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Zusammenfassung

Die Kasner Raumzeit ist ein kosmologisches Modell und ist eine exakte Losung der Ein-
stein Vakuum Gleichung Ric(g) = 0. Sie wurde erstmals 1921 von Edward Kasner in [1]
beschrieben. Nach der Wahl einer geeigneten Zeitorientierung, konnen wir die Kasner
Raumzeit als ein Modell eines sich anisotropisch ausdehnenden Universums ohne Ma-
terie interpretieren. Wir nennen {t = 0} den Urknall dieses Universums.

Da hier auch koordinanteninvariante Kriimmungs-Skalare (wie z.B. der Kretschmann
Skalar) gegen Unenglich gehen, ist die Kasner Metrik offensichtlich nicht erweiterbar als
C?-regulare Metrik. In dieser Masterarbeit werden wir diese ”Singularitit” genauer un-
tersuchen und beweisen, dass die Kasner Metrik sogar nicht erweiterbar als C%-regulare
Metrik ist, was ein stérkere Aussage ist.

Um dies zu beweisen, verwenden wir die Beweis Idee aus Jan Sbierskis Beweis der nicht-
Erweitarbekeit der Schwarzschild Raumzeit als C%-regulare Metrik in [8].

Auf den ersten Blick scheint sich die Schwarzschild Raumzeit fundamental von der
Kasner Raumzeit zu unterscheiden. So modelliert erstere ein stationares sphérisch
symmetrisches Schwarzsches Loch und zweitere eine offensichtlich nicht sphérisch sym-
metrische sich ausdehnende Raumzeit. Jedoch teilen die Singularitdten beider Raumzeiten
wichtige Eigenschaften, welche uns erlaubt die gleiche Beweisstrategie zu verwenden.
Dies wurde, nach bestem Wissen des Autors, erstmals in [9] vermutet. Mit dieser Arbeit
bestatigen wir diese Vermutung.
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Abstract

The Kasner spacetime is a cosmological model of an anisotropic expanding universe
without matter and is an exact solution of the Einstein vacuum equations Ric(g) = 0.
It depends on a choice of so-called Kasner exponents pi,...,pq and if one of these is
negative, then the Kretschmann scalar blows up as ¢ — 0, i.e. there exists a curvature
singularity. Thus, it is manifestly inextendible as a Lorentzian manifold with a twice
differentiable metric. In this Master’s thesis we proof that it is even inextendible as
a Lorentzian manifold with merely continuous metric, which is a stronger statement.
We do so by adapting the proof of the CY-inextendibility of the maximal analytically
extended Schwarzschild spacetime established by Jan Sbierksi in [8].
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1 Introduction

1.1 Motivation

The question whether a given solution to the Einstein equations is maximal or can be
extended as a (weak) solution motivates the study of low regularity (in)extendibility of
a Lorentzian manifold. Of particular interest is the so-called strong cosmic censorship
conjecture, originally proposed by Roger Penrose. It states that, generally, the theory of
general relativity is deterministic, i.e. we should be able predict the fate of all classical
observers. One possible mathematical formulation of this conjecture is the following ([9]):

For generic asymptotically flat initial data for the vacuum Einstein equations
Ric(g) = 0, the maximal globally hyperbolic development is inextendible as a
suitably regular Lorentzian manifold.

The meaning of “suitably regular”and “generic”initial data is still debated to this day.
However it is clear, that a better understanding of C%-inextendibility will also yield in-
extendibility results in all other regularity classes. So the study of C%-extensions can
give useful insights for research on the strong cosmic censorship conjecture, even if the
true “suitable regularity”, for which the conjecture should be stated, might be of higher
regularity than C°.

In this Master’s thesis we will prove the C%-inextdendibility of the Kasner spacetime,
which was (to the best of the authors knowledge) first suspected in [9]. The proof will
follow the strategy established in [8] and thus confirm that this strategy of proving C°-
inextendibility of the maximal analytically extended Schwarzschild spacetime can be
generalized to other spacetimes with suitable properties. In the following we will al-
ways refer to the maximal analytically extended Schwarzschild spacetime simply as the
Schwarzschild spacetime.

1.2 Comparison of Schwarzschild and Kasner proof

The Schwarzschild spacetime and Kasner spacetime are fundamentally different as the
first models a static, non-rotating, spherical symmetric black hole and the latter is a cos-
mological model of an anisotropic expanding/contracting universe with a big bang/big
crunsh. However, as we will see, they share important properties that allow us to prove
CP-inextendibility with the same strategy.
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Let us first recall the proof idea for the Schwarzschild spacetime in [8]:

We argue by contradiction and assume there exists a C%-extension of the Schwarzschild
spacetime. Since the Schwarzschild spacetime is globally hyperbolic, a result established
in [2] states that then, there exists a (without loss of generality) future-directed timelike
geodesic leaving the Schwarzschild spacetime. It follows that this geodesic either ”leaves
through the exterior”, i.e. timelike/null infinity r — oo, or it "leaves through the inte-
rior”, i.e. the curvature singularity r = 0.

The first case is easily ruled out, since such geodesics are future complete in the Schwarzschild
spacetime (compare with Theorem 1 in [2]).

So we are left with the case that the geodesic leaves through the curvature singularity
r = 0. In this case, we can find a chart around the endpoint of the geodesic at r = 0,
where we can map the future boundary of the extension as an achronal Lipschitz graph
and we have good control of the metric (i.e. it is close to the Minkowski metric). Fur-
thermore, we can consider the future directed timelike curve given by the z°-coordinate
in the chart, which leaves the spacetime through the same point as the geodesic. It turns
out that there exists a point on this curve, close to the endpoint on the boundary, such
that its whole future in the Schwarzschild spacetime is mapped into the chart below the
graph and that we can reach this point from the past with a timelike curve from any
space-coordinate of the chart (far enough in the past in the chart). This is the most
difficult step of the proof, since we somehow need to control the causality of the space-
time, to map it below the graph. We do this by using the isometries we have because of
the spherical symmetry and the coordinate vector field 0; being stationary and the fact,
that the Schwarzschild spacetime is future-one connected. Furthermore, it is important,
that the boundary of the spacetime is spacelike in the conformal Penrose diagram.
Since the whole future of the point is mapped in the chart below the graph and we have
uniform causality bounds on the metric, we see, that there is a uniform upper bound on
the length of the shortest possible curves on a Cauchy hypersurfcaes that connect any
two points in the future of the point (that was mentioned above) intersected with this
Cauchy hypersurface.

This however contradicts the geometry of the Schwarzschild spacetime. Note, that the
hypersurfaces of constant r are Cauchy hypersurfaces. Furthermore, the Schwarzschild
spcaetime has a divergent spacelike diameter (compare Definition 5.1 in [9]). We will
however not use this definition in this thesis (except in this introduction) since it is
not quite the right notion for what we want. However, we can find a sequence of such
Cauchy hypersurfaces that converge to the curvature singularity » = 0. It follows by the
openness of the future, that for any such Cauchy hypersurface (close enough to r = 0)
we can find two points in the future of the point mentioned above such that their ¢-
coordinates differ by a fixed constant, in the chart, for all Cauchy hypersurfaces. The
length of the shortest possible curve connecting them on the Cauchy hypersurface then
blows up when taking Cauchy hypersurfaces close to » = 0. Which is a contradiction to
the observation above.



1.3 Notations and conventions

So to conclude, what are the important properties of the maximal analytically extended
Schwarzschild spacetime we need for the proof?

[

6.
7.

We

. global hyperbolicity
. future one-connectedness
. geodesic either hits the curvature singularity or is (future) complete

space-coordinates t and coordintaes of the sphere converge for a timelike curve
hitting the curvature singularity

. isometries coming from spherical symmetry and 0; being static
spacelike boundary at the curvature singularity (in a conformal sense)

divergent spacelike diameter

will prove the properties 1. and 2. for the Kasner spacetime (Lemmas 3.2.1 and

3.2.3). To get similar properties as 3.-7., we will need to restrict to a special case of
Kasner spacetimes, namely the ones with a negative Kasner exponent. It turns out these
are the only Kasner spacetimes that have a curvature singularity and all other Kasner
spacetimes are smoothly extendible to Minkowski space.

We

will be able to prove analogues to properties 3. and 4. for these spacetimes with

negative Kasner expoenent. Although not spherical symmetric, the Kasner spacetime

has

sufficiently many isometries to achieve property 5.

Property 6. is easy to see and property 7. can be also proved with the isometries of the
Kasner spacetime.

1.3 Notations and conventions

We

fix some notations and conventions here that will be used throughout this thesis,

unless explicitly stated otherwise.

e We will assume Einstein summation convention A*'B; =, A'B;

e Greek indices will be assumed to refer to all dimensions, i.e. u,v, K, p, ... € {0,1,...,d}

e Indices that only refer to space dimensions will be written in Latin letters, i.e.

i gk, ...e{1,..,d}

e All manifolds are considered to be Hausdorff, second countable and of dimension

d+ 1 > 2. Moreover, all manifolds are assumed to be smooth. We can always
assume this, since M must be endowed with an at least C' differentiable struc-
ture, for it to carry a continuous Lorentzian metric. However, then there exists a
compatible smooth differentiable structure on M (compare e.g. [3]).
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e The standard basis of Euclidean space R%*! is denoted by eg, e1, ..., eq

e Coordinate vector fields 9, := 89% on U C M, for a chart ¢ : U — R are
characterized by the fact that T,¢ - d,(p) = (p,e,) for all p € U, where T)p is the
tangent map of ¢ at p.

e for a curve v : I — R¥! we write v(s) = (74(s),7(s)), where 7 : I — R and
V(s) = (7,(5); 7, () € R™.

o = —da}+>% da? = diag(—1,1,...,1) is the usual Minkowski metric and d + 1-
dimensional Minkowski space is denoted by (R, 7).



2 Theory

2.1 Definitions and continuous Lorentzian metrics

In this section, we collect some definitions and prove important results in causality
theory with continuous Lorentzian metrics. This will be similar to Chapter 2 in [9]. We
will assume knowledge of manifolds with smooth Lorentzian metric as introduced for
example in [6].

Definition 2.1.1. Let (M, g) be a Lorentzian manifold with continuous metric. A time-
like curve is a piecewise smooth curve v : I — M, where I C R is some interval, if
for all s € I, where v is differentiable, we have that +(s) is timelike and at each point
of I the left-sided and right-sided derivative lie in the same connected component of the
timelike double cone in the tangent space.

Analogously, we call a piecewise smooth curve vy : I — M causal if §(s) is timelike or
null in the above sense.

Definition 2.1.2. Let (M, g) be a Lorentzian manifold with continuous metric.

e A time orientation is a map £ : M — P(TM), where P(TM) denotes the power
set of the tangent bundle TM, such that for allp € M: &(p) is one of the connected
components of the timelike double cone in the tangent space and there exists a chart
around p such that %(q) € £(q) for all q in the domain of the chart.

We call a Lorentzian manifold time-oriented, a time orientation is chosen.

o A timelike curve v : I — M 1is called future (past) directed, if ¥(s) € &(v(s))

(—=%(s) € £(y(s))) for all s € I. We will call such curves FDTL (PDTL) or future
(past) directed timelike.

e For p,q € M we define p < q (p > q), if there exists a future (past) directed
timelike curve from p to q.

e The timelike future of p € M in M is defined by I (p, M) := {q € M |p < q}.
The timelike past of p in M is defined by I~ (p, M) :={q € M |p> q}.

e A spacetime is a smooth, connected and time-oriented Lorentzian manifold.

Lorentzian manifolds with merely continuous metric do not posses an exponential map
in general. So we are not able to use normal-coordinates, Fermi-coordinates or others
that we usually have at our disposal when dealing with smooth (or at least C?) metrics.
However, given a timelike curve we can find useful coordinates even when the metric is
only continuous. These are also known as cylindrical neighborhoods (Def 1.8 in [7]).
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Lemma 2.1.3. Let (M, g) be a Lorentzian manifold with a continuous metric g, and let
v :[0,1] = M be a timelike curve. After possibly reparameterising v, we get for every
§ > 0 an open neighborhood U of v(0), some ¢ > 0 and a chart ¢ : U — (—¢,)%*! such
that

e ©((0)) = (07 70)
o (pov)(s)=(s,0...,0) for all s € [0,¢)

e 9,,(0) = 1, where n,, = diag(—1,1,...,1)
o 19u0(@) = m| < 6 for all w € (=2, 2!

Proof. After a possible linear reparametrization of v, we can assume without loss of
generality, that

9(3(0),%(0)) = -1 (2.1)

Since « is piecewise smooth, it has only finitely many breakpoints. So we can find a
neighborhood U of 7(0) and an € > 0 such that ¥([0,¢)) € U and v|( ) is smooth. Thus
Ylj0,e) is a smooth curve with timelike (so nowhere vanishing) tangent vector, i.e. an
immersion. By the local immersion theorem (e.g. Theorem 4.12 in [4]) we can find a
chart (choosing U and e smaller if necessary) such that the first two points are satisfied.
In these coordinates (2.1) is still satisfied. Note that the Lorentzian metric restricted to
the space-coordinates is a positive definite inner product. Thus, we get a linear map,
obtained from the Gram-Schmidt orthonomalisation procedure based at the origin, to
also achieve the third point.

Since the metric is continuous, for a given é > 0 we can choose U and € even smaller
such that the fourth point of the Lemma also holds. O

These coordinates and similar charts will be used extensively throughout this thesis.

We define here some notations that we will often use going forward. Fix 0 < a < 1
and let < .,. >pat+1 be the Euclidean inner product, ||.||ga+: the induced norm on R+
and eg = (1,0,...,0) € R4!. Then we define

+ . d+1 | <X.€0>pd+1
o O ={XeR™ | i > 0}

- d+1 | <X,e0>pd+1 .
o Co = X eR™ | it < —a}

c.— d+1| _ <X.€0>gd+1
o Ol ={XeR"™| —a< Koo < a}
Here, C} describes the forward cone of vectors which form an angle less than cos™!(a)
with the wg-axis. Note that the forward and backward cones of timelike vectors in

) . _ _ 1
Minkowski space correspond to the value a = cos(§) = 7

Furthermore, it is easy to see that if 0 < a < 4= < b < 1, then C;r CcCl . CCfand

v vz =
Cy €0, CCa



2.1 Definitions and continuous Lorentzian metrics

Proposition 2.1.4. Let (M,g) be a Lorentzian manifold with a continuous metric g.
The timelike future I (p, M) and timelike past I~ (p, M) are open in M for all p € M.

Proof. We show that I~ (p, M) is open in M, the proof for I (p, M) follows analogously.
Let g € I"(p, M) and let v : [0,1] = M be a FDTL curve with v(0) = ¢ and (1) = p.
We can use Lemma 2.1.3, to get an according chart ¢ : U — (—¢,¢)%! such that
v(q) = (0,...,0). Furthermore, since % > % it holds that 0576 - C’f/ﬂ. So we can
choose § > 0 so small, such that all vectors in C5_/ . are timelike and past directed for all
points in the chart ¢.

It is now easy to see that we can find a neighborhood of (0,...,0) in (§,0,...,0) + 0576.
This corresponds via the chart to some neighborhood V' C U of ¢ and for all z € V the
straight line from ¢(z) to (§,0,...,0) corresponds to a smooth timelike curve from x to

7(5) in U. Concatenating this curve with 'y|(%71] results in a FDTL curve from z to p,

ie. V.C I (p, M), which concludes the proof. O

This proof can be written down in a more elegant way, but since we will use similar
arguments in the future, it is a good place here to introduce them.

In the following we will illustrate the usefulness of the notation introduced above. Since

g < % < %, we have C’j/ﬁ - C’f;ﬁ - C';/S. Consider a chart ¢ as in Lemma 2.1.3 and

denote by R, . = (—€0,€0) X (—e1,e1)% the image of this chart. Choose §y > 0 so
small, such that in the chart ¢ all vectors in C’;EG are timelike and all vectors in in Cg/s
are spacelike. We prove the following estimates for all x € R, ., :

(z + 0576) N Repey © I+($7 Rso,m) C(z+ C;;S) N Rey ey (2.2)
(z + C5_6) N Regey ST (2, Repey) € (z+ Cs_g) N Rey ey (2.3)

We will only show the second inclusion relation of (2.2), the first one follows trivially
since C;;G is always included in the light cone of the metric. (2.3) then follows by revers-
ing the time orientation. This was also proven in Theorem 3.1 in [9].
Let 0 : [0,L] = Re, ., be a FDTL curve with ¢(0) = z that is parameterised by the
arc-length with respect to the Euclidean metric on R™! ie. L = Lpycidean(o) > 0 is
the Euclidean length of the curve o. First, we assume that ¢ is smooth. We know that
&(s) € Oy, for all s € [0, L], since o is FDTL. Then
<o(L)—z,e0 >ga+1 fOL < o(s),e0 >gat1 ds - 5 L
lo(L) = | ga+1 lo(L) = [ ga+s 8llo(L) - 2llpass

)
> 2
-8

where we have used that o is parameterised by arc-length, so L > ||o(L) — z||ga+1. Thus
we get o(L) € x+ C;;S. In the case where o is piecewise smooth we can split the integral
into a sum of integrals of smooth segments of o. This proves (2.2) and (2.3).
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Proposition 2.1.5. Let (M, g) be a Lorentzian manifold with continuous metric g and
v :[0,1] = M be FDTL. Then it holds:

rr(v(0), M) = |J I'*(x(s), M)

0<s<1

Proof. The inclusion “2” is obvious. For “C”: let p € I'T(y(0), M), so~(0) € I~ (p, M).
However, the past of p is open in M by Proposition 2.1.4. Since ~ is continuous there
exists some s € (0,1] (close to 0), such that v(s) € I~ (p, M) and thus p € I (y(s), M).

O

Definition 2.1.6. Let (M,g) be a time-oriented Lorentzian manifold with continuous
metric. The Lorentzian length of a future directed causal curve 7 : [0,1] — M is

1
1) = [ Vol s
The time separation or Lorentzian distance function 7 : M x M — [0, 00| is defined by

r(prq) = sup{L(7y) |~ : [0,1] — M futuredirected,v(0) = p,v(1) =q if g€ I (p, M)
e 0 if ¢ & I'(p, M)

Definition 2.1.7. Let (M,g) be a time-oriented Lorentzian manifold with continuous
metric and let I C R be one of the intervals (a,b), (a,b],[a,b) with a < b. We call a
FDTL ~ : I — M future (past) extendible if b ¢ I (a ¢ I) and «y can be extended to
TU{b} (IU{a}) as a continuous curve. Moreover, 7y is called inextendible if it is future
and past inextendible.

Note that this definition allows for a FDTL curve to be future extendible, but only as a
continuous curve and not as a timelike curve.

Definition 2.1.8. A subset S C M of a time-oriented Lorentzian manifold with con-
tinuous metric is called achronal, if every inextendible timelike curve meets it at most
once.

Definition 2.1.9. Let (M,g) be a time-oriented Lorentzian manifold with continuous
metric.

e A Cauchy hypersurface in (M, g) is a smooth embedded hypersurface ¥ which is
met by every inextendible timelike curve exactly once.
The terms Cauchy hypersurface and Cauchy surface are used interchangeably.

e (M, g) is called globally hyperbolic if there exists a Cauchy surface ¥ in (M, g).

Note that there are multiple equivalent definitions of global hyperbolicity. Since we will
only use the existence of a Cauchy hypersurface going forward, this definition suffices.
The following two definitions are not particularly well known. However, they will be
useful later, when proving the main theorem 3.3.3.



2.1 Definitions and continuous Lorentzian metrics

Definition 2.1.10. Let (M,g) be a time-oriented Lorentzian manifold with continuous
metric.

e A timelike homotopy with fixed endpoints between two FDTL curves 7°, ' :
[a,b] — M, with v°(a) = ~'(a) and 4°(b) = ¥'(b) (a < b € R) is a continu-
ous map T : [0,1] x [a,b] — M such that T'(0,-) = 7°(-) and T'(1,-) = ~*(-) and
I'(u,-) is a FDTL curve from v%(a) to 4°(b) for all u € [0,1].

We call two FDTL curves timelike homotopic with fixed endpoints if there exists
a timelike homotopy with fixed endpoints between them.

e We call (M, g) future one-connected if for all p,q € M, with p < q, any two FDTL
curves from p to q are timelike homotopic with fixed endpoints.

Definition 2.1.11. Let (M,g) be a time-oriented Lorentzian manifold with continuous
metric and A, B,K C M. We say K timelike-separates A and B if, and only if, for
every timelike curve v : [0,1] — M with v(0) € A and (1) € B there is some § € [0, 1]
with v(8) € K.

For simplicity, assume that all manifolds are connected.

Definition 2.1.12. Let (M,g) be a time-oriented Lorentzian manifold with smooth met-
Tic.

e Let k € NoU {o0}. A smooth isometric embedding v - M < M ‘s called a C*-
extension of (M, g), if M is a Lorentzian manifold of the same dimension as M,
Ou(M) # 0 and § is a C*-reqular metric.

By slight abuse of terminology, M is also sometimes called the extension of M.

e We call (M,g) C*-extendible, if there exists a C*-extension of (M, g). If no such
extension exists, we call (M, g) C*-inextendible.

To get more familiar with the concept of C'-extensions, we list in the following a few
examples of C%-extensions:

e Minkowski space with one point (a closed subset) removed (R¢*!\ 0,7) can be
isometrically embedded into Minkowski space with the obvious map. As Minkowski
space has a smooth metric, (RCIHI \ 0,7) is even C*-extendible.

o the Kerr metric (which we will not write down here) that models the behaviour
of a rotating, uncharged, axially symmetric black hole with a quasispherical event
horizon is also C'*°-extendible.

e ((0,00) xR, g) with g = €2V{(—dt? + da?) is obviously C%-extendible to [0, 00) x R.
However, computing the scalar curvature of g gives R = _ﬁﬁ%’ so the scalar
curvature blows up for t — 0, i.e. it is C%-inextendible.

The last result shows that curvature blow ups, that often detects C%-inextendibility, do
not help us when proving C°-inextendibility. We need more sophisticated tools.

In the following section we will develop such tools and results.
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2.2 Results for CY-extensions

Lemma 2.2.1. Let (M, g) be a time-oriented Lorentzian manifold with smooth metric. If
there exists a CO-extension 1 : M — M, then there exists a timelike curve 7 : [0,1] — M
such that 4([0,1)) C «(M) and ¥(1) € M \ «(M).

Proof. By definition we have 0u(M) # 0, let p € 9u(M) QNM \ ¢«(M). Choose a small
neighborhood U of p which is time-oriented. For ¢ € I~ (p,U) we have two cases

1. g € «(M): Then there exists a FDTL curve ¥ : [0,1] — U with 4(0) = q € «(M)
and (1) =p € 0u(M). Since «(M) C M is open, we see that for

soi= swp {3(00,9) € (M)}
s€[0,1]

we get 7(sg) € M \ +(M). This gives the timelike curve from the statement after
a possible reparametrization.

2. g€ M\ t(M): Since p € I'(¢q,U) N du(M) and since I (g,U) is open, there exists
some r € I'(q,U) Nt(M). So there exists a PDTL curve 7 : [0,1] — U such that
4(0) = r and 4(1) = ¢ and we get the desired timelike curve analogous to the
previous case.

O

Note that the proof of the previous lemma shows that if there exists a CY-extension,
then there exists a timelike curve leaving the original manifold. However, whether this
curve is future or past directed is a priori not clear.

Definition 2.2.2. We call the future boundary of a C°-extension v : M < M the set
O*u(M), which consists of all p € Ou(M) for which there exists a smooth timelike curve
v :[0,1] = M with v([0,1)) C «(M), t= o~ :[0,1) = M is FDTL and (1) = p.

The past boundary 9~ ¢(M) is defined analogously.

By Lemma 2.2.1 it is clear that 1¢(M) U (M) # 0. Furthermore, we clearly have
AT (M) U O (M) C du(M). However, we can not make any general statements about
Itu(M)N O~ u(M).

Definition 2.2.3. We call a CO-extension v : M < M of a time-oriented Lorentzian
manifold with smooth metric future C%-extension or past C°-extension, if T (M) # ()
or 07 u(M) # 0 respectively.

As usual, we call a time-oriented Lorentzian manifold with smooth metirc C°-future/past-
inextendible, if there exists no future/past-extension.

Lemma 2.2.1 clearly implies that M is CY-inextendible if, and only if, M is future and
past-inextendible.

10



2.3 CV-extensions of globally hyperbolic Lorentzian manifolds

2.3 ('-extensions of globally hyperbolic Lorentzian manifolds

Now, we turn our attention to the important case of C%-extensions of globally hyperbolic
time-oriented Lorentzian manifolds. The following proof follows Proposition 1 in [8].

Lemma 2.3.1. Let ¢ : M < M be a C°-extension of a globally hyperbolic, time-oriented
Lorentzian manifold (M, g) with p € 07«(M). For every 6 > 0 there exists eg,e1 > 0
and a chart p : U — (—eq,e0) X (—¢e1,1)? such that:

1. pe U and $(p) = (0, ...,0)
2. |G — | <6

3. There exists a Lipschitz continuous function f : (—e1,e1)¢ — (—¢o,20) such that:

{(z0,2) € (—e0,20) % (—e1,61)" |20 > f(2)} € @((M)NT) (2.4)

and
{(z0,z) € (—€0,€0) X (—e1,61)? |20 = f(2)} C PO U(M)NT)  (2.5)

Moreover, the graph of f is achronal in (—eg,g0) x (—e1,€1)%.
Going forward we will use the abbreviation R, ., := (—¢p,&0) x (—¢1,€1)?

Proof. By definition of the past boundary and p € 9~ ¢(M), there exists a timelike curve
4 :10,1] — M such that 5((0,1]) € ¢(M), 7|,y is FDTL and 5(0) = p € 9~ ¢(M). We
can reparameterise the curve by Lemma 2.1.3 for all § > 0 and find a chart ¢ : U —
(—€0,€0) X (—€1,€1)? such that

o (poF)(s) = (s,0,..,0) for all s € [0,e0)

® ’guu - 77W| <90

Since % > %, we can choose 0 > 0 so small that the backwards cone C‘,)_/6 is always

contained in the light cone of g, i.e. all vectors in 0576 are timelike for all points of the
chart .

Since M is globally hyperbolic there exists a Cauchy hypersurface ¥ C M. Note that
v:=:1lo Yl(0,1] is a past inextendible timelike curve in M, so we can find a sop > 0
close to 0 such that v(sg) € I~ (X, M). Since I~ (X, M) is open we can choose €g,e1 > 0
smaller, if necessary, such that [sg,g0) X (—e1,£1)? € @((I~ (2, M))NT).

By assuming that 1 < 2—\1&50 we can guarantee that for all z € (—51,51)d the straight
line connection (—1%50, z) with 0 is timelike. Indeed, even the straight line connecting
(—1%60, €1,..,€1) and 0 is timelike since

IS - RPNy LS IS
6 ! 2510 /d °

(1%50)2 + de?

11
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where the right hand side is definitely true, since even 1 < 2—\1/350 holds, this shows that

(1%60,61, 0y €1) € C’%
Now define f : (—e1,e1)? — [0, €0) as follows

fl@)= _inf {(s,2) € p((I" (S, M))NU) Vs € (s0,20)}

806(—80,80)

First, we show that f(z) > —eg for all 2 € (—e1,e1)%

We argue by contradiction: assume there exists axy € (—e1,e1)? such that f(z,) = —eo.
By the way we defined f(z) it holds that (—-xe9,2) € G(«(I7 (X, M))N U) and from the
discussion above we know that the straight line o = (09,0) : [0,1] — R, ¢, connecting
0(0) = (—5¢€0,z) and o(1) = 0 is timelike.

We want to show that olj 1y € @(¢«(I7 (2, M)) N U).

For this we (partially) foliate the plane

{(t7g(8)) S R€0761 ‘t 2 00(8)7 s € [07 1)}

by (closed) straight lines p, that start in (7,z,) and end in o with slope (—%so, —Zp)-

Note that (— 1050, z) € (I~ (,M)NTU) C ¢(t(M)NTU) and since G(u(M) N )
is open, there is some 7 € (—1%50, 1%60) such that

gsg, 7) (2.6)

pr CBUM)NT) Vr € (—1

And let 79 := sup{7 € (— 150, 75€0) | (2.6) holds}. Note that 1o = -%eo.

This holds since 79 < 9060 implies that there exists some ¢ = (qo, ) on pr, such that
q ¢ p(u(M))NU). However since hnes with slope (—+5e0, —) are timelike it follows
that the straight line connecting (— 10 £0,Z) to ¢ corresponds to an future directed time-
like and future inextendible curve entirely contained in G(c(I~ (X, M)) N U), which is a
contradiction to ¥ being a Cauchy surface. See Figure 2.1 on the next page.

Thus 79 = +5c0, which shows that ooy € eI~ (E, M) N U). This however is also a
future directed timelike and future inextendible curve in G(c(I~ (X, M))NU), so we get
the same contradiction. This proves that f really maps into (—&g, o).

The properties (2.4) and (2.5) are obvious by the way we defined f.

We use a similar argument as before to show that f is continuous: Let xz,, € (—&o,&0)?
be a converging sequence x,, — x., € (—eo,c0)% If f(z,) = f(2s), then there exists a
0 > 0 (and possibly a subsequence) such that |f(z,) — f(z.,)| > ¢ for all n € N.

After possibly restricting again to a subsequence we can without loss of generality assume
that f(z,) < f(zy) — 0, the case f(z,) > f(z,) + 0 follows analogously. For n big
enough we can connect (f(z,,) + g, z,) to (f(z), 2, ) via a straight line that is future
directed timelike. This gives the previous contradiction.

The same argument can be also use to show that f is even Lipschitz continuous: Assume

12
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Figure 2.1: The foliation and curve

f is not Lipschitz, i.e. for all n € N there are x,,y, € (—¢0,€0) such that |f(x,) —
f(yn)| > n|xy, — yn|. So the straight line connecting (f(xy),z,) and (f(yn),yn) has
slope more than n (or less than —n). Since the straight lines from 0 to (%eo, ) are
always timelike, for all 2 € (—e1,e1)¢, we can find some n € N such that the line
connecting (f(x,) + 6, 2n) to (f(yn), yn) is timelike for some § > 0. This gives the usual
contradiction.

We can even use this argument to prove that the graph of f is achronal in R, .,. Assume
it is not achronal, i.e. there are z, y in the graph of f such that z = (o, 2) € I~ (y, Rey ey )-
Since I~ (y, Rey,) is open, there is a 6 > 0 such that (xo + 0,2) € I~ (y,Repe,) N
@((I~ (2, M))NU). This allows us to again construct a future directed timelike, future
inextendible curve curve in I~ (X, M), so we get the same contradiction. O

2.4 Auxiliary results

The following theorem was proven in [2].

Theorem 2.4.1. Let (M, g) be a globally hyperbolic Lorentzian manifold. Assume there
exists a past C-extension 1 : M < M, i.e. d"1(M) # 0. Then there exists a FDTL
and past inextendible geodesic T : (0,1] — M such that lims_,o(c o 7)(s) exists and is
contained in Ou(M).

As noted in [8], we can combine the proof in [2] with Lemma 2.3.1 to get

Theorem 2.4.2. Let 1 : M < M be a past CO-extension, i.e. 0~ u(M) # 0, of a globally
hyperbolic Lorentzian manifold (M, g). Choose p € &~ 1(M) and let ¢ : U — Rey e be
a chart around p as in Lemma 2.3.1. Then there exists a FDTL and past inextendible
geodesic T : (0,1] — M such that povoT: (0,1] = Rey ., lies above the graph, i.e. in
{(s;2) € Reyey | 5> f(2)}, and has endpoint on {(s,z) € Rey e, |5 = f(2)}.

13
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Proof. We will only sketch the proof idea here. Let p € 0~ u(M). By Lemma 2.2.1 there
exists a timelike curve 7 : [0,1] — M such that 5(0) = p and |1 € ¢(M) is FDTL.
By Lemma 2.3.1 we get a chart ¢ : U— Reye,, for e < 27\1/850’ such that

1. ¢oA(s) = (s,0,...,0) for all s € [0,¢0)
2. |Guw — Nuw| < 6 where § > 0 will be fixed below

3. There exists a Lipschitz continuous function f : (—ey,e1)? — (—e0,€0), with
achronal graph in (—eg, ) x (—¢1,£1)%, such that:

{(z0,2) € (—€0,20) % (—e1,€1)%|x0 > f(2)} C G((M)NT)

and
{(wo,z) € (—€0,€0) x (—e1,61)%|w0 = f(2)} € GO (M) NT)

Let ¢ .= —%dmg + 2?21 dz? and ¢("?) .= —4dz? + Zle dz? and pick § > 0 so small,
that the following causality bounds hold for any X € TU:

9P (X, X) 0= g(X,X) <0
9(X,X) < 0= ¢g")(X,X) <0

We will also note this by g2 < g < ¢(*/2.

Now, choose some ¢ € (0,e1) and put

3

-1, € = - e 3
‘/E = I+ (QO 1(—5,0,...,0),U) UIg(1/2> (SO 1(5707"'70))(])

g(1/2)
As shown in the proof of Theorem 3.3 in [2], (VZ, g|v.) is globally hyperbolic.
Theorem 2.4 in [2] shows that there exists a past directed causal curve « : [0,2] — VS
from ¢q := 4,5_1(%5, 0,...,0) to p = 4(0) with maximal length. Since « clearly lies initially
in «(M) we can write after reparametrization

where ¢([0,1)) C «(M) and A(1) € du(M).

o is a maximizer in V- N¢(M), since « is a maximizer in V.. But g is a smooth metric in
t(M) and since radial geodesics are unique maximizing curves in normal neighborhoods,
we see that o is either timelike or null geodesic. If o is a timelike geodesic we are finished.
Indeed, it is a PDTL geodesic that is completely contained in ¢~*((—¢,e)4t!) C U, has
endpoint in J¢(M) and since 0 < £ < &1 it must end on the graph, i.e. in 9~ ¢(M).

Assuming o is a null geodesic yields the same contradiction as in [2]. Note that we
need global hyperbolicity of (M, g) for this contradiction. This concludes the proof. [
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3 The Kasner spacetime

3.1 Introduction

The Kasner spacetime (M, g) is a d + 1-dimensional Lorentzian manifold for d > 3. It
describes an anisotropic expanding universe without matter and is an exact solution to
the Einstein vacuum equation (Ric(g) = 0). It is defined as

M = (0,00) x R?
with the smooth Lorentzian metric
d
g=—dt* + thm dz?
i=1

The so-called Kasner exponents have to satisfy the following properties:

d
Zpi =1
=1

d
Y pi=1
=1

The first condition defines a d — 1-dimensional hyperplane and the second conditions
defines the standard sphere S%~!. Thus, the possible choices of exponents lie on a d — 2-
dimensional sphere.

Note that if the choice of exponents is not one of the trivial solutions, i.e. where there
exists jo € {1,...,d} such that p;; = 1 and the rest are zero, then there always exists
at least one negative Kasner exponent. This follows by combining both condition in (3.1):

(3.1)

d d d—1 d—1
1=0"p)* =D 07 +2> pi) pi=1+2> pi» p
i—1 i—1 =1 j>i =1 j>i

and thus
d

-1
Di Z pj =0 (3.2)
i=1  §>i

Note that (3.2) implies that either the solution is one of the trivial ones or there exist

at least three non-zero Kasner exponents and at least one (but not all) of them needs to
be negative.

15



3 The Kasner spacetime

Moreover, if without loss of generality p; < 0, then for d = 3 we get —% < p1 <0 (by [5)]).

Assuming we are in a trivial solution with, without loss of generality, p; = 1. Then
the metric takes the form

d
g = —dt* + t*dz} + Z da?
i=2
With the coordinate transformation ¢ = t cosh(z1) and #; = tsinh(z1) one recovers the
Minkowski metric

d
—di® + di} + ) da?
i=2
Clearly the range of £ is (0,00) and of #; is R. We see that the Kasner spacetime with
trivial exponents can be isometrically embedded into the open subset (0,00) x R? of
Minkowski space Rﬁ”l with the obvious map. This shows that the trivial case is C*°-
extendible.

Going forward we will only consider the case where there exists at least one negative
Kasner exponent, unless explicitly stated otherwise. This case is sometimes called Kas-
ner spacetime with negative exponent.

3.2 Properties

Since J; is a nowhere vanishing timelike vector field, we can stipulate that it gives the
future direction. Thus, the Kasner spacetime is time-oriented, oriented and connected
smooth Lorentzian manifold, so it indeed satisfies the requirements of being a spacetime.

In the following we will study the curvature of the Kasner spacetime. The only non-
vanishing Christoffel symbols are

% = pitr !
Di

T Tt
o¢—F¢o—?

The Riemann curvature tensor R € T3'(M) can be calculated in local coordinates as
R0, 0, = R%, 0, where

KUy

Ry, = 0,17, — 0,1, + 17,0, —T7,I',

The non-vanishing components of the Riemann curvature tensor are with ¢ # j:

Rjy; = —Ro = pi(pi — D* 2

boi = —Rbio = pi(pi — 1)t 2

Ry = —Rjj; = pipjt™

16



3.2 Properties

We can lower the first index with the metric: Ry = g"pRﬁW.

Roioi = —Roiio = Rioio = —Riooi = pi(1 — pi)t*P >
Rijij = —Rijji = pipjt?PiT2Pi—2

It clearly follows, that the Riemann curvature tensor vanishes if, and only if, the Kasner
exponents are trivial solutions.

If we are not in the trivial case, i.e. there exists at least one negative Kasner expo-
nent, then the curvature blows up as ¢ — 0. To see this, we need to study coordinate
invariant curvature scalars. In mathematical General Relativity a usual choice for this
is the Kretschmann scalar K = Ry, R7™", where R7"™" = g7 g"B gk g” 5Ra575.

The non-vanishing terms are with i # j:

ROiOi — _ROiiO — RiOiO — _RiOOi — pz(l _ pi)t—Qpi—Q

RWYW — _ RUI — pipjt*2pi*2pj*2

And thus we see that the Kretschmann scalar of the Kasner spacetime is given by

d d
K= (X0 -+ 3 n)
=1

i=1 j>i

It is easy to conclude that the Kretschmann scalar blows up for ¢ — 0 if, and only if, we
are not in one of the trivial solutions of (3.1), i.e. the Kasner spacetime with negative
exponent has a curvature singularity for ¢ — 0. This immediately shows that it is C?-
inextendible.

The Ricei curvature of a semi-Riemannian manifold is defined to be the contraction
CiR € TP (M) of the Riemann curvature tensor R. In local coordinates it can be com-
puted via
._ u 7 B
Rij = QLFM — Gjl“m + FZVFZ-Vj — Fiu Zj

After a short calculation we get that the only non-zero terms are

d d
Roo = Qv =2 pi)t™
=1 =1
d
R =(1- ij)pitgpi_Q
j=1

Thus, the two conditions (3.1) for the Kasner exponents are satisfied if, and only if, the
Ricci curvature vanishes. Then, we see that the Kasner spacetime is indeed a vacuum
solutions of the Einstein Equations, i.e. Ric(g) = 0.

17



3 The Kasner spacetime

The volume element can be computed as

A /_|g| = ¢P1ttPa — ¢

where |g| denotes the determinant of the metric. Since the volume of the spacial slices
is always proportional to the volume element, we get that the spatial volume is O(t).
So for ¢ — 0 we can interpret the Kasner spacetime as a cosmological model with a Big
Bang (or Big Crunch if we reverse the time orientation).

It is noteworthy that an isotropic expansion (or contraction depending on time ori-
entation) is not possible, since the Kasner exponents can’t all be equal. Assuming, by
contradiction, they are all equal, the first condition would imply that for all j € {1,...,d}
we get p; = é. However, the second condition then can’t be satisfied since d > 3:

d 1
ZP?:E#l
=1

We say the Kasner spacetime models an anisotropic expanding (or contracting) universe.

However, the Kasner spacetime still admits a lot of isometries. This can be seen by
the fact that for all ¢ € {1, ...,d} the coordinate vector fields 9; are Killing vector fields.
Indeed

(*C@ig);u/ = aig;w =0

This shows that any one-parameter group of diffeomorphisms F; : R x M — M with
infinitesimal generator 0; is a one-parameter group of isometires. These isometries are
of the form

Fz)\(t, LlyeeeyLgyauny xd) = (t, L1y, T + )\, ceey l‘d)

for some A € R, where F; \(-) := F;(}, ).
Since 0; are Killing vector fields we know that ¢(0;,7) is constant along any geodesics
~. This implies that a timelike geodesic v : I — M in Kasner must satisfy

d

() + > wl(s) Pk} = —1 (3.3)
=1

where k; = ¢(0;,7) are constants.

In the following we prove important properties of the Kasner spacetime that we will
need for the proof of the C°-inextendibility later.

Lemma 3.2.1. The Kasner spacetime is globally hyperbolic.
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Proof. Note that 7: M — (0,00), given by 7((¢,x)) = t, is a smooth temporal function,
meaning gradT = —0d; is a PDTL vector field on M.

We want to show that for a fixed ¢y € (0, 00) the set Xy, := {t = o} is a Cauchy surface.
Let I be some Interval and v : I — M be FDTL. Note that for all s € I:

d
0> g(¥(s),7(s)) = =Fe(8)* + Y %e(5)%i3,(5)% = —Ae(s)?
i=1
since y;(s) > 0 for all s € I. It follows that |y;(s)| > 0 for all s € I and by the Inverse
Function Theorem that we can always parameterise any timelike curve with respect to
the ¢-coordinate, i.e. write the curve as y(s) = (s,7(s)).

Since 7 is a temporal function we know that each causal curve that intersects ¥;, only
does so exactly once. Thus, it is left to show that any inextendible timelike curve inter-
sects X, at least once.

Fix 0 < a < tp and let 7 : (a,b) — M be a FDTL and future inextendible curve with
v(s) = (s,7(s)). If b = 0o the curves intersects ¥, by continuity.

So assume b < oo. Then for all s € (a, b):

d d
0> g(¥(s),¥(s)) = =1+ > _s™14.(s)* = =1+ Cap Y _4,(5)?
=1 =1

where
Cup = min { min s%i} >0
’ i=1,..,d s€]a,b]

exists since 0 < a < b < oo. Thus, we get the following uniform bound for s € (a,b):

I(s)ls < —— <

Y(8)||pd < —== < o0

- Ca,b

Since v was assumed to be in future inextendible, we assumed that for some converging
sequence b, — b as n — oo the limit lim,, o 7(b,) does not exist. By the way we
parameterised v and b,, being convergent, this means that we assumed that the limit of
(7(bn))nen € R does not exist. However, for n < m € N we get:

1
vV Ca,b

So (7(bn))nen is a Cauchy sequence in R? and thus a limit exists, which is a contradiction
to the assumption. Thus, it holds that any such FDTL and future inextendible curve is
of the form v : (a,00) — M and thus intersects ¥, at v(to).

The proof for PDTL and past inextendible curves starting in the future of ¥;, follows
analogously. Thus, any inextendible timelike curve is of the form v : (0,00) — M and
meets 3, exactly once. We conclude that ¥;, is a Cauchy hypersurface and since 7
is a smooth temporal function it is even smooth and spacelike. This shows that M is
globally hyperbolic. O

bm
) = 2l < [ 8 ds < o =
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3 The Kasner spacetime

Lemma 3.2.2. Let 7 : [a,b) — M be a future or past directed timelike geodesic that is
future or past inextendible respectively. Then it holds that (toT)(s) — oo or (toT)(s) — 0
as s — b respectively.

Proof. This follows from the proof of Lemma 3.2.1. O
Lemma 3.2.3. The Kasner spacetime is future one-connected.

Proof. Let 4%, 4! : [a,b] — M be two FDTL curves with same start and end point, i.e.
7%(a) = v*(a) and 1°(b) = v'(b). Note that we can again assume that v*(s) = (s,7"(s))
for i € {0,1}. One can then define a homotopy I : [0, 1] x [a,b] — M by

D(u,s) := (s, (1= u)y"(s) +uy'(s))

Indeed one has I'(i, s) = 7%(s), I'(u,a) = ¥*(a) and I'(u,b) = v*(b) for i € {0,1} and all
u € [0,1]. So it is left to show that I'(u,-) is FDTL for all u € [0, 1].

Using the fact that 2 + 22 is convex, 7° and ~! are timelike and s?¢ > 0 for all
0<a<s<b<ooandic€{l,..d} weget for all u € [0,1]:

d
90T (u, ), 0,0 (u,8)) = =1+ Y s™((1 = u)3)(s) + u; (s))”
i=1

d d
< -l (L-w) )y s)(s) +u ) s (s)?
i=1 =1

= (1= u)g(3°(s),7°(5)) +ug(¥'(s), 7' (5)) < 0
This proves that the Kasner spacetime is future one-connected. O

Lemma 3.2.4. The Kasner spacetime is future complete, i.e. any FDTL affinely pa-
rameterised and future inextendible geodesic is of the form v : (a,00) — M.

Proof. Let v : I — M be a FDTL and future inextendible geodesic. Assume without
loss of generality that it is parameterised by arc length (unit speed).
By (3.3) we know that it must satisfy

d

Au(s)? =D wls) 2T + 1
i=1

Furthermore, by Lemma 3.2.2 it holds that 14(s) — oo. The claim is proven once we
show that this implies s — oo.

So we want to show, that 74(s) doesn’t blow up in finite time. Assume without loss
of generality that v;(s) > 1 and let C := max{k?|i = 1,...,d}. Since we know that
—1 < p; foralli € {1,...,d}, v(s) %" < v(s)? holds. All together we get

"‘)/t(S)Q S Cd")/t(S)2 + 1
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This implies, that for some constant C' > 0 and Cy; := v/Cd we get

Sinh(Cd é + Cy S)
<
Ye(s) < cy

Note that the right hand side goes to oo if, and only if, s — co. Since any geodesic is a
linear reparametrization of a unit speed geodesic geodesic, this proves the claim. ]

Lemma 3.2.5. The Kasner spacetime is past incomplete.

Proof. This can be calculated directly by constructing a PDTL geodesic that reaches
{t = 0} in finite affine parameter time. Let p € M and v : [0,b) — M be some unit
speed PDTL geodesic with 7(0) = p. Assume the conserved quantities are g(9;,7) = 0
for all ¢ € {1,...,d}. By (3.3) it then holds that

(s)f =1

Thus we have
v(s) = (%(0) — s,7(0))

So we can reach {t = 0} in finite affine parameter time and thus b < co. Which means
the Kasner spacetime is not past complete, which completes the proof. ]

The following is an important Lemma to study the nature of the Kasner singularity.

Lemma 3.2.6. For all € > 0 there exists some T > 0 such that for any timelike curve
v : 1 — M (for which there is some so € I such that v(so) < T) and all i € {1,...,d},
we have for all 5,5 € ;71 ((0,T))

[7,(s) =7, (8)| <&

7

Proof. First note that this statement is purely geometric, meaning it is invariant under
reparametrization of the curve. Since 7 is timelike we can parameterise it with respect
to the t-coordinate, i.e. v : I — M with y(s) = (5,7(s)).

Fix some i € {1,..,d}. Then for any s € I (so s > 0) it holds that

0> g(¥(s),4(s) = —1+ 87 4,(s)* + D 5™ 7 (5)° = —1+ 5, (s)
j#i
And thus we get
3,(8)] <57

Since we are in the case where there exists a negative Kasner exponent, we know that
p; < 1 holds for all ¢ € {1,..,d}. Thus, the upper bound is integrable on (0,7 ], for all
T > 0, and the Lemma follows from integration. O

Note that the previous lemma implies that for all FDTL ~ : (0,b) — M with ~(s) =
(s,7(s)) and i € {1,...,d}, we have that v (s) converge as s \, 0.
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3 The Kasner spacetime

3.3 The main theorem

The proof follows the strategy established for Theorem 1 in [8].
By Lemma 2.2.1 we know that if there exists a C?-extension of the Kasner spacetime,
then 0T (M) U O™ 1(M) # 0. So we deal with the two cases separately.

Theorem 3.3.1. The Kasner spacetime (with a negative exponent) is future C°-inestendible.

Proof. We prove this by contradiction. Assume there exists a future C°-extension ¢ :
M < M of the Kasner spacetime (M, g), i.e. dT1(M) # (. By combining Lemma 2.3.1
(with reversed time orientation or directly Proposition 1 from [8]) and Theorem 2.4.2,
there exists 0 < g1 < 2—\1/350, achart ¢ : U — (—ep,0) X (—€1,€1)% and a FDTL geodesic
7:[0,1) — M that is future inextendible in M such that:

® |G — M| < 0o (where we will fix g > 0 below)

e There exists a Lipschitz continuous function f : (—ey,e1)% — (—¢o,£0) such that:

{(z0,2) € Repey [0 < fl2)} € P(U(M)NT) (3.4)

and

{(z0,2) € Regey |20 = f(z)} S P07 (M)NT) (3.5)

Moreover, the graph of f is achronal in U.

e poroT :[0,1) = R. . maps into {(zg,z) € Reye, |20 < f(z)} and, after

recentering the chart, we can also arrange for lims_,1(@ oo 7)(s) = (0,...,0).
Since g < % < %, we have 0576 C Cf;ﬁ C C;;S.
such that at all points in the image of the chart ¢ all vectors in C'sj/E6 are timelike and all

vectors in CF, are spacelike.

We have already seen before that the following holds for all z € R, .,:

So we can choose g > 0 so small,

(z +C,

5/6> N Reye, C [Jr(xa Reye,) C (z+ cs,

5/8) N Rey e,

(z + 05;6) N Reye, C I~ (, REO,sl) C(z+ 05_8) N Rey ey

These estimates were proven as (2.2) and (2.3) in Chapter 2.

Since the geodesic 7 is FDTL and future inextendible in M, Lemma 3.2.2 implies that
(toT)(s) = o0 as s — 1.

We claim that any such timelike geodesic has infinite length.

Since 7 is future inextendible, Lemma 3.2.4 implies that 7 is future complete. So after
reparameterising to unit speed we can calculate the length

L(T):/:Odézoo
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3.3 The main theorem

Since the length is invariant under reparametrization this finished the claim.

For readability sake we ease notation and denote ¢poro7 in the following by 7. Because it
is timelike we know for all s € [0,1) we have 7(s) € C’;;S and thus dzo(7(s)) > 0. So after

a reparametrization we can assume 7 : [sg, 1) — R, ¢, to be given by 7(s) = (s—1,7(s)),
where sp € (1 —€9,1). So 7(s) = eg + 2?21 7;(s)e; and it follows that

< < 7(8),e0 >ga+1 _ 1

5
8 17 (s)||ga+1 1+ [I7(5) 12014

Which shows that for all s € [sp, 1) we have

V39

17(s)|Ra+r < 5

Together with the uniform bound on the metric components, it follows that there exists
some constant C' > 0 such that

1 1 d d
/ V=3(7(s),7(s)) ds = / —<§00 +2) Goiti(s) + Y gijzi(s)ij(s)) ds < C < 00
50 50 i=1 ij=1
so 7 has finite length, which is a contradiction. O

We are left to find a contradiction for the more interesting case, namely that no timelike
curve can leave through the curvature singularity at {t = 0}.

Theorem 3.3.2. The Kasner spacetime (with a negative exponent) is past C°-inextendible.

Proof. The proof is also by contradiction. Assume there exists a past C’-extension
v M < M of the Kasner spacetime (M, g). By Lemma 2.2.1 there exists 4 : [0, 1] — M
such that 5((0,1]) C «(M) is FDTL and 4(0) € 97 ¢(M). By combining Lemma 2.3.1
and Lemma 2.1.3, there exists 0 < 1 < 2—\1@50, a chart ¢ : U — (—eg,e0) X (—e1,61)?
such that:

e (poF)(s) = (s,0,...,0) for all s € [0,e)
® [y — M| < o (where 6y > 0 is chosen as in Theorem 3.3.1)

e There exists a Lipschitz continuous function f : (—e1,e1)% — (—€0,€0) such that:

{(z0,2) € Reg ey |20 > f(z)} S @((M)NU) (3.6)

and

{(z0,2) € Reger |20 = f(2)} S P07 (M)NU) (3.7)

Moreover, the graph of f is achronal in U.
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3 The Kasner spacetime

We assume again the same causality bounds as (2.2) and (2.3) in Chapter 2.
Set y:=1"1o Yl(0,20)> Which is a FDTL and past inextendible curve in M.

The rest of the proof proceeds in three steps.
Step 1: Show that there exists a pu > 0 such that

L o(I7(y(n), M)) € ¢~ ({(w0,2) € Ry, |20 > f()})
2. (%50750) X (_51751)d - I+((¢ © ﬁ)(ﬂ)aReo,sl)

Remember that we assumed that 0 < &1 < Q%/EEO. Now choose z = (xar,O,...,O)
with 0 < zd < g9 and 2~ = (z;,0,...,0) with —e¢g > z; > 0 such that the closure
of (xt + C’%) N(z~ + C;G) in R, e, is compact. Then choose y* := (y,0,...,0) with
0 < yg < Zeo such that the closure of C';;S Nyt + C'578) in Ry, is contained in
(7 4+ Cg.) N (z~ + CF,). In the following we show that these choices imply

49

(%50750) X (_51’51)‘1 - I+(y+7R80,61) (3'8)

€0
Co- -] P |
| / xt |
I I
I +( + ) / |\ I
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\
I / \
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I I
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/ \
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Figure 3.1: Step 1

We check for what yar > 0 we can guarantee that that the straight line connecting the

origin to (2360 —yg , z) is still timelike for all z € (—e1,e1)?. Note that for these yg (3.8)
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3.3 The main theorem

follows immediately. We again want to find bounds that even (g—geo — y(T €1y E1) 1S

timelike, which we can ensure by arranging for ( %50 — yar €1y E1) € C’;;G, which would

imply the previous statement.

5 Beo— g 11,49 1
=< = a1 <5 (780~ % )=
O Beo— i) + 220 vd

Since we assumed that 1 < 2%/&50 the right hand side is definitely a true statement if

‘o 11 49 .
< _
9 = \/;(5050 Yo )

49 1 /25

W < (50~ 3\ =

which is equivalent to

So in particular everything works out if we assume the bound 0 < yar < %60. We fix
such a y© = (yg,0,...,0) and note that for all 0 < Zy < y; the property (3.8) is also
satisfied by & := (Zy,0, ..., 0).

The proof of Step 1 is based on five claims that we will prove in the following.
Claim 1: for all 0 < s < y[T we have

T (I ((5:0,0), Begel) N T (57 ey ) ) = (T (3(5), M) N T~ (5 (5, M) (3.9)

The inclusion ”C” follows from the fact that the graph of f is achronal, so all FDTL
curves in R, ., that start in the future of the graph (for example in (s,0, ...,0) for s > 0)
stay above it. So in particular, they are contained in ¢(M).

For the inclusion " 27, let o : [s, yg] — M be a FDTL curve from v(s) to y(yd ). We want

to show that too maps into U. There is a timelike homotopy T : [0, 1] x [s, yi'] — M with
fixed endpoints between 'y][s vl and o by Lemma 3.2.3. Note that ol : [0,1] x [s,yd ] —

M is then a timelike homotopy with fixed endpoints in M. So we want to show that
(too)(-) = (toT)(1,-) maps into U.

Let J := {t € [0,1]| (toT)(t,[s,y]) € U}. Since (1oT)(0,-) = 7‘[5,%*]7 we have 0 € J, so
J is non-empty. Furthermore, since U is open it follows that J is open in [0,1]. We have
arranged above that It (5(s), U) NI~ (3(yg),U) is precompact in U. Thus its closure in
M is contained in U, which shows that J is also closed. By the connectedness of [0,1]
we get J = [0,1], i.e. (too)(-) = (toT)(1,-) maps into U.

Together with Proposition 2.1.5 we then get that

GO, Rege)) O Ty Rege) = o | TH(3(5), M) O I (3(5i0), M) ) (3.10)

0<s<y§
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3 The Kasner spacetime

This allows us to make statements about the causal diamond, i.e. the right hand side,
by just computing in the chart.
We fix some y, € (0,97 ), we define the set

K;:[ U I7(x(s), M) NI~ (v(yd), M) |\ I (v(yg ) M)

0<s<y3’

Figure 3.2: For the proof of claim 2
Claim 2: K timelike-separates v((0,yg ) from I (v(yg ), M). (see Def 2.1.11)

To prove this, let ¢ : [0,1] — M be some FDTL curve with ¢(0) € v((0,y,)) and
o(1) € IT(y(yg), M). Since o then starts in I~ (y(yy ), M), which is open, we see that
o (I~ (v(yy ), M)) is non-empty and open in [0,1]. Furthermore, it is connected, be-
cause if there is some sg € o~ (I~ (v(yy ), M)), then also [0,s0] € o~ (I~ (v(yg ), M))
follows since ¢ is a FDTL curve. Finally, the Kasner spacetime is causal, meaning
that there exists no closed timelike curves, since it is globally hyperbolic. It follows
that I (v(yg), M) N I~ (v(yg ), M) C IT(y(yy), M) N I~ (v(yg ), M) = 0, thus we get
o(1) ¢ I~ (+(yg ), M).

This shows the existence of a A_ € (0,1) such that o= (I~ (v(yy ), M)) = [0,A_).
Using the same argument we can proof that there exists a A; € (0,1) such that
0'71<Ii('7(y(—)i_)7M)) =[0,A4).

We claim that A_ < Ay. Note that the Kasner spacetime M is globally hyperbolic and
has a smooth metric, it holds that I—(v(y, ), M) = J~ (v(yy ), M) (e.g. in [6]).
Together with the so-called push-up principle for smooth Lorentzian metrics we get

I (v(yg ), M) = J~(v(yg ), M) € J~ (I~ (v (), M)) ™" I (7 (i), M)
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3.3 The main theorem

So a(A_) € I~ (v(yg ), M) C I~ (y(yg), M) which, combined with the causality of Kas-
ner and ¢ being FDTL, this implies A_ < Ay.

For all sp € (A_,AL), we have o(sg) € I~ (v(yg), M)\ I~ (v(yg ), M). And since
o(0) € v((0,yy)), we get o(sg) € U0<s<y6r It (y(s), M). So in total o(sg) € K, which
proves the claim.

Claim 3: K is compact in M.

Similar to Lemma 3.2.6, we set

Ye(yd)
S = max / s Pids
, a )y

.....

Note that since there is at least one negative Kasner exponent, we know that p; < 1 for
all i € {1,...,d}, thus S < co. This shows that

K C(0,7(yg)] % [v,(w5) = o7, (wg) + ) x oo x [, (y5) — S, 7, (v5) + 5]
We want to show that there exists a 7' > 0 such that for all ¢ < T and (t,z) €
(U0<s<y5r I+('y(3),M)ﬂI_('y(y8'),M)), we have that (t,z) ¢ K,ie. (t,z) € I"(v(yy ), M).

Since I~ (y(y, ), M) is open and v is FDTL, it holds that for all so € (0,y, ) there exists
a 6 > 0 such that

{ve(s0)} x (7,(s0) = 6,7, (s0) +8) x ... x (v,(s0) = 8,7,(s0) +6) €I (v(yy ), M)

By the isometries of the Kasner spacetime we know that for all z1,...,zq € (—0,0) the
curve o : (0,s0] — M defined by o(s) = (72(s),7,(s) + z1,...,7,(s) + xa) is then also
timelike. So in total we see that for all sg € (0,y, ) there exists a ¢ > 0 such that

{re(s)} < (2, (5) = 6,7, (8) +8) X oo x (7, (8) = 0,7, (s) +0) ST (v(yg ), M) (3.11)

holds for all s € (0, s¢].

Choose some s € (0,7 ) and let § > 0 such that (3.11) holds. Without loss of generality,
we choose some T € (0,7 (yg)) such that Lemma 3.2.6 holds for g (i.e. for e = %)
Note that if (T, z) € (U0<s<ya' I (y(s), M)NI~(v(yg),M)) then there must exist some

FDTL curve o : [0,1] — M with o(0) € v((0,yg)) and o(1) = (T, z). Let s1,s2 € (0,y7)
such that v(s1) = 0(0) and y4(s2) = 04(1) = T. It follows that

l2;(1) = 7,(s2)] < (1) = a;(0)] +1g;:(0) — 7, (s2)] = | (1) = @3 (0) + [, (s1) = 7, (s2)[ < &

since Lemma 3.2.6 holds for o and ~. Because o was arbitrary, we get for all s € (0, &¢)

)Mt <t [0} % (2,8) = 6.9,(8) +6) X o X (7,(5) = 6,7,(3) + )]

0<5<s0
C I (v(yg), M)
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3 The Kasner spacetime

by (3.11). This implies that

K C (T, 3(yg)) < [v,(wg) = S, (w5 ) + 51 x o x [y, (ud ) = S v,(wg ) + 5]
and thus

K C T y(yg)] x [, (wg) = Sv, (wg ) + 8] oo x [y, () — S5, (yg) + 5]

is compact, which finishes the claim.

Note that since K is compact and ¢ and ¢ are continuous, we get

P(u(K)) = ¢((K))

By the choice of y~ € R, in the beginning of Step 1, (3.9) and the definition of K,
we obtain

G(U(K)) S IH(0, Rege) ) N T~ (y~, Regey) S (27 + C) N (@ + Cf)
Thus, we can define
Wi= (@00 (F +Cp)n ™ +C)) C M

which is an open neighborhood of K in M by the discussion above.

Claim 4: 3 > 0 such that I~ (y(u), M) is timelike separated from (xd) by W.

We can define the Euclidean metric on the Kasner spacetime d : M x M — [0, 00).
Note that the map M — [0, 00) given by

(t,g) Hd((t,g),M\W) - ~~inf d((t,&),(ﬂi))
(t.2)eM\W

is continuous. Since K is compact and disjoint from the closed set M \ W, we see that
this map must attain a minimum § > 0 over K. This means that

Ks:={(t,x) e M|d((t,z),K) <6} CW (3.12)
and by possibly choosing § > 0 even smaller we can also assume that
{v(xd)} > (9 (g ) =8, 7, (2 ) +6) X x (7, (25) =0, 7, (2§ ) +0) € T (v(yg ), M) (3.13)

We fix this 6 > 0 such that (3.12) and (3.13) hold. By Lemma 3.2.6 there exists
i € (0,yq ) such that for all (to,zy) € I~ (y(n), M), we have

0

20— 20| < 5 (3.14)
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3.3 The main theorem

We show that this implies that K4 timelike separates I~ (y(u), M) from ~y(zd).
Let o : [0,1] — M be FDTL with o(0) € I~ (y(n), M) and o(1) = v(xj). Choose
so € (0, ) such that v:(so) = 0+(0). From (3.14) we see that for all: € {1, ..., d}

0:(0) — 1,(50)] < lo(0) — %, 0] + [1,(0) ~ (o)l < 5 45 =8 (315)

Now define a new curve ¢ : [0,1] — M as

6(s) = (o1(s), a1(s) +7,(s0) — @1(0), ..., a4(s) + 7,4(s0) — 24(0))

It easy to see by the isometries of the Kasner spacetime that & is also a FDTL curve.
Furthermore, this curve starts in 6(0) = v(so) € v((0,y, )) and ends in

(1) = (0¢(1),a1(1) +7,(s0) = @1(0), -, 24(1) + 7,(s0) — 24(0))

Note that by (3.15), we thus have 6(1) € I (y(yg), M).

By our previous observation, we know that then there exist a § € [0,1] such that
5(8) € K. However, this implies that o(3) € K4, so I~ (y(u), M) is timelike-separated

from v(z{) by Ks. Note that this, in particular, implies that W timelike-separates

I~ (y(u), M) from (xd) which proves the claim.

Claim 5: o(I~(y(p), M)) C ¢~ ((aF + Cep) N (27 C(j/_7))

| = M be PDTL with o(0) = «(u) and as-

We argue by contradiction. Let o : [0,1 =
(po100)(3) ¢ (a* +Cyy) N (@™ + Cf). Let

sume there is some § € [0, 1] such that
so :=sup{t € [0,1]| (poroo)(s) € (z* +Cy. )N (x~ +C ) Vs € [0,t)}

It is easy to see that 0 < so < 1 and (poroo)(so) € d((xt +Cg.)N(x~ +C.)). Since

6/7
all vectors in C’;; are future directed timelike and 05;7 - C’;;G we can find a FDTL curve
from (¢ o1 o0)(so) to z*, that does not intersect (z* + Gy, ) N (2~ Cf%). Take for

example a curve that lies on 9((z " + Co/r )N (z~ + Oy

6/7)) that is depicted in Figure 3.3
on the next page.

However, this curve corresponds to a FDTL curve from o(so) € I~ (y(u), M) to y(xg)
in M, which does not intersect W := (¢ o L)_l(($+ + Cy,.) N (27 C'(%)), which is a
contradiction to claim 4 and thus proves claim 5.

This implies the first point of Step 1 and the second point follows from (3.8) together
With0<,u<y0_<y6“.
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3 The Kasner spacetime

Figure 3.3: One possible curve

Step 2: We show that Step 1 implies, the existence of a constant 0 < Cy < oo such
that for any Cauchy hypersurface ¥ of M and any two points in I~ (y(u), M) N X the
distance in ¥ is bounded by Cy, i.e. for all p,q € I~ (y(n), M) N3 we have

1
ds(p, q) = inf {/\/' 3 d}<c
E(p q) ~:[0,1] =X piecewieselgmooth,'y(O):p,'y(l):q 0 9(7(8) 7(8)) oy =t

where g is the induced metric on .
We only consider Cauchy hypersurface ¥ in M for which v(u) € (2, M) holds. There

is nothing to prove otherwise. For any z € (—e1,e1)? we can now consider the curves
oz (f(z),20) — M given by
O'x(S) = (Lil (e} @71)(8,£)

Clearly, these are FDTL and past inextendible curves in M and by the second point of
Step 1, they end up in I (y(u), M) C I'T(X, M). Each of these curves need to intersect
the Cauchy hypersurface ¥ exactly once. This allows us to define a well defined map

h: (—El,El)d — (—80,80)

where h(z) is the unique intersection point of o, and X.
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3.3 The main theorem

Claim 1: h: (—¢e1,61)? — (—€0,0) is smooth.

Fix some z, € (—¢1,e1)? and remember that we defined Cauchy hypersurfaces to be
smoothly embedded hypersurfaces, thus ¢(:(3) N U) is a smooth submanifold of Reye-
By definition there exists an open neighborhood W C R, -, of (h(zg), zy) and a smooth
submersion u : W — R such that ¢(¢(X)NU)NW = {u = 0}. Furthermore, the timelike
vector field Jy can be nowhere tangent to ¢(¢(X) NU), since the tangent spaces of Cauchy
surfaces do not contain any timelike vectors, thus 80u|(h(%)’£0) = 0. It follows from the
implicit function theorem that there exists an open neighborhood V' C (—¢q, sl)d of z,
and a smooth function v : V' — R such that u(v(z),z) = 0. From the definition of A it
must thus hold that hly = v, which shows that & is smooth.

Claim 2: there exists a 0 < C' < oo such that |9;h(z)| < C holds for all z € (—e1,e1)¢
and all i € {1,...,d}.

Clearly, T(p(g)z)P(t(X) N U) = span{(d1h|z)00 + 1, ..., (Dgh|z)do + 04} are the tangent

spaces for all x € (—51,51)d. Since no timelike vector can be contained in the tangent
space of a Cauchy hypersurface, we get for all i € {1, ...,d}

0 < §((9:h)do + 04, (i) Do + 0;) = (0ih)*Goo + 2(0ih)goi + Gii (3.16)

where equality holds if, and only if

—goi £ v/ (90i)? — Giigoo

O;h)+ =
( )i goo

which is clearly independent of h and thus of the Cauchy hypersurface 3.
max{[(8ih) |, |(9:h)-[} < C

holds due to the uniform causality bounds |goo| < —14 6o < 0 and [gu| < 14 g, where
0 < C < oo is a constant depending only on §y. Moreover, since ggp < 0, the inequality
(3.16) implies

(&h), < (8111) < (8Zh)+

and thus |0;h] < C for all i € {1, ...,d}.
Now we define the graph of h by 1 :N(—sl,el)d — Ry, with ¢(z) = (h(z),z). This
parameterises a smooth submanifold S of R, ., which is isometric to an open subset S

of ¥ C M, via L_~1 o @~ With respect to the chart 1)~!, we denote the components of
the metric g on S that is induced by § on Re,, by g;;, where i,5 € {1,...,d}.

Claim 3: there exists a constant 0 < Cz < oo such that [g;;(z| < Cg holds for all
z € (—ep,e1)%and all i,j = 1,...,d.
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3 The Kasner spacetime

The components of the induced metric can be computed by

_ . _ oyt 81/)” _ Oh Oh _ Oh oh
9ij = (w g)ij = guu% 81’ OOa 8 + 90; 5~ o, + gan + gzy

Thus, the uniform causality bounds of the metric combined with the uniform bounds
form Claim 2 imply, that there exists a constant 0 < Cg < oo such that [g;;| < Cg holds
for all i,5 € {1,..,d}, which finishes the claim.

To complete Step 2, let p,q € I~ (y(p), M)NE. (I~ (y(p), M)) is completely contained
in the image of the chart ¢, by the first point of Step 1. Thus, there exist z,y € (—¢1, e1)?
such that ¢(z) = 3(u(p)) and ¥ (y) = 3((g)). Let o : [0,1] — (—e1,e1)? be given by
o(s) =z + s(y — z), i.e. the straight line in (—e1,21)? connecting z and y.

It follows that
o= [ Vatoto)at0)
/ \ ( Z (¥, — 2:)94 (‘7(3))(% - &j)> ds

ij=1

1 d
S/o \ ( Z \/&Engx/gsl) ds

ij=1
=e1d"?\/Cy

This is a uniform bound that is independent of z,y € (—¢1, El)d. We can connect p and

¢ in ¥ by the smooth curve : 1o @ ot oo, which has length less or equal to e1d”?, /Cy.
Since S C ¥ we get

ds(p,a) = inf W AZEIORIONS

~:[0,1] =X piecewiese smooth,v(0)=p,v(1)=¢

inf W AZEIORIONS

" 4:[0,1]—S piecewiese smooth, v(0)=p,y(1)=q
3/2
S Eld \/ Cg

which concludes Step 2 with Cy := e1d”/2, /Cy.
Step 3: We show that the geometry of (M, g) contradicts Step 2.

As seen in the proof of Lemma 3.2.1 the hypersurfaces of constant ¢ are Cauchy hyper-
surfaces, so consider the family ¥, := {t = %}, n € N, of Cauchy hypersurfaces. The
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3.3 The main theorem

induced metric g,, on ¥, is given by

d
Gn =y n Pida}
=1

Note that v(5) € I~ (y(p), M), so by openness of the past we know that there exists
some 9 > 0 such that

D} x by (5) = 8,2, (5) 48 o x [y (5) = 8,7,(5) + 81 € I (3(1), M)

And since 9; was a timelike vector field we clearly get

0,750 % [ (5) = 6.2, (5) 48] x oo [y (5) = 6.7, (5) + ] € I~ (+(w), M)

Choose iy € {1,...,d} that corresponds to a negative Kasner exponent, i.e. p;, < 0.
Consider the following sequence of points

- (ljyl(ﬁ)w,y, (5) =6, (B)) € I"(3(w), M) N %,

n’ 142 Lio 9 2
and 1
(= [ad K K -
pni= (01,51, (B) 8,1, (5)) € (), M) 1 3,

with n > ng for some sufficiently large ng € N.
It is easy to see that the shortest piecewise smooth curve connecting p,, and ¢, in ¥, is
given by 7y, : [-0,0] - M

1 %

’771(5) = (5311(5% "'711-0(

el
2

)+ s, ...,ld(g))

The length L(~,) of v, is given by

s s
Low = [ VG50, 5 () = / VT = 25

Since p;, < 0 it follows that

dEn (pm Qn) =26V n P — oo
as n — oo, which contradicts Step 2. This concludes the proof. ]

So by combining both previous theorems we finally get the main theorem.

Theorem 3.3.3. The Kasner spacetime (with a negative exponent) is CO-inextendible.

Proof. The proof is by contradiction, so assume there exists a C9-extension ¢ : M < M
of the Kasner spacetime. Then by Lemma 2.2.1 we get 0T (M)Ud~ (M) # 0. However,
Theorem 3.3.1 shows that 07¢(M) = @ and Theorem 3.3.2 shows that 9~ «(M) = 0,
witch is a contradiction. Thus the Kasner spacetime (with a negative exponent) is
CY-inextendible. O
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