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Abstract

Numerical weather prediction models have limited skill in the first few forecast hours.
Therefore simple nowcasting methods, like the linear extrapolation of current radar
information, are often used to predict the very near future more precisely. However, these
extrapolation methods tend to rapidly decrease in skill after a few hours. Many efforts
have been undertaken to combine recent observations or extrapolations of the latest states
with numerical weather prediction (NWP) model computations. In order to achieve such
a blending of current information and NWP forecasts, a data assimilation method is used
in this thesis. The Local Ensemble Transform Kalman Filter (LETKF) is exploited to
re-weight pre-existing ensemble forecasts according to recent observations, thus creating
an adapted forecast, or rather, a nowcast. This LETKF-based nowcasting method is
performed on the probability of hourly precipitation rates exceeding a threshold. The
use of probabilities rather than precipitation intensities avoids unphysical jumps in the
nowcasts.
For a period of six days in July 2020, this LETKF-based nowcasting is performed on
GeoSphere Austria’s 17-member C-LAEF ensemble. INCA analyses, which consist of a
combination of recent radar observations and surface precipitation measurements, are
used as observations. The nowcasts are, on average, able to outperform the underlying
ensemble forecast for lead times of one to three hours, depending on the setting. For
lead times of four hours and longer, however, the method in the presented setting can
not outperform the ensemble forecast on average. Propagation of precipitation patterns
outside of the localisation scale is found to be the main reason for decreasing nowcasting
performance with increasing lead time.
The method is tested for three different precipitation rates and performs better for lower
intensities. Sensitivity studies are carried out to assess the influence of both the spatial
resolution of the probability field and observation-error covariances. While the exact
setting of observation errors does not affect the outcome significantly, results are better
for coarser spatial resolutions.
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Kurzfassung

Wettervorhersagemodelle schneiden für die ersten Stunden des Vorhersagezeitraums oft
nicht besonders gut ab. Deswegen werden simple Nowcasting-Methoden, wie die lineare
Extrapolation von aktuellen Radarbildern zur Niederschlagsvorhersage, oft verwendet,
um die nächsten Stunden besser vorhersagen zu können. Der Nachteil von solchen
Kürzestfristvorhersagen ist wiederum, dass deren Vorhersaqualität innerhalb weniger
Stunden drastisch sinkt. Deswegen werden immer wieder Bemühungen unternommen,
aktuelle Beobachtungen oder die Extrapolation vom letztbekannten Zustand, mit den
Berechnungen von numerischen Wettervorhersagemodellen zu vereinen.
Um solch eine Kombination von aktuellen Informationen mit numerischen Vorhersagen zu
bewerkstelligen, wird in der zugrundeliegenden Arbeit eine Datenassimiliationsmethode
verwendet. Der Local Ensemble Transform Kalman Filter (LETKF) wird benützt, um
bereits existierende Ensemble-Vorhersagen anhand aktuellster Beobachtungen neu zu
gewichten und dadurch eine adaptierte Vorhersage, oder besser gesagt einen Nowcast, zu
berechnen. Die LETKF-basierte Nowcasting-Methode wird auf die Wahrscheinlichkeit
für stündliche Niederschlagsraten größer gleich zu wählender Schwellwerte angewandt.
Die Benützung von Wahrscheinlichkeiten statt Niederschlagsintensitäten vermeidet un-
physikalische Sprünge in den Nowcasts.
Die Nowcasting-Methode wird über einen Zeitraum von sechs Tagen im Juli 2020 für
das 17 Member umfassende C-LAEF Ensemble von GeoSphere Austria durchgeführt.
Als Beobachtungen werden INCA Analysen herangezogen, welche eine Kombination aus
Radarbeobachtungen und Niederschlagsmessungen am Boden sind. Je nach Wahl der
Parameter kann die Nowcasting-Methode für ein- bis dreistündige Vorhersagen im Durch-
schnitt besser abschneiden als das zugrundeliegende Ensemble. Für Vorhersagen ab vier
Stunden in die Zukunft bietet die Methode jedoch im Durchschnitt keine Verbesserung
gegenüber der Referenz mehr, da sich die Niederschlagsfelder in diesem Zeitraum aus dem
Lokalisierungsradius herausbewegen.
Die Methode wird für drei verschiedene Niederschlagsintensitäten durchgeführt und
schneidet bei geringeren Intensitäten besser ab. Sensitivitätsstudien werden durchgeführt
um den Einfluss der räumlichen Auflösung der Wahrscheinlichkeiten sowie verschiedener
Beobachtungsfehlerkovarianzmatrizen festzustellen. Während die Einstellung der Fehlerko-
varianzen keinen signifikanten Einfluss auf die Vorhersagegüte hat, werden mit gröber
aufgelösten Wahrscheinlichkeitsfeldern bessere Resultate erzielt.
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1. Introduction and research questions

NWP models provide predictions of the three-dimensional state of the atmosphere on
a discrete grid and have improved greatly over the last few decades (see, for example
[Magnusson and Källén, 2013] for the skill-evolution of the ECMWF model). Some
situations, however, are still difficult to predict precisely. Extreme precipitation events
prove to be particularly difficult for NWP models because their small-scale nature
sometimes reaches the limit of what can be resolved on the grid. Furthermore, convection
usually plays a role and poses a challenge due to its stochastic nature.
Therefore, even in modern weather forecasting, forecasters still often rely on nowcasting
methods. This means observing the current and recent state of the atmosphere through
measurements and extrapolating it into the future with more or less sophisticated methods.
For short lead times this proves useful. The time-range where nowcasts tend to outperform
NWP forecasts is often referred to as the nowcasting range and is said to be up to six
hours.
NWP models do not start their computations from recent observations but incorporate
observations continuously through a cycle of updating the model state and re-initializing
new computations. The crucial process of accounting for observations in an optimal way
is called data assimilation.
Ensemble products have gained more and more popularity among forecasters in the last
few decades. Their major advantage is that they allow the forecaster to estimate the
uncertainty of a forecast. Therefore they are a powerful tool for probabilistic forecasts.
There are several different data assimilation methods to assimilate observations into an
ensemble of forecasts efficiently while keeping desired properties like the spread of the
ensemble members around the ensemble mean.
The main drawback of numerical weather prediction forecasts and even more so of ensemble
forecasts is their long computation time. Their computations usually take a few hours
(according to [Wastl et al., 2021] 4 hours for the C-LAEF ensemble). This means that
no observations in that period can possibly be accounted for. Therefore there have been
widespread efforts to join the advantages of nowcasts (using recent observations) and
traditional NWP forecasts (full physical spatio-temporal evolution of the state of the
atmosphere) into a blended forecast. However, blending two different forecasts into one
may lead to unphysical fields. Another problem is that the blended forecast may end
up as a too smooth field. The aim to avoid these problems while achieving a blended
forecast is often referred to as „seamless blending“ or „seamless nowcasting“.
This thesis presents a novel approach that tries to achieve just that: combining an
ensemble of forecasts with recent observations by exploiting an ensemble data assimilation
method in a computationally cheap and therefore fast way. The underlying approach uses
the Local Ensemble Transform Kalman Filter (LETKF) to re-weight the members of a
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1. Introduction and research questions

forecast ensemble for the probability of precipitation. This approach could be described as
offline data assimilation, as the update step is performed but no new NWP forecasts are
initialised. The hope is to bring the advantages of nowcasting into the ensemble forecast
and thus improve it. In order to understand if and in what situations the nowcasting
method is useful, the following questions are going to be answered:

1. Can an LETKF-based nowcast model for the probability of precipitation outperform
the underlying ensemble forecast?

2. In which cases and for what lead times does the method perform well / not so well?

3. Does the rain rate or spatial extent of rain affect nowcasting performance?

The following Section 2 contains an oversight of the theoretical background of some
core properties of data assimilation, ensemble forecasts, blending methods, and nowcasts.
Furthermore, the LETKF and its features are discussed as it is the base for the underlying
nowcasting method. Section 3 provides an overview of the datasets that were used for this
thesis. In Section 4, the exact formulation and setting of a novel objective nowcasting
model is explained and the verification method for both nowcast and ensemble forecast is
discussed. Sections 5 and 6 contain the results of the nowcasting model and conclusions
that can be drawn from them.

2



2. Theoretical background

Weather forecast models generally contain an estimate for the physical state of the atmo-
sphere that is transferred through time by numerically solving physical equations such as
the 3-dimensional motion equations, the conservation equations of mass and humidity,
and the ideal gas equation directly. Solving all these equations requires a large amount of
computation time, not only because millions of operations are involved, but also because
some of them require iterative calculations to approximate their solution. In order to keep
the computation time reasonable, all the equations are solved on a discrete 3-dimensional
grid that is drawn through the atmosphere. The distance between those grid points
(the model resolution) is usually roughly 10km for global weather models and for some
local weather models (limited area models) often of the order of little more than 1km.
Some processes can not be represented on this scale because they happen on a smaller
scale. The scale of cloud condensation processes, for example, is of the order of µm.
Furthermore, some dynamic processes, like turbulence, can not be computed explicitly on
the scale of km. Therefore it is necessary to introduce parametrisations to approximate
the net effects of such physical processes. Parametrisations also serve to introduce empiric
relationships for processes that are not precisely understood yet.
Parametrisations as approximations for real processes are one of the reasons why fore-
casts deviate from the later true state of the atmosphere. Other major error sources
are uncertainties in the initial conditions of the state of the system atmosphere, the
boundary conditions in Limited Area Models, as well as the chaotic nature of atmospheric
processes. In order to minimise these errors, weather forecast models are continuously
compared to and updated with recent observations, i. e. measurements that represent
the true state of the atmosphere. The process of this update from a model estimate with
observations is called data assimilation and it is key to the method in the underlying thesis.

2.1. Data assimilation

Data assimilation is the process of assimilating observations into an operational weather-
forecast model. This is done in the so-called data assimilation cycle: Previous forecasts
serve as an a-priori background estimate which is updated with observations. From the
resulting analysis the next forecast is initialised and used as the next background estimate
during the next data assimilation step. In operational weather models there are a few
cycles (i. e. the model is re-run a few times) per day.
Rather than assuming observations as an undisputable truth, an uncertainty (error) is
assigned to them. The observations and the background (with its own uncertainty) are
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2. Theoretical background

combined in an optimal way, that aims to minimize the error of the analysis. Mathemat-
ically, this coincides with minimizing a cost function.
One widely used approach in data assimilation is the so-called Kalman Filter
([Kalman, 1960]) which assumes Gaussian distributed variables and aims to minimize a
2-dimensional cost function, essentially by weighting forecast and observation with their
inverse errors. Many adaptations of the Kalman Filter have been widely used in data as-
similation, for example the non-linear Kalman filter ([Julier and Uhlmann, 1997]), the ex-
tended Kalman filter ([Jazwinski, 1970]) or the Ensemble Kalman filter ([Evensen, 1994]).

2.2. Ensemble forecasts

In operational weather forecasting products have emerged that make it vastly easier
for forecasters to estimate the uncertainty of a forecast: ensemble forecasts. Ensemble
forecasting means running a set of multiple forecasts, rather than only a single deterministic
forecast. Different forecast members vary from each other through either different initial
conditions, or small differences in the model formulations, i.e. in the computations of the
physical development or through different parametrisations. For Limited Area Models
(LAM) that are nested in a model with a larger domain, different boundary conditions
can also be used for different members of the ensemble. The different members are
within the boundaries of uncertainty, therefore they are similarly reasonable and correct
forecasts. This also addresses the uncertainty that arises in weather forecasts due to the
chaotic nature of the atmosphere. Ensembles are limited in size because of their large
computational cost. Therefore it is difficult to portray all sources of uncertainty in an
ensemble and there are too few members compared to the degrees of freedom in the
system.
The spread of forecast members around the ensemble mean is a good indicator of the
certainty of the forecast: if the forecasts of different members lead to vastly different
outcomes (big spread), then the forecasted physical development can be considered
uncertain. If different members compute similar forecasts and if therefore the spread of
different forecasts is small, the forecast ensemble holds a high certainty. Generally, one
can obtain a probability of a meteorological event by dividing the number of ensemble
members that predict said event by the total number of ensemble members. For continuous
variables, this is in practice done by applying a threshold for a forecast variable (e.g.
temperature T ≥ 30◦C, wind gusts v ≥ 20m

s , or precipitation rate p ≥ 10mm/h. Since
ensemble forecasts too have to be updated with observations frequently, data assimilation
is naturally also performed on ensemble forecasts. Most of the data assimilation methods
for ensemble forecasts are rooted in the Ensemble Kalman Filter [Evensen, 1994]. The
core of this thesis is based on one particular Ensemble Kalman Filter that was proposed
by [Hunt et al., 2007]: The Local Ensemble Transform Kalman Filter.
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2.3. The LETKF

2.3. The LETKF

The Local Ensemble Transform Kalman Filter was designed as a data assimilation
method for ensembles that takes little computation time compared to other ensemble
data assimilation methods while performing similarly well.

2.3.1. Step-by-step computation of the LETKF

Along with their introduction of the LETKF, [Hunt et al., 2007] described a way to
compute the LETKF as efficiently as possible. This method was used in the underlying
thesis to minimize computation time.
Let p be a forecast variable of interest. Every member of a forecast ensemble serves as an
independent a-priori background estimate. Forecasted values for p for the n closest grid
points surrounding a grid point of interest are stacked in the background state vector of
the dimensions n× 1:

xi
b =

⎛⎜⎜⎜⎜⎜⎜⎝

pf,1

pf,2

pf,3

.

.
pf,n

⎞⎟⎟⎟⎟⎟⎟⎠ (2.1)

Where the subscript i denotes the number of the ensemble member, the first superscript f
stands for forecast and the second superscript 1, ..., n denotes the identity of the different
grid points. Element-wise averaging of the state vectors from all ensemble members
returns the background mean vector

xb =
x1

b + x2
b + ....+ xk

b

k
(2.2)

where k is the total number of ensemble members. Analogically, the observations for a
corresponding number of m grid points are stacked to form the observation vector:

yo =

⎛⎜⎜⎜⎜⎜⎜⎝

po,1

po,2

po,3

.

.
po,m

⎞⎟⎟⎟⎟⎟⎟⎠ (2.3)

Usually the observation grid and the model grid are different in number (n ̸= m) and exact
location of the grid points. In order to correctly compare and update the background
states with the observations, the model equivalent of the observations is obtained by
applying the observation operator H, which transforms the background state estimates
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2. Theoretical background

from model space to observation space:

ybi = H(xbi) (2.4)

The ybi are the model equivalents of the observations, different for every member of the
ensemble. If the observation grid is identical to the model grid, then H becomes the
identity matrix I, and Equation (2.4) simplifies to:

ybi = I(xbi) −→ ybi = xbi (2.5)

In this case, it follows that yb = xb, otherwise yb is computed from the ybi as in Equation
2.2. In the following steps of the computation following [Hunt et al., 2007] the back-
ground perturbation matrix Xb is required. Its entries are the deviations of the different
background state vectors from the background ensemble mean, xbi − xb. For the explicit
example of a variable p, Xb is written as:

Xb =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

p1
f,1 − pf,1 p2

f,1 − pf,1 .... pk
f,1 − pf,1

p1
f,2 − pf,2 pf,22 − pf,2 .... pk

f,2 − pf,2

.... .... .... ....
.
.

p1
f,n − pf,n pf,n2 − pf,n .... pf,nk − pf,n

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(2.6)

Here, again the second superscript denotes the n different points in model space that are
part of the state vectors and the subscript denotes the identity of the ensemble member.
Analogically to Xb, a perturbation matrix for the state vectors in model space, Y b is
formed from the deviations of ybi − yb. In the special case in which the observation grid
and the model grid are identical, then Y b and Xb are also identical. As the next step,
which paves the way to the computation of the analysis error covariance matrix P ã,
[Hunt et al., 2007] suggested to compute a matrix

C = Y bTR−1 (2.7)

Where R is the observation error covariance matrix with size n× n. The entries on the
diagonal of R represent estimates of the errors of the observations. Off-diagonal elements
represent the correlations of different observation errors. The superscript T denotes the
transpose of Y b and the superscript −1 denotes the inverse of R. The analysis error
covariance matrix, is then calculated via:

P ã =
[︂
I ∗ (k − 1) + CY b

]︂−1
(2.8)

Where I is again the identity matrix, here of the size k × k. Next, the matrix W a is
computed via

W a =
[︂
(k − 1)P ã

]︂ 1
2 (2.9)
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2.3. The LETKF

where the power of 1
2 denotes the symmetric square root of the analysis error covariance

matrix Pã. In the following step, the weight vector for the perturbation matrix, wa is
computed:

wa = P ãC(yo − yb) (2.10)

Adding this vector wa to every single column of W a turns the columns of W a into the
analysis vectors wai . Lastly, the analysis-ensemble members are computed via:

xa,i = Xb · wai + xb (2.11)

Thus from an ensemble of k different background state vectors, an updated ensemble of k
different analysis state vectors is computed. The ensemble mean xa can be computed as
an arithmetic mean of the analysis ensemble members xa,i as in Equation 2.2. However,
if desired, rather than computing Equation 2.11 and averaging the ensemble members,
the ensemble mean can (according to [Schraff et al., 2016], for example) be computed
directly via the equation:

xa = Xb · wa + xb (2.12)

2.3.2. Local analyses and transformation

Two of the key features of the LETKF are the local analyses and the transformation into
the ensemble space. Both serve to reduce computation time and make the LETKF unique
among other Ensemble Kalman Filters. Local analyses means that the computations
for the analyses are carried out at each point in the domain independently, using the
background states for the n nearest grid points along with the grid point of interest,
and the corresponding m local observations. After computing the analyses locally for all
grid points, a global analysis is obtained by simply putting the local analyses together.
[Hunt et al., 2007] stated that the number of observations that are taken into account
in each local analysis should normally be similar or a bit larger than the number of
ensemble members. Using not too many observations is what reduces the dimensions
of all the vectors and matrices in the Equations 2.1 to 2.10 and this strongly reduces
computation time. Another advantage is that spurious correlations are avoided. Spurious
correlations are correlations over large distances that are the result of oversampling in the
data assimilation step, rather than real physical correlations. On the other hand, if there
are indeed real large-distance correlations, they can not be accounted for by the LETKF
algorithm because of the local analyses. [Hunt et al., 2007] argued that there should be a
large overlap of the set of observations that is used for neighbouring analyses. Thus the
weight vectors wa do not vary too strongly for neighbouring grid points and unphysical
jumps in the global analysis are avoided.
Another important feature of the LETKF is the transformation that is performed from
model space to a lower-dimension ensemble subspace. The transformation is performed
in Equation 2.7 by using the increments ybi − yb in the matrix Y b. The analysis error
covariance matrix P a and the weight vector wa are only computed in this subspace that
is spanned by the ensemble perturbations. This also reduces the computational resources
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2. Theoretical background

needed. In Equation 2.11 (alternatively Equation 2.12) the transformation back into
model space is performed. There the weight vector is imposed on the perturbation from
the ensemble members around their mean. In other words, the LETKF-analysis is a linear
combination of the original ensemble members.
The analysis error covariance matrix P ã as computed in Equation is estimated from the
ensemble itself (along with the observation error covariance matrix), as in all Ensemble
Kalman Filters (in literature P ã is often denoted as B). This is a big advantage compared
to 3D-Var and 4D-Var data assimilation methods, where only a climatological estimate of
B is used.

2.3.3. The LETKF as a way around the main drawback of ensemble
forecasts

Timeliness is one of the crucial limitations of ensemble forecasts. They are computationally
very expensive. Since ensembles consist of multiple deterministic NWP model runs, they
also take multiple times longer to compute than a single deterministic forecast. Therefore,
ensemble forecasts are typically available only a few hours after initiation. On afternoons
of convective activity, the development of a few hours can, however, influence the next
few hours greatly through processes like vertical transport of moisture and temperature,
outflows of thunderstorm cells leading to a convergence in the ground wind field and thus
triggering other convective cells, etc. Such new developments can not be accounted for in
an ensemble forecast, as they only happen after the computation of the NWP model was
started. The convective developments of a few hours can already be significantly different
in forecasts and observations due to the stochastic nature of convection. Also, model
spin-up often reduces the skill of NWP forecasts in the first timesteps.
Since data assimilation provides a feasible way to adjust forecast information with recent
observations, and since the LETKF provides a fast way to compute such an update step
for an ensemble of forecasts, the idea arose to exploit the features of the LETKF in order
to overcome the challenges that convective activity poses for ensemble forecasts. In this
thesis, the LETKF is used to update ensemble forecasts with recent observations. These
LETKF „analyses “ for future time steps can be considered as nowcasts.

2.4. Nowcasting methods

Nowcasting methods are inherently different from NWP models. They mostly ignore
the physical processes behind the development of weather regimes and instead try to
predict the short-term future by extrapolating from the ’now’-state of the atmosphere.
Nowcasting is mostly performed for precipitation, storms, or lightning [Pierce et al., 2012].
The current state can, for example, be obtained through direct measurements. Those can
either be ground-based observations, for example of precipitation rates or storm gusts, or
remote sensing data (for example detection of lightning strokes). Another possibility is
the use of indirect measurements, for example wind speed derived from Doppler-Radar
measurements, or precipitation rates derived from radar reflectivities. The latter uses
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2.4. Nowcasting methods

the so-called Z − R relationship between radar reflectivity and rainfall rate and is the
foundation of the most widely used methods for precipitation nowcasting.
The simplest approaches to radar-based precipitation nowcasting use linear extrapolation.
There are a few different ways to perform linear extrapolation, as there are different
approaches to derive the current motion from radar patterns. One approach is to obtain
the motion of the whole field of radar patterns, which can be done in different ways. Often
used systems for this purpose are for example COTREC ([Li et al., 1995]) or SWIRLS
([Li et al., 2000]). Another way to perform linear extrapolation is cell tracking: convective
cells can be defined as independent objects, and the center of each object can be identified
in consecutive radar images and be individually extrapolated. This was implemented,
for example, in the TITAN ([Dixon and Wiener, 1993]) and SCIT ([Johnson et al., 1998])
algorithm. All of these methods try to advect observed radar reflectivities, but can
neither account for errors that result from the Z −R-relationship, measurement errors
in the radar reflectivity (for example radar beam blockage), nor for the growth and
decay of convective systems. Therefore the skill of linear extrapolation is limited in lead
time. [Germann and Zawadzki, 2004] found an extrapolation-based nowcast with the
Local Eulerian method to be useful for lead times up to 2.3 hours, and Local Langragian
nowcasts remained useful for a maximum of 4.2 hours. Usefulness was defined as forecasts
that scored above 0.5 in the Conditional square root of the Ranked probability score
(CSRR). A more practical approach is to define usefulness as the time range where the
extrapolation nowcasts perform better than an available NWP forecast. Since local
weather models improve steadily, the usefulness of linear extrapolation nowcasts is further
reduced compared to them. However they remain relevant in the nowcasting range.
There are other precipitation nowcasting methods that try to account for the growth and
decay of precipitation patterns. One example is the Analogues method
([Panziera et al., 2011]) where past developments of cells are categorised, linked to predict-
ors, and then currently observed precipitation patterns are compared with the predictors,
assigned to the respective category and the typical development of the respective category
is assumed for the current cell. In the study by [Panziera et al., 2011] nowcasts from
different initialisation times were used to form a nowcasting ensemble, which is a way to
account for the uncertainty of nowcasts. Besides ensembles, there are other nowcasting
methods that delve into probabilistic nowcasting, like neighbourhood methods or methods
that introduce random numbers in order to create stochastic nowcasts.
An entirely different nowcasting method is NWP-based nowcasting. Recent information
is used to re-run an NWP model frequently. The drawback is that this still requires
the computation time of an NWP forecast. Therefore the main benefit of nowcasting
methods is not fully exploited. There are efforts to further increase the intervals of
re-initialisation through Rapid Update Cycling (RUC). In Austria the AROME-RUC
is under development to produce new forecasts every hour. It assimilates ground-based
observations, satellite information, radar information and more. Forecasts are available
within one hour. Next to timeliness, another advantage is that more observations (e.g
radar observations) can be accounted for in a RUC, and therefore they perform well on
short time scales. A drawback is that in each cycle the analysis starts from the background
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NWP forecast and not from the previous RUC-forecast.
In recent years machine learning methods like Convolutional Neural Networks and Vision
Transformer Networks have been proposed for nowcasting (and weather forecasting in
general). Some applications have been judged to increase skill significantly while redu-
cing computation time. A detailed discussion of Machine Learning methods in weather
forecasting is outside the scope of this thesis. Noteworthy research has been conducted
(among many other contributions) for example by [Ko et al., 2022], [Leinonen et al., 2022],
[Ayzel et al., 2020], [Lee et al., 2021], [Agrawal et al., 2019],[Ravuri et al., 2021], [Piran et al., 2024]
and [Pulkkinnen et al., 2019]. An overview of Deep Learning methods in weather fore-
casting can be found in [Gao et al., 2021].

2.5. State of the art in blending nowcasts and forecasts

Since nowcasting methods perform best for short lead times, but tend to be less skillful
than NWP forecasts after a few hours, there have been many efforts to combine NWP
forecasts and nowcasts into one blended forecast. The goal of most researchers in this field
is to obtain a forecast that performs at least as well as the better of the two forecasts at all
lead times. Simple averaging of two independent fields leads to physically unrealistic fields.
The effort to avoid unphysical states and get a smooth transition from the nowcasting
range to longer lead times is referred to as „seamless nowcasting “. Efforts in seamless
nowcasting have for example been undertaken by [Kober et al., 2011]. The nowcasting
model that was used is the probabilistic module of the RAD-tram precipitation nowcast,
which uses optimum-flow for field-based advection extrapolation and a neighbourhood
method to generate probabilities. This probabilistic nowcast was combined with probabil-
istic precipitation forecasts derived from the COSMO-DE Ensemble Prediction System
(EPS). Different methods for obtaining the probabilities from the EPS were used and
compared. Probabilities from each method were calibrated via the reliability diagram
statistics method before use. The lead time dependent skill of the nowcast was assessed
through a verification method. A weighting function (with respect to the lead time) was
designed empirically for the nowcast to give it a weight proportional to its skill, decreasing
with increasing lead time. The NWP forecasts were given a weight so that the weight of
the nowcast and the forecast would sum to unity. The blended forecast was computed as a
linear combination of both forecast components with their respective weight at every lead
time. This blended forecast was found to perform better than both respective components
at all lead times and for all different probabilistic NWP forecasts.
This method’s success was confirmed in a follow-up study for a longer period
([Kober et al., 2013]). The method’s dependency on different weather regimes was evalu-
ated. The dataset was classified into three different weather regimes and the weighting
function as well as the NWP model calibration were done separately for all regimes and
found to be significantly different. It was concluded that regime-dependent calibration
improved the blended nowcast, but that after regime-dependent calibration a regime-
dependent weighting did not make a significant difference for forecast quality compared to
the general weighting function. This method of skill-dependent weights for RAD-Tram was
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also used by [Scheufele, 2010] who blended it with a time-lagged ensemble that consisted
of consecutive deterministic COSMO-DE runs. The weighting functions were different,
but the result that the blended forecast outperformed both components was the same.
[Poletti et al., 2019] combined information from the phase-stochastic (PhaST) nowcasting
ensemble and the deterministic NWP model MOLOCH to use it as input for a hydrological
model. This hydrological model with different precipitation forecasts was assessed for
three different extreme flooding events. The authors used (1) the nowcasting ensemble
alone, (2) the nowcasting ensemble with the trend for total rainfall volume of the NWP
imposed on it, and (3) a linear blending of (2) and the NWP model. The linear blending
was performed with four different weighting functions, all of which gave a weight of 100%
to the nowcast in the first 2 hours, then rapidly decreasing the weight with increasing
lead time. The blended nowcasts were found to mostly perform at least as well as the
nowcasting ensemble, with a few exceptions around the exact time when the components
were blended.
[Nerini et al., 2019] also used ensemble information to adapt and improve an extrapol-
ation nowcast method. Nowcast and forecast were blended with an Ensemble Kalman
filter approach in a reversed manner: The observation-based nowcasts with stochastic
realisations were used as background and precipitation intensities from an ensemble of
NWP forecasts were used as pseudo-observations in a data assimilation step. The results
varied for different weather regimes but were overall judged to be successful because they
reproduced the skill of the nowcasting method alone for short lead times and converged
to the NWP’s skill for longer lead times.
All these methods try to achieve seamless nowcasting by blending nowcasts with NWP
forecasts (or forecast ensembles). These blending methods proved to be overall successful,
however, they do not provide an entirely objective way of combining the different forecasts.
[Kober et al., 2011] and [Scheufele, 2010] assessed the skill of the nowcast model in order
to develop an empirical function tailored to the behavior of the lead time dependent skill
that was observed. The issue of obtaining unphysical fields after blending was mitigated
by blending probabilities instead of precipitation intensities. In order to replicate their
method effectively for other NWP models and nowcasting methods, a lot of verification is
necessary to find the appropriate weighting functions. If the weighting function is less
involved, like in the work of [Poletti et al., 2019], then it is not clear which lead time
decreasing weight to use for the nowcast, at least in their work.
The underlying thesis proposes a very different approach for seamless nowcasting and
a truly objective way of blending. Instead of trying to unite a nowcast and a forecast,
observations are incorporated into high-resolution ensemble forecasts in an „offline-data-
assimilation step“, which means that the new analysis according to the LETKF is not
used to re-run the NWP models, but only for the adapted forecast. Similar work has
been done by [Raynaud et al., 2014], who used the Bayes-theorem for non-linear filtering
to compute adapted weights for a time-lagged ensemble. The weights were based on
recent observations of precipitation probability. However, their re-weighting was found to
not gain significant skill compared to an equal-weight combination of all members of the
time-lagged ensemble. The underlying thesis gives the idea of offline-data assimilation for
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nowcasting another try with the LETKF as assimilation method.
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3. Datasets

Both the ensemble forecast data and the observation data were thankfully provided by
courtesy of Austria’s national weather service GeoSphere Austria, formerly known as
„Zentralanstalt für Meteorologie und Geodynamik “ (ZAMG).

3.1. Ensemble data

The ensemble forecast that was used for this thesis is the so-called C-LAEF ensemble.
It is nested in ECMWF’s IFS model and consists of one main run plus 16 perturbed
members, thus forming an ensemble of 17 members. The ensemble addresses uncertainties
in the following ways ([Wastl et al., 2021]):

• Uncertainty in the lateral boundary conditions is introduced by using a different
member of the IFS ensemble as boundary condition for each C-LAEF member.

• Errors in the initial conditions are represented by using a different perturbation for
observations for each ensemble member and running separate 3D-Var analyses.

• Uncertainty in the model physics is represented by a hybrid approach that com-
bines a parameter perturbation scheme and a tendency perturbation approach
([Wastl et al., 2019]).

Datasets for total precipitation of all ensemble members were provided in hourly resolution
ranging from July 20th 2020, 0 UTC until July 26th 2020, 12 UTC. Ensemble runs are
(for operational purposes) initiated every 12 hours, at 0 and 12 UTC. C-LAEF data
was provided on a postprocessing grid with a grid-point distance of ∆lon = 0.028 ° in
the x-direction and ∆lat = 0.018 ° in the y-direction. This roughly corresponds with a
resolution of 2km in both the longitudinal and meridional direction. The domain extends
from 5.498 °E to 22.102 °E and from 42.981 °N to 51.819 °N.
Along with the C-LAEF ensemble the deterministic AROME-AUT forecast model was also
provided on the same grid for the same time period in hourly resolution. AROME-AUT
is initiated every three hours. Because the C-LAEF ensemble is strongly based on the
AROME-model, the control-run of C-LAEF was replaced with AROME-AUT in this
thesis. Thus the total ensemble that was used consists of the 16 perturbed C-LAEF
members and the deterministic AROME-AUT run.
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3.2. Observation data

As observations, GeoSphere Austria’s INCA analysis ([Haiden et al., 2011]) was used.
The INCA analysis is based on a combination of radar measurements by the civil aviation
administration („Austrocontrol “) and ground-based rain-gauge precipitation measurements
of GeoSphere’s semi-automatic „TAWES “(see [Kann and Haiden, 2011]) weather stations.
As of 2024, the TAWES-observation network consists of roughly 280 stations across
Austria.
The INCA analyses for total precipitation were provided from July 20th 2020, 0 UTC until
July 25th 2020, 23:45 UTC in 15-minute resolution. The last full hourly precipitation
rates can be obtained for July 25th, 23 UTC. So in total, there are 143 sets of hourly
precipitation rates in both forecast and observation.

Coordinate transformation of INCA grid-points

The INCA dataset was provided on a horizontal grid with a resolution of exactly 1km
on a projection on the Bessel-1841-ellipsoid. As the points in x- and y-direction
were given in meters east and north of certain reference points, with values from
[x̃] = [20000, 21000, ....., 720000] and [ỹ] = [220000, 221000, ..., 720000] they needed to be
transformed to their respective values of longitude and latitude. This section follows a
guide from a website by the New Zealand government on how to transform from the Lam-
bert conical projection with the Bessel-ellipsoid to a regular longitude-latitude grid: https:
//www.linz.govt.nz/guidance/geodetic-system/understanding-coordinate-con
versions/projection-conversions/lambert-conformal-conic-transformations
(last accessed on August 23rd, 2024).
The following table gives an oversight of the constants needed and their values, many of
which were provided by GeoSphere, along with the datasets.

Variable Name of variable Value
a semi-major axis of the reference ellipsoid 6377397.155

F Ellipsoidal flattening 1/299.152815

Φ1 Latitude of first standard parallel 46°N
Φ2 Latitude of second standard parallel 49°N
Φ0 Origin Latitude 47.5°N
λ0 Origin Longitude 13.3333°E
N0 False northing 400000

E0 False easting 400000

Table 3.1.: Parameters needed for the transformation from a Lambert conical grid to a
regular lon-lat-grid.

From these basic constants, a few more have to be computed. Some are denoted differently
than in the above-mentioned guide to avoid confusion with other variables within this
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thesis.
e =

√︁
2F − F 2 (3.1)

Solving the function

M(Φ) =
cos(Φ)√︁

1− e2sin2(Φ)
(3.2)

for the value Φ = Φ1 yields the constant M1, and solving for Φ = Φ2 yields M2. Next,
the function

u(Φ) =
tan(π4 − Φ

2 )

(1−esin(Φ)
1+esin(Φ))

e
2

(3.3)

has to be solved for Φ = Φ0,Φ = Φ1 and Φ = Φ2 in order to obtain the constants u0, u1
and u2. Furthermore, these are needed:

z =
ln(M1)− ln(M2)

ln(u1)− ln(u2)
(3.4)

F =
M1

z(u1)z
(3.5)

d0 = aFuz0 (3.6)

Now for every pair of x̃ and ỹ the deviations from the reference points are taken:

N ′ = ỹ −N0 (3.7)

E′ = x̃− E0 (3.8)

and then used to compute

d′ = +
√︁
E′2 + (d0 −N ′)2 if z > 0 (3.9)

or
d′ = −

√︁
E′2 + (d0 −N ′)2 if z < 0 (3.10)

Then for the final computation of the latitude, two more variables are needed:

u′ = (
d′

aF
)
1/z (3.11)

γ′ = arctan(
E′

d0 −N ′ ) (3.12)

Now the longitude of every grid point can be computed via

λ = λ0 +
γ′

z
(3.13)

The latitude has to be computed iteratively. As a start, a first approximation is calculated
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via:
Φ =

π

2
− 2arctan(u′) (3.14)

This expression is plugged into the equation

Φ =
π

2
− 2arctan

[︄
u′
(︃
1− esin(Φ)

1 + esin(Φ)

)︃ e
2

]︄
(3.15)

Iteratively, the result on the left-hand side of Equation 3.15 is to be put in as Φ on the
right-hand side, until the results do not change anymore. For this thesis, ten iterations of
Equation 3.15 were carried out.
On a regular lon-lat grid, the INCA grid is not aligned rectangular. According to the above
transformation throughout Equations 3.1 to 3.15 the southernmost and northernmost
points are located at 45.7727 °N and 49.4789 °N respectively. In the longitudinal direction,
the most western grid point is located at 8.0982 °E and the most eastern point at 17.7437
°E.

Nowcasting domain

The nowcasting domain is chosen to be rectangular on a regular lon-lat grid like the
C-LAEF domain and to be fully inside the INCA domain. This ensures that full sets of
observations are available at every analysis point. The nowcasting domain is further cut
off on the outsides so the closest n grid points around the analysis points on the C-LAEF
grid still have full sets of corresponding observations. Thus the special case of the edge of
the domain (observations not available in all directions) does not have to be dealt with.
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6°E 8°E 10°E 12°E 14°E 16°E 18°E 20°E 22°E
42°N

44°N

46°N

48°N

50°N

52°N CLAEF domain
Nowcasting domain
INCA domain

Figure 3.1.: Outlines of the C-LAEF domain that was provided, the INCA domain
according to the transformation, and the nowcasting domain that was used
in this thesis.

The resulting nowcasting domain spans from 8.774 °E to 17.146 °E and from 46.133 °N to
49.155 °N. It still covers the vast majority of Austria, except the very easternmost part
(east of Austria’s biggest lake, Neusiedlersee). Also within the domain are northeast Italy
(mainly the province South Tyrol), Liechtenstein, parts of Switzerland (the northeast
region as well as Graubunden), and in Germany a large part of Bavaria as well as a small
part of Baden-Württemberg.
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4. Nowcasting Model

Based on the LETKF a nowcasting model is derived in order to generate nowcasts for the
variable p, which is the probability of the hourly precipitation rate exceeding a threshold.
The essence of the idea for the nowcasting method is to introduce a timeshift in Equation
2.12. Recent INCA analyses are used as observations and the weights are calculated for
the C-LAEF members through the Equations 2.1 to 2.10. Then the weight vector is
applied to the background perturbation matrix Xb of future timesteps. Thus an adjusted
forecast, or rather, a nowcast is computed.
So for a timestep t−∆t, the wa are calculated at every grid point and applied on the
ensemble perturbations of a future timestep t. Mathematically this is formulated as:

NOWCt = Xb
t · wa

t−∆t + xbt (4.1)

The minimal possible time shift ∆t is one hour, as that is one step in the temporal
resolution of the precipitation fields. The nowcasts are computed for time shifts of up to
six hours. But since time shifts of ∆t > 4h are found to not produce useful nowcasts (see
next section), only nowcasts of up to four hours are evaluated in this thesis.

Figure 4.1.: This flowchart illustrates Equation 4.1. In this example, the ensemble forecast
for 16 UTC is updated shortly after precipitation observations from 16 UTC
in order to forecast precipitation probabilities for 17 UTC

The rest of this section contains information about the specific setup of the nowcasting

19



4. Nowcasting Model

model.

4.1. Creating upscaled probabilities from forecasted
precipitation rates

For this thesis, the probability of precipitation is chosen as variable, rather than precip-
itation intensities directly. This is done to get a variable that better fits the Gaussian
assumption, which is one of the assumptions in the LETKF (or any Kalman Filter).
Probabilities are formed from hourly precipitation intensities using an upscaling approach.
First, the precipitation rates are converted into binary probabilities, using the condition:

p̂ = 1 if r ≥ τ
p̂ = 0 if r < τ

(4.2)

Where τ is a threshold for the hourly precipitation rate. With the above condition, a field
of probabilities of 0 and 1 is created from a field of hourly precipitation rates.

8°E 10°E 12°E 14°E 16°E 18°E

46°N

47°N

48°N

49°N

50°N
Hourly precipitation (mm/h) 

 for July 21st, 13 UTC [Member1]

0.1
0.2
0.5
1.0
2.0
5.0
10.0
20.0
50.0

(a) Example of a forecast for
hourly precipitation

8°E 10°E 12°E 14°E 16°E 18°E

46°N

47°N

48°N

49°N

50°N
Probability for precipitation > 5 mm/h 

 for July 21st, 13 UTC [Member 1]
P=1

(b) Binary probabilities for a precipitation rate
greater than τ1 = 5mm/h

Figure 4.2.: This example visualizes the application of the condition in Equation 4.2 on
one of the precipitation forecasts in order to create binary probabilities.

Secondly, a neighbourhood size is chosen for upscaling the probabilities. In order to
obtain an upscaled probability field from the binary probabilities in Figure 4.2 b), a
simple arithmetic mean is computed for a square of η × η grid points:

p =

∑︁η2

K=1(p̂K)

η2
(4.3)

An advantage of using upscaled probabilities, rather than the grid point binary probabilities
or probabilities computed from all ensemble members, is that the double penalty problem
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is reduced. The double penalty problem is the issue, that if a precipitation pattern is
forecasted and observed, but slightly dislocated, it will, by traditional scores or contingency
tables, be penalized twice (it was forecasted where it was not observed and it was observed
where it was not forecasted). Thus, a forecast with a close miss will perform worse than
a forecast that does not predict any precipitation at all. Using the upscaling avoids
double penalties on a small scale. The higher the value for η, the more the double
penalty problem is reduced. On the other hand, the resulting probabilities are smoothed
over larger areas, resulting in probability fields with a lower resolution and less sharp
probabilities, compared to a smaller value of η.

(a) Illustration of upscaling:
The blue boxes represent
binary probabilities of 1

and the white boxes
probabilities of 0.
Averaging yields a

probability of
6
25

= 0.24.Figure from
[Park, 2023]
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Upscaled probabilities for precipitation rate > 5 mm/h
 July 21st, 13 UTC [Member 1]
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(b) Upscaled probabilities with η = 5

Figure 4.3.: Using the upscaling method of (a) on the field from Figure 4.2 b) yields the
field of upscaled probabilities in (b)

Figures 4.2 and 4.3 together visualize the upscaling. The upscaling is carried out so that
all the original C-LAEF grid points within the nowcasting domain are used and each grid
point is used in exactly one η × η grid box.

4.2. Comparing forecasts and observations

As explained in Section 3.1 and Section 3.2, the INCA analyses that serve as observations
are provided on a higher-resolution grid than the forecasts. In order to compare the
observations to the forecasts, the observations are also converted into a probability field.
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There are a few different possibilities as to how to deal with the different model resolutions
at this point, including:

1. Averaging the INCA precipitation field onto the C-LAEF grid before computing the
upscaled probabilities

2. Computing binary probabilities on the INCA grid according to Equation 4.2, binning
the observations into the upscaled grid and computing the probability for every
point on the upscaled grid according to Equation 4.3.

Option 1) would presumably reduce the bias that is caused by the different resolutions of
the forecast and the analysis. The high-resolution INCA field is less smoothed than the
C-LAEF field and therefore will have higher spikes of precipitation rates which can affect
the probabilities. Option 2) remains more oriented toward the observations as it does not
mathematically alter precipitation rates, and is, therefore, closer to the truth experienced
on the ground. Since one of the intentions behind the method is to be impact-orientated,
option 2) is chosen. It also appears to be mathematically cleaner, since essentially the
probabilities are produced in the same way as the probabilities in the forecast.

Figure 4.4.: The grey points represent grid points of the original C-LAEF grid. The red
rectangle represents the grid box of the upscaled grid, spanning 5 by 5 grid
points. The blue points show the INCA grid points within this particular
upscaled grid box.

Figure 4.4 illustrates the upscaling process: Same as the values of p for a number of
η × η C-LAEF grid points are averaged to obtain upscaled probabilities, the INCA
grid-points within this area are also averaged in the same way. The number of INCA
grid-points within upscaled grid boxes varies because of the slanted shape of the INCA
domain compared to the rectangular longitude-latitude grid of the C-LAEF domain. Also,
because of meridian convergence, the northern part of the regular lon-lat grid covers a
shorter distance from west to east in km while the INCA grid always covers 700km from
west to east (therefore it appears wider in the north than in the south on the lon-lat grid
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in Figure 3.1). Therefore in the more southern latitudes of the domain, there are more
observations within the boxes of the upscaled grid.

4.3. Specific setup and tuning choices of the nowcasting
model

Several tuning choices have to be made. This section lists all of them and which setting
is chosen, as well as the reasons for that.

4.3.1. Resolution of upscaled probabilities

The first choice to be made is the upscaling size, i.e. the side length η of the rectangle
of observations that are used in Equation 4.3 in order to turn the precipitation field
into a probability field. Here, empirically the value of η = 5 is chosen. This means
that all the following computations are undertaken on a reduced grid that is five times
coarser in each direction than the grid that was originally provided. In each box of the
upscaled grid there are exactly 25 grid points of the provided C-LAEF grid, and roughly
105 points of INCA observations. The resulting grid is of the grid size ∆lon = 0.14 °E
in the x-direction and ∆lat = 0.09 °N in the y-direction. The distance in real space is
roughly 10km. This grid size is of the order of the effective model resolution of C-LAEF
(see [Bierdel et al., 2012] for more about the effective model resolution, there for the
COSMO-DE model). A high-resolution field of probabilities is desirable for users because
the probability of rainfall exceeding a threshold can then be forecasted very locally. With
a small upscaling size η the probability forecast is more specific to every location and
gives a sharper probability field.
In order to test the sensitivity of the nowcasting skill on the upscaling size, a sensitivity
study is undertaken, where all nowcasts are also computed with a coarser resolution
probability field of η = 10.

4.3.2. Threshold of precipitation rates

The threshold τ in Equation 4.2 can be chosen according to the user’s desire. For the
underlying thesis, the method is assessed for three different thresholds: τ1 ≥ 5mm/h,
which is referred to as strong precipitation, moderate precipitation with a threshold of
τ2 ≥ 1mm/h, and τ3 ≥ 0.1mm/h, representing weak precipitation (or any precipitation).

4.3.3. Localisation scale in the LETKF computation

Another choice to be made is the number of observations (on the upscaled grid) to be
considered in each local analysis when following the LETKF routine through Equations
2.1 to 2.10. As discussed in Section 2.3, the number of observations that is assimilated
is usually similar to (or slightly higher than) than the number of ensemble members k.
Since the ensemble used in this thesis consists of 17 members, it is decided to use not
only neighbouring grid boxes but also the neighbours of the surrounding grid boxes, so
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altogether a number of m = n = 25 observations in each local analysis. The choice of
assimilating the rectangle of the closest 5× 5 observations means that for neighbouring
LETKF-computations many of the observations ( 20 out of 25) are shared. This meets
the recommendation ([Hunt et al., 2007]) of a large overlap for a physically well-balanced
field when putting the local analyses together in the end.
Because of the choice to compute the INCA probabilities on the same (upscaled) grid
as the C-LAEF probabilities, the observation operator H becomes the Identity matrix
(of dimensions 25× 25), and the identity from Equation 2.5 follows. The state vectors
ybi become n-dimensional vectors. Y b becomes a n× k - sized matrix, which specifically
means that its dimensions are 25× 17. R becomes a 25× 25-sized matrix.

4.3.4. Assigning observation errors

Another component that has to be tuned empirically is the observation error covariance
matrix R. Since the upscaled probabilities are computed without any overlap, the obser-
vations and thus the observation errors are assumed to be uncorrelated. So off-diagonal
elements in R are set to 0 and R becomes a diagonal matrix. R being diagonal reduces
the computational cost, as the inversion in Equation 2.7 is computationally much cheaper
for diagonal matrices than for non-diagonal ones.
The values of the diagonal elements in R are chosen to be larger for entries corres-
ponding to observations further away from the center grid point of the local analysis
([Hunt et al., 2007] suggested either this or identical entries). The observation error at
the center point is assumed to be 0.1 · 1, the neighbouring observations are assigned an
error of 0.1 · 2, the furthest observations are assumed to have an error of 0.1 · 4.
To find out whether the choice of the values in R influences the performance of the now-
casts, the computations are also carried out with identical values in R for all observations
in a sensitivity study. The results are presented in Section 5

4.3.5. Symmetric square root

The computationally most extensive part of the calculation is Equation 2.9 as it involves
the symmetric square root of the non-diagonal matrix P ã of the size 17× 17. For this
thesis, the symmetric square root is computed using the Python package numpy and its
command ‘root’. Generally, the symmetric square root of matrices can produce imaginary
solutions. These imaginary solutions did occur in this computation and turned out to be a
problem for the computation program, as they would have progressed in the computation
and ultimately would have led to an imaginary part in the output probabilities. Therefore,
the imaginary part of the symmetric square root is dropped. Only the real part of Wa is
considered by using the command ’numpy.real()’
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4.3.6. Negative probabilities

The nowcasting model treats the probabilities like any other variable, it merely adapts the
forecasts by increasing or decreasing the values according to the weight vector wa. Rarely
the nowcasting model calculates probabilities slightly larger than 1, and sometimes slightly
smaller than 0. These probabilities are set to 1 and 0 respectively after computation and
before statistical evaluation of skill.

4.3.7. Using the most recent forecast datasets

As mentioned above, the C-LAEF ensemble is initiated every 12 hours, AROME-forecasts
are, however, initiated every 3 hours, at 0 UTC, 3 UTC, etc.
The choice of ensemble runs is made so that the most recent run of every model is used,
with one exception: The probabilities for the very first hour of the forecasts are not used
in order to avoid possible error due to model spin-up. This means, that for example at 13
UTC, 16 C-LAEF ensemble members from 0 UTC are used together with the 9 UTC
AROME-AUT run. At 14 UTC a nowcast is started with the 9 UTC AROME-AUT run
and the 12 UTC C-LAEF runs.
The benchmark of the nowcasting method is the underlying ensemble itself. This means,
that it is investigated whether the nowcasting model is able to perform better than the
ensemble that was available at the time of the nowcast initialisation. Future runs are not
considered and not used as a benchmark. So, for example, a 3h nowcast that is started
at 23 UTC and valid for 2 UTC is not compared to the ensemble runs from 0 UTC. Its
reference forecast is the forecast for 2 UTC from the C-LAEF runs from 12 UTC on the
previous day, together with the AROME-AUT run from 18 UTC.

4.4. Verification method

There are many different verification measures to assess the quality of forecasts. In
this thesis, for reasons of simplicity and easy interpretation, the root mean square error
(RMSE) is chosen to assess the skill of both the background ensemble mean and the
nowcast. The INCA analyses serve as truth. The RMSE is computed as follows:

RMSE =

√︄∑︁L
l=1

∑︁J
j=1(p

o
l,j − pfl,j)

2

L · J
(4.4)

Where pol,j is the observed probability at the grid point in the l-th column of the j-th row
of the upscaled grid of the nowcasting domain, and pfl,j is the corresponding forecasted
probability at the same grid point. To get one verification measure, the RMSE is computed
over all L · J grid points of the nowcasting domain.
In order to statistically assess the skill of the nowcasting method, rather than just the
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4. Nowcasting Model

skill of single nowcasts, the average RMSE over the whole period is also computed:

< RMSE >=

∑︁T
t′=1(RMSEt′)

T
(4.5)

Comparing the RMSE values and computing either the absolute RMSE reduction

∆ < RMSE >=< RMSE >Ens − < RMSE >Nowc (4.6)

or the relative RMSE-reduction in percent

∆ < RMSE >Rel (%) =
< RMSE >Ens − < RMSE >Nowc

< RMSE >Ens

(4.7)

gives the final measure that is used to assess the usefulness of the nowcasts for the whole
period of six days.
As precipitation never occurs at the whole domain in the same hour, and in some cases
only occurs at a very small fraction of the whole domain, the RMSE as computed above,
often is dominated by correct negatives. This means that no probability of precipitation
is forecasted, and none is observed. Especially when choosing a high threshold like τ1,
this happens in the majority of cases. Therefore a separate evaluation is undertaken
that discards the cases where both P o

i,j = 0 and P f
i,j(Ens) = 0. This results in higher

RMSE-values for both the ensemble and the nowcast and changes the absolute (Equation
4.6) and relative (Equation 4.7)RMSE reduction.
Other verification scores like the Ranked Probability Skill Score, which is well suited for
probability forecasts, or neighbourhood verification methods like the Fraction Skill Score
([Roberts and Lean, 2008]) also come to mind and might give an even better picture of
the skill of the forecast. However the RMSE is deemed good enough to assess the general
quality of the forecasts and is used because it is the most well-known and widespread
measure of error quantity. The double penalty problem is already reduced because of
the probability upscaling. And mathematically, the RMSE from Equation 4.4 equals the
square root of the Brier Score ([Brier, 1950]) with the only difference that in the Brier
Score the observations are usually used on grid point level with binary probabilities of
either 1 (the event did occur) of 0 (the event did not occur) instead of neighbourhood
probabilities. Furthermore in the Fraction Skill score the verification is undertaken by
averaging precipitation in grid boxes ([Roberts and Lean, 2008]), just like the probabilities
are formed in this thesis (as explained in Section 4.1). So computing the RMSE for
the field of upscaled probabilities is similar to two different well-established verification
methods.
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5. Results

This section presents and evaluates the results. A few examples of nowcasts with the
default setting are shown in order to understand where and how much the nowcast model
deviates from the underlying ensemble and to get a better understanding of how the
nowcasting model works in practice. After that, a full statistic evaluation for all nowcasts
with standard setting is carried out by evaluating the RMSE statistics from Equations
4.4, 4.5, 4.6, and 4.7. In order to deepen the understanding of the nowcast model, the
results of two sensitivity studies are presented: The results of full re-runs for the whole
period and the thresholds τ1, τ2 and τ3 but with different settings are presented. The first
sensitivity study shows the influence of the setting of the observation error covariance
matrix. The second sensitivity study shows the results for a coarser probability field with
an upscaling of η = 10 instead of η = 5.

5.1. Case studies

The smaller the threshold τ is chosen, the more signals remain in the forecasts for the
probability of precipitation exceeding that threshold. So first, a nowcast with a shift of
∆t = 2h is shown for a randomly chosen time in the period for a threshold of τ3 = 0.1mm

h .

5.1.1. 2h nowcast for the early afternoon on July 21st

The nowcast that is valid for July 21st, 12 UTC (local time: 2 pm) and was initiated at 10
UTC is compared to the ensemble forecast. At first glance, the nowcast in Figure 5.1 (b)
hardly deviates from the ensemble mean in (a). On second glance, however, probabilities
are increased in the far west of the domain. Figure 5.2 shows the timestep two hours
prior (10 UTC) that was used to calculate the weighting of the ensemble. Looking at this
timestep of initialisation in Figure 5.2 it quickly becomes apparent, why not much was
adapted in the future timestep. For almost the whole eastern half of the domain, the
ensemble probability at initialisation time was 0. Therefore, every member was equally
correct and is given the same weight by the LETKF algorithm. From Figure 5.1 and
Figure 5.2 as well as from the derivation of the LETKF in Section 2.3 it can be concluded
that the nowcast at any given point produces the exact same probability as the underlying
ensemble, in the following cases:

1. If the local probability from the ensemble mean equals 0 at initialisation time. A
mean probability of exactly 0 means that all members predicted 0 and are therefore
equally correct. The nowcast will be an equal combination of the members and
therefore identical to the ensemble mean.
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(a) Background ensemble forecast

9°E 11°E 13°E 15°E 17°E46°N

47°N

48°N

49°N

2h nowcast: probability of precipitation > 0.1 mm/h 
 July 21st, 12 UTC

0.00

0.01

0.10

0.50

0.90

1.00

(b) Nowcast
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(c) Observation

Figure 5.1.: Set of ensemble, nowcast, and observation (truth) for weak precipitation on
the early afternoon of July 21st.

2. If the ensemble probability is 1, or if all members forecast any identical probability,
for the same reason.

3. If the ensemble probability at the future timestep equals 0 (or 1 or any identical
value for all members). That is because if all members hold a probability of 0 in
a local area, any re-weighting of the different forecasts will again end up with a
probability of 0.

5.1.2. Second example: best 1h nowcast for strong precipitation

Successful nowcasts of strong precipitation are particularly valuable due to the high
impact of high precipitation intensities. This example features the 1h nowcast with
the greatest absolute reduction in RMSE according to Equation 4.6. This most skillful
nowcast is initiated on July 24th, 9 UTC, see Figure 5.3. The weights are applied to the
background ensemble forecast for 10 UTC (in Figure 5.4 (a)). Computing the RMSE
of the nowcast (the error of the field on the top right panel in Figure 5.4 compared to
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(a) Ensemble probabilities for the
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(b) And the corresponding observation

Figure 5.2.: Only a small part of the domain holds an overlap of forecasted and observed
probability of precipitation

the observations at the bottom according to Equation 4.4) yields an RMSE of 0.0663.
The RMSE for the ensemble for 10 UTC stands at 0.0834. Therefore the relative RMSE
reduction as in Equation 4.7 is slightly above 20% for this particular nowcast. The time
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(a) Background ensemble forecast
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(b) Corresponding observation

Figure 5.3.: Initialisation of the most skillful nowcast

of initialisation shows why the nowcast is so successful. At 9 UTC (Figure 5.3) there is an
overlap of forecasted and observed probability of precipitation. However, not all ensemble
members but a fraction of them correctly predict precipitation in the southeast of Austria,
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seeing as the probability of the ensemble mean is less than 50%. As a consequence, the
LETKF algorithm gives more weight to those members that do predict a high probability
of precipitation where precipitation was observed.
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(a) C-LAEF ensemble forecast
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(b) Nowcast
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Figure 5.4.: The background forecast in (a) is adapted to the nowcast in (b). The bottom
panel shows the corresponding observation.

The ensemble forecast for 10 UTC still holds a certain probability of precipitation in
the same region where at the previous timestep in Figure 5.3 high probabilities were
observed. Since the LETKF-based algorithm now increases the weight of the members
that correctly predicted precipitation in the region and since the same members still
predict a certain probability of precipitation, the probabilities in that area are increased
by the nowcast. Since strong precipitation is still also observed in the same region, the
nowcast is successful in increasing the skill.

5.1.3. Third example: worst 3h nowcast

In order to understand why nowcasts sometimes have less skill than the ensemble forecast,
the next example shows the one particular 3h nowcast with the largest absolute increase
in RMSE according to Equation 4.4. The nowcast is valid for July 24th, 1 UTC. The
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weights were computed at 22 UTC on July 23rd. As Figure 5.5 shows, there already
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(a) Background ensemble forecast
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(b) Corresponding observation

Figure 5.5.: Initialisation of the least skillful 3h-nowcast

is a big discrepancy between forecast and observation. Areas with a probability of 0
in the background in 5.5 (b) will not be affected by the LETKF algorithm. There are,
however, regions with an overlap of forecasted and observed probability, the largest
one being in South Tyrol, south of Austria. This is where the algorithm will adapt
the forecast if any members show a probability different from 0 in the future timestep.
The nowcast increases the probabilities according to the assimilation of the observations
into the background at initialisation time. Thus, probabilities are increased in South
Tyrol / Trentino. However, as Figure 5.6 (c) shows, the observed probability, i. e. the
precipitation field, barely overlaps with the observations from 22 UTC anymore. The
precipitation pattern has moved further east, into the regions of Friuli-Venezia Giulia and
Veneto. As the probabilities are increased in the wrong place (where precipitation was
observed three hours before), the nowcast now holds a higher RMSE than the underlying
ensemble forecast. This example shows that signal propagation of precipitation patterns
is a major limitation. Precipitation patterns that cause the algorithm to adapt the
probabilities in one place, after a few hours, often have propagated to another place
outside of the localisation scale.
The RMSE for this worst 3h nowcast is 0.0723, the error of the background ensemble is
0.0609, which corresponds with a relative error increase of about 18.7%

5.2. Statistical evaluation for all nowcasts with default
setting

Rather than the performance of single nowcasts, the average performance for all nowcasts
(up to 143 for 1h nowcasts) is evaluated in this section for the three thresholds τ1, τ2 and
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(a) C-LAEF ensemble forecast
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Figure 5.6.: The background forecast in (a) is adapted to the nowcast in (b). The bottom
panel shows the corresponding observation.

τ3 and for nowcasts from one to four hours into the future. The point at 0h lead time in
Figure 5.7 does not represent a nowcast, but the classic LETKF analysis, and is included
here for comparison and in order to see how fast the skill reduces with the time shift. For
strong precipitation rates ≥ 5mm/h, the average RMSE for all probabilistic nowcasts
with a lead time of one hour, as presented in Equation 4.7, was 2.99% smaller than
the average RMSE of all the respective background ensemble forecasts. For moderate
precipitation of 1mm/h, the average RMSE was reduced by 10.06% in 1h nowcasts, and
for the threshold τ3 by 13.89%.
The skill drops drastically with increasing lead time, though. For all nowcasts with a
shift of 2h, the relative improvement compared to the underlying ensemble is 1.72% for
weak precipitation (threshold τ3), for the threshold τ2 the nowcasts improved by 0.89%
on average. For strong precipitation ≥ 5mm/h the relative error-reduction drops below
zero at −0.62% which means that the error of the 2h nowcasts, on average, is higher
than the error of the C-LAEF ensemble. For nowcasts three or four hours into the future,
the nowcasting model produces, on average, slightly larger errors than the ensemble. In
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Figure 5.7.: RMSE reduction, averaged over all nowcasts, compared to the underlying
ensemble forecasts.

other words it is - on average - less skillful than C-LAEF. While some nowcasts are still
successful, the impact of nowcasts that increase the error outweighs them.

5.2.1. Correlation of spatial extent and nowcast skill

In order to learn more about the behaviour of the underlying nowcasting method than one
overall RMSE-statistic, correlations between the observed average precipitation probability
over the domain and the RMSE reduction are investigated. Here the absolute RMSE
reduction as in Equation 4.6 was plotted on the y-axis. Figure 5.8 shows, that across
all three precipitation intensities, the probability nowcasts perform better if a larger
part of the whole domain features precipitation. This is an advantage, as nowcasts for
precipitation are especially interesting if a lot of precipitation is expected. One reason
why the performance is better for larger precipitation areas could be that large-scale
precipitation patterns are more long-lived than small isolated convective cells.

5.2.2. Dependence of RMSE on correct negatives

Since the RMSE is strongly reduced by correct negatives (correctly predicted non-occurence
of probability of precipitation) for both the ensemble and the nowcast, a different evaluation
for the same nowcasts and ensemble forecasts was undertaken. Correct negatives were
filtered out before computing the RMSE of the ensemble and the nowcast. Thus, RMSE
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Figure 5.8.: Scatter plot for all 1h nowcasts: Absolute RMSE reduction vs. domain-mean
of probability of precipitation for different thresholds. The domain-mean
probability corresponds to the spatial extent of precipitation patterns.

values become higher for both the ensemble and the nowcast. The following table shows
the results for all nowcasts with a threshold of τ2 ≥ 1mm/h. The absolute error is reduced

∆t = 1h ∆t = 2h ∆t = 3h ∆t = 4h

RMSEC−LAEF 0.165 0.166 0.168 0.170
RMSENowc 0.149 0.165 0.170 0.171

Relative reducion[%] 10.1 0.9 −0.9 −0.9
Absolute reduction 0.017 0.001 −0.002 −0.002

RMSEC−LAEF
˜ 0.243 0.243 0.248 0.253

RMSENowc
˜ 0.220 0.242 0.250 0.255

Relative reduction [%] 9.2 0.7 −1.0 −1.0
Absolute reduction 0.022 0.002 −0.003 −0.003

Table 5.1.: Average RMSE for all ensembles / nowcasts for time shifts of 1 to 4 hours.
The RMSE˜ values in the bottom half are RMSE-statistics without correct
negatives. Values are rounded to the third decimal place, relative reductions
are rounded to the first decimal place.
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more as the absolute values of both errors increase. The relative RMSE reduction in [%]
however is not increased by filtering out the correct negatives. This stays the same for
the other thresholds, the corresponding tables of the exact results for strong and weak
precipitation can be found in the appendix.
In order to find out whether the correlation from Figure 5.8 was partly due to the correct
negatives, the same correlation was plotted again for RMSE reduction without correct
negatives. As Figure 5.9 shows, the correlation still prevails and therefore has nothing to
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Figure 5.9.: Spatial extent of precipitation vs RMSE (without correct negatives)

do with correct negatives, but is due to the nowcasting model improving probabilities
where they occurred.

5.3. Sensitivity studies

5.3.1. Tuning the error-covariance matrix

As explained in Section 4.3.4, the observation error was assumed to be larger for ob-
servations that are further away from the point of the analysis. However, as signal
propagation plays a part in the performance of the nowcasts, it seems unjustified to
give less credit to observations that are further away. Therefore, re-runs were computed
with identical values for all the entries in the diagonal in R. Three experiments have
been undertaken with the values 0.1, 0.2, and 0.4 as assumed errors for all observations
respectively. Covariances in R were still ignored and set to 0. The sensitivity study in
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Figure 5.10.: Skill evolution with lead time compared to the ensemble for different obser-
vation errors and all three thresholds

Figure 5.10 shows that the performance of the method is not too sensitive on the exact
setting of the error-covariance-matrix. The general behaviour does not change. Among all
three thresholds, the setting that performs slightly better than the others for 1h nowcasts
is that with a constant observation error of 0.2, closely followed by the setting with the
smallest observation error of 0.1. However, for larger time shifts of three or four hours,
these two settings show the least skill. Assuming a big error of R = 0.4 reduces the skill
a little for 1h nowcasts, compared to the other settings. For time shifts of 2h, however,
assuming larger errors for all the observations appears to pay off, as the setting with the
largest assumed errors performs best. The standard setting shows the smallest decrease
of skill with lead time, however it starts out with less skill than the two smaller constant
errors for 1h nowcasts.

5.3.2. Increased neighbourhood size

As Section 5.1.3 shows, the propagation of precipitation patterns poses a major limitation
to the skill of the nowcasting model. Therefore, a test with a lower-resolution probability
field was undertaken. Instead of averaging 5 × 5 grid point in the upscaling that was
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explained in Section 4.1, an alternative upscaled grid of 10 × 10 was used to form the
probabilities before computing the nowcast. This means that four times as many points
of the original C-LAEF grid are in the upscaled grid and that the horizontal distance of
local observations is doubled in both the x-direction and the y-direction. This section
presents the results for this 10× 10 grid with standard settings. As Figure 5.11 shows,
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Figure 5.11.: Relative RMSE-reduction compared to the respective ensemble-mean on the
standard grid, compared to the coarser 10× 10 grid.

the nowcast model is now able to adjust the ensemble probabilities a little bit better.
However, after 2 hours it is still less skillful than the ensemble. It is important to note here
that the nowcasts are compared to different RMSE values, as the RMSE of the ensemble
on the coarser grid is different than the RMSE on the standard grid. Typically for the
coarser grid, RMSE values are lower for both the ensemble and the nowcast. For lower
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Figure 5.12.: Evaluation of equation 3.7 for all hours on thresholds τ2 and τ3,

thresholds of precipitation intensity, the nowcasting model also performs better on the
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coarser grid, compared to the ensemble. Using this setting increases the usability of the
nowcasting model to three hours, where it still on average holds a lower averaged RMSE
than the background C-LAEF ensemble. This shows that increasing the neighbourhood
size increases performance for larger time-shifts as precipitation patterns do not tend
to move entirely out of the local vicinity as much. Also, the double penalty problem is
reduced, but for both the ensemble and the nowcast.
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6. Conclusions

The nowcasting model is a successful proof of concept for the idea of using the LETKF-
based weighting to combine observations with an ensemble prediction system. With all
the settings that are used in this thesis, the nowcasts are able to perform better than the
C-LAEF ensemble for a lead time of 1h. The nowcasting model performs better for lower
intensities: For the thresholds τ1 and τ2, it is feasible to use for two or up to three hours
with the presented settings, depending on the upscaling size.
One reason why the nowcast performs better for lower intensities can be seen in Figure
5.9. The larger the spatial extent of the precipitation patterns, the more corrections can
be undertaken by the nowcasting model. This agrees with the work of [Kober et al., 2013]
who found that their blended nowcast did not perform as well for small-scale precipitation
as it did for larger precipitation patterns. Other studies also discuss that the scale of
the precipitation pattern influences the predictability with nowcasting methods heavily,
for example [Germann and Zawadzki, 2004]. Another reason why the nowcasting model
does not perform as well for higher thresholds might be the typical duration of heavy
precipitation in convective cells. While a single cell might produce precipitation for more
than one hour, it is less likely to maintain heavy precipitation for over one hour, as after
a while its vertical updraft is weakened by the downdraft of cold air that is dragged along
with the falling precipitation. This reduced duration for larger intensities makes it more
likely for the nowcasting model to wrongly increase the probabilities of precipitation for
the following hours. It should be noted, however, that the results are less certain for
higher precipitation rates because of the smaller sample size.
As the example of the least skillful 3h-nowcast has shown, signal propagation seems to
be a major limitation for the usability of this nowcasting model. This is underlined by
the fact that the nowcasting model was not skillful for lead times above three hours. A
nowcasting method that on average performs worse than an ensemble forecast can be
considered as not skillful (or not useful). Improvement can not be expected, even though
it occurs in some cases. Therefore the results of the timeshifts ∆t = 5h and ∆t = 6h were
not shown in this thesis.
One way to mitigate the effects of signal propagation would be to increase the radius of
observations that are considered. Doing this by sampling more observations in the LETKF
computation is unlikely to bring better results, as the LETKF is somewhat limited in
the number of observations it can assimilate by the ensemble size. Therefore upscaling
the probability field further proves promising and performs better with the underlying
datasets in the sensitivity study. The results show that all statistics were more in favor
of the nowcasting model compared to a higher-resolution grid. On the other hand, the
resolution and sharpness of the probability field is reduced by a larger upscaling.
The problem of signal propagation could be avoided by trying to shift the weights not
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only through time but also through space. One approach would be to shift the weights
through space along with the mean wind during the time-shift. One way to obtain the
mean flow could be the forecasted wind in the 700hPa-layer for example. This was
not implemented in the underlying thesis and gives room for further research. Different
settings (for example correlated observation errors in R) might further increase the skill
of the nowcasting model.
With INCA analyses being available in almost real-time, this nowcasting model is the-
oretically ready to go operational and produce skillful nowcasts for short lead times.
What comes into play here is the computational efficiency of the LETKF. For this thesis,
computations were undertaken on one of the servers of the University of Vienna. The
computation time was typically around 23 seconds for one nowcast of the hourly precipit-
ation probability for the whole nowcasting domain (i.e. for the whole of Austria).
The nowcasting model was in many cases not able to adjust the probabilities at all because
all members computed a probability of 0. Using a larger ensemble like a multi-model
ensemble or a time-lagged ensemble would be easy to implement and would more often
result in probabilities different from 0. This would lead to more corrections by the
nowcasting algorithm and might make the method overall more skillful. Even introducing
a pseudo-member that holds a small probability everywhere in the domain might prove
feasible as it might somewhat cover otherwise missed events. On the other hand, a larger
ensemble again leads to more smoothed and less sharp probability fields.
Precipitation defies the Gaussian assumption more than other meteorological parameters
(its distribution is usually modeled by Gamma functions, see [Wilks, 2011]). Precipitation
was chosen for this thesis anyway because it is extremely desirable to have high-precision
nowcasts for. The problem of the non-gaussianity was reduced by working with probabil-
ities rather than intensities. The method is, however, in no way restricted to precipitation.
Another parameter that could be well suited for an LETKF-based nowcasting is wind
gusts. For wind gusts out of convective cells, the same problem of signal propagation
might occur. However, for longer-lasting storm events in the colder season due to large
pressure differences on the synoptic scale, signal propagation should not pose such a
problem. In the author’s opinion, the LETKF-based nowcasting appears to be promising
and could prove valuable in operational nowcasting if further research is done.
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A. Appendix

∆t = 1h ∆t = 2h ∆t = 3h ∆t = 4h

RMSEC−LAEF 0.066 0.067 0.067 0.068
RMSENowc 0.064 0.067 0.068 0.068

Relative reducion[%] 3.0 −0.6 −1.1 −0.8
Absolute reduction 0.002 0.000 −0.001 −0.001

RMSEC−LAEF
˜ 0.152 0.153 0.156 0.158

RMSENowc
˜ 0.148 0.154 0.157 0.159

Relative reduction [%] 2.7 −1.0 −1.0 −0.6
Absolute reduction 0.004 −0.001 −0.002 −0.001

Table A.1.: Average RMSE for all Ensembles / Nowcasts for time-shifts of 1 to 4 hours
for a threshold of τ1 ≥ 5mm/h. Top half: RMSE for all points, bottom half:
RMSE without correct negatives

∆t = 1h ∆t = 2h ∆t = 3h ∆t = 4h

RMSECLAEF 0.250 0.252 0.254 0.257
RMSENowc 0.215 0.247 0.258 0.261

Relative reducion[%] 13.9 1.7 −1.4 −1.7
Absolute reduction 0.035 0.004 −0.004 −0.004

RMSECLAEF
˜ 0.308 0.309 0.313 0.317

RMSENowc
˜ 0.267 0.304 0.317 0.323

Relative reduction [%] 13.2 1.6 −1.4 −1.7
Absolute reduction 0.041 0.005 −0.004 −0.005

Table A.2.: Average RMSE for all Ensembles / Nowcasts for time-shifts of 1 to 4 hours
for a threshold of τ3 ≥ 0.1mm/h. Top half: RMSE for all points, bottom half:
RMSE without correct negatives
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