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Abstract

Data assimilation allows for the direct integration of meteorological observations into at-
mospheric models, significantly improving numerical weather prediction. This technique,
along with the continued incorporation of new types of observational data, has led to
significant advances. However, the assimilation of data and the generation of accurate
forecasts in regions with complex topography, such as mountainous areas, remain partic-
ularly challenging. This thesis explores an innovative approach: the direct assimilation
of Doppler LIDAR radial velocity measurements into a high-resolution weather model
to improve the state estimation of the atmosphere, with a focus on valley circulation.
Such a state estimation – viewed even as a local campaign data reanalysis can combine
and supplement the information from campaign observations with physically consistent
model simulations.

The study uses observations from the CROSSINN campaign in the Inn Valley to refine
the representation of meso and micro scale alpine atmospheric processes. These thermally
driven winds are difficult to accurately represent and forecast in current numerical weather
prediction models. This work examines whether a direct assimilation of radial velocity
can provide a more accurate state estimation of the atmosphere compared with the
conversion into vertical profiles of horizontal wind using the Velocity Azimuth Display
(VAD) technique. It also evaluates the effectiveness of combining LIDAR data with
operationally used sources such as ground stations, radiosondes, and air reports.

The results show a complex picture. Depending on the validation method used, the
direct assimilation of Doppler LIDAR data can lead to a reduction in analysis and
forecast errors, thus improving the predictive accuracy of the model. In particular, the
combination of multiple data sources produces the most robust results, highlighting
the value of integrating diverse observational data to capture the full complexity of
atmospheric conditions. This approach can not only improve the understanding and
representation of thermally driven valley flow, but also provides valuable context for
observations from the CROSSINN campaign and future observational efforts, potentially
leading to more accurate weather forecasts in complex terrain regions.
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Kurzfassung

Datenassimilation ermöglicht die direkte Integration von meteorologischen Beobachtun-
gen in atmosphärische Modelle, wodurch die numerische Wettervorhersage erheblich
verbessert wird. Diese Technik hat zusammen mit der kontinuierlichen Einbeziehung
neuer Arten von Beobachtungsdaten zu erheblichen Fortschritten in der Wettervorhersage
geführt. Die Assimilierung von Daten und die Erstellung genauer Vorhersagen in Regionen
mit komplexer Topographie, wie z. B. in Gebirgsregionen, stellen jedoch nach wie vor eine
besondere Herausforderung dar. In dieser Arbeit wird ein innovativer Ansatz untersucht:
die direkte Assimilation von Doppler-LIDAR-Radialgeschwindigkeitsmessungen in ein
hochauflösendes Wettermodell, um die Zustandsschätzung der Atmosphäre zu verbes-
sern. Eine solche Zustandsschätzung - auch als lokale Reanalyse von Kampagnendaten
betrachtet - kann die Informationen aus Kampagnenbeobachtungen mit physikalisch
konsistenten Modellsimulationen kombinieren und ergänzen.

Die Studie nutzt Beobachtungen aus der CROSSINN-Kampagne im Inntal, um die
Darstellung meso- und mikroskaliger alpiner atmosphärischer Prozesse zu verfeinern.
Diese thermisch getriebenen Winde lassen sich in den aktuellen numerischen Wettervor-
hersagemodellen nur schwer genau darstellen und vorhersagen. Es wird untersucht, ob
eine direkte Assimilation von Radialgeschwindigkeiten eine genauere Zustandsschätzung
der Atmosphäre liefern kann, als die Umwandlung in vertikale Profile des horizontalen
Windes unter Verwendung der Velocity Azimuth Display (VAD) Technik. Außerdem
wird die Wirksamkeit der Kombination von LIDAR-Daten mit operationell genutzten
Datenquellen wie Bodenstationen, Radiosonden und Luftfahrtberichten bewertet.

Die Ergebnisse zeigen ein differenziertes Bild. Je nach den verwendeten Validierungs-
daten kann die direkte Assimilierung von Doppler-LIDAR-Daten zu einer Verringerung
der Analyse- und Vorhersagefehler führen und damit die Vorhersagegenauigkeit des
Modells verbessern. Insbesondere die Kombination mehrerer Datenquellen führt zu den
robustesten Ergebnissen und unterstreicht den Wert der Integration verschiedener Be-
obachtungsdaten, um die gesamte Komplexität der atmosphärischen Bedingungen zu
erfassen. Dieser umfassende Ansatz verbessert nicht nur das Verständnis und die Darstel-
lung des thermischen Berg- und Talwindes, sondern bietet auch einen erweiterten Kontext
für die Beobachtungen der CROSSINN-Kampagne und künftige Messkampagnen, was zu
genaueren Wettervorhersagen im alpinen Raum führen kann.
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1. Introduction
During a meteorological field campaign, a large amount of data is created using high-
frequency remote-sensing instruments. This data is then processed and analyzed to
investigate specific questions. Since the analysis is only done with a focus on the those
questions, and parts of the measured timelines are filtered out due to meteorological
conditions that are unsuitable to the problem, only a fraction of the available data is
used. The unused data represents a lost opportunity for further insights that could be
gained from the campaign. For example, the data could provide a more comprehensive
understanding of atmospheric conditions. Therefore, it is useful to find ways to utilize
this data effectively.

If individuals want to access and work with the data of different measurement devices
separately, a lot of resources are used to at least interpolate the data if not to set it
into a broader context, combining them with other information about the state of the
atmosphere. This calls for an objective analysis tool which can be applied centrally, and
not only prepare the data in an accessible way, but also enrich it using meteorological
models.

Numerical simulations are performed to support the analysis of campaign data by
providing a complete, physically consistent state estimation of the atmosphere in the
form of gridded output variables with regular timing. To provide this at a suitable
scale a large eddy simulation (LES) with grid lengths in the 10 to 100 meters or a high
resolution simulation in a kilometer scale can be performed. Such simulations usually
do not use campaign observations as just easy to assimilate observations are included.
The simulation is rather nested in a model domain surrounding it and receives lateral
boundary conditions. For such setups uncertainties originating from inadequate initial
and boundary data can not be cleared out, since the observations have not much influence.

One weakness of numerical atmospheric modelling still is the representation of the
planetary boundary layers in alpine regions (Goger et al. 2016). Over so called complex
orography parametrisations for unresolved processes loose their skill as they are build
on assumptions of flat terrain. The higher the resolution of a simulation, the better the
model can resolve the orography and less help from parametrisations is needed. The
assimilation of observations which capture the structure of the boundary layer could
improve its state estimation leading to better forecasts.

The idea of this master’s thesis is to assimilate high resolution campaign data in a
high resolution simulation. This gives an estimate of the state of the atmosphere with
the benefits and comparability of a simulation output while representing the added
information of the campaign. Data which is measured with different methods and is
available in different formats can be efficiently combined in an analysis. This approach
allows for a more comprehensive understanding of the meteorological conditions and
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1. Introduction

for further analysis of the matter of interest of the campaign itself. When the data
is processed in such a way it is easier and less time consuming to analyze it further.
Additionally, the results can be shared with a broader community in an easily accessible
format, making the data of the field campaign more widely available. In a way a product
consisting of analysis and intermediate forecasts as state estimations could be thought of
as a high resolution reanalysis as it is known from climate sciences.

While data assimilation (DA) is used operationally in NWP simulations in global and
limited area models it has been rarely used with simulations with smaller scales. Miyoshi
et al. (2016) assimilate spatially and temporally dense RADAR measurements using a
Kalman filter to improve severe weather forecasts at temporal scales of 30 s and a grid
length of 100 m. Although the context is different from the problem set here this can be
viewed as a proof of concept and technical feasibility of assimilating massive amounts of
spatially and temporally dense data.

In a similar approach while presenting lateral boundary adjustment to improve short
time severe weather forecasting Sawada et al. 2015 assimilate LIDAR wind profiles into a
sub kilometre scale simulation with an update frequency of 15 min.

Another approach combining field data and simulations comes from LASSO (Gustafson
Jr et al. (2020)), an LES to reconstruct the flow around atmospheric radiation measure-
ment sites of the U.S. Department of Energy. They operate a large eddy model nested in
a mesoscale simulation. LASSO tries a so-called symbiotic simulation and observation,
where both LES model in- and output and observational data can be compared to develop
parametrisations for coarser atmospheric models. The LES does not get any information
on the observed state of the atmosphere, so it could gain accuracy and further value for
its purpose if this data would be assimilated. LASSO represents a use case of enriching
LES with high-density measurement data. Similarly Neggers et al. 2012 compare LES
results with observations to reproduce fast and small scale atmospheric physics in coarser
atmospheric models.

More recently in the work of Pirk et al. 2022 drone measurements of meteorological
variables are assimilated using different particle smother schemes to receive updated
surface flux estimates. The temporal and spatial scales of both the measurement and the
model realisations are of the same order of magnitude. In contrast to the goal of this
work, the data are not assimilated into a LES, but the simulation is used as a forward
model.

Several approaches where tested to assimilate LIDAR wind profiles into convection scale
or higher resolution models. Yang et al. 2022 demonstrates that the assimilation using the
LETKF outperforms nudging. How the combination of high resolution LIDAR profiles
with bigger scale RADAR radial velocities works is shown by Wang et al. 2022, where
a separate assimilation of the different observations at different scales is recommended.
Finn et al. 2020 look at LETKF assimilation of LIDAR profiles in a high resolution
simulation improving wind forecasts in the atmospheric boundary layer.

As described above there is potential usage and technical feasibility to use a Kalman
filter DA to assimilate measurements that are temporally and spatially dense into a
high resolution simulation. The use of Doppler LIDAR radial velocities instead of the
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1. Introduction

by now widely used vertical profiles of the horizontal wind components appears not
well researched. This could be especially useful to estimate the state of the boundary
layer over complex terrain as LIDARS can gather wind information from a few square
kilometres around the observation site in various atmospheric layers. The main scientific
question that this master’s thesis aims to address is:

Can we improve the estimation of the state of the atmosphere and its forecast
over alpine terrain with a high resolution atmospheric model using Doppler
LIDAR radial velocity campaign data and the LETKF?

The goal is to develop and test a methodology that allows for the assimilation of a big
amount of temporally and spatially high resolution campaign data into a high resolution
model, in order to obtain a more comprehensive and accurate representation of the
meteorological conditions. This approach can enable the gain of additional insights
from the campaign data that were previously unavailable, and thus provide a better
representation and understanding of the atmosphere at smaller scales.

3



2. Methods and Data

2.1. CROSSINN
As a case study a subset of the CROSSINN campaign (Adler et al. 2021) is selected.
The campaign was performed in the second half of 2019 in the lower Tyrolean Inn
Valley. It aimed at investigating cross-valley flows and atmospheric exchange processes
in the atmospheric boundary layer over mountainous terrain using Doppler LIDAR
measurements amongst others. During 10 intensive operation periods (IOPs) various
types of observations were performed. For this thesis the measurements from IOP 8
which took place on 13 September at the observation site Kolsass (11.6222◦ E, 47.3053◦
N) are selected. From different instruments at this site only two windcube Doppler
LIDAR instruments and one sonic anemometer are considered which were operated
by the University of Innsbruck. The LIDARS measure radial velocity in plan position
indicator (PPI) scans. The data are available at Gohm et al. 2021 and in the i-Box data
repository (Rotach et al. 2017).

2.1.1. Synoptic Situation during IOP 8 and Valley Circulation
The observation period IOP 8 is selected due to its synoptic features. A map of temper-
ature, geopotential height and vertical wind on 2019-09-13 is displayed in Fig. 1. A low
intensity high pressure system lies over western and central Europe between two more
distinct low pressure systems over Scandinavia and the Atlas mountains. This creates a
negligible pressure gradient across the Alps. The situation is stationary over the Alps
throughout the following two days. Neither are Föhn nor clouds present.

Due to the lack of synoptic forcing the atmospheric flow in the valley atmosphere is
dominated by thermally driven valley winds. These wind regimes follow a diurnal cycle
and can be separated in valley winds and slope winds (Markowski et al. 2010). In general
both winds flow up slope and up valley during the day, but valley winds lag behind due
to their bigger inertia. Both phenomena are a challenge for numerical weather prediction
with valley winds being resolved in big valleys as the Inn Valley. Slope winds are too
small in scale and too local in effect so their effects are parameterised.

Fig. 2 shows the column of the u-components of the wind from model simulations
and observations at Kolsass. From 0 UTC until 12 UTC (00:55 to 12:55 local solar time
(LST)1) it is positive throughout the column. This westerly wind flows down valley in
the Inn Valley. It reaches its maximum at 7 UTC in about 200 m above ground. At
12 UTC wind direction switches and the u-component is now negative throughout the

1At September 13 local solar time (LST) at Kolsass is 51 min (roughly one hour) ahead of UTC time.
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2. Methods and Data

Figure 1.: Plot of temperature T in K, isolines of geopotential height z in dm and arrows
of vertical wind, all in 850 hPa during CROSSINN IOP 8. ⋆ marks the location of Kolsass.
The data is taken form the ERA5 reanalysis (Hersbach et al. 2023).
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2. Methods and Data

Figure 2.: Profiles of u-component at Kolsass over the full day of 2019-09-13. Comparison
of (a) the CONTROL run, (b) the operational setup and (c) the VAD observations.

column, which corresponds to easterly up valley flow. As displayed in Fig. 3 the speed of
this flow reaches its maximum between 16 and 17 UTC. Afterwards the flow slows down
and detaches from the ground, as a stable boundary layer forms beneath it.

The results from model simulation without any DA (CONTROL) and the cycled
experiment which assimilates the data operationally used by the German Weather Service
(DWD) for this region (CYCLE with oper) are also shown in figures 2 and 3. The
orientation of valley flow and the timing in its transitioning are met well by both
simulations. Instead the magnitude in speed and the the growth of the nocturnal stable
layer are both too low in the model simulations.

2.1.2. Devices and Data
The data from three instruments deployed during CROSSINN is used for this study: Two
Doppler LIDARs and one sonic anemometer.

The LIDARs are one Streamline type and one Streamline XR type from the manu-
facturer ‘Halo Photonics’. The first LIDAR made Plan Position Indicator (PPI) scans
with an elevation angle of η = 70◦. With one 360◦ azimuth angle scan every minute
it produced one full scan of radial velocity every minute. From these scans the wind
components are computed with a Velocity Azimuth Display (Browning et al. 1968). This
gives profiles of the horizontal wind components which are the most used output of
LIDAR measurements. Due the high reduction in data points when creating VAD-profiles
there is also a potentially high loss of information. Because of the high elevation angle the
dataset with radial velocity from this LIDAR will be called radvel high. The dataset
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2. Methods and Data

Figure 3.: Profiles of vertical wind speed at Kolsass over the full day of 2019-09-13.
Comparison of (a) the CONTROL run, (b) the operational setup and (c) the VAD
observations

containing the velocity components from the VAD will be called vad.
The second LIDAR has a more complex scanning routine. During the first half of each

hour it performs vertical stare scans. Every full and half hour it makes PPI scans with
an elevation angle of η = 70◦. In the second half of each hour it performs PPI scans with
alternating 4◦ and 7◦ elevation. We only use the PPI scans with η = 4◦ and η = 7◦. Due
to the LIDAR range these scans give information about the low parts of the boundary
layer in heights between about 10 to 240 m above ground. The dataset containing these
radial velocity values will be called radvel low.

The combination of radvel low and vad datasets is called all lidar, as it combines
the information of both Doppler-LIDAR instruments. The combination of radvel low
and radvel high is called all radvel. All these datasets can be used for assimilation
and validation alike.

The third type of data are horizontal wind measurements from a sonic anemometer on
a mast 16 m above ground. It is part of the permanently installed i-box measurement
site at Kolsass (Rotach et al. 2017). The minutely values are averaged around the closest
5 minute step. The dataset is used only for validation and is called surface.

For comparison with the current state of atmospheric prediction the operationally by
DWD assimilated data is also used as mentioned above. It consists of measurements
from surface stations (SYNOP), balloon measurements (TEMP and PILOT) and air
reports (AIREP). A map of these observations is shown in Fig. 4. Note that this set
not only includes wind observations, but also temperature, humidity and pressure level
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2. Methods and Data

Figure 4.: Map of active oper observations on 2019-09-13. (a): All observations, (b):
detail around the observation site Kolsass (marked with ⋆) showing 500 m isolines of
topography.

height observations are assimilated. To identify observations which only include wind
measurements a version of this plot showing only those observations is presented in Fig.
20 in the appendix. The assigned observation error variances for this data remain as in
the operational setup. Together the dataset is called oper. The combination with all
lidar is called all as it uses information from all sources.

2.2. Numerical Model
2.2.1. ICON Limited Area Model
As numerical weather model a limited area model (LAM) variant of the Icosahedral
Non-hydrostatic Model (ICON), developed by DWD and the Max Planck Institute for
Meteorology is available. As its name says the model is solving the non-hydrostatic
equations on a grid which is based on the approximation of earth as an icosahedron
(Zängl et al. 2015). This grid can be refined forming triangular grids. Triangular grids
are advantageous in simulations over complex terrain as they offer a higher resolution of
the orography compared to more common Cartesian grids of the same grid length.

At the DWD the ICON-LAM is used to operationally produce weather forecasts for
domains covering Europe and the German speaking countries. Such simulations are
performed at resolutions of 6.5 km as ICON-EU and 2.1 km as ICON-D2 respectively.

For this work a 500 m resolution grid is nested in a ICON-EU domain that provides
initial and boundary conditions. On the nested grid ICON-LAM is run with most of
the standard operational settings used for ICON-EU and ICON-D2. The operational
assimilation of RADAR and latent heat nudging are switched off.

To produce a background error covariance matrix and be able to use the LETKF a
sufficiently large ensemble size is required. For this the DWD operational ensemble size
of 40 members is chosen. The single ensemble members receive their initial and lateral
boundary conditions from the 40 members of the ICON-EU parent simulation.

8



2. Methods and Data

2.3. The LETKF
Introduced by Bishop et al. 2001 as the Ensemble Transform Kalman Filter and in its
localized form as the Local Ensemble Transform Kalman Filter by Hunt et al. 2007,
the LETKF is a Kalman filter used in research and operational weather prediction. It
combines the use of a probabilistic background error covariance and the efficiency of grid
point by grid point assimilation. This is achieved by a transformation to ensemble space,
making the analysis a linear combination of background ensemble members.

Following the formulation used in Diefenbach et al. 2023, the analysis ensemble mean
is given by

xa = xb +Xb wa (2.1)

with the analysis of the i-th member being

xa,i = xb +Xb (Wa,i + wa) . (2.2)

The vector wa which weighs the share of the ensemble perturbations to the mean increment
is defined as

wa = P̃aY
T
b R

−1 (yo − yb) . (2.3)

Here R is the observation error covariance matrix representing the measurement error,
the observation operator error and the representativeness error, Yb is the perturbation
matrix in observation space. yb is analogous to xb the model equivalent of the ensemble
mean background and yo are the observations. P̃a is the analysis error covariance matrix
in ensemble space. It is given as the inverse sum of the background error covariance and
the observation error, both in ensemble space:

P̃a =
[︁
(k − 1) I+YT

b R
−1Yb

]︁−1 (2.4)

The matrix Wa gives the weights of the ensemble perturbations to form the analysis
ensemble. It is given by the square root of the analysis error covariance:

Wa =
[︂
(k − 1) P̃a

]︂ 1
2
. (2.5)

The construction of the LETKF builds on the assumption of a linear observation
operator H like

H (xb +Xb w) ≈ yb +Yb w . (2.6)

2.3.1. Radial Velocity Observation Operator
The translation from the model space to the observation space, here in the from of
calculating radial velocities from a model state, is done by an observation operator.
In many DA algorithms the observation operator is used in the computation of the
increments and thus the analysis. As this computation is done using linear algebra, the
observation operator is mostly assumed to be linear and even invertible.

9



2. Methods and Data

The LETKF is advantageous in that it only needs the model equivalents of the
observation as seen in the computation of the weights w in eq. 2.3. No observation
operator is used to compute the increments. Thus even if assumed in its derivation, the
LETKF does not need an invertible, not even a linear observation operator.

The operators used in this work do not make full use of the possible generalisation,
as they are linear, even if not invertible. To compute the radial velocity vr, which
Doppler-wind-LIDARs measure along their beam we only need to compute the wind
component which is parallel to the beam r⃗:

vr =
v⃗ · r⃗
∥r⃗∥

= cos η (u sinα+ v cosα) + w sin η (2.7)

Here the convention is used, that the radial velocity is positive if the wind vector points
away from the point of reference and negative if it points towards it, so it is really
vr = ∥dr⃗∥/dt. η is the elevation angle of the beam and α the azimuth measured clockwise
from geographical north. As can be seen easily, the computation of the radial velocity vr
is linear with respect to the state vector (u, v, w).

2.3.2. BACY and KENDA
The environment for DA at the DWD is called Basic Cycling (BACY). It integrates
the full model cycle needed for DA including the collection of boundary conditions,
the running of the atmospheric and other connected models, the computation of model
equivalents and the DA itself. KENDA, the Kilometre-Scale Ensemble Data Assimilation
(KENDA) (Schraff et al. 2016) is the implementation of the LETKF is implemented in
BACY for high resolution DA at the DWD.

To avoid a disruptive impact of analysis increments on the hydrostatic balance, an
incremental analysis update (IAU) is used. It spreads out the increment and adds it to
the background incrementally over some time interval, here 10 min.

2.4. Experimental Design
2.4.1. Simulation Domain
The simulation domain is a triangular ICON grid with a resolution of 500 m. This means
the domain is resolving convection and even the effective resolution at five to ten times
the actual resolution still is permitting convection.

The elevation data comes from ASTER’s Global Digital Elevation Model (U.S./Japan
ASTER Science Team 2009). At the implemented resolution the orography of the Inn
Valley and its biggest tributaries are well resolved and even smaller side valleys are
present. Because of technical limitations the the domain is rather big, spanning from
western Switzerland to eastern Austria and from Munich to the Adria, containing most
of the Alps. A map of this domain and the parent ICON-EU domain is shown in Fig. 5.

As vertical coordinates Smooth Level Vertical Coordinates Vertical (SLEVE) coordinates
are used (Leuenberger et al. 2010). Those are terrain following coordinates where features
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2. Methods and Data

Figure 5.: Map of the outer ICON-EU domain and the nested simulation domain. ⋆
denotes the location of Kolsass.

of different scales decay separately. This makes small scale features decay faster with
height. As with the ICON-EU setup the simulation domain has 60 vertical levels up to a
height of 22.5 km.

2.4.2. Quality Control
The radial velocity data from the Doppler-LIDARs needs preprocessing in order to be
used in the assimilation. To get the datasets from raw radial velocities several steps of
quality control and spatial and temporal averaging into so called super observations are
performed.

One PPI scan contains between 5 ·103 and 24 ·103 single observations, a large portion of
which is faulty. With the velocity data comes the signal to noise ratio (SNR) which gives
information on the quality of each measurement. Low SNR means that the observation
is dominated by ambient noise while a high SNR can indicate reflection from orography.
As a quality control step, only observations with a SNR between 1.0075 and 1.05 are
considered. These values are obtained by identifying the removal of random noise and
the back scatter from orography from the dataset.

In addition only data between the 3rd and the 55th LIDAR range gate are considered
valid. The first two gates are too close to the instrument while after the 55th gate the
values for Doppler velocity contain random noise between -40 and 40 ms−1.

2.4.3. Super Observations
To further reduce the amount of observations and to remove fluctuations in time and
space a super observation method is applied for each scan at a time. For this, each
observation is assigned a (cell, level) pair. The values in the tuple correspond to grid
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cells and levels of the numerical model domain. By this every observation from a scan is
assigned its next neighbour in the model grid. The whole scan is also assigned a time
from a set of five minute separated time steps which is closest to the mean time of the
scan. All the values which are assigned to one (time, cell, level) triple are averaged and
used as a super observation with the time and coordinates of the triple.

Because the quality of the LIDAR measurements varies due to environmental conditions
during the day the number of grid points with super observations and the number of
observations per super observation varies. To ensure comparable super observations only
those are considered which contain 12 or more observations. If under this criteria a scan
yields no super observation, the threshold for this scan is lowered by 2 until at least one
super observation is received per scan.

In contrast to radvel the vad data is already quality controlled. It is only allocated a
time, cell and level and averaged analogously to the radvel data.

The observation error for the LIDAR based wind speeds is only roughly estimated and
copied from preexisting values from the DWD DA setup for wind measurements from
tracked weather balloons. In the lower parts of the atmosphere this means σo = 1.95
ms−1.

2.4.4. Localization
For the sake of a simple experimental design and easier interpretation of results, the
horizontal adaptive localization of the DWD DA setup is turned off. Instead a constant
horizontal localization length of lh = 10 km is chosen. lh denotes the half width at half
maximum of the localization function.

The vertical localization in the DWD DA setup is changing linear with pressure
between given values for the highest and the lowest level. For the same reasons as with
the horizontal localization, the vertical localization length is set to be constant in the
whole column at a value of lv = 0.3 ln p. This means a big increase in lower levels where
lv is otherwise set close to the lower boundary of lv = 0.075 ln p.

2.4.5. Experiments
Two different assimilation experiments and one background for comparison are used. The
background (CONTROL) is a free forecast which starts at 0 UTC at the day of interest.

The first one which applies the assimilation at a single time followed by a 3 hour free
forecast (SINGLE) is used to study the assimilation of different datasets at different
times of the day. These experiments are initiated from the background state. Thus the
effects of different data sources can be compared without any observations being inserted
into the simulation. With these experiments the datasets vad, radvel high, radvel
low, all radvel, all lidar, all or oper are each assimilated in the night at 2 UTC
and in the afternoon at 16 UTC.

The second approach is a cycled experiment (CYCLE) starting from the background
at 0 UTC and assimilating the given datasets every hour. By that the observations are
fed continuously into the model. This is only done for the vad, all lidar, all and oper
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Table 2.1.: Experiments and assimilated datasets
Experiment Datasets
CONTROL none

SINGLE vad, radvel high, radvel low,
all radvel, all lidar, all, oper

CYCLE vad, all lidar, all, oper

datasets as they are the best performing in the SINGLE experiments. In that way it can
be demonstrated how assimilation of combined datasets can improve valley wind systems
in high resolution weather models.

All different experiments and the assimilated datasets are listed in table 2.1.

2.5. Validation Methods
To be able to assess the quality of DA one needs to be able to validate the results: The
analysis and the forecast. As the LETKF takes model data in the observation space
as inputs, the model equivalents are easily available for the fist guess and the analysis.
Since data from several observation sources are available which might have different units,
the validation dataset is split and analyzed independently by instrument and observed
quantity.

As metric the root mean squared deviation (RMSD, here also root mean squared
departure) is used to measure the difference between model equivalents and observations
at a given assimilation time:

RMSD =

√︃⟨︂
(yo − yb)

2
⟩︂
obs

=
√︂⟨︁

d2ob
⟩︁
obs

(2.8)

Here dob = yo − yb is the departure or increment of the ensemble mean. ⟨·⟩obs means
averaging the different observations selected for verification at the given time step. At
assimilation time the departure can also be computed using the analysis giving dab. This
can be all observations which occurred during the last hour or only all observations at
the time step. When dealing with horizontal velocities in the datasets vad and surface
d is the average of the departures of the u- and v-component.

To evaluate analysis and forecast, the model equivalents are computed for and compared
to the observations. In a cycling experiment this does not require any extra work as the
model equivalents of the first guess are needed for the next assimilation step anyways.

To be able to evaluate at different time steps with different deviations of the background
CONTROL experiment and compare an assimilation experiment with the CONTROL
experiment the forecast RMSD’s are divided by the one from the background experiment:

RelRMSD =
RMSDe

RMSDC
− 1 (2.9)
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Here RMSDe is the RMSD of the relevant experiment and RMSDC the one of the baseline
experiment.

If the validation should occur on a per observation basis dividing by the baseline
experiment is not recommended as small values of RMSDC may inflate the score. In this
case it is better to look at the difference in absolute departures:

∆d = |de| − |dC | (2.10)

2.5.1. Departure Statistics
Using the background or the analysis departure estimations of the observation and the
background error covariance matrices can be calculated (Desroziers et al. 2005). The
most interesting quantity in this case is the observation error σo which is a part of the
observation covariance matrix R, used by the LETKF (Eq. 2.4). In an optimal linear
assimilation system, innovations dob and analysis increments dob should be compatible
with R. This leads to a consistency check for R by calculating the estimation value of
the outer product of the analysis and the background departure:

R = E
[︁
doadob

T
]︁

(2.11)

The main diagonal of R is filled with the squared observation error σ2
o for each observa-

tion.
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3.1. Assimilating one Hour
3.1.1. During the Night
The first suite of SINGLE experiments looks at assimilation at 2 UTC. The observations
displayed in figures 2 and 3 show that at this time the down valley wind builds up in the
nocturnal boundary layer. The wind speed is relatively low compared to day time and
turbulence is weak.

The effects of assimilating vad, radvel high and radvel low at 2 UTC can be seen
in Fig. 6. The maps show the increments in the u-component. The left column shows a
east-northeastern cut along the valley. The right column shows the lowest model level.

The structure of all three increments look similar but the magnitudes show a big
difference. The scale of the radvel high increment is about half the scale of the vad
increment and the scale of the increment of radvel low is only about a quarter. This
becomes visible when comparing the boundaries of the color-bars. From the profiles it is
visible that the biggest increment happens above the instruments in a height of 1000 m
above ground. There the increment is predominantly positive, meaning an increase of
the already positive (down valley) u-component.

In the maps of the lowest model level positive and negative increments are visible. The
positive ones stretch along the Inn Valley and the mountain ridges around Kolsass. The
negative increments are found in the tributary valleys.

To evaluate these results quantitatively the metrics from section 2.5 are computed. A
big difference can be seen when comparing the data sources used for assimilation and
even for validation. The values for RelRMSD at assimilation time for all experiment and
validation combinations are displayed in table 3.1. It appears quickly, that most values
in the columns of LIDAR based validation datasets show a beneficial impact, while those
in the surface column all show a detrimental impact on the analysis.

The assimilation of LIDAR data shows an improvement when validated against radvel
high at 2 UTC and the metrics are shown in Fig. 7. The plots (a)–(c) show ∆d in
colored dots for the super observations of the different experiments spread in time and
the azimuth angle relative to the instrument. lot (d) gives RelRMSD as a function of
time. All three experiments have a beneficial to neutral impact. The assimilation of
vad does not give the best analysis with RelRMSD barely below −10% but the forecast
is able to pick up and gives the lowest value for RelRMSD for all three experiments.
The assimilation of radvel high gives the highest improvement at assimilation time
with RelRMSD < −30%. This benefit is lost during the forecast time with RelRMSD
quickly increasing. Assimilating radvel low deteriorates the analysis but has a small
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Figure 6.: Maps of increments of the assimilation of vad, radvel high and radvel low
in the SINGLE experiments at 02:00 UTC. (a), (c), (e) show a east-northeastern cut
along the line in the plots on the right. (b), (d), (f) show the lowest model level with
circles indicating distance from Kolsass in km and 500 m isolines of valley topography in
grey lines. Note the different scales of the color bars.
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Figure 7.: Error statistics of SINGLE experiments assimilating vad, radvel high or
radvel low scans at 2 UTC, validated against radvel high. Colored fields in (a)–(c)
show ∆d spread across time and azimuth angle, with increasing height from left to right
in each field. Please note the different scales for different experiments. The curve in plot
(d) gives RelRMSD in percent.
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Figure 8.: Assimilation of single vad, radvel high and radvel low scans at 2 UTC,
validated against vad. Colors in (a)–(c) show ∆d for model equivalents of radial velocity
measurements, the curve in plot (d) gives RelRMSD in percent.

Table 3.1.: RelRMSD in % at assimilation time, 02:00 UTC. Rows show the assimilated
dataset (asm), columns show the dataset used for validation (val). The highest (worst)
and lowest (best) value for each validation dataset are highlighted red and blue. The
values for radvel low are missing because the dataset has no observations at this time
to evaluate against.

asm \ val vad radvel high radvel low surface
vad -58.58 -11.30 NA 67.17
radvel high -26.68 -34.46 NA 23.10
radvel low -12.54 2.53 NA 4.40
all radvel -20.25 -27.95 NA 21.94
all lidar -50.73 -44.52 NA 66.37
all -53.17 -39.30 NA 55.96
oper -1.32 -5.36 NA 6.64
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but beneficial impact on forecast quality.
When verified against vad the assimilations of vad, radvel high, or radvel low yield

an improvement for the analysis and forecast quality compared to CONTROL, as can
be seen in Fig. 8. Here again the plots (a)–(c) show ∆d for the three experiments
as Hovmöller-diagrams in time and height above ground. Plot (d) gives RelRMSD as
a function of time. The assimilation of vad scans reduces ∆d for the analysis quite
substantially for nearly the whole column, RelRMSD is down to −58.58%. The forecast
is able to pick up from there and shows a value of RelRMSD ≤ −20% for about two hours
of forecast. ∆d shows improvement in the forecast in two separate layers, one around 250
m and one above 750 m. The assimilation of vad also deteriorates the analysis in the
lowest layer and in the forecast during the first half hour.

In contrast to these fairly good results the assimilation of radvel high and radvel
low have a smaller impact. At analysis time ∆d is reduced but not by a large amount
throughout the column. For both experiments RelRMSD at assimilation time is at
−26.68% for radvel high and −12.54% for radvel low, only being around half or even
quarter the value of the first experiment. In the forecast RelRMSD grows quickly during
the first 15 min after assimilation. It nearly stagnates afterwards, while still being slightly
below zero for the three hour forecast.

The same experiments but validated against surface are shown in Fig. 9. The upper
plot shows ∆d as a function of time, the lower plots give the u- and v-component from
the observations, the CONTROL experiment and the assimilation experiments. Here the
beneficial to neutral impact is not given anymore. The assimilation of vad deteriorates
the analysis with ∆d above 0.5 ms−1. The v-component of surface wind gets corrected,
but the u-component is drawn away from the observation. In the forecast with lead
times of one until two hours the quality improves with respect to CONTROL by better
matching the u-component. This has to be taken with caution as the observed u is
close to zero at this time and the vad experiment just gives a slightly smaller velocity
compared to the baseline experiment. This can be generalised as the comparison of
u- and v-components from the observations with the model equivalents show such big
differences in their dynamics that the effect of assimilation is nearly negligible. radvel
high and radvel low show little impact in the analysis and also during the three hour
forecast ∆d stays closely around zero.

The results of the SINGLE experiments for the vad data and the combined datasets
all lidar, all and oper at 2 UTC are shown in Fig. 10 again as Hovmöller-plots of
∆d for the different experiments in the plots (a)–(d) and with RelRMSD as a function
of time in plot (e). The highest reduction in RelRMSD for the analysis is reached by
vad which was already discussed above, followed by all and all lidar. In comparison
to the assimilation of the vad data the deterioration of the analysis at the lowest scan
level is mitigated by the datasets all and all lidar. The impact of the assimilation of
oper data takes some time to reach the location at Kolsass but reduces RelRMSD by
about ten percentage points after 30 min, which can be maintained during the three hour
forecast.

The best forecast performance can be seen in the experiment assimilating the all
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Figure 9.: Assimilation of single vad, radvel high and radvel low scans at 2 UTC,
validated against surface. Plot (a) shows ∆d, (b) and (c) show u and v with the
observations in solid black and the model equivalents coloured lines.
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Figure 10.: Assimilation of single vad, all lidar, all and oper scans at 2 UTC, validated
against vad. Colors in (a)–(d) show ∆d profiles, the curve in plot (e) gives RelRMSD in
percent.

21



3. Results

Figure 11.: Assimilation of single vad, all lidar, all and oper scans at 2 UTC, validated
against surface. Plot (a) shows ∆d, (b) and (c) show u and v with the observations in
solid black and the model equivalents coloured lines.

dataset – a combination of oper and all lidar data. RelRMSD is below −45% % in
the analysis and ∆d shows a deviation reduction in the whole VAD column but one
level. This improvement can also be passed on to the forecast which shows the lowest
RelRMSD of all the experiments, staying below −20% during the three hour forecast.

The contrast to the verification against surface is as big as in the previously discussed
experiments. Fig. 11 shows ∆d and the u- and v-components of the observations and
their model equivalents. The case for vad, all lidar and all is similar: ∆d shows a
deterioration in the analysis because the u-component is pushed away from the observation
by about 0.5 ms−1 while the v-component is drawn towards the observation by only a
fraction of that value. The forecast recovers from that in about 20 min and then ∆d

fluctuates around a value slightly below zero. The three experiments stay rather similar
throughout the whole forecast time of three hours.

The assimilation of oper has very little effect on the surface analysis. As in the
validation against vad the impact of the assimilation needs to be advected. When
validated against surface this effect is a small positive value of ∆d for 30 min and then
∆d fluctuating around zero.
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Table 3.2.: RelRMSD in % for a one hour forecast after assimilation time, 03:00 UTC. Rows
show the assimilated dataset (asm), columns show the dataset used for validation (val).
The highest (worst) and lowest (best) value for each validation dataset are highlighted
red and blue.
⋆ Data for radvel low from 02:55 UTC.

asm \ val vad radvel high radvel low⋆ surface
vad -21.84 -28.24 -19.03 -6.64
radvel high -8.58 -11.99 -4.67 -5.78
radvel low -2.86 -4.05 -1.46 -2.06
all radvel -3.69 -5.72 0.38 0.05
all lidar -22.38 -28.34 -24.66 2.51
all -35.32 -40.43 -37.90 -12.44
oper -10.68 -13.19 -15.12 5.98

The combination of both Fig. 10 (a)–(c) and Fig. 11 shows that LIDAR based
observations are not able to improve the surface layer analysis. The analysis deteriorates
when validated against surface. Even when validated against vad the assimilation of
vad does not improve the analysis at the lowest model layer.

Table 3.2 shows the values of RelRMSD for the SINGLE experiments one hour after
assimilation for all four validation datasets. Here the assimilation of all gives the
best value when validated against the LIDAR based datasets. The worst performing
experiments after one hour are the one using radvel low and all lidar.

3.1.2. In the Afternoon
The picture looks more complicated for the SINGLE experiments at 16 UTC. Now the
jet of the up valley flow is at its highest velocity as seen in Fig. 3. During the following
hours it weakens only a little bit and separates from the valley floor, as a stable boundary
layer forms beneath it. This process is not well covered by the CONTROL simulation
where the stable layer grows at a much slower speed. The cause for this could be that
the forming of the stable layer is not represented correctly in the model, maybe due to
imprecision in the model orography or false representations of model parametrisations.

The values for RelRMSD and ∆d validated against vad for this suite of SINGLE exper-
iments is shown in Fig. 12 again as Hovmöller-plots of ∆d for the different experiments
in the plots (a)–(d) and with RelRMSD as a function of time in plot (e). Here the
assimilation of vad yields the best analysis with both the lowest value of RelRMSD at
−41.53%, but as during the night has a deteriorating effect at the lowest model level
and in a height of 1000 m. The assimilation of all has a value of RelRMSD = −39.09%
and a negative to neutral ∆d throughout the column. The analysis of the vad and all
lidar also give low values for RelRMSD but show a deterioration in the highest and for
vad also in the lowest scan level. As in the case before oper has only little impact in the
analysis, because the observations are not located close to Kolsass.
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Figure 12.: Assimilation of single vad, all lidar, all and oper scans at 16 UTC,
validated against vad. Colors in (a)–(d) show ∆d profiles, the curve in plot (e) gives
RelRMSD in percent.
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Figure 13.: Assimilation of single vad, all lidar, all and oper scans at 16 UTC,
validated against surface. Plot (a) shows ∆d, (b) and (c) show u and v with the
observations in solid black and the model equivalents coloured lines.

The assimilation of vad, all lidar and all improves the forecast in a height about
600 m for two hours after assimilation. In the experiments assimilating vad and all
lidar a layer of positive ∆d, indicating a degradation of the forecast detaches from the
low levels shortly after assimilation and rises to a height of 300 m above ground. Below
that layer the forecast improves again. With the assimilation of oper the detachment of
a forecast improvement is also visible, but the layer of positive ∆d does itself not detach,
but stays connected to the lowest level, forming an area of forecast deterioration which
only grows with time.

This effect can be explained by the changes in forecasting the formation of stable
boundary layer and thus a separation of the up valley flow from the ground mentioned
above. The layer of positive ∆d indicates an error in the different experiments when
exactly and how fast the detachment happens. The zone of negative ∆d shows that
the buildup of the stable layer itself is represented better when local LIDAR data is
assimilated. In contrast the assimilation of oper only improves the forecast above the
stable boundary layer showing a worse representation of this process.

When looking at the validation against surface the picture changes again, as it can be
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Figure 14.: The u Increment from the SINGLE all experiment and the difference to
CONTROL at 10 minutes after assimilation time. (a) and (c) show a east-northeastern
cut along the line in the plots on the right. (b) and (d) show the lowest model level with
circles indicating distance from Kolsass in km.

seen in Fig. 13. The upper plot shows ∆d as a function of time, the lower plots give the u-
and v-component from the observations, the CONTROL experiment and the assimilation
experiments. The analysis of the v-component of the lowest model level is worse or at
least neutral for all experiments when compared to CONTROL. The assimilation of
all lidar and all pulls it away by a large amount, while vad and oper have little
impact. Only by successfully correcting the u-component the experiment assimilating
vad can have a negative ∆d at analysis time, thus reducing the absolute deviation. The
other experiments have little to detrimental impact on u resulting in a positive value for
∆d. In the forecast the experiments utilizing only LIDAR products converge after one
hour and fluctuate around ∆d = 0 ms−1. Only the assimilation of oper has a slightly
beneficial impact. This can again be attributed more to fluctuations in the observations
and particularly to a small offset in the right direction the forecast of the u-component
that this experiment has compared to control.

Fig. 14 shows a map of the distribution of the u-increments and their development
of the SINGLE assimilation of all dataset. The upper left side shows a vertical slice
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through the Inn Valley along the path mapped in the right side. The biggest increments
are found about from 250 m to 1 km above ground decreasing u by up to 1 ms−1. The
lower left side gives the evolution of this increment after 10 min by showing the difference
of the u-component of CYCLE all and CONTROL. In this time most of the increment
pattern directly above the site in Kolsass have stayed in place. Overall the influence of
the assimilation has decreased. The right side of the Fig. shows a map of the lowest
model level of the same quantities as on the left side. Isolines of topographic height are
overlaid. Also here the up valley movement of negative u-increments can be observed.

Table 3.3 shows the values of RelRMSD for the SINGLE experiments in the afternoon
at assimilation time 16 UTC. Here no dataset shows a good performance in multiple
validations without being mediocre in another one. The experiment assimilating of all
radvel is the best performing only when validated against radvel high. But it does
not deteriorate the RMSD of the analysis in any validation dataset.

Table 3.3.: RelRMSD in % at assimilation time, 16:00 UTC. Rows show the assimilated
dataset (asm), columns show the dataset used for validation (val). The highest (worst)
and lowest (best) value for each validation dataset are highlighted red and blue.

asm \ val vad radvel high radvel low surface
vad -41.53 0.87 NA -20.30
radvel high 2.59 -38.27 NA -29.40
radvel low -0.08 -3.28 NA 35.97
all radvel -7.62 -43.75 NA -17.83
all lidar -40.97 6.55 NA 41.41
all -39.09 -1.04 NA 33.29
oper -3.66 4.31 NA 11.12

Table 3.4 gives RelRMSD of the forecast one hour after assimilation for all four
validation datasets. Again no single dataset performs best when validated against
different validation datasets. The assimilation of vad and all lidar have a big to at
least beneficial impact when validated against LIDAR data sources, but deteriorate the
forecast in comparison with surface.

3.2. CYCLE Experiment
In the CYCLE experiment the whole day is simulated with assimilations every hour.
Hovmöller-diagrams of wind speed for the experiments utilizing all lidar and all in
comparison with CONTROL and VAD observations is shown in Fig. 15. During the
night and the morning the cycled experiments better match the wind speed of the down
valley flow. In the evening the assimilation pulls the structure of the stable boundary
layer and the detached jet close to the observations but in the hour after assimilation the
model pushes the flow back down. Because of that the assimilation experiments are not
able to change the structure of the boundary layer. This is a sign that the assimilation
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Figure 15.: (a)–(c): Vertical profiles of wind speed at Kolsass from the CYCLE experi-
ments. For comparison VAD profiles from the same location are shown in (d).
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Table 3.4.: RelRMSD in % for a one hour forecast after assimilation time, 17:00 UTC. Rows
show the assimilated dataset (asm), columns show the dataset used for validation (val).
The highest (worst) and lowest (best) value for each validation dataset are highlighted
red and blue.
⋆ Data for radvel low from 16:55 UTC.

asm \ val vad radvel high radvel low⋆ surface
vad -18.72 -1.34 -16.06 27.37
radvel high -1.13 0.15 1.28 -9.20
radvel low 1.98 1.17 6.93 -5.55
all radvel -1.15 1.33 10.88 -8.88
all lidar -15.27 -0.64 -6.83 17.52
all -4.40 0.22 0.38 18.18
oper -1.65 2.24 16.06 -3.07

has too little impact to change the atmospheric regime in the valley and is just able to
correct it in the area around the observations.

The same assumption holds when looking at the values of ∆d and RelRMSD validated
against vad in Fig. 16 shown again as Hovmöller-plots of ∆d for the different experiments
in the plots (a)–(d) and with RelRMSD as a function of time in plot (e). Here especially
for the experiments assimilating vad, all lidar and all the analysis is able to reduce
deviation throughout the column. From the point of state estimation where we are not
interested in a forecast this seems to be a successful result. The forecast of the following
hour increases the deviation on certain levels again. This happens especially quickly
during the last third of the simulated day. Overall the forecast is still an improvement
compared to CONTROL during this time. This is again due to the imprecise location of
the stable boundary layer growth in the model.

As in the SINGLE experiments validation against surface, displayed in Fig. 17, shows
the challenge of improving the forecast for surface wind. The upper plot shows ∆d as a
function of time, the lower plots give the u- and v-component from the observations, the
CONTROL experiment and the assimilation experiments. The curves for u and v from
the assimilation experiments roughly follow the observations during the course of a day
but they give no significant improvement compared to CONTROL. In the late afternoon,
when the stable boundary layer forms and causes the up valley flow to separate from
the ground the difference are visible because the assimilation experiments build up the
stable layer below the jet a little bit quicker.

Table 3.5 gives the time averaged values of RelRMSD for the forecast of the whole 24
hours. They are computed from 01:05 UTC on and only include the forecast, ignoring
the analysis. From this summary the dataset all appears to have the best impact on the
forecast. Its value for RelRMSD is the lowest or close to the lowest for all verification
cases. For verification against surface the assimilation of all still means a deterioration
but it is smaller than for other assimilated datasets.

Regarding this mean forecast quality the assimilation of oper gives the worst results
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Figure 16.: Relative and absolute increment reduction for the CYCLE experiments. Plots
(a)–(d) give ∆d profiles in colors and (e) shows RelRMSD in percent.
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Figure 17.: CYCLE experiments validated against surface. Plot (a) shows ∆d, (b) and
(c) show u and v with the observations in solid black and the model equivalents coloured
lines.
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Table 3.5.: Average RelRMSD in % for CYCLE forecasts. Rows show the assimilated
dataset (asm), columns show the dataset used for validation (val). The highest (worst)
and lowest (best) value for each validation dataset are highlighted red and blue.

asm \ val vad radvel high radvel low surface
vad -40.26 -4.32 -9.13 29.72
all lidar -38.00 -6.59 -28.57 11.07
all -38.19 -7.50 -26.36 9.06
oper -3.20 -0.87 5.51 15.84

(a) Distribution of Innovations of several data
sources. The data is collected from the CYCLE
all experiment.

(b) Distribution of doadobT from three different
validations, see equation 2.11. The value used
for σ2

o is indicated by the black bar.

Figure 18.: Statistics retireived from the CYCLE all run.

in every validation case except for surface where it ranges second worst. This can be
explained by the distance the observations of oper have to Kolsass. They cannot give
the necessary information to improve the valley circulation.

3.2.1. Observation Error Statistics
To check for biases in the model or observational data, a histogram of dob from the
CYCLE all experiment is shown in Fig. 18a. The curves for vad, radvel high and
radvel low are roughly centered around zero. Compared with a normal distribution
curve the distributions of the deviations appear to be skewed. The weight of conclusions
drawn from a sample of only one day is although questionable.

Fig. 18b shows the values for the diagonal of the check on the observation error
covariance matrix R according to equation 2.11 for the same validation datasets as above.
They are much lower than the value used for σo which is indicated by the black vertical
line. This indicates that the chosen value of σo is to high, giving the observations little
weight in comparison with the model background.
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Figure 19.: 2D-Histogram of improvement ∆d and increments dab. The data is collected
from the CYCLE all experiment. Note that radvel high is not directly assimilated in
this experiment. The number of observations for the data sources are vad: 13812, radvel
high: 7726 and radvel low: 3010. Note that for vad u and v are counted separately
whereas radial velocity has only one variable.

Fig. 19 shows a 2D-Histogram of forecast improvement ∆d and increments dab from the
same experiment. In each of the plots the left half shows increments which improve the
analysis while points on the right half deteriorate it. For vad the biggest agglomeration
is in the upper left quadrant, meaning it consists of positive increments which have a
benefit on the analysis. The assimilation algorithm finds a bias to correct when looking
at the vad data.

The distributions of the radial velocity data of radvel high and radvel low is much
more centred with regards to ∆d and dab. The values of radvel high are much more
concentrated while radvel low spreads over a larger area with a few centers in or close
to the lower left quadrant.

The caption of Fig. 19 also gives the number of observations assimilated in the CYCLE
experiment. The vad dataset has about double the amount of the radvel high dataset
and more than four times of the radvel low dataset. This can be an explanation for
the higher impact the vad data gets compared to radial velocity data as it is visible in
Fig. 8 and Tables 3.1 and 3.3. Because of the larger amount of data, the vad dataset
gets a higher weight from the LETKF algorithm and thus has a greater impact.
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4.1. Conclusion
It is technically possible to assimilate high resolution LIDAR radial velocity data into
the ICON-LAM high resolution numerical model using the LETKF. In this work both
radial velocity and horizontal wind observations are assimilated and validated against
themselves, independent observations at analysis time and against a forecast. The benefit
and effectiveness of the assimilation depends on atmospheric conditions, the settings of
the Kalman filter and the preparation and arrangement of the observational data.

The last point gives many choices to the applier. The path chosen in this work is to
agglomerate and average groups of nearby observations into super observations. The
positions in time and space of those super observations are selected so they overlap with
the times of model output and the positions of model grid points. By that the number of
observations is reduced. This means the weight given to the set of observations is also
reduced if this is not compensated by adjusting the observation error accordingly. The
assimilation of such prepared data shows its ability to improve the analysis, even if not
as much as with other forms of data.

One drawback of the use of radial velocity especially with a high elevation angle η
is its high dependency on the vertical velocity w. For η = 70◦ as it is the case for
radvel high w has a 73 % share of vr according to equation 2.7. For radvel low the
proportion still is 7 % to 11%. This presents two issues: Firstly w is not well represented
in atmospheric simulations especially in comparison to high resolution observations. Thus
the model equivalents of observed radial velocity can be influenced by this uncertain
variable. Secondly as in many data assimilation environments w is not updated during
assimilation in the setup used for this work. So differences in dob which arise from the
vertical velocity in the background cannot be regulated by adjusting w in the analysis
but may force the horizontal velocity to correct for this.

The radial velocity observations also can be processed via VAD into a column of
horizontal wind components u and v on several height levels. This results in easy to
interpret and also easy to assimilate data. This is visible as the assimilation of vad
reduces the error in the analysis better or as good as radvel high, even when validated
against radvel high. In the forecast it gives the best error reduction compared to the
radial velocity experiments. Although the averaged impact of vad assimilation is quite
good, the surface analysis gets deteriorated. A direct comparison with radial velocity
data assimilation is not easy, as the dataset vad contains double or even four times the
amount of observations than radvel high or radvel high.

The best results for the reduction of forecast error in comparison with CONTROL are
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achieved when several data sources are combined. In combination with radvel low as
all lidar the good results of the assimilation of vad can even be improved. Also the
combination of this set with oper to all gives a higher error reduction in the forecast.
Depending on the validation data set the assimilation of all lidar and all yield the
best forecast results.

The assimilation of LIDAR based datasets mostly does not improve the surface analysis,
as the validation against the surface dataset and even against the lowest level of vad
shows. There are several reasons for this: LIDAR based observations have a technical
lower height limit, they cannot retrieve information from the surface layer nor a thin
boundary layer. Because of a imprecise background error covariance matrix and a large
vertical localization length, this information is spread to the lower levels of the model.
To avoid this, the localization length or the quality of the background error covariance
matrix should be adjusted.

4.2. Shortcomings and Notes for Further Research
This sections describes a set of technical and conceptual problems that emerged during
the work.

4.2.1. Technical Aspects
• Due to technical and resource-wise restrictions the dependency on the grid resolution

could not be studied. With a grid length of 500 m and an effective resolution
of 2.5 · 103 to 5 · 103 m the simulation sits in an intermediate spot between a
high resolution LES and operational regional weather prediction. The model is
not able to fully resolve the effects of orography. The analysis thus benefits from
the observations because of the added accuracy. This benefit erodes over the
forecast time. Reasons for this include the model does not matching the accuracy
of the observations and the model being affected by systematic errors. It would be
interesting to study how the analysis increments and the forecast quality changes
with a higher model resolution.

• For reasons of the technical implementation the model equivalents to the radial
velocity observations are not computed at the observation time as it is common
practice in DA. They are computed at fixed five minute interval, to which the super
observations are assigned. This introduces an timing error up to 3.5 min for single
back-scatter velocity values1. The error introduced by this is of course negligible
for showing the feasibility of the method. For simulations with higher spatial
resolution and increased accuracy the computation of the model equivalents needs
to be revisited. Also an increase in computational performance can be expected if

1The maximum timing error is estimated as the maximum distance the mean time of a scan can
have to the next 5 min timestamp and the maximum time a single measurement can have to the
mean time of the scan. With the scan speed of 3◦ s−1 for the low scanning LIDAR this gives
2.5 min + 1 min = 3.5 min
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the model equivalents are computed ‘live’ and not from saved files after the model
is run.

• Even if the super observations are agglomerated to fixed time steps every five
minutes in the CYCLE experiment they are only assimilated hourly in batches.
Because of this the analysis reduces the error also only hourly. In the following
hour the error grows again. A higher frequency of assimilation can potentially keep
the error low more continuously and thus increase the quality of state estimation
and also the quality of the forecast.

4.2.2. Conceptual Aspects
• Quality control and the construction of radial velocity super observations are not

done in an unambiguous way. To exclude reflections by fixed objects completely a
blacklisting of affected regions by (azimuth, elevation, range) should be implemented.
The assignment of observations to their nearest neighbour (cell, level) pair is
inaccurate for values where the azimuth and elevation angle differs from the one
of the (cell, level) pair. For small range distances this can mean observations are
shifted by an azimuth angle of several 10◦. A possible improvement here would be
to rethink the computation of super-observations and possibly not confine them
to (cell, level) locations of the grid. Instead of assigning the observations to fixed
locations it might be advantageous to interpolate the model fields for the model
equivalents as it is usually done in observation operators.

• As discussed earlier the values for the radial velocity observation error are copied
from existing values of the DWD setup. Investigating the distribution and systematic
error of radial velocity measurements and their averages could lead towards a more
fitting and even conceptually meaningful error model. This might have a big effect
on the efficiency of assimilating the raw lidar data in comparison with values from
a VAD. A sensitivity study on the observation error could give valuable insights on
this.

• The benefit of combination and comparison of LIDAR data with oper data is not
without doubt in the presented case. The data was taken with the setup used for
6.5 km resolution simulations. Because of this, the observation errors for these
observations might not be optimal for the use in much finer resolved simulations.
Also for technical practiclity the localization lengths are set to the same values
as for the LIDAR observations, also with unknown impact on the quality of oper
assimilation.

4.3. Outlook
The result of this work stand as a proof of feasibility for the direct assimilation of
Doppler-LIDAR radial velocity into a high resolution NWP model in alpine terrain.
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4. Discussion

This technique could potentially be used in future observation campaigns in complex
terrain. Using a high resolution model or even an LES where all the recorded data of
such a campaign is assimilated could not only combine this data in a statistically optimal
way but also enrich it via a physical model which spreads the measured information in
the model domain and to variables which are not directly observed. With this added
value the then easy to use data can be used to perform further analysis. In the case
of CROSSINN the development and timing of cross valley wind, mountain breezes and
mountain valley wind systems could be studied with increased resolution and detail. N
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A. Appendix

Figure 20.: Same as figure 4 but only showing actively assimilated wind observations.
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A. Appendix

Figure 21.: Same experiments as Figure 7 but validated against radvel low. Colored
fields show ∆d spread across time and azimuth angle, with increasing height from left to
right in each field. Please note the different scales for different experiments. The curve
in the lowest plot gives RelRMSD in percent.
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