to more leakage. However, further research

on the seasonal cycle of SFg emissions is needed to provide a more conclusive answer as to the cause(s).

4 Conclusions

Our inversion study provides observation-based, regionally resolved global SFg emission estimates for the period 2005 - 2021,
using initial conditions based on an atmospheric SFg re-analysis. We further consider different a priori emission inventories
and use a newly compiled, extensive observation data set along with 50-day LPDM backward simulations to provide accurate

estimates of the global, spatially distributed SFg emissions. Our main findings are the following:

— The GDB approach is a robust method for estimating initial conditions, especially at challenging measurement stations.
We demonstrate that it successfully accounts for meteorological variability (e.g., the Asian summer monsoon) in the
baseline, reducing the need for baseline optimization by the inversion. Thus, the information content of the observations

can be optimally used for improving the a priori emissions.
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— Our inversion produces regional a posteriori emissions that, taken together, are consistent within 10% with the well-
known global emissions based on observed atmospheric growth rates. This is a beneficial feature of our inversion setup

505 combining accurate baselines and long (50 days) backward calculation periods.

— The global inversion shows the largest emission improvements in the high emitting regions China, USA, and Europe,
where the observation networks used have good coverage. Our annual inversion results are in excellent agreement with

several existing regional inversion studies focusing on these three regions.

— Annual U.S. SFg emissions strongly decreased from 1.25 Gg in 2005 to 0.48 Gg in 2021, showing a trend of -
510 0.054 Gg/yr. However, these inversion-derived emissions are on average twice as high as the emissions reported to

the UNFCCC. Thus, we find that the U.S. are systematically underreporting their SFg emissions.

— Annual total SFg emissions from EU countries show a decreasing trend of -0.006 Gg/yr, from 0.41 Ggin 2005 to 0.25 Gg

in 2021. However, also Europe systematically underreports their SFg emissions to UNFCCC.

— The European emissions show a substantial drop in 2018, resulting most likely from the EU’s F-gas regulation 517/2014

515 (European Parliament and Council of the European Union, 2014), which requires new electrical switch gear put into
service from 2017 onwards to be equipped with a leak detection system and bans the use of SFg for recycling magnesium

die-casting alloys from 2018. This is a good example how stringent mitigation measures can successfully reduce SFg

emissions almost immediately.

— Chinese SFg emissions show an increasing trend of 0.21 Gg/yr, growing from 1.28 Gg in 2005 to 5.16 Gg in 2021, with

520 a particularly steep trend until 2014 and a flattening afterwards. The derived trend is slightly steeper than the global
total SFg emission trend (0.20 Gg/yr), supporting the suggestion that Chinese emissions alone have more than offset

the overall decreasing emissions from other countries (An et al., 2024). China’s official voluntary reports substantially

underestimate their SFg emissions (by more than 50%).

— SFg emissions in the Southern Hemisphere and some other parts of the world (e.g., India) are hard to constrain due to

525 insufficient coverage by observations. While the inversion most likely reduces large biases of a priori estimated emissions
in Africa and South America, substantial uncertainties about these emissions remain. However, the EDGAR bottom-up

inventory seems to provide a reliable estimate of the aggregated emissions in poorly monitored regions. Nevertheless,

more observations in these regions are needed to constrain their regional distribution.

— Despite the above difficulties, our inversions suggest that India’s SFg emissions have increased substantially, probably

530 doubling since the year 2005.

— Our monthly inversion results show overall higher SFg emissions in the summer (April - September) than in winter
(October - March) in the Northern Hemisphere, with a distinct minimum at the beginning of the year. While America’s

SFg emissions show a clear peak in May and June and China’s emission pattern is similar to the Northern Hemisphere,
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no clear seasonal pattern is identified for Europe. As our findings for the U.S. are in contradiction to Hu et al. (2023), we

535 suggest that more research on the seasonality of SF¢ emissions is needed.

— On the basis of the inversion results, we can neither confirm nor refute the hypothesis that the ocean sink of SFg is a

substantial part (up to 7% according to Ni et al. (2023)) of the anthropogenic emission fluxes.

— Since we find that national reports for the U.S., Europe, and China all underreport their SFg emissions, while other
countries with potentially high emissions (e.g., India) do not report their emissions at all, we suggest that bottom-up
540 methods to determine the emissions need to be refined. This should include a better quantification of the processes

causing the emissions that could explain the emission seasonality found here.

— Finally, countries worldwide need to reduce their emissions substantially to avoid further strong increases in the atmo-
spheric burden of the long-lived greenhouse gas SFg. The stringent regulations recently introduced in Europe are a good

example also for other countries - yet are still insufficient to stabilize the atmospheric SFg burden.
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Code and data availability. Daily-resolved global SFs mole fraction fields between 2005 and 2021 from the global re-analysis are provided
at https://doi.org/10.25365/phaidra.489. The used source code of FLEXPART 10.4 (described in detail by Pisso et al., 2019) can be found at
https://doi.org/10.5281/zenodo.3542278. The used FLEXINVERT+ code (described in detail by Thompson and Stohl, 2014) together with
setting files are provided at https://doi.org/10.25365/phaidra.488. The source code of FLEXPART 8-CTM-1.1 together with a user’s guide can
be freely downloaded at https://doi.org/10.5281/zenodo.1249190 (Henne et al., 2018). Atmospheric mole fraction measurements of SFg used
in this study are freely available from the following sources: AGAGE data: https://agage2.eas.gatech.edu/data_archive/agage/gc-ms-medusa/
complete/ (Prinn et al., 2018); Heathfield Tall Tower data: https://catalogue.ceda.ac.uk/uuid/df502fe4715¢c4177ab5e4e367a99316b (Arnold
etal., 2019); Bilsdale Tall Tower data: https://catalogue.ceda.ac.uk/uuid/d2090552c8fe4c16a2fd7d616adc2d9f (O’ Doherty et al., 2019); Zep-
pelin mountain data: https://ebas-data.nilu.no/Pages/DataSetList.aspx ?key=4548FS9E3CBD48E0AS505E8968BD268EB (2005-2010 EBAS,
2024); NOAA/GML Chromatograph for Atmospheric Trace Species (CATS) program: https://gml.noaa.gov/dv/data/index.php?parameter_
name=Sulfur%2BHexafluoride&type=Insitu&frequency=Hourly%2Baverages (all stations, hourly data Dutton and Hall, 2023); Monte Ci-
mone, Cape Ochiishi, Izafia, Ragged Point, Zugspitze-Schneefernerhaus: https://gaw.kishou.go.jp/search (di Sarra et al., 2022); Atmo-
spheric SFg Dry Air Mole Fractions from the NOAA GML Carbon Cycle Cooperative Global Air Sampling Network: https://gml.noaa.
gov/aftp/data/greenhouse_gases/sf6/flask/surface/ (Lan et al., 2023; Dlugokencky et al., 2020); NOAA Global Greenhouse Gas Reference
Network provided flask-air PFP sample measurements of SF¢ at Tall Towers and other Continental Sites https://gml.noaa.gov/aftp/data/
greenhouse_gases/sfo/pfp/surface/ (Andrews et al., 2022); Atmospheric Sulfur Hexafluoride Dry Air Mole Fractions from the NOAA
GML Carbon Cycle Aircraft Vertical Profile Network https://gml.noaa.gov/aftp/data/greenhouse_gases/sf6/pfp/aircraft/: (McKain et al.,
2022); NOAA ObsPACK SFg data: https:/gml.noaa.gov/ccgg/obspack/data.php?id=obspack_sf6_1_v2.1_2018-07-10 (NOAA Carbon Cy-
cle Group ObsPack Team, 2018); IAGOS-CARIBIC Aircraft measurements: https://zenodo.org/records/10495039 (Schuck and Obersteiner,
2024); NOAA/ESRL/GMD/HATS Trace Gas Measurements from Airborne Platforms: https://gml.noaa.gov/aftp/data/hats/airborne/ (Elkins
et al., 2020). For the observations at BIK (Popa et al., 2010), BRM (Rust et al., 2022), GSN (Kim et al., 2012), and HAT (Saikawa et al.,
2012) we refer to E. Popa <epopa2@yahoo.com>, S. Reimann <stefan.reimann@empa.ch>, S. Park <sparky @knu.ac.kr>, and T. Saito

<saito.takuya@nies.go.jp>, respectivley.
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Table A1. Inversion results for the annual SF¢ emissions from the United States of America in the period 2005-2021. Annual emissions are

shown together with their 1-o uncertainties, for different a priori emissions inventories. We also provide an average of the inversion results,

while respective uncertainties represent the minimum and maximum uncertainty limits across the results.

annual total SFsemissions from the United States of America
year | UNFCCC-ELE [Gg/yr] | EDGAR [Gg/yr] | GAINS [Gg/yr] | average [Gg/yr]
2005 121 +£0.16 1.44 +0.34 1.11 £0.11 1.25[1.00, 1.78]
2006 1.34 £0.15 1.58 +£0.32 1.24 £0.10 1.38[1.14, 1.90]
2007 1.14 £ 0.13 1.38 £ 0.30 1.04 £+ 0.09 1.19[0.95, 1.67]
2008 1.24 £0.12 1.51 £0.27 1.09 £ 0.08 1.28 [1.01, 1.78]
2009 0.99 £+ 0.10 1.16 £ 0.26 0.93 £ 0.08 1.03 [0.86, 1.42]
2010 0.86 £+ 0.10 1.13 £0.27 0.80 £ 0.07 0.93[0.73, 1.39]
2011 0.75 £ 0.10 1.00 £ 0.27 0.68 £ 0.07 0.81[0.61, 1.27]
2012 0.62 £ 0.09 0.90 £+ 0.28 0.57 £ 0.08 0.70 [0.50, 1.18]
2013 0.58 + 0.09 0.84 +0.27 0.51 £0.07 0.64 [0.44, 1.11]
2014 0.52 £+ 0.08 0.63 £ 0.27 0.44 £ 0.06 0.53 [0.36, 0.90]
2015 0.52 £+ 0.08 0.67 £ 0.25 0.45 £ 0.06 0.55[0.38, 0.92]
2016 0.72 £+ 0.08 0.96 £+ 0.24 0.63 £ 0.06 0.77[0.57, 1.21]
2017 0.58 £ 0.08 0.80 £ 0.24 0.52 £ 0.06 0.63 [0.45, 1.04]
2018 0.55 £+ 0.08 0.80 £ 0.25 0.49 £ 0.06 0.61[0.42, 1.05]
2019 0.53 £+ 0.08 0.75 £ 0.26 0.46 £+ 0.06 0.58 [0.40, 1.02]
2020 0.44 £+ 0.08 0.64 £ 0.25 0.39 £ 0.06 0.49 [0.32, 0.89]
2021 0.45 £+ 0.09 0.62 £+ 0.27 0.38 £ 0.06 0.48 [0.32, 0.89]
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Table A2. Inversion results for the annual total SFs emissions from EU countries in the period 2005-2021. Annual emissions are shown
together with their 1-o uncertainties, for different a priori emissions inventories. We also provide an average of the inversion results, while

respective uncertainties represent the minimum and maximum uncertainty limits across the results.

annual total SFsemissions from EU countries
year | UNFCCC-ELE [Gg/yr] | EDGAR [Gg/yr] | GAINS [Gg/yr] | average [Gg/yr]
2005 0.43 £+ 0.09 0.38 £ 0.09 0.43 £ 0.08 0.41[0.29, 0.52]
2006 0.39 £+ 0.09 0.35 £+ 0.08 0.39 £ 0.07 0.38 [0.27, 0.47]
2007 0.35 £+ 0.08 0.34 £+ 0.08 0.36 £+ 0.07 0.35[0.26, 0.44]
2008 0.37 £+ 0.08 0.35 £+ 0.08 0.36 £ 0.07 0.36 [0.27, 0.46]
2009 0.37 £ 0.09 0.34 £+ 0.09 0.38 £ 0.08 0.36 [0.25, 0.46]
2010 0.40 £ 0.08 0.37 £+ 0.08 0.40 £ 0.07 0.39[0.29, 0.48]
2011 0.36 £ 0.08 0.30 £ 0.08 0.35 £ 0.08 0.34 [0.22, 0.44]
2012 0.38 £ 0.08 0.37 £+ 0.08 0.40 £ 0.07 0.38 [0.29, 0.48]
2013 0.29 £+ 0.07 0.29 £+ 0.07 0.32 £ 0.07 0.30 [0.22, 0.39]
2014 0.33 £ 0.07 0.32 £ 0.07 0.36 £ 0.06 0.34 [0.26, 0.42]
2015 0.31 £ 0.07 0.31 £+ 0.08 0.32 £ 0.07 0.31[0.23, 0.39]
2016 0.37 £ 0.07 0.35 £ 0.07 0.37 £ 0.07 0.36 [0.27, 0.44]
2017 0.39 £ 0.08 0.37 £+ 0.08 0.39 £ 0.07 0.38 [0.29, 0.47]
2018 0.26 £ 0.07 0.25 £+ 0.08 0.28 £ 0.06 0.26 [0.18, 0.34]
2019 0.28 £ 0.07 0.27 £ 0.07 0.30 £+ 0.06 0.28 [0.20, 0.37]
2020 0.32 £ 0.06 0.32 £ 0.07 0.34 £ 0.06 0.33 [0.25, 0.40]
2021 0.25 £ 0.06 0.25 £+ 0.08 0.26 £ 0.07 0.25[0.16, 0.33]
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Table A3. Inversion results for the annual Chinese SFg emissions in the period 2005-2021. Annual emissions are shown together with their
1-o uncertainties, for different a priori emissions inventories. We also provide an average of the inversion results, and an average excluding

the GAINS-derived inversion, while uncertainties represent the minimum and maximum uncertainty limits across the respective inversions

EGUsphere®

results.
annual total SFgemissions from China
year | UNFCCC-ELE [Gg/yr] | EDGAR [Gg/yr] | GAINS [Gg/yr] | average [Gg/yr] | average without GAINS [Gg/yr]
2005 1.35+045 1.21 £0.32 2.13 £0.31 1.56 [0.89, 2.44] 1.28 10.89, 1.80]
2006 1.14 +£0.36 1.08 +0.33 1.78 £ 0.42 1.33[0.75, 2.20] 1.11 [0.75, 1.50]
2007 2.334+0.51 2.26 +0.37 2.97 +£0.58 2.52[1.82,3.55] 2.29[1.82,2.84]
2008 2.78 £ 0.51 2.724+0.37 3.53 +0.68 3.01[2.27,4.22] 2.75[2.27,3.29]
2009 3.24 £0.59 3.17 £0.42 3.84 £0.80 3.42[2.66, 4.64] 3.21 [2.66, 3.83]
2010 3.13 £0.55 3.12 £ 0.46 3.99 £0.87 3.41[2.59, 4.86] 3.13[2.59, 3.68]
2011 291 £ 0.60 2.95 £ 0.50 3.81£0.97 3.2212.32,4.78] 2.93[2.32,3.51]
2012 3.44 4+ 0.62 3.50 +£0.54 427+1.10 3.73[2.82,5.37] 3.47[2.82,4.05]
2013 4.14 £0.69 4.19 £0.58 5424+ 1.21 4.59 [3.45, 6.64] 4.17 [3.45, 4.84]
2014 4.89 £ 0.69 4.96 £ 0.60 6.09 £ 1.32 5.31[4.20,7.41] 4.92[4.20,5.57]
2015 4.53+0.73 4.61 +0.65 5.96 + 1.38 5.03 [3.80, 7.34] 4.57 [3.80, 5.26]
2016 3.60 £ 0.80 3.57£0.71 437+ 1.58 3.85[2.79, 5.95] 3.58 [2.79, 4.40]
2017 4.10£0.81 4.15+0.74 5.21 £ 1.60 4.49 [3.29, 6.82] 4.12[3.29, 4.90]
2018 4.72 +0.86 4.824+0.79 6.02 £ 1.67 5.18 [3.86, 7.70] 4.77 [3.86, 5.60]
2019 3.99 +0.85 4.00 £0.79 485+ 1.72 4.28[3.13,6.57] 3.99[3.13,4.84]
2020 4.38 £0.96 4.48 £0.89 527+ 1.86 4.71[3.41,7.13] 4.43[3.42,5.38]
2021 5.12 £ 1.00 5.21+£0.94 6.41 £ 2.09 5.58 [4.12, 8.50] 5.16[4.12, 6.15]
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Table A4. Inversion results for the annual global total SF¢ emissions in the period 2005-2021. Annual emissions are shown together with
their 1-o uncertainties, for different a priori emissions inventories. We also provide an average of the inversion results, while respective

uncertainties represent the minimum and maximum uncertainty limits across the results.

Annual global total SFsemissions
year | UNFCCC-ELE [Gg/yr] | EDGAR [Gg/yr] | GAINS [Gg/yr] | average [Gg/yr]
2005 6.41 £+ 1.96 5.59 £+ 1.63 4.544+0.73 5.51[3.81, 8.37]
2006 597 +£1.92 538+ 1.33 4.524+0.83 5.29 [3.69, 7.89]
2007 8.23 +2.00 6.54 + 1.34 5.38 £0.98 6.72 [4.40, 10.23]
2008 9.56 £ 1.97 7.89 £+ 1.31 6.63 £ 1.06 8.02 [5.57, 11.53]
2009 8.88 £1.97 7.77 £ 1.37 6.68 £ 1.19 7.78 [5.48, 10.85]
2010 9.94 £2.01 8.26 £ 1.41 6.91 £1.25 8.37 [5.66, 11.95]
2011 9.42 +2.06 7.85+ 1.44 6.41 £ 1.35 7.90 [5.06, 11.48]
2012 10.54 £ 2.17 8.39 £ 1.53 6.97 £ 1.48 8.63 [5.49, 12.71]
2013 10.72 £2.20 8.88 £ 1.58 7.93 £ 1.60 9.18 [6.34, 12.92]
2014 11.96 £+ 2.27 9.99 £ 1.56 8.83 £ 1.68 10.26 [7.15, 14.23]
2015 11.31 +£2.21 9.39 £+ 1.62 8.41 £ 1.75 9.70 [6.65, 13.52]
2016 8.72 £2.30 7.79 £ 1.66 6.89 £+ 1.94 7.80 [4.95, 11.02]
2017 10.14 +2.37 8.56 £ 1.71 746 + 1.98 8.72[5.48, 12.50]
2018 11.48 £2.34 9.88 + 1.79 8.31 £2.04 9.89 [6.27, 13.82]
2019 9.15+2.41 8.02 £+ 1.81 7.02 £2.11 8.06 [4.91, 11.55]
2020 9.81 £2.50 8.23 £1.91 729 £2.24 8.44[5.05, 12.31]
2021 11.11 £ 2.56 9.50 £+ 2.03 8.41 £2.50 9.67 [5.91, 13.67]
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Figure A1. Observations from aircraft and ship campaigns from 2005 - 2021. The color bars indicate (a) the measurement date and (b) the

altitude of the respective observations.
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Figure A2. Mole fraction time series at the Hateruma (Japan) measurement station. Red lines represent the modeled a priori mole fractions
calculated with the UP a priori emissions and blue lines represent the modeled a posteriori mole fractions. The green line illustrates the
baseline derived by the GDB method and the orange line shows the optimized baseline. The grey line represents the observed mole fractions.

The inset panel zooms into the year 2018, as illustrated by the lightgreen rectangle.
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Figure A3. Mole fraction time series at the Izafia (Tenerife) measurement station. Red lines represent the modeled a priori mole fractions
calculated with the UP a priori emissions and blue lines represent the modeled a posteriori mole fractions. The green line illustrates the
baseline derived by the GDB method and the orange line shows the optimized baseline. The grey line represents the observed mole fractions.

The inset panel zooms into the year 2010, as illustrated by the lightgreen rectangle.
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Figure Ad4. Annual a priori (dashed lines) and a posteriori (solid lines) SF¢ emissions from North-West Europe, shown for the period
between 2005 and 2021 when using different a priori emissions (UNFCCC-ELE red, EDGAR orange, GAINS blue). The a priori emissions
(top panel) and a posteriori emissions (bottom panel) are shown together with their respective 1-o uncertainties (colored shadings). The
bottom panel also shows the average a posteriori emissions with a black solid line. The blue rectangles and the green diamonds represent the
results from Manning et al. (2022) using the INTEM (Inversion Technique for Emissions Modelling) model with inversion time frames set to

3- and 1-months, respectively. For better comparison, the a priori emissions (without uncertainties) are also included in the bottom panel.
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Figure AS. Annual a priori (dashed lines) and a posteriori (solid lines) SFs emissions from Western Europe, shown for the period between
2005 and 2021 when using different a priori emissions (UNFCCC-ELE red, EDGAR orange, GAINS blue). The a priori emissions (top
panel) and a posteriori emissions (bottom panel) are shown together with their respective 1-o uncertainties (colored shadings). The bottom
panel also shows the average a posteriori emissions (black solid line), together with the results from Simmonds et al. (2020), using four

different inversion setups.
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Figure A6. Annual a priori (dashed lines) and a posteriori (solid lines) SF¢ emissions from South America, shown for the period between
2005 and 2021 when using different a priori emissions (UNFCCC-ELE red, EDGAR orange, GAINS blue). The a priori emissions (top
panel) and a posteriori emissions (bottom panel) are shown together with their respective 1-o uncertainties (colored shadings). The bottom
panel also shows the average a posteriori emissions with a black solid line. For better comparison, the a priori emissions (without uncertain-

ties) are also included in the bottom panel.
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Figure A7. Annual a priori (dashed lines) and a posteriori (solid lines) SFg emissions from Australia, shown for the period between 2005
and 2021 when using different a priori emissions (UNFCCC-ELE red, EDGAR orange, GAINS blue).The a priori emissions (top panel) and
a posteriori emissions (bottom panel) are shown together with their respective 1-o uncertainties (colored shadings). The bottom panel also
shows the average a posteriori emissions with a black solid line. For better comparison, the a priori emissions (without uncertainties) are

also included in the bottom panel.
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Figure A8. Annual a priori (dashed lines) and a posteriori (solid lines) SF¢ emissions from India, shown for the period between 2005 and
2021 when using different a priori emissions (UNFCCC-ELE red, EDGAR orange, GAINS blue). The a priori emissions (top panel) and
a posteriori emissions (bottom panel) are shown together with their respective 1-o uncertainties (colored shadings). The bottom panel also
shows the average a posteriori emissions with a black solid line. For better comparison, the a priori emissions (without uncertainties) are

also included in the bottom panel.
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Figure A9. Seasonal variation of SF¢ emissions in China, the United States of America, and EU countries. The figure shows detrended

monthly inversion results averaged for each month across all years in the period 2005-2021
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Chapter 5
Conclusions

SF¢ has the highest GWP of any known GHGs listed under the UNFCCC. Due to its
exceptionally long atmospheric lifetime, emissions accumulate in the atmosphere and will
contribute to climate warming for centuries. While SFg is included in the Kyoto Protocol,
and efforts have been made to regulate its emissions in different parts of the world, the gas
is still widely used in various industries (especially in the power industry) and global emissions
have been increasing since the beginning of the 20t/ century. To monitor progress toward
emission reduction targets, national GHG inventories are compiled, by using bottom-up
methods. Within these methods, a large number of statistical activity data (e.g. industrial
production and consumption) is used together with source-specific emission factors to
statistically determine an aggregated national emission estimate. However, the reliability
of these inventories has been questioned, as bottom-up methods are suspected to suffer
from substantial uncertainties, emphasizing the need for verification. Atmospheric inverse
modeling provides a verification tool, which allows estimating emissions based on atmospheric
measurements using an atmospheric transport model. When inversions are based on LPDMs,
the definition of the baseline is a major source of uncertainty, and the influence of the
LPDM backward simulation period is not well understood. The main research objectives of
this thesis are

1) the evaluation of the use of LPDMs for inverse modeling of GHGs

2) the determination of the global SFg emission distribution for the period 2005-2021

They are addressed in the research articles Vojta et al. (2022) and Vojta et al. (2024)
presented in chapter 3 and chapter 4 respectively. The following sections summarize and
discuss the main findings, particularly in relation to preceding research, while implications
are set in a broader context.

5.1 The evaluation of the use of LPDMs for inverse modeling of
GHGs

The choice of the baseline method

e Statistical baseline methods can cause large systematic errors
In chapter 3 (Vojta et al. 2022), | demonstrated that purely statistical baseline methods
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(e.g. the REBS method), that solely rely on observations at individual measurement
stations, can lead to unreliable inversion results, that are substantially influenced by
the choice of the LPDM backward simulation period. The main problem is, that
by definition, purely statistical methods are not able to take the LPDM simulation
length into account. However, by increasing the simulation period, additional emission
contributions are directly related to the respective observations by the LPDM and
are included in the optimization, while they should be excluded from the baseline. A
baseline method, that cannot account for that, will systematically produce too high a
priori mixing ratios that will be corrected downwards by the inversion, resulting in an
underestimation of the a posteriori emissions. This is particularly evident at polluted
sites (e.g. Gosan), where air masses rarely remain unaffected by emissions during
the backward simulation period. In chapter 3, | demonstrated that by increasing the
backward simulation periods from 1 to 50 days, global total 2012 SFg emissions
produced by using the REBS method, decreased by more than a factor of 3. To tackle
this problems, studies employing the REBS method (e.g. Annadate et al. 2023; Henne
et al. 2016; Schoenenberger et al. 2018) usually optimize the baseline as part of the
inversion, which can reduce the overestimation, however this might not be sufficient
to avoid biases completely. For the example of global SFg emissions, large biases in
the a posteriori emissions remain, despite optimizing the baseline. Another drawback
of statistical baseline methods is, that they have to assume smooth baselines, as
pointed out by Rigby et al. (2011). Thus, they cannot account for sudden changes
in the baseline due to meteorological events (e.g. East-Asian summer monsoon), as
illustrated in chapter 3 . Further, statistical baseline methods do not allow to include
low frequency measurements (e.g. flask measurements) or observations from moving
platforms in the inversion.

Including model information can improve statistical baseline methods

In chapter 3, | used the example of a baseline method introduced by Stohl et al.
(2009), to demonstrate that the performance of statistical baseline methods can be
improved by including model information. To avoid the discussed overestimation of
a purely statistical baseline, Stohl's method corrects for emissions occurring during
the LPDM backward simulation period, leading to much smaller sensitivity to the
LPDM simulation period, compared to the REBS method. However, the method likely
underestimates the baseline in general, and thus overestimates a posteriori emissions,
given the low baseline values at background measurement stations, the solely positive
global inversion increments, and relatively high global total SFg a posteriori emissions
for 2012. This suspicion is reinforced when examining other studies utilizing Stohl’s
method (e.g. Fang et al. 2014; Stohl et al. 2010, 2009). All of them show, that
the optimization of the baseline leads to substantial higher a posteriori baselines at
almost all measurement stations, than a priori modeled. In case of the global SFg
inversion 2012 presented in chapter 3, | showed that the optimization of the baseline
resulted in substantially lower global total SFg emissions, close to the reference value
from Simmonds et al. (2020).



e The advantages of a GDB approach

In chapter 3 (Vojta et al. 2022) and chapter 4 (Vojta et al. 2024), | demonstrated
many benefits of a GDB approach, in which the LPDM back-trajectories are coupled
to a global model. In chapter 3, I illustrated that the GDB approach is fully consistent
with the length of the LPDM backward simulation period, with global 2012 SFg
inversion results showing almost no change for different simulation periods. Thus,
the GDB method ensures more robust inversion results, that are not sensitive to
the subjective choice of the LPDM simulation period. In chapter 3 and chapter 4, |
further demonstrated that the GDB method successfully accounts for meteorological
variability of complex baselines at challenging measurement stations, such as Gosan or
Ragged Point (Barbados). Low SFg summer measurements, representing intrusions
of southern SFg-poor air masses, were captured well by the GDB baseline, ensuring
more reliable inversion results during these intrusions. This is a great advantage over
statistical baselines, which assume a smooth baseline and can therefore not account for
this meteorological variability, which will likely result in an underestimation of emissions
during intrusions of southern air masses. As inversion results are highly sensitive to
the estimated baseline, inversions based on statistical baseline methods rely strongly
on the baseline optimization. In chapter 4, | showed that the optimization of the
baseline had a relatively small impact, suggesting that the GDB method already yields
an appropriate baseline, which is not substantially enhanced through the inversion.
Hence, the information content of the measurements can be effectively utilized to
improve the emission estimate. Another benefit of using the GDB approach is that it
enables the inclusion of low-frequency observations and measurements from moving
platforms in the inversion, as mentioned above.

Based on the problems of statistical methods and the benefits from a GDB approach
demonstrated in chapter 3 and in chapter 4, | recommend to employ GDB methods instead
of statistical baseline methods, whenever possible. While statistical methods are easy to
implement and might work well at observation stations with a non-complex baseline (where
"clean" and "polluted" observations can be easily distinguished, e.g. Mace Head) it will still
be necessary to include model information (e.g. Manning et al. 2021; Stohl et al. 2009),
and to optimize the baseline to overcome intrinsic problems. Furthermore, these methods
encounter large problems at measurement sites characterized by complex baselines and at
polluted continental areas where air masses seldom remain unaffected by emissions, that
will likely not be sufficiently compensated by a baseline optimization. Great care should be
taken to ensure that the discussed problems do not arise. Given the demonstrated benefits,
the GDB approach proves as the most appropriate method to estimate the baseline for
inversion purposes. Its performances will however depend on the quality of the global mole
fraction fields which are coupled with the LPDM, and it is important that the employed 3-d
fields are not substantially biased. The optimization of the baseline, will therefore still be
useful to compensate for potential biases of these fields, as done in Vojta et al. (2024).
While the coupling at the end of the LPDM simulation period provides a robust method
for global and regional inversions, the coupling at the spatial boundaries of the regional
inversion domain (e.g. Ganesan et al. 2017; Lunt et al. 2016; Ramsden et al. 2022; Say
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et al. 2019) appears to be a suitable alternative for regional inversions.

The value of low-frequency measurements

Weiss et al. (2021) suggested the use of low-frequency flask measurements to improve
the constraint on emissions, especially in poorly covered areas. In chapter 3, | followed
this suggestion and incorporated low frequency flask measurements additionally to online
measurements in the global SFg inversions. This improved the observational constraint of
SFg emissions close to the flask measurement sites, where additional error reduction up to
73% could be reached, underlining the potential value of these measurements. However, as
the additional observation constraint was only substantial in the vicinity of the measurements,
the location of these measurements is of great importance. The current locations of many
flask sampling sites are chosen to measure background mole fractions and therefore do
not suit the purposes of inverse modeling well. Establishing more flask sampling sites
downstream of potential emission sources in currently poorly covered regions would help
to constrain the emissions in those regions, and enhance the knowledge about emissions
globally.

The LPDM backward simulation period

Given that computational costs set a limit to the LPDM simulation, it has to be decided
how long particles are traced backward in time before they are terminated. In chapter 3,
| proposed to employ relatively long LPDM backward simulation periods, beyond 5-10
days, whenever possible. This suggestion was based on various findings, when varying
the simulation period in the range of 1 to 50 days for the global SFg inversion. Firstly, it
was observed that extending the trajectory length from 10 to 50 days leads to statistical
improvements in the comparison between observed and a priori modeled mole fractions,
represented by a growing correlation and decreasing bias and MSE. Thus, the overall LPDM
performance increases for longer simulation periods, as additional emissions are directly
related to respective observations by the model. In contrast to short simulation periods,
50-day periods allow even observations of remote stations to be directly related to emissions
within the simulation period, thereby become accessible to the inversion. Thus, longer
simulations might also allow an additional emissions constraint from remote background
stations, although statistical improvements at those stations are typically small, as shown
in chapter 4. In chapter 3, | further demonstrated, that with longer backward simulation
periods, inversion results became less sensitive to biases in the baseline and the a priori
emissions. It was shown that strongly biased global a priori emissions could only poorly
be corrected with backward simulation periods of 1 to 10 days, whereas more accurate
results were obtained with 50-day simulations. In chapter 4, | also demonstrated, that
strongly biased global SFg a priori emission fields could be brought relatively close to known
reference values by the inversion, using a LPDM simulation period of 50 days. In addition,
the 50-day LPDM based global inversion could most likely reduce large a priori emission
biases even in poorly monitored regions, indicating a direction in which emission inventories
should be corrected. This suggests that longer backward simulation periods might help to
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get additional information on emissions in poorly sampled areas. This is not to say that the
huge gaps in the monitoring systems can be offset by simply extending the LPDM simulation
period. As shown in chapter 4, the use of long simulation periods does not change the fact
that the emission distribution in poorly monitored regions cannot be constrained without
further observations, supporting the claim for a detection network expansion (e.g. Leip et al.
2017; Weiss et al. 2021). However, as demonstrated in chapter 3 and chapter 4, there is
additional information to be gained from longer LPDM simulations, which is why | propose
to employ them in order to make the best use of the existing monitoring network.

5.2 Global SF; emission distribution for the period 2005-2021

U.S. SF; emissions between 2005-2021

In chapter 4, | demonstrate that U.S. SFg emissions have been drastically decreasing between
2005 and 2021. A regional inversion study by Hu et al. (2023), showed a very similar
declining U.S. emissions trend, however for a shorter period spanning from 2007 to 2018.
While the two studies use a very different inversion set-up and do not precisely match in
terms of magnitude, they collectively provide clear evidence about the substantial decline in
U.S. SFg emissions. This inversion-derived finding, is of particular importance, given that
existing emission inventories (i.e. reports to the IPCCC, EDGAR, GAINS) show substantial
discrepancies, while none of them is able to account for this observed substantial decrease in
SFg emissions. It implies that U.S. regulations enforced through EPA and through individual
states, such as California, Massachusetts, and Maine, have great impact on the U.S. SFg
emissions, which is likely underestimated by current inventories. Another shared finding of
Vojta et al. (2024) and Hu et al. (2023) is that the U.S. has been under-reporting its SFg
emissions, especially until the early 2010s, before it became mandatory for high emitting
industries to declare their SFg emissions. Nevertheless, given the demonstrated decrease,
the U.S. and its regulatory measures could serve as a role model for effectively reducing
SFg emissions.

European SFs emissions between 2005-2021

As demonstrated in chapter 4, SFg emissions have also declined in the European Union.
The decreasing trend is however much smaller than in the U.S. and a significant portion of
the emissions reduction is due to a large emissions drop after 2017. The inversion results
of this study align very well (both in magnitude and pattern) with the findings of Simmonds
et al. (2020) and Manning et al. (2022) who performed regional inversions for West and
Northwest Europe respectively. Especially noteworthy is the excellent agreement about the
emissions of Northwest Europe after 2012, where the observational coverage is very good.
This demonstrates the huge potential of inverse modeling determining reliable emission
estimates under the condition of a dense monitoring system, emphasising the need to extend
the existing network (e.g. Leip et al. 2017; Weiss et al. 2021). The findings of Manning
et al. (2022) were included in the United Kingdom's annual UNFCCC reports which is
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a good example of how top-down methods can enhance the quality of the self-reporting
system, as suggested by Rypdal et al. (2005). The prominent emission drop after 2017 is
most likely the consequence of the EU's 2014 F-gas regulation, which prohibits SFg to be
used in recycling of magnesium die-casting alloys from 2018 onwards, and mandates that
newly installed electrical switchgear since 2017 must include a leak detection system. This
demonstrates the huge potential of regulations to effectively cut emissions, even soon after
their enforcement.

Chinese SF; emissions between 2005-2021

China is the largest emitter of SFg, accounting for roughly half of the global total emissions.
Consequently, various studies - both, bottom-up and top-down - have been investigating
the Chinese emission trend in recent years (e.g. An et al. 2024; Fang et al. 2014; Guo et al.
2023; Lee et al. forthcoming; Simmonds et al. 2020). All of these studies found a substantial
increase in Chinese emissions in the 21t century, however the determined magnitudes cover
a wide range. In chapter 4, | confirmed the upward Chinese emission trend and provided
emission estimates updated to the year 2021 showing remarkable agreement with the latest
regional inversion study by An et al. (2024). This agreement is noteworthy, as An et al.
(2024) did not only employ a different inversion system (based on MCMC methods), but
also used a different observation network from inside China. The similarity of results, despite
the different inversion set-up, is reassuring and underscores the reliability of these estimates.
Another important finding in chapter 4 is that the growth of Chinese SFg emissions has
slightly slowed down since the mid-2010s, suggesting that Chinese regulations implemented
in 2012 and 2015 had a positive effect. However, achieving substantial reductions will
require more stringent measures, such as those implemented in the EU or in the U.S. which
could have substantial impact on the global total SFg emissions.

Other regions

SFg emissions from other regions, such as Africa, South America, Australia or India are
challenging to constrain with inverse modeling techniques, due to the poor observational
coverage of these regions. This was already found by Rigby et al. (2010), who used an
Eulerian model to constrain SFg emissions on a continental scale for the period 2004-2008.
With the inversion set-up used in chapter 4, based on 50 days LPDM trajectories, | also
found that the achieved error reduction in these regions was low and that inversion results
were very sensitive to the employed a priori emissions. However, the results suggested that
potential large biases in the a priori fields could be reduced by the inversion, indicating a
direction in which emission inventories should be corrected. Given that inversion results
employing EDGAR a priori emission fields gave an excellent total global SFg estimate, |
also concluded in chapter 4, that EDGAR provides a good estimate for the aggregated
emissions in poorly covered regions. Nevertheless, substantial uncertainties about these
emissions remain and there is the need to enhance their observational coverage to constrain
their regional distribution.
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Global total emissions

In chapter 4, | further compared the aggregated a posteriori emissions of the global SFg
inversion results to the global total emissions values computed with a global box model
(Simmonds et al. 2020) and values directly calculated from atmospheric growth rates.
Generally, the inversion results are in relatively good agreement with these reference values,
however they are sensitive to the employed a priori emission fields, most likely due to the
discussed difficulties constraining emissions in poorly covered regions. The consistency with
the global total emissions is favorable, as it implies that the spatially resolved a posteriori
emissions also amount to a reasonable aggregated result that can be compared with relatively
well known reference values. On the other hand, discrepancies between the aggregated a
posteriori emissions and the total global reference values might also hold information on
biases in the employed a priori fields (as discussed in chapter 4) or indicate other potential
problems. In simple terms, it is another piece of information that can be used to constrain
emissions.

Monthly SFs emissions

Monthly inversion results (chapter 4) showed overall higher SFg emissions in summer than
in winter in the Northern Hemisphere, which might result from increased SFg pressure
and heat stress of electrical equipment during hot summer temperatures. While no clear
seasonal pattern could be found for Europe, China’s monthly emission patterns mirrored
that of the Northern Hemisphere, and U.S. emissions showed a peak from May to June.
This finding, however, is in contradiction to Hu et al. (2023), who found U.S. SF¢ emissions
to peak in winter. They argued that cold temperatures could cause electrical equipment
sealing materials to become brittle and that many U.S. companies maintain the equipment
in winter. To my knowledge, no other study has investigated the seasonal cycle of SFq
emissions, which is why | suggest further research on this topic to provide a more conclusive
answer.

5.3 QOutlook

5.3.1 Log-normal distribution of a priori emissions

In chapter 3, | investigated uncertainties related to LPDM-based atmospheric inversions.
As outlined in Sec 1.4, many other uncertainties can affect the inversion. A major challenge
is the estimation of the error distributions. The analytical solution to the inverse problem
requires state and observation errors to be Gaussian distributed (see Sec. 2.2.3). The
assumption of Gaussian a priori emission errors poses two problems. Firstly, the emissions
of many species (including SFg) follow a log-normal distribution rather than a Gaussian one.
It is therefore likely, that their errors are also log-normally distributed, making the Gaussian
assumption invalid. Secondly, while surface fluxes for many species are exclusively positive,
the Gaussian error assumption allows for negative values in the a posteriori emissions. One
possible solution to this problem is to use a MCMC method and apply a large ensemble
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of log-normally distributed state vector values (see Sec. 2.2.5). Alternatively, variational
methods could be used to develop a cost function that accounts for non-Gaussian error
distributions (see Sec. 2.2.4). Recently, the option of log-normal error distributions in the
state space was implemented in FLEXINVERT+, using variational methods. | evaluated
its performance for the example of optimizing SFg emissions. The key point of defining
an appropriate cost function, that accounts for log-normal errors in the state space, is
the choice of the central tendency of the log-normal distribution. Unlike for Gaussian
distributions, the mean, median, and mode are not the same for log-normal distributions.
Which of them should be used as a statistical estimator? While Fletcher and Zupanski
(2006) argued, that the mode generally represents the best choice, my tests showed that
the median was the only estimator providing reliable results in the case of SFg inversions.
This can be explained by the findings of Fletcher et al. (2019), suggesting that there are
different mathematical regions where each one of these three estimators are optimal for
the minimization. A study that further explores this topic is in progress.

5.3.2 European sulfur hexafluoride emissions

In chapter 4, | used a global inversion approach to determine the global distribution of SFg
emissions. While recent studies have employed regional inversions to constrain emissions in
China (An et al. 2024), and the U.S. (Hu et al. 2023) in high resolution, there is no updated
high-resolution regional study about SFg emissions in Europe. | am currently working on
closing this gap. For this new study | use exactly the same inversion set-up as in chapter 4,
but base the inversions on 0.25°x0.25° resolved FLEXPART sensitivities, driven by hourly
ECMWF ERA5 wind fields with the same resolution and a variable inversion grid with a
resolution ranging from 0.25° to 1°. First results show, that Germany is by far the biggest
SFe emitter in Europe (see Fig. 5.1 for the example year of 2021), confirming the findings of
previous studies (e.g. Brunner et al. 2017; Ganesan et al. 2014; Simmonds et al. 2020). An
interesting fact is that the inversion allocates large emissions to an area close to Frankfurt,
where there are not only a lot of power plants, but also the Siemens AG Switch gear Plant
Frankfurt - the biggest switch gear plant in Germany. My results also indicate a slow decline
in German SFg emissions between 2005 and 2021, showing a similar drop as found for the
total EU emissions after 2017. Another finding is, that SFg emissions have been strongly
decreasing in the UK (see Fig. 5.2). Similar to Northwest-European emissions (chapter 4),
| find an exceptional agreement with Manning et al. (2022) (especially after 2012) whose
UK emission estimates were reported to the UNFCCC. Again, this demonstrates the huge
potential of atmospheric inversions under the conditions of a good observational coverage.
Further, the substantial decrease in SFg emissions in the UK might suggest that reporting
top-down results may positively influence emission reduction efforts. Notably, after 2017,
my results show even lower SFg emissions in the UK, than those reported to the UNFCCC.
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Figure 5.1: European SFg emissions derived from inverse modeling for the year 2021.
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Figure 5.2: Annual SFg emissions in the UK between 2005 and 2021. Inversion-derived
a posterior emissions are shown with a black solid line, together with their
respective 1-0 uncertainties (grey shadings). The red and blue dots represent
the results from Manning et al. (2022) using the INTEM (Inversion Technique for
Emissions Modelling) model with inversion time frames set to 3- and 1-months,
respectively. Reported emissions to the UNFCCC are represented by a green
solid line.
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Supplementary Figures - A comprehensive evaluation of the
use of Lagrangian particle dispersion models for inverse
modeling of greenhouse gas emissions

Martin Vojta, Andreas Plach, Rona L. Thompson, Andreas Stohl

Supplementary Figures S1-S36 illustrate the three investigated baseline methods (REBS method,
Stohl’s method, and GDB method) at all considered in situ measurement sites. The GDB method
is illustrated for all tested backward simulation periods, including a case without any backward
simulation (0 days). In this extreme case the baseline is obtained directly from the value of the
global mixing ratio field simulated with FLEXPART CTM in the spatio-temporal grid cell of the
respective observation. REBS and Stohl’s method are illustrated for backward simulation periods of
1, 10, and 50 days. Baseline mixing ratios are plotted together with respective observations and a
priori mixing ratios (sum of the baseline and direct emission contributions).
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Figure S1: Baseline and a priori SFg mixing ratios calculated with the GDB method at the Barrow
observation station for backward simulation times of 0 days (panel a), 1 day (b), 5 days (c), 10 days
(d), 20 days (e) and 50 days (f).
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Figure S2: Baseline and a priori SFg mixing ratios calculated with the REBS (upper panels) and
Stohl’s method (lower panels) at the Barrow observation station, compared to SFg observations.
Model results are shown for backward simulations of 1 day (panels a and d), 10 days (panels b and
e) and 50 days (panels ¢ and f).
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Figure S3: Baseline and a priori SF¢ mixing ratios calculated with the GDB method at the Cape
Grim observation station for backward simulation times of 0 days (panel a), 1 day (b), 5 days (c),
10 days (d), 20 days (e) and 50 days (f).
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Figure S4: Baseline and a priori SFg mixing ratios calculated with the REBS (upper panels) and
Stohl’s method (lower panels) at the Cape Grim observation station, compared to SFg observations.
Model results are shown for backward simulations of 1 day (panels a and d), 10 days (panels b and
e) and 50 days (panels ¢ and f).
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Figure Sh: Baseline and a priori SF¢ mixing ratios calculated with the GDB method at the Cape
Matatula observation station for backward simulation times of 0 days (panel a), 1 day (b), 5 days
(c), 10 days (d), 20 days (e) and 50 days (f).
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Figure S6: Baseline and a priori SFg mixing ratios calculated with the REBS (upper panels) and
Stohl’s method (lower panels) at the Cape Matatula observation station, compared to SFg observa-
tions. Model results are shown for backward simulations of 1 day (panels a and d), 10 days (panels
b and e) and 50 days (panels ¢ and f).

134



Cape Ochiishi, Japan
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Figure S7: Baseline and a priori SF¢ mixing ratios calculated with the GDB method at the Cape
Ochiishi observation station for backward simulation times of 0 days (panel a), 1 day (b), 5 days (c),
10 days (d), 20 days (e) and 50 days (f).
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Figure S8: Baseline and a priori SFg mixing ratios calculated with the REBS (upper panels) and
Stohl’s method (lower panels) at the Cape Ochiishi observation station, compared to SFg observa-
tions. Model results are shown for backward simulations of 1 day (panels a and d), 10 days (panels
b and e) and 50 days (panels ¢ and f).
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Figure S9: Baseline and a priori SFg mixing ratios calculated with the GDB method at the Gosan
observation station for backward simulation times of 0 days (panel a), 1 day (b), 5 days (c), 10 days
(d), 20 days (e) and 50 days (f).
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Gosan, South Korea
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Figure S10: Baseline and a priori SFg mixing ratios calculated with the REBS (upper panels) and
Stohl’s method (lower panels) at the Gosan observation station, compared to SFg observations.
Model results are shown for backward simulations of 1 day (panels a and d), 10 days (panels b and
e) and 50 days (panels ¢ and f).
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Hateruma, Japan
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Figure S11: Baseline and a priori SFg mixing ratios calculated with the GDB method at the
Hateruma observation station for backward simulation times of 0 days (panel a), 1 day (b), 5 days
(c), 10 days (d), 20 days (e) and 50 days (f).

12

139



Hateruma, Japan
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Figure S12: Baseline and a priori SFg mixing ratios calculated with the REBS (upper panels) and
Stohl’s method (lower panels) at the Hateruma observation station, compared to SFg observations.
Model results are shown for backward simulations of 1 day (panels a and d), 10 days (panels b and
e) and 50 days (panels ¢ and f).
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Izafia, Tenerife, Spain
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Figure S13: Baseline and a priori SFg mixing ratios calculated with the GDB method at the Izana
observation station for backward simulation times of 0 days (panel a), 1 day (b), 5 days (c), 10 days

(d), 20 days (e) and 50 days (f).
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Izafia, Tenerife, Spain
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Figure S14: Baseline and a priori SFg mixing ratios calculated with the REBS (upper panels) and
Stohl’s method (lower panels) at the Izafia observation station, compared to SFg observations. Model
results are shown for backward simulations of 1 day (panels a and d), 10 days (panels b and e) and
50 days (panels ¢ and f).
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Jungfraujoch, Switzerland
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Figure S15: Baseline and a priori SFg mixing ratios calculated with the GDB method at the Jungfrau-
joch observation station for backward simulation times of 0 days (panel a), 1 day (b), 5 days (c), 10
days (d), 20 days (e) and 50 days (f).
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Figure S16: Baseline and a priori SFg mixing ratios calculated with the REBS (upper panels) and
Stohl’s method (lower panels) at the Jungfraujoch observation station, compared to SFg observations.
Model results are shown for backward simulations of 1 day (panels a and d), 10 days (panels b and

e) and 50 days (panels ¢ and f).
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Figure S17: Baseline and a priori SFg mixing ratios calculated with the GDB method at the Mace
Head observation station for backward simulation times of 0 days (panel a), 1 day (b), 5 days (c),
10 days (d), 20 days (e) and 50 days (f).
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Mace Head, Ireland
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Figure S18: Baseline and a priori SFg mixing ratios calculated with the REBS (upper panels) and
Stohl’s method (lower panels) at the Mace Head observation station, compared to SFg observations.
Model results are shown for backward simulations of 1 day (panels a and d), 10 days (panels b and
e) and 50 days (panels ¢ and f).
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Figure S19: Baseline and a priori SFg mixing ratios calculated with the GDB method at the Mauna
Loa observation station for backward simulation times of 0 days (panel a), 1 day (b), 5 days (c), 10
days (d), 20 days (e) and 50 days (f).
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Figure S20: Baseline and a priori SFg mixing ratios calculated with the REBS (upper panels) and
Stohl’s method (lower panels) at the Mauna Loa observation station, compared to SFg observations.
Model results are shown for backward simulations of 1 day (panels a and d), 10 days (panels b and
e) and 50 days (panels ¢ and f).
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Niwot Ridge, USA
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Figure S21: Baseline and a priori SFg mixing ratios calculated with the GDB method at the Niwot
Ridge observation station for backward simulation times of 0 days (panel a), 1 day (b), 5 days (c),
10 days (d), 20 days (e) and 50 days (f).

22

149



Niwot Ridge, USA
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Figure S22: Baseline and a priori SFg mixing ratios calculated with the REBS (upper panels) and
Stohl’s method (lower panels) at the Niwot Ridge observation station, compared to SFg observations.
Model results are shown for backward simulations of 1 day (panels a and d), 10 days (panels b and
e) and 50 days (panels ¢ and f).
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Ragged Point, Barbados
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Figure S23: Baseline and a priori SFg mixing ratios calculated with the GDB method at the Ragged
Point observation station for backward simulation times of 0 days (panel a), 1 day (b), 5 days (c),
10 days (d), 20 days (e) and 50 days (f).
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Ragged Point, Barbados
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Figure S24: Baseline and a priori SFg mixing ratios calculated with the REBS (upper panels) and
Stohl’s method (lower panels) at the Ragged Point observation station, compared to SFg observations.
Model results are shown for backward simulations of 1 day (panels a and d), 10 days (panels b and
e) and 50 days (panels ¢ and f).
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Ridge Hill, UK
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Figure S25: Baseline and a priori SFg mixing ratios calculated with the GDB method at the Ridge
Hill observation station for backward simulation times of 0 days (panel a), 1 day (b), 5 days (c), 10
days (d), 20 days (e) and 50 days (f).
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Ridge Hill, UK
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Figure S26: Baseline and a priori SFg mixing ratios calculated with the REBS (upper panels) and
Stohl’s method (lower panels) at the Ridge Hill observation station, compared to SFg observations.
Model results are shown for backward simulations of 1 day (panels a and d), 10 days (panels b and
e) and 50 days (panels ¢ and f).
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South Pole, Antarctic
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Figure S27: Baseline and a priori SFg mixing ratios calculated with the GDB method at the South
Pole observation station for backward simulation times of 0 days (panel a), 1 day (b), 5 days (c), 10
days (d), 20 days (e) and 50 days (f).
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Figure S28: Baseline and a priori SFg mixing ratios calculated with the REBS (upper panels) and
Stohl’s method (lower panels) at the South Pole observation station, compared to SFg observations.
Model results are shown for backward simulations of 1 day (panels a and d), 10 days (panels b and
e) and 50 days (panels ¢ and f).
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Summit, Greenland
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Figure S29: Baseline and a priori SFg mixing ratios calculated with the GDB method at the Summit
observation station for backward simulation times of 0 days (panel a), 1 day (b), 5 days (c), 10 days
(d), 20 days (e) and 50 days (f).
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Figure S30: Baseline and a priori SFg mixing ratios calculated with the REBS (upper panels) and
Stohl’s method (lower panels) at the Summit observation station, compared to SFg observations.
Model results are shown for backward simulations of 1 day (panels a and d), 10 days (panels b and
e) and 50 days (panels ¢ and f).
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Trinidad Head, USA
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Figure S31: Baseline and a priori SFg mixing ratios calculated with the GDB method at the Trinidad
Head observation station for backward simulation times of 0 days (panel a), 1 day (b), 5 days (c),
10 days (d), 20 days (e) and 50 days (f).
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Trinidad Head, USA
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Figure S32: Baseline and a priori SFg mixing ratios calculated with the REBS (upper panels) and
Stohl’s method (lower panels) at the Trinidad Head observation station, compared to SFg observa-
tions. Model results are shown for backward simulations of 1 day (panels a and d), 10 days (panels
b and e) and 50 days (panels ¢ and f).
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Zeppelin, Ny-Alesund, Norway
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Figure S33: Baseline and a priori SFg mixing ratios calculated with the GDB method at the Zeppelin
observation station for backward simulation times of 0 days (panel a), 1 day (b), 5 days (c), 10 days
(d), 20 days (e) and 50 days (f).
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Figure S34: Baseline and a priori SFg mixing ratios calculated with the REBS (upper panels) and
Stohl’s method (lower panels) at the Zeppelin observation station, compared to SFg observations.
Model results are shown for backward simulations of 1 day (panels a and d), 10 days (panels b and
e) and 50 days (panels ¢ and f).
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Zugspitze-Schneefernerhaus, Germany
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Figure S35: Baseline and a priori SFg mixing ratios calculated with the GDB method at the
Zugspitze-Schneefernerhaus observation station for backward simulation times of 0 days (panel a), 1

day (b), 5 days (c), 10 days (d), 20 days (e) and 50 days (f).
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Zugspitze-Schneefernerhaus, Germany
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Figure S36: Baseline and a priori SFg mixing ratios calculated with the REBS (upper panels) and
Stohl’s method (lower panels) at the Zugspitze-Schneefernerhaus observation station, compared to
SFg observations. Model results are shown for backward simulations of 1 day (panels a and d), 10

days (panels b and e) and 50 days (panels ¢ and f).
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Figure S1. The total number of annual available observations of (a) the entire measurement dataset and (b) the dataset after averaging.
The different colors indicate the different measurement types; blue: continuous, high-frequency surface measurements; orange: flask surface

measurements; green: measurements from moving platforms.
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Figure S2. Global inversion grids for the years 2005
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Figure S4. Mole fraction time series at the Bialystok (Poland) measurement station. Red lines illustrate the modeled a priori mole fractions
calculated with the E7P a priori emissions and blue lines represent the modeled a posteriori mole fractions. The green line illustrates the

baseline derived by the GDB method and the orange line shows the optimized baseline. The grey line represents the observed mole fractions.
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Figure S5. Mole fraction time series at the Beromiinster (Switzerland) measurement station. Red lines illustrate the modeled a priori mole
fractions calculated with the E7P a priori emissions and blue lines represent the modeled a posteriori mole fractions. The green line illustrates
the baseline derived by the GDB method and the orange line shows the optimized baseline. The grey line represents the observed mole

fractions.
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Figure S6. Mole fraction time series at the Barrow (Alaska) measurement station. Red lines illustrate the modeled a priori mole fractions
calculated with the E7P a priori emissions and blue lines represent the modeled a posteriori mole fractions. The green line illustrates the

baseline derived by the GDB method and the orange line shows the optimized baseline. The grey line represents the observed mole fractions.
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Figure S7. (a) represents the Mole fraction time series at the Bilsdale (UK) measurement station. Red lines illustrate the modeled a priori
mole fractions calculated with the E7P a priori emissions and blue lines represent the modeled a posteriori mole fractions. The green line
illustrates the baseline derived by the GDB method and the orange line shows the optimized baseline. The grey line represents the observed

mole fractions.
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Figure S8. Mole fraction time series at the Cape Grim (Tasmania) measurement station. Red lines illustrate the modeled a priori mole
fractions calculated with the E7P a priori emissions and blue lines represent the modeled a posteriori mole fractions. The green line illustrates

the baseline derived by the GDB method and the orange line shows the optimized baseline. The grey line represents the observed mole

fractions.
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Figure S9. Mole fraction time series at the Monte Cimone (Italy) measurement station. Red lines illustrate the modeled a priori mole fractions
calculated with the E7P a priori emissions and blue lines represent the modeled a posteriori mole fractions. The green line illustrates the

baseline derived by the GDB method and the orange line shows the optimized baseline. The grey line represents the observed mole fractions.
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Figure S10. Mole fraction time series at the Cape Ochiishi (Japan) measurement station. Red lines illustrate the modeled a priori mole
fractions calculated with the E7P a priori emissions and blue lines represent the modeled a posteriori mole fractions. The green line illustrates

the baseline derived by the GDB method and the orange line shows the optimized baseline. The grey line represents the observed mole

fractions.
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Figure S11. Mole fraction time series at the Heathfield (UK) measurement station. Red lines illustrate the modeled a priori mole fractions
calculated with the E7P a priori emissions and blue lines represent the modeled a posteriori mole fractions. The green line illustrates the

baseline derived by the GDB method and the orange line shows the optimized baseline. The grey line represents the observed mole fractions.
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Figure S12. Mole fraction time series at the Jungfraujoch (Switzerland) measurement station. Red lines illustrate the modeled a priori
mole fractions calculated with the E7P a priori emissions and blue lines represent the modeled a posteriori mole fractions. The green line

illustrates the baseline derived by the GDB method and the orange line shows the optimized baseline. The grey line represents the observed

mole fractions.
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Figure S13. Mole fraction time series at the Mace Head (Ireland) measurement station. Red lines illustrate the modeled a priori mole fractions
calculated with the E7P a priori emissions and blue lines represent the modeled a posteriori mole fractions. The green line illustrates the

baseline derived by the GDB method and the orange line shows the optimized baseline. The grey line represents the observed mole fractions.
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Figure S14. Mole fraction time series at the Mauna Loa (Hawaii) measurement station. Red lines illustrate the modeled a priori mole fractions
calculated with the E7P a priori emissions and blue lines represent the modeled a posteriori mole fractions. The green line illustrates the

baseline derived by the GDB method and the orange line shows the optimized baseline. The grey line represents the observed mole fractions.
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Figure S15. Mole fraction time series at the Niwot Ridge (Colorado) measurement station. Red lines illustrate the modeled a priori mole
fractions calculated with the E7P a priori emissions and blue lines represent the modeled a posteriori mole fractions. The green line illustrates
the baseline derived by the GDB method and the orange line shows the optimized baseline. The grey line represents the observed mole

fractions.
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Figure S16. Mole fraction time series at the Ridge Hill (UK) measurement station. Red lines illustrate the modeled a priori mole fractions
calculated with the E7P a priori emissions and blue lines represent the modeled a posteriori mole fractions. The green line illustrates the

baseline derived by the GDB method and the orange line shows the optimized baseline. The grey line represents the observed mole fractions.
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Figure S17. Mole fraction time series at the Cape Matatula (American Samoa) measurement station. Red lines illustrate the modeled a priori
mole fractions calculated with the E7P a priori emissions and blue lines represent the modeled a posteriori mole fractions. The green line

illustrates the baseline derived by the GDB method and the orange line shows the optimized baseline. The grey line represents the observed

mole fractions.
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Figure S18. Mole fraction time series at the South Pole, (Antarctica) measurement station. Red lines illustrate the modeled a priori mole
fractions calculated with the E7P a priori emissions and blue lines represent the modeled a posteriori mole fractions. The green line illustrates
the baseline derived by the GDB method and the orange line shows the optimized baseline. The grey line represents the observed mole

fractions.
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Figure S19. Mole fraction time series at the Summit (Greenland) measurement station. Red lines illustrate the modeled a priori mole fractions
calculated with the E7P a priori emissions and blue lines represent the modeled a posteriori mole fractions. The green line illustrates the

baseline derived by the GDB method and the orange line shows the optimized baseline. The grey line represents the observed mole fractions.
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Figure S20. Mole fraction time series at the Tacolneston Tall Tower (UK) measurement station. Red lines illustrate the modeled a priori
mole fractions calculated with the E7P a priori emissions and blue lines represent the modeled a posteriori mole fractions. The green line

illustrates the baseline derived by the GDB method and the orange line shows the optimized baseline. The grey line represents the observed

mole fractions.
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Figure S21. Mole fraction time series at the Trinidad Head (USA) measurement station. Red lines illustrate the modeled a priori mole
fractions calculated with the E7P a priori emissions and blue lines represent the modeled a posteriori mole fractions. The green line illustrates

the baseline derived by the GDB method and the orange line shows the optimized baseline. The grey line represents the observed mole

fractions.
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Figure S22. Mole fraction time series at the Zeppelin (Ny-Alesund, Norway) measurement station. Red lines illustrate the modeled a priori
mole fractions calculated with the E7P a priori emissions and blue lines represent the modeled a posteriori mole fractions. The green line
illustrates the baseline derived by the GDB method and the orange line shows the optimized baseline. The grey line represents the observed

mole fractions.
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