
Titel | Title

Between Textbooks and Joysticks 2.0: Fostering Agile Learning
in IT-Students with an AI-based Adventure Game

verfasst von | submitted by

Lukas Spreitzer

angestrebter akademischer Grad | in partial fulfilment of the requirements for the degree of

Master of Science (MSc)

2024Wien | Vienna,

MASTERARBEIT | MASTER'S THESIS

Studienkennzahl lt. Studienblatt | Degree
programme code as it appears on the
student record sheet:

UA 066 977

Studienrichtung lt. Studienblatt | Degree
programme as it appears on the student
record sheet:

Masterstudium Business Analytics

Betreut von | Supervisor: Ass.-Prof. Dott.ssa Dott.ssa.mag. Yllka Velaj PhD

Mitbetreut von | Co-Supervisor: Dr.techn. Dominik Dolezal BSc BEd MSc

 3

L i s t o f F i gu res

3

L i s t o f Tab l es

L i s t o f Ab b rev i a t i on s

https://www.sciencedirect.com/topics/engineering/project-plan

3

O9Farrell et al., 2021)

3

3 N

3

Product
Backlog

Refinement

Product
Backlog

Sprint
Backlog

Sprint
Retrospective

Daily
Scrum

SM

PO

Dev
Sprint
Review

Sprint
Planning

Product
Goal

Sprint
Goal

Scrum Team

Definition
of Done

Increment

SCRUM FRAMEWORK

t

÷

÷

÷

÷

O9Farrell et al.

3

&

creating with the video game9s

of the player9s real

transform, the player9s hopes, values, and fears

3

(Holbrey, 2020; O9Farrell et al., 2021;

(O9Farrell et al., 2021)

3

(Misfeldt, 2015; O9Farrell et al., 2021)

÷

3

÷

÷

÷

÷

÷

÷

÷

3

3

4 4

÷

÷

÷

3

3

3

³

³

»

students9 interests and, usually, the students recognize that the game9s

&

[&] or " &

[&]

[&]

t obvious [&] what action

[&]

[& and]

÷

÷

÷

÷

(Calderón et al., 2019; Jääskä et al., 2022; O9Farrell et

didn9t focus on complete beginners

training that doesn9t

Abdullah, A. A., & Saeed, H. M. (2020). Teachers9 and Learners9 Perceptions Towards

3

3

3

Andersen, E., O9Rourke, E., Liu, Y.

3

assessing: A revision of Bloom9s taxonomy of educational objectives

3

3

3

3

3

development team members in Scrum: Thai experts9 and practitioners9s perspectives.

3

3

3

Calderón, A., Ruiz, M., & O9Connor, R. V. (2017). ProDecAdmin: A Game Scenario Design

O9Connor, & R. Messnarz (Eds.),

3

Calderón, A., Ruiz, M., & O9Connor, R. V. (2019). Designing game scenarios for software

3

3

3

Planspiele: Simulationsspiele für Unterricht und Training);

4

3

3

3

3

3

3

3

3

Denham, A. R. (2019). Using the PCaRD digital game0based learning model of instruction

3

3

3

3

3

3

3

3

3

3

3

3

Hébert, C., Jenson, J., & Terzopoulos, T. (2021). <Access to technology is the major

challenge=: Teacher perspectives on barriers to DGBL in K

3

3

3

3

3

3

, K. (2022). Teachers9 experiences of using game

students9 motivation in project management education.

3

T., Nerdel, C., Pfeffer, J., Poquet, O., Sailer, M., Schmidt, A., Seidel, T., &

Kaye, L. K., & Bryce, J. (2012). Putting the <Fun Factor= Into Gaming: The Influence of

3

3

3

3

3

3

3

3

3

3

Based Learning on Students9

3 A Case of <Conveyance Go.=

3

3

3

3 3

3

3

3

Scrum9ed

3

3

3

4

3

3

CALC 909 3

O9Farrell, E., Yilmaz, M., Gulec, U., & Clarke, P. (2021). PlaySAFe: Results from a Virtual

3

3

3

3

3

3

PMI9s Pulse of the Profession

3

4

3

3

3

3

Students9 Global Software Development Projects: The Role of Agile Methodologies

3

3

Search Results for <Digital Game Based Learning.=

4

3

3

Spires, H. A. (2015). Digital Game0Based Learning: What9s Literacy Got to Do With It?

3

Based Learning: Effects of Middle Grade Students9 Hypothesis Testing Strategies on

3

3

3

4

3

3

3

3

Taber, K. S. (2018). The Use of Cronbach9s Alpha When Developing and Reporting

3

3

3

3

Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., & Scialom, T. (2023).

based Java Programming Serious Game <Rise of the

Java Emperor.= 3

Rapid improvement of students9 soft

Based Learning: It9s Not Just the Digital Natives Who

Are Restless&.

ICEC 903: Proceedings of the

3

Wernholm, M., & Vigmo, S. (2015). Capturing children9s knowledge

3

3

3

3

3

3

3

3

"use client";

// Imports General React/Convex

import { useAction, useQuery, useMutation } from "convex/react";

import { useRef, useEffect, useState } from "react";

import { useRouter } from 'next/navigation';

import { api } from "../../../convex/_generated/api";

import { Id } from "../../../convex/_generated/dataModel";

// Import Custom Components

import TutorialDisplay from "@/components/TutorialDisplay";

import ChatInteraction from "@/components/ChatInteraction";

import MissionHeaderDisplay from "@/components/MissionHeaderDisplay";

import TeamInteraction from "@/components/TeamInteraction";

import SkillsInteraction from "@/components/SkillsInteraction";

import PlayerDisplay from "@/components/PlayerDisplay";

import ChatDisplay from "@/components/ChatDisplay";

import VisualizationDisplay from "@/components/VisualizationDisplay";

import LogoDisplay from "@/components/LogoDisplay";

import ProgressDisplay from "@/components/ProgressDisplay";

import TimerDisplay from "@/components/TimerDisplay";

import EndPopUp from "@/components/EndPopUp";

import StartPopUp from "@/components/StartPopUp";

// Import Misc

import isEqual from 'lodash/isEqual';

// Import Constants

import { SKILL_EFFECT_TYPES, INITIAL_STORYPOINTS, PLAYTIME_MINUTES, INITIAL_DAYS } from

"@/app/constants";

// Import Type Definitions

import { Entry, ProgressData, MetaProbs, Visualization, Skill, TutorialData, TutorialEntry } from

"@/app/interfaces/interfaces";

// Import Data

import dataTeamMembers from '@/data/teamMembers.json';

import dataAgileSkills from '@/data/agileSkills.json';

import dataScrumGlossary from '@/data/scrumGlossary.json';

// Import Font

import { Exo } from 'next/font/google'

// Setup Font

const exo = Exo({ weight: "400", subsets: ['latin'] })

// Agile Astro Main Interface

export default function Adventure(props: { params: { scenarioId: Id<"scenarios"> } }) {

 // get scenarioId from next nav Router URL

 const scenarioId = props.params.scenarioId;

 // load scenario data via websocket

 const character = useQuery(api.scenario.getScenarioPublic, {

 scenarioId,

 }) ?? { characterClass: '', characterName: '', tutorialCompleted: false, startTime: 0, overTime: 0 }

 // Initialize Session Metadata when character is changing value

 const [metaProbs, setMetaProbs] = useState<MetaProbs>({} as MetaProbs);

 const [isMetaProbsReady, setIsMetaProbsReady] = useState(false); //loading state for site content

 useEffect(() => {

 if (character.characterClass) {

 const mainCharacter = dataTeamMembers.find(member => member.mainCharacterClass ===

character.characterClass);

 const npc = dataTeamMembers.filter(member => member.mainCharacterClass !==

character.characterClass);

 const mainCharacterSkills: Skill[] = dataAgileSkills.filter(skill => skill.characterClass ===

character.characterClass);

 const newMetaProbs: MetaProbs = {

 scenarioId: scenarioId,

 character: character,

 characterImageObject: mainCharacter,

 skills: mainCharacterSkills,

 teamMembers: npc

 };

 setMetaProbs(newMetaProbs);

 setIsMetaProbsReady(true); // Set to true once metaProbs is populated

 }

 }, [character]);

 // extracting session start time and over time from retrieved scenario data

 const overTime = character.overTime ?? 0

 const initialStartTime = new Date((character.startTime || 0));

 // load in history of entries from current scenario via websocket

 const [entries, setEntries] = useState<Entry[]>([]);

 const newEntries: Entry[] = useQuery(api.chat.getAllEntriesForScenarioPublic, {

 scenarioId,

 }) ?? [];

 useEffect(() => {

 if (newEntries.length !== entries.length) {

 setEntries(newEntries);

 }

 }, [newEntries]);

 // extracting data from last entry

 const lastEntry = entries[entries.length - 1] ?? { xp: 0, _id: "" };

 const lastXp = lastEntry.xp;

 const lastTeamMembersInteracted = lastEntry.teamMembersInteracted;

 // STATES FOR COMPONENTS

 const [interactedMembers, setInteractedMembers] = useState<boolean[]>([]); //as a condition to unlock skills

 const [entriesProcessing, setEntriesProcessing] = useState(false); //show loading skeleton when true

 const [xp, setXp] = useState(0);

 const [lvl, setLvl] = useState(1);

 const [tutorialData, setTutorialData] = useState<TutorialData>({});

 const [progressData, setProgressData] = useState<ProgressData>({ days: [], storypoints: [] });

 const [showPopup, setShowPopup] = useState(false);

 const [showStartPopup, setShowStartPopup] = useState(true);

 const [stopTimer, setStopTimer] = useState(false);

 const [disableInteractions, setDisableInteractions] = useState(false);

 const [shouldFetch, setShouldFetch] = useState(false);

 const [gameOver, setGameOver] = useState(false);

 const [timeIsUp, setTimeIsUp] = useState(false);

 const [forcedNextRollOne, setForcedNextRollOne] = useState(false);

 const [forcedNextRollSix, setForcedNextRollSix] = useState(false);

 // Calculate game duration and in-game day change intervals

 const playtimeDurationMs = (PLAYTIME_MINUTES + overTime) * 60 * 1000; // Convert minutes to

milliseconds from CONSTANT PLAYTIME_MINUTES

 const endTime = new Date(initialStartTime.getTime() + playtimeDurationMs); // add the playtime in ms to

stored start time of game session

 const remainingTimeMs = endTime.getTime() - new Date().getTime(); // get current time and compare with

endTime to calculate the remaining time

 const remainingTime = remainingTimeMs > 0 ? remainingTimeMs : 0; // cut of at 0 seconds to not go into -

seconds

 const segmentDurationMs = playtimeDurationMs / INITIAL_DAYS; // calculate duration of each in-game day

by using the CONSTANT INITIAL_DAYS

 const [segmentStartTime, setSegmentStartTime] = useState(initialStartTime.getTime()); // State to track the

start time of the current segment (in-game day)

 // load current progress data via websocket connection

 const currentProgressData = useQuery(api.progress.getCurrentProgressData, { scenarioId })

 useEffect(() => {

 setProgressData(currentProgressData ?? { days: [], storypoints: [] });

 }, [currentProgressData]);

 // initialize the current in-game day from last entry of progressData

 const [currentDay, setCurrentDay] = useState(() => {

 const lastDay = currentProgressData?.days?.[currentProgressData.days.length - 1];

 return lastDay ?? 0;

 });

 useEffect(() => {

 const lastDay = currentProgressData?.days?.[currentProgressData.days.length - 1];

 if (lastDay) {

 setCurrentDay(lastDay);

 }

 }, [currentProgressData]);

 // extract current storypoints from progressData

 const currentStorypoints = currentProgressData?.storypoints[currentProgressData?.storypoints.length - 1]

 // close start pop up once the tutorial has been completed and insert the first day

 useEffect(() => {

 setShowStartPopup(!character.tutorialCompleted);

 }, [character.tutorialCompleted]);

 const closeStartPopUp = () => {

 if (initialStartTime.getTime() === 0) {

 insertNewDay({ scenarioId: scenarioId, day: 1 });

 }

 if (character.tutorialCompleted === false) {

 handleCompletedTutorial({ scenarioId: scenarioId });

 }

 };

 // insert a new day after every segment

 const insertNewDay = useAction(api.progress.insertNewDay);

 useEffect(() => {

 if (!showStartPopup && currentDay <= INITIAL_DAYS) // let the game run if tutorial is completed and end of

INITIAL_DAYS is not exceeded

 {

 const interval = setInterval(() => {

 const currentTime = new Date().getTime();

 const segmentEndTime = initialStartTime.getTime() + (currentDay * segmentDurationMs);

 if (currentTime >= segmentEndTime) {

 setCurrentDay(prevDay => prevDay + 1);

 setSegmentStartTime(currentTime);

 if (currentDay + 1 <= INITIAL_DAYS) { // Ensure we do not insert a day beyond INITIAL_DAYS

 insertNewDay({ scenarioId: scenarioId, day: currentDay + 1 });

 }

 }

 }, 1000); // Check every second

 return () => clearInterval(interval); // Cleanup the interval on component unmount

 }

 }, [segmentStartTime, insertNewDay, initialStartTime]);

 // get Tutorial Data from Database via websocket

 const lastTutorialEntry = useQuery(api.tutorial.getTutorialFoLastEntry, {

 scenarioId: scenarioId

 }) ?? { keywordList: [] };

 // update tutorial data when the last tutorial entry changes

 const prevLastTutorialEntryRef = useRef<TutorialEntry | { keywordList: never[] } | undefined>(undefined);

 useEffect(() => {

 if (prevLastTutorialEntryRef.current !== lastTutorialEntry) // Check if lastTutorialEntry has changed

 {

 if (!isEqual(prevLastTutorialEntryRef.current, lastTutorialEntry)) {

 // Create a new tutorial data object with the terms as keys and the corresponding descriiption from the

dataScrumGlossary as values

 const lastKeywordList = lastTutorialEntry.keywordList;

 const newTutorialData: TutorialData = lastKeywordList.reduce((acc: any, term: string) => {

 if (!tutorialData[term] && (dataScrumGlossary as TutorialData)[term]) {

 acc[term] = (dataScrumGlossary as TutorialData)[term] as string; // Add type assertion here

 }

 return acc;

 }, {});

 setTutorialData(prevTutorialData => ({

 ...prevTutorialData,

 ...newTutorialData

 }));

 prevLastTutorialEntryRef.current = lastTutorialEntry;

 }

 }

 }, [lastTutorialEntry]); // Depend on lastTutorialEntry to trigger the effect

 // see if for xp, level updates and team interaction updates

 useEffect(() => {

 // checks if the last entry resulted in a xp gain if yes set xp and update also level

 if (lastXp !== 0) {

 setXp(lastXp);

 const newLevel = Math.floor(lastXp / 1000); // every 1000 xp results in one new level

 setLvl(newLevel + 1); //player starts with level 1

 }

 if (lastTeamMembersInteracted) {

 setInteractedMembers(lastTeamMembersInteracted); // Check if lastEntry.teamMembersInteracted

exists and if all values are true to activate last skill of PO

 }

 }, [lastXp, lastTeamMembersInteracted]); // Add lastEntry.teamMembersInteracted to the dependency array

 // api call assignment for player interaction possibilities

 const handlePlayerAction = useAction(api.chat.handlePlayerAction)

 const handlePlayerQuestion = useAction(api.chat.handlePlayerQuestion)

 const handlePlayerSkillUsage = useAction(api.chat.handlePlayerSkillUsage)

 const handleLeaderboardEntry = useAction(api.leaderboard.createEntry)

 //wrapping functions to setEntriesProcessing to true or false for loading skeleton

 const wrappedHandlePlayerAction = async (actionParams: any) => {

 setEntriesProcessing(true);

 await handlePlayerAction(actionParams);

 };

 const wrappedHandlePlayerQuestion = async (questionParams: any) => {

 setEntriesProcessing(true);

 await handlePlayerQuestion(questionParams);

 };

 const wrappedHandlePlayerSkillUsage = async (skillUsageParams: any) => {

 setEntriesProcessing(true);

 await handlePlayerSkillUsage(skillUsageParams);

 // No need to set it to false here, as it will be handled by the useEffect watching entries

 };

 // if there is no entry yet show loading skeleton and also used for showing entries again

 useEffect(() => {

 setEntriesProcessing(entries.length === 0); // Set entriesProcessing to true if there are no entries

 }, [entries]);

 //get last generated visualization via websocket connection

 const lastVisualization: Visualization | null = useQuery(api.visualize.getLastVisualizationScenarioPublic, {

scenarioId }) || null;

 // handle skill effects switches that influence dice roll

 const handleSkillEffect = async ({ skillUsed }: { skillUsed: Skill }) => {

 switch (skillUsed.effect.type) {

 case SKILL_EFFECT_TYPES.DICE_ROLL_ONE: // next dice roll will be a one an all subsequent rolls will

have a higher chance of not rolling 1

 setForcedNextRollOne(true);

 break;

 case SKILL_EFFECT_TYPES.DICE_ROLL_SIX: // next dice roll will be a six

 setForcedNextRollSix(true);

 break;

 }

 };

 // insert completed tutorial into scenario table to not show on every page reload

 const handleCompletedTutorial = useMutation(api.scenario.completedTutorial);

 // turn off interactions when first entry is not yet loaded at the start of the game

 useEffect(() => {

 setDisableInteractions(entries.length === 0);

 }, [entries.length]);

 //trigger game over once the storypoints = 0 or time is up and query to get the leaderboard data for end pop

up

 const leaderboardData = useQuery(api.leaderboard.getAllEntries, shouldFetch ? { scenarioId } : "skip") || [];

 useEffect(() => {

 if (timeIsUp === true || (currentStorypoints ?? INITIAL_STORYPOINTS) <= 0) {

 handleLeaderboardEntry({ scenarioId });

 setTimeout(() => {

 setShowPopup(true);

 setDisableInteractions(true);

 setShouldFetch(true);

 setStopTimer(true);

 if (currentStorypoints !== 0) {

 setGameOver(true);

 }

 }, 3000); // 5000 milliseconds = 5 seconds

 }

 }, [timeIsUp, currentStorypoints]);

 // handle restart of the game using next router

 const router = useRouter(); // Initialized useRouter for navigation

 const handleRestart = () => {

 router.push('/'); // Correctly navigate to the root of the application

 };

 // RENDERING PAGE CONTENT

 if (isMetaProbsReady) {

 return (

 <main className={`${exo.className} flex flex-row h-screen max-h-screen justify-between bg-black text-

gray-400 gap-5 p-7`} style={{ backgroundImage: `url("../../images/background.jpg")`, backgroundSize: 'cover' }}

>

 {/* Pop Up - Start of Adventure*/}

 {

 showStartPopup && (

 <StartPopUp

 closeStartPopUp={closeStartPopUp}

 />

)

 }

 {/* Left Column - Immersiveness Support */}

 <div className="flex flex-col w-1/4 justify-between">

 <LogoDisplay onRestart={handleRestart} />

 <VisualizationDisplay lastVisualization={lastVisualization} />

 <PlayerDisplay metaProbs={metaProbs} XP={xp} lvl={lvl} />

 <SkillsInteraction metaProbs={metaProbs} handlePlayerSkillUsage={wrappedHandlePlayerSkillUsage}

handlePlayerSkillEffect={handleSkillEffect} xp={xp} currentStorypoints={currentStorypoints ||

INITIAL_STORYPOINTS} lvl={lvl} disableInteractions={disableInteractions} day={currentDay}

teamMembersInteracted={interactedMembers} />

 <TeamInteraction metaProbs={metaProbs} handlePlayerQuestion={wrappedHandlePlayerQuestion}

disableInteractions={disableInteractions} xp={xp} day={currentDay} storypoints={currentStorypoints ||

INITIAL_STORYPOINTS} />

 </div>

 {/* Middle Column - Main Player Interaction*/}

 <div className="w-1/2 flex flex-col gap-2 justify-between">

 <MissionHeaderDisplay />

 <ChatDisplay entries={entries} metaProbs={metaProbs} entriesProcessing={entriesProcessing} />

 <ChatInteraction handlePlayerAction={wrappedHandlePlayerAction}

handlePlayerQuestion={wrappedHandlePlayerQuestion} metaProbs={metaProbs}

disableInteractions={disableInteractions} xp={xp} day={currentDay} storypoints={currentStorypoints ||

INITIAL_STORYPOINTS} forcedNextRollOne={forcedNextRollOne} forcedNextRollSix={forcedNextRollSix}

teamMembersInteracted={interactedMembers} teamMembers={metaProbs.teamMembers} />

 </div>

 {/* Right Column - Player Support*/}

 <div className="w-1/4 flex flex-col justify-between">

 <ProgressDisplay progressData={progressData} />

 <TutorialDisplay tutorialData={tutorialData} />

 <TimerDisplay timeAlert={() => setTimeIsUp(true)} startTimer={!showStartPopup}

stopTimer={stopTimer} msRemaining={remainingTime} initialStartTime={initialStartTime}

extraTime={overTime} />

 {/* Pop Up - End of Adventure*/}

 {showPopup && (

 <EndPopUp

 onRestart={handleRestart}

 leaderboardData={leaderboardData}

 gameOver={gameOver}

 metaProbs={metaProbs}

 />

)}

 </div>

 </main >

);

 } else {

 return (

 <div>Loading...</div> // Loading content indicator

);

 }

}

You are a dungeon master for a text-based educative adventure game. You will need to set up an adventure

in a sci-fi theme (SETTING). During the adventure, I am called ${args.characterName} and I picked the role of

a ${args.characterClass} within a Scrum team and should learn something about the agile project

management method of Scrum. Therefore, design the story so that it unfolds within a project. The project

included ${INITIAL_STORYPOINTS} and the deadline is in ${INITIAL_DAYS}. The sci-fi themed events shall be

mapped to Scrum ceremonies and events that are usual in a workplace. Describe the current scenario and

also a summary of the project at the beginning. Afterwards, I should at the end of each response be

confronted with a challenge, where I have to decide between 5 options each represented within {}.

Example:

If the player is a developer, a sample challenge could be:

During sprint planning, the team is estimating user stories. One complex story is taking a long time to

estimate. As a developer, what should you do?

1. {Insist on discussing the story in detail until a consensus is reached, even if it takes hours.}

2. {Suggest that the story be broken down into smaller, more easily estimated stories.}

3. {Refuse to estimate the story and demand that the Product Owner provide more details.}

4. {Propose a quick, rough estimate so the meeting can move on to other stories.}

5. {Quietly listen to the discussion without contributing your opinion.}

(Option 2 would be the most appropriate choice for a developer in this situation, demonstrating an

understanding of story sizing and decomposition.)

You are a dungeon master for a text-based educative sci-fi adventure game. The goal is to teach the player

the agile project management method of Scrum. Based on the last events in the story and the player's actions,

you should generate the next storyline within the adventure. Shape the story like it was a sprint within a

Scrum project but in a sci-fi setting.

Here you find the meta information and current progress of the adventure:

Player Name: ${args.characterName}

Player Class: ${args.characterClass}

Current Sprint Progress: day ${args.day} out of ${INITIAL_DAYS} days

Initial Storypoints: ${INITIAL_STORYPOINTS}

Remaining Storypoints: ${args.storypoints}

Input Information:

You will receive the outcome of the last dice roll and the decision of the player in the following format:

The player chose the Decision [decision] and rolled a [dice roll].

Processing Information:

Rate how fitting the decision was for the situation in terms of Scrum and weighed it with the dice roll (1 =

worst outcome, 6 = best outcome), so the better the decision and dice roll, the more story points are burned.

The allowed spectrum is between a minimum of 0 and a maximum of 10 burned story points.

Output Information:

Show how many story points were burned due to the decision of the player and the outcome of the dice roll

in the following format:

Story points burned: [story points]

Afterwards, tell the player what happens next in the story. At the end of each response, the player should be

confronted with a challenge where they must decide between 5 options represented within {} and in a

numbered list.

Example:

If the player is a developer, a sample challenge could be:

During sprint planning, the team is estimating user stories. One complex story is taking a long time to

estimate. As a developer, what should you do?

1. {Insist on discussing the story in detail until a consensus is reached, even if it takes hours.}

2. {Suggest that the story be broken down into smaller, more easily estimated stories.}

3. {Refuse to estimate the story and demand that the Product Owner provide more details.}

4. {Propose a quick, rough estimate so the meeting can move on to other stories.}

5. {Quietly listen to the discussion without contributing your opinion.}

(Option 2 would be the most appropriate choice for a developer in this situation, demonstrating an

understanding of story sizing and decomposition.)

You are a dungeon master in a text-based educative sci-fi adventure game. The goal is to teach the player the

agile project management method of Scrum. Based on the last events in the story and the skill that the player

used, describe what happens next in the story.

Here you find the meta information and current progress of the adventure:

Current Sprint Progress: day ${args.day} out of ${INITIAL_DAYS} days

Player Name: ${args.characterName}

Player Class: ${args.characterClass}

Skill Used: ${args.skillUsed.name}

Skill Description: ${args.skillUsed.description}

Skill Effect: ${args.skillUsed.effect}

Input Information:

The Player uses the skill: ${args.skillUsed.name}

Output Information:

Give an answer by embedding the usage of the skill in the story, and also enable the player to learn something

new from the agile skill usage.

Remember to only output the skill usage. Do not include challenges or lists. The maximum length of the

output must be 75 words.

You are ${args.askedTeamMember.name} and are a ${args.askedTeamMember.memberCharacterClass}

within the Scrum team. Based on the last entries of the adventure, tell the player, who is a

${args.characterClass}, about your current status in the project.

Here you find the meta information and current progress of the adventure:

Current Sprint Progress: day ${args.day} out of ${INITIAL_DAYS} days

Initial Storypoints: ${INITIAL_STORYPOINTS}

Storypoints burned: ${args.storypoints}

Scrum Team: ${args.teamMembers}

Input Information:

You will receive the question about your current progress of your tasks.

Output Information:

Answer like you were in an agile daily stand-up meeting.

Answer what you have been doing yesterday.

Answer what you are going to do today.

Answer if something is blocking you and if yes, what is it.

The maximum length of the output must be 150 words.

You are a helpful assistant in a text-based educative sci-fi adventure game. The goal is to teach the player the

agile project management method of Scrum. Based on the last events in the story and the player's question,

you should provide an answer. In your answer, you can enrich the story or teach the player about the agile

project management of Scrum, depending on the player's question.

Here you find the meta information and current progress of the adventure:

Current Sprint Progress: day ${args.day} out of ${INITIAL_DAYS} days

Initial Storypoints: ${INITIAL_STORYPOINTS}

Storypoints burned: ${args.storypoints}

Player Name: ${args.characterName}

Player Class: ${args.characterClass}

Scrum Team: ${args.teamMembers}

Input Information:

You will receive a question from the player.

Output Information:

Give an answer that is educative and/or enriches the fictive world with more detail.

Do not include a list of options or challenges. The maximum length of the output must be 150 words.

You are a writer working with an illustrator to create visuals for an interactive science fiction adventure game

that teaches agile project management. The game consists of a series of events that the player encounters.

For the event, you need to provide the illustrator with a brief one-sentence description of what the Scrum

team is currently doing. The illustrator will use your description to create the visual in a cell-shaded sci-fi style.

Here is the event description:

${context}

Remember, the illustrator will ONLY see your single sentence, with no other context, so make sure it is

detailed and self-contained enough to be illustrated on its own.

The Scrum team, including developers, QA engineers, and Julia Quasar, is gathered around a futuristic

holographic table with shimmering portals connecting them, collaboratively breaking down a complex story

into manageable tasks with focus and precision.

Draw this scene in a cell-shading scifi style: ${response}

Thank you for your interest in participating in this scientific study! This questionnaire evaluates the digital

game-based learning workshop and the video game solution 'Agile Astro'. It will take about 15 minutes to

complete.

In order for you to participate in this study, we need your consent:

[] Yes, I participate

[] No, I do not want to participate

Demographic Information

Please answer the following questions about yourself.

D1. Gender:

[] Male

[] Female

[] Non-binary

D2. Age:

[] 21 years or younger

[] 22-25 years

[] 26-30 years

[] 31 or older

D3. Course of Study:

[] Informatics

[] Business Informatics

[] Other

D4. Are you currently employed (full-time, part-time, or minor employment)?

[] Yes

[] No

D5. Work Experience:

[] No work experience

[] Less than 1 year

[] 1-2 years

[] 3-4 years

[] 5 or more years

D6. How would you rate your prior knowledge of agile methods (e.g., Kanban, SCRUM) before the project

management course?

[] Little or no prior knowledge

[] Basic understanding

[] Moderate understanding

[] Advanced knowledge

[] Expert

D7. How often do you play digital games?

[] Never

[] Rarely: from time to time

[] Monthly: at least once a month

[] Weekly: at least once a week

[] Daily: every day

D8. How often do you play non-digital games (card or board games, etc.)?

[] Never

[] Rarely: from time to time

[] Monthly: at least once a month

[] Weekly: at least once a week

[] Daily: every day

D9. Are you generally open to using video games to learn course content?

[] Strongly disagree

[] Disagree

[] Neither disagree nor agree

[] Agree

[] Strongly agree

Usability

Please select an option according to how much you agree or disagree with each statement below.

Strongly Disagree

(-2)

Disagree

(-1)

Neither disagree

nor agree (0)

Agree

(1)

Strongly Agree

(2)

Item ID Item (-2) (-1) (0) (1) (2)

U1
The game design is attractive (interface, graphics,

boards, cards, etc.).

U2
The text font and colors are well blended and

consistent.

U3
I needed to learn a few things before I could play the

game.

U4 Learning to play this game was easy for me.

U5
I think that most people would learn to play this

game very quickly.

U6 I think that the game is easy to play.

U7 The game rules are clear and easy to understand.

U8
The fonts (size and style) used in the game are easy

to read.

U9 The colors used in the game are meaningful.

U10
The game allows customizing the appearance (font

and/or color) according to my preferences.

U11 The game prevents me from making mistakes.

U12
When I make a mistake it is easy to recover from it

quickly.

Player Experience

Please select an option according to how much you agree or disagree with each statement below.

Item ID Item (-2) (-1) (0) (1) (2)

PE1
There was something interesting at the beginning of

the game that captured my attention.

PE2
I was so involved in my gaming task that I lost track

of time.

PE3
I forgot about my immediate surroundings while

playing this game.

PE4 I had fun with the game.

PE5
Something happened during the game (game

elements, competition, etc.) which made me smile.

PE6 This game is appropriately challenging for me.

PE7

The game provides new challenges (offers new

obstacles, situations or variations) at an appropriate

pace.

PE8
The game does not become monotonous as it

progresses (repetitive or boring tasks).

PE9
I was able to interact with other players during the

game.

PE10
The game promotes cooperation and/or

competition among the players.

PE11
I felt good interacting with other players during the

game.

PE12
When I first looked at the game, I had the

impression that it would be easy for me.

PE13
The contents and structure helped me to become

confident that I would learn with this game.

PE14 The game contents are relevant to my interests.

PE15
It is clear to me how the contents of the game are

related to the course.

PE16
This game is an adequate teaching method for this

course.

PE17
I prefer learning with this game to learning through

other ways (e.g., other teaching methods).

PE18
Completing the game tasks gave me a satisfying

feeling of accomplishment.

PE19
It is due to my personal effort that I managed to

advance in the game.

PE20
I feel satisfied with the things that I learned from the

game.

PE21 I would recommend this game to my colleagues.

Perceived Learning

Please select an option according to how much you agree or disagree with each statement below.

Item ID Item (-2) (-1) (0) (1) (2)

PL1 The game contributed to my learning in this course.

PL2 The game allowed for efficient learning compared

with other activities in the course.

PL3 The game contributed to understand the main

concepts of the Scrum framework (Sprint Structure,

Team Roles, Meetings and Deliverables).

PL4 The game contributed to recognise the importance

of software engineering practices involved in Scrum

(Test-driven Development, Refactoring, Continuous

Integration and Pair Programming).

PL5 The game contributed to apply computer science

knowledge (e.g., Requirements Engineering, Clean

Code Approach, Familiarity with Design Patterns or

Computative Thinking).

PL6 The game contributed to practice self-organization

skills required in a Scrum team (Time Management,

Troubleshooting, Teamwork, Decision Making and

Analytical Thinking).

PL7 The game contributed to practice interpersonal

skills required in a Scrum Team (Communication,

Customer Relationship, Emotional Intelligence,

Motivation, Commitment and Knowledge

Facilitation)

PL8 The game contributed to recognise the importance

of the agile values (Openness, Transparency and

Craftsmanship).

Written Feedback

Please help us to improve the video game and agile project management education.

F1 Please list three strong aspects of the game:

F2 Please give three suggestions to improve the game:

F3 Any further comment?

	German Abstract
	English Abstract
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	2 Definitions
	2.1 Evolving Didactics: Rise of DGBL in Education
	2.2 Project Management – Into the New Agile World
	2.2.1 Scrum – Game-Changer in Software Development
	2.2.2 Effectiveness of Agile Methods in Practice
	2.2.3 Challenges in Implementing Agile Methodology

	3 Literature Review
	3.1 Agile Management Skills
	3.1.1 Engineering Practices
	3.1.2 Management Practices
	3.1.3 Agile Values

	3.2 Video Game Elements for Fostering Agile Skills
	3.2.1 Interaction, Immersiveness and Identification – Catching Attention
	3.2.1.1 Interaction
	3.2.1.2 Immersion
	3.2.1.3 Identification

	3.2.2 In-Game Support, Simulation and Challenge – Serving Learning Content
	3.2.2.1 In-Game Support
	3.2.2.2 Simulation
	3.2.2.3 Challenge

	3.2.3 Competition, Cooperation and Community – Staying Engaged
	3.2.3.1 Competition
	3.2.3.2 Cooperation
	3.2.3.3 Community

	3.2.4 Further Considerations When Selecting Video Game Elements

	4 Methods
	4.1 Design-Based Research Approach for Developing a DGBL Solution
	4.1.1 DGBL Context – Project Management Course
	4.1.2 Requirement Specification
	4.1.3 Video Game Selection Process
	4.1.4 Experimental Game – Agile Astro
	4.1.5 Development Process
	4.1.6 Large Language Model – the Heart of Agile Astro

	4.2 Classroom Evaluation of the DGBL Solution
	4.2.1 Participants
	4.2.2 Intervention Procedure - Agile Workshop
	4.2.3 MEEGA+ Model
	4.2.4 Data Collection
	4.2.5 Data Analysis

	5 Results
	5.1 User Interface of Agile Astro
	5.1.1 Character Selection Page
	5.1.2 Tutorial
	5.1.3 Main Interface – Left Column
	5.1.4 Main Interface – Middle Column
	5.1.5 Main Interface – Right Column
	5.1.6 End of Game Pop-Up & Leaderboard
	5.1.7 Backend Dashboard & Open Source Codebase

	5.2 Students' Perceptions Regarding Agile Astro
	5.2.1 Agile Astro's Player Experience
	5.2.2 Perceived Learning with Agile Astro
	5.2.3 In-Game Data

	6 Discussion
	6.1 Key Findings and Interpretations
	6.1.1 RQ1: How to design a DGBL solution that fosters agile competencies in undergraduate computer science students?
	6.1.2 RQ2: How do undergraduate computer science students rate the overall player experience of Agile Astro?
	6.1.3 RQ3: How does Agile Astro contribute to computer science students' perceived learning in a course on project management?
	6.1.4 RQ4: How does Agile Astro contribute to computer science students' agile competencies in a course on project management?

	6.2 Implications
	6.3 Limitations and Further Research

	7 Conclusion
	References
	Statutory Declaration
	Appendix
	Appendix A. Serious Game Candidates
	Appendix B. Commercial Game Candidates
	Appendix C. Interview Guideline
	Appendix D. Agile Astro React Main Component
	Appendix E. Agile Astro Database Structure
	Appendix F. LLM Prompts and Responses
	Scenario Setup
	System Prompt
	Response

	Main Storyline "Action" Feature
	System Prompt
	User Prompt
	Response

	Agile Skill Usage
	System Prompt
	User Prompt
	Response

	Scrum Team Member Interaction
	System Prompt
	User Prompt
	Response

	Main Storyline "Ask" Feature
	System Prompt
	User Prompt
	Response

	Story Summarisation for Visualisation
	System Prompt
	Response

	Visualisation with Dall-e
	System Prompt
	Response

	Appendix G. Adapted MEEGA+ Questionnaire
	In order for you to participate in this study, we need your consent:
	Demographic Information
	Usability
	Player Experience
	Perceived Learning
	Written Feedback

