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Abstract
My thesis is about special Aronszajn trees and Kurepa trees. First, I show that it
follows from the existence of a supercompact cardinal and an inaccessible cardinal
above that it is consistent that all ℵ2-Aronszajn trees are special, there are such,
and there is no ℵ1-Kurepa tree and no ℵ2-Kurepa tree.

Then I show that, assuming ω many supercompact cardinals, it is consistent
that for all 0 < n < ω, all ℵn-Aronszajn trees are special and there exist such, and
there are no ℵn-Kurepa trees.

Finally, I extend this result to a global version about all Aronszajn trees on
successors of regular cardinals and all Kurepa trees on regular cardinals, using a
proper class of supercompact cardinals.
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Chapter 1

Introduction

Trees are very important and interesting combinatorial objects. They have been
studied a lot in set theory over the last century. Aronszajn trees and Kurepa trees
have been introduced in the 1930’s and are of fundamental importance in com-
binatorial set theory. Two of the most interesting questions about them are the
problem of their existence and the problem of the specialization of Aronszajn
trees. Both questions are independent from ZFC for trees on uncountable succes-
sor cardinals.

In this thesis, I construct models in which all Aronszajn trees of some heights
are special, there are such, and there are no Kurepa trees of certain heights. This
is joint work with my advisor Sy-David Friedman.

Laver and Shelah showed in their paper [LS81] that it is consistent with CH
that all ℵ2-Aronszajn trees are special and there exists one. Golshani and Hayut
extended this result in [GH20] with a similar but more involved technique to show
that it is consistent that for all successors of regular cardinals all Aronszajn trees
are special and there exists one. So the questions about Suslin trees and Aronszajn
trees are settled in this model. What about Kurepa trees?

It was shown by Baumgartner in [Bau84] that PFA implies that there are no ℵ2-
Aronszajn trees and no ℵ1-Kurepa trees. Cummings proved in [Cum18], assuming
a weakly compact cardinal, that there is a generic extension in which there are no
ℵ2-Aronszajn trees and there is an ℵ1-Kurepa tree.

Motivated by [GH20] and [Cum18], we have worked on models in which all
Aronszajn trees on some cardinals are special and they exist, and there are no
Kurepa trees of some heights. It turned out that in the forcing extension used
in [GH20] ℵn-Kurepa trees actually exist (see Proposition 2.11), so we had to
change the forcing iteration: Instead of using a product of Lévy collapses we use
an iteration of these collapses in the beginning of the iteration. In fact, we have
constructed a model in which for every 0 < n < ω, all ℵn-Aronszajn trees are
special, there are such, and there exists no ℵn-Kurepa tree. To get this, we start
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with ω many supercompact cardinals which we collapse with an iteration of Lévy
collapses to the ℵn’s. These collapses are followed by specializing forcings for the
Aronszajn trees. We use supercompact embeddings to show that the specializing
forcings have a suitable chain condition. Our proof of the chain condition is dif-
ferent than the one given in [LS81] and [GH20] and conceptually easier. Then we
argue that there is no Kurepa tree in the final model. If there were such a tree, a
small regular subforcing would capture it, which can be seen using supercompact
embeddings. In the extension by the small subforcing, the tree cannot have many
cofinal branches, and an analysis of the quotient shows that no cofinal branches
are added and therefore the tree is not a Kurepa tree in the final model.

This result can also be generalized to a global version, using an Easton support
iteration. This is done in Chapter 6.
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Chapter 2

Preliminaries

In this chapter we provide the necessary definitions and results about trees and
Lévy collapses, most of which are classical and well-known.

Definition 2.1. A tree is a set of nodes T , together with an order <, with the
following properties:

1. There exists a root, i.e., an r ∈ T with r = s or r < s for all s ∈ T .

2. ({t ∈ T | t < s}, <) is a well-order for every s ∈ T .

For a tree T with the order < we use the following notation:

• For s ∈ T the length of s is the order type of ({t ∈ T | t < s}, <); we denote
the length of s by |s|.

• The ξth level of T , denoted Tξ, is the set of nodes in T which have length ξ.

• The height of T is the smallest ordinal ξ such that Tξ = ∅.

• A cofinal branch of T is a chain in (T, <) whose order type is equal to the
height of T and such that for each ξ smaller than the height of T it contains
a t ∈ Tξ. The set of all cofinal branches of a tree T is denoted by [T ].

• Let b be a cofinal branch of T and ξ smaller than the height of T . Then b(ξ)
denotes the unique node t ∈ Tξ ∩ b.

• For a cardinal κ, a κ-tree is a tree of height κ all whose levels are smaller
than κ.

Now we can define Kurepa trees and Aronszajn trees:

Definition 2.2. Let κ be a cardinal.
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1. A κ-Aronszajn tree is a κ-tree which has no cofinal branch.

2. A κ+-Aronszajn tree T is special if there exists a function f : T → κ such
that if x < y then f (x) , f (y).

3. A κ-Kurepa tree is a κ-tree which has more than κ many cofinal branches.

The following is easy to see:

Remark 2.3. If there exists a κ+-(non-special-)Aronszajn tree or a κ+-Kurepa tree,
then there exists one with Tξ ⊆ {ξ} × κ for each ξ < κ+.

Therefore we will always assume that our trees of successor cardinal height κ+

satisfy Tξ ⊆ {ξ} × κ for all ξ < κ+.
Kurepa trees and Aronszajn trees have been studied a lot. In the following we

will present some of the classical results.
The existence of an ℵ1-Kurepa tree is independent from ZFC. On the one hand,

if V = L, then there exists an ℵ1-Kurepa tree, on the other hand, it follows from
the existence of an inaccessible that it is consistent with ZFC that there exists no
ℵ1-Kurepa tree. Since the proof of the second uses ingredients which we will use
later, we will give the proof of it here.

First we define the Lévy collapse and prove its basic properties.

Definition 2.4. Let λ be an inaccessible cardinal and κ a regular cardinal with
κ < λ. The Lévy collapse of λ to κ+, written as Col(κ, <λ), is defined as follows:
For each cardinal κ < α < λ let Col(κ, α) be the set of partial functions of size < κ
from κ to α, ordered by q ≤ p if q ⊇ p. Now let Col(κ, <λ) :=

∏
κ<α<λ Col(κ, α)

with <κ-support.

Lemma 2.5. Let λ be an inaccessible cardinal and κ a regular cardinal with κ < λ.
The Lévy collapse Col(κ, <λ) is <κ-closed.

Proof. Let µ < κ and let ⟨pi | i < µ⟩ be a decreasing sequence in Col(κ, <λ).
Define a condition p by letting p(α) :=

⋃
i<µ pi(α) for every cardinal κ < α < λ;

it is easy to see that p ∈ Col(κ, <λ) by the following argument. Since µ < κ and
for each i < µ and each κ < α < λ each pi(α) is a partial function from κ to α
with |dom(pi(α))| < κ and p j(α) ⊆ pi(α) for j < i, also p(α) is such a function.
Moreover supp(p) =

⋃
i<µ supp(pi), so it is a union of less than κ many sets of size

< κ. Since κ is regular, this is of size < κ. So p ∈ Col(κ, <λ) and clearly p ≤ pi for
each i < µ. □

Lemma 2.6. Let λ be an inaccessible cardinal and κ a regular cardinal with κ < λ.
Then the Lévy collapse Col(κ, <λ) has the λ-c.c..
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Proof. Let A ⊆ Col(κ, <λ) be a maximal antichain. Let M be a <κ-closed (i.e.,
<κM ⊆ M) elementary submodel of H(θ) for sufficiently large θ with |M| < λ,
A ∈ M and such that λ̄ := M ∩ λ is an ordinal. Since |M| < λ and M is <κ-closed
it follows that κ ≤ λ̄ < λ.

Now consider A∩M. Clearly A∩M is an antichain of size < λ; we will show
that A∩M is maximal in Col(κ, <λ) in V from which it follows that A = A∩M and
hence A is of size <λ. To show the maximality let p ∈ Col(κ, <λ). By definition
of Col(κ, <λ), p↾λ̄ ∈

∏
κ<α<λ̄ Col(κ, α) is a tuple where each coordinate is a partial

function from κ to λ̄, hence p↾λ̄ ⊆ M. Since M is <κ-closed and |p| < κ it follows
that p↾λ̄ ∈ M. By elementarity A ∩ M is a maximal antichain in M, hence there
exists q ∈ A ∩ M which is compatible to p↾λ̄. Since |q| < κ, q ∈ M and M is <κ-
closed, it follows that q ⊆ M, thus q ∈

∏
κ<α<λ̄ Col(κ, α). So also p ̸⊥ q because p

is compatible with q on λ̄ and q ∈
∏
κ<α<λ̄ Col(κ, α). □

Lemma 2.7. Let G be a generic filter over V for Col(κ, <λ). Then all cardinals α
from V with α ≤ κ or α ≥ λ are cardinals in V[G] and V[G] |= κ+ = λ.

Proof. The Lévy collapse Col(κ, <λ) is <κ-closed by Lemma 2.5, hence it does
not change cardinals ≤ κ. By Lemma 2.6, Col(κ, <λ) has the λ-c.c., hence it
does not change cardinals ≥ λ. For each κ < β < λ the forcing Col(κ, β) adds a
surjection from κ to β, so it forces that κ = |β|, hence this holds in V[G]. Since λ
is a cardinal in V[G], it follows that κ+ = λ. □

The following lemma is essentially due to Silver [Sil71] and generalizes his
lemma. For regular λ a further generalization can be found in Lemma 3.12.

Lemma 2.8. Assume there exists some µ < cf(λ) such that 2µ ≥ λ. Let P be a
<λ-closed forcing and T a λ-tree. Then forcing with P does not add a new cofinal
branch to T .

Proof. Assume ḃ is a name for a new cofinal branch. Let p⟨⟩ ∈ P, x⟨⟩ ∈ T and α0

be such that p⟨⟩ ⊩ ḃ(α0) = x⟨⟩.
Now continue inductively: Let i < µ and assume αi < λ has been defined,

and for each v ∈ 2i, pv and xv have been defined such that pv ⊩ ḃ(αi) = xv. Since
ḃ is a new branch, there exists αi+1 > αi such that for every v ∈ 2i there exist
two conditions pv⌢0, pv⌢1 ≤ pv and xv⌢0 , xv⌢1 such that pv⌢0 ⊩ ḃ(αi+1) = xv⌢0 and
pv⌢1 ⊩ ḃ(αi+1) = xv⌢1. For w ∈ 2≤µ of limit length, let α|w| > αδ for all δ < |w| and
let xw ∈ T and pw be such that pw is a lower bound of ⟨pw↾δ | δ < |w|⟩ such that
pw ⊩ ḃ(α|w|) = xw; such a condition pw exists because P is <λ-closed. It follows
easily that xw , xv for w , v of the same length, hence |{xw | w ∈ 2µ}| = 2µ ≥ λ.
But {xw | w ∈ 2µ} ⊆ Tαµ , which contradicts the fact that all levels of T are of
size < λ. □
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Let us fix the following notation: If P is a forcing, we denote with G(P) a
generic filter for P, and V[P] is a shorthand for V[G(P)].

Theorem 2.9 (Silver). Let k ≥ 1, λ an inaccessible cardinal and Lλ = Col(ℵk, <λ).
Then there is no ℵk-Kurepa tree in V[Lλ].

The following proposition is a generalization of Silver’s theorem:

Proposition 2.10. Let k ≥ 1, λ an inaccessible cardinal and Lλ = Col(ℵk, <λ). In
V[Lλ] let Q be a forcing of size ≤ ℵk such that either Q is <ℵk-distributive or Q
has the ℵk-c.c.. Then there is no ℵk-Kurepa tree in V[Lλ ∗ Q].

Proof. Let Q̇ be an Lλ-name for Q. Since Q is a set of size ≤ ℵk and Lλ has the
λ-c.c., we can assume that Q̇ has size less than λ. Conditions in Lλ have a support
of size < ℵk, therefore there exists µQ < λ such that the <λ many conditions in Q̇
belong to

∏
α≤µQ Col(ℵk, α), hence Q ∈ V[G∩

∏
α≤µQ Col(ℵk, α)]. Therefore Lλ ∗Q

is equivalent to
∏
α≤µQ Col(ℵk, α) ∗ (Q ×

∏
µQ<α<λ Col(ℵk, α)).

A similar argument works for an ℵk-tree: In V[Lλ ∗ Q] let T be an ℵk-tree.
Since T with its order is an object of size ℵk and Lλ ∗ Q has the λ-c.c., there
exists a name Ṫ for it of size less than λ. Conditions in Lλ have a support of size
< ℵk, therefore there exists µQ < µT < λ such that the <λ many conditions in Ṫ
belong to

∏
α≤µQ Col(ℵk, α) ∗ (Q ×

∏
µQ<α≤µT

Col(ℵk, α)). Therefore T ∈ V[G ∩∏
α≤µQ Col(ℵk, α) ∗ (Q ×

∏
µQ<α≤µT

Col(ℵk, α))]. In V[G ∩
∏
α≤µQ Col(ℵk, α) ∗ (Q ×∏

µQ<α≤µT
Col(ℵk, α))] still 2ℵk < λ, hence T has less than λmany cofinal branches

there.
If Q is <ℵk-distributive, then

∏
α>µT

Col(ℵk, α) is still <ℵk-closed in V[G ∩∏
α≤µQ Col(ℵk, α) ∗ (Q ×

∏
µQ<α≤µT

Col(ℵk, α))], hence by Lemma 2.8 it does not
add cofinal branches to T . So T is not a Kurepa tree in V[Lλ ∗ Q].

If Q has the ℵk-c.c., it follows by Lemma 3.12 below that
∏
α>µT

Col(ℵk, α)
does not add cofinal branches to T . So T is not a Kurepa tree in V[Lλ ∗ Q]. □

Proposition 2.11. Let κ0 = ℵ0 and ⟨κn | 0 < n < ω⟩ be inaccessible cardi-
nals with κn < κn+1. Then for every 1 < m < ω there exist ℵm-Kurepa trees in
V[
∏

n∈ω Col(κn, <κn+1)].

Proof. As
∏

m≤n Col(κn, <κn+1) is<κm-closed and conditions in
∏

n<m Col(κn, <κn+1)
are of size < κm, the product

∏
n∈ω Col(κn, <κn+1) is equivalent to the iteration∏

m≤n Col(κn, <κn+1) ∗
∏

n<m Col(κn, <κn+1). In V[
∏

m≤n Col(κn, <κn+1)], let T :=
2<κm . Since κm is inaccessible in this model, all levels of T are of size < κm, and
clearly |[T ]| > κm. It follows that in V[

∏
m≤n Col(κn, <κn+1)][

∏
n<m Col(κn, <κn+1)],

all levels of T are of size < ℵm and |[T ]| > ℵm, i.e., T is an ℵm-Kurepa tree. □
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It follows easily from the above proposition that in the model of [GH20] there
exist ℵm-Kurepa trees for each 1 < m < ω: Their forcing iteration starts with∏

n∈ω Col(κn, <κn+1), and as the subsequent iteration of specializing forcings does
not collapse cardinals, the ℵm-Kurepa trees from V[

∏
n∈ω Col(κn, <κn+1)] are still

ℵm-Kurepa trees in the final model.

Lemma 2.12. Let T be a κ+-tree with order <T and with a specializing function,
i.e., f : T → κ such that if x <T y then f (x) , f (y). Then T is a κ+-Aronszajn tree.

Proof. Assume T has a cofinal branch, i.e., there exists {xi | i < κ+} ⊆ T with
xi <T x j for all i < j. It follows that f (xi) , f (x j) for all i < j < κ+, contradicting
the fact that the values of f are elements of κ. □

Proposition 2.13. If 2ℵn = ℵn+1, then there exists a special ℵn+2-Aronszajn tree.

Proof. Let (Q, <) be the set of those x ∈ ℵℵn
n+1 with boundedly many non-zero

elements, i.e., |{α ∈ ℵn | x(α) , 0}| < ℵn, with < being the lexicographical
ordering. First we show that for every x < y ∈ Q and every γ < ℵn+2 there exists
a strictly increasing sequence ⟨zi | i < γ⟩ in Q with x < zi < y for every i < γ. The
proof is by induction on ordinals γ < ℵn+2. For the first step let δ ≤ ℵn+1. Let α be
large enough such that x(β) = y(β) = 0 for all β ≥ α. For each i < δ, let zi(α) = i
and zi(β) = x(β) for β , α. It is easy to see that the zi form a strictly increasing
sequence of length δ and x < zi < y for every i < δ. Now let ℵn+1 < γ < ℵn+2 and
assume by induction that for each x < y and for each δ < γ there exists a strictly
increasing sequence of length δ in Q between x and y. Note that there exists a
cofinal strictly increasing sequence {γ j | j < cf(γ)} ⊆ γ such that the order type
ordtp(γ j+1 \ γ j) < γ for every j < cf(γ). Since cf(γ) ≤ ℵn+1, by step one we can
take a strictly increasing sequence {z j | j < cf(γ)} with x < z j < y for every j.
Then take strictly increasing sequences {z j

i | i < ordtp(γ j+1 \ γ j)} for each j with
z j < z j

i < z j+1 for each i; such sequences exist by the induction hypothesis. Now
{z j | j < cf(γ)} ∪

⋃
j<cf(γ){z

j
i | i < ordtp(γ j+1 \ γ j)} is as desired.

Further note that, using 2ℵn = ℵn+1, we have |Q| = ℵn+1.
We will construct a tree T ⊆ Q<ℵn+2 with the order given by end-extension,

and then show that it is a special ℵn+2-Aronszajn tree. The nodes of T will be
bounded strictly increasing sequences. For such a sequence s and x ∈ Q, let x > s
denote the following assertion: there exists x′ ∈ Q with x > x′ and x′ ≥ z for each
z ∈ range(s); also, let x ≥ s denote x ≥ z for each z ∈ range(s). Note that for each
s ∈ T , there will be an x ∈ Q with x > s. We construct T by induction on the
levels such that for each α < ℵn+2 the following holds:

For each β < α, for each s ∈ Tβ and each x ∈ Q with x > s
there exists t ∈ Tα such that s <T t and x ≥ t.

(2.1)
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Let T0 = {⟨⟩}. Assume now that Tα has been constructed and satisfies (2.1).
Let Tα+1 := {s⌢x | s ∈ Tα ∧ x > s}. To see that (2.1) holds for α+ 1, first let s ∈ Tα
and x ∈ Q with x > s. So s⌢x ∈ Tα+1 is a witness for (2.1). Now let β < α, s ∈ Tβ
and x ∈ Q with x > s. Let x′ ∈ Q be such that s < x′ < x (such an x′ exists by a
very easy version of the property shown in the beginning of the proof). By (2.1)
for α (which holds by induction), there exists t ∈ Tα with s <T t and x′ ≥ t. So
t⌢x ∈ Tα+1 is a witness for (2.1). Now let α be a limit and assume that Tβ has been
defined for every β < α. Let s ∈

⋃
β<α Tβ and x > s. By the above property there

exists a strictly increasing sequence {zi | |s| < i < α} with s < zi < x for every i.
Using (2.1), inductively we get that there exists a sequence ⟨ti | |s| < i < α⟩ such
that ti ∈ Ti, s <T t j <T ti and zi ≥ ti for all |s| < j < i. Therefore, taking the union
of the ti, we get that there is a strictly increasing sequence t of length α such that
s <T t and x ≥ t and t↾β ∈ Tβ for every β < α. For each s ∈

⋃
β<α Tβ and each

x > s, pick one such t, and let this set be T̃α. Then let Tα := {s⌢x | s ∈ T̃α∧ x > s}.
To see that (2.1) holds for α, let β < α and s ∈ Tβ and x ∈ Q with x > s. Let
x > x′ > s. By construction there is t ∈ T̃α with x′ ≥ t and t⌢x ∈ Tα is a witness
for (2.1).

Let T :=
⋃
α<ℵn+2

Tα. Note that every s ∈ T is a strictly increasing sequence
in Q of successor length.

Now we show that |Tα| < ℵn+2 for every α < ℵn+2 by induction: This is obvious
for α = 0. The successor step α+1 follows by |Tα+1| = |Tα| · |Q| = |Tα| ·ℵn+1 = ℵn+1

since |Tα| < ℵn+2. Now let α be a limit: |T̃α| ≤ |{(s, x) | s ∈
⋃
β<α Tβ ∧ x ∈ Q}| =

|α| · ℵn+1 · ℵn+1 = ℵn+1. As in the successor step, it follows that |Tα| = ℵn+1.
Using Lemma 2.12 it only remains to show that T is special. To see this,

let φ : Q → ℵn+1 be a bijection. For s ∈ T with x the last element of s, let
f (s) = φ(x). If s <T t then t extends s; since t is strictly increasing it follows that
f (s) , f (t). □
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Chapter 3

General lemmata

In this chapter, we give some general lemmata, which will be needed in the later
chapters.

Definition 3.1. P is a regular subforcing of Q if P ⊆ Q and every maximal an-
tichain of P is a maximal antichain in Q.

Definition 3.2. For P a suborder of Q, we say that π : Q → P is a reduction map
if whenever q ∈ Q and p ∈ P with p ≤P π(q) then p and q are compatible in Q.

Lemma 3.3. Let P be a suborder of Q. Then P is a regular subforcing of Q if

(1) there exists a reduction map π : Q→ P, and

(2) if two conditions p, q ∈ P are compatible in Q, then they are compatible in P.

Proof. See [Kun11, III.3.72]. □

Definition 3.4. For two forcing notions P and Q, a function ι : P→ Q is a regular
embedding if the following holds:

1. If p ≤P p′ then ι(p) ≤Q ι(p′).

2. p ⊥P p′ iff ι(p) ⊥Q ι(p′).

3. For every q ∈ Q there exists a reduction p ∈ P, i.e., p is such that for each
p′ ∈ P if p′ ≤P p then ι(p′) ̸⊥Q q.

Lemma 3.5. Let P′ be a regular subforcing of P and Q̇ a P-name for a forcing.
Then P′ is a regular subforcing of P ∗ Q̇, and for a generic filter G′ for P′ the
following equality holds: (P ∗ Q̇)/G′ = P/G′ ∗ Q̇.

17



Proof. Let ι : P′ → P be a regular embedding. Define ι′ : P′ → P ∗ Q̇ by ι′(p) =
(ι(p),1Q̇). Using ι′, it is straightforward to check that the statements of the lemma
hold. □

Lemma 3.6. Let P be a forcing with a dense subset D and P∗ a regular subforcing
of P with a dense subset D∗ ⊆ D. Then D∗ is a regular subforcing of D.

Proof. Let A ⊆ D∗ be a maximal antichain in D∗. Let p ∈ P∗. There exists p′ ≤ p
with p′ ∈ D∗. So there exists q ∈ A with q ̸⊥ p′ and therefore q ̸⊥ p. On the other
hand, let q, q′ ∈ A and assume q ̸⊥P∗ q′. So there exists q′′ ≤ q, q′ in P∗. Since D∗

is dense, there exists a condition extending q′′ in D∗, thus q and q′ are compatible
in D∗, contradicting the fact that A is an antichain in D∗. This shows that A is a
maximal antichain in P∗.

Using that P∗ is a regular subforcing of P we get that A is a maximal antichain
in P. Further, A ⊆ D and hence A is an antichain in D. Since D is dense, A is
maximal in D, finishing the proof. □

Lemma 3.7. If P is a forcing and λ a cardinal in V, then (2λ)V[P] ≤ (2|P|·λ)V .

Proof. Every subset of λ in V[P] has a name of the form {(α̌, p) | α ∈ λ∧ p ∈ Aα},
where Aα ⊆ P for each α. There are (2|P|·λ)V many such names, hence (2λ)V[P] ≤

(2|P|·λ)V . □

Lemma 3.8. If P is a forcing and λ a cardinal with |P| ≤ λ, then (2λ)V = (2λ)V[P].

Proof. On the one hand, (2λ)V[P] ≤ (2λ)V by Lemma 3.7. On the other hand, P
does not collapse 2λ, because |P| ≤ λ and hence P has the λ+-c.c.. □

The following lemma of Silver is useful to lift elementary embeddings to forc-
ing extensions. A proof can be found in [Cum10].

Lemma 3.9 (Lifting Lemma). Let j : V → M be an elementary embedding and
P ∈ V a forcing. Let G(P) be generic for P and let G( j(P)) be generic for j(P).
The following are equivalent:

(1) j[G(P)] ⊆ G( j(P)).

(2) There exists an elementary embedding j′ : V[G(P)] → M[G( j(P))] such that
j′(G(P)) = G( j(P)) and j′↾V = j.

The following theorem is useful to represent some forcings as an easier forcing
followed by a quotient which has a good closure. A good source for it is [Cum10].

Theorem 3.10 (Absorption). Let κ be regular and λ > κ an inaccessible. Let P
be separative, <κ-closed and |P| < λ. Then there is a regular embedding ι : P →
Col(κ, <λ) such that if G is P-generic over V, then Col(κ, <λ) is forcing equivalent
to Col(κ, <λ)/ι[G].
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Lemma 3.11. If P ∗ Q̇ is a two-step iteration which has the κ-c.c., then P has the
κ-c.c. and P⊩ “Q̇ has the κ-c.c.”.

Proof. Since it is easy to see that P has the κ-c.c., we only show that P⊩ “Q̇ has
the κ-c.c.”. Let p0 ∈ P and assume Ȧ is a P-name such that p0 ⊩ “Ȧ ⊆ Q̇ and
Ȧ has size κ”. Furthermore, let ḟ be a P-name such that p0 ⊩ “ ḟ : κ → Ȧ is a
bijection”. For every α ∈ κ there exist pα ≤ p0 and q̇α such that pα ⊩ ḟ (α) = q̇α.
Since P ∗ Q̇ has the κ-c.c., there exist distinct α, β ∈ κ such that (pα, q̇α) and
(pβ, q̇β) are compatible. Let (p, q̇) be a witness for the compatibility. It follows
that p⊩ “ ḟ (α) = q̇α ∈ Ȧ ∧ ḟ (β) = q̇β ∈ Ȧ ∧ q̇ ≤ q̇α, q̇β”. In particular p⊩ “Ȧ is not
an antichain”. □

The following lemma can be found in [Ung12] for the case where P has the
µ+-c.c. and R is <µ+-closed. It is a generalization of Lemma 2.8 and the proof is
a refinement of the proof there.

Lemma 3.12. Let λ be a regular cardinal and µ < λ with 2µ ≥ λ. Let P be a
forcing which has the λ-c.c. and R a forcing which is <λ-closed and Ṫ a P-name
for a λ-tree. Then forcing with R over V[P] does not add cofinal branches to T .

Proof. Assume ḃ is an R-name for a new branch cofinal through T in V[P].

Claim. For all r1, r2 ∈ R the set Dr1,r2 of conditions p ∈ P with the following
properties is dense.

1. p⊩ “there are r′1 ≤ r1 and r′2 ≤ r2 and γ < λ such that r′1 and r′2 decide ḃ(γ)
in different ways”.

2. p decides γ, r′1 and r′2.

Proof. Let p∗ ∈ P and let GP be generic for P with p∗ ∈ GP. In V[GP] the con-
ditions r1 and r2 cannot decide all of ḃ, because it is a new branch. Hence there
exists γ such that r1 and r2 do not decide ḃ(γ). So there exist conditions r′1 ≤ r1

and r′2 ≤ r2 which decide ḃ(γ) differently, and thus there exists a condition p′ ∈ GP
which forces this and decides γ, r′1 and r′2. Since both p∗ and p′ are in GP, they are
compatible. Any witness of the compatibility is in Dr1,r2 and stronger than p∗. □

Claim. For every condition r ∈ R there exists a maximal antichain A in P and
conditions r1, r2 ≤ r and γ < λ such that for all p ∈ A, p⊩ “r1 and r2 decide ḃ(γ)
differently”.

Proof. By induction on α define increasing (w.r.t. ⊆) antichains Aα and decreasing
sequences rα1 and rα2 and an increasing sequence γα of ordinals < λ such that for
each p ∈ Aα, p⊩ “rα1 and rα2 decide ḃ(γα) differently”.

Let r ∈ R and p0 ∈ Dr,r and r0
1, r0

2 and γ0 < λwitnesses for this. Let A0 := {p0}.
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For the successor step, assume Aα, rα1 , rα2 and γα have been defined. If Aα is a
maximal antichain, we stop the construction here. If there exists p ∈ P which is
incompatible to every condition in Aα, let p′ ≤ p with p′ ∈ Drα1 ,r

α
2

and let rα+1
1 , rα+1

2
and γα+1 be witnesses for this. Since T is a tree, the set of γ’s with p′ ⊩ “rα+1

1 and
rα+1

2 decide ḃ(γ) differently” is upwards closed, so we can assume that γα+1 > γα.
Let Aα+1 := Aα ∪ {p′}.

For the limit step, let α be a limit ordinal and let Aα :=
⋃
β<α Aβ. Note that

Aα is an antichain of size |α|. Since P has the λ-c.c., it follows that α < λ. Let
rα1 and rα2 be lower bounds of the sequences ⟨rβ1 | β < α⟩ and ⟨rβ2 | β < α⟩ (such
lower bounds exist because R is <λ-closed). Let γα := sup{γβ | β < α}. Since λ is
regular, γα < λ.

Since P has the λ-c.c., for some α < λ the antichain Aα will be maximal. Then
we stop the induction and define A := Aα, r1 := rα1 , r2 := rα2 and γ := γα.

To see that the claim is fulfilled, let p ∈ A. Hence p ∈ Aβ+1 for some β+1 ≤ α,
so p⊩ “rβ+1

1 and rβ+1
2 decide ḃ(γβ+1) differently”. Since r1 ≤ rβ+1

1 , r2 ≤ rβ+1
2 ,

γ ≥ γβ+1 and T is a tree, it follows that p⊩ “r1 and r2 decide ḃ(γ) differently”. □

Let µ < λ with 2µ ≥ λ. For every w ∈ 2≤µ we construct rw, xw and αi for every
i ≤ µ such that rw ⊩ ḃ(α|w|) = xw, for w,w′ ∈ 2≤µ of the same length, xw , x′w, and
α j < αi < λ for i > j.

Let r⟨⟩ = 1R, α0 = 0 and x⟨⟩ = ⟨⟩, so r⟨⟩ ⊩ ḃ(α0) = x⟨⟩. Now use the above claim
inductively to get rw⌢0 ∈ R and rw⌢1 ∈ R, together with xw⌢0, xw⌢1, α|w| < α|w|+1 < λ
and a maximal antichain Aw such that each p ∈ Aw forces that rw⌢0 and rw⌢1 decide
ḃ(α|w|+1) differently. For w ∈ 2≤µ of limit length let αδ < α|w| < λ for all δ < |w|.
Since λ is regular and µ < λ such an α|w| < λ exists. Let rw be a lower bound of
⟨rw↾δ | δ < |w|⟩. Such rw exist because of the closure of R.

Let α := sup{αδ | δ ≤ µ}. Since λ is regular and µ < λ, it follows that α < λ.
Let G be generic for P. In V[G] for all v , w ∈ 2µ, rv and rw decide ḃ(α)

differently: Let δ < µ be minimal such that v(δ) , w(δ). Hence, every p ∈
Aw↾δ forces that rv↾δ+1 and rw↾δ+1 decide ḃ(αδ+1) differently. Aw↾δ is a maximal
antichain, so there exists p ∈ G ∩ Aw↾δ. So V[G] |= “rv↾δ+1 and rw↾δ+1 decide
ḃ(αδ+1) differently”. Since rv ≤ rv↾δ+1 and rw ≤ rw↾δ+1 and α > αδ+1 and T is a tree,
it follows that V[G] |= “rv and rw decide ḃ(α) differently”.

Hence V[G] |= |Tα| ≥ 2µ ≥ λ, contradicting that Ṫ is a name for a λ-tree. □

The following lemma is essentially due to Mitchell [Mit73]:

Lemma 3.13. Let λ be a regular cardinal, P a forcing where P × P has the λ-c.c.
and T a tree of height λ. Then forcing with P does not add a new cofinal branch
to T .

Proof. Assume P adds a new cofinal branch and let ḃ be a P-name for it. We
inductively build a sequence of conditions {(pi, qi) | i < λ} ⊆ P × P, a strictly
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increasing sequence {γi | i < λ} of ordinals < λ and sequences {xi | i < λ},
{yi | i < λ} and {zi | i < λ} such that

1. pi, qi ⊩ ḃ(γi) = xi,

2. yi , zi, pi ⊩ ḃ(γi+1) = yi and qi ⊩ ḃ(γi+1) = zi.

Let γ0 = 0 and x0 = ⟨⟩. Clearly 1P ⊩ ḃ(0) = ⟨⟩. Since ḃ is a name for a new
branch, there exists α < λ such that 1P does not decide ḃ(α). Find p0 and q0 and
y0 , z0 with p0, q0 ≤ 1P and p0 ⊩ ḃ(α) = y0 and q0 ⊩ ḃ(α) = z0 and set γ1 := α.

Assume pi, qi, γi+1, xi, yi and zi have been defined. Let xi+1 = yi and γi+2 > γi+1

such that pi does not decide ḃ(γi+2). Find pi+1, qi+1 ≤ pi and yi+1 , zi+1 such that
pi+1 ⊩ ḃ(γi+2) = yi+1 and qi+1 ⊩ ḃ(γi+2) = zi+1.

Assume j is a limit and pi, qi, γi, xi, yi and zi have been defined for every
i < j. Let γ j = (supi< j γi) + 1. Let p∗ ∈ P and x j be such that p∗ ⊩ ḃ(γ j) = x j

and let γ j+1 > γ j such that p∗ does not decide ḃ(γ j+1). Now let p j, q j ≤ p∗, so
p j, q j ⊩ ḃ(γ j) = x j, and let y j and z j be such that y j , z j, and p j ⊩ ḃ(γ j+1) = y j

and q j ⊩ ḃ(γ j+1) = z j. This finishes the construction.
Since P × P has the λ-c.c., there exist i < j < λ such that (pi, qi) and (p j, q j)

are compatible. Let (p, q) ≤ (pi, qi), (p j, q j). So p ≤ p j and q ≤ q j, thus p, q ⊩
ḃ(γ j) = x j, and p ≤ pi and q ≤ qi, thus p ⊩ ḃ(γi+1) = yi and q ⊩ ḃ(γi+1) = zi.
So in T there are two distinct nodes yi and zi on level γi+1 ≤ γ j with yi, zi ≤ x j,
which contradicts the fact that T is a tree. We conclude that there is no new cofinal
branch in V[P]. □

3.1 Nicely closed forcings

The concept of nicely closed forcings is crucial for the main proofs of the thesis. In
particular, we are interested in the closure of quotient forcings (see Lemma 3.16).

Definition 3.14. Let P be a partial order and λ be an ordinal. P is nicely λ-closed
if for every decreasing sequence ⟨pi | i < λ⟩ in P there exists a lower bound q with
the property that if p ∈ P is compatible with every pi then q is compatible with p.
In this case we call q a witnessing lower bound for the nice λ-closure. Moreover,
P is nicely <κ-closed if it is nicely λ-closed for every λ < κ.

We will later need the nice closure of the Lévy collapse:

Lemma 3.15. Let λ be an inaccessible cardinal and κ a regular cardinal with
κ < λ. Then the Lévy collapse Col(κ, <λ) is nicely <κ-closed.
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Proof. Let µ < κ and ⟨pi | i < µ⟩ a decreasing sequence in Col(κ, <λ). Let
q :=
⋃

i<µ pi. Since µ < κ, q ∈ Col(κ, <λ) is a lower bound of ⟨pi | i < µ⟩. Let p be
compatible with every pi. We have to show that q is compatible with p. It is easy
to see that p ∪ q ∈ Col(κ, <λ) and p ∪ q ≤ p, q. □

Lemma 3.16. Let P be nicely <κ-closed and Q a regular subforcing of P. Then
P/G(Q) is <κ-closed.

Proof. Let G(Q) be a generic filter for Q, λ < κ and ⟨pi | i < λ⟩ a decreasing
sequence in P/G(Q). For every q ∈ G(Q) every pi is compatible with q. By the
nice <κ-closure there exists a lower bound r of ⟨pi | i < λ⟩ which is compatible
with every condition which is compatible with every pi. So in particular r is
compatible with every q ∈ G(Q). Hence r ∈ P/G(Q), and thus P/G(Q) is <κ-
closed. □

Definition 3.17. A forcing P is <κ-closed with weakest lower bounds if for each
λ < κ and for each decreasing sequence ⟨pi | i < λ⟩ there exists a weakest lower
bound q, i.e.,

1. q ≤ pi for each i < λ, and

2. if q′ ≤ pi for each i < λ, then q′ ≤ q.

Definition 3.18. A forcing P is well-met if for all p, p′ ∈ P with p ̸⊥ p′ there
exists a weakest lower bound q, i.e.,

1. q ≤ p, p′, and

2. if q′ ≤ p, p′, then q′ ≤ q.

Lemma 3.19. Let P be a forcing which is <κ-closed with weakest lower bounds
and well-met. Then P is nicely <κ-closed.

Proof. Let λ < κ, ⟨pi | i < λ⟩ be a decreasing sequence, and let p∗ be the weakest
lower bound of it. Now let p ̸⊥ pi for every i < λ. For every i let qi be the weakest
lower bound of p and pi. Since the qi are weakest lower bounds, it follows that
they are decreasing, so there exists a lower bound q of the sequence ⟨qi | i < λ⟩. In
particular, q ≤ p. Since qi ≤ pi for every i, q is also a lower bound of the sequence
⟨pi | i < λ⟩. The weakest lower bound of this sequence is p∗, so q ≤ p∗, hence q
witnesses the compatibility of p and p∗. □

Definition 3.20. Let Pµ be a forcing iteration of length µ. A condition p ∈ Pµ
is decisive if for each α < µ there exists q ∈ V such that p↾α⊩ “p(α) = q̌” and
if q′ ∈ V such that p↾α⊩ “q̌′ ∈ Q̇α” and some extension of p↾α forces that q̌ is
compatible to q̌′, then p↾α forces that q̌ is compatible to q̌′. In this case we say
that p↾α decides p(α). We call Pµ decisive if the set of decisive conditions is dense
in Pµ.
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Lemma 3.21. Let {Pα, Q̇α | α < µ} be a <κ-support forcing iteration such that for
each α < µ

(1) Pα is <κ-closed,

(2) Pα ⊩ “q ⊆ V and |q| < κ for each q ∈ Q̇α”,

(3) there exists a relation R definable in V such that for p ∈ Pα and q, q′ ∈ V
such that p⊩ “q̌, q̌′ ∈ Q̇α”, p⊩ “q̌′ ̸⊥ q̌” if and only if R(q′, q), and

(4) for p ∈ Pα, λ < κ, and qi ∈ V for each i < λ such that p⊩ “⟨q̌i | i < λ⟩ is
decreasing in Q̇α” and p decides q̌i for every i, there exists q∗ ∈ V such that
p⊩ “q̌∗ is a lower bound of ⟨q̌i | i < λ⟩” and p decides q̌∗.

Then the set of decisive conditions is dense in Pµ, i.e., Pµ is decisive.

Proof. By induction on α ≤ µ we show that the set of decisive conditions is dense
in Pα. For α = 0, P0 is the trivial forcing consisting only of the weakest condition,
which is decisive.

Next assume for Pα that the set of decisive conditions is dense. Let p ∈ Pα+1.
Since Pα is <κ-distributive and Pα ⊩ “q ⊆ V and |q| < κ for each q ∈ Q̇α”, there
exists q ∈ V and p′ ≤ p↾α such that p′ ⊩ p(α) = q̌. Let p′′ ≤ p′ be in the set of
decisive conditions in Pα (which is dense by inductive hypothesis). Let q′ ∈ V be
such that p′′ ⊩ q̌′ ∈ Q̇α, and assume there exists p∗ ≤ p′′ with p∗ ⊩ q̌′ ̸⊥ q̌. By (3)
in V we have R(q′, q) and hence by (3) p′′ ⊩ q̌′ ̸⊥ q̌. So (p′′, q̌) ≤ p is decisive.

Now let α be a limit ordinal. If cf(α) ≥ κ, then Pα is a bounded support limit,
so for every p ∈ Pα there exists β < α such that p ∈ Pβ. The set of decisive
conditions in Pβ is dense by induction, and a decisive p′ ≤Pβ p is still decisive
in Pα and p′ ≤Pα p.

If cf(α) < κ, let ⟨β j | j < cf(α)⟩ be an increasing continuous cofinal sequence
in α. Let p ∈ Pα. By induction, the set of decisive conditions in Pβ is dense for
each β < α. Let pβ0 ≤ p↾β0 be decisive. By induction on j assume we have
pβ j ≤ p↾β j decisive. Since pβ j ≤ p↾β j we know that pβ j

⌢p↾[β j, β j+1) ≤ p↾β j+1.
By the inductive assumption, there exists a decisive pβ j+1 ≤ pβ j

⌢p↾[β j, β j+1). It
follows that pβ j+1 ≤ pβ j . If j is a limit, there exists (since j < κ) a lower bound p′

of ⟨pβk | k < j⟩. Then let pβ j ≤ p′ be decisive. So we get a decreasing sequence
⟨pβ j | j < cf(α)⟩ such that each pβ j is decisive and pβ j ≤ p↾β j.

Now we define a decisive extension p∗ of p. Let p∗(0) be a lower bound of
⟨pβ j(0) | j < cf(α)⟩. Now assume p∗↾β has been defined such that it is decisive
and stronger than pβ j↾β for each β j ≥ β. Since each pβ j is decisive, it follows
that there are q j ∈ V such that p∗↾β⊩ “q̌ j = pβ j(β) with β j > β is a decreasing
sequence” and such that if q′j ∈ V with p∗↾β⊩ q̌′j ∈ V and some extension of
p∗↾β forces that q̌ j is compatible with q̌′j, then p∗↾β⊩ q̌ j ̸⊥ q̌′j. Therefore, by
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assumption (4) of the lemma, there exists q∗ ∈ V such that p∗↾β⊩ “q̌∗ is a lower
bound of ⟨pβ j(β) | j < cf(α) with β < β j⟩” and p∗↾β decides q̌∗. Let q∗ = 1 if
q j = 1 for every j. Let p∗(β) := q̌∗. Continuing for length α we get p∗. Note that
supp(p∗) ⊆

⋃
j<cf(α) supp(pβ j), so it is smaller than κ and hence p∗ ∈ Pα. Further,

by definition p∗ ≤ p and it is decisive. □

Lemma 3.22. Let {Pα, Q̇α | α < µ} be a <κ-support forcing iteration such that

(1) Pα ⊩ “Q̇α is <κ-closed with weakest lower bounds and well-met” for each α,
and

(2) Pµ is decisive.

Further assume that for each α < µ the following holds, which we will refer to as
weakest lower bounds of decided conditions are decided:

• for p ∈ Pα and q, q′ ∈ V such that (p, q̌) ̸⊥ (p, q̌′) there exists q∗ ∈ V such
that p⊩ “q̌∗ is the weakest lower bound of q̌ and q̌′” and p decides q̌∗, and

• for p ∈ Pα, λ < κ and qi ∈ V for each i < λ such that p⊩ “⟨q̌i | i < λ⟩ is
decreasing in Q̇α”, there exists q∗ ∈ V such that p⊩ “q̌∗ is the weakest lower
bound of ⟨q̌i | i < λ⟩” and p decides q̌∗.

Then in Pµ the dense subforcing of decisive conditions is <κ-closed with weakest
lower bounds and well-met. In particular, this dense subforcing is nicely <κ-
closed.

Proof. We show by induction on α ≤ µ that in Pα the set of decisive condi-
tions is dense and <κ-closed with weakest lower bounds and well-met. Applying
Lemma 3.19, this in particular yields that in Pα the set of decisive conditions is
dense and nicely <κ-closed.

First note that Pα is decisive for every α < µ, because Pµ is decisive and each
p ∈ Pα is also a condition in Pµ. Let Dα be the dense set of the decisive conditions
in Pα.

Let λ < κ. By induction on α ≤ µ we show that the dense set Dα in Pα is
λ-closed with weakest lower bounds and well-met, and that the weakest lower
bounds for λ-sequences and for pairs are coherent. More precisely, if β < α and
p, p′ ∈ Dα are compatible, then there exists a weakest lower bound p∗ ∈ Dα and
p∗↾β is the weakest lower bound for p↾β and p′↾β in Dβ. If ⟨pi | i < λ⟩ is a
decreasing sequence in Dα, then there exists a weakest lower bound p∗ ∈ Dα and
p∗↾β is the weakest lower bound of ⟨pi↾β | i < λ⟩ in Dβ.

For α = 0, P0 is the trivial forcing consisting only of the weakest condition, so
it is λ-closed with weakest lower bounds and well-met.
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Now assume that Dα is λ-closed with weakest lower bounds and well-met.
By assumption we know that Pα ⊩ “Q̇α is λ-closed with weakest lower bounds and
well-met”. Let ⟨(pi, q̇i) | i < λ⟩ be a decreasing sequence in Dα+1. So ⟨pi | i < λ⟩ is
a decreasing sequence in Dα, and by induction there exists a weakest lower bound
p ∈ Dα. Since p is a lower bound of the pi, it follows that p⊩ “⟨q̇i | i < λ⟩ is a
decreasing sequence and Q̇α is λ-closed with weakest lower bounds” and for each
i < λ there exists qi ∈ V such that p⊩ q̇i = q̌i. Therefore, there exists q∗ ∈ V such
that p⊩ “q̌∗ is the weakest lower bound of ⟨q̇i | i < λ⟩” and p decides q̌∗. Now
it is easy to see that (p, q̌∗) is the weakest lower bound of ⟨(pi, q̇i) | i < λ⟩ and
(p, q̌∗) ∈ Dα+1. Note that the lower bounds are coherent, since (p, q̌∗)↾α = p.

Now let (p, q̇) ̸⊥ (p′, q̇′) in Dα+1. Since Dα is well-met by induction there
exists a weakest lower bound p∗ ≤ p, p′ in Dα. It follows that there exist q, q′ ∈ V
such that p∗ ⊩ “q̇ = q̌ and q̇′ = q̌′”, hence, since p∗ is the weakest lower bound
of p and p′, (p∗, q̌) ̸⊥ (p∗, q̌′). So there exists q∗ ∈ V such that p∗ ⊩ “q̌∗ is the
weakest lower bound of q̇ and q̇′” and p∗ decides q̌∗. It is easy to see that (p∗, q̌∗)
is a weakest lower bound of (p, q̇) and (p′, q̇′) and (p∗, q̌∗) ∈ Dα+1. Note that the
lower bounds are coherent, since (p∗, q̌∗)↾α = p∗. This finishes the proof of the
successor step.

Next let α be a limit ordinal with cf(α) ≥ κ, so Pα is a bounded support limit.
Let ⟨pi | i < λ⟩ be a decreasing sequence in Dα. For each i < λ let βi < α be
such that pi ∈ Pβi . Let β := sup{βi | i < λ}; then pi ∈ Dβ for every i < λ. Since
cf(α) ≥ κ > λ we have β < α. Using the induction hypothesis for β, there exists a
weakest lower bound p ∈ Dβ. It is easy to see that p is still a weakest lower bound
in Dα and the coherence follows from the coherence up to β.

Similarly, for p, p′ ∈ Dα with p ̸⊥ p′ there exists β < α with p, p′ ∈ Dβ and
p ̸⊥Dβ p′. Using the induction hypothesis for β we find a weakest lower bound p∗

of p and p′ in Dβ, and p∗ is still a weakest lower bound in Dα and the coherence
follows from the coherence up to β.

Finally let α be a limit ordinal with cf(α) < κ, so Pα is an inverse limit, i.e.,
Pα = {p | p↾β ∈ Pβ for all β < α}. Let ⟨β j | j < cf(α)⟩ be an increasing cofinal
sequence in α.

Let ⟨pi | i < λ⟩ be a decreasing sequence in Dα. By induction for each j <
cf(α) there exists a weakest lower bound p∗j ∈ Dβ j of ⟨pi↾β j | i < λ⟩. From the
coherence of the weakest lower bounds it follows that p∗j↾βk = p∗k for k < j. Let
p∗ :=

⋃
{p∗j | j < cf(α)}. Clearly, this extends the sequence of the weakest lower

bounds coherently and p∗ ∈ Dα. Since for each i < λ, p∗↾β j ≤ pi↾β j for every j,
it follows that p∗ ≤ pi for every i < λ. To see that this lower bound is the weakest
lower bound, let p′ be a lower bound. Then p′↾β j ≤ pi↾β j for all i < λ and all
j < cf(α), so p′↾β j ≤ p∗↾β j for every j and therefore p′ ≤ p∗.

Now let p ̸⊥ p′ in Dα. By induction, for each j < cf(α) there exists a weakest
lower bound p∗j ∈ Dβ j of p↾β j and p′↾β j. From the coherence of the weakest
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lower bounds it follows that p∗j↾βk = p∗k for k < j. Let p∗ :=
⋃
{p∗j | j < cf(α)}.

Clearly, this extends the sequence of the weakest lower bounds coherently and
p∗ ∈ Dα. Since p∗↾β j ≤ p↾β j, p′↾β j for every j, it follows that p∗ ≤ p, p′. To see
that this lower bound is the weakest lower bound, let p̃ be a lower bound. Then
p̃↾β j ≤ p↾β j, p′↾β j for all j < cf(α), so p̃↾β j ≤ p∗↾β j for every j and therefore
p̃ ≤ p∗. □

Lemma 3.23. Let P be such that the set of decisive conditions is dense and nicely
<κ-closed. Let Q̇ be a P-name and R a relation definable in V such that P⊩ “q ⊆ V
and |q| < κ for each q ∈ Q̇, Q̇ is <κ-closed with weakest lower bounds and well-met
and weakest lower bounds of decided conditions are decided” and for q, q′ ∈ V
with p⊩ “q̌, q̌′ ∈ Q̇α”, p⊩ “q̌′ ̸⊥ q̌” if and only if R(q′, q) holds. Then in P ∗ Q̇ the
set of decisive conditions is dense and nicely <κ-closed.

Proof. By Lemma 3.21, the set of decisive conditions is dense in P ∗ Q̇. Let λ < κ
and let ⟨(pi, q̇i) | i < λ⟩ be a decreasing sequence of decisive conditions. Let p
be decisive and a lower bound of ⟨pi | i < λ⟩ witnessing the nice λ-closure. In
particular, there exist qi ∈ V such that p⊩ “⟨q̇i | i < λ⟩ is a decreasing sequence
and q̇i = q̌i for every i < λ”. Hence, there exists q ∈ V such that p⊩ “q̌ is a
weakest lower bound of ⟨q̇i | i < λ⟩” and p decides q̌. Clearly (p, q̌) is decisive
and a lower bound of ⟨(pi, q̇i) | i < λ⟩.

Let (p′, q̇′) be decisive such that (p′, q̇′) ̸⊥ (pi, q̇i) for every i. Since p is a
witness for the nice closure, p ̸⊥ p′. Let p∗ ≤ p, p′ be decisive. Hence there exist
qi, q′ ∈ V for every i such that p∗ ⊩ “q̌′ = q̇′ and q̌i = q̇i for every i” and p∗ decides
q̌′ and q̌i. By the assumption, weakest lower bounds of decided conditions are
decided, i.e., there exist q∗i ∈ V such that p∗ ⊩ “q̌∗i is a weakest lower bound of
q̌i and q̌′” and p∗ decides q̌∗i . It follows that it is forced by p∗ that ⟨q̌∗i | i < λ⟩
is a decreasing sequence. Therefore there exists q∗ ∈ V such that p∗ ⊩ “q̌∗ ≤ q̌∗i
for every i < λ” and p∗ decides q̌∗. So (p∗, q̌∗) ≤ (p′, q̇′), (p, q̌) and (p∗, q̌∗) is
decisive. □
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Chapter 4

ℵ2-trees

From the existence of a supercompact cardinal and an inaccessible above, we
prove that it is consistent that all ℵ2-Aronszajn trees are special, there are such,
and there are no ℵ1- or ℵ2-Kurepa trees.

4.1 Definition of the forcing
Let κ2 < κ3 be cardinals with κ2 supercompact and κ3 inaccessible.

Definition 4.1. For a κ2-Aronszajn tree T let S(T ) be the forcing to specialize T ,
defined as follows: S(T ) consists of partial functions f from T to [ω1]≤ω such that
|dom( f )| ≤ ω, and f (s) ∩ f (t) = ∅ whenever s , t ∈ dom( f ) are comparable in T .
The order is given by g ≤ f if g ⊇ f .

In the forcing iteration we use the following variant to specialize names for
trees, instead of specializing the tree in the extension. The reason we need to do
this is Lemma 4.6.

Definition 4.2 (Specializing names). Assume that P is a forcing with 1P ⊩ “Ṫ is
a κ2-Aronszajn tree with Ṫξ = {ξ} × ℵ1”. Let SP(Ṫ ) be the following forcing:
Conditions are countable partial functions f from Ṫ to [ℵ1]≤ω such that, for s ,
t ∈ dom( f ), if f (s) ∩ f (t) , ∅, then 1P ⊩ “s is incomparable to t in Ṫ”. The order
is given by g ≤ f if g ⊇ f .

Remark 4.3. Note that ̸⊥SP(Ṫ ) is definable in V , more precisely, for p ∈ P and
f , g ∈ V , p⊩ f̌ ̸⊥SP(Ṫ ) ǧ if and only if

• for all s ∈ dom( f ) ∩ dom(g), f (s) = g(s), and

• for all s ∈ dom( f ) \ dom(g) and t ∈ dom(g) \ dom( f ), if f (s)∩ g(t) , ∅ then
1P ⊩ “s is incomparable to t in Ṫ”.
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We use multi-valued functions, i.e., functions with values in [ℵ1]≤ω instead of
values in ℵ1, to make some of the proofs easier.

To get then a specializing function in the usual sense, a multi-valued func-
tion F : T → [ℵ1]≤ω can be translated as follows: Let F′ be defined by F′(s) =
min(F(s)). Then F′ is a specializing function since images under F of comparable
nodes are disjoint, hence the minima are different.

Note that if Ṫ is a P-name for a κ2-Aronszajn tree, then |SP(Ṫ )| = κ2.

Lemma 4.4. Let Ṫ be a P-name for an ℵ2-Aronszajn tree. For every (ξ, β) ∈
ℵ2 × ℵ1 the set {g ∈ SP(Ṫ ) | (ξ, β) ∈ dom(g)} is dense in SP(Ṫ ).

Proof. Let f ∈ SP(Ṫ ), ξ ∈ ℵ2 and β ∈ ℵ1. Since |dom( f )| ≤ ω, and | f (s)| ≤ ω
for every s ∈ dom( f ), there exists i ∈ ℵ1 \

⋃
rng( f ). If (ξ, β) < dom( f ), let

g := f ∪ {((ξ, β), {i})}. So g ∈ SP(Ṫ ), g ≤ f and (ξ, β) ∈ dom(g). □

Lemma 4.5. Let P be a forcing with 1P ⊩ “Ṫ is an ℵ2-Aronszajn tree”. Then
P ∗ SP(Ṫ )⊩ “there is a specializing function from Ṫ to [ℵ1]≤ω”.

Proof. In V[P] let G be a generic filter for SP(Ṫ ). Let F :=
⋃
{ f ∈ SP(Ṫ ) | f ∈ G}.

It follows from the above lemma that dom(F) = ℵ2×ℵ1. For distinct s, t ∈ ℵ2×ℵ1

with F(s) = F(t) we have that 1P ⊩ “s and t are incomparable in Ṫ”, hence F(s) ,
F(t) if s <T t. So F is a specializing function of T to [ℵ1]≤ω. □

Now we define the forcing iteration to specialize all ℵ2-Aronszajn trees. Let
L2 = Col(ω1, <κ2) and L3 = Col(κ2, <κ3)V[L2]. Let Ṫ0 be an L2 ∗ L3-name for
a κ2-Aronszajn tree and SL2∗L3(Ṫ0) the forcing to specialize the name Ṫ0 as in
Definition 4.2. Let P1 := L2 ∗ L3 ∗ SL2∗L3(Ṫ0) and S1 := SL2∗L3(Ṫ0).

Assume Pi has been defined. Continue the iteration in the same way, i.e., let
Ṫi be a Pi-name for a κ2-Aronszajn tree and SPi(Ṫi) the forcing to specialize Ṫi as
in the case of Ṫ0. Let Pi+1 := Pi ∗ SPi(Ṫi) and Si+1 := Si ∗ SPi(Ṫi). Continue this as
a countable support iteration for κ3 many steps, using a bookkeeping function for
the nice names of κ2-Aronszajn trees. Let Pℵ2

κ3 be this forcing iteration. We will
show that in V[L2 ∗ L3] the forcing iteration Sκ3 to specialize κ2-Aronszajn trees
has the κ2-c.c. (see Lemma 4.13). Recall that by Lemma 2.7, κ2 = ℵ2 in V[L2]. By
Lemma 2.5, L3 is <κ2-closed, so it does not collapse κ2 and, since the forcing iter-
ation to specialize κ2-Aronszajn trees has the κ2-c.c., also the rest of the iteration
does not collapse κ2. Thus V[Pℵ2

κ3 ] |= κ2 = ℵ2.
Since, using Lemma 2.6, L2 ∗ L3 has the κ3-c.c., it follows that Pℵ2

κ3 has the
κ3-c.c., therefore κ3 is preserved and every κ2-Aronszajn tree in V[Pℵ2

κ3 ] has a
nice Pℵ2

κ3 -name of size smaller than κ3 and so there are only κ3 many nice names
for κ2-Aronszajn trees. Hence the bookkeeping function can make sure that all
κ2-Aronszajn trees have been specialized in V[Pℵ2

κ3 ] with a specializing function
to [ℵ1]≤ω.

28



Lemma 4.6. Let P be a forcing and Ṫ a P-name for a κ2-Aronszajn tree. Then
SP(Ṫ ) is σ-closed with weakest lower bounds and well-met. Moreover, weakest
lower bounds of decided conditions in P ∗ SP(Ṫ ) are decided (see Lemma 3.22).

Proof. Let ⟨qi | i < ω⟩ be a decreasing sequence in SP(Ṫ ). Let q∗ :=
⋃

i<ω qi. It
is easy to see that q∗ ∈ SP(Ṫ ), q∗ ≤ qi for every i ∈ ω and q∗ is a weakest lower
bound. Now let q ̸⊥ q′ in SP(Ṫ ). Then clearly q ∪ q′ is a weakest lower bound of
q and q′.

It remains to show that weakest lower bounds of decided conditions are de-
cided: Let p ∈ P and q, q′ ∈ V such that p⊩ q̌, q̌′ ∈ SP(Ṫ ) and (p, q̌) ̸⊥ (p, q̌′).
So there exists p∗ ≤ p such that p∗ ⊩ q̌ ̸⊥ q̌′. Let q∗ := q ∪ q′. It follows that
q∗ ∈ V and p∗ ⊩ “q̌∗ is the weakest lower bound of q̌ and q̌′” and p∗ decides q̌∗,
since ̸⊥SP(Ṫ ) is definable in V . So |q∗| ≤ ω and for s, t with q∗(s) ∩ q∗(t) , ∅ we
know that 1P ⊩ “s is incomparable to t in Ṫ”. Since this does not depend on p∗

it follows that p⊩ “q̌∗ is the weakest lower bound of q̌ and q̌′” and p decides q̌∗,
since ̸⊥SP(Ṫ ) is definable in V .

Similarly, for p ∈ P and qi ∈ V for each i < ω such that p⊩ “⟨q̌i | i < ω⟩
is decreasing in SP(Ṫ )” let q∗ :=

⋃
i∈ω qi. Note that |q∗| ≤ ω. For s, t ∈ dom(q∗)

with q∗(s) ∩ q∗(t) , ∅ we know that there exists i < ω such that s, t ∈ dom(qi),
therefore 1P ⊩ “s is incomparable to t”. So q∗ ∈ SP(Ṫ ) and p⊩ “q̌∗ is the weakest
lower bound of ⟨q̌i | i < ω⟩” and p decides q̌∗, since ̸⊥SP(Ṫ ) is definable in V . □

We prove the following lemma for all iterations of length < κ+3 since we will
need it for iterations longer than κ3 in Lemma 4.13.

Lemma 4.7. Let α < κ+3 be a limit ordinal and let P be a forcing with V[G(P)] |=
κ2 = ℵ2. Let Sα be an iteration of limit length α of forcings to specialize names for
ℵ2-Aronszajn trees with countable support in V[G(P)]. Then in V[G(P)] the set of
decisive conditions in Sα is dense and nicely σ-closed.

Proof. We want to use Lemma 3.21 and Lemma 3.22. First note that by Lem-
ma 4.6 SP(Ṫ ) is σ-closed and well-met, and weakest lower bounds of decided
conditions are decided for sequences of lengthω and for pairs of conditions, hence
the first and the last requirement of Lemma 3.22, and the last requirement of
Lemma 3.21 hold.

Now we argue that also the other requirements of Lemma 3.21 hold. Each
iterand is σ-closed, therefore also the iteration with countable support is σ-closed,
which shows the first requirement. The second requirement holds by the defini-
tion of the forcing SP(Ṫ ). For the third requirement let R(q′, q) as explained in
Remark 4.3, i.e., for p ∈ P and q, q′ ∈ V such that p⊩ q̌, q̌′ ∈ SP(Ṫ ), p⊩ q̌′ ̸⊥ q̌ if
and only if R(q′, q) holds in V . So we can apply Lemma 3.21 and get that the set
of decisive conditions is dense.
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Thus, all the requirements of Lemma 3.22 are fulfilled, and we get the nice
σ-closure. □

4.2 Chain condition and regular subforcings
From now on let j : V → M be a supercompact embedding for κ2 such that j(κ2) >
κ3 and ≤κ3 M ⊆ M.

Lemma 4.8. There exists an L2-name L∗3 such that in V[L2], L∗3 is a regular sub-
forcing of j(L2)/G(L2), ( j(L2)/G(L2))/G(L∗3) is σ-closed, L∗3 is forcing equivalent
to L3 and |L∗3| < j(κ2).

Proof. Let G(L2) be generic for L2. We work in V[G(L2)] and apply Theo-
rem 3.10: L3 is σ-closed and |L3| < j(κ2), thus in V[G(L2)] there exists a reg-
ular embedding ι : L3 → Col(ω1, < j(κ2)) = j(L2) such that j(L2) is equivalent
to j(L2)/ι[G(L3)]. It follows that in V there exists a regular embedding ι : L3 →

j(L2)/G(L2) such that j(L2)/G(L2) is equivalent to ( j(L2)/G(L2))/ι[G(L3)]. Again
in V[G(L2)], by Lemma 3.15 j(L2) = Col(ω1, < j(κ2)) is nicely σ-closed, thus
in V , j(L2)/G(L2) is nicely σ-closed. Therefore by Lemma 3.16 it follows that
( j(L2)/G(L2))/ι[G(L3)] is σ-closed. L∗3 := ι[L3] is the forcing we are looking
for. □

Corollary 4.9. There exists a reduction map π : j(L2 ∗ L3)→ L2 ∗ L
∗
3.

Proof. Clearly there exists a reduction map π1 : j(L2 ∗ L3) → j(L2). Note that
j(L2) is forcing equivalent to L2 ∗ ( j(L2)/L2). By Lemma 4.8, j(L2)/L2 has L∗3 as
a regular subforcing, hence there exists a reduction map π2 : L2 ∗ ( j(L2)/L2) →
L2 ∗L

∗
3. This shows that there exists a reduction map π : j(L2 ∗L3)→ L2 ∗L

∗
3. □

To be able to use the supercompact embedding, we have to lift it to the forcing
extensions. To lift a supercompact embedding for κ to the extension by a Lévy
collapse for some larger cardinal κ′ we use absorption, i.e., the fact that the Lévy
collapse for κ′ contains the collapse for κ as a regular subforcing:

Lemma 4.10. Let G(L2) be generic for L2 and G(L3) generic for L3 over V[G(L2)].
The supercompact embedding j can be lifted to

j : V[G(L2 ∗ L3)]→ M[G( j(L2) ∗ j(L3))].

Proof. Let ι : L3 → j(L2)/G(L2) be a regular embedding as in Lemma 4.8. We
can choose G( j(L2)) such that G( j(L2)) ∩ range(ι) = ι[G(L3)], thus ι[G(L3)] ∈
V[G( j(L2))] and G(L2) ⊆ G( j(L2)); that is possible because L2 ∗ ι[L3] is a reg-
ular subforcing of j(L2). Thus it follows that ι[G(L3)] ∈ V[G( j(L2))] and since
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ι and j↾L3 ∈ V[G( j(L2))] it follows that j[G(L3)] ∈ V[G( j(L2))]. Since M is
closed under subsets of size ≤ κ3 the same holds for M[G( j(L2))] and therefore
j[G(L3)] ∈ M[G( j(L2))].

Now j[G(L3)] ⊆ j[L3] ⊆ j(L3), j[G(L3)] is a directed set of size < j(κ2) and
j(L3) is < j(κ2)-directed closed, therefore there exists a master condition p ∈ j(L3)
for j[G(L3)]. Let G( j(L3)) be generic for j(L3) with p ∈ G( j(L3)). It follows that
j[G(L3)] ⊆ G( j(L3)).

Finally, we can use the Lifting Lemma (Lemma 3.9) to lift j to an embedding
j : V[G(L2)][G(L3)]→ M[G( j(L2))][G( j(L3))]. □

As a summary of the previous lemmata we get the following:

Corollary 4.11. There exists a regular subforcing L∗of j(L2∗L3) with the following
properties:

(1) L∗ is also a regular subforcing of j(L2) × {1 j(L3)}.

(2) L∗ is forcing equivalent to L2 ∗ L3.

(3) There exists a reduction map π : j(L2 ∗ L3)→ L∗ .

(4) j(L2 ∗ L3)/G(L∗ ) is σ-closed.

Moreover, there exists a lifting of the supercompact embedding for κ2 to j : V[L2 ∗

L3]→ M[ j(L2 ∗ L3)].

One of the main technical parts of the proof is to show that the forcing iteration
has a good chain condition. The main work lies in the following lemma, which
deals with the successor step of the iteration. Note that L2 ∗ L3 with L2 ∗ L

∗
3 as a

subforcing of j(L2 ∗ L3) fulfills the requirements of the following lemma.

Lemma 4.12. Assume P = L2 ∗ L3 ∗ P0 is a forcing with V[G(P)] |= κ2 = ω2 and
P∗ = L2 ∗ L

∗
3 ∗ P

∗
0 is forcing equivalent to P, and P∗ is a regular subforcing of j(P)

and the sets of decisive conditions in P0 and in P∗0 are dense and nicely σ-closed,
and P0 is forcing equivalent to P∗0. Further assume P∗0 is a regular subforcing of
j(P0) with reduction map π : j(P0) → P∗0. Let j : V[G(P)] → M[G( j(P))] be a
lifting of the supercompact embedding for κ2 and S = SP(Ṫ ) a specializing forcing
of a P-name for a κ2-Aronszajn tree Ṫ . Then the following hold:

(1) There exists a regular subforcing P∗0 ∗ S
∗ of j(P0) ∗ j(S) with a reduction

map π∗ : j(P0) ∗ j(S) → P∗0 ∗ S
∗ such that the first component of π∗(p, s)

extends π(p).

(2) |S∗| = κ2.
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(3) j(P)⊩ “S∗ is a regular subforcing of j(S)” and P⊩ “S has the κ2-c.c.”.

(4) P ∗ S is forcing equivalent to P∗ ∗ S∗.

(5) The supercompact embedding j can be lifted to

j : V[G(P ∗ S)]→ M[G( j(P) ∗ j(S))].

(6) P0 ∗ S has a dense subset which is nicely σ-closed in V[L2 ∗ L3] and the
quotient j(P0∗S)/G(P∗0∗S

∗) is equivalent to a σ-closed forcing in M[G( j(L2∗

L3))][G(P∗0 ∗ S
∗)].

Proof. The main work is to prove (1).
Proof of (1): We work in M[G( j(L2 ∗ L3))]. Let (p, s) ∈ j(P0) ∗ j(S). Let

p′ ≤ p, π(p) such that p′ decides s, that means in M[G( j(L2 ∗ L3))] there exists
a countable partial function f : ω1 × j(κ2) → [ω1]≤ω such that p′ ⊩ s = f . If
p′′ ≤ π(p′), then p′′ is compatible with p′ and therefore with π(p), thus π(p) and
π(p′) are compatible in j(P0). Since P∗0 is a regular subforcing of j(P0), π(p) and
π(p′) are compatible in P∗0. Let p̂ ∈ P∗0 with p̂ ≤ π(p), π(p′).

Continue working in V[G(L2 ∗ L3)] = V[G(L2 ∗ L
∗
3)]: choose a generic G(P∗0)

containing p̂ and let G(P0) be the corresponding generic for P0, i.e., V[G(L2 ∗

L3)][G(P0)] = V[G(L2 ∗L3)][G(P∗0)]; that is possible because P0 and P∗0 are forcing
equivalent. Note that p ∈ j(P0)/G(P∗0) because p̂ ≤ π(p) and π(p) is a reduction
of p.

Let T := ṪG(P0). Since T ∈ V[G(L2 ∗L3)][G(P0)], it follows that T ∈ V[G(L2 ∗

L3)][G(P∗0)]. Let Ṫ ∗ be a P∗-name for T and let S∗ := SP∗(Ṫ ∗), the specializing
forcing of Ṫ ∗.

We assume that the nodes on the αth level Tα of T are elements of ω1 × {α},
and all the levels are of size < κ2, therefore T = j[T ] = j(T )↾κ2.

We can assume that for each σ ∈ dom(s) ∩ j(T )>κ2 there exists a σ′ ∈ dom(s)
on level κ2 such that p′ ⊩σ′ ≤T σ.

Let s̄ := s↾T , {σn | n ∈ ω} := dom(s) ∩ Tκ2 and Cn :=
⋃
{s(τ) | τ ≥T σn, τ ∈

dom(s)} the set of colors which s assigns to nodes which are in dom(s) and equal
to or above σn.

Let Q := j(P0)/G(P∗0). By assumption in P0 the set of decisive conditions
is dense and nicely σ-closed and in P∗0 the set of decisive conditions is dense.
By elementarity also in j(P0) the set of decisive conditions is dense and nicely
σ-closed. Further, note that the set D∗ of decisive conditions in P∗0 is contained
in the set D̄ of decisive conditions in j(P0). So by Lemma 3.6 D∗ is a regular
subforcing of D̄. Therefore by Lemma 3.16, by working in the dense sets of
decisive conditions, we can assume that Q is σ-closed. Define a tree T of height
ω inductively. Each node t on level n will be of the form (pw, τ

0
w, . . . , τ

n
w) for some
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w ∈ 2n and pw ∈ Q with pw ≤ p, and pw ⊩ “τk
w <T σk” for each k ≤ n. The

construction is as follows:

• The root of T is (p⟨⟩, τ0
⟨⟩

) where p⟨⟩ ∈ Q with p⟨⟩ ≤ p and p⟨⟩ ⊩ “τ0
⟨⟩
<T

σ0∧τ
0
⟨⟩
∈ T”. So τ0

⟨⟩
is just some node which is forced by p⟨⟩ to be below σ0.

• Assume t is a node of T on level n, so t is of the form (pw, τ
0
w, . . . , τ

n
w) for

some w ∈ 2n and pw ∈ Q, and pw ⊩ “τk
w <T σk” for each k ≤ n.

Since T is an Aronszajn tree in V[G(L2 ∗ L3)][G(P∗0)], every cofinal branch
through T in M[G( j(L2∗L3))][G( j(P0)/G(P∗0))] is new. Therefore there exist
two conditions pw⌢0 ≤ pw and pw⌢1 ≤ pw which decide for every k ≤ n the
nodes between τk

w and σk differently. We define two successors for t in T :

(pw⌢0, τ
0
w⌢0, . . . , τ

n
w⌢0, τ

n+1
w⌢0) and (pw⌢1, τ

0
w⌢1, . . . , τ

n
w⌢1, τ

n+1
w⌢1)

where pw⌢i and τk
w⌢i for k ≤ n and i ∈ {0, 1} are such that the following hold

true: pw⌢i ⊩ “τk
w ≤T τ

k
w⌢i <T σk, τ

k
w⌢i ∈ T” and τk

w⌢0 is incomparable with
τk

w⌢1 in T , and pw⌢i ⊩ “τn+1
w⌢i <T σn+1∧ τ

n+1
w⌢i ∈ T”.

For each branch b through T let pb be stronger than all pb↾k and τn
b such that

pb ⊩ “τn
b↾k ≤T τ

n
b ≤T σn and τn

b is the limit of ⟨τn
b↾k⟩k∈ω”. Note that such τn

b exist
in T , since the height of T is κ2, and κ2 = ℵ2 in V[G(L2 ∗L3)][G(P∗0)]. Further note
that τn

b and τn
b′ are incomparable for all b , b′.

Let s′ := s̄ ∪ {(τn
b,Cn) | n ∈ ω, b ∈ K}, where K is the set of elements in 2ω

which have only boundedly many 1’s. This is a condition in S, because for each n
the set Cn contains all the colors which appear at or above σn, so they don’t appear
at nodes below σn and therefore not at nodes below τn

b.
Let q be such that V[G(L2 ∗ L3)][G(P∗0)] |= q ∈ S ∧ q ≤ s′. As a preparation

for the definition of the reduction map, we show that in V[G(L2 ∗ L3)][G(P∗0)]
there exists a p′ ∈ Q such that p′ ⊩ q ̸⊥ s. Let c ∈ 2ω be such that no node
in dom(q) extends a τn

c for any n. Note that c < K. Such a c exists, since 2ω

is uncountable and dom(q) is countable. Now pc ⊩ “τn
c ≤T σn” for all n, thus

pc ⊩ “τn
b ̸≤T σn” for all n and all b ∈ K. Let t ∈ dom(q) and τ ∈ dom(s) \ dom(s′).

Since τ ∈ dom(s) \dom(s′) there exists n ∈ ω with σn ≤T τ. By induction on n we
define a decreasing sequence ⟨pn

c | n ∈ ω⟩ such that pn+1
c ⊩ “(τ, s(τ)) is compatible

with (t, q(t))” (i.e., pn+1
c ⊩{(τ, s(τ))} ∪ {(t, q(t))} ∈ S) for all τ ∈ dom(s) \ dom(s′)

with σn ≤T τ.
Let p0

c := pc.
Let τ ∈ dom(s) \ dom(s′) with σn ≤T τ.
Case 1: pn

c ⊩ t <T τ
n
c . Since pc forces that τn

c is the limit of some τn
w’s, pn

c ≤ pc,
and for every w ∈ 2<ω there exists a b ∈ K which extends w, pn

c forces that there
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exists some b ∈ K with t <T τ
n
b. Therefore, since q is a condition and τn

b is in
its domain, pn

c ⊩ q(t) ∩ q(τn
b) = ∅, and since q(τn

b) = Cn ⊇ s(τ), it follows that
pn

c ⊩ “(τ, s(τ)) is compatible with (t, q(t))”. Let pn+1
c := pn

c .
Case 2: pn

c ⊮ t <T τ
n
c . On the other hand, τn

c ̸≤T t by the choice of c, thus there
exists pn+1

c ≤ pn
c with pn+1

c ⊩ “τn
c is incomparable with t”. Since pc ⊩ “τn

c ≤T σn”,
it follows that pn+1

c ⊩ “t ̸<T σn” and therefore pn+1
c ⊩ “(τ, s(τ)) is compatible with

(t, q(t))”.
Using the σ-closure of Q, there exists a lower bound p′c of ⟨pn

c | n ∈ ω⟩. Since
p′c forces for every t ∈ dom(q) and every τ ∈ dom(s) \ dom(s′) that (τ, s(τ))
is compatible with (t, q(t)), together with the fact that q ≤ s′, it follows that
p′c ⊩ “q is compatible with s”. Thus it holds in V[G(L2 ∗L3)][G(P∗0)] that for every
q ≤ s′ there exists a p′ ≤ p such that p′ ⊩ “q is compatible with s”. Since G(P∗0) is
a filter, we can choose a condition p̄ ∈ G(P∗0) below p̂ which forces this.

Define π∗(p, s) := ( p̄, s′).
If (p∗, s∗) ≤ π∗(p, s) then p∗ ≤ π(p) and therefore p∗ is compatible with p and

p∗ ≤ p̄ and p∗ ⊩ s∗ ≤ s′. Therefore p∗ forces that some p′ ∈ Q, with p′ ≤ p,
forces s∗ to be compatible with s. Since p∗ ⊩ p′ ∈ Q = j(P0)/G(P∗0), it follows
that there exists p′′ ≤ p, p∗ with p′′ ⊩ s ̸⊥ s∗. So (p∗, s∗) is compatible with
(p, s) and therefore π∗ is a reduction map such that the first component of π∗(p, s)
extends π(p).

To see that P∗0 ∗ S
∗ is a regular subforcing of j(P0) ∗ j(S) we also have to

show that if two conditions in P∗0 ∗ S
∗ are compatible in j(P0) ∗ j(S), then they are

compatible in P∗0 ∗ S
∗. To see this, we show that the set D of conditions (p, s) with

the following property is dense in j(P0) ∗ j(S): There exists s∗ such that

1. p⊩ s ≤ s∗,

2. p⊩ s∗ ∈ S∗,

3. if p⊩ s ≤ s̄ ∧ s̄ ∈ S∗ then p⊩ s∗ ≤ s̄.

If p decides s then (p, s) fulfills this property: Let s∗ be s restricted to the nodes
on levels below κ2. So p⊩ s ≤ s∗∧ s∗ ∈ S∗ and if p⊩ s ≤ s̄∧ s̄ ∈ S∗ then p⊩ s∗ ≤ s̄,
because in this case s̄ ⊆ s∗. So the set D is dense.

Suppose now that (p∗0, s
∗
0) and (p∗1, s

∗
1) are in P∗0 ∗ S

∗ and they are compatible
in j(P0) ∗ j(S). Let (p, s) be a witness for the compatibility in the dense set D
with witness s∗. So (p, s∗) is also below (p∗0, s

∗
0) and (p∗1, s

∗
1). Now (π(p), s∗) is in

P∗0 ∗ S
∗ and stronger than (p∗0, s

∗
0) and (p∗1, s

∗
1): Since p⊩ s∗ ∈ S∗ ∧ s∗ ≤ s∗0, s

∗
1 and

that depends only on P∗0, the same holds true for π(p).
Proof of (2): Since S∗ = SP∗(Ṫ ∗) and Ṫ ∗ is a name for a κ2-Aronszajn tree, we

know that |S∗| = κ2.
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Proof of (3): Let G(P) be generic for P and G(P∗) the corresponding generic
for P∗. Let j : V[G(P)] → M[G( j(P))] be the lifting of the supercompact embed-
ding for κ2. In V[G(P)] let A∗ be a maximal antichain in S. Since V[G(P)] =
V[G(P∗)] and S in V[G(P)] is the same as S∗ in V[G(P∗)], we get that in V[G(P∗)]
A∗ is a maximal antichain in S∗. On the other hand, also each maximal an-
tichain in S∗ is a maximal antichain in S. By elementarity M[G( j(P))] |= “ j(A∗)
is a maximal antichain in j(S)”. Since j is the identity on S it follows that
A∗ = j[A∗] ⊆ j(A∗). Let G( j(P)/G(P∗)) be generic for j(P)/G(P∗) and assume
M[G(P∗)][G( j(P)/G(P∗))] |= “s ∈ j(S)”. Since |S∗| = κ2 and ≤κ3 M ⊆ M it follows
that A∗ ∈ M[G(P∗)][G( j(P)/G(P∗))].

Claim. M[G(P∗)][G( j(P)/G(P∗))] |= “∃a ∈ A∗ which is compatible with s”.

Proof. Let p ∈ G( j(P)/G(P∗)) be such that (p, s) is a condition. We show that
the set of conditions which force that there exists a ∈ A∗ which is compatible
with s is dense below p. Let p′ ≤ p and let (p∗, s∗) be a reduction of (p′, s) to
P∗ ∗ S∗. Since A∗ is maximal in S∗ we know that p∗ forces over P∗ that there exists
a ∈ A∗ which is compatible with s∗ and we can pick a name ḃ for the witness in S∗.
Now (p∗, ḃ) ≤ (p∗, s∗). Since (p∗, s∗) is a reduction of (p′, s) we know that (p∗, ḃ)
is compatible with (p′, s). So there exists p̄ ≤ p∗, p′ with p̄⊩ “ḃ is compatible
with s”, and since ḃ is forced to be ≤ a by p∗, also p̄⊩ “a ∈ A∗ is compatible
with s”.

Now, since p ∈ G( j(P)/G(P∗)), there exists a q ∈ G( j(P)/G(P∗)) with q⊩ “∃a ∈
A∗ which is compatible with s ”. □

Therefore it follows that A∗ is a maximal antichain for j(S) in the model
M[G(P∗)][G( j(P)/G(P∗))]. Since j(A∗) is an antichain and A∗ ⊆ j(A∗) it follows
that A∗ = j(A∗). From the above it follows that every maximal antichain of S∗ is a
maximal antichain in j(S), hence S∗ is a regular subforcing of j(S). For the second
part of (3) note that A∗ ⊆ S and |S| = κ2, so we have that | j(A∗)| ≤ κ2 < j(κ2) and
by elementarity |A∗| < κ2.

Proof of (4): P∗ is forcing equivalent to P, and S∗ in V[P∗] is the same forcing
as S in V[P].

Proof of (5): By the assumption of the lemma there exists j : V[G(P)] →
M[G( j(P))], a lifting of the supercompact embedding j. Since P∗ is equivalent
to P we can replace V[G(P)] by V[G(P∗)] and get j : V[G(P∗)] → M[G( j(P))].
Let G( j(S)) be generic for j(S) over M[G( j(P))]. Since by (3) S∗ is a regu-
lar subforcing of j(S) and S∗ ⊆ j(S), G( j(S)) contains a generic filter G(S∗)
for S∗. Thus, by the Lifting Lemma (Lemma 3.9), j can be lifted to an em-
bedding j : V[G(P∗)][G(S∗)] → M[G( j(P))][G( j(S))]. By (4) P ∗ S is equivalent
to P∗ ∗ S∗, so we can replace V[G(P∗)][G(S∗)] by V[G(P)][G(S)] to get a lifting
j : V[G(P)][G(S)]→ M[G( j(P))][G( j(S))].
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Proof of (6): By assumption, in P0 and P∗0 the sets of decisive conditions are
dense and nicely σ-closed. By Lemma 4.6, S and S∗ are σ-closed with weakest
lower bounds and well-met, and weakest lower bounds of decided conditions are
decided. Further, by the definition of the forcings to specialize names, P0 ⊩ “q ⊆ V
and |q| < ω1 for all q ∈ S” and P∗0 ⊩ “q ⊆ V and |q| < ω1 for all q ∈ S∗”, and
whenever (p, q) ̸⊥ (p′, q′) are decisive conditions in P0 ∗ S, or in P∗0 ∗ S

∗, and
p∗ ≤ p, p′, then p∗ ⊩ q ̸⊥ q′. So by Lemma 3.23 in P0 ∗ S the set D of decisive
conditions, and in P∗0∗S

∗ the set D∗ of decisive conditions, are dense and nicely σ-
closed. By elementarity the same holds for j(P0 ∗ S). Further, note that the set D∗

of decisive conditions in P∗0 ∗ S
∗ is contained in the set D̄ of decisive conditions in

j(P0 ∗S). So by Lemma 3.6 D∗ is a regular subforcing of D̄. Since D̄ is equivalent
to j(P0 ∗ S) and D∗ is equivalent to P∗0 ∗ S

∗, the quotient j(P0 ∗ S)/G(P∗0 ∗ S
∗) is

equivalent to D̄/G(D∗), and by Lemma 3.16 D̄/G(D∗) is σ-closed. □

Now we are ready to prove the κ2-c.c. of Sκ3 . In particular, we will consider
the limit steps of the iteration. We prove the lemma for all iterations of length
< κ+3 since we will need it for iterations longer than κ3 in Lemma 4.14.

Lemma 4.13. Let L2 ∗ L
∗
3 be forcing equivalent to L2 ∗ L3. Let π : j(L2 ∗ L3) →

L2 ∗ L
∗
3 be a reduction map and j : V[G(L2 ∗ L3)]→ M[G( j(L2 ∗ L3))] a lifting of

the supercompact embedding for κ2, and in V[G(L2 ∗ L3)] let Sα be a countable
support iteration of length α < κ+3 of forcings to specialize names of κ2-Aronszajn
trees. Then there exists S∗α with the following properties:

(1) |S∗α| ≤ κ3,

(2) there exists a reduction map π∗α : j(Sα)→ S∗α,

(3) j(Sα)/S∗α is equivalent to a σ-closed forcing,

(4) L2 ∗ L
∗
3 ∗ S

∗
α is forcing equivalent to L2 ∗ L3 ∗ Sα,

(5) S∗α is a regular subforcing of j(Sα),

(6) j can be lifted to an elementary embedding

j : V[G(L2 ∗ L3 ∗ Sα)]→ M[G( j(L2 ∗ L3 ∗ Sα))],

(7) in V[G(L2 ∗ L3)] the forcing Sα has the κ2-c.c..

Proof. The proof is by induction on α < κ+3 .
For α = 0 there is nothing to show.
α = β+1: By induction and by Lemma 4.7 Sβ, the first β steps of the iteration,

fulfills the requirements of Lemma 4.12, so we can apply this lemma to L2 ∗ L3 ∗
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Sβ ∗ SL2∗L3∗Sβ(Ṫβ), from which it is easy to see that properties (1)–(7) hold true;
for (7), note that the two-step iteration of two forcings which have the ℵ2-c.c.
has again the ℵ2-c.c.. Let S∗(Ṫβ) be the regular subforcing of SL2∗L3∗Sβ(Ṫβ) and
π∗β+1 the reduction map given by the lemma. Note that by (1) of Lemma 4.12
π∗β+1 is coherent with π∗β in the sense that for (p, q̇) ∈ Sβ ∗ SL2∗L3∗Sβ(Ṫβ) we have
π∗β+1(p, q̇) ≤ π∗β(p). So, S∗α := S∗β∗S

∗(Ṫβ) is the required regular subforcing of j(Sα).
α limit: In V[L2 ∗ L

∗
3] let S∗α be the iteration S∗(Ṫ0) ∗ S∗(Ṫ1) ∗ S∗(Ṫ2) ∗ . . . of

length α with countable support, where the S∗(Ṫβ) are given by induction. We will
prove that the properties (1)–(7) hold true.

Proof of (1): Since |S∗(Ṫβ)| = κ2 for each β < α and α < κ+3 , we know that
|S∗α| ≤ κ3.

Proof of (2): Let p ∈ j(Sα) and let {βi | i < ω} be increasing indices cofinal in
the support of p. Let π∗βi

be the reduction map of the iteration of length βi given
by induction. Since these maps cohere, π∗β0

(p↾β0) ≥ π∗β1
(p↾β1) ≥ π∗β2

(p↾β2) ≥ . . .
and since S∗(Ṫ0) ∗ S∗(Ṫ1) ∗ S∗(Ṫ2) ∗ . . . is σ-closed (as it is a countable support
iteration of σ-closed forcings), there exists a lower bound of these reductions; let
π∗α(p) be such a lower bound. It is easy to check that π∗α is a reduction map which
is coherent with the earlier π∗β’s.

Proof of (3): By Lemma 4.7 the sets D and D∗ of decisive conditions in Sα
and in S∗α, respectively, are dense and nicely σ-closed. Therefore by elementarity
the set D̄ of decisive conditions in j(Sα) is dense and nicely σ-closed. Further, D∗

is contained in D̄. Therefore by Lemma 3.6 D∗ is a regular subforcing of D̄. So
D̄/G(D∗) is σ-closed by Lemma 3.16 and equivalent to j(Sα)/G(S∗α).

Proof of (4): Since the iterands of the two iterations are forcing equivalent and
the iterations are both countable support iterations, the two iterations are forcing
equivalent.

Proof of (5): Next we show that if two conditions in (L2 ∗ L
∗
3) ∗ S∗α are com-

patible in j((L2 ∗ L3) ∗ Sα), then they are compatible in (L2 ∗ L
∗
3) ∗ S∗α. To see this,

we show that the set D of conditions (p, s⃗) with the following property is dense in
j((L2 ∗ L3) ∗ Sα): There exists s⃗∗ such that

1. p⊩ s⃗ ≤ s⃗∗,

2. p⊩ s⃗∗ ∈ S∗α,

3. if p⊩ s⃗ ≤ ⃗̄s ∧ ⃗̄s ∈ S∗α then p⊩ s⃗∗ ≤ ⃗̄s.

If p decides s⃗, then (p, s⃗) fulfills this property: Let s⃗∗ be the tuple of coordinates
of s⃗ restricted to the nodes on levels below κ2. So p⊩ s⃗ ≤ s⃗∗ ∧ s⃗∗ ∈ S∗α and if
p⊩ s⃗ ≤ ⃗̄s ∧ ⃗̄s ∈ S∗α then p⊩ s⃗∗ ≤ ⃗̄s, because in this case every coordinate of ⃗̄s is
forced to be a subset of the corresponding coordinate of s⃗∗. So D is dense.
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Suppose now that (p∗0, s⃗
∗
0) and (p∗1, s⃗

∗
1) are in (L2 ∗L

∗
3)∗S∗α and they are compat-

ible in j(L2 ∗L3 ∗ Sα). Let (p, s⃗) be a witness for the compatibility in the dense set
with witness s⃗∗. So (p, s⃗∗) is also below (p∗0, s⃗

∗
0) and (p∗1, s⃗

∗
1). Now (π(p), s⃗∗) is in

(L2 ∗L
∗
3) ∗S∗α and stronger than (p∗0, s⃗

∗
0) and (p∗1, s⃗

∗
1): Since p⊩ s⃗∗ ∈ S∗α∧ s⃗∗ ≤ s⃗∗0, s⃗

∗
1

and that depends only on L2 ∗ L
∗
3, the same holds for π(p).

It follows that in M[G( j(L2 ∗ L3))] two conditions s⃗∗0 and s⃗∗1 in S∗α which are
compatible in j(Sα) are compatible in S∗α. Together with (2) it follows that S∗α is a
regular subforcing of j(Sα).

Proof of (6): By the same proof as the proof of (5) of Lemma 4.12 it follows
that j can be lifted: Let G( j(Sα)) be generic for j(Sα) over M[G( j(L2∗L3))]. Since
S∗α is a regular subforcing of j(Sα), G( j(Sα)) contains a generic filter G(S∗α) for S∗α.
Thus, by the Lifting Lemma (Lemma 3.9), j can be lifted to an embedding from
V[G(L2∗L

∗
3)][G(S∗α)] to M[G( j(L2∗L3))][G( j(Sα))]. Since L2∗L

∗
3∗S

∗
α is equivalent

to L2 ∗ L3 ∗ Sα we can replace V[G(L2 ∗ L
∗
3)][G(S∗α)] by V[G(L2 ∗ L3)][G(Sα)] to

get a lifting j : V[G(L2 ∗ L3)][G(Sα)]→ M[G( j(L2 ∗ L3))][G( j(Sα))].
Proof of (7): Now we show that L2 ∗ L3 ⊩ “Sα has the κ2-c.c.”. This follows

by the same argument as (3) of Lemma 4.12:
Let G(L2 ∗L

∗
3) be generic for L2 ∗L

∗
3 and G(L2 ∗L3) the corresponding generic

for L2 ∗ L3. Let j : V[G(L2 ∗ L3)] → M[G( j(L2 ∗ L3))] be a lifting of the super-
compact embedding for κ2. In V[G(L2 ∗ L3)] let A∗ be a maximal antichain in Sα.
Since V[G(L2 ∗ L

∗
3)] = V[G(L2 ∗ L3)] and Sα in V[G(L2 ∗ L3)] is the same as S∗α

in V[G(L2 ∗ L
∗
3)], we get that A∗ is also a maximal antichain in S∗α. On the other

hand, also each maximal antichain in S∗α is a maximal antichain in Sα. By elemen-
tarity j(A∗) is a maximal antichain in j(Sα) in M[G( j(L2 ∗ L3))]. Since j is the
identity on Sα it follows that A∗ = j[A∗] ⊆ j(A∗). Let G( j(L2 ∗ L3)/G(L2 ∗ L

∗
3))

be generic for j(L2 ∗ L3)/G(L2 ∗ L
∗
3) and assume that M[G(L2 ∗ L

∗
3)][G( j(L2 ∗

L3)/G(L2 ∗ L
∗
3))] |= s⃗ ∈ j(Sα). Since |S∗α| ≤ κ3 and ≤κ3 M ⊆ M it follows that

A∗ ∈ M[G(L2 ∗ L
∗
3)][G( j(L2 ∗ L3)/G(L2 ∗ L

∗
3))].

Claim. M[G(L2 ∗L
∗
3)][G( j(L2 ∗L3)/G(L2 ∗L

∗
3))] |= “∃a⃗ ∈ A∗ which is compatible

with s⃗”.

Proof. Since by (5) S∗α is a regular subforcing of j(Sα) there exists a reduction map
from j(Sα) to S∗α. So there exists s⃗′ such that M[G(L2 ∗ L

∗
3)][G( j(L2 ∗ L3)/G(L2 ∗

L∗3))] |= “s⃗′ ∈ S∗α is a reduction of s⃗ ”.
Let p ∈ G( j(L2 ∗L3)/G(L2 ∗L

∗
3)) with p⊩ s⃗ ∈ j(Sα). The following set is dense

in j(L2 ∗ L3)/G(L2 ∗ L
∗
3) below p:

{q ∈ j(L2 ∗ L3)/G(L2 ∗ L
∗
3) | q⊩ “∃a⃗ ∈ A∗ which is compatible with s⃗ ”}.

Indeed, let p′ ≤ p. So p′ ⊩ “s⃗ ∈ j(Sα) and there exists a reduction s⃗′ of s⃗ in S∗α”.
Therefore p′ ⊩ “∃a⃗ ∈ A∗ with a⃗ ̸⊥ s⃗′”. So there exists a name a⃗ and q ≤ p′ such
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that q⊩ “a⃗ ̸⊥ s⃗′ and a⃗ ∈ A∗”. Since q⊩ “s⃗′ is a reduction of s⃗ ”, it follows that
q⊩ “a⃗ is compatible with s⃗ ”, showing that the above set is dense. Now, since
p ∈ G( j(L2 ∗ L3)/G(L2 ∗ L

∗
3)), there exists a q ∈ G( j(L2 ∗ L3)/G(L2 ∗ L

∗
3)) with

q⊩ “∃a⃗ ∈ A∗ which is compatible with s⃗ ”. □

Thus it follows that A∗ is a maximal antichain for j(Sα). Since j(A∗) is an
antichain and A∗ ⊆ j(A∗) it follows that A∗ = j(A∗). Note that A∗ ⊆ Sα and
|Sα| ≤ κ3, so we have that | j(A∗)| ≤ κ3. Thus | j(A∗)| < j(κ2) and by elementarity
|A∗| < κ2. □

A variant of the next lemma has been proven in [GH20, Lemma 2.5].

Lemma 4.14. Let α < κ3. In V[L2 ∗ L3 ∗ Sα] the forcing Sκ3/G(Sα) × Sκ3/G(Sα)
has the κ2-c.c..

Proof. In V[L2 ∗ L3 ∗ Sα] let φ be a bookkeeping function such that φ(Pβ) is a
Pβ-name for an ℵ2-Aronszajn tree (if there exists one) for every forcing Pβ and
Q̇β = SPβ(φ(Pβ)) is a forcing to specialize this name for a tree, and assume φ is a
bookkeeping function which gives Sκ3/G(Sα) as an iteration. Let S′β := Sα+β/G(Sα)
for every β < κ3. Now define a different bookkeeping function φ̃ and let S̃β be
the forcing iteration of length β, given by the bookkeeping φ̃. For β < κ3 let
φ̃(S̃β) = φ(S′β). For β = κ3 + γ for some γ < κ3, let φ̃(S̃β) = φ(S′γ), i.e., we repeat
the same iteration which was done between α and κ3 between κ3 and κ3 + κ3.
S̃κ3+κ3 has the ℵ2-c.c. by Lemma 4.13, and since no new countable sets are

added by Sκ3/G(Sα) in V[L2 ∗ L3 ∗ Sα] it holds true that Sκ3/G(Sα) × Sκ3/G(Sα) =
Sκ3/G(Sα) ∗ Sκ3/G(Sα) = S̃κ3+κ3 . □

Lemma 4.15. For every L2 ∗ L3 ∗ Sℵ3-name Ṫ for an ℵ1-tree with level α being
{α} × ω for every α < ℵ1 there exists a regular subforcing L̄ ∗ S̄ of L2 ∗ L3 ∗ Sℵ3

with the following properties:

(1) L̄⊩ |S̄| < κ2,

(2) L̄⊩ “S̄ is ω-distributive”,

(3) L̄ is a regular subforcing of L2 × {1L3},

(4) L2 ∗L3 ⊩ “S̄ is a regular subforcing of Sℵ3 and Sℵ3/G(S̄) is equivalent to a σ-
closed forcing”,

(5) there exists an L̄ ∗ S̄-name Ṫ ′ such that L2 ∗ L3 ∗ Sℵ3 ⊩ Ṫ = Ṫ ′.
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Proof. Using Corollary 4.11 and Lemma 4.13 we get the following. There exists
a lifting of j to j : V[L2 ∗L3 ∗Sℵ3]→ M[ j(L2 ∗L3 ∗Sℵ3)] and a regular subforcing
L∗∗S∗ of j(L2∗L3∗Sℵ3) of size < j(κ2) such that S∗ is a regular subforcing of j(Sℵ3),
j(Sℵ3)/G(S∗) is equivalent to a σ-closed forcing in M[ j(L2 ∗ L3)], L∗ is a regular
subforcing of j(L2 ∗ L3), and L∗ ∗ S∗ is equivalent to L2 ∗ L3 ∗ Sℵ3 . In particular S∗

is a regular subforcing of an ω-distributive forcing, so it is ω-distributive.
Let Ṫ be an L2∗L3∗Sℵ3-name for an ℵ1-tree with level α being {α}×ω for every

α < ℵ1. Let T be the evaluation of Ṫ in V[L2 ∗L3 ∗Sℵ3]. Since the critical point of
j is κ2, T = j(T ) ∈ M[ j(L2∗L3∗Sℵ3)]. On the other hand, since L∗∗S∗ is equivalent
to L2∗L3∗Sℵ3 , there exists an L∗∗S∗-name Ṫ ∗ such that j(L2∗L3∗Sℵ3)⊩ j(Ṫ ) = Ṫ ∗.
Thus we have that

• there exist regular subforcings L∗,S∗ of j(L2 ∗ L3), j(Sℵ3) such that S∗ is ω-
distributive and |S∗| < j(κ2),

• there exists an L∗ ∗ S∗-name Ṫ ∗ such that j(L2 ∗ L3 ∗ Sℵ3)⊩ j(Ṫ ) = Ṫ ∗, and

• j(L2 ∗ L3)⊩ “ j(Sℵ3)/G(S∗) is equivalent to a σ-closed forcing”.

By elementarity of j the same holds for L2, L3 and Sℵ3:

• there exist regular subforcings L̄, S̄ of L2 ∗ L3,Sℵ3 such that S̄ is ω-distribu-
tive and |S̄| < κ2,

• there exists an L̄ ∗ S̄-name Ṫ ′ such that L2 ∗ L3 ∗ Sℵ3 ⊩ Ṫ = Ṫ ′, and

• L2 ∗ L3 ⊩ “Sℵ3/G(S̄) is equivalent to a σ-closed forcing”. □

4.3 The final model
Theorem 4.16. It follows from the consistency of a supercompact cardinal and
an inaccessible cardinal above that it is consistent that all ℵ2-Aronszajn trees are
special, there are such, and there is no ℵ1-Kurepa tree and no ℵ2-Kurepa tree.

Proof. Let κ2 < κ3 with κ2 supercompact and κ3 inaccessible. The model we use
for the consistency is the extension by Pℵ2

κ3 = L2 ∗ L3 ∗ Sκ3 . It has already been
argued in Section 4.1 that in V[L2 ∗ L3 ∗ Sκ3] all ℵ2-Aronszajn trees are special.

Next we show that there are no ℵ1-Kurepa trees: Let Ṫ be an L2∗L3∗Sℵ3-name
for an ℵ1-tree with level α equal to {α} × ω for every α < ℵ1. By Lemma 4.15
there exists a regular subforcing L̄ ∗ S̄ of L2 ∗ L3 ∗ Sℵ3 , and an L̄ ∗ S̄-name Ṫ ′ such
that L2 ∗ L3 ∗ Sℵ3 ⊩ Ṫ = Ṫ ′. Furthermore S̄ is ω-distributive, |S̄| < κ2 and L̄ is
a regular subforcing of L2 × {1L3}, S̄ is a regular subforcing of Sℵ3 and Sℵ3/G(S̄)
is equivalent to a σ-closed forcing. Note that as L̄ is a regular subforcing of
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L2×{1L3}, Ṫ ′ can also be regarded as an L2 ∗ S̄-name and L2 ∗L3 ∗Sℵ3 is equivalent
to L2 ∗ S̄ ∗ L3 ∗ Sℵ3/G(S̄).

By Proposition 2.10 there exists no ℵ1-Kurepa tree in V[L2∗S̄]. So V[L2∗S̄] |=
|[Ṫ ′]| < ℵ2. Since L3∗Sℵ3/G(S̄) is equivalent to a σ-closed forcing, by Lemma 2.8
it does not add cofinal branches to Ṫ ′ and thus “Ṫ ′ is not an ℵ1-Kurepa tree and
Ṫ = Ṫ ′” holds true in V[L2 ∗ S̄ ∗ L3 ∗ Sℵ3/G(S̄)].

Now we show that there are no ℵ2-Kurepa trees: We work in V[L2 ∗ L3]. Let
Ṫ be an Sℵ3-name for an ℵ2-tree. Since Sℵ3 has the ℵ3-c.c. (indeed the ℵ2-c.c. by
Lemma 4.13), we can assume that |Ṫ | = ℵ2, hence there exists α < ℵ3 such that
Ṫ is an Sα-name. So T ∈ V[L2 ∗ L3 ∗ Sα]. Note that Sα is a forcing iteration of
length < ℵ3 of forcings of size ≤ ℵ2, so |Sα| = ℵ2 and Sα has the ℵ2-c.c., hence
by Proposition 2.10 there exists no ℵ2-Kurepa tree in V[L2 ∗ L3 ∗ Sα]. Therefore
V[L2 ∗ L3 ∗ Sα] |= |[T ]| < ℵ3. By Lemma 4.14 (Sℵ3/G(Sα)) × (Sℵ3/G(Sα)) has the
ℵ2-c.c., so by Lemma 3.13 Sℵ3/G(Sα) does not add cofinal branches to T and thus
V[L2 ∗ L3 ∗ Sα ∗ Sℵ3/G(Sα)] |= “T is not an ℵ2-Kurepa tree”.

After forcing with L2 ∗ L3, CH holds, and since Sℵ3 is σ-closed, CH holds in
the final model, which implies the existence of a (special) ℵ2-Aronszajn tree (see
Proposition 2.13). □
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Chapter 5

Trees for all ℵn

Now let us continue with the proof of the main result. Some of the proofs in this
chapter are generalizations of proofs from the previous chapter.

From the existence of ω many supercompact cardinals, we prove that it is
consistent that for all 0 < n < ω, all ℵn-Aronszajn trees are special, there are
such, and there are no ℵn-Kurepa trees.

5.1 Definition of the forcing
Let ⟨κn | 1 < n < ω⟩ be an increasing sequence of Laver indestructible su-
percompact cardinals; for simplicity of notation let κ0 = ℵ0 and κ1 = ℵ1. Let
δ := (supn∈ω κn)++ and assume 2((supn∈ω κn)+) = δ.

For every 1 < n < ω let jn : V → M be a supercompact embedding for κn with
jn(κn) > δ and ≤δM ⊆ M. We will often write j instead of jn if it is clear from
context which n is meant.

We define a forcing iteration of length δ to specialize all ℵn-Aronszajn trees
as follows. We start with an iteration of Lévy collapses of all the supercompact
cardinals. Inductively define for every n ≥ 2 a forcing Ln: let

Ln := Col(κn−1, <κn)V[L2∗L̇3∗···∗L̇n−1].

We will use the following notation. Let Lω := L2 ∗ L̇3 ∗ L̇4 ∗ . . . with countable
support, let L̇>n := L̇n+1 ∗ L̇n+2 ∗ L̇n+3 ∗ . . . with countable support, and let L≤n :=
L2 ∗ L̇3 ∗ · · · ∗ L̇n and L<n := L2 ∗ L̇3 ∗ · · · ∗ L̇n−1.

To specialize the ℵ1-Aronszajn trees, we use the classical forcing from
[BMR70]:

Definition 5.1. Let T be an ℵ1-Aronszajn tree. Let S(T ) be the following forcing:
Conditions are functions f satisfying
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1. dom( f ) ⊆ T is finite,

2. range( f ) ⊆ ω,

3. if s, t ∈ dom( f ) and s <T t, then f (s) , f (t).

The order is given by g ≤ f if g ⊇ f .

Lemma 5.2. If T is an ℵ1-Aronszajn tree, then S(T ) has the c.c.c..

Proof. See [BMR70] (or [Jec03, Lemma 16.19]). □

Following [GH20] we combine the specializing forcings for all the ℵn as fol-
lows:

Definition 5.3 (Specializing names). Assume that P is a forcing with 1P ⊩ “Ṫ is
an ℵn-Aronszajn tree with Ṫξ = {ξ} × ℵn−1”. Let SP(Ṫ ) be the following forcing:
Conditions are partial functions f from Ṫ to [ℵn−1]<ℵn−1 such that |dom( f )| < ℵn−1

and, for s , t ∈ dom( f ), if f (s)∩ f (t) , ∅, then 1P ⊩ “s is incomparable to t in Ṫ”.
The order is given by g ≤ f if g ⊇ f .

Remark 5.4. Note that ̸⊥SP(Ṫ ) is definable in V , more precisely, for p ∈ P and
f , g ∈ V , p⊩ f̌ ̸⊥SP(Ṫ ) ǧ if and only if

• for all s ∈ dom( f ) ∩ dom(g), f (s) = g(s), and

• for all s ∈ dom( f ) \ dom(g) and t ∈ dom(g) \ dom( f ), if f (s)∩ g(t) , ∅ then
1P ⊩ “s is incomparable to t in Ṫ”.

Note that since 1P ⊩ “Ṫ is an ℵn-tree”, it follows that |SP(Ṫ )| ≤ ℵn · 2ℵn−2 .
Let us now define the iteration of length δ. We start the iteration with the

forcing Lω which collapses κn to ℵn for every n ≥ 2. Subsequently we use an
iteration which specializes an Aronszajn tree (or a name for an Aronszajn tree) in
each step. For ℵ1 we use the usual forcing to specialize ℵ1-Aronszajn trees (see
Definition 5.1), and for n > 1 we use forcings to specialize names (see Defini-
tion 5.3). This is necessary, because we will look at a reordering of the iteration,
where, for n > 1, ℵn-Aronszajn trees are considered for specialization before their
names have been evaluated. To make sure that in the end all Aronszajn trees have
been specialized, we consider each n cofinally often in the iteration.

• Let {An | 0 < n < ω} be a partition of δ such that every An is cofinal in δ.
Since 2((supn∈ω κn)+) = δ in V , 2ℵω+1 = δ in V[Lω], hence |H(δ)| = ℵω+2 in
V[Lω]. For each n ∈ ω enumerate H(δ) as ⟨xn

α | α ∈ An⟩ such that each
element of H(δ) is equal to xn

α for cofinally many α ∈ An.
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• For each 0 < n < ω let A≥n :=
⋃

n≤m<ω Am.

• For each α < δ and 0 < n < ω we will define Q̇α, Sα, S≥n
α and S<n

α (in V[Lω])
such that the following hold:

(1) For α ∈ An, Q̇α is an S≥n
α -name for a <ℵn−1-closed forcing,

(2) Sα is forcing equivalent to S≥n
α ∗ S

<n
α for each n < ω,

(3) S≥n
α is <ℵn−1-closed.

• We will define Q̇α for every α < δ. The forcing iteration Pδ is a mixed
support iteration starting with Lω (i.e., P0 = Lω) and then followed by the
Q̇α’s. The support of the iteration is as follows: X is an allowed support if
|An ∩ X| < κn−1 for each 0 < n < ω.

• Let n be such that 0 ∈ An. If xn
0 is an Lω-name for an ℵn-Aronszajn tree,

let Ṫ n
0 := xn

0. If n = 1, let T 1
0 be the evaluation of Ṫ n

0 in V[Lω] and let
Q̇0 := S(T 1

0 ). If n > 1, let Q̇0 := SLω(Ṫ
n
0 ). If xn

0 is not an Lω-name for an
ℵn-Aronszajn tree, let Q̇0 be a name for the trivial forcing.

• Next assume Q̇β has been defined for all β < α.

– Let Ṡ>n
α be an Lω-name for the iteration of all the Q̇β with β < α

and β ∈
⋃

k>n Ak (i.e., Q̇β is a forcing to specialize a name for an ℵk-
Aronszajn tree for some k > n) with mixed support such that X is a
possible support if |Ak ∩ X| < κk−1 for each n < k < ω.

– Analogously define Ṡ≥n
α .

– For each n > 1, let Ṡn
α be an Lω ∗ Ṡ>n

α -name for the iteration of all the
Q̇β with β < α and β ∈ An (i.e., Q̇β is a forcing to specialize a name for
an ℵn-Aronszajn tree) with <κn−1-support.

– Let Ṡ1
α be an Lω ∗ Ṡ>1

α -name for the iteration of all the Q̇β with β < α
and β ∈ A1 (i.e., Q̇β is a forcing to specialize an ℵ1-Aronszajn tree)
with finite support.

– Let Ṡ<n
α be an Lω ∗ Ṡ≥n

α -name for the iteration of all the Q̇β with β < α
and β ∈

⋃
k<n Ak (i.e., Q̇β is a forcing to specialize a name for an ℵk-

Aronszajn tree for some k < n) with mixed support such that X is a
possible support if |Ak ∩ X| < κk−1 for each k < n.

– Finally, let Ṡα := Ṡ≥1
α . Note that Pα = Lω ∗ Ṡα.

• Now we give the definition for Q̇α. Let n be such that α ∈ An. If xn
α is not an

Lω ∗ Ṡα-name for an ℵn-Aronszajn tree, let Q̇α be an Lω ∗ Ṡα-name for the
trivial forcing.
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– If n > 1 and xn
α is an Lω ∗ Ṡα-name for an ℵn-Aronszajn tree, let

Ṫ n
α := xn

α, take in V[Lω ∗ Ṡ≥n
α ] the forcing SLω∗Ṡα(Ṫ

n
α) to specialize the

name Ṫ n
α, i.e., partial functions in V[Lω∗Ṡ≥n

α ] to specialize the name Ṫ n
α,

and let Q̇α be an Lω ∗ Ṡ≥n
α -name for it.

– If n = 1 and x1
α is an Lω ∗ Ṡα-name for an ℵ1-Aronszajn tree, let T 1

α

be the ℵ1-Aronszajn tree in V[Lω ∗ Ṡα] given by x1
α and let Q̇α be an

Lω ∗ Ṡα-name for the forcing S(T 1
α) to specialize T 1

α.

• In V[Lω] continue this iteration for length δ = ℵω+2. Since each x ∈ H(δ)
is enumerated cofinally in each An and each ℵn-Aronszajn tree in V[Pδ] has
a Pδ-name in H(δ), if Ṫ is an ℵn-Aronszajn tree it gets specialized in some
step of the iteration.

Before we investigate how the forcings in the iteration specialize Aronszajn
trees, we show that the forcings to specialize names of trees are closed.

Lemma 5.5. Let P be a forcing with 1P ⊩ “Ṫ is an ℵn-Aronszajn tree”. Then
SP(Ṫ ) is <ℵn−1-closed with weakest lower bounds and well-met. In particular for
λ < ℵn−1 and a decreasing sequence ⟨qi | i < λ⟩, the union

⋃
i<λ qi is a weakest

lower bound of ⟨qi | i < λ⟩. Moreover, weakest lower bounds of decided conditions
in P ∗ SP(Ṫ ) are decided (see Lemma 3.22).

Proof. Let λ < ℵn−1 and let ⟨qi | i < λ⟩ be a decreasing sequence in SP(Ṫ ). Let
q∗ :=

⋃
i<λ qi. It is easy to see that q∗ ∈ SP(Ṫ ), q∗ ≤ qi for every i < λ and q∗ is a

weakest lower bound. Now let q ̸⊥ q′ in SP(Ṫ ). Then clearly q ∪ q′ is a weakest
lower bound of q and q′.

It remains to show that weakest lower bounds of decided conditions are de-
cided: Let p ∈ P and q, q′ ∈ V such that p⊩ q̌, q̌′ ∈ SP(Ṫ ) and (p, q̌) ̸⊥ (p, q̌′). So
there exists p∗ ≤ p such that p∗ ⊩ q̌ ̸⊥ q̌′. Let q∗ := q ∪ q′. It follows that q∗ ∈ V
and p∗ ⊩ “q̌∗ is the weakest lower bound of q̌ and q̌′”. So |q∗| < ℵn−1 and for s, t
with q∗(s) ∩ q∗(t) , ∅ we know that 1P ⊩ “s is incomparable to t in Ṫ”. Since this
does not depend on p∗ it follows that p⊩ “q̌∗ is the weakest lower bound of q̌ and
q̌′” and p decides q̌∗, since ̸⊥SP(Ṫ ) is definable in V .

Similarly, for p ∈ P and qi ∈ V for each i < λ such that p⊩ “⟨q̌i | i < λ⟩
is decreasing in SP(Ṫ )” let q∗ :=

⋃
i∈λ qi. Note that |q∗| < ℵn−1 since λ < ℵn−1.

For s, t ∈ dom(q∗) with q∗(s) ∩ q∗(t) , ∅ we know that there exists i < λ such
that s, t ∈ dom(qi), therefore 1P ⊩ “s is incomparable to t”. So q∗ ∈ SP(Ṫ ) and
p⊩ “q̌∗ is the weakest lower bound of ⟨q̌i | i < λ⟩” and p decides q̌∗, since ̸⊥SP(Ṫ )

is definable in V . □

Next, we show that the iterations S>k
α are not only <ℵk-closed, but even equiv-

alent to nicely <ℵk-closed forcings.
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Lemma 5.6. Let α ≤ δ be a limit ordinal and let P be a forcing with V[G(P)] |=
κn = ℵn for each n > k. Then in V[G(P)] the set of decisive conditions in S>k

α is
dense and nicely <ℵk-closed.

Proof. First we want to use Lemma 3.21. Note that by Lemma 5.5 for each iterand
weakest lower bounds of decided conditions are decided for sequences of length
< ℵk and for pairs of conditions, hence the last requirement of Lemma 3.21 holds.

Now we argue that also the other requirements of Lemma 3.21 hold. S>k
α is

an iteration where each iterand is <ℵk-closed, therefore also the iteration with the
given mixed support (which is a combination of <ℵn-supports for all n > k) is
<ℵk-closed, which shows the first requirement. The second requirement holds by
the definition of the forcing SP(Ṫ ). For the third requirement let R(q′, q) be defined
as explained in Remark 5.4, i.e., for p ∈ P and q, q′ ∈ V such that p⊩ q̌, q̌′ ∈
SP(Ṫ ), p⊩ q̌′ ̸⊥ q̌ if and only if R(q′, q) holds in V . So we can apply Lemma 3.21
and get that the set of decisive conditions is dense.

The proof of the nice <ℵk-closure is almost the same as the proof of Lem-
ma 3.22, the only difference lies in the limit step for α with sup({κn | n ∈ ω}) >
cf(α) > κk. We give the adapted proof for these limits here.

Assume by induction that the dense sets Dβ of decisive conditions in S>k
β are

closed for sequences of length λ with weakest lower bounds and well-met.
Let ⟨pi | i < λ⟩ be a decreasing sequence in Dα. Let ℓ be such that κℓ > cf(α) ≥

κℓ−1. Recall that S>k
α = S

≥ℓ
α ∗S

ℓ−1
α ∗S

ℓ−2
α ∗· · ·∗S

k+1
α . Let S<ℓ,>k

α := Sℓ−1
α ∗S

ℓ−2
α ∗· · ·∗S

k+1
α ,

so S>k
α = S

≥ℓ
α ∗S

<ℓ,>k
α and ⟨pi | i < λ⟩ = ⟨(p′i , q̇

′
i) | i < λ⟩ with (p′i , q̇

′
i) ∈ D≥ℓα ∗D<ℓ,>k

α ,
the iteration of the dense sets of decisive conditions in S≥ℓα and S<ℓ,>k

α . Considering
the supports, S≥ℓα is an inverse limit, and by the same proof as in the proof of
Lemma 3.22 for the case cf(α) < κ, we get a weakest lower bound p∗ of ⟨p′i |
i < λ⟩. So p∗ forces that ⟨q̇′i | i < λ⟩ is a decreasing sequence in D<ℓ,>k

α , which
is a bounded support limit. By the same proof as the case cf(α) ≥ κ in the proof
of Lemma 3.22, we get q̇∗ which is forced by p∗ to be a weakest lower bound of
⟨q̇′i | i < λ⟩. It is straightforward to check that (p∗, q̇∗) is a weakest lower bound of
⟨(p′i , q̇

′
i) | i < λ⟩.

The fact that Dα is well-met, follows by the same adaptation of the respective
part of the proof of Lemma 3.22. Therefore, by Lemma 3.19 we get the nice
<ℵk-closure. □

To complete the definition we have to prove that Sα is forcing equivalent to
S≥n
α ∗ S

<n
α for each α ≤ δ and each n < ω.

Lemma 5.7. Let α ≤ δ and n < ω. Then Sα is forcing equivalent to S≥n
α ∗ S

<n
α .

Proof. The proof is by induction on α. We show, for each α ≤ δ, that the following
set is dense in Sα:

D(Sα) := {p ∈ Sα | ∀n ∈ ω ∀β ∈ α ∩ An p(β) is an S≥n
β -name}.

47



Then it follows that for each n ∈ ω, Sα is forcing equivalent to S≥n
α ∗ S

<n
α , since

for conditions p ∈ D(Sα), p↾A≥n is a condition in S≥n
α , and S≥n

α does not change
S<n
α due to its closure. In particular, for each p ∈ Sα there exists p′ ≤ p such that

(p′↾A≥n, p′↾A<n) ∈ S≥n
α ∗ S

<n
α for each n.

α = 0: Sα is the trivial forcing, and there is nothing to show.
Successor step: If (p, q̇) ∈ Sα ∗ Q̇α and α ∈ An, then there exists p′ ≤ p such

that p′ ⊩ q̇ = q̇∗ for some S≥n
α -name q̇∗, because p⊩ q̇ ∈ V[Lω ∗ S≥n

α ]. Then by
induction p′ can be extended further to a p∗ ∈ D(Sα), and then (p∗, q̇∗) extends
(p, q̇) and (p∗, q̇∗) ∈ D(Sα+1).

Limit step: Let α be a limit ordinal and assume for all β < α that D(Sβ) is
dense in Sβ. We proceed with a case distinction.

1. cf(α) ≥ ℵω+1: The supports in Sα are all bounded, therefore it follows di-
rectly by induction that D(Sα) is dense.

2. cf(α) < ℵω+1, i.e., cf(α) = ℵm for some m ∈ ω:

By definition, supp(p)∩A<m+2 is bounded in α by some α′ < α. Let ⟨αi | i <
ℵm⟩ be increasing cofinal in α with α0 = α

′. By inductive hypothesis, we
can extend p to p′ = p′0 so that p′↾α0 ∈ D(Sα0) and p′↾[α0, α) = p↾[α0, α).
Then extend p′0 to p′1 so that p′1↾α1 ∈ D(Sα1). We may assume that p′1 agrees
with p′0 on A<m+2 as replacing p′1 on A<m+2 by p′0 on A<m+2 yields a condi-
tion whose restriction to α1 is in D(Sα1). Continue building a descending
sequence ⟨p′i | i < ℵm⟩ such that p′i↾αi ∈ D(Sαi) and p′i↾αi agrees with p′0
on A<m+2 for each i. Note that supp(p′i) ∩ A<m+2 = supp(p) ∩ A<m+2 for
each i. Since S≥m+2

α is <ℵm+1-closed with weakest lower bounds and all the
p′i’s agree on A<m+2, it is straightforward to check that taking the weakest
lower bound in each coordinate of the p′i’s gives a condition in D(Sα) which
extends p. □

Now we show that the generic filter of a forcing to specialize a name for an
Aronszajn tree yields a specializing function in our setting.

Lemma 5.8. Let Ṫ be a P-name for an ℵn-Aronszajn tree. For every (ξ, β) ∈
ℵn × ℵn−1 the set {g ∈ SP(Ṫ ) | (ξ, β) ∈ dom(g)} is dense in SP(Ṫ ).

Proof. Let f ∈ SP(Ṫ ), ξ ∈ ℵn and β ∈ ℵn−1. Since |dom( f )| < ℵn−1, and | f (s)| <
ℵn−1 for every s ∈ dom( f ), there exists i ∈ ℵn−1 \

⋃
rng( f ). If (ξ, β) < dom( f ), let

g := f ∪ {((ξ, β), {i})}. So g ∈ SP(Ṫ ), g ≤ f and (ξ, β) ∈ dom(g). □

Lemma 5.9. Let P ∗ Q̇ be a forcing with 1P∗Q̇ ⊩ “Ṫ is an ℵn-Aronszajn tree”. Then
1Q̇ ⊩ “Ṫ is special” over V[P ∗ SP∗Q̇(Ṫ )].
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Proof. In V[P] let G be a generic filter for SP∗Q̇(Ṫ ). Let F :=
⋃
{ f ∈ SP∗Q̇(Ṫ ) |

f ∈ G}. It follows from the above lemma that dom(F) = ℵn × ℵn−1. For distinct
s, t ∈ ℵn×ℵn−1 with F(s)∩F(t) , ∅ we have that 1P∗Q̇ ⊩ “s and t are incomparable
in Ṫ”, hence F(s) ∩ F(t) = ∅ if there exists a generic extension for P ∗ Q̇ in which
s <T t. In V[P ∗ SP∗Q̇(Ṫ )] let F′(s) := min(F(s)). So F′ : ℵn × ℵn−1 → ℵn−1 with
F′(s) , F′(t) if there exists a generic extension for Q̇ in which s <T t. It follows
that 1Q̇ ⊩ “F′ is a specializing function of Ṫ”. □

For the iteration, note that Lω ⊩ 2ℵn−2 ≤ ℵn−1 and S≥n
α is <ℵn−1-closed. There-

fore Lω ∗ S≥n
α ⊩ 2ℵn−2 ≤ ℵn−1.

Since Sn
δ is an iteration of length δ with <κn−1-support, it follows that in the

final model 2ℵn−1 = ℵω+2 = δ; in particular, ℵω is not a strong limit.
We will show that all ℵn are preserved by the forcing iteration after Lω and

can thus, using Lemma 5.9, conclude that in the extension by Pδ, all ℵn-Aronszajn
trees will be special for all n > 0.

5.2 Chain condition and regular subforcings
Lemma 5.10. Let α ≤ δ. In V[L<k] let jk : V[L<k] → M[ jk(L<k)] be a supercom-
pact embedding for κk such that jk(κk) > |L>k ∗ S

>k
α |.

There exists a regular subforcing P∗ of jk(Lk)/G(Lk) which is forcing equiva-
lent to L>k ∗ S

>k
α with |P∗| < jk(κk) such that jk(Lk)/P∗ is equivalent to jk(Lk) and

( jk(Lk)/G(Lk))/P∗ is <κk−1-closed.

Proof. In V[L<k] let G(Lk) be generic for Lk. By applying Theorem 3.10 we get
the following: V[L<k][G(Lk)] |= “L>k∗S

>k
α is <κk−1-closed and jk(κk) > |L>k∗S

>k
α |”,

thus there exists a regular embedding ι : L>k ∗ S
>k
α → Col(κk−1, < jk(κk)) such that

if G(L>k ∗ S
>k
α ) is a generic filter for L>k ∗ S

>k
α over V[L<k][G(Lk)], then the col-

lapse Col(κk−1, < jk(κk)) is equivalent to the quotient Col(κk−1, < jk(κk))/ι[G(L>k ∗

S>k
α )], which can easily seen to be equal to jk(Lk)/ι[G(L>k ∗ S

>k
α )]. It follows

that in V[L<k] there exists a regular embedding ι : L>k ∗ S
>k
α → jk(Lk)/G(Lk)

such that jk(Lk)/G(Lk) is equivalent to ( jk(Lk)/G(Lk))/ι[G(L>k ∗ S
>k
α )]. Again in

V[L<k][G(Lk)], note that jk(Lk)/G(Lk) = Col(κk−1, < jk(κk)) is nicely <κk−1-closed
by Lemma 3.15. So by Lemma 3.16 it follows that ( jk(Lk)/G(Lk))/ι[G(L>k ∗S

>k
α )]

is <κk−1-closed. P∗ := ι[L>k ∗ S
>k
α ] is the forcing we are looking for. □

Corollary 5.11. In V[L<k], there exists a reduction map π : jk(L≥k ∗ S
>k
δ )→ P∗.

Proof. Clearly there exists a reduction map π1 : jk(Lk)∗ jk(L>k∗S
>k
δ )→ jk(Lk). By

Lemma 5.10, jk(Lk) has P∗ as a regular subforcing in V[L<k], hence there exists a
reduction map π : jk(Lk) ∗ jk(L>k ∗ S

>k
δ )→ P∗. □
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Lemma 5.12. Let G(L≤k) be generic for L≤k and G(L>k ∗ S
>k
δ ) be generic for

L>k ∗ S
>k
δ . Then there exist generic filters G( jk(L≤k)) and G( jk(L>k ∗ S

>k
δ )) for

jk(L≤k) and jk(L>k ∗ S
>k
δ ) such that the supercompact embedding jk can be lifted

to jk : V[G(L≤k)][G(L>k ∗ S
>k
δ )]→ M[G( jk(L≤k))][G( jk(L>k ∗ S

>k
δ ))].

Proof. First note that since jk(L<k) = L<k the embedding can clearly be lifted
to jk : V[G(L<k)] → M[G( jk(L<k))]. Now let G(Lk) be generic for Lk over
V[G(L<k)], let G(L≤k) be such that V[G(L≤k)] = V[G(L<k)][G(Lk)], and let ι : L>k ∗

S>k
δ → jk(Lk)/G(Lk) be a regular embedding as in Lemma 5.10. We can choose

G( jk(Lk)) such that G( jk(Lk)) ∩ range(ι) = ι[G(L>k ∗ S
>k
δ )], thus ι[G(L>k ∗ S

>k
δ )] ∈

V[G(L<k)][G( jk(Lk))] and G(Lk) ⊆ G( jk(Lk)); that is possible because ι[L>k ∗ S
>k
δ ]

is a regular subforcing of jk(Lk). Since ι and jk↾Lk ∈ V[G(L<k)][G( jk(Lk))]
it follows that jk[G(Lk)] ∈ V[G(L<k)][G( jk(Lk))]. Since M is closed under
subsets of size ≤ δ the same holds for M[G( jk(L<k))][G( jk(Lk))] and there-
fore jk[G(Lk)] ∈ M[G( jk(L<k))][G( jk(Lk))]. So the embedding can be lifted to
jk : V[G(L≤k)]→ M[G( jk(L≤k))] and ι[G(L>k ∗ S

>k
δ )] ⊆ M[G( jk(L<k))][G( jk(Lk))].

Since ι, jk↾L>k ∗ S
>k
δ ∈ V[G(L<k)][G( jk(Lk))] it follows that jk[G(L>k ∗ S

>k
δ )] ∈

V[G(L<k)][G( jk(Lk))]. Since M is closed under subsets of size ≤ δ, i.e., ≤δM ⊆ M,
the same holds for M[G( jk(L<k))][G( jk(Lk))] and therefore jk[G(L>k ∗ S

>k
δ )] ∈

M[G( jk(L<k))][G( jk(Lk))].
jk[G(L>k∗S

>k
δ )] ⊆ jk[L>k∗S

>k
δ ] ⊆ jk(L>k∗S

>k
δ ), jk[G(L>k∗S

>k
δ )] is a directed set

of size < jk(κk) and jk(L>k ∗ S
>k
δ ) is < jk(κk)-directed closed, therefore there exists

a master condition p ∈ jk(L>k ∗ S
>k
δ ) for jk[G(L>k ∗ S

>k
δ )]. Let G( jk(L>k ∗ S

>k
δ )) be

generic for jk(L>k∗S
>k
δ ) with p ∈ G( jk(L>k∗S

>k
δ )). It follows that jk[G(L>k∗S

>k
δ )] ⊆

G( jk(L>k ∗ S
>k
δ )).

Now we can use the Lifting Lemma (Lemma 3.9) to lift jk to an embedding
jk : V[G(L≤k)][G(L>k ∗ S

>k
δ )]→ M[G( jk(L≤k))][G( jk(L>k ∗ S

>k
δ ))]. □

One of the main technical parts of the proof is to show that the forcing iteration
has a good chain condition. The main work lies in the following lemma, which
deals with the successor step of the iteration. Note that Lk ∗ L>k ∗ S

≥k+1
δ with

L = Lk ∗ L>k, P0 = S
≥k+1
δ and Lk ∗ P

∗ (with P∗ from Lemma 5.10) as a subforcing
of jk(Lk ∗ L>k ∗ S

≥k+1
δ ) fulfills the requirements of the following lemma.

Lemma 5.13. Assume P = L ∗ P0 is a forcing with V[G(P)] |= κk = ℵk ∧ 2ℵk−1 ≤ κk
and P∗ = L∗ ∗ P∗0 is forcing equivalent to P, and P∗ is a regular subforcing of
jk(P) and the sets of decisive conditions in P0 and in P∗0 are dense and nicely
<κk−1-closed, and P0 is forcing equivalent to P∗0. Further assume P∗0 is a regular
subforcing of jk(P0) with reduction map π : jk(P0) → P∗0. Let jk : V[G(P)] →
M[G( jk(P))] be a lifting of the supercompact embedding for κk. Further let Ṗ1 be
a P-name for a forcing with jk[Ṗ1] = Ṗ1 and S = SP∗Ṗ1

(Ṫ ) a specializing forcing
of a P ∗ Ṗ1-name for a κk-Aronszajn tree Ṫ . Then the following hold:
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(1) There exists a regular subforcing P∗0 ∗ S
∗ of jk(P0) ∗ jk(S) with a reduction

map π∗ : jk(P0) ∗ jk(S) → P∗0 ∗ S
∗ such that the first component of π∗(p, s)

extends π(p).

(2) |S∗| ≤ κk.

(3) jk(P)⊩ “S∗ is a regular subforcing of jk(S)” and P⊩ “S has the κk-c.c.”.

(4) P ∗ S is forcing equivalent to P∗ ∗ S∗.

(5) The supercompact embedding jk can be lifted to

jk : V[G(P ∗ S)]→ M[G( jk(P) ∗ jk(S))].

(6) P0 ∗ S has a dense subset which is nicely <κk−1-closed in V[L] and the
quotient jk(P0 ∗ S)/G(P∗0 ∗ S

∗) is equivalent to a <κk−1-closed forcing in
M[G( jk(L))][G(P∗0 ∗ S

∗)].

Proof. The proof is a generalization of the corresponding proof in Chapter 4.
Proof of (1): We work in M[G( j(L))]. Let (p, s) ∈ j(P0)∗ j(S). Let p′ ≤ p, π(p)

such that p′ decides s, that means in M[G( j(L))] there exists a partial function
f : ωk−1 × j(κk) → [ωk−1]≤ωk−2 of size <ωk−1 such that p′ ⊩ s = f . If p′′ ≤ π(p′),
then p′′ is compatible with p′ and therefore with π(p), thus π(p) and π(p′) are
compatible in j(P0). Since P∗0 is a regular subforcing of j(P0), π(p) and π(p′) are
compatible in P∗0. Let p̂ ∈ P∗0 with p̂ ≤ π(p), π(p′).

Continue working in V[G(L)] = V[G(L∗)]: choose a generic G(P∗0) contain-
ing p̂ and let G(P0) be the corresponding generic for P0, i.e., V[G(L)][G(P0)] =
V[G(L)][G(P∗0)]; that is possible because P0 and P∗0 are forcing equivalent. Note
that p ∈ j(P0)/G(P∗0) because p̂ ≤ π(p) and π(p) is a reduction of p. Let P1 :=
ṖG(P0)

1 . Since P1 ∈ V[G(L)][G(P0)], it follows that P1 ∈ V[G(L)][G(P∗0)]. Let Ṗ∗1
be a P∗-name for P1. Now let G(P0 ∗ Ṗ1) be generic for P0 ∗ Ṗ1 and G(P∗0 ∗ Ṗ

∗
1) the

corresponding generic for P∗0 ∗ Ṗ
∗
1.

Let T := ṪG(P0∗Ṗ1). Since T ∈ V[G(L)][G(P0 ∗ Ṗ1)], it follows that T ∈
V[G(L)][G(P∗0 ∗ Ṗ

∗
1)]. Let Ṫ ∗ be a P∗ ∗ Ṗ∗1-name for T and let S∗ := SP∗∗Ṗ∗1(Ṫ

∗),
the specializing forcing of Ṫ ∗. Since jk[Ṗ1] = Ṗ1, jk can be lifted further to
jk : V[G(P)][G(Ṗ1)]→ M[G( jk(P))][G(Ṗ1)].

We assume that the nodes on the αth level Tα of T are elements of ωk−1 × {α},
and all the levels are of size < κk, therefore T = j[T ] = j(T )↾κk.

We can assume that for each σ ∈ dom(s) ∩ j(T )>κk there exists a σ′ ∈ dom(s)
on level κk and p1 ∈ P1 such that (p′, p1)⊩σ′ ≤T σ.

Let s̄ := s↾T , {σα | α ∈ ωk−2} := dom(s)∩Tκk and Cα :=
⋃
{s(τ) | τ ≥T σα, τ ∈

dom(s)} the set of colors which s assigns to nodes which are in dom(s) and equal
to or above σα.
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In V[G(L)][G(P∗0 ∗ Ṗ
∗
1)] let Q := j(P0)/G(P∗0). By assumption in P0 the set of

decisive conditions is dense and nicely <κk−1-closed and in P∗0 the set of decisive
conditions is dense. By elementarity also in j(P0) the set of decisive conditions is
dense and nicely <κk−1-closed. Further, note that the set D∗ of decisive conditions
in P∗0 is contained in the set D̄ of decisive conditions in j(P0). So by Lemma 3.6
D∗ is a regular subforcing of D̄. Therefore by Lemma 3.16, by working in the
dense sets of decisive conditions, we can assume that Q is <κk−1-closed.

Define a tree T of height ωk−2 inductively. Each node t on level α will be
of the form (pw, (τ

β
w | β < α)) for some w ∈ 2α and pw ∈ Q with pw ≤ p, and

pw ⊩ “τβw <T σβ” for each β < α. The construction is as follows:

• The root of T is (p⟨⟩, ()) where p⟨⟩ ∈ Q with p⟨⟩ ≤ p.

• Assume t is a node of T on level α, so t is of the form (pw, (τ
β
w | β < α)) for

some w ∈ 2α and pw ∈ Q, and pw ⊩ “τβw <T σβ” for each β < α.

Since T is an Aronszajn tree in V[G(L)][G(P∗0)][G(Ṗ∗1)], every cofinal branch
through T in M[G( j(L))][G(P∗0)][G(Ṗ∗1)][G( j(P0)/G(P∗0))] is new. Therefore
there exist two conditions pw⌢0 ≤ pw and pw⌢1 ≤ pw which decide for every
β < α the nodes between τβw and σβ differently. We define two successors
for t in T :

(pw⌢0, (τ0
w⌢0, . . . , τ

α
w⌢0)) and (pw⌢1, (τ0

w⌢1, . . . , τ
α
w⌢1))

where pw⌢i and τβw⌢i for β < α and i ∈ {0, 1} are such that the following hold
true: pw⌢i ⊩ “τβw ≤T τ

β
w⌢i <T σβ, τ

β
w⌢i ∈ T” and τβw⌢0 is incomparable with

τ
β
w⌢1 in T , and pw⌢i ⊩ “ταw⌢i <T σα ∧ τ

α
w⌢i ∈ T”.

• For limit levels α of T , assume that pw and τβw have been defined for every
w ∈ 2<α and every β < |w|. For w ∈ 2α let pw be a lower bound of ⟨pw↾β | β <

α⟩, which exists because Q is <κk−1-closed. It follows that pw ⊩ “τβw↾γ <T

τ
β

w↾γ′ <T σβ” for all β < γ < γ′ < α. Therefore, for every β < α there exists
the limit τβw such that pw ⊩ “τβw↾γ <T τ

β
w <T σβ” for every β < γ < α. Define

the nodes on level α by (pw, (τ
β
w | β < α)) for each w ∈ 2α.

For each branch b through T let pb be stronger than all pb↾β and ταb such that
pb ⊩ “ταb↾β ≤T τ

α
b ≤T σα and ταb is the limit of ⟨ταb↾β⟩β∈ωk−2”. Note that such ταb exist

in T , since the height of T is κk, and κk = ℵk in V[G(L)][G(P∗0)][G(Ṗ∗1)]. Further
note that ταb and ταb′ are incomparable for all b , b′.

Let s′ := s̄ ∪ {(ταb ,Cα) | α ∈ ωk−2, b ∈ K}, where K is the set of elements
in 2ωk−2 which have only boundedly many 1’s. This is a condition in S, because
for each α the set Cα contains all the colors which appear at or above σα, so they
don’t appear at nodes below σα and therefore not at nodes below ταb .
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Let q be such that V[G(L)][G(P∗0)] |= q ∈ S ∧ q ≤ s′. As a preparation for
the definition of the reduction map, we show that in V[G(L)][G(P∗0)][G(Ṗ∗1)] there
exists a p′ ∈ Q such that p′ ⊩ q ̸⊥ s. Let c ∈ 2ωk−2 be such that no node in dom(q)
extends a ταc for any α. Note that c < K. Such a c exists, since 2ωk−2 is larger than
dom(q). Now pc ⊩ “ταc ≤T σα” for all α, thus pc ⊩ “ταb ̸≤T σα” for all α and all
b ∈ K. Let t ∈ dom(q) and τ ∈ dom(s) \ dom(s′). Since τ ∈ dom(s) \ dom(s′)
there exists α ∈ ωk−2 with σα ≤T τ. By induction on α we define a decreasing
sequence ⟨pαc | α ∈ ωk−2⟩ such that pα+1

c ⊩ “(τ, s(τ)) is compatible with (t, q(t))”
(i.e., pα+1

c ⊩{(τ, s(τ))} ∪ {(t, q(t))} ∈ S) for all τ ∈ dom(s) \ dom(s′) with σα ≤T τ.
Let p0

c := pc.
For successors α + 1 we use the following construction. Case 1: pαc ⊩ t <T

ταc . Since pc forces that ταc is the limit of some ταw’s, pαc ≤ pc, and for every
w ∈ 2<ωk−2 there exists a b ∈ K which extends w, pαc forces that there exists some
b ∈ K with t <T τ

α
b . Therefore, since q is a condition and ταb is in its domain,

pαc ⊩ q(t) ∩ q(ταb ) = ∅, and since q(ταb ) = Cα ⊇ s(τ), it follows that pαc ⊩ “(τ, s(τ)) is
compatible with (t, q(t))”. Let pα+1

c := pαc .
Case 2: pαc ⊮ t <T τ

α
c . On the other hand, ταc ̸≤T t by the choice of c, thus there

exists pα+1
c ≤ pαc with pα+1

c ⊩ “ταc is incomparable with t”. Since pc ⊩ “ταc ≤T σα”,
it follows that pα+1

c ⊩ “t ̸<T σα” and therefore pα+1
c ⊩ “(τ, s(τ)) is compatible with

(t, q(t))”.
For limit ordinals α we use the closure of Q to find a lower bound pαc of ⟨pβc |

β < α⟩.
Again using the closure of Q, there exists a lower bound p′c of ⟨pαc | α ∈ ωk−2⟩.

Since p′c forces for every t ∈ dom(q) and every τ ∈ dom(s)\dom(s′) that (τ, s(τ)) is
compatible with (t, q(t)), together with the fact that q ≤ s′, it follows that p′c ⊩ “q is
compatible with s”. Thus it holds in V[G(L)][G(P∗0)][G(Ṗ∗1)] that for every q ≤ s′

there exists a p′ ≤ p such that p′ ⊩ “q is compatible with s”. Since G(P∗0) and
G(Ṗ∗1) are filters, we can choose a condition p̄ ∈ G(P∗0) below p̂ and p1 ∈ G(Ṗ∗1)
such that (p̄, p1) forces this.

Define π∗(p, s) := (p̄, s′).
If (p∗, s∗) ≤ π∗(p, s) then p∗ ≤ π(p) and therefore p∗ is compatible with p and

p∗ ≤ p̄ and p∗ ⊩ s∗ ≤ s′. Therefore p∗ forces that some p′ ∈ Q, with p′ ≤ p, forces
s∗ to be compatible with s. Since (p∗, p1)⊩ p′ ∈ Q = j(P0)/G(P∗0), it follows
that there exists p′′ ≤ p, p∗ with p′′ ⊩ s ̸⊥ s∗. So (p∗, s∗) is compatible with
(p, s) and therefore π∗ is a reduction map such that the first component of π∗(p, s)
extends π(p).

To see that P∗0 ∗ S
∗ is a regular subforcing of j(P0) ∗ j(S) we also have to

show that if two conditions in P∗0 ∗ S
∗ are compatible in j(P0) ∗ j(S), then they are

compatible in P∗0 ∗ S
∗. To see this, we show that the set D of conditions (p, s) with

the following property is dense in j(P0) ∗ j(S): There exists s∗ such that
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1. p⊩ s ≤ s∗,

2. p⊩ s∗ ∈ S∗,

3. if p⊩ s ≤ s̄ ∧ s̄ ∈ S∗ then p⊩ s∗ ≤ s̄.

If p decides s then (p, s) fulfills this property: Let s∗ be s restricted to the nodes
on levels below κk. So p⊩ s ≤ s∗∧ s∗ ∈ S∗ and if p⊩ s ≤ s̄∧ s̄ ∈ S∗ then p⊩ s∗ ≤ s̄,
because in this case s̄ ⊆ s∗. So the set D is dense.

Suppose now that (p∗0, s
∗
0) and (p∗1, s

∗
1) are in P∗0 ∗ S

∗ and they are compatible
in j(P0) ∗ j(S). Let (p, s) be a witness for the compatibility in the dense set D
with witness s∗. So (p, s∗) is also below (p∗0, s

∗
0) and (p∗1, s

∗
1). Now (π(p), s∗) is in

P∗0 ∗ S
∗ and stronger than (p∗0, s

∗
0) and (p∗1, s

∗
1): Since p⊩ s∗ ∈ S∗ ∧ s∗ ≤ s∗0, s

∗
1 and

that depends only on P∗0, the same holds true for π(p).
Proof of (2): P⊩ |S∗| ≤ ℵk · 2ℵk−2 ∧ κk = ℵk ∧ 2ℵk−1 ≤ κk, hence P⊩ |S∗| ≤ κk.
Proof of (3): Let G(P) be generic for P and G(P∗) the corresponding generic

for P∗. Let j : V[G(P)] → M[G( j(P))] be the lifting of the supercompact embed-
ding for κk. In V[G(P)] let A∗ be a maximal antichain in S. Since V[G(P)] =
V[G(P∗)] and S in V[G(P)] is the same as S∗ in V[G(P∗)], we get that in V[G(P∗)]
A∗ is a maximal antichain in S∗. On the other hand, also each maximal an-
tichain in S∗ is a maximal antichain in S. By elementarity M[G( j(P))] |= “ j(A∗)
is a maximal antichain in j(S)”. Since j is the identity on S it follows that
A∗ = j[A∗] ⊆ j(A∗). Let G( j(P)/G(P∗)) be generic for j(P)/G(P∗) and assume
M[G(P∗)][G( j(P)/G(P∗))] |= “s ∈ j(S)”. Since |S∗| ≤ κk and ≤κk M ⊆ M it follows
that A∗ ∈ M[G(P∗)][G( j(P)/G(P∗))].

Claim. M[G(P∗)][G( j(P)/G(P∗))] |= “∃a ∈ A∗ which is compatible with s”.

Proof. Let p ∈ G( j(P)/G(P∗)) be such that (p, s) is a condition. We show that the
set of conditions which force that there exists a ∈ A∗ which is compatible with s
is dense below p. Let p′ ≤ p and let (p∗, s∗) be a reduction of (p′, s) to P∗ ∗ S∗.
Since A∗ is maximal in S∗ we know that p∗ forces over P∗ that there exists a ∈ A∗

which is compatible with s∗ and we can pick a name ḃ for the witness in S∗. Now
(p∗, ḃ) ≤ (p∗, s∗). Since (p∗, s∗) is a reduction of (p′, s) we know that (p∗, ḃ) is
compatible with (p′, s). So there exists p̄ ≤ p∗, p′ with p̄⊩ “ḃ is compatible with
s”, and since ḃ is forced to be ≤ a by p∗, also p̄⊩ “a ∈ A∗ is compatible with s”.

Now, since p ∈ G( j(P)/G(P∗)), there exists a q ∈ G( j(P)/G(P∗)) with q⊩ “∃a ∈
A∗ which is compatible with s ”. □

Therefore it follows that A∗ is a maximal antichain for j(S) in the model
M[G(P∗)][G( j(P)/G(P∗))]. Since j(A∗) is an antichain and A∗ ⊆ j(A∗) it follows
that A∗ = j(A∗). From the above it follows that every maximal antichain of S∗ is a
maximal antichain in j(S), hence S∗ is a regular subforcing of j(S). For the second
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part of (3) note that A∗ ⊆ S and |S| ≤ κk, so we have that | j(A∗)| ≤ κk < j(κk) and
by elementarity |A∗| < κk.

Proof of (4): P∗ is forcing equivalent to P, and S∗ in V[P∗] is the same forcing
as S in V[P].

Proof of (5): By the assumption of the lemma there exists j : V[G(P)] →
M[G( j(P))], a lifting of the supercompact embedding j. Since P∗ is equivalent
to P we can replace V[G(P)] by V[G(P∗)] and get j : V[G(P∗)] → M[G( j(P))].
Let G( j(S)) be generic for j(S) over M[G( j(P))]. Since by (3) S∗ is a regular
subforcing of j(S) and S∗ ⊆ j(S), G( j(S)) contains a generic filter G(S∗) for
S∗. Thus, by the Lifting Lemma (Lemma 3.9), j can be lifted to an embed-
ding j : V[G(P∗)][G(S∗)] → M[G( j(P))][G( j(S))]. By (4) P ∗ S is equivalent
to P∗ ∗ S∗, so we can replace V[G(P∗)][G(S∗)] by V[G(P)][G(S)] to get a lifting
j : V[G(P)][G(S)]→ M[G( j(P))][G( j(S))].

Proof of (6): By assumption, in P0 and P∗0 the sets of decisive conditions
are dense and nicely <κk−1-closed. By Lemma 5.5, S and S∗ are <κk−1-closed
with weakest lower bounds and well-met, and weakest lower bounds of decided
conditions are decided. Further, by the definition of the forcings to specialize
names, P0 ⊩ “q ⊆ V and |q| < κk−1 for all q ∈ S” and P∗0 ⊩ “q ⊆ V and |q| < κk−1 for
all q ∈ S∗”, and whenever (p, q) ̸⊥ (p′, q′) are decisive conditions in P0 ∗ S, or in
P∗0 ∗ S

∗, and p∗ ≤ p, p′, then p∗ ⊩ q ̸⊥ q′. So by Lemma 3.23 in P0 ∗ S the set D
of decisive conditions, and in P∗0 ∗ S

∗ the set D∗ of decisive conditions, are dense
and nicely <κk−1-closed. By elementarity the same holds for j(P0 ∗ S). Further,
note that the set D∗ of decisive conditions in P∗0 ∗ S

∗ is contained in the set D̄ of
decisive conditions in j(P0 ∗ S). So by Lemma 3.6 D∗ is a regular subforcing of
D̄. Since D̄ is equivalent to j(P0 ∗ S) and D∗ is equivalent to P∗0 ∗ S

∗, the quotient
j(P0 ∗ S)/G(P∗0 ∗ S

∗) is equivalent to D̄/G(D∗), and by Lemma 3.16 D̄/G(D∗) is
<κk−1-closed. □

Next we look at the forcing iteration, in particular the limit steps, and prove
some important properties of it.

Lemma 5.14. Let P be a forcing with V[G(P)] |= κk = ℵk. Let P∗ be a regular
subforcing of jk(P), forcing equivalent to P and π∗ : jk(P) → P∗ a reduction map.
Let jk(P)/G(P∗) be <κk−1-closed and jk : V[G(P)] → M[G( jk(P))] a lifting of the
supercompact embedding for κk. Let S be an iteration of limit length α ≤ δ of
forcings to specialize names for κk-Aronszajn trees with <κk−1-support. Then for
every β ≤ α in V[G(P)] there exists S∗β with the following properties:

(1) |S∗β| ≤ δ,

(2) there exists a reduction map π∗β : jk(S↾β) → S∗β such that π∗β(p↾β) ≤ π∗γ(p↾γ)
for every γ ≤ β,
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(3) the set of decisive conditions in jk(S↾β) is dense and nicely <κk−1-closed and
the set of decisive conditions in S∗β is dense, so, in particular, jk(S↾β)/S∗β is
equivalent to a <κk−1-closed forcing,

(4) P∗ ∗ S∗β is forcing equivalent to P ∗ S↾β,

(5) S∗β is a regular subforcing of jk(S↾β),

(6) the supercompact embedding jk can be lifted to an elementary embedding

jk : V[G(P)][G(S↾β)]→ M[G( jk(P))][G( jk(S↾β))],

(7) in V[G(P)] the forcing S↾β has the κk-c.c..

Proof. The proof is by induction on β ≤ α.
For β = 0 there is nothing to show.
β = γ + 1: By induction and by Lemma 5.6 S↾γ, the first γ steps of the

iteration, fulfills the requirements of Lemma 5.13 with Ṗ1 := S<k
γ′ for suitable

γ′, so we can apply this lemma to P ∗ S↾γ ∗ SP∗S↾γ∗Ṗ1
(Ṫγ), from which it easily

follows that properties (1)–(7) hold true; for (7), note that the two-step iteration
of two forcings which have the κk-c.c. has again the κk-c.c.. Let S∗(Ṫγ) be the
regular subforcing of SP∗S↾γ∗Ṗ1

(Ṫγ) and π∗γ+1 the reduction map given by the lemma.
Note that by (1) of Lemma 5.13 π∗γ+1 is coherent with π∗γ in the sense that for
(p, q̇) ∈ S↾γ ∗ SP∗S↾γ∗Ṗ1

(Ṫγ) we have π∗γ+1(p, q̇) ≤ π∗γ(p).
β limit: In V[P∗] let S∗β be the iteration S∗(Ṫ0) ∗S∗(Ṫ1) ∗S∗(Ṫ2) ∗ . . . of length β

with <κk−1-support, where the S∗(Ṫγ) are given by induction. We will prove that
the properties (1)–(7) hold true.

Proof of (1): Since |S∗(Ṫγ)| ≤ κk for each γ < β and β ≤ α ≤ δ, it follows that
|S∗β| ≤ δ.

Proof of (2): Let p ∈ j(S↾β) and let λ ≤ κk−2 and {γi | i < λ} be increasing
indices cofinal in the support of p. Let π∗γi

be the reduction map of the iteration of
length γi given by induction. Since these maps cohere, π∗γ0

(p↾γ0) ≥ π∗γ1
(p↾γ1) ≥

π∗γ2
(p↾γ2) ≥ . . . and since S∗(Ṫ0) ∗ S∗(Ṫ1) ∗ S∗(Ṫ2) ∗ . . . is <κk−1-closed (as it is

a <κk−1-support iteration of <κk−1-closed forcings), there exists a lower bound of
these reductions; let π∗β(p) be such a lower bound. It is easy to check that π∗β is a
reduction map which is coherent with the earlier π∗γ’s.

Proof of (3): By Lemma 5.6 the sets D and D∗ of decisive conditions in S↾β
and in S∗β, respectively, are dense and nicely <κk−1-closed. Therefore by elemen-
tarity the set D̄ of decisive conditions in jk(S↾β) is dense and nicely <κk−1-closed
(κk−1 is below the critical point of jk). Further, D∗ is contained in D̄. Therefore
by Lemma 3.6 D∗ is a regular subforcing of D̄. So D̄/G(D∗) is <κk−1-closed by
Lemma 3.16 and equivalent to jk(S↾β)/G(S∗β).
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Proof of (4): Since the iterands of the two iterations are forcing equivalent
and the iterations are both <κk−1-support iterations, the two iterations are forcing
equivalent.

Proof of (5): Next we show that if two conditions in P∗ ∗ S∗β are compatible in
j(P) ∗ j(S↾β), then they are compatible in P∗ ∗ S∗β. To see this, we show that the
set D of conditions (p, s⃗) with the following property is dense in j(P∗S↾β): There
exists s⃗∗ such that

1. p⊩ s⃗ ≤ s⃗∗,

2. p⊩ s⃗∗ ∈ S∗β,

3. if p⊩ s⃗ ≤ ⃗̄s ∧ ⃗̄s ∈ S∗β then p⊩ s⃗∗ ≤ ⃗̄s.

If p decides s⃗, then (p, s⃗) fulfills this property: Let s⃗∗ be the tuple of coordinates
of s⃗ restricted to the nodes on levels below κk. So p⊩ s⃗ ≤ s⃗∗ ∧ s⃗∗ ∈ S∗β and if
p⊩ s⃗ ≤ ⃗̄s ∧ ⃗̄s ∈ S∗β then p⊩ s⃗∗ ≤ ⃗̄s, because in this case every coordinate of ⃗̄s is
forced to be a subset of the corresponding coordinate of s⃗∗. So D is dense.

Suppose now that (p∗0, s⃗
∗
0) and (p∗1, s⃗

∗
1) are in P∗ ∗ S∗β and they are compatible

in j(P ∗ S↾β). Let (p, s⃗) be a witness for the compatibility in the dense set with
witness s⃗∗. So (p, s⃗∗) is also below (p∗0, s⃗

∗
0) and (p∗1, s⃗

∗
1). Now (π(p), s⃗∗) is in P∗ ∗S∗β

and stronger than (p∗0, s⃗
∗
0) and (p∗1, s⃗

∗
1): Since p⊩ s⃗∗ ∈ S∗β ∧ s⃗∗ ≤ s⃗∗0, s⃗

∗
1 and that

depends only on P∗, the same holds for π(p).
It follows that in M[G( j(P))] two conditions s⃗∗0 and s⃗∗1 in S∗β which are compat-

ible in j(S↾β) are compatible in S∗β. Together with (2) it follows that S∗β is a regular
subforcing of j(S↾β).

Proof of (6): By the same proof as the proof of (5) of Lemma 5.13 it follows
that j can be lifted: Let G( j(S↾β)) be generic for j(S↾β) over M[G( j(P))]. Since
S∗β is a regular subforcing of j(S↾β), G( j(S↾β)) contains a generic filter G(S∗β)
for S∗β. Thus, by the Lifting Lemma (Lemma 3.9), j can be lifted to an embed-
ding from V[G(P∗)][G(S∗β)] to M[G( j(P))][G( j(S↾β))]. Since P∗ ∗ S∗β is equivalent
to P ∗ S↾β we can replace V[G(P∗)][G(S∗β)] by V[G(P)][G(S↾β)] to get a lifting
j : V[G(P)][G(S↾β)]→ M[G( j(P))][G( j(S↾β))].

Proof of (7): Now we show that P⊩ “S↾β has the κk-c.c.”. This follows by the
same argument as (3) of Lemma 5.13:

Let G(P∗) be generic for P∗ and G(P) the corresponding generic for P. Let
j : V[G(P)] → M[G( j(P))] be a lifting of the supercompact embedding for κk. In
V[G(P)] let A∗ be a maximal antichain in S↾β. Since V[G(P∗)] = V[G(P)] and
S↾β in V[G(P)] is the same as S∗β in V[G(P∗)], we get that A∗ is also a max-
imal antichain in S∗β. On the other hand, also each maximal antichain in S∗β
is a maximal antichain in S↾β. By elementarity j(A∗) is a maximal antichain
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in j(S↾β) in M[G( j(P))]. Since j is the identity on S↾β it follows that A∗ =
j[A∗] ⊆ j(A∗). Let G( j(P)/G(P∗)) be generic for j(P)/G(P∗) and assume that
M[G(P∗)][G( j(P)/G(P∗))] |= s⃗ ∈ j(S↾β). Since |S∗β| ≤ δ and ≤δM ⊆ M it follows
that A∗ ∈ M[G(P∗)][G( j(P)/G(P∗))].

Claim. M[G(P∗)][G( j(P)/G(P∗))] |= “∃a⃗ ∈ A∗ which is compatible with s⃗”.

Proof. Since by (5) S∗β is a regular subforcing of j(S↾β) there exists a reduction
map from j(S↾β) to S∗β. So there exists s⃗′ such that M[G(P∗)][G( j(P)/G(P∗))] |=
“s⃗′ ∈ S∗β is a reduction of s⃗ ”.

Let p ∈ G( j(P)/G(P∗)) with p⊩ s⃗ ∈ j(S↾β). The following set is dense in
j(P)/G(P∗) below p:

{q ∈ j(P)/G(P∗) | q⊩ “∃a⃗ ∈ A∗ which is compatible with s⃗ ”}.

Indeed, let p′ ≤ p. So p′ ⊩ “s⃗ ∈ j(S↾β) and there exists a reduction s⃗′ of s⃗ in
S∗β”. Therefore p′ ⊩ “∃a⃗ ∈ A∗ with a⃗ ̸⊥ s⃗′”. So there exists a name a⃗ and q ≤ p′

such that q⊩ “a⃗ ∈ A∗ ∧ a⃗ ̸⊥ s⃗′”. Since q⊩ “s⃗′ is a reduction of s⃗ ”, it follows
that q⊩ “a⃗ is compatible with s⃗ ”, showing that the above set is dense. Now, since
p ∈ G( j(P)/G(P∗)), there exists a q ∈ G( j(P)/G(P∗)) with q⊩ “∃a⃗ ∈ A∗ which is
compatible with s⃗ ”. □

Thus it follows that A∗ is a maximal antichain for j(S↾β). Since j(A∗) is an
antichain and A∗ ⊆ j(A∗) it follows that A∗ = j(A∗). Note that A∗ ⊆ S↾β and
|S↾β| ≤ δ. Thus | j(A∗)| ≤ δ < j(κk) and by elementarity |A∗| < κk. □

Corollary 5.15. In V[Lω ∗ S>k
δ ] the forcing Sk

δ has the κk-c.c..

Proof. We work in V[L<k]. By Lemma 5.10, Corollary 5.11 and Lemma 5.12
L≥k ∗ S

>k
δ fulfills (as P) the requirements of Lemma 5.14, so it forces that Sk

δ has
the κk-c.c.. □

Corollary 5.16. In V[Lω] the forcing Sδ preserves every ℵk.

Proof. For every 0 < k < ω the forcing Sδ = S>k
δ ∗ S

≤k
δ . This is an iteration of a

forcing which is <κk-closed and a forcing which has the κk-c.c., therefore it does
not collapse ℵk = κk. □

Lemma 5.17. In V[L<k] the following holds. For every L≥k ∗ Sδ-name Ṫ for an
ℵk−1-tree with level α being {α} × ℵk−2 for every α < ℵk−1 there exists a regular
subforcing L̄ ∗ S̄≥k ∗ S̄<k of L≥k ∗ Sδ with the following properties:

(1) |L̄ ∗ S̄≥k ∗ S̄<k| < κk,

(2) L̄ ∗ S̄≥k is <κk−1-distributive,
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(3) L̄ is a regular subforcing of Lk and L≥k/L̄ is <κk−1-closed,

(4) L≥k ⊩ “S̄≥k is a regular subforcing of S≥k
δ , the set of decisive conditions in S≥k

δ

is dense and nicely <κk−1-closed, and S≥k
δ /S̄

≥k is equivalent to a <κk−1-closed
forcing”,

(5) there exists an L̄ ∗ S̄≥k ∗ S̄<k-name Ṫ ′ such that L≥k ∗ Sδ ⊩ Ṫ = Ṫ ′, and

(6) L≥k ∗ S
≥k
δ ⊩ S̄

<k = S<k
δ .

Proof. Using Lemma 5.10, Corollary 5.11 and Lemma 5.12 we know that L≥k∗S
>k
δ

fulfills (as P) the requirements for Lemma 5.14, so there exists a lifting of jk to
jk : V[L≥k ∗ S

≥k
δ ] → M[ jk(L≥k ∗ S

≥k
δ )]. The critical point of jk is κk and ≤δM ⊆ M,

and the forcing S<k
δ is a <κk-support iteration and each iterand is invariant under jk,

so it is easy to lift jk further to jk : V[L≥k ∗ S
≥k
δ ∗ S

<k
δ ]→ M[ jk(L≥k ∗ S

≥k
δ ∗ S

<k
δ )].

Let Ṫ be an L≥k ∗Sδ-name for an ℵk−1-tree with level α being {α}×ωk−2. Since
the critical point of jk is κk, jk(Ṫ ) is a jk(L≥k ∗ Sδ)-name for an ℵk−1-tree.

Let L∗≥k be the regular subforcing of jk(Lk) which is equivalent to L≥k with
|L∗≥k| < jk(κk), so L∗≥k is also regular in jk(L≥k). Further let S∗ be the regular
subforcing of jk(S≥k

δ ) as in Lemma 5.14. So there exists an L∗≥k ∗S
∗-name S̃<k such

that jk(L≥k ∗ S
≥k
δ )⊩ S̃<k = S<k

δ and L∗≥k ∗ S
∗ ⊩ |S̃<k| < jk(κk). So L∗≥k ∗ S

∗ ∗ S̃<k is
a regular subforcing of jk(L≥k ∗ S

≥k
δ ∗ S

<k
δ ) which is equivalent to L≥k ∗ S

≥k
δ ∗ S

<k
δ

with |L∗≥k ∗ S
∗ ∗ S̃<k| < jk(κk), so there exists an L∗≥k ∗ S

∗ ∗ S̃<k-name Ṫ ∗ such that
jk(L≥k ∗ S

≥k
δ ∗ S

<k
δ )⊩ jk(Ṫ ) = Ṫ ∗.

Thus we have that there exist regular subforcings L∗≥k, S∗, S̃<k of jk(L≥k), jk(S≥k
δ ),

jk(S<k
δ ) such that L∗≥k ∗ S

∗ is <κk−1-distributive, |L∗≥k ∗ S
∗ ∗ S̃<k| < jk(κk), and there

exists an L∗≥k ∗ S
∗ ∗ S̃<k-name Ṫ ∗ for jk(Ṫ ); moreover, L∗≥k is a regular subforcing

of jk(Lk), and jk(L≥k)/L∗≥k is <κk−1-closed, jk(L≥k)⊩ “ jk(S≥k
δ )/S∗ is equivalent to a

<κk−1-closed forcing” and jk(L≥k ∗ S
≥k
δ )⊩ S̃<k = jk(S<k

δ ).
By elementarity of jk the same holds for L≥k ∗ Sδ: There exist regular subforc-

ings L̄, S̄≥k, S̄<k of L≥k, S≥k
δ , S<k

δ such that L̄ ∗ S̄≥k is <κk−1-distributive, |L̄ ∗ S̄≥k ∗

S̄<k| < κk, L≥k/L̄ is <κk−1-closed, L≥k ⊩ “S≥k
δ /S̄

≥k is equivalent to a <κk−1-closed
forcing”, and there exists an L̄ ∗ S̄≥k ∗ S̄<k-name Ṫ ′ such that L≥k ∗ Sδ ⊩ Ṫ = Ṫ ′;
moreover, L̄ is a regular subforcing of Lk, and L≥k ∗ S

≥k
δ ⊩ S̄

<k = S<k
δ . □

5.3 The final model
Now we are ready to finish the proof of the main theorem.

Theorem 5.18. It follows from the consistency of ωmany supercompact cardinals
that it is consistent that for all 0 < k < ω, all ℵk-Aronszajn trees are special, there
are such, and there is no ℵk-Kurepa tree.
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To prove the theorem, we analyze the forcing extension by Lω ∗ Sδ. We show
that V[Lω ∗ Sδ] |= “For all 0 < k ∈ ω

there exists an ℵk-Aronszajn tree,

all ℵk-Aronszajn trees are special,

and there exists no ℵk-Kurepa tree.”

We have already shown right after the definition of the forcing that all ℵk-
Aronszajn trees are special in this model. The following two lemmata conclude
the proof. Recall that ⟨κk | 1 < k < ω⟩ is the increasing sequence of Laver
indestructible supercompact cardinals which we fixed above and κ1 = ℵ1.

Lemma 5.19. V[Lω ∗ Sδ] |= “there exists a special ℵk-Aronszajn tree” for every
0 < k ∈ ω.

Proof. In the extension by Lω GCH holds, hence by Proposition 2.13 there exists
a special ℵk-Aronszajn tree, for every 0 < k ∈ ω. Since the specializing forcing
Sδ does not collapse ℵk by Corollary 5.16, these special ℵk-Aronszajn trees are
preserved. □

Lemma 5.20. V[Lω ∗ Sδ] |= “there does not exist an ℵk−1-Kurepa tree” for every
1 < k ∈ ω.

Proof. Assume that V[Lω ∗ Sδ] |=“There exists an ℵk−1-Kurepa tree” and recall
that Lω ∗ Sδ = L<k ∗ L≥k ∗ S

≥k
δ ∗ S

<k
δ .

Now we work in V[L<k]. Let Ṫ be an L≥k ∗ S
≥k
δ ∗ S

<k
δ -name for an ℵk−1-tree

with level α equal to {α} ×ℵk−2. By Lemma 5.17, there exists a regular subforcing
L̄ ∗ S̄≥k ∗ S̄<k of L≥k ∗ S

≥k
δ ∗ S

<k
δ with the following properties:

1. |L̄ ∗ S̄≥k ∗ S̄<k| < κk,

2. L̄ ∗ S̄≥k is <κk−1-distributive,

3. L̄ is a regular subforcing of L≥k and L≥k/L̄ is <κk−1-closed,

4. L≥k ⊩ “S̄≥k is a regular subforcing of S≥k
δ , the set of decisive conditions in

S≥k
δ is dense and nicely <κk−1-closed, and S≥k

δ /S̄
≥k is equivalent to a <κk−1-

closed forcing”,

5. there exists an L̄ ∗ S̄≥k ∗ S̄<k-name Ṫ ′ such that L≥k ∗ Sδ ⊩ Ṫ = Ṫ ′, and

6. L≥k ∗ S
≥k
δ ⊩ S̄

<k = S<k
δ .
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Since |L<k ∗ L̄ ∗ S̄
≥k ∗ S̄<k| < κk, and κk is a Laver indestructible supercompact

cardinal, V[L<k ∗ L̄ ∗ S̄
≥k ∗ S̄<k] |= “κk is inaccessible”. So V[L<k ∗ L̄ ∗ S̄

≥k ∗ S̄<k] |=
|[T ′]| < κk.

To argue that the number of cofinal branches is still small in the final model,
first note that L<k ∗L≥k ∗S

≥k
δ ∗S

<k
δ = L<k ∗ L̄ ∗ S̄

≥k ∗ S̄<k ∗L≥k/L̄ ∗S
≥k
δ /S̄

≥k ∗S<k
δ /S̄

<k.
Since L≥k/L̄ is <κk−1-closed, by Lemma 2.8 it does not add cofinal branches

to T ′. Further, S≥k
δ /S̄

≥k is equivalent to a <κk−1-closed forcing and hence it does
not add cofinal branches to T ′ by Lemma 2.8.

Since L<k ∗ L≥k ∗ S
≥k
δ = L<k ∗ L̄ ∗ S̄

≥k ∗ S̄<k ∗ L≥k/L̄ ∗ S
≥k
δ /S̄

≥k ⊩S<k
δ = S̄

<k, the
last iterand S<k

δ /S̄
<k of the forcing iteration is equivalent to the trivial forcing and

can be ignored.
Therefore, Ṫ = Ṫ ′ in V[L<k ∗ L̄ ∗ S̄

≥k ∗ S̄<k ∗ L≥k/L̄ ∗ S
≥k
δ /S̄

≥k] = V[Lω ∗ Sδ] is
not an ℵk−1-Kurepa tree. □
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Chapter 6

Trees for all successors of regular
cardinals

In this chapter, we generalize our result and show that it follows from the exis-
tence of a proper class of supercompact cardinals that it is consistent that for all
successors of regular cardinals, all Aronszajn trees are special, and there exist
such, while there exist no Kurepa trees on these cardinals.

Lemma 6.1. Let α be a limit ordinal and ⟨κn | 1 < n < ω⟩ an increasing sequence
of Laver indestructible supercompact cardinals. Then there exists a forcing Rα

with the following properties:

(1) Rα is <ℵα+1-directed closed,

(2) |Rα| = (sup1<n<ω κn)++ =: δα,

(3) Rα ⊩ “ℵα+n = κn for every 1 < n < ω”,

(4) Rα ⊩ “2ℵα+n = ℵα+ω+2 = δ
α for every 0 < n < ω”,

(5) Rα ⊩ “all ℵα+n-Aronszajn trees are special and there exist some for every
1 < n < ω”,

(6) Rα ⊩ “there exists no ℵα+n-Kurepa tree for all 0 < n < ω”.

Proof. Let us define the forcing Rα. For every 0 < n < ω let Lαn+1 := Col(ℵα+n, <
κn+1) in V[Lα2 ∗ · · · ∗ L

α
n ] and let Lαω := Lα2 ∗ L

α
3 ∗ L

α
4 ∗ . . . be the countable support

iteration. Let Rα0 := Lαω. Let {An | 1 < n < ω} be a partition of δα such that every
An is cofinal in δα.

As in the case of specializing all ℵn-Aronszajn trees, using Rα0 as first step of
the iteration, continue the iteration for length δα such that all ℵα+n-Aronszajn trees
for n > 1 get specialized: In every step β take the forcing to specialize the name
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of an ℵα+n-Aronszajn tree given by a bookkeeping function (where the n depends
on the An to which β belongs).

Analogously to the case of specializing all ℵn-Aronszajn trees, the forcing Rα

fulfills items (1)–(6). □

Now we can combine all the forcings Rα in an Easton support iteration to
specialize all Aronszajn trees for all successors of regular cardinals:

Theorem 6.2. If there is a proper class of supercompact cardinals with no in-
accessible limit, then there is an extension in which for all successors of regular
cardinals, all Aronszajn trees are special, there exist such, and for all regular
uncountable cardinals there are no Kurepa trees.

Proof. Let R be the Easton support iteration of the Rα. The supercompact car-
dinals get collapsed by R to the ℵα+2+n, where α is 0 or a limit ordinal. The
successors of a limit of supercompact cardinals and ℵ1 are preserved.

The forcing Rα fulfills Lemma 6.1 in V[R<α], therefore, as in the case of spe-
cializing all ℵn-Aronszajn trees, R≤α ⊩ “all ℵα+n-Aronszajn trees are special for
all 1 < n < ω and there exist such and there exist no ℵα+n-Kurepa trees for
0 < n < ω”. Furthermore R>α is <ℵα+ω+1-closed so R>α does not add new subsets
of ℵα+ω, therefore it does not add new ℵα+n-trees and it does not add new cofi-
nal branches to such trees which already exist, therefore there are no ℵα+n-Kurepa
trees in the extension by R and all ℵα+n-Aronszajn trees are special and there exists
one. □
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Chapter 7

Questions

In this chapter we state some continuing questions on the topic of special Aron-
szajn trees and Kurepa trees.

Question 7.1. Can we specialize trees of height ℵn which do not have cofinal
branches but levels of size ≥ ℵn? Is it possible to specialize these trees and control
the existence of ℵn-Kurepa trees at the same time?

This question cannot be solved by the same technique as the one in our con-
struction, because we use that the levels are of size < ℵn and therefore do not get
changed under the supercompact embedding. New ideas are necessary to over-
come this issue.

We can also consider models in which Kurepa trees exist and be more precise
about the number of branches of Kurepa trees:

Question 7.2. Can we control the exact number of cofinal branches of the ℵn-
Kurepa trees in a model in which all ℵn-Aronszajn trees are special?

In our model from Theorem 6.2 all the limit cardinals are not strong limits and
there are no inaccessible cardinals. Actually 2ℵα+n = ℵα+ω+2 for each α, and the
only regular cardinals are ℵ0 and successor cardinals.

Question 7.3. Is it possible to specialize all ℵn-Aronszajn trees for all 0 < n < ω
while keeping ℵω a strong limit? Is it possible to specialize all κ+-Aronszajn trees
for all regular cardinals κ while keeping limit cardinals strong limit?

Question 7.4. Is it possible to specialize all κ+-Aronszajn trees for all regular
cardinals κ such that there are inaccessibles in the resulting model?
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Zusammenfassung
Meine Doktorarbeit behandelt spezielle Aronszajn-Bäume und Kurepa-Bäume.
Als erstes zeige ich, dass aus der Existenz einer superkompakten Kardinalzahl und
einer unerreichbaren Kardinalzahl darüber folgt, dass konsistenterweise alle ℵ2-
Aronszajn-Bäume speziell sind und es welche gibt, und keine ℵ1-Kurepa-Bäume
und keine ℵ2-Kurepa-Bäume existieren.

Danach zeige ich, unter der Annahme von ω vielen superkompakten Kardi-
nalzahlen, dass es konsistent ist, dass für alle 0 < n < ω alle ℵn-Aronszajn-Bäume
speziell sind und es welche gibt, und keine ℵn-Kurepa-Bäume existieren.

Schließlich erweitere ich dieses Resultat zu einer globalen Version über
alle Aronszajn-Bäume auf Nachfolgern von regulären Kardinalzahlen und allen
Kurepa-Bäumen auf regulären Kardinalzahlen; dazu verwende ich eine echte
Klasse von superkompakten Kardinalzahlen.
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