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Kurzfassung
Jeder Informationsverarbeitungsvorgang kann als eine sequentielle Manipulation von Information über die Zeit
hinweg betrachtet werden, bei der Eingaben empfangen und Ausgaben erzeugt werden. Zu diesem Zweck muss
Information in einem physischen System, das als Speichermedium dient, gespeichert werden und es ist intuitiv
einsichtig, dass eine begrenzte Speicherkapazität fundamentale Einschränkungen für die Art der durchführba-
ren Aufgaben nach sich zieht.

Aus physikalsicher Perspektive betrachtet hat diese abstrakte Einsicht tiefgreifende Konsequenzen. Dies
wird deutlich, wenn man in Betracht zieht, dass das Ziel jeder informationstheoretischen Aufgabe im Wesent-
lichen darin besteht, spezifische zeitliche Korrelationen zwischen Eingaben und Ausgaben zu erzeugen. Diese
Erkenntnis veranlasst uns, die physikalische Erzeugung von zeitlichen Korrelationen als eine eigenständige
Aufgabe ohne darüber hinausgehende Interpretation zu betrachten, bei der die Erzeugung von Zuständen, so-
wohl wie deren Transformation und Messung als Speicheroperationen fungieren.

Die vorliegende Dissertation folgt dieser Sichtweise, indem sie zeitliche Korrelationen untersucht, die durch
sequentielle Messung eines einzelnen System entstehen, wobei jede Messung eine Ausgabe erzeugt. Insbeson-
dere untersuchen wir die fundamentalen Beschränkungen der daraus resultierenden zeitlichen Korrelationen,
wenn dieses System eine endliche Dimension aufweist, was einer begrenzten Speicherkapazität entspricht. Zu
diesem Zweck verwenden wir das Modell endlicher Zustandsmaschinen, das vor Kurzem für die Untersuchung
zeitlicher Korrelationen, die ohne die häufig gemachte Annahme nichtinvasiver klassischer Messungen entste-
hen können, eingeführt wurde. Dieser Ansatz ermöglicht den Vergleich von Quantenmechanik und klassischer
Physik unter gleichen Bedingungen, sodass ein präzises Konzept von echten nichtklassischen zeitlichen Korre-
lationen etabliert werden kann.

Wir beginnen diese Betrachtung mit der Aufgabe, spezifische Sequenzen von Ausgaben deterministisch zu
erzeugen, und führen den Begriff der deterministischen Komplexität ein, um die minimale Dimension zu bezif-
fern, die dafür notwendig ist, sei es für ein klassisches oder ein quantenmechanisches System. Unterhalb dieser
Grenze and Speicherkapazität können die entsprechenden Sequenzen nur probabilistisch erzeugt werden, und
wir führen eine umfassende Untersuchung der entsprechenden maximalen Erzeugungswahrscheinlichkeiten
durch, sowohl im klassischen, wie im quantenmechanischen Fall. Ein Vergleich der beiden Theorien zeigt meh-
rere unerwartete Strukturen und fundamentale Unterschiede zwischen klassischen und quantenmechanischen
Korrelationen auf.

Im Anschluss untersuchen wir die Anwendung zeitlicher Korrelationen als Zeuge für die Dimension der
Umgebung eines offenen Quantensystems. Wir formulieren eine Hierarchie von semidefiniten Programmen,
die in der Lage sind, obere Schranken für zeitliche Korrelationen zu berechnen, wobei eine dünnbesetzte Dar-
stellung dieses Problems erforderlich war, um es zu lösen. Diese dünnbesetzte Darstellung ergibt sich aus einer
neuen heuristischen Methode, die wir ebenfalls einführen, und die unnötige Variablen und Einschränkungen
im Problem entfernt.

Danach untersuchen wir, ob verschränkungsbrechende (“entanglement breaking”) Kanäle als klassisches
Speichermedium in einem zeitlichen Szenario angesehen werden können, wie dies oft in der Untersuchung
der Nicht-Markovianität in Quantenprozessen, die zu mehreren Zeitpunkten gemessen werden, angenommen
wird. Wir zeigen, dass dies nicht der Fall ist, indem wir explizite quantenmechanische Modelle präsentieren,
die genauen klassischen Schranken verletzen, und dadurch subtile nichtklassische zeitliche Effekte aufdecken,
die vormals aufgrund unzutreffender Analogien mit räumlichen Korrelationen übersehen wurden.

Zuletzt führen wir eine Verallgemeinerung der deterministischen Komplexität für den Fall von Eingabe-
Ausgabe-Sequenzen ein und stellen Verbindungen zwischen zeitlichen Korrelationen und Gebieten der Gra-
phentheorie sowie der theoretischen Informatik her.
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Abstract
Any concrete information processing task can be viewed as the sequential manipulation of information
over time, receiving inputs and producing outputs. To accomplish this, information must be stored in a
physical system serving as a memory resource, and it is intuitively understood that a finite amount of
memory imposes fundamental limitations on the tasks that can be performed.

These abstract notions have profound consequences when viewed from a physics perspective, made
clear by recognizing that the goal of an information-theoretical task is, essentially, to generate specific
temporal correlations between inputs and outputs. This insight prompts us to investigate the physical
realization of temporal correlations as a task in its own right, forgoing any additional interpretation, with
state preparations, transformations, and measurements acting as memory operations.

This thesis explores this perspective by investigating temporal correlations arising from sequential
measurements on a single system, each measurement producing an output. In particular, we investi-
gate how the resulting temporal correlations are fundamentally constrained when this system is finite-
dimensional, corresponding to a finite amount of memory. To this end we employ the framework of
finite-state machines, recently introduced in the study of temporal correlations without the traditional
assumption of noninvasive classical measurements. This approach allows classical and quantum theory
to be compared on equal terms, such that a precise notion of genuinely nonclassical temporal correlations
can be established.

We begin by considering the task of deterministically generating specific sequences of outputs, in-
troducing the notion of deterministic complexity to quantify the minimum dimension where this can be
achieved, either by a classical or quantum system. Below this memory threshold, each sequence can only
be generated probabilistically, and we perform an extensive survey of the corresponding maximum prob-
abilities in both classical and quantum theory. A comparison reveals several unexpected structures and
fundamental differences between classical and quantum temporal correlations.

Next, we investigate the application of temporal correlations in dimension witnesses for the envi-
ronment of an open quantum system. We formulate a hierarchy of semidefinite programs capable of
computing upper bounds on temporal correlations, which required a sparse representation in order to be
solved. This sparse representation is obtained through a novel heuristic method, which we also introduce,
that removes unnecessary variables and constraints in the problem.

We then investigate whether entanglement-breaking channels can be considered a classical mem-
ory resource in a temporal scenario, as is often assumed in the study of non-Markovianity in multi-time
quantum processes. We answer in the negative by providing explicit quantum models violating the exact
classical bounds, thereby uncovering subtle nonclassical temporal effects that have been overlooked due
to improper analogies with spatial correlations.

Lastly, we introduce a generalization of the deterministic complexity to the case of sequences of in-
puts and outputs, establishing connections between temporal correlations and topics in graph theory and
theoretical computer science.

Keywords: Temporal correlations, classicality and nonclassicality, information processing, memory,
finite-state machines, Mealy machines, complexity, causality, Arrow-of-Time, open quantum systems,
dimension witnesses, semidefinite programming, sparsity.
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Preamble

Classical physics is based on our everyday experience with the macroscopic world, where physical sys-
tems and their properties seem to exist independently of observation. In this view, measurements can be
understood as a means of uncovering information about an objective reality. Any probabilistic behavior
can be attributed to uncertainty, possibly arising from imprecise measurements or incomplete knowledge
about the underlying physical states.

While reasonable at themacroscopic scale, at themicroscopic scale these notions have been challenged
by quantum mechanics in profound ways. Not only do systems appear to have indefinite properties be-
fore measurements, but probabilistic behaviors also seem to emerge from a fundamental degree of inde-
terminacy in Nature. The predictions of quantum mechanics have achieved unprecedented success, being
vindicated against competing explanations in numerous experimental tests. These results have forced us
completely reevaluate our understanding of physical reality.

One of themost surprising predictions of quantummechanics is the possibility of correlations between
measurements that cannot be explained by classical theories. These nonclassical correlations have been the
subject of intense research, mostly in the case of spatially separated systems. In their landmark paper,
Einstein, Podolsky, and Rosen (EPR) [62] discuss how quantum theory predicts spatial correlations which
would violate the principle of locality. To address this, they postulated that quantum theory might be
incomplete, and that these scenarios could be described in terms of classical probabilities involving addi-
tional parameters, now known as local hidden variables. This concept was later addressed by Bell [11, 13],
who formulated an experimentally testable inequality establishing bounds on spatial correlations achiev-
able by any theory based on local hidden variables, but capable of being violated by quantum mechanics.
Over the following decades, numerous experimental Bell tests were devised and performed, validating
the predictions of quantum mechanics and establishing the existence of nonclassical spatial correlations
beyond any model of local hidden variables.

However, physical phenomena unfold not only in space, but also in time. What do we know about
nonclassical temporal correlations? Given the fundamental role of time in physics, one might expect a
similar amount of research devoted to the subject. Unfortunately, that does not seem to be the case.
There seems to be comparatively little research directly targeting nonclassical temporal correlations, with
existing results either based on very narrow notions of “classicality”, or relying on direct analogies to
spatial correlations. Both approaches are unsatisfactory, as we will show throughout this thesis.

One way to directly investigate nonclassical temporal correlations is to consider physical scenarios
involving a finite and discrete sequence of measurements on a single system. Early research using this idea
can be traced back to the work of Leggett and Garg [116], who proposed a way to test for the existence of
macroscopic quantum coherence by means of temporal correlations. In a similar spirit as Bell’s inequality,
Leggett and Garg formulated inequalities which would be satisfied by any theory obeying a certain set of
assumptions expected of macroscopic systems. An experimental violation of a Leggett-Garg inequality
would then force us to abandon at least one of these assumptions.

The first assumption is that of macroscopic realism, the idea that any macroscopic system should
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always be found in only one of its macroscopically distinct states at any given moment. The second as-
sumption is that of noninvasive measurability, meaning that any properties of this macroscopic state could
(in principle) be measured without changing the result of subsequent measurements. Here, implicitly, is
also the assumption of causality: the outcome of measurements in the present is not influenced by future
choices of measurements. A theory obeying these assumptions is said to be “macrorealist”.

While most research into Leggett-Garg inequalities revolves around tests of macrorealism, these as-
sumptions have also become the standard way to formulate “nonclassicality” for temporal correlations,
with the notion of “classicality” largely being conflated with the notion of noninvasive measurability. Re-
alism, macroscopic or otherwise, is usually left implicit. This may have been reasonable for macroscopic
systems, but it seems unreasonable as a general physical principle to distinguish between classical and
nonclassical correlations at a fundamental level. Indeed, classical invasive measurements can easily vi-
olate a Leggett-Garg inequality, regardless of whether or not they could have “in principle” been made
noninvasive. Therefore, we must abandon the notion of noninvasive measurability if the goal is to identify
genuinely nonclassical temporal correlations.

A proper characterization of temporal correlations has only began to be pursued in recent years [52, 1,
219, 88, 180, 183, 182, 124, 34, 31, 32], and this thesis adds to this research effort. To this end, we reject the
notion of invasiveness as an “unwanted disturbance”, to be minimized or eliminated, instead considering
it a deliberate manipulation of information in a physical state. In this way, sequential measurements
on a system can be understood as information processing, with the physical system acting as a memory
resource, storing information as it is manipulated over time. Nonclassical temporal correlations can then be
identified using sequential tasks where quantum memories provide an advantage over the corresponding
classical memories.

This perspective highlights fundamental differences between spatial and temporal correlations. In
the spatial scenario, the principle of locality requires correlations to satisfy the No-Signaling conditions,
which forbid two-way superluminal signaling between distant parties. In the temporal scenario, however,
the principle of causality requires correlations to satisfy the Arrow-of-Time constraints [52], which only
forbid signaling from the future to the past.

Since information can still be sent from the past to the future, any temporal correlation can be achieved
with either classical or quantum memories if the amount of information is not restricted [67, 88, 183,
182, 124]. This is intuitively true, as we could imagine simply storing in memory the outcomes of all
possible future measurements in advance. What this observation tells us is that, in the context of temporal
correlations, it is also essential to have a detailed accounting of all memory resources available. This
undertaking can be simplified by considering a single system acting as memory, in complete isolation,
such that the system itself is the only available carrier of any information from the past to the future [88,
32, 182]. The amount of information can then be bounded by assuming a finite-dimensional system.

These considerations motivate studying temporal correlations through the framework of finite-state
machines (FSMs) [90, 32], originally introduced in theoretical computer science as simple models of com-
putation involving finite memory. A FSM is an abstract device that processes sequential inputs to generate
the corresponding outputs. It consists of a finite number of states and a fixed transition rule, dictating
how it behaves depending on its current state, the current input, and the output to be generated. While
originally formulated in terms of deterministic classical devices, FSMs can be naturally extended [32] to
the case of general probabilistic theories (GPTs) [123, 83, 44], which include classical and quantum theory
as special cases. The “amount of memory” can then be directly quantified by the dimension of the FSM’s
memory, i.e., the maximum number of perfectly distinguishable states.

The main advantage of the FSM framework is that it allows a fair comparison to be made between dif-
ferent theories, such that the boundary of their corresponding sets of temporal correlations can be sharply
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established. This application of FSMs was first formalized by Budroni et al. [32], where the authors derive
temporal inequalities that can distinguish between classical, quantum, or genuinely GPT temporal corre-
lations. FSMs have also been used for quantum dimension witnesses [88, 183], in establishing the memory
cost of simulating extreme temporal correlations and their convex mixtures [182, 124], and quantum ad-
vantages enhancing the performance of time-keeping devices [33]. These results showcase the power and
versatility of this approach.

This thesis is devoted to a systematic characterization of temporal correlations through the framework
of finite-state machines. In particular, we focus on the problem of establishing sharp bounds on classical
and quantum temporal correlations, obtained via sequentialmeasurements on a finite-dimensional system.
These bounds can be used in many applications, such as witnesses for the dimension or nonclassicality of
an underlying system, which will be discussed in detail.

As mentioned earlier, sequential invasive measurements can be interpreted as an information pro-
cessing task. Nevertheless, we will generally refrain from imposing any particular meaning to such tasks
(e.g., an implementation of a specific protocol, or investigating correlations within some sort of adversar-
ial game). Instead, we will treat the physical realization of a specific temporal correlation as the task in
and of itself, with only causality and finite memory as constraints.

Note that this should not be confused with the problem of statistical inference when modeling or
learning some existing time series data, as is done in the study of stochastic processes with hiddenMarkov
models [158] or in computational mechanics with 𝜀-machines [55, 119]. While all these approaches use a
similar formalism as our FSMs1, here we focus on the fundamental limits of classical and quantum theory
in generating an arbitrary temporal correlation.

Existing research on temporal correlations based on finite-state machines is very recent, with most
relevant results having only been published within the last decade. It is therefore important to provide the
historical and technical context leading to its development. This is the main purpose of Chapter 1, which
provides a background on Leggett-Garg inequalities and the subsequent use of noninvasive measurability
as a definition of “classicality”, highlighting its shortcomings. We then review the recent approach on
temporal correlations based on invasive measurements and finite-dimensional systems, which this thesis
builds upon.

We discuss the essential role of the Arrow-of-Time constraints and the Arrow-of-Time polytope in the
context of temporal correlations, and how its extreme points correspond to deterministic distributions.
Importantly, each extreme point requires a minimum dimension for its physical realization, which is the
same for both classical and quantum systems. Thus, all temporal correlations can be realized by classical
or quantum systems of sufficient size: an important difference between temporal and spatial correlations.

These results inspire us to interpret the system as amemory resource, with its dimension directly quan-
tifying the “amount of memory”, whether classical or quantum. In other words, the necessary assumption
of a finite dimensional system can be understood as a finite-memory constraint on temporal correlations.
This motivates the use of finite-state machines to analyze temporal correlations as information-processing
tasks, with measurement settings being understood as “inputs” and outcomes as “outputs”. The chapter
concludes with a formal definition of these classical and quantum finite-state machines, followed by a
short review of the numerical optimization methods used in the rest of the thesis.

Realizing that very little was known about temporal correlations, either classical or quantum, we
performed a general survey in search of new insights. This is the subject of Chapter 2, wherewe investigate

1Our approach is from a physics foundations perspective, thereby requiring the most general FSMs possible, as discussed in
Sec. 1.3. We also avoid many of the typical assumptions, such as stationarity or unifilarity, as they all would correspond to artificial
constraints to the set of temporal correlations.
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temporal correlations in the simplest scenario possible: a single system being repeatedly measured by a
fixed instrument, producing dichotomous outcomes.

We formulate this problem in terms of individual sequences of outputs a = 𝑎1𝑎2 . . . 𝑎𝐿 , for 𝑎𝑡 ∈ {0, 1}
and 𝑡 = 1, . . . , 𝐿, studying themaximumprobabilities 𝑝 (a|𝑑) that can be obtained by classical and quantum
𝑑-dimensional systems. Since this maximum probability is trivially 1 if 𝑑 is sufficiently large, we intro-
duce the deterministic complexity (DC) for quantifying this memory threshold. The DC is a computable
complexity measure for output sequences, rooted on physical principles, and we provide an efficient algo-
rithm to compute it. Since 𝑝 (a|𝑑) = 1 is only achievable by classical or quantum systems if 𝑑 ≥ DC(a),
differences between the two will only appear if 𝑑 < DC(a), with each theory providing a nontrivial max-
imum for this probability. Thus, these “sub-deterministic” scenarios provide a sharp boundary between
classical and nonclassical temporal correlations.

We investigate these maximum probabilities by means of gradient descent techniques, optimizing
over the space of classical and quantum FSM models for every sequence of length up to 𝐿 = 10. While the
resulting optimal models only give a lower bound for the maxima, they still provide useful insights into
how a finite memory resource can be used optimally within classical and quantum theory. Indeed, several
nontrivial results emerged from this numerical survey. In particular, a family of sequences, which we call
one-tick sequences, appear to have special significance, andwe conjecture theymay be used to upper-bound
all other sequences. If proven, this conjecture implies an even more remarkable result: the existence of a
universal upper bound of 1/e ≈ 37% on the probability of any sequence in a sub-deterministic classical
scenario. In contrast, we show that no nontrivial universal bound seems to exist in the quantum case.

The maximum probabilities for sub-deterministic scenarios can be used to construct dimension wit-
nesses. This is the subject of Chapter 3, where we develop witnesses for the minimum dimension of an
environment interacting with an open quantum system. We consider a scenario where a small “probe”
system is measured after each interaction with its environment. With the system always being discarded
and reprepared before each interaction, we can focus on the environment acting as a quantummemory re-
source. Thus, the resulting temporal correlations, obtained by measuring the probe, will be fundamentally
restricted by the dimension of its environment.

For simplicity, we assume the system-environment interaction always occurs through the same joint
unitary at every time step, which can be reasonably justified on physical grounds. As in Ch. 2, here
we focus on the maximum probabilities of individual sequences of outcomes. To obtain upper bounds,
we develop a hierarchy of semidefinite programs (SDPs) that are guaranteed to converge to the exact
maximum. The maximum probability can be obtained by a global optimization over all unitaries, which is
a problem that cannot be solved directly as an SDP. Using the formalism of quantum supermaps and the
quantum de Finetti theorem, wewere able to formulate semidefinite relaxations of this global optimization
problem.

Nevertheless, the resulting SDP is numerically intractable even in the simplest nontrivial scenario, i.e.,
involving a qubit system and environment, and three time steps. More precisely, the dense SDP would
require 3 TB of RAM to be solved with standard algorithms, even after being written in its most compact
symmetric representation. To overcome this, we developed a novel heuristic method that converts the
dense problem into an equivalent sparse problem, with less than 1% of the original number of variables
and constraints. With this sparsity heuristic, we were able to compute upper bounds on quantum tem-
poral correlations for select cases. Our heuristic method to obtain sparse SDPs is very general, and could
conceivably be applied to many large-scale SDPs, both in quantum information and beyond. The tech-
nique is currently being developed further, with a dedicated manuscript under preparation. This is the
subject of Chapter 5.

Beyond the Leggett-Garg approach, alternative notions of classicality for temporal correlations have

4



largely been based on flawed analogies from spatial correlations. In particular, this has been the case in the
study of memory effects (i.e., non-Markovianity) in multi-time quantum processes, as analyzed through
the formalism of quantum supermaps [135, 72, 14, 190]. Within this formalism, the propagation of the
memory state from one time step to the next appears explicitly as quantum channel, with many authors
assuming that the inclusion of a generic entanglement-breaking (EB) channel would result in a classical
memory, and therefore, classical temporal correlations.

In Chapter 4 we show that such a claim is not generally accurate, by providing explicit examples where
the action of a generic EB channel still leads to nonclassical temporal correlations. In particular, we show
that a 𝑑-dimensional quantum memory under the action of an EB channel can still generate nonclassical
correlations, as compared to the equivalent𝑑-dimensional classical memory. The discrepancy is subtle, but
we were able to uncover it for several reasons. First, FSMs can characterize classical temporal correlations
exactly, as they describe correlations in terms of manifestly classical systems, i.e., not based on quantum
representations being artificially restricted. A precise distinction between classical and quantum memory
effects should emerge from explicit constructions within each theory, and to the best of our knowledge, we
are the first to accurately characterize classical correlations in this manner. Secondly, the nonclassicality
only seems to occur beyond qubits and in temporal correlations involving four or more time steps, both
being scenarios which have received very little attention in previous research.

Despite being nonclassical, the resulting correlations still appear intimately related to classical cor-
relations in unexpected ways. In particular, the maximum probability for quantum memories under the
effect of an EB channel quickly approaches the universal classical bound of 1/e (as discussed in Chapter 2),
even violating it, but only by a tiny margin. This puzzling result is still unexplained.

The FSM framework also provides a bridge between temporal correlations and theoretical computer
science. This is explored in Chapter 6 where the DC, originally introduced for sequences of outputs, is
generalized for sequential measurements involving both inputs and outputs, thereby providing a concrete
characterization of the memory cost of realizing any extreme point of the Arrow-of-Time polytope. We
further establish connections between the DC and the problem of maximum independent set in graph
theory, which enables the generalization of DC for scenarios where certain deterministic outputs can be
ignored. This leads to the introduction of the partial DC (PDC) and conditional DC (CDC), both of which
have interesting parallels with existing complexity measures in computer science.

We conclude the thesis with an overall discussion on the underappreciated subject of temporal correla-
tions and how the framework of finite-state machines provides a new way forward for their investigation.
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Chapter 1

Preliminary notions

1.1 Memory and information processing tasks

Since the notion of “memory” as a finite physical resource is a central theme underlying this thesis, our
working definition of the term should be made precise.

Any information processing task can be understood as the storage, manipulation, and retrieval of
information over a period of time. We informally conceptualize the capability of storing information with
the notion of a “memory”, i.e., a system capable of keeping track (“remembering”) its internal state, with
this state being broadly understood as the information “stored” in the memory1.

These notions of information and memory are familiar to us, at least within classical theory, but its
physical underpinnings are usually shrouded by computational abstractions. A bit, the fundamental unit
of information in digital computers, stands for a memory unit with two distinct states: 0 or 1, on or off,
etc. While a bit offers very little in terms of information storage (in fact the minimum amount possible),
it is also the simplest memory to construct, thus enabling us to have many bits acting together as a single
memory device. In this way, a memory with 𝑛 bits has a total of 𝑑 = 2𝑛 distinct memory states at our
disposal for storing information. Nevertheless, we usually understand 𝑛 as the “amount of memory” in
such devices.

It is also generally understood that memory is an essential resource for performing any information
processing task, with more complex tasks becoming feasible as more memory is made available. Con-
versely, it is natural to posit that a finite amount of memory imposes fundamental limitations on what
sort of tasks are possible. By studying how these limitations emerge when memory is considered a finite
physical resource, we may thus obtain insights into how it can be used optimally. At the same time, such
memory-restricted scenarios can highlight fundamental differences between physical theories, arising
from their different descriptions of how information can be stored and manipulated.

In the following chapters, these ideas will be explored from a physics foundations perspective, within
both quantum and classical theories. To this end, we shall treat the memory as a single indivisible physical
system with a finite number 𝑑 of perfectly distinguishable states. We will adopt 𝑑 , not 𝑛 = log2 𝑑 , as
the “amount” or “size” of the memory, i.e., the total dimension of the memory’s state space. This will
correspond to the dimension of the Hilbert space of a quantum system (a qudit), or the number of distinct
states in a classical system (which we call a “𝑑-it”2). The notion of a “memory resource” will correspond
not only to the quantity 𝑑 , but also the classical or quantum properties of the memory, i.e., the possible
memory states and the physical transformations available on such states.

Note that this presents a slight conceptual departure from the usual notion of “amount of memory”
1We will refrain from any deeper discussion on what constitutes “information”, however.
2We adopt “𝑑-it” in analogy to “qudit”, as “dit” is already commonly used for 𝑑 = 10.
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in terms of bits (or qubits). In practice, since each bit requires a finite amount of physical resources to be
implemented, and bits are nearly always utilized in very large groups, the quantity 𝑑 is rarely insightful.
It is usually more practical to describe the amount of memory or information in terms of the number of
bits (or its multiples, bytes, kilobytes, etc.), leading to the more familiar notions of “amount of memory”
(i.e., 𝑛 = log2 𝑑) and “information” (e.g., information content − log2 𝑝 for a probability 𝑝), both of which
quantify the resources required when encoding information in terms of bits.

This “encoding” of information into bits is a convenient abstraction, largely motivated by engineering
concerns, but it also implicitly assumes a notion of spatially separated bits (or qubits) and operations acting
jointly upon them. Since we wish to focus on strictly temporal phenomena, involving a single indivisible
system, this perspective is not really helpful, if not a little misguided3. In any case, as we shall see, the
quantity 𝑑 arises naturally in the sequential tasks we will be considering in this thesis.

1.2 Temporal correlations

Quantum mechanics predicts the existence of correlations beyond any correlation achievable by classical
systems. While this phenomenon has been extensively studied in the case of spatial correlations [62, 29],
the equally important subject of temporal correlations has historically received significantly less attention.
To make matters worse, previous research on the subject has predominantly focused on definitions of
“classicality” which are arguably too restrictive to be insightful about the differences between classical or
quantum temporal effects [26, 203].

This thesis contributes to a recent research effort seeking a more definitive characterization of tem-
poral correlations—whether classical, quantum, or beyond—by investigating the probability distributions
resulting from sequential measurements on finite-dimensional physical systems. Importantly, these mea-
surements are considered in their most general form as permitted by each theory, avoiding artificial con-
straints that would otherwise be imposed on the resulting correlations.

This section provides an overview of the subject of temporal correlations and how their characteri-
zation has been pursued so far. First, we briefly review the traditional approach based on Leggett-Garg
inequalities, highlighting its shortcomings. Detailed reviews on the broader subject surrounding Leggett-
Garg inequalities, such as tests of macrorealism or applications of the inequalities to temporal correla-
tions, can be found in Refs. [64, 203]. Following this, we discuss the more recent approach involving
finite-dimensional systems [219, 26] and its formulation in terms of finite-state machines [88, 32, 182],
which are the basis for the remaining of this thesis.

1.2.1 Macroscopic realism and Leggett-Garg inequalities

Early investigations into temporal correlations can be traced back to the work of Leggett and Garg [116],
where correlations arising from repeated measurements on a single system were used for investigating
the existence of macroscopic quantum coherence. An extrapolation of quantum theory to the macroscopic
scale suggests such phenomenon should exist, in great contradiction with our everyday experience. This
seemingly absurd prediction of quantum theory was already remarked by Schrödinger in his burlesque
“Schrödinger’s cat” thought experiment [171].

The issue arises because macroscopic (i.e., “classical”) systems appear to exist in well-defined states at
any given moment, with outcomes of any measurements seemingly preexisting prior to (and independent
of) the measurements. This notion is typically referred to as realism4, and captures the expectation that
physical states should provide a complete description of a system.

3While the extra log2 is mathematically inconsequential, in our context it is artificial and meaningless.
4The notion of “realism” in physics is more subtle than this, however; see Refs. [150, 108, 73].
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While reasonable at the macroscopic scale, at the microscopic scale this notion of realism has been
challenged by quantum theory in various ways, e.g., with the early observation that certain physical
quantities, such as position and momentum, cannot be jointly measured to arbitrary precision [87, 172],
or the necessity of contextuality in any hidden-variable model of quantum theory, as shown by Bell [12]
and Kochen and Specker [175, 35]. This quantum indeterminacy is now recognized as a fundamental
aspect of quantum theory. That being said, nothing in the theory suggests a scale where these properties
ought to disappear.

Leggett and Garg approached this conundrum by proposing a minimal set of reasonable properties
expected from any theory compatible with our intuitions about macroscopic systems. Such macrorealist
theories, as they have been called, were defined in terms of two assumptions which Leggett and Garg
described as [116]:

MR Macroscopic realism: A macroscopic system with two or more macroscopically distinct states
available to it will at all times be in one or the other of these states.

NIM Noninvasive measurability: It is possible, in principle, to determine the state of the system
with arbitrarily small perturbation on its subsequent dynamics.

The “subsequent dynamics” in NIMwas later recognized as containing the implicit assumption of causality,
now properly regarded as a third assumption [103, 115, 67, 64, 203]:

IND Induction: The outcome of measurements in the present is not influenced by future choices
of measurements.

Leggett and Garg derived a class of inequalities which would be satisfied by any theory obeying these as-
sumptions, and proposed experiments to test them. An irrefutable experimental violation of these Leggett-
Garg inequalities (LGIs) would force us to abandon any realist description of the system at a macroscopic
scale.

The simplest LGI can be derived from the experimental scenario shown in Fig. 1.1, where a single
system is randomly chosen to be measured in two out of three possible times 𝑡𝑖 , for 𝑖 ∈ {1, 2, 3}, via an
observable𝑄 (𝑡𝑖 ) with dichotomous outcomes 𝑞𝑖 = ±1. Over multiple runs of this experiment one obtains
the empirical distributions 𝑝𝑖 𝑗 (𝑞𝑖 , 𝑞 𝑗 ) for the pairs (𝑖, 𝑗) ∈ {(1, 2), (1, 3), (2, 3)}, which can be used to define
the two-time correlators

⟨𝑄 (𝑡𝑖 )𝑄 (𝑡 𝑗 )⟩ :=
∑

𝑞𝑖 ,𝑞 𝑗=±1
𝑞𝑖𝑞 𝑗 𝑝𝑖 𝑗 (𝑞𝑖 , 𝑞 𝑗 ). (1.1)

With this, we may write the Leggett-Garg inequality,

⟨𝑄 (𝑡1)𝑄 (𝑡2)⟩ + ⟨𝑄 (𝑡2)𝑄 (𝑡3)⟩ − ⟨𝑄 (𝑡1)𝑄 (𝑡3)⟩ ≤ 1, (1.2)

which is satisfied for any system obeying the three macrorealist assumptions. To see how, first note
that under the MR assumption each 𝑄 (𝑡𝑖 ) has a well-defined value, implying the existence of a joint
probability distribution 𝑝123 (𝑞1, 𝑞2, 𝑞3) describing the predetermined outcomes of each 𝑄 (𝑡𝑖 ) in any run
of the experiment.

Next, the NIM and IND assumptions posit that past measurements—regardless of whether they have
been performed or not—cannot influence future ones, meaning the result of anymeasurement can be safely
discarded without changing the remaining statistics. This implies we can define the two-time distributions
𝑝𝑖 𝑗 (𝑞𝑖 , 𝑞 𝑗 ) as marginals of a global joint distribution 𝑝123 (𝑞1, 𝑞2, 𝑞3),

𝑝𝑖 𝑗 (𝑞𝑖 , 𝑞 𝑗 ) =
∑

𝑞𝑘 ; 𝑘≠𝑖, 𝑗

𝑝123 (𝑞1, 𝑞2, 𝑞3), (1.3)
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Figure 1.1: The basic Leggett-Garg scenario involves time-dependent measurements𝑄 (𝑡) to be performed
at three times 𝑡1 < 𝑡2 < 𝑡3, obtaining outcomes 𝑞𝑖 = ±1 for 𝑖 ∈ {1, 2, 3}. For each run of the experiment,
the system is prepared in the state 𝜌 , then measurements are performed sequentially in only two time
steps 𝑖, 𝑗 ∈ {1, 2, 3}, with 𝑖 < 𝑗 .

such that the two-time correlators can be rewritten as

⟨𝑄 (𝑡𝑖 )𝑄 (𝑡 𝑗 )⟩ =
∑

𝑞𝑘 ; 𝑘≠𝑖, 𝑗

∑
𝑞𝑖 ,𝑞 𝑗

𝑞𝑖𝑞 𝑗 𝑝123 (𝑞1, 𝑞2, 𝑞3). (1.4)

Using Eq. (1.4), we can then write

𝐾 = ⟨𝑄 (𝑡1)𝑄 (𝑡2)⟩ + ⟨𝑄 (𝑡2)𝑄 (𝑡3)⟩ − ⟨𝑄 (𝑡1)𝑄 (𝑡3)⟩

=
∑

𝑞1,𝑞2,𝑞3

(𝑞1𝑞2 + 𝑞2𝑞3 − 𝑞1𝑞3) 𝑝123 (𝑞1, 𝑞2, 𝑞3)

≤ max
𝑞1,𝑞2,𝑞3

(𝑞1𝑞2 + 𝑞2𝑞3 − 𝑞1𝑞3) = 1,

(1.5)

which establishes the inequality. Here, we have used the fact the 𝑞𝑖 can be chosen independently, and that
𝑝123 (𝑞1, 𝑞2, 𝑞3) ≥ 0 and

∑
𝑞1,𝑞2,𝑞3 𝑝123 (𝑞1, 𝑞2, 𝑞3) = 1. This LGI is easily violated in quantum mechanics,

e.g., by using a two-level quantum system undergoing coherent oscillations [64, 203], which achieves a
maximum value of 𝐾 = 3/2.

While LGIs were designed as tests for macrorealism, experiments are still largely confined to mi-
croscopic scales, with considerable effort being directed towards devising better and larger-scale LGI
tests [64]. Nevertheless, some authors have pointed out that there is nothing inherently macroscopic
about the assumptions underlying LGIs [125, 64]. Since the notion of “macroscopicity” will be irrelevant
to us, we shall simply refer to realism as the relevant assumption from now on.

A full discussion on LGIs and macrorealism is beyond the scope of this thesis; see Refs. [64, 203] for
detailed reviews instead. For now, we simply note LGIs are also subject to many experimental loopholes,
similar to those in Bell inequalities, but also much more challenging to address; see Refs. [29, 64, 203]. As
we will see next, some of these loopholes are intimately related to the temporal character of LGIs and the
fundamental differences between spatial and temporal correlations.
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1.2.2 Temporal vs. spatial correlations

Beyond macrorealism, physicists quickly noted that LGIs could also be adopted as tests for the “nonclas-
sicality” of temporal correlations. This is partially inspired by the fact LGIs share the same mathematical
structure as Bell inequalities [64], which establish bounds on spatial correlations. Indeed the two inequal-
ities are closely related, with LGIs even being referred to as “temporal Bell inequalities” [152]. However,
such a direct analogy overlooks fundamental differences between spatial and temporal correlations in
several important ways.

On the one hand, Bell inequalities treat measurements as happening on spatially separated systems,
and are built upon the notions of realism and locality [150, 13, 29]. In experimental Bell tests, locality
can be ensured by an appropriate spatial separation between the two systems such that no signaling is
possible between measurements. Any experiment failing to do so would be subject to the “communica-
tion loophole” [50, 109], also known as “locality loophole”, where violations of the inequality could be
attributed to some form of signaling having occurred.

On the other hand, LGIs consider measurements on a single system at multiple moments in time, and
are built upon the notions of realism and noninvasive measurability. A valid test of LGIs requires careful
experimental control to ensure measurements are not invasive, as otherwise the experiment would be sub-
ject to the “clumsiness loophole” [210], and any violations of the LGI could be attributed to inadvertently
invasive measurements having occurred.

Both loopholes can be understood in terms of some form of signaling occurring between measure-
ments. In fact, the respective no-signaling conditions are essentially identical from a mathematical stand-
point. It is instructive to make this comparison explicitly.

For the Bell inequality we can consider Clauser-Horne-Shimony-Holt (CHSH) scenario [51], with Alice
and Bob in two space-like separated laboratories. Alice and Bob may each independently choose between
two possible measurements, {𝐴𝑥 }𝑥 for settings 𝑥 = {0, 1} in Alice’s case, and {𝐵𝑦}𝑥 for settings 𝑦 = {0, 1}
in Bob’s case, with corresponding outcomes given by 𝑎𝑥 , 𝑏𝑦 = ±1. Defining the correlators

⟨𝐴𝑥𝐵𝑦⟩ :=
∑

𝑎𝑥 ,𝑏𝑦=±1
𝑎𝑥𝑏𝑦 𝑝 (𝑎𝑥 , 𝑏𝑦), (1.6)

we may write the corresponding Bell-CHSH inequality as

⟨𝐴0𝐵0⟩ + ⟨𝐴0𝐵1⟩ + ⟨𝐴1𝐵0⟩ − ⟨𝐴1𝐵1⟩ ≤ 2. (1.7)

Under the assumptions of realism and locality, there exists [66] a global joint distribution, given by
𝑝 (𝑎0, 𝑎1, 𝑏0, 𝑏1), such that

𝑝 (𝑎𝑥 , 𝑏𝑦) =
∑

𝑎𝑥 ′ ,𝑏𝑦′=±1
𝑥 ′≠𝑥 and 𝑦′≠𝑥

𝑝 (𝑎0, 𝑎1, 𝑏0, 𝑏1). (1.8)

The marginals in Eq. (1.8) embody the No-Signaling (NS) condition between Alice and Bob, demanded by
locality, which informs us that both Alice’s and Bob’s outcomes must be statistically independent from
any measurements performed by the other party.

A comparable LGI can be constructed using four sequential measurements, but is otherwise similar to
Eq. (1.2) derived from Fig. 1.1:

⟨𝑄 (𝑡1)𝑄 (𝑡2)⟩ + ⟨𝑄 (𝑡2)𝑄 (𝑡3)⟩ + ⟨𝑄 (𝑡3)𝑄 (𝑡4)⟩ − ⟨𝑄 (𝑡1)𝑄 (𝑡4)⟩ ≤ 2. (1.9)

As before, the LGI assumptions imply the existence of a global joint distribution 𝑝1234 (𝑞1, 𝑞2, 𝑞3, 𝑞4), such
that

𝑝𝑖 𝑗 (𝑞𝑖 , 𝑞 𝑗 ) =
∑

𝑞𝑘 ,𝑞ℓ=±1
𝑘,ℓ≠𝑖, 𝑗 and 𝑘≠ℓ

𝑝1234 (𝑞1, 𝑞2, 𝑞3, 𝑞4), (1.10)
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meaning measurements at times 𝑡𝑖 and 𝑡 𝑗 are unaffected by the other two, i.e., there is no signaling occur-
ring between measurements performed at different times.

At first glance, the similarities between Eqs. (1.8) and (1.10) suggest Bell and Leggett-Garg inequalities
are analogous. While the two make use of realism for their notions of classicality, their fundamental
difference arises when considering the physical basis for the lack of signaling.

In the temporal case of LGI, the existence of a joint distribution 𝑝1234 (𝑞1, 𝑞2, 𝑞3, 𝑞4) is already guaran-
teed by the realism and NIM assumptions, and could be obtained by directly measuring at the four times.
The spatial case of the Bell-CHSH inequality differs in that the joint distribution 𝑝 (𝑎0, 𝑎1, 𝑏0, 𝑏1) cannot
be obtained directly: since 𝐴0 and 𝐴1, or 𝐵0 and 𝐵1, are incompatible measurements, it is impossible to
perform the necessary joint measurements [203]. Instead, under realism and locality such a distribution
would arise from an appropriate local hidden-variable (LHV) model [66], e.g.,

𝑝 (𝑎0, 𝑎1, 𝑏0, 𝑏1) =
∑
𝜆

𝑝 (𝜆) 𝑝 (𝑎𝑥 |𝑥 ; 𝜆) 𝑝 (𝑏𝑥 |𝑦; 𝜆), (1.11)

which embodies the locality constraint, thereby automatically satisfying the spatial no-signaling condi-
tions in the resulting global distribution.

The principle of locality is motivated by the postulates of special relativity, and is generally regarded
as a fundamental property of Nature. In contrast, NIM is not based on any fundamental physical principle,
instead being simply an intuitive property expected of macroscopic classical systems. This discrepancy
suggests Bell and Leggett-Garg tests should not be considered methodologically comparable [126], despite
their mathematical similarities.

Thus, while closing the communication loophole in Bell inequalities can be achieved in a model-
independent way, in terms of fundamental physical postulates, closing the clumsiness loophole in LGIs is
not straightforward. Much of the literature surrounding LGIs has been dedicated to closing the clumsi-
ness loophole by means of increasingly sophisticated protocols [64, 203]. Furthermore, while numerous
loophole-free Bell tests have been proposed [29], even the mere possibility of a loophole-free Leggett-Garg
test remains an open question [64, 203]. As a final remark, additional loopholes exist for both Bell and
Leggett-Garg inequalities (see Refs. [64, 109, 203]), but they are not relevant for this discussion.

1.2.3 Temporal correlations and Leggett-Garg inequalities

Despite these challenges, LGIs have become the standard notion of nonclassical temporal correlations [203],
with “classicality” largely being used interchangeably with the notion of noninvasive measurability (with
realism left implicit). Indeed, the same assumption underlies the applications of the Kolmogorov extension
theorem [104, 24] in defining classical stochastic processes and “classical memory” in a quantummechani-
cal setting [134, 133, 189, 169, 185, 160]. In this thesis we explicitly reject this notion of classicality, instead
treating realism, in and of itself, as the defining feature of classicality in a temporal context.

To justify this choice, let us step back and review the three assumptions behind LGIs. We ask: What
are the minimal assumptions expected of a general classical description of temporal correlations?

First and foremost, the IND assumption seems essential in the description of any temporal phenomenon,
as it embodies the notion of causality observed in Nature, and applies equally to the case of quantum sys-
tems5. In what follows, we simply refer to causality as the explicit assumption.

As noted earlier, MR is essentially just realism, and is the same feature of classical mechanics invoked
in Bell and noncontextuality [12, 175] inequalities. The fundamental indeterminacy in quantum theory,
ultimately resulting from coherences, already provides a clear criterion to distinguish between classical
and quantum theory in sequential temporal scenarios.

5Of course, the IND assumption is violated in models involving exotic causal structures, but their existence is disputed. This is a
topic beyond the scope of this thesis, however.
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The NIM assumption is the one that clearly stands out from the rest. The notion that classical mea-
surements can always “in principle” be made without any disturbance seems of little use in practice, as
there appears to be no irrefutable way to achieve this in the case of a single indivisible system, i.e., in a
manner similar to locality in a Bell test by means of space-like separated measurements.

Furthermore, while measurement invasiveness is recognized as a fundamental feature of quantum
mechanics, invasiveness itself is not necessarily a uniquely quantum effect: It is possible to devise models
of classical invasive measurements [32, 160]. Since the presence of invasiveness can easily violate LGIs,
the NIM assumption will invariably fail to discern between classical and quantum temporal correlations.

We are forced to conclude NIM is an unreasonably strong assumption, if not an unnecessary one, and
several relaxations of the assumption have been proposed which have led to far more insightful results.
For the remaining of this thesis all measurements (classical or quantum) will be allowed to be invasive.

1.2.4 Nonclassical temporal correlations beyond Leggett-Garg

Clearly, if future measurements can be influenced by earlier ones then informationmust have been relayed
between them, and the system itself must be the carrier of this information. This naturally motivates an
information processing perspective for temporal correlations: The system is understood as a memory
resource (see Sec. 1.1), which is being used for the task of generating temporal correlations.

From this point of view, invasiveness need not be associated with an “unwanted disturbance” of the
state, which we attempt to eliminate. Instead, it can be interpreted as the deliberate manipulation of
information stored in a memory to achieve a specific task. Since each physical theory provides differ-
ent descriptions of what memory states and their transformations are possible, their inherent limitations
in achieving certain tasks can be utilized for distinguishing between theories. This naturally motivates
treating finite memory as a constraint.

Different notions of nonclassical temporal correlations have recently been introduced based on similar
principles. An algorithmic understanding of sequential operations was first proposed by Żukowski [219],
where the assumption of a finite-dimensional system was employed in conjunction with a sequential in-
formation processing task for obtaining temporal inequalities capable of distinguishing between classical
and quantum systems.

The application of finite-dimensional systems for investigating temporal correlations was later re-
fined by Hoffmann et al. [88] and Budroni et al. [32], where the system’s dimension was interpreted as
the memory cost of generating temporal correlations, formalized through the framework of finite-state
machines (FSMs). In particular, Budroni et al. [32] used FSMs for investigating temporal correlations in
general probability theories (GPTs), which include classical and quantum theories as special cases. Within
a unified framework, the authors were able to derive temporal inequalities capable of discriminating be-
tween classical, quantum, and genuine GPT correlations. These results highlight the versatility of the
FSM framework and its capability of sharply characterizing temporal correlations. The framework has
also been employed in investigating quantum advantages for time-keeping devices [33].

A related notion of nonclassical temporal correlations was introduced by Brierley et al. [26] in terms
of communication cost, as opposed to memory cost. Correlations are assumed to be generated by a 𝑑-
dimensional quantum system being sequentially measured by multiple parties, separated in both space
and time. A correlation is said to be nonclassical if the parties cannot simulate it by communicating using
at most a 𝑑-it of classical information between them. Nonclassical temporal correlations have also been
investigated in a variety of other contexts, such as quantum random-access codes [209, 9, 10, 191, 131],
dimension witnessing [28, 5, 20], and classical simulation of quantum contextuality [102, 65].

A unifying feature in all these approaches is the assumption of a finite-dimensional system. As we
discuss in the following, this assumption emerges naturally in sequential temporal scenarios.
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1.2.5 Inputs, outputs, and symbolic sequences

This thesis investigates temporal correlations arising from finite and discrete sequences of measurements
on finite-dimensional systems. Aiming for a more abstract perspective in terms of information processing
tasks, measurement settings will be referred to as “inputs” and measurement outcomes as “outputs”.

Inputs and outputs will be labeled by symbols from the sets X and A, respectively, which we refer to
as alphabets, with sizes denoted by 𝑋 = |X | and 𝐴 = |A|. In Chs. 2 to 4, unless stated otherwise, we take
A = {0, 1} and X = {0} (i.e., trivial inputs), with Ch. 6 addressing the general X and A case.

A sequence of symbols 𝑎1𝑎2 . . . 𝑎𝐿 from an alphabetA will be denoted in bold, e.g. a, with |a| = 𝐿 the
sequence length. The set of all sequences of length 𝐿 will be denoted by A𝐿 , and the set of all sequences
of lengths between ℓ and 𝐿 by Aℓ:𝐿 . We use A∗ := A0:∞. It will also be convenient to specify portions
of a sequence using the subscript notation aℓ:𝑘 = 𝑎ℓ𝑎ℓ+1 . . . 𝑎𝑘−1𝑎𝑘 , and concatenation of sequences by
juxtaposition, so that a = a1:ℓ−1aℓ:𝐿 . Repetitions will be denoted with superscripts, e.g., 031 = 0001, and
the empty sequence will be denoted by 𝜀.

1.2.6 The Arrow-of-Time constraints

The term temporal correlations will generally refer to the probability distributions 𝑝 (a|x) obtained from
repeated measurements, i.e., the distributions over outputs a ∈ A𝐿 conditioned on inputs x ∈ X 𝐿 for a
fixed length 𝐿, such that:

𝑝 (a|x) ≥ 0, and
∑

a∈A𝐿

𝑝 (a|x) = 1, for all x ∈ X 𝐿 . (1.12)

In the case of no inputs, we simply refer to 𝑝 (a).
The essential assumption of causality requires that all temporal correlations must satisfy the Arrow-

of-Time (AoT) constraints [52]. For 𝐿 = 3, they can be written as:∑
𝑎2,𝑎3

𝑝 (𝑎1𝑎2𝑎3 |𝑥1𝑥2𝑥3) =
∑
𝑎2,𝑎3

𝑝 (𝑎1𝑎2𝑎3 |𝑥1𝑥 ′2𝑥 ′3),∑
𝑎3

𝑝 (𝑎1𝑎2𝑎3 |𝑥1𝑥2𝑥3) =
∑
𝑎3

𝑝 (𝑎1𝑎2𝑎3 |𝑥1𝑥2𝑥 ′3),
(1.13)

for all 𝑥1, 𝑥2, 𝑥 ′2, 𝑥3, 𝑥 ′3 ∈ X and 𝑎1, 𝑎2, 𝑎3 ∈ A. The 𝐿 > 3 case is analogous, leading to a larger set of
equalities. The constraints in Eq. (1.13) specify that, at every time step, future inputs cannot influence past
outputs, i.e., signaling is forbidden from future to the past. As such, the AoT constraints apply regardless
of the underlying theory describing the correlations.

In this way, the AoT constraints are analogous to the No-Signaling conditions in the case of spatial
correlations [29], with the important difference that signaling is only forbidden in one direction. This
distinction leads to stark differences between spatial and temporal correlations, as we discuss in the fol-
lowing.

1.2.7 The Arrow-of-Time polytope

The AoT constraints in Eq. (1.13) imply we can decompose temporal correlations by recursively condi-
tioning the probabilities at each time step on their respective past inputs and outputs, e.g.,

𝑝 (𝑎1𝑎2𝑎3 |𝑥1𝑥2𝑥3) = 𝑝 (𝑎1 |𝑥1) 𝑝 (𝑎2𝑎3 |𝑥1𝑥2𝑥3, 𝑎1)
= 𝑝 (𝑎1 |𝑥1) 𝑝 (𝑎2 |𝑥1𝑥2, 𝑎1) 𝑝 (𝑎3 |𝑥1𝑥2𝑥3, 𝑎1𝑎2),

(1.14)

where we assume 𝑝 (𝑎2𝑎3 |𝑥1𝑥2𝑥3, 𝑎1) := 𝑝 (𝑎1𝑎2𝑎3 |𝑥1𝑥2𝑥3)/𝑝 (𝑎1 |𝑥1) is zero if 𝑝 (𝑎1 |𝑥1) = 0, and similarly
for other time steps. Tomake this temporal conditioning explicit, we adopt the convention that semicolons
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separate present from past conditioning parameters. This Arrow-of-Time decomposition is then

𝑝 (𝑎1𝑎2𝑎3 . . . |𝑥1𝑥2𝑥3 . . . ) := 𝑝 (𝑎1 |𝑥1) 𝑝 (𝑎2 |𝑥2;𝑥1, 𝑎1) 𝑝 (𝑎3 |𝑥3;𝑥1𝑥2, 𝑎1𝑎2) · · · , (1.15)

where each term in the decomposition can be understood as a local-in-time distribution [124]. Equa-
tion (1.15) not only makes the past-to-future signaling structure explicit, but also hints at the role of the
physical system as a memory resource storing information about the past inputs and outputs.

Any correlation 𝑝 (a|x) obeying the AoT constraints can be written as in Eq. (1.15) by an appropriate
choice of local-in-time distributions. Since these distributions can be chosen to be deterministic (i.e.,
probabilities 0 or 1), and the AoT constraints are linear, we may also decompose any correlation satisfying
the AoT constraints as a convex mixture of deterministic local-in-time distributions 𝑝𝜆 :

𝑝 (𝑎1𝑎2𝑎3 . . . |𝑥1𝑥2𝑥3 . . .) =
∑
𝑖

𝑞(𝜆) 𝑝𝜆 (𝑎1 |𝑥1) 𝑝𝜆 (𝑎2 |𝑥2;𝑥1, 𝑎1) 𝑝𝜆 (𝑎3 |𝑥3;𝑥1𝑥2, 𝑎1𝑎2) · · ·

=
∑
𝜆

𝑞(𝜆) 𝑓𝜆 (𝑎1𝑎2𝑎3 . . . |𝑥1𝑥2𝑥3 . . .)
(1.16)

with 𝑞(𝜆) ≥ 0 and
∑
𝜆 𝑞(𝜆) = 1, and 𝑓𝜆 denoting the resulting deterministic multi-time distribution.

Equation (1.16) reveals that the set of correlations obeying the AoT constraints forms a convex polytope6,
known as the Arrow-of-Time polytope [52], with the deterministic distributions

𝑓𝜆 (𝑎1𝑎2𝑎3 . . . |𝑥1𝑥2𝑥3 . . . ) = 𝑝𝜆 (𝑎1 |𝑥1) 𝑝𝜆 (𝑎2 |𝑥2;𝑥1, 𝑎1) 𝑝𝜆 (𝑎3 |𝑥3;𝑥1𝑥2, 𝑎1𝑎2) · · · , (1.17)

corresponding exactly to its extreme points [1, 88].
The extreme points of the AoT polytope have only recently been characterized [1, 88, 182]. In particu-

lar, Spee at al. [182] has provided a detailed analysis of the symmetries of the AoT polytope, and introduced
a criterion determining the minimum dimension required for the realization of its extreme points. These
notions will be explored in more detail in Chs. 2 and 6.

As a final remark, since the AoT constraints concern only future inputs affecting the past, they do
not fully capture the causal constraints in temporal correlations. This is especially evident in scenarios
involving only outputs, where the AoT decomposition of 𝑝 (a) is simply

𝑝 (a) = 𝑝 (𝑎1) 𝑝 (𝑎2 |𝑎1) 𝑝 (𝑎3 |𝑎1𝑎2) · · · 𝑝 (𝑎𝐿 |𝑎1 . . . 𝑎𝐿−1), (1.18)

which can always be written for an arbitrary joint distribution, i.e., any temporal ordering for the condi-
tioning could have been chosen. This highlights the important role of the system as a carrier of past-to-
future signaling information, something not apparent when looking strictly at the level of input-output
distributions. A fully device-independent characterization of temporal correlations is therefore not gen-
erally possible, and further assumptions must be made about the system. As we have seen, the dimension
of the system is a natural choice.

1.2.8 Dimension as a memory resource

Equation (1.16) also reveals that all temporal correlations in the AoT polytope can be generated by either a
classical or quantum system, provided enoughmemory is available to store the relevant information about
past inputs and outputs. This is a fundamental difference between temporal and spatial correlations, as
even quantum theory is unable to generate all correlations in the spatial analogue of the AoT polytope,
the No-Signaling polytope [48, 29].

6There are conflicting definitions of “polytope” in the literature as to whether boundedness or convexity are implied or not. In
this thesis we assume polytopes are bounded.
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It was quickly realized that the appropriate quantifier of memory for sequential tasks coincides with
dimension of the system [88, 32], i.e., the maximum number of perfectly distinguishable states. Further-
more, since classical and quantum theory require the same dimension to realize a given extreme point of
the AoT polytope [180], the classicality or nonclassicality of temporal correlations can only be investigated
when resources are appropriately constrained [88, 32]. This motivates the question:

What are the minimum memory resources to physically realize 𝑝 (a|x)?

Here, the memory resource is to be understood not only as the dimension (the “amount” of mem-
ory), but also its classical or quantum characteristics; see Sec. 1.1. Broader notions of a “resource” are
also possible by considering, e.g., time-dependent operations, initial randomness [32, 182], mixed initial
states [55], or even conditioning on past inputs and outputs via a classical side-channel [124]. All of these
can provide an additional advantage in generating temporal correlations7. That being said, this thesis fo-
cuses on scenarios without any of these additional resources, i.e., the system is the sole resource available
to generate correlations. This approach allows classical and quantum memories to be compared directly
on equal terms.

Nevertheless, exactly determining the minimum resources needed for arbitrary temporal correlations
appears to be exceptionally difficult, due to the non-convexity of the set of correlations under finite-
memory constraints [32, 124] and the general non-linearity which arises from sequential operations.

A good starting point is to focus on the extreme points of the AoT polytope, i.e., the deterministic
distributions 𝑓𝜆 (Eq. (1.17)), where storing all past inputs and outputs is clearly not necessarily optimal.
Spee at al. [182] introduced a criterion for determining the minimum dimension needed to realize these
extremal points, and also investigated the symmetries of the AoT polytope under classical post-processing.
In this thesis, we refine and greatly expand upon these ideas by introducing the deterministic complexity
(DC), a computable complexity measure relevant in temporal correlations. The DC was first introduced in
Ref. [198] in the context of output sequences, which is the subject of Ch. 2. In Ch. 6, the DC is generalized
for sequences of inputs and outputs, while also establishing some connections to topics in graph theory
and computer science.

The takeaway from these results is that the dimension 𝑑 directly quantifies both classical and quantum
memory resources, in particular due to the fact deterministic quantum strategies do not require coher-
ences [182], i.e., a 𝑑-it can simulate a qudit. This naturally motivates the application of finite-state ma-
chines to model finite memory and sequential operations in a unified way [88, 32], which is the framework
used throughout this thesis.

1.3 Finite-state machines

This thesis investigates temporal correlations through the framework of finite-state machines (FSMs),
an application pioneered by the works in Refs. [88, 102, 65, 32, 182, 124], which we build upon. This
section briefly formalizes the notion of FSMs used within this context of temporal correlations, while also
highlighting how it diverges from the conventional uses of FSMs found elsewhere.

Finite-state machines were originally introduced in computer science as mathematical models of com-
putation where only a fixed and finite amount of memory is available, as quantified by its number of
states. At each moment the machine is found in exactly one of its possible states. Upon receiving an input
symbol 𝑥 ∈ X , the machine performs a transition between its internal states and produces an output

7It seems possible to quantify the amount of memory “smuggled” by each of these alternatives, thereby unifying all resources
into one formalism. This will be the subject of future research.
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symbol 𝑎 ∈ A following a time-independent rule. Despite their simplicity FSMs are just as powerful as a
typical computer8, but their usefulness as a model of general computation is very limited9.

Here, we employ FSMs to model physical devices capable of manipulating a single finite-dimensional
(classical or quantum) system acting as its internal memory. We assume discrete time steps, instanta-
neous measurements and transitions, and no free time evolution between measurements10. Thus, all state
transitions occur due to the effects of measurements performed on the memory state, with outcomes cor-
responding to the machine’s output. We will further assume the machine is reset to an initial state before
each sequence of measurements, meaning no assumptions is made about stationary behaviors.

Since we will consider probabilistic FSMs and their quantum generalizations, the notion of classical
and quantum memory states and transition rules will differ between the two. We formalize the two cases
in the following sections.

Automata

A FSM that does not accept any inputs can be thought of as machine acting autonomously as a sequence
generator. We will call such a FSM a finite-state automaton, or simply automaton. Automata can be inter-
preted as a physical device with a trivial input (i.e., 𝑋 = 1), understood as a simple “measure” instruction
producing a single output (the measurement outcome). If all transitions (and thus outputs) occur deter-
ministically, the machine is referred to as deterministic finite-state automaton (DFA).

By repeatedly resetting and running the automaton for any desired number of steps, we obtain a
probability distribution 𝑝 (a) over all sequences a ∈ A𝐿 , for each length 𝐿. The finite amount of memory
in the automaton is the sole resource available to realize this distribution. Figure 1.2 provides an intuitive
picture of an automaton with A = {0, 1}.

Figure 1.2: An automaton can be understood as a device with a finite amount of internal memory, an
output display, a “reset” button, and a single “measure” button (on top). Each measurement produces an
output while potentially changing the memory state. In this example, the sequence a = 001011 was
generated.

As a side note, while we consider automata exclusively as generators (i.e., only outputs), the reader
might be more familiar with their usual applications in computer science and automata theory, which
instead treat them as acceptors: machines taking a sequence of inputs and having states labeled as either
“accepting” or “rejecting”, with this label being read after the entire input sequence is processed. There
are important connections and fundamental differences between the two approaches, but that discussion
is beyond the scope of this thesis.

8A typical physically real computer has a finite number of inputs, outputs, and memory, thus a finite (but incomprehensibly
large) number of states and transitions.

9It is difficult to think about algorithms in the “monolithic” picture of computation provided by FSMs, which is why Turing
machines and other models are used instead [90]. Nevertheless, the approach does find important applications, e.g., in model
checking [49], and in automatic parallelization of sequential programs [205].

10In principle, time evolution may still be included provided it is always given by the same channel at each step. It can then be
directly embedded in the transition model.
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Transducers

If the FSM has both inputs and outputs, it can be thought of as machine which sequentially translates input
sequences into output sequences, one symbol at a time, a process known as transduction. Such a machine
is referred to as a finite-state transducer, or simply transducer. In our context, an automaton is equivalent
to a transducer with trivial inputs (i.e., 𝑋 = 1). If all transitions (and thus input-output sequences) occur
deterministically, the machine is referred to as deterministic finite-state transducer (DFT).

A transducer generates a conditional distribution 𝑝 (a|x) over all possible inputs x ∈ X 𝐿 and outputs
a ∈ A𝐿 , such that

∑
a∈A𝐿 𝑝 (a|x) = 1 for every x ∈ X 𝐿 and length 𝐿. The finite amount of memory in

the transducer is the sole resource available to realize this distribution. Figure 1.3 provides an intuitive
picture of a transducer with X = A = {0, 1}.

Figure 1.3: A transducer can be understood as a device with a finite amount of internal memory, an output
display, a “reset” button, and multiple “measure” buttons (on top) corresponding to the possible inputs.
Each measurement produces an output while potentially changing the memory state. In this example, the
input sequence x = 011010 resulted in the output sequence a = 001011.

1.3.1 Classical finite-state machines

For classical FSMswe consider probabilisticMealy-type (see Sec. 1.3.3) automata andweighted (or stochas-
tic) transducers [151, 61], i.e., we assume outputs are generated through probabilistic transitions between
states; see Sec. 1.3.3. We will refer to these simply as probabilistic FSMs11.

The classical memory is a system which can be in one of 𝑑 perfectly distinguishable states at any given
time. Measurements upon this system lead to probabilistic state transitions and outcomes, such that the
overall behavior of the device is stochastic. The FSM model we adopt for this device is defined as follows.

Definition 1. A classical finite-state machine is a tuple (X ,A,S, 𝑠0, T ), where X is the input alphabet, A
is the output alphabet, S := {1, . . . , 𝑑} is a finite set of 𝑑 states, 𝑠0 is an initial “reset” distribution over S ,
and T : X × S → A × S × [0, 1] is a stochastic transition rule.

Concretely, we specify T in terms of sub-stochastic transition matrices 𝑇𝑎 |𝑥 ∈ R𝑑×𝑑 , such that [𝑇𝑎 |𝑥 ]𝑖 𝑗
is the probability of the machine transitioning from state 𝑖 to 𝑗 while outputting 𝑎, when given an input
𝑥 . We thus require that

[𝑇𝑎 |𝑥 ]𝑖 𝑗 ≥ 0, and
∑
𝑎∈A

𝑑∑
𝑗=1

[𝑇𝑎 |𝑥 ]𝑖 𝑗 = 1 for all 𝑥 ∈ X , 𝑖 ∈ S, (1.19)

which enforces conservation of total probability. Thesematrices are collected into the classical instruments
𝑇𝑥 := (𝑇𝑎 |𝑥 )𝑎∈A, giving the transition model 𝑇 := (𝑇𝑥 )𝑥∈X . Memory states are written as 𝑑-dimensional

11There are several alternative (and often conflicting) definitions and terms for “probabilistic FSMs” in the literature, depending on
which context they have been applied to. Here, we simply consider finite-state machines (automata or transducers) with probabilistic
transitions (and thus outputs). Unfortunately, the lack of consistent terminology is present even in the deterministic case [151, 130].
Also note that we do not require the usual notion of “accepting states”, often found in the FSM literature, as we are only interested
in the input-output correlations generated at every step. In this sense, our applications is closer to the way FSMs are used in the
natural language processing literature [130].
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stochastic row vectors 𝜋 , i.e., where 𝜋 𝑗 ≥ 0 for all 𝑗 = 1, . . . , 𝑑 , and
∑𝑑
𝑗=1 𝜋 𝑗 = 1. The input-output

probability distribution generated by the FSM can then be written succinctly in terms of

𝑝 (a|x) := 𝜋0𝑇𝑎1 |𝑥1𝑇𝑎2 |𝑥2 · · ·𝑇𝑎𝐿 |𝑥𝐿𝜂 = 𝜋0𝑇a |x𝜂, (1.20)

where 𝜋0 is the initial reset state according to 𝑠0, and 𝜂 = [1, 1, . . . , 1]T is used to sum over all final states.
Naturally, in the case of an automaton this simplifies to

𝑝 (a) := 𝜋0𝑇𝑎1𝑇𝑎2 · · ·𝑇𝑎𝐿𝜂 = 𝜋0𝑇a𝜂. (1.21)

Equations (1.20) and (1.21) can be interpreted as follows. At each moment in time the machine can be
found in exactly one of its 𝑑 distinct states according to some distribution. The transition matrices 𝑇𝑎 |𝑥
describe the behavior of a random walk following state-dependent input-output rules. The matrix entries
[𝑇a |x]𝑖 𝑗 represent the total probability of starting from state 𝑖 and ending at the state 𝑗 , over all possible
execution histories which successfully output a given x as input. Since we do not care about the final
state of the machine, 𝜂 is used to obtain the final probability 𝑝 (a|x) over all successful histories.

1.3.2 Quantum finite-state machines

Quantum FSMs can be understood as models for sequential quantum measurements performed on the
same 𝑑-level quantum system, making it necessary that we consider the post-measurement states explic-
itly. Importantly, we do not restrict measurements to be projective as these impose artificial restrictions
on the set of correlations achievable by a quantum system of a given dimension [34, 31, 32]. Instead, we
consider the most general measurements in quantum theory, as described by quantum instruments.

Let H be a finite-dimensional Hilbert space with dimension 𝑑 = dimH, and

SH := { 𝜌 ∈ L(H) | 𝜌 ≥ 0, and Tr [𝜌] = 1 } (1.22)

denote the corresponding set of quantum states, where L(H) is the set of linear operators acting on H.
We define quantum FSMs as follows.

Definition 2. A quantum finite-state machine is a tuple (X ,A,SH, 𝜌0, T ), whereX is the input alphabet,
A is the output alphabet, SH is the space of memory states, 𝜌0 ∈ SH is an initial “reset” state, and
T : X × SH → A × SH × [0, 1] is a transition rule.

We specify T in terms of quantum instruments I𝑥 := (I𝑎 |𝑥 )𝑎∈A, where the effects I𝑎 |𝑥 are completely
positive (CP) trace non-increasing maps such that

∑
𝑎∈A I𝑎 |𝑥 is completely positive and trace preserving

(CPTP) for every 𝑥 ∈ X . The overall quantum transition model will be denoted by I := (I𝑥 )𝑥∈X . Thus,
Tr

[
I𝑎 |𝑥 (𝜌)

]
is the probability of outputting 𝑎 given input 𝑥 when the machine is in the state 𝜌 ∈ SH.

Concretely, the effects I𝑎 |𝑥 can be written using their Kraus decomposition,

I𝑎 |𝑥 (𝜌) :=
𝑛𝑎 |𝑥∑
𝑘=1

(𝐾𝑘𝑎 |𝑥 ) 𝜌 (𝐾
𝑘
𝑎 |𝑥 )

†,
∑
𝑎∈A

𝑛𝑎 |𝑥∑
𝑘=1

(𝐾𝑘𝑎 |𝑥 )
† (𝐾𝑘𝑎 |𝑥 ) = 1, (1.23)

where 𝑛𝑎 |𝑥 ≤ 𝑑2 is the number of Kraus operators 𝐾𝑘
𝑎 |𝑥 ∈ C

𝑑×𝑑 for each effect, and the Kraus condition
in Eq. (1.23) ensures

∑
𝑎∈A I𝑎 |𝑥 is trace preserving. The probability distribution generated by the FSM can

then be written succinctly in terms of

𝑝 (a|x) := Tr
[
I𝑎𝐿 |𝑥𝐿 ◦ · · · ◦ I𝑎2 |𝑥2 ◦ I𝑎1 |𝑥1 (𝜌0)

]
= Tr

[
Ia |x (𝜌0)

]
, (1.24)

or, in the case of an automaton,

𝑝 (a) := Tr
[
I𝑎𝐿 ◦ · · · ◦ I𝑎2 ◦ I𝑎1 (𝜌0)

]
= Tr [Ia (𝜌0)] . (1.25)
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Quantum-to-classical correspondence

A quantum FSM is capable of simulating any classical FSM of the same size. Given a classical FSM with 𝑑
states, let𝑇 := (𝑇𝑥 )𝑥∈X with𝑇𝑥 := (𝑇𝑎 |𝑥 )𝑎∈A be its transition model and 𝜋0 its reset state. We can convert
it into an equivalent quantum FSM, with dimension 𝑑 , by choosing an orthonormal basis {|𝑖⟩}𝑑𝑖=1, with
Kraus operators for I𝑎 |𝑥 acting as

𝐾𝑘𝑎 |𝑥 |𝑖⟩ :=
√
[𝑇𝑎 |𝑥 ]𝑖 𝑗 | 𝑗⟩ , (1.26)

which can be done with 𝑛𝑎 |𝑥 ≤ 𝑑 operators for each effect I𝑎 |𝑥 . Choosing 𝜌0 =
∑𝑑
𝑖=1 [𝜋0]𝑖 |𝑖⟩⟨𝑖 |, it is then

easy to check that
𝑝 (a|x) = 𝜋0𝑇a |x𝜂 = Tr

[
Ia |x (𝜌0)

]
. (1.27)

1.3.3 Moore vs. Mealy machines

FSMs can be broadly put into two categories, depending on how transitions and outputs are related:

• Mealy [127] or “edge emitting” machines, where outputs are assigned to transitions. The transition
rules are of the form used earlier: T : X × S → A × S × [0, 1] .

• Moore [136] or “state emitting” machines, where outputs are assigned to states. This requires an
additional “emission” rule E specifying how outputs are generated for each state. These rules are of
the form: T : X × S → S × [0, 1] and E : S → A × [0, 1].

In this thesis we will exclusively use Mealy machines, whereas Moore machines are far more prevalent
in most of the adjacent literature12. For this reason, a brief discussion is warranted regarding our choice
of Mealy machines, as they have many desirable properties for our particular goals within theoretical
physics.

First, while both types of machines are equivalent in many applications, for our purposes they are
not. While every Moore machine can be converted into an equivalent Mealy machine of the same size—
i.e., both generate the same distribution 𝑝 (a|x)—the conversion of a Mealy machine into an equivalent
Moore machine will generally require more states [114, 188]. Since our goal is to understand fundamental
constraints on which correlations can be realized with a finite amount of classical or quantum memory,
the choice of Mealy machines is more natural.

The choice of Mealy machines is also motivated by physical principles. Any quantum measurement
which reveals information about a system’s state will necessarily disturb the state [36, 131]. In other
words, informative measurements are invasive. From this perspective, projective measurements are max-
imally invasive (no subsequent measurement provides additional information), whereas noninvasive mea-
surements are trivial [36]. This is an important consideration when using generalized quantum measure-
ments, as they present a fundamental trade-off between information gain and disturbance.

In light of this, a fair comparison between classical and quantum memory effects must consider the
possibility of general invasive classical measurements. This is precisely the defining feature of Mealy
FSMs, where outputs are associated with state transitions. Thus, the choice of Mealy machines allows
classical and quantum memory resources to be compared on equal terms: the same amount of memory 𝑑 ,
being used in the most general way allowed within each theory, for the same task of generating a given
distribution 𝑝 (a|x) or 𝑝 (a).

12Examples: in computer science and automata theory in the study of regular and stochastic languages, the use of hidden Markov
models for stochastic processes, the design of finite-state controllers, and in certain models of partially observable Markov decision
process. While Mealy machines also occur occasionally, many results for Moore machines do not translate well to Mealy machines,
as they rely on significant simplifications provided by the uncoupling of transitions and outputs.
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In contrast, Moore machines are more restricted. In a classical Moore FSM the instruments must
factorize as 𝑇𝑎 |𝑥 := 𝑇𝑥𝐸𝑎 , for a stochastic transition matrix 𝑇𝑥 and a sub-stochastic emission matrix 𝐸𝑎 ,
corresponding to (possibly non-invasive) classical measurements. The equivalent quantum Moore ma-
chine would require quantum channels J𝑥 and instruments I𝑎 such that I𝑎 |𝑥 := I𝑎 ◦ J𝑥 . This forced
factorization of𝑇𝑎 |𝑥 and I𝑎 |𝑥 imposes artificial and incomparable restrictions on the possible behaviors of
the FSMs, whereas no such restrictions arise in the Mealy case.

1.4 Numerical optimization

This thesis makes extensive use of numerical optimization, with two particular approaches being used.
Explicit constructions and lower bounds on temporal correlations were found via gradient descent tech-
niques. In the context of open quantum systems, upper bounds were obtained using outer approximations
computed through semidefinite programming techniques.

1.4.1 Gradient descent

Gradient descent (GD) is a simple and flexible optimization method suitable for non-linear optimization
problems involving differentiable functions. While the method can only guarantee a local optimum, it
is often feasible to run multiple trials for different initial conditions, improving the likelihood of a good
solution. In this section we give a brief outline of the GD methods used in this thesis, which we have
used to obtain explicit classical and quantum models generating temporal correlations. More information
about GD methods can be found in Refs. [22, 74, 166].

Let 𝑓 : R𝑛 → R denote a continuous differentiable function, the objective function, and ∇𝑓 denote its
gradient. The goal is to find the optimal solution 𝑥∗ ∈ R𝑛 , a global minimizer, where

𝑥∗ = arg min
𝑥∈R𝑛

𝑓 (𝑥), (1.28)

such that 𝜔∗ = 𝑓 (𝑥∗) is the global minimum.
Starting from a random initial guess 𝑥0, the basic GD method iteratively updates the estimate solution

𝑥𝑡 by moving opposite to the gradient’s direction, thus obtaining a sequence of candidate solutions

𝑥𝑡+1 = 𝑥𝑡 − 𝛼𝑡 ∇𝑓 (𝑥𝑡 ) . (1.29)

The scalar value 𝛼𝑡 > 0 is often referred to as the learning rate and controls how large of a “step” is taken
in the direction of steepest descent −∇𝑓 (𝑥𝑡 ). The algorithm usually stops after a certain maximum number
of iterations, or if some desired accuracy can be determined to have been reached.

In this basic form GD converges at stationary points, i.e., where ∇𝑓 (𝑥𝑡 ) = 0, but these may correspond
to saddle points instead of local extrema, an issue that often arises in practice [166, 74]. Furthermore,
convergence of the basic GD can be quite slow, and it may even overshoot an optimum if 𝛼𝑡 is not chosen
to be sufficiently small for a given iteration 𝑡 . Thus, performance of GD can be quite sensitive to the
choice of learning rate [74]. A compendium of convergence theorems for gradient methods can be found
in Ref. [71].

Several improvements to the basic GDmethod are possible [166, 74]. A learning rate 𝛼𝑡 can be adjusted
independently and adaptively for each dimension, e.g., based on estimates of local curvature. Convergence
is usually greatly improved through the use of an intermediate “momentum” term 𝑣𝑡 computed as an
exponential moving average, i.e.,

𝑣𝑡+1 = 𝛽𝑣𝑡 + 𝛼𝑡 ∇𝑓 (𝑥𝑡 ) (1.30)

𝑥𝑡+1 = 𝑥𝑡 − 𝑣𝑡+1 (1.31)
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where the scalar 𝛽 ∈ [0, 1], typically around 𝛽 = 0.9, controls the exponential decay factor. This simple
adjustment greatly accelerates movement in favorable directions, and helps the algorithm evade saddle
points and local minima.

A relatively new algorithm called Adam [100] merges momentumwith various previous techniques to
achieve significant improvements in a wide range of problems [100, 166, 74]. The name Adam is derived
from “adaptive moment estimation”, as the algorithm computes an adaptive and independent learning rate
for each dimension using running estimates of first and second moments of the gradient. Adam is well
suited for stochastic gradient descent, where the gradient is sampled in only a subset of directions at each
iteration, and has thus found widespread applications in the training of large neural networks [74, 166].

In this thesis, since we have direct access to 𝑓 (𝑥) and are able to compute gradients numerically
using finite differences, all terms of the gradient were used instead, which we found to improve results.
Furthermore, Adam showed better performance than any GD variant we have tested, while also finding
better optima than alternative optimization methods13.

Finally, while GD is an unconstrained optimization method, constraints can be imposed in a number
of ways, e.g., by continuously projecting 𝑥𝑡 onto the feasible region, or the gradient ∇𝑓 onto the tangent
space of the feasible region [74]. Regularization techniques using penalty or barrier functions can also be
employed to discourage or forbid solutions violating any desired constraint [74, 22]. In this thesis, con-
straints were introduced by an appropriate transformation of optimization variables, as will be described
in later chapters.

1.4.2 Semidefinite programming

Semidefinite programming (SDP) is a powerful convex optimization technique for problems involving
linear objective functions, linear equality and inequality constraints, and positive semidefinite constraints.
We only briefly outline SDPs in this section; for more details, see Refs. [197, 22, 211].

A SDP in standard form can be written as

Given: 𝐹, {𝐶𝑘 }𝑚𝑘=1, {𝑐𝑘 }
𝑚
𝑘=1

Find: 𝜔∗ := max
𝑋
⟨𝐹, 𝑋 ⟩

Subject to: ⟨𝐶𝑘 , 𝑋 ⟩ = 𝑐𝑘 , 𝑘 = 1, . . . ,𝑚

𝑋 ≥ 0,

(1.32)

where ⟨𝐴, 𝐵⟩ = Tr
[
𝐴†𝐵

]
denotes the Frobenius inner product between matrices 𝐴 and 𝐵, and 𝐹 , 𝐶𝑘 , and

𝑋 are 𝑛 × 𝑛 complex-valued matrices, with 𝑋 = 𝑋 †. Equation (1.32) is referred to as the primal form of
the SDP, with its dual SDP given by

Given: 𝐹, {𝐶𝑘 }𝑚𝑘=1, {𝑐𝑘 }
𝑚
𝑘=1

Find: 𝜏∗ := min
𝑦

𝑦T𝑐 = min
𝑦

𝑚∑
𝑘=1

𝑦𝑘𝑐𝑘

Subject to:
𝑚∑
𝑘=1

𝑦𝑘𝐶𝑘 ≥ 𝐹

(1.33)

where 𝑦𝑘 ∈ R for 𝑘 = 1, . . . ,𝑚 denotes the dual optimization variable. It’s always possible to convert from
one form into the other. An important feature of this SDP duality is that any feasible solution in the dual
problem provides an upper bound for the primal problem, and vice versa. To see why, we simply evaluate

13Different methods tried were Nelder-Mead, differential evolution, and simulated annealing, all in their Wolfram Mathematica
implementations.
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𝜏∗ − 𝜔∗, obtaining:

𝑦T𝑐 − ⟨𝐹, 𝑋 ⟩ =
∑
𝑘

𝑦𝑘𝑐𝑘 − ⟨𝐹, 𝑋 ⟩ =
∑
𝑘

𝑦𝑘 ⟨𝐶𝑘 , 𝑋 ⟩ − ⟨𝐹, 𝑋 ⟩ = ⟨
∑
𝑘

𝑦𝑘𝐶𝑘 − 𝐹, 𝑋 ⟩ ≥ 0, (1.34)

where we use the fact
∑𝑚
𝑘=1 𝑦𝑘𝐶𝑘 ≥ 𝐹 and 𝑋 ≥ 0. This result is known as the weak duality theorem, and

the quantity 𝜏∗ − 𝜔∗ is referred to as the duality gap.
When the optimal values of primal and dual coincide, the SDP is said to satisfy the strong duality

property. Existence of strong duality is established in the following result [178]:

Theorem 1. (Strong duality) The primal-dual SDPs will satisfy strong duality, i.e. 𝜔∗ = 𝜏∗, if either one
of the following conditions hold:

1. The primal problem is strictly feasible, i.e., there exists 𝑋 > 0 such that ⟨𝐶𝑘 , 𝑋 ⟩ = 𝑐𝑘 for all 𝑘 =

1, . . . ,𝑚.

2. The dual problem is strictly feasible, i.e., there exits 𝑦 such that
∑𝑚
𝑘=1 𝑦𝑘𝐶𝑘 > 𝐹 .

Not all SDPs feature strong duality, but these conditions are often satisfied in practice. Thus, by si-
multaneously solving the primal and dual problems one obtains convergence guarantees to any desirable
precision.

While SDPs describe linear convex optimization problems, several relaxation techniques exist that can
transform non-linear optimization problems into SDPs. Some examples are global polynomial optimiza-
tion [148, 97, 112, 113], rank-constrained optimization [216], solving partial differential equations [129],
and constrained bilinear optimization [16]. Given their flexibility, SDPs have found widespread appli-
cations in numerous scientific disciplines, and are particularly ubiquitous in quantum information sci-
ence [177, 192]. Furthermore, efficient solvers are also widely and freely available [137, 145].

23



24



Chapter 2

Temporal correlations in the simplest
measurement sequences

The main results in this chapter were published in Ref. [198]:
Temporal correlations in the simplest measurement sequences
Lucas B. Vieira and Costantino Budroni
Quantum 6, p. 623 (2022) — Accepted 2022-01-09

Author contribution: In this work, the doctoral candidate significantly contributed to the conception of
the research topic. The candidate was fully responsible for writing all of the gradient descent optimiza-
tion code for the classical and quantum surveys (excluding the data in Fig. 2.13), analyzing the resulting
survey data, formulating the main conjectures, and developing the deterministic complexity algorithm.
The candidate also wrote the majority of the manuscript, and was solely responsible for producing all its
graphical assets.

The contents of this chapter were adapted from the original text. Additional previously unpublished
results have also been included, and will be noted when they appear.

2.1 Introduction

As discussed in Sec. 1.2.8, the problem of bounding the set of temporal correlations under the assumption
of finite memory is exceptionally difficult in general, due to its highly non-convex structure and inher-
ent high-dimensionality. As a consequence, the observation that the full set of temporal correlations —
classical or quantum — forms the Arrow-of-Time polytope (Sec. 1.2.7) leads naturally to the idea of in-
vestigating its extremal points, which correspond to the deterministic distributions [67, 88, 182]. If initial
randomness is an available resource, scenarios generating the extremal distributions may be combined
into any distribution in their the convex hull, providing a linear characterization of the set of correlations.
This idea was discussed in previous works [88, 124], where it is generally understood that much of the
problem’s structure is lost with this approach [182, 124].

In paving the way towards a deeper understanding of the problem, while preserving as much of its
structure as we can, this chapter focuses instead on the simplest scenario possible for investigating tempo-
ral correlations: A single finite-dimensional system being sequentially subjected to the same dichotomous
measurement over multiple time steps, generating a sequence of outcomes. In particular, we quantify the
maximum probability for individual sequences to be generated using finite memory resources, i.e., by
systems of bounded dimension.
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Before we begin, however, it should be noted that the techniques developed in this chapter are suffi-
ciently general to be applied to the investigation of more general scenarios, such as approximating entire
distributions using a finite amount of memory. Here, we have focused on the properties of individual
sequences as a further simplification, framing their generation as an information processing task.

The chapter is organized as follows. In Sec. 2.3, we introduce the physical scenario investigated, and
briefly review the basic concepts related to finite-state machines required. In Sec. 2.5, the minimal dimen-
sion necessary for deterministic generation of a sequence is investigated, and the deterministic complexity
defined. Approaches to investigate sub-deterministic scenarios numerically are discussed in Sec. 2.6, with
Secs. 2.7 and 2.8 discussing the results of our classical and quantum numerical surveys, respectively. Fi-
nally, Sec. 2.9 closes the chapter with a discussion of the results.

2.2 Summary of main results

As a first step, we investigate the minimum dimension 𝑑 required to generate each finite sequence a ∈ A𝐿

deterministically, in either classical or quantum theory, which we define as the sequence’s deterministic
complexity (DC), and provide an efficient algorithm computing it. The notion of a minimum dimension for
generating deterministic temporal correlationswas introduced in Ref. [182], in the context of deterministic
input-output distributions. In this thesis, we conceptualize it instead as new computable measure of com-
putational complexity for symbolic sequences, rooted on physical principles, which provides numerous
new insights and generalizations. These ideas are discussed in detail and generalized in Chapter 6.

Given a sequence a and its deterministic complexity DC(a), the central observation is that below
this dimension, i.e., for 𝑑 < DC(a), any classical or quantum physical realization of a must be prob-
abilistic, implying the existence of a nontrivial upper bound on these probabilities. Similar bounds on
temporal correlations have been investigated in other contexts [88, 32], and generally differ between clas-
sical, quantum, or general probability theories [32, 33]. Therefore, these bounds provide a clear method
for characterizing the correlations realizable by different physical theories.

Despite earlier results exploring finite-memory temporal correlations in various settings [88, 32, 182,
124, 33], not much was known about how classical and quantum memory resources can be used optimally
for generating temporal correlations. In order to address this gap in our knowledge, we have employed
numerical optimization techniques to comprehensively survey the optimal behaviors for classical and
quantum models, for all sequences up to length 𝐿 = 10 in all of their sub-deterministic scenarios, i.e.,
when 𝑑 < DC(a). Note that, while the ultimate goal is to obtain upper bounds on the probabilities for
each sequence, the numerical methods utilized in this chapter only provide lower bounds through explicit
constructions, as will be discussed in Sec. 2.6. Nevertheless, these results still led to many novel insights.

The surveys revealed a highly nontrivial behavior for both classical and quantum models, even in
this simplified scenario, as well as many puzzling features shared among very dissimilar sequences and
respective optimal models. The problem appears to be rich in emergent structures, many of which remain
unexplained.

A particularly striking observation from our numerical surveys suggests that the maximum probabil-
ity for any sequence can be upper bounded by the maximum probability for a special family of sequences,
whichwe call one-tick sequences. This result hinges on a remarkable connection between sub-deterministic
temporal correlations and the deterministic complexity, as will be discussed in Sec. 2.7.3. Despite consid-
erable efforts for a proof, this result remains as a conjecture. However, its proof immediately implies an
even more surprising result: The existence of a universal upper bound of 1/e for the probability of any
sequence in sub-deterministic classical scenarios.

The results of the quantum survey have also provided many interesting insights. While they con-
firm the intuition that quantum memories should outperform classical ones, we have also found evidence
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that there may exist memory-restricted scenarios where this advantage disappears (Sec. 2.8.5). Further-
more, for the task of maximizing the probability of individual sequences, optimal quantum strategies are
achieved entirely with pure states. Our results also suggest that there is no nontrivial universal upper
bound in the sub-deterministic quantum scenarios.

2.3 Sequential measurements

The physical scenario investigated in this chapter can be conceptualized as a device performing the same
dichotomous measurement on its 𝑑-dimensional (classical or quantum) internal memory, as in Fig. 2.1.
For each trial of an experiment, the device is first reset to a fixed initial state, then a finite sequence of 𝐿
measurements is performed obtaining outcomes a ∈ A𝐿 , with A = {0, 1}. Over multiple trials, we may
estimate a probability distribution 𝑝 (a) := 𝑝 (𝑎1𝑎2 . . . 𝑎𝐿) over all possible sequences the device generates
using only its limited internal memory as a resource1.

Figure 2.1: A depiction of our physical scenario, as a device with a single “measure” button (on top),
a “reset” button (in front), and a display for the outcomes of measurements performed in the device’s
internal memory. Performing 𝐿 sequential measurements produces an output sequence, e.g., a = 001011.
An empirical distribution 𝑝 (a) over all sequences generated by the device can be obtained by resetting it
and performing multiple trials. Here, time moves forward left-to-right.

Importantly, we assume the measurements are time-independent and that the device has no access to
external resources, e.g., a wall clock or a side channel carrying information about past outcomes. In this
way, the sole resource available for generating the sequences is the internal memory, which is completely
characterized by the dimension 𝑑 and its classical or quantum nature. Ideally, we wish to bound the set
of distributions which can be realized by classical or quantum 𝑑-dimensional memories. For this reason,
we shall use the notation 𝑝 (a|𝑑) to make this relationship explicit.

Analyzing an entire probability distribution at once, however, is already quite challenging. Previous
works have resorted to studying deterministic distributions or carefully constructing bounds for specific
scenarios [88, 183, 32, 124]. We shall follow a different approach, by instead exhaustively characterizing
sequences in isolation, such that general statements can be made about distributions by analyzing the
respective probabilities of each sequence. In particular, our strategy will be to investigate the maximum
probability of generating each sequence, given a classical or quantum memory of dimension 𝑑 . In the
process, we uncover new insights on the emergent structure of the problem.

A family of sequences will be of particular interest to us. These are the sequences of the form a𝐿ot :=

0𝐿−11, which we call one-tick sequences. They have previously appeared in the investigation of classical
and quantum clocks [33], as the sequence corresponding to one tick of the clock after 𝐿 − 1 time steps
without a tick, hence their name.

1Note that this is merely a conceptual picture for the physical scenario we consider, as in this thesis we will disregard the effects
of finite statistics, focusing instead on idealized probability distributions.
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2.4 Classical and quantum models

In order to properly characterize its temporal correlations, it is essential that we model this scenario
through the most general physical states and operations allowed within each theory. If this is not carefully
ensured, a restriction on classical operations (e.g. the non-invasiveness assumption of Leggett and Garg)
could lead to classical correlations being incorrectly interpreted as non-classical, or the converse, whereby
a restriction on quantum operations (e.g. considering only projective measurements [34, 32]) could lead
to certain quantum advantages not being apparent. Chapter 4 investigates a similar issue, where quantum
correlations could be incorrectly characterized as classical in protocols involving entanglement-breaking
(or measure-and-prepare) channels.

With this in mind, the physical behavior in our scenario can be modeled through the formalism of
probabilistic finite-state machines (FSMs) and their quantum generalizations, as introduced in Sec. 1.3. In
particular, as there are no inputs (or, equivalently, 𝑋 = 1), we may also refer to these machines as finite-
state automata, here acting as autonomous generators of the sequences a. This terminology will be used
as to distinguish them from transducers (see Sec. 1.3), which operate between inputs and outputs. Recall
that a (Mealy) finite-state automaton is a FSM which, at each time step, performs a state transition while
simultaneously generating an output belonging to some alphabet A, following a time-independent rule.
We assume the machine has 𝑑 perfectly distinguishable internal states (classical or quantum), which we
may refer simply as the “amount of memory” available; see Sec. 1.2.8.

2.4.1 Classical models

Departing from the usual approach of Leggett and Garg, the classical case corresponds to a sequence of
measurements which are allowed to be invasive, up to a certain finite amount defined by 𝑑 . The most gen-
eral classical behavior is modeled by a probabilistic automaton [151, 157], described by a pair of matrices
𝑇 := (𝑇0,𝑇1), where 𝑇𝑎 are row sub-stochastic transition matrices such that 𝑇0 +𝑇1 is row stochastic, i.e.,
with nonnegative entries, [𝑇𝑎]𝑖 𝑗 ≥ 0 for 𝑎 ∈ A, and such that

∑
𝑎𝑗 [𝑇𝑎]𝑖 𝑗 = 1 for all 𝑖 , indicating an overall

stochastic behavior which preserves probability. We refer to 𝑇 as a classical model.
Given a 𝑑-dimensional classical model𝑇 , the probability of a sequence a being generated can be com-

puted as

𝑝 (a|𝑇,𝑑) := 𝜋𝑇𝑎1𝑇𝑎2 . . .𝑇𝑎𝐿𝜂, (2.1)

where 𝜋 is the initial distribution over states (i.e., the “reset state”), with 𝜋𝑖 ≥ 0 and
∑
𝑖 𝜋𝑖 = 1, and where

𝜂 := (1, . . . , 1)T provides a sum over all possible final states. Equation (2.1) offers a compact description of
the overall stochastic behavior of the model, where the internal state is modified upon each measurement.
This description is not unique, as states may be relabeled in any permutation. In the intuitive classical
macrorealist interpretation, the automaton is always in a well-defined internal state, and its behavior over
time corresponds to a random walk over its state space. Since Eq. (2.1) is explicitly causally ordered, 𝑝 (a)
automatically satisfies the AoT constraints.

State diagrams

Classical models can be visualized using a state diagram (Fig. 2.2), a directed multigraph where the nodes
(disks) correspond to states, and the edges (arrows) to the various transitions, to each of which we assign
an output symbol 𝑎 and a probability 𝑞, giving the label as 𝑎 |𝑞. Stochasticity of

∑
𝑎𝑇𝑎 can be seen as the

probability of all outgoing transitions adding up to 1 for each state.
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Figure 2.2: A state diagram for the probabilistic automaton of a 𝑑 = 4 classical model. A label 𝑎 |𝑞 indicates
a transition occurs with probability 𝑞 while outputting 𝑎. Importantly, since we use Mealy automata, both
probabilities and outputs are associated with transitions, not states, allowing for minimal classical and
quantum memories to be compared on equal terms. The bold arrow indicates a pure initial state, i.e., an
initial distribution 𝜋 = (1, 0, 0, 0). Note that state 3 can transition to states 2 or 4 with output 𝑎 = 1,
indicating this is a non-unifilar model.

Comparison with computational mechanics and 𝜀-machines

Here, it is worth mentioning that similar probabilistic automata generating symbolic sequences also ap-
pear in the study of optimal predictive models for stochastic processes — usually assumed bi-infinite and
stationary — in the form of 𝜀-machines from computational mechanics [55, 173]. These machines are con-
structed by creating equivalence classes between all observed pasts producing the same observed future,
which then define the 𝜀-machine’s causal states. In this way, 𝜀-machines encode the minimal predictive
causal structure of the observed process, with the Shannon entropy of the stationary distribution over
causal states, known as the statistical complexity of the process, providing a quantifiable measure of its
inherent structure.

However, 𝜀-machines do not describe the generative dynamics of the underlying process. In particular,
they necessarily obey the property of unifilarity2, where no two outgoing transitions from any given state
produce the same output — a direct consequence of the definition of causal states. While unifilarity can
be proven to be optimal for predictive models [55, 173], it is known to be sub-optimal for generative mod-
els [167], which we are focusing on. In fact, 𝜀-machines describing (infinite length) generative processes
typically require an infinite number of causal states [55, 96].

Since we require the most general operations allowed by classical theory, we impose no restrictions
on the structure of our models. In particular, there is no physical justification for unifilarity, and we must
explicitly consider non-stationary memory effects in our analysis.

2.4.2 Quantum models

The quantum case corresponds to repeated applications of the same quantum measurement, with out-
comes 𝑎 ∈ A. The sequential nature of the problem requires that we consider the post-measurement
states explicitly, so that to each outcome 𝑎 will be associated a state update rule. Importantly, we do not
assume measurements to be projective or of measure-and-prepare type, as these impose artificial restric-
tions on the set of correlations achievable by a system of a given dimension [34, 31, 32].

Instead, we consider the most general measurements in quantum theory, described by quantum instru-
ments. The output probability and state transition will be described3 by an instrument I = (I0, I1), where
the effects I𝑎 for 𝑎 ∈ A are completely positive (CP) trace non-increasing maps updating the state upon
each outcome. It is further required that I0 + I1 be trace preserving, corresponding to the conservation
of probability. We refer to I as a quantum model.

Given a quantum model acting on a 𝑑-dimensional Hilbert space, the probability for a sequence a can

2Meaning “single file” or “single thread”, suggestive of how, from any starting state, there is a unique trajectory over the state
space for any observed sequence of outputs.

3In particular, given a normalized state 𝜌𝑡 we have 𝑝 (𝑎) = Tr [I𝑎 (𝜌𝑡 ) ] and a resulting subnormalized state 𝜌𝑡+1 = I𝑎 (𝜌𝑡 ) .
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be computed, in the Schrödinger picture, as

𝑝 (a|I, 𝑑) := Tr
[
I𝑎𝐿 ◦ I𝑎𝐿−1 ◦ . . . I𝑎1 (𝜌)

]
, (2.2)

where 𝜌 is the initial “reset” quantum state. The effects I𝑎 can be written concretely in their Kraus de-
composition,

I𝑎 (𝜌) =
𝑛𝑎∑
𝑘=1

𝐾𝑎𝑘𝜌𝐾
†
𝑎𝑘
, with

∑
𝑎∈A

𝑛𝑎∑
𝑘=1

𝐾†
𝑎𝑘
𝐾𝑎𝑘 = 1, (2.3)

where we assign𝑛𝑎 ≤ 𝑑2 Kraus operators to each outcome, with a total of𝑁 =
∑
𝑎 𝑛𝑎 . The Kraus condition

in Eq. (2.3) ensures the full set of Kraus operators preserves total probability. As in the classical case,
models are symmetric under permutations of the states. Unfortunately there is no standard — or useful
— diagrammatic way to represent quantum models, so their behavior is less intuitive.

Importantly, classical models form a strict a subset of quantum models, which can be seen with the
following construction. Let𝑇 be an arbitrary classicalmodelwith𝑑 states. Wemay construct an equivalent
quantum model, also on 𝑑 states, through the a of Kraus operators {𝐾𝑎𝑘 }𝑎,𝑘 acting as

𝐾𝑎𝑘 |𝑖⟩ =
√
[𝑇𝑎]𝑖 𝑗 | 𝑗⟩ . (2.4)

Letting 𝜌 =
∑
𝑖 𝜋𝑖 |𝑖⟩⟨𝑖 |, we then have

𝜋𝑇𝑎1𝑇𝑎2 . . .𝑇𝑎𝐿𝜂 = Tr
[
I𝑎𝐿 ◦ I𝑎𝐿−1 ◦ . . . I𝑎1 (𝜌)

]
. (2.5)

This direct correspondence is a major reason why we specifically consider probabilistic Mealy automata
for the classical models, as it places both theories on equal terms. This is true not only with respect to
their description of states and their transformations, but also in how the same dimension 𝑑 is treated as a
fundamental resource; see Sec. 1.2.8.

2.5 Deterministic scenarios

Having a concrete representation of the finite-dimensionmodels, we can nowdefine themain optimization
problems of this chapter. The maximum classical and quantum probabilities of each sequence can be
defined as:

Ω𝐶 (a, 𝑑) := sup
𝑇
𝑝 (a|𝑇,𝑑), Ω𝑄 (a, 𝑑) := sup

I
𝑝 (a|I, 𝑑), (2.6)

The memory of the system, either classical or quantum, is the sole resource available to generate a given
sequence, and is fundamentally constrained by the dimension𝑑 . Clearly, bothmaximawill increasemono-
tonically towards unity as 𝑑 increases, i.e.,

0 ≤ Ω(a, 1) ≤ Ω(a, 2) ≤ · · · ≤ Ω(a, 𝑑) ≤ 1, (2.7)

where the subscript was omitted as we refer to either case.
An important observation is that, for sufficiently large 𝑑 , any finite sequence can be generated deter-

ministically (i.e., 𝑝 (a|𝑑) = 1) in either classical or quantum theory [88, 182], outlining a stark difference
between temporal and spatial correlations4. However, 𝑑 may be larger than strictly required to achieve
this, in which case the model could be making inefficient use of the memory resource, e.g., by having two
different transitions which produce identical future behaviors. In such cases, the number of states 𝑑 could
be reduced without affecting the observed outcomes. This naturally leads us to investigate, precisely,
the minimum dimension 𝑑 needed for a sequence to be generated deterministically. This deterministic

4Notwithstanding the importance of this fact, it is still somewhat underappreciated among physicists, which has led to common
misconceptions emerging from flawed analogies between spatial and temporal correlations. This is the subject of Ch. 4.
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threshold will play a central role in the study of temporal correlations, and in our efforts to identify the
differences between classical and quantum memories.

A key result is that both classical and quantum theory agree on this minimum dimension. As shown
in Ref. [182], quantum states producing difference sequences with probability one must be orthogonal,
such that the respective quantum model can be written as deterministic transitions between orthogonal
states, therefore requiring no coherence effects. This, in turn, implies classical models can simulate the
same behavior with the same number of states. It is therefore sufficient to think in terms of classical
deterministic models to study this deterministic memory threshold for each sequence.

These observations also highlight several important differences between the formalism of finite-state
machines and other models which have been used for studying temporal correlations, such as the original
Leggett-Garg formulation [116, 64], which assumes noninvasive measurability, quantum contextuality
for sequential measurements [101, 80, 35], which assumes some form of compatible measurements, other
forms of temporal quantum correlations assuming projective measurements [34, 31, 170, 161, 179], or a
combination of spatial and temporal correlations [70, 181, 19]. By allowing the most general classical
and quantum behaviors to be compared on equal terms, the finite-state machine formalism provides an
unambiguous and precise way to distinguish between manifestly classical and quantum memory effects.
Ref. [203] provides an up-to-date review on temporal correlations, from Leggett-Garg inequalities to finite-
state machines, with a detailed discussion on these important differences.

2.5.1 Deterministic Complexity

We are now ready to formalize the deterministic memory threshold. We begin by introducing the follow-
ing complexity measure over finite sequences of symbols.

Definition 3. (Deterministic Complexity, DC). LetA be an alphabet of arbitrary size, and a ∈ A𝐿 a finite
sequence. The deterministic complexity of the sequence a, denoted by DC(a), is the minimal number of
states 𝑑 such that there exists a classical model 𝑇 with 𝑝 (a|𝑇,𝑑) = 1.

As a direct consequence of this definition, we establish the following trivial — but crucial —observation
for our investigations on temporal correlations:

Observation 1. For any sequence a ∈ A𝐿 :

𝑑 < DC(a) =⇒ Ω𝐶 (a, 𝑑) < 1 and Ω𝑄 (a, 𝑑) < 1. (2.8)

In words, 𝑑 < DC(a) implies classical and quantum theory must obey nontrivial bounds on the max-
imum probability of generating a. We refer to these as sub-deterministic scenarios as to emphasize this
fundamental memory constraint.

A trivial upper bound for DC is given by the sequence length, i.e., DC(a) ≤ |a|. This bound is
generally not tight. The general criterion for counting the minimal number of states needed for the deter-
ministic realization of a sequence was formulated in Ref. [182], in the broader context of extremal points
of the AoT polytope. The idea is to assign a unique candidate state at every time step, then group these
candidate states into equivalence classes sharing the same future behaviors. The number of unique equiv-
alence classes, or nonequivalent futures, corresponds to the minimal number of states. This criterion can
be adapted into an efficient algorithm allowing for the computation of the deterministic complexity for
an arbitrary sequence, as will be discussed shortly in Sec. 2.5.3.

Each deterministic sequence can be realized by a model consisting of transitions between orthogonal
states, and furthermore, it is sufficient to consider pure states [182]. A simple argument can be used to
show that all minimal models must be of this form, i.e., that they must involve only transitions between
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pure orthogonal states. Since minimal classical and quantum models have the same number of states, it
suffices to show this for the classical case.

Observation 2. If a sequence a is generated deterministically, then its minimal classical model 𝑇 , with
𝑑 = DC(a) states, involves only deterministic transitions, i.e.,

𝑝 (a|𝑇,𝑑 = DC(a)) = 1 =⇒ [𝑇𝑎]𝑖 𝑗 ∈ {0, 1}, ∀ 𝑖, 𝑗, 𝑎. (2.9)

Proof. The proof is by contradiction. Suppose that at the 𝑛-th transition, 𝑛 < 𝐿, instead of moving deter-
ministically, the automaton transitions to the state 𝑠 with probability 𝑞 or to the state 𝑠′ with probability
(1−𝑞). The total probability can then be written as 1 = 𝑝 = 𝑞𝑝1 + (1−𝑞)𝑝2, where 𝑝1 and 𝑝2 are the prob-
abilities for the two paths, conditioned on that probabilistic transition at the 𝑛-th step. Since 0 ≤ 𝑞 ≤ 1

and 𝑝𝑖 ≤ 1, 𝑝 = 1 implies 𝑝1 = 𝑝2 = 1. Hence, it is sufficient to follow the path going through, e.g., 𝑠 to
generate the sequence with probability 1. One may, then, simply remove the state 𝑠′ and put 𝑞 = 1, in con-
tradiction with the assumption that the dimension was minimal. The argument can be applied iteratively,
if more than one probabilistic transition exists. The only remaining case is that of a transition happening
in the last step, i.e., 𝑛 = 𝐿, in which case the transition is irrelevant for the model. In the terminology
above, 1 = 𝑝 = 𝑝1 (𝑞 + 1 − 𝑞) = 1. □

Since the argument uses only the probability over paths in the state space, it is also valid for the case
of finite-state machines involving both inputs and outputs, as in [88, 32, 182]. We develop this idea further
in Ch. 6, where the deterministic complexity is generalized to input and output scenarios.

The previous criterion also implies that, for binary sequences, DC(a) = |a| is saturated only in the
case of one-tick sequences a𝐿ot := 0𝐿−11, and the equivalent one obtained by the substitution 0 ↔ 1.
Many more sequences will saturate this bound for an alphabet of size 𝐴 and sequence length 𝐿, and a
simple combinatorial argument provides the exact number

(𝐴 − 1)𝐿−1𝐴. (2.10)

The idea is to pick one symbol out of 𝐴 available for 𝑎𝐿 , then using any combination of the other 𝐴 − 1

symbols for the remaining𝐿−1 positions. Since𝑎𝐿 occurs uniquely at the end, all futures are nonequivalent
at each step, thus DC(a) = |a|. This small observation was not discussed in Ref. [198], but we include it
here for completeness.

In summary, the deterministic complexity of a sequence provides uswith the thresholdwhere quantum
memories might provide an advantage over classical ones, namely, the sub-deterministic 𝑑 < DC(a)
scenarios where a can only occur probabilistically. The DC is also connected to what appears to be an
upper bound for these probabilities, which depends only the pair (DC(a), 𝑑) and can be computed in
terms of the one-tick sequence aDC(a)

ot . This conjectured upper bound is discussed in Secs. 2.7.3 and 2.8.2.

2.5.2 Minimal DFAs and patterns

Deterministic models would more typically5 be referred to as deterministic finite-state automata (DFAs).
The previous results imply that all minimal DFAs follow a special form, which allows for a simple char-
acterization. The key observation is considering what happens if one keeps measuring after all outputs
have been generated by a minimal DFA for the sequence a. Since the transitions are deterministic, this
DFA will simply continue to generate new outputs, creating an infinite family6 of sequences, one for each
length 𝐿, with all length 𝐿 > |a| sequences sharing a as a prefix.

5Although most of the literature deals with DFA as acceptors, not generators as we do.
6In computer science one could say a “language” instead of “family of sequences“, but this level of jargon seems unnecessary

here.
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We can describe all such families by what we call a pattern, which perhaps is easier to explain with
an example. The sequence a = 000110110 can be seen as one of the infinite sequences generated by the
pattern 00(011), where the initial 00 is a prefix and (011) denotes that the suffix 011 occurs at least
once, then is repeated indefinitely, possibly with truncation. The notation for patterns was inspired by
the notation for regular expressions in modern programming languages, where 00(011)+ would match
all strings with prefix 00 followed by one or more7 full repetitions of the suffix 011. In our problem,
however, we must also account for any truncation of the repeating suffix.

In the following, we will refer to the length of the pattern as the number of symbols 𝑎 ∈ A appearing
in it. With this, we introduce the following notion:

Definition 4. (Minimal pattern). A pattern is said to be minimal if it is the shortest pattern generating
its infinite family of sequences.

There is a direct correspondence between minimal patterns and the minimal DFAs generating our se-
quences. To see this, note that each pattern can be directly translated to a DFA, by assigning a unique
state to each output symbol in the pattern, with that output being emitted in the transition to the subse-
quent state, corresponding to the next output symbol in the pattern. At the end of the pattern, the final
transition returns to the state associated to the first symbol within the cyclic part, inside the parenthesis.
Therefore, we establish the following:

Observation 3. Every minimal deterministic model is characterized by a “tail” and a “cycle”, which to-
gether completely describe the state transitions and induce a minimal pattern. The minimal number of
states needed to describe the behavior of a pattern is precisely the length of the pattern.

In this way, a minimal DFA for a sequence will correspond to the shortest pattern generating that
sequence. This structure is general: Since the number of states 𝑑 is finite, for 𝐿 ≥ 𝑑 the system must at
some point transition back to a previously used state and repeat the cycle thereafter, as in Fig. 2.3. Note
that, due to the possibility of truncation in the recurrence of its cyclic part, more than one minimal pattern
may describe a given sequence, but all such patterns will share the same length.

Figure 2.3: The general structure of minimal DFAs corresponding to minimal patterns. It consists of a tail,
with 𝑡 ≥ 0 states, which leads to a cycle, with 𝑐 > 0 states.

2.5.3 The DCPatterns algorithm

The previous observations regarding minimal DFAs and patterns suggests a simple algorithm to compute
the DC of an arbitrary sequence a ∈ A𝐿 : It is enough to compute the length of a minimal pattern that
generates it. Concretely, for a sequence a, its minimal patterns are characterized by two numbers, the
length of the tail 𝑡 and the length of the cycle 𝑐 , such that DC(a) = 𝑡 + 𝑐 . Thus, to find the minimal
patterns and the deterministic complexity of a given sequence a of length 𝐿, we proceed as follows:

1. Start by assuming a pattern length ℓ = 1.

2. Iterate over the tail lengths 𝑡 = 0, . . . , ℓ − 1, giving a cycle length 𝑐 = ℓ − 𝑙1.
7Known as “Kleene plus” in computer science.
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3. For each 𝑡 , if all outcomes 𝑎𝑖 for 𝑖 = ℓ + 1, . . . , 𝐿 can be interpreted as repetitions of the cycle
subsequence, (𝑎𝑡+1, . . . , 𝑎ℓ ), then (𝑡, 𝑐) defines a valid pattern for a of length ℓ , and thus,DC(a) = ℓ .
We can either halt, or store (𝑡, 𝑐) and continue to find more patterns.

4. If, however, no match is found for any 𝑡 , increment ℓ and start over from step (2).

5. If we also wish to find all patterns compatible with a, we may continue checking the remaining
values of 𝑡 for the same ℓ , then return the list of valid patterns.

By starting from ℓ = 1 and incrementing only after all patterns of a given length have been exhausted,
we are sure to obtain a minimal pattern. In this way, we need to test at most 𝐿(𝐿 + 1)/2 patterns, each
of which we compare with the original sequence, corresponding to 𝑂 (𝐿3) operations. Algorithm 1 can
be used to efficiently compute a sequence’s deterministic complexity, as well as finding all of its minimal
patterns. Notice that the algorithm is not restricted to a binary alphabet, and works the same way for an
arbitrary one.

Algorithm 1 Deterministic Complexity and Patterns (DCPatterns). The idea is to assume the sequences
have the form (tail)+(cycle), with respective lengths 𝑡 and 𝑐 , such that DC(a) = 𝑡 + 𝑐 . We thus test all
such patterns counting up from DC, which ensures we find the minimal-state representation as early as
possible.
1: procedure DCPatteRns(a)
2: 𝐿 ← Length(a)
3: 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠 ← {} ⊲ We start with an empty list of patterns.
4: 𝑑𝑐 ← 0 ⊲ We count from the bottom up in DC, stopping as early as possible.
5: 𝑓 𝑜𝑢𝑛𝑑 ← False ⊲ When we find any patterns, we can stop.
6: while not 𝑓 𝑜𝑢𝑛𝑑 do
7: 𝑑𝑐 ← 𝑑𝑐 + 1
8: for 𝑡 in 0, . . . , 𝑑𝑐 − 1 do ⊲ For each possible tail length
9: 𝑐 ← 𝑑𝑐 − 𝑡 ⊲ … assume the rest is a cycle.

10: 𝑚𝑎𝑡𝑐ℎ ← True ⊲ Assume this is a valid pattern.
11: for 𝑖 in 0, . . . , (𝐿 − 𝑑𝑐 ) do ⊲ For every other symbol beyond DC
12: if a[𝑑𝑐 + 𝑖 ] ≠ a[𝑡 + (𝑖 mod 𝑐 ) ] then ⊲ we test whether it can be extrapolated.
13: 𝑚𝑎𝑡𝑐ℎ ← False ⊲ If it can’t, this pattern fails and we stop here.
14: break
15: end if
16: end for
17: if𝑚𝑎𝑡𝑐ℎ then ⊲ If the pattern matches the entire sequence…
18: 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠 ← 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠 + { (𝑡, 𝑐 ) } ⊲ … we add the tuple (𝑡, 𝑐 ) to the list of patterns.
19: 𝑓 𝑜𝑢𝑛𝑑 ← True ⊲ We stop at this 𝑑𝑐 , but continue searching for patterns.
20: end if
21: end for
22: end while
23: return 𝑑𝑐, 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠 ⊲ Return the optimum 𝑑𝑐 and the list of patterns
24: end procedure

As pointed out previously, the tail part may have zero length if the entire sequence is itself a (possibly
truncated) repeating pattern, e.g., a = 01001001001 giving the pattern (010), where the truncation
occurs in the last 0 of the 4th repetition. Under such analysis, one-tick sequences (and their 0 ↔ 1

symmetric counterparts) are, once again, easily identified as the unique sequences saturatingDC(a) = |a|
for all sequences of length 𝐿 and a binary alphabetA. These sequences also possess the maximum number
(𝐿) of potential patterns for any sequence, as for example: a = 00001 gives (00001) � 0(0001) �
00(001) � 000(01) � 0000(1).
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2.5.4 Properties of patterns

Arbitrary patterns are not necessarily unique or minimal in length. As a concrete example, the patterns
00(00) and 01(0101), of lengths 4 and 6 respectively, are equivalent to the minimal patterns (0) and
(01), of lengths 1 and 2. This motivates a natural question of enumerating all minimal patterns of a given
length.

Interestingly, the space of unique minimal (binary) patterns using exactly 𝑑 states can be directly
related to the unique minimal unary deterministic finite automata (uDFAs) with exactly 𝑑 states. An
analysis and enumeration of these uDFAs has been presented in Refs. [141, 60]. For 𝑑 = 1, 2, 3, . . . there
are8

𝑁uDFA (𝑑) = 2, 4, 12, 30, 78, 180, 432, . . . (2.11)

such uDFAs, and thus unique minimal patterns with exactly 𝑑 states.
The argument for uDFAs is easily adapted to the general case, and can be understood as follows. For

a pattern of length ℓ to be minimal, it must satisfy two obvious conditions: (𝑖) the tail is minimal, and (𝑖𝑖)
the cycle is minimal. Suppose the “tail” and “cycle” parts of the pattern are given by the sequences (or in
computer science jargon, words) t and c, respectively, and let tc be their concatenation. For condition (𝑖)
to be valid, the last symbol of c must be different from the last symbol of t, otherwise, one could include
the last transition of the tail into the cycle while removing the last transition of the cycle, obtaining a
pattern of length ℓ − 1 generating the same infinite sequence. For instance, the pattern 01(001) is not
minimal because it could be reduced to 0(100).

Condition (𝑖𝑖) implies c is a so-called primitive word [7], i.e., it must be non-empty and not be express-
ible as = w𝑚 for w a smaller word and𝑚 ∈ N. As a concrete example, 0101 is not a primitive word of
length 4, as it is a repetition of a shorter word 01 of length 2. Clearly, the number of primitive words of
length 𝑛 relates to the divisors 𝑑 of 𝑛. For a given alphabet of 𝑘 symbols, the number of primitive words
𝜓𝑘 (𝑛) of length 𝑛 may be computed [154, 141, 60, 7] in terms of the Möbius function 𝜇 (𝑑):

𝜇 (𝑑) =

0, if 𝑑 is divisible by some 𝑥2 > 1, with 𝑥 ∈ N;

(−1)𝑠 , if 𝑑 = 𝑝1𝑝2 . . . 𝑝𝑠 , where 𝑝𝑖 are distinct primes.
(2.12)

The number of primitive words is then given by9:

𝜓𝑘 (𝑛) =
∑
𝑑 |𝑛

𝜇 (𝑑)𝑘𝑛/𝑑 . (2.13)

The expression for the number of minimal patterns of length ℓ over a 𝑘-symbol alphabet is, thus,

𝑁𝑘 (ℓ) = 𝜓𝑘 (ℓ) +
ℓ−1∑
𝑖=1

(𝑘 − 1)𝑘𝑖−1𝜓𝑘 (ℓ − 𝑖), (2.14)

where the term𝜓𝑘 (ℓ) counts the number of length-ℓ cycles (i.e., case of no tail), whereas (𝑘−1)𝑘𝑖−1𝜓𝑘 (ℓ−𝑖)
counts the number of length-(ℓ − 𝑖) cycles together with length-𝑖 tails, where one element of the tail is
constrained by condition (𝑖) above, giving the (𝑘 − 1)𝑘𝑖−1 factor. In light of these results, we may refer to
minimal patterns simply as patterns, disregarding the non-minimal case.

2.6 Sub-deterministic scenarios

Having characterized the deterministic threshold, we now know precisely where to look for the sub-
deterministic scenarios, where classical and quantum memories can be distinguished. Our goal now is

8Entry A059412 in the On-Line Encyclopedia of Integer Sequences [146].
9Entry A143324 in the On-Line Encyclopedia of Integer Sequences [146].
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find the maximum probabilities Ω(a, 𝑑) that a sequence a can be generated when 𝑑 < DC(a), for both
classical and quantum memories. The general problem is likely intractable in closed form, so we resort to
numerical optimization techniques. Here, two general approaches are available:

• Obtaining upper bounds 𝜔 (a, 𝑑) through outer approximations, or

• Obtaining lower bounds 𝜔 (a, 𝑑) by optimizing over explicit models.

Used together, the two approaches establish a range of possible values for the maximum,

𝜔 (a, 𝑑) ≤ Ω(a, 𝑑) ≤ 𝜔 (a, 𝑑), (2.15)

such that, if we manage to find𝜔 (a, 𝑑) = 𝜔 (a, 𝑑), we can certify the exact value of Ω(a, 𝑑). On this point,
it is worth mentioning that a loose classical upper bound is of limited use, as a violation of the inequality
𝑝 (a|𝑑) ≤ 𝜔𝐶 (a, 𝑑) would not necessarily reveal the presence of non-classical memory effects. Therefore,
the two approaches are best used in conjunction.

The numerical results in this chapter, as published in Ref. [198], relied exclusively on computing lower
bounds. Nevertheless, this section will provide a broader discussion of the general problem, including
connections to recent developments involving the computation of upper bounds. We first discuss the
technical aspects of these approaches, and how the classical and quantum problems require slightly dif-
ferent strategies to be solved. We then present the technical details of the specific implementations we
have used for computing the lower bounds𝜔 (a, 𝑑). The results of our numerical optimizations, performed
over all sub-deterministic classical and quantum scenarios up to length 𝐿 = 10, will be discussed in great
detail in Secs. 2.7 and 2.8.

2.6.1 Computing upper bounds

Ideally, we would like to obtain the exact maxima Ω(a, 𝑑) in Eq. (2.6), which provide a sharp charac-
terization of the achievable correlations for classical or quantum memories for each 𝑑 . These are global
optimization problems, involving non-linear objective functions with nontrivial constraints. Furthermore,
the problems are also inherently high-dimensional, with 𝐴𝑑2 real-valued parameters for classical mod-
els, and 𝑁𝑑2 complex-valued parameters for quantum models10. Unfortunately, these facts suggest that
computing the exact values will, in general, be very difficult.

A straightforward approach (at least conceptually) is through the branch-and-bound method, where a
systematic brute-force search of the parameter space is performed. First, the space is split it into multiple
regions, each with its own lower and upper bounds for the objective function11. Unfeasible regions can be
discarded by comparing their bounds with the current best value known for the objective, while feasible
regions are split into finer subregions. The process repeats until a desirable accuracy is reached. This
method is quite general and “embarrassingly parallel”12, making it suitable for computations usingmodern
GPUs. It was used in Ref. [33], in the context of ticking clocks, for investigating the optimal classical and
quantum bounds for one-tick sequences and 𝑑 = 2. However, the number of regions grows exponentially
with the dimension of the search space (i.e., the number of parameters in themodel), which quickly renders
this approach computationally intractable.

The alternative is to formulate outer approximations of the problem, allowing us to (in principle) obtain
upper bounds 𝜔 (a, 𝑑).

10This is without considering the constraints. For example, the number of degrees of freedom in classical models is 𝐴𝑑2 − 𝑑 due
to the stochasticity constraints

∑
𝑎,𝑗 [𝑇𝑎 ]𝑖 𝑗 = 1 for each 𝑖 . For the quantum case, each of the 𝑁 =

∑
𝑎 𝑛𝑎 Kraus operators has 𝑑2

degrees of freedom, but the non-linear constraints
∑

𝑎,𝑘 𝐾
†
𝑎𝑘
𝐾𝑎𝑘 = 1 reduce this down to (𝑁 − 1)𝑑2.

11There are multiple ways to establish these bounds, e.g., bounding the absolute value of the objective function’s gradient, as was
done in Ref. [33], or through the use of Bernstein coefficients, as extensively discussed in Ref. [194]. These bounds are typically
loose, but in order to be useful they must be easier to compute and converge uniformly as the region shrinks.

12A term used in the parallel computing literature, referring to problems which are trivial to parallelize.
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Classical case

In the classical case, the probability in Eq. (2.1) expands into a positive and homogeneous multivariate
polynomial of degree 𝐿 in 𝐴𝑑2 variables, with 𝐴𝑑2 inequality constraints, [𝑇𝑎]𝑖 𝑗 ≥ 0 for all 𝑎, 𝑖, 𝑗 , and
𝑑 equality constraints,

∑
𝑎𝑗 [𝑇𝑎]𝑖 𝑗 = 1 for all 𝑖 . The method of Lasserre and Parrilo [110, 148] is applica-

ble, providing a hierarchy of SDP problems for 𝜔 (a, 𝑑) which converge to the global maximum (see also
Ref [113] for a survey).

In Ref. [207], a hybrid method based on dynamic programming principles was proposed, which is
capable of bounding general time-ordered processes. Using their method, the authors were able to certify
as exact some of the classical bounds found in Refs. [33, 198], also discussed in Sec. 2.7.2.

However, all of these approaches are extremely computationally demanding already for 𝑑 ≥ 3, so their
application is limited. It is uncertain whether the specific structure of our problem can be exploited in
order to simplify these computations.

Quantum case

In Ref. [201], which is the subject of Ch. 3, we formulate a hierarchy of SDPs capable of bounding — in
principle, exactly — the set of temporal correlations in the scenario involving sequential measurements
on an open quantum system. While that work addresses a much more general quantum scenario than the
one discussed in this chapter, the techniques therein can — and were — used to obtain 𝜔𝑄 (a, 𝑑 = 2) for
short sequences.

This problem was also exceptionally difficult to solve numerically, and originally deemed intractable
due to its computational requirements, in particular the amount of memory. Fortunately, we overcame
these challenges by developing a novel technique to induce sparsity in SDPs, greatly reducing the number
of variables and constraints, which rendered the problem tractable. The technique is very general and was
developed further into Ref. [199], which is the subject of Ch. 5.

2.6.2 Computing lower bounds

Before this work, not much was known about the detailed structure of our problem, let alone about the
optimal models and the maximum probabilities they achieve when generating each sequence. With the
aim of gathering useful insights, we performed comprehensive numerical surveys of all sub-deterministic
scenarios (classical and quantum), up to a length 𝐿 = 10, obtaining lower bounds 𝜔 (a, 𝑑) together with
their respective models.

The surveys were performed using gradient descent13 (GD) techniques, in particular, through a custom
Python implementation of theAdam algorithm [100] usingNumPy [84], SciPy [202], and further optimized
through Numba [107]. Note that the classical survey originally performed in Ref. [198] used Adam as
implemented in PyTorch [149], with only the quantum survey relying on a custom implementation. For
this chapter, we refined all previous classical and quantum results by performing new and more accurate
optimizations using a custom implementation.

All sequences of length 3 ≤ 𝐿 ≤ 10 with 2 ≤ 𝑑 < DC(a) were investigated, for a total of 4 328
nontrivial scenarios. Note that 𝑑 = 1 scenarios do not require optimization (see Sec. 2.6.3), hence 𝐿 ≥
3. Due to the 0 ↔ 1 relabeling symmetry of the problem, we consider only half of the sequences by
assuming 𝑎1 = 0. Together, the classical and quantum surveys took just under three weeks of continuous
computation, running in parallel on 16 CPU cores.

Because our sequences are short, the issues of vanishing gradients and numerical underflow were
not a major concern. In general, we found optimal (classical) models to be sparse, and with transition

13Or, more appropriate in our case, “gradient ascent”, although it is a less common term.
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probabilities (or amplitudes) on the order of 10−1. Therefore, the survey was well within the numerical
precision available using 64-bit floating-point numbers (≈ 10−16).

Next, we explain the specific formulation of the optimization problems in the classical and quantum
cases.

Classical case

The classical case consists of the following constrained optimization problem:

Optimize: 𝜔𝐶 (a, 𝑑) := max
𝑇

𝑝 (a|𝑇,𝑑) = max
𝑇

𝜋𝑇𝑎1 · · ·𝑇𝑎𝐿𝜂

Subject to:
∑
𝑎∈A

𝑑∑
𝑗=1

[𝑇𝑎]𝑖 𝑗 = 1, ∀ 𝑖, and [𝑇𝑎]𝑖 𝑗 ≥ 0, ∀𝑎, 𝑖, 𝑗,
(2.16)

Note that, since the objective function is convexwith respect to the initial state𝜋 , without loss of generality
we can assume 𝜋 = (1, 0, . . . , 0).

To make the problem amenable to the GD method, we convert it into an equivalent unconstrained
problem as follows. First, we define the real-valued 𝑑 × 𝑑 matrices 𝐵0 and 𝐵1, which are unconstrained.
We can convert these into 𝑇0 and 𝑇1 in the constrained problem via the normalization procedure:

[𝑇𝑎]𝑖 𝑗 =
[𝐵𝑎]2𝑖 𝑗∑
𝑎,ℓ [𝐵𝑎]2𝑖ℓ

. (2.17)

This adjustment is all that is required in the classical case. The results of the classical survey are discussed
in Sec. 2.7.

Quantum case

The construction of explicit quantum models is a more involved task. Recall that, in the quantum case,
transitions are described by the instrument I = (I0, I1), where each effect I𝑎 can be written concretely
in their Kraus decomposition:

I𝑎 (𝜌) =
𝑛𝑎∑
𝑘=1

𝐾𝑎𝑘𝜌𝐾
†
𝑎𝑘
, with

∑
𝑎∈A

𝑛𝑎∑
𝑘=1

𝐾†
𝑎𝑘
𝐾𝑎𝑘 = 1. (2.18)

The quantum case then consists of the following constrained optimization problem:

Optimize: 𝜔𝑄 (a, 𝑑) := max
I

𝑝 (a|I, 𝑑) = max
I

Tr
[
I𝑎𝐿 ◦ · · · ◦ I𝑎1 (𝜌)

]
Subject to:

∑
𝑎∈A

𝑛𝑎∑
𝑘=1

𝐾†
𝑎𝑘
𝐾𝑎𝑘 = 1,

(2.19)

For simplicity, we assume 𝑛0 = 𝑛1 = 𝑛. As before, since the objective function is convex with respect to
the initial state 𝜌 , we may assume 𝜌 = |0⟩⟨0|.

An unconstrained problem can be obtained as follows. First, define arbitrary 𝑑 × 𝑑 complex matrices
𝐵𝑎𝑘 as our optimization variables, then compute the matrix

𝐸 =
∑
𝑎,𝑘

𝐵†
𝑎𝑘
𝐵𝑎𝑘 , (2.20)

which by construction is positive semidefinite. Next, let 𝜆max be the maximum eigenvalue of 𝐸. We can
now define the (approximate) Kraus operators by the normalization,

𝐾𝑎𝑘 :=
𝐵𝑎𝑘√
𝜆max

, (2.21)
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which then automatically satisfies the weaker constraint

𝐸 :=
∑
𝑎∈A

𝑛𝑎∑
𝑘=1

𝐾†
𝑎𝑘
𝐾𝑎𝑘 ≤ 1. (2.22)

While there is no guarantee that the equality in Eq. (2.22) will be satisfied, this is not strictly necessary
for our optimization purposes as the resulting gradient will always naturally favor 𝐸 ≈ 1. This can be
interpreted as if our experiment contained a new potential output, ⊥, whose effect I⊥ corresponds to
the missing Kraus operators required to complete the Kraus condition exactly. Since the output ⊥ does
not occur in the sequences we are considering, the contribution of I⊥ will vanish in the optimization
of probability for these sequences. Note that the objective function now requires computation of the
maximum eigenvalue of 𝐸 at every evaluation, which is a nontrivial mathematical operation. This made
a custom implementation of the Adam algorithm a requirement for this survey.

An alternative to this approximation is performing a constrained optimization directly over the space
of Kraus operators, which is an example of Riemannian optimization on the Stiefel manifold [186]. We
have not pursued such refinements, and the approximation above converged up to numerical precision in
all scenarios investigated.

The results of the quantum survey are discussed in Sec. 2.8.

2.6.3 Exact value for 𝑑 = 1

When 𝑑 = 1, the memory cannot store any information, i.e., the scenario is memoryless, and classical
and quantum maxima coincide. While the case is sufficiently simple as to be solved in closed form with
elementary techniques, it still provides some valuable insights. The ideas in this subsectionwere originally
discussed in Ref. [201] (subject of Ch. 3), but we present it here instead for completeness of this section.

We formulate the proof in the classical case. Recall that the probability of a sequence can be written
as

𝑝 (a|𝑇,𝑑) = 𝜋𝑇𝑎1 · · ·𝑇𝑎𝐿𝜂. (2.23)

But if 𝑑 = 1, the matrices 𝑇𝑎 reduce to scalars, i.e., [𝑇𝑎]11 = 𝑞𝑎 ≥ 0, corresponding directly to the
probability for each output, with

∑
𝑎 𝑞𝑎 = 1. Similarly, we have 𝜋 = 𝜂 = 1, so that

𝑝 (a|𝑑 = 1) =
𝐿∏
𝑡=1

𝑞𝑎𝑡 =
∏
𝑎∈A

𝑞ℓ𝑎𝑎 , (2.24)

where ℓ𝑎 ∈ N is the number of occurrences of the symbol 𝑎, with
∑
𝑎 ℓ𝑎 = 𝐿. For simplicity, we may

assume that a contains every symbol of A at least once, such that ℓ𝑎, 𝑞𝑎 > 0, otherwise we could simply
assume a smaller A where this is the case. The maximum probability Ω(a, 𝑑 = 1) can be found with the
standard technique of Lagrange multipliers. Using the Lagrangian

L =
∏
𝑎∈A

𝑞ℓ𝑎𝑎 − 𝛼
(∑
𝑎∈A

𝑞𝑎 − 1
)
, (2.25)

we calculate the partial derivatives for each 𝑞𝑎 , and equate them to zero:

𝜕L
𝜕𝑞𝑎

=

(
ℓ𝑎
𝑞𝑎

)
𝑝 − 𝛼 = 0, ∀𝑎. (2.26)

Since 𝑞𝑎 > 0 for all 𝑎, 𝑝 > 0, we can rewrite

ℓ𝑎
𝑞𝑎

=
𝛼

𝑝
= 𝛾 → 𝑞𝑎 =

ℓ𝑎
𝛾
, ∀𝑎. (2.27)
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Finally, summing over 𝑎 and applying the constraints
∑
𝑎 𝑞𝑎 = 1 and

∑
𝑎 ℓ𝑎 = 𝐿, we obtain:∑

𝑎

𝑞𝑎 =
1

𝛾

∑
𝑎

ℓ𝑎 → 𝛾 = 𝐿. (2.28)

Thus, the (classical or quantum) maximum probability is

Ω(a, 𝑑 = 1) =
∏
𝑎∈A

(
ℓ𝑎
𝐿

) ℓ𝑎
, for 𝑞𝑎 =

ℓ𝑎
𝐿
, ∀𝑎 (2.29)

As this solution is unique if 𝑞𝑎 > 0 and 𝑝 (a) > 0, this is indeed the global maximum. Given Eq. (2.7), the
result of Eq. (2.29) establishes a nontrivial lower bound for all Ω(a, 𝑑).

2.7 Survey of classical models

In the classical case, gradient descent optimization was performed for the 𝑑 > 1 cases, using hyper-
parameters 𝛼 = 0.05, 𝛽1 = 0.99, 𝛽2 = 0.999, and 𝜀 = 10−10; see Ref. [100]. Each scenario was optimized
multiple times in order to obtain 20 samples of the optimal probability. Each sample consisted of multi-
ple trials, with each trial randomly initializing the matrices 𝐵𝑎 with entries uniformly sampled from the
interval [−1, 1), then followed by 20 000 iterations of the Adam algorithm. A trial is deemed successful,
producing a new sample, if its optimum is ≥ 90% the value of the current best sample, and unsuccessful
otherwise. In this way, trials were run indefinitely until 20 successful samples were collected, with each
improved sample enforcing stricter thresholds on subsequent ones.

2.7.1 Results for general sequences

Under finite-memory constraints, models must make nontrivial use of the memory resources available.
This gives rise to complex behaviors specific to each sequence, as in Fig. 2.4.

Figure 2.4: The optimal model found for the sequence a = 001011 (DC(a) = 5) and 𝑑 = 4, which results
in 𝑝 (a|𝑑 = 4) = 8/27 = 0.296. The model uses a nontrivial combination of probabilistic and deterministic
transitions. Note also the non-unifilar behavior, as seen by the two transitions out of state 3 outputting
𝑎 = 1.

Table 2.1 shows the behavior of various 𝑑 = DC(a) − 1 models found in the survey. Optimal models
are typically sparse, suggesting the possibility of a strategy for selecting optimal transition topologies in
advance, before optimizing their probabilities. This sophisticated approach would significantly reduce the
number of variables for large 𝑑 , possibly enabling the computation of exact values for the maximum prob-
abilities, e.g., with the techniques discussed in Sec. 2.6.1. However, this requires a deeper understanding
of how optimal transition topologies emerge, based on some inherent structure of each sequence.

Up to numerical accuracy, most optimal probabilities found seem to be simple rational numbers (e.g.
1/4, 8/27, 512/3125), but this is not always the case. For example, the optimal probability for a = 00100

with 𝑑 = 2 results from a model with the following general structure,

𝑇0 =

[
𝑥 1 − 𝑥
0 𝑦

]
, 𝑇1 =

[
0 0

1 − 𝑦 0

]
, (2.30)

40



which is sufficiently simple to be solved analytically. Using a computer algebra software, the unique global
maximum (Fig. 2.5) can be found to be the irrational value

𝜔𝐶 (00100, 2) =
4
(
411 − 41

√
41

)
3125

= 0.19004404001952...., (2.31)

which matches the result obtained via gradient descent (Table 2.1). Given the small number of states in
this scenario, this value is likely the exact maximum Ω𝐶 (00100, 2).

Figure 2.5: The global maximum (red dot) for the specific model in Eq. (2.30) is an irrational number. This
value matches the optimal probability 𝜔𝐶 (00100, 2) found numerically.

On this note, an interesting observation is that, despite the large variety of structure in these models
and the respective sequences, nearly all optimal probabilities seem to fall into a few equivalence classes.
This seems to hint at the existence of some important shared property between sequences, which, despite
all of our efforts, has yet to be uncovered. We leave these investigations for future research.

The results of the survey pointed towards a special property of the one-tick sequences, which required
further investigation: The one-tick sequence (possibly truncated to DC) always outperformed all other
sequences for the same number of states, offering an upper bound for any (𝐿,𝑑) combination. This im-
portant property will be discussed in detail in the next sections.

Finally, notwithstanding our ignorance about these hinted structures, the fact all sequences perform
worse than the one-tick sequence may be interpreted as follows: There is a nontrivial trade-off occurring
when models attempt to reach a higher probability with less resources. The way other sequences switch
between 0 and 1 multiple times forces the memory resources to be spread over multiple incompatible
transitions, leading to a worse performance overall. In contrast, one-tick sequences are almost uniform,
allowing transitions to display a certain degree of redundancy.

2.7.2 Optimal classical models for one-tick sequences

Given their special role in the problem at hand, the optimalmodels and probabilities for one-tick sequences
warranted a detailed analysis. In Ref. [33], a class of models was proposed as optimal for the one-tick se-
quences. We have since found a further generalization providing higher probabilities in certain scenarios.

Due to their sparse structure, these models are unusually difficult to find through unconstrained nu-
merical optimizations. In the following, we investigate the properties of these optimal models.

Analysis of one-tick sequences

In addition to the general survey using gradient descent, the one-tick sequences were also analyzed in
greater detail, both with analytical and numerical methods. These scenarios were already investigated in
Ref. [33], where a specific model referred to as the multicyclic model was shown to be optimal in some
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cases, and originally thought to be optimal in general. This model included, as special cases, the one-way
model and the cyclic model, as shown in Fig. 2.6.

Figure 2.6: Different models for the one-tick sequences in 𝑑 = 4, from top to bottom: one-way model,
cyclic model, and multicyclic model (with cycles of length 2). Deterministic transitions are emphasized
with thick arrows. In the one-tick sequence, the state after the final transition on outcome 𝑎𝐿 = 1 is
irrelevant. The initial state can be any state within the first cycle.

The optimal probability for the one-way model, for 𝑑 < 𝐿, can be written in closed form as [33, 198]:

𝐹ow (𝐿,𝑑) :=
(
𝐿 − 1
𝑑 − 1

) (
1 − 𝑑

𝐿

)𝐿−𝑑 (
𝑑

𝐿

)𝑑
, (2.32)

where 𝑑/𝐿 corresponds to the probability of forward transitions and 1 − 𝑑/𝐿 of self-transitions. One-
way models were found to be generally best for 𝑑 = 𝐿 − 1, whereas the (multi)cyclic models were found
to outperform it for certain 𝑑 < 𝐿 − 1. The multicyclic model divides the states into equal cycles, with
probabilistic transitions only between cycles and deterministic transitions within. These restrictions imply
that the total number of cycles 𝑛 and the size of the cycles 𝑘 must obey 𝑑 = 𝑛𝑘 .

In Ref. [198] we have shown that the multicyclic model can be improved upon with a slight mod-
ification, providing better lower bounds on the maximum probability. We have named these enhanced
multicyclic models (EMCMs), in analogy to the multicyclic model in Ref. [33]. While the optimality of
these new models for all sub-deterministic scenarios involving one-tick sequences is still conjectured, we
believe the results to be discussed in Sec. 2.7.2 provide a strong argument that this is the case.

Figure 2.7: The structure of enhanced multicyclic models (EMCMs), consisting of 𝑛 identical probabilistic
cycle blocks of size 𝑘 ∈ N, followed by a “tail” of 𝑡 ≥ 0 states such that𝑑 = 𝑛𝑘+𝑡 . Deterministic transitions,
within each cycle and at the tail, are shown as thick arrows. The initial state (not shown) can chosen to
be any of the first 𝑘 states, in the first block, and this freedom provides an additional advantage in a few
scenarios.

A schematic representation of EMCMs is presented in Fig. 2.7. The model consists of 𝑛 blocks of size 𝑘 ,
each forming its own cycle, followed by 𝑡 ≥ 0 deterministic transitions, such that𝑑 = 𝑛𝑘+𝑡 . The transitions
within each cycle block are also deterministic, thus incurring no penalty in the final probability. In the
last state of each cycle, the machine can either cycle through the block with probability 𝑞, or transition to
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the next one with probability 1−𝑞. All these transition are associated with the output 0, and once the last
state of the last cycle is reached, if 𝑡 > 0, the machine can either cycle again with probability 𝑞, or step
into the final “tail” block with deterministic transitions. At the end of the final 𝑡 deterministic transitions,
the machine emits the outcome 1 with certainty, after which the subsequent state transition is irrelevant.
In the special case where 𝑡 = 0, i.e., no deterministic transitions at the end, the output 1 is associated to
the forward transition of the last cycle. As a concrete example, an EMCM with 𝑘 = 2, 𝑛 = 2, 𝑡 = 1 is given
by the following:

𝑇0 =



0 1 0 0 0

𝑞 0 1 − 𝑞 0 0

0 0 0 1 0

0 0 𝑞 0 1 − 𝑞
0 0 0 0 0


, 𝑇1𝜂 =



0

0

0

0

1


, (2.33)

where we use 𝑇1𝜂 to emphasize that the final transition may go to an arbitrary state. Note that the initial
state must be chosen within the first block, otherwise the states of previous blocks are never used, in
contradiction with the assumption of a minimal model. The special case 𝑡 = 0 reduces to the earlier
models, with 𝑛 = 𝑑 and 𝑘 = 1 corresponding to the one-way model, 𝑑 = 𝑛𝑘 the multicyclic model, and
𝑛 = 1, 𝑘 = 𝑑 the cyclic model.

The optimal probability 𝑞 depends on the structure of the model and the length of the sequence. An
EMCM structure can be described with five parameters

𝐿 the sequence length for the model,

𝑛 the number of cycle blocks,

𝑘 size of the cycle blocks,

𝑡 size of the deterministic block,

𝑧 initial state shift,

(2.34)

with 𝐿, 𝑛, 𝑘, 𝑡, 𝑧 ∈ N, 𝑘 > 0, 𝑛 = (𝑑 − 𝑡)/𝑘 , and 𝑧 ≤ 𝑘 − 1, where 𝑧 = 0 means we start from the initial
state, 𝑧 = 1 from the second, and so on. Note that only 𝑘 and 𝑧 are independent parameters of the model,
whereas 𝑛 and 𝑡 depend jointly on the model and the sequence. We take Eq. (2.34) as a definition of the
EMCM, and will denote optimal EMCMs (in the given context) simply by 𝐸, instead of 𝑇 .

Denoting a generic EMCM 𝑇 (𝐿,𝑛,𝑘,𝑡,𝑧 ) , we can compute the probability for the a𝐿ot sequence as

𝑝 (a𝐿ot |𝑇 (𝐿,𝑛,𝑘,𝑡,𝑧 ) , 𝑑) = 𝐹ow (𝜆, 𝛿) (2.35)

with 𝜆 =
𝐿 − 𝑡 + 𝑧

𝑘
, 𝛿 =

𝑑 − 𝑡
𝑘

where, in addition to previous constraints, 𝑧 satisfies (𝐿 − 𝑡 + 𝑧)/𝑘 ∈ N. Given Eq. (2.35), we may thus
optimize directly the parameters 𝑘 and 𝑧 and obtain (𝐿, 𝑛, 𝑘, 𝑡, 𝑧) for any (𝐿,𝑑). Next, we discuss further
details and intuitions for these results, in particular the meaning of (𝜆, 𝛿).

The structure and optimality of EMCMs were found by a systematic analysis of a generalization of the
multicyclic model from Ref. [33]. This analysis is discussed in Sec. 2.10, in this chapter’s appendix.

Reducible sequences and models

There is an intuitive way to understand the advantage provided by EMCMs. The initial shift 𝑧 can be inter-
preted as “increasing” the sequence length (without affecting 𝑑): Since the transitions within each cycle
block are deterministic, starting from the state 𝑧 + 1 is equivalent to lengthening the sequence by 𝑧 steps
and starting on the first state. Similarly, the final sequence of 𝑡 deterministic transitions does not alter the
probability, defined by the cycle blocks. Thus, one may “trim” these deterministic transitions by removing
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𝑡 steps in the sequence (all outputting 0), together with 𝑡 states. The result of both transformations is a
multicyclic model, starting at the first state, with the same probability as before.

Finally, each block of size 𝑘 is equivalent to a single state of an one-way model of reduced dimension,
effectively a time-scaling by a factor of 1/𝑘 . In other words, the initial state 𝑧 and the final deterministic
block 𝑡 bothwork together to perfectly synchronize the cycleswith the number of transitions. In summary,
the optimal probability for an EMCM with 𝑑 states and one-tick sequence of length 𝐿 can, then, easily be
computed by performing the following transformations, all of which leave the probability unchanged:

1. For a given 𝐿,𝑑 , pick 𝑘, 𝑧 ∈ N obeying 1 ≤ 𝑘 ≤ 𝑑 and 0 ≤ 𝑧 ≤ 𝑘 − 1. Compute 𝑛 = ⌊𝑑/𝑘⌋ and
𝑡 = 𝑑 − 𝑛𝑘 .

2. If 𝑡 > 0, we may discard the entire final deterministic block, effectively reducing the dimension, if
we also shorten the one-tick sequence by the same amount 𝑡 (removing 𝑡 0s). In the process, we
incorporate the deterministic output 1 into the final probabilistic transition forwards in the last state
of the last cycle. In Table 2.4, this corresponds to moving diagonally towards the top-left corner by
𝑡 cells.

3. If the initial state is not the first state, i.e., 𝑧 > 0, we may increase the sequence length by adding 𝑧
0s, as the transitions within cycle blocks are deterministic. This effectively shifts the initial state to
the first state of the first block. This corresponds to moving down in Table 2.4 by 𝑧 cells.

4. Once these transformations have been performed, we have transformed the problem into the 𝐿 ↦→
𝐿 − 𝑡 + 𝑧, 𝑑 ↦→ 𝑑 − 𝑡 scenario with a simple multicyclic model.

5. Finally, since all blocks have the same length 𝑘 with 𝑘 − 1 deterministic transitions, we may divide
both the new 𝐿 and 𝑑 by 𝑘 , obtaining a one-way model with length 𝜆 = 𝐿−𝑡+𝑧

𝑘 and number of states
𝛿 = 𝑑−𝑡

𝑘 , with probability 𝐹ow (𝜆, 𝛿).

Thus, we then have the model and sequence in an irreducible canonical form: A one-way model with 𝛿
states, generating a one-tick sequence of length 𝜆 with the same probability as the original sequence and
EMCM. We may then directly compute this probability using Eq. (2.32). The only free parameters in such
an approach are the optimal 𝑘 and 𝑧, which require a straightforward numerical optimization on the order
of 𝑂 (𝑑2) to be found.

This optimality of enhanced multicyclic cycles for one-tick sequences, due to their reducibility, leads
to an alternative physical interpretation of these models. The resulting uniform multicyclic models with
cycle lengths 𝑘 represent a “time-scaling symmetry”. Since every 𝑘 −1 transitions occur deterministically,
theymay be considered asmere delayswhich introduce no relevant dynamics to the behavior of themodel.
The result of this reduction is a “time scaling” by a factor of 1/𝑘 , which produces an irreducible version
of the model that captures all of its dynamics in the smallest number of transitions and states.

Note: The following contains additional material not originally included in Ref. [198].

Inspired by this interpretation, a systematic analysis of the optimal EMCMs for various (𝐿,𝑑) scenarios
suggests that their optimal reduced (𝜆, 𝛿) can be calculated directly using

𝜆 =


⌈
𝐿
𝑑

⌉
if 𝑑/𝐿 < 1/2⌈

𝑑+1
𝐿−𝑑

⌉
if 𝑑/𝐿 ≥ 1/2

, and 𝛿 =


1 if 𝑑/𝐿 < 1/2⌈
𝑑+1
𝐿−𝑑

⌉
− 1 if 𝑑/𝐿 ≥ 1/2

(2.36)

where ⌈𝑥⌉ is the ceiling function14, which gives the optimal EMCM probability for any given (𝐿,𝑑), in
14 ⌈𝑥 ⌉ rounds 𝑥 up to the nearest integer.
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closed form, as:

𝐹 (𝐿,𝑑) :=


1, 𝑑/𝐿 ≥ 1

𝐹ow
(⌈
𝑑+1
𝐿−𝑑

⌉
,
⌈
𝑑+1
𝐿−𝑑

⌉
− 1

)
, 1/2 ≤ 𝑑/𝐿 < 1

𝐹ow
(⌈𝐿
𝑑

⌉
, 1

)
, 𝑑/𝐿 < 1/2

. (2.37)

While this expression was obtained empirically15 it can be intuitively understood as follows. If 𝑑/𝐿 < 1/2,
then the optimal EMCM minimizes states with probabilistic transitions, leading to a cyclic model which
reduces to a single state. Otherwise, if 𝑑/𝐿 > 1/2, the optimal EMCM maximizes states with probabilistic
transitions, reducing to a one-way model with 𝛿 = 𝜆 + 1, which provides the maximum probability for a
given 𝛿 < 𝜆. For 𝑑/𝐿 = 1/2, both strategies lead to 𝜆 = 2 and 𝛿 = 1.

2.7.3 Conjectured upper bounds

Upper bounds for sub-deterministic scenarios

With the significant improvements obtained by optimal EMCMs, all the data available thus far seems to
confirm a striking property of one-tick sequences: They seem to achieve the highest probability out of any
sequence if 𝑑 < DC(a) and 𝐿 ≤ DC(a). In particular, the optimal probability for the one-tick sequence of
length DC(a) at dimension 𝑑 seems to act as an upper-bound for all sequences with the same DC and 𝑑 .
While a proof of this is yet to be found, the current results lead us to formulate the following conjecture:

Conjecture 1. The maximum probability of any sequence a occurring, in any classical scenario with
𝑑 < DC(a), is upper-bounded by the probability of the one-tick sequence a𝐿ot with length 𝐿 = DC(a),
using its optimal EMCM on 𝑑 states, i.e.:

𝑝 (a|𝑇,𝑑) ≤ 𝑝 (aDC(a)
ot |𝐸,𝑑), ∀a,𝑇 , 𝑑 < DC(a). (2.38)

This would be a remarkable result, establishing a direct connection between deterministic and sub-
deterministic scenarios through the DC of a sequence. In particular, the left-hand side of Eq. (2.38) involves
an arbitrarily complex sequence being generated by an arbitrary classical model𝑇 on𝑑 states, whereas the
right-hand side subsumes all of this structure into a single number, DC(a), thereby providing an upper-
bound on all possible classical behaviors. Furthermore, with the results of Eq. (2.37), we could compute
this upper bound directly with 𝐹 (DC(a), 𝑑).

A graphical representation of the survey results, together with this conjectured bound, is shown in
Fig. 2.8, where it is clear that even tighter bounds might be possible. This would require identifying
additional structures in the sequences, and the origin of the probability equivalence classes which appear
as “plateaus”.

Universal classical bound

If proven, the previous conjecture leads to amore surprising statement regarding classical scenarios, which
is presented in the following.

Observation 4. If Conj. 1 holds, then it follows that:

• 𝑝 (a|𝑇,𝑑) < 1/e, ∀ a ∈ A𝐿 , 𝑇 , if 𝑑 < DC(a),

or equivalently,

• 𝑝 (a|𝑇,𝑑) ≥ 1/e =⇒ 𝑑 ≥ DC(a).
15Verified up to 𝐿 = 500 using arbitrary precision arithmetic.
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Figure 2.8: Optimal probabilities for all sub-deterministic scenarios in the classical survey (black dots).
The red line is the EMCM upper-bound as described in Conj. 1. For clarity, the scenarios were sorted first
by increasing EMCM bound, then by increasing probability. At the top, the conjectured universal classical
bound 1/e is shown (see Sec. 2.7.3).
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Figure 2.9: The expectation thatΩ𝐶 (a, 𝑑) should increase gradually towards 1 as𝑑 increases is contradicted
by our results, which reveal a sharp transition between the sub-deterministic and deterministic scenarios.

Proof. To show this, it is sufficient to notice that

𝑝 (a𝐿ot |𝐸,𝑑) ≤ sup
𝐿, and 𝑑<𝐿

𝐹 (𝐿,𝑑) = sup
𝐿
𝐹 (𝐿, 𝐿 − 1)

= lim
𝐿→∞

(
1 − 1

𝐿

)𝐿
=
1

e
,

(2.39)

where we used Eq. (2.37) as a value for the EMCM, the fact 𝐹ow (𝐿,𝑑) is monotonically increasing in 𝑑 , and
that the convergence of (1 − 1/𝐿)𝐿 is monotone, i.e., 1/e is the upper bound for all 𝐿. □

Therefore, provided the memory is classical, any probabilistic realization with 𝑝 (a) ≥ 1/e requires at
least the same dimension as a deterministic realization. In other words: There is a universal upper bound of
1/e on the probability of generating any sequence in its sub-deterministic scenarios with classical memory.
These ideas are concisely shown in Fig. 2.8.

This result was surprising, especially when considering Eq. (2.7), as one might expect that Ω𝐶 (a, 𝑑)
should increase gradually towards 1 with increasing 𝑑 . What our results have shown, however, is that
there seems to be a sharp transition between sub-deterministic and deterministic classical scenarios, as
illustrated in Fig. 2.9.

Despite these promising results, it remains to be proven that the one-tick sequence and EMCMs pro-
vide such upper bounds. As we will see next, quantum models can easily violate these bounds, and no
universal bound seems to exist in the quantum case.
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2.8 Survey of quantum models

The quantum survey took considerably longer than the classical one, as quantum models involve a larger
number variables and more computationally demanding constraints. As in the classical case, the quantum
survey covered all nontrivial scenarios up to 𝐿 = 10, using hyper-parameters 𝛼 = 0.07, 𝛽1 = 0.99,
𝛽2 = 0.999, and 𝜀 = 10−10, but only in the 𝑛 = 1 case, i.e., a single Kraus operator per effect. We have
also investigated possible advantages when using more than one Kraus operator, but this was restricted
to 𝐿 ≤ 5 due to its computational cost, and the fact no advantage was observed up to that point.

Each scenario was optimized 20 times in order to obtain multiple samples for the optimal probability.
As opposed to the classical case, each sample consisted of a single trial, each starting with matrices 𝐵𝑎𝑘
with random entries, where real and imaginary values were independently sampled from the interval
[−1, 1). This was followed by 15 000 iterations of the Adam algorithm. The best sample was used as the
optimum.

2.8.1 Results for general sequences

Quantum advantages over the classical models were observed for nearly all scenarios, and many displayed
a violation of the conjectured universal classical upper bound of 1/e. A sample of our results is shown
in Fig. 2.10. These results indicate that the one-tick sequence also outperforms all other sequences in
the quantum case, while at the same time providing the greatest advantage over its classical counterpart.
Surprisingly, the results also show no benefit in using more than a one Kraus operator per I𝑎 . This will
be discussed in more detail in Sec. 2.8.4.

As expected, if 𝑑 is reduced further from the deterministic threshold, i.e., if 𝑑 < DC(a) − 1, we gener-
ally see a worse performance in both classical and quantum models. Nevertheless, quantum models still
outperform their classical counterparts in nearly all scenarios, including violations of the 1/e bound. The
results of our surveys also point towards the possibility of nontrivial scenarios where quantum memories
offer no advantage, as shown in Fig. 2.11. This will be discussed further in Sec. 2.8.5.

2.8.2 Conjectured upper-bounds in the quantum case
Note: This section contains additional material not originally included in Ref. [198].

A natural question to ask is whether the conjecture for classical memories in Sec. 2.7.3 also applies
to the quantum case. As we do not have a good understanding of optimal quantum models for one-
tick sequences, here we analyze the quantum version of the conjecture in terms of the models found
numerically. The result, as shown in Fig. 2.12, seems to indicate that a similar conjecture should hold for
the quantum case, i.e.,

𝑝 (a|I, 𝑑) ≤ Ω𝑄 (aDC(a)
ot , 𝑑), ∀ a, I, 𝑑 < DC(a). (2.40)

As the structure of the optimal quantum models is typically very complex, we leave these questions open
for future research.

2.8.3 No nontrivial universal quantum bound

Similarly, we also investigate whether a universal bound appears in the quantum case. To obtain some
intuition on this problem, we analyzed the one-tick sequences for the special case 𝑑 = 𝐿 − 1. Despite the
complexity of the exact problem, especially in high dimensions, the existence of a universal upper bound
in the quantum case can be investigated using an appropriate ansatz, as we describe next.

For simplicity, we opt for using a single Kraus operator representation for each effect, each with one
degree of freedom in the following parameterization. To automatically satisfy the constraints, the Kraus
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operators are written in the polar decomposition 𝐾𝑎 = 𝑈𝑎
√
𝐸𝑎 , with 𝐸𝑎 ≥ 0 and 𝐸0 + 𝐸1 = 1 and 𝑈𝑎 a

unitary matrix. We can choose the operators 𝐸𝑎 to be diagonal and tailored for the target sequence (in
our case, a𝐿ot), based on the optimal classical model found, i.e., 𝐸𝑎 = diag(𝜂𝑎), where 𝜂𝑎 = 𝑇𝑎𝜂 for the
optimal𝑇𝑎 of the classical model. As in [33], the one-parameter unitaries are defined in terms of a Fourier
transform of the computational basis, namely,

𝑈𝑎 = e−i𝐻𝜃𝑎 , 𝐻 = 𝐹

(
𝑑−1∑
𝑖=0

𝑘 |𝑘⟩⟨𝑘 |
)
𝐹 †, with [𝐹 ] 𝑗𝑘 =

1
√
𝑑
e

2𝜋 i
𝑑 𝑗𝑘 . (2.41)

Thus, the only parameter of the model is the angle 𝜃0 appearing in Eq. (2.41), with 𝐸0 fixed to be the diag-
onal matrix diag(1, 1, . . . , 1, 𝑞), and where 𝑞 taken as in the optimal classical model previously described,
i.e., 𝑞 = 1 − 𝑑/(𝑑 + 1).

Let us formulate the problem in this simplified form. Fixing the dimension by the condition 𝑑 = 𝐿 − 1
and an initial state 𝜌 = |0⟩⟨0|, without loss of generality, the probability can be written as

𝑝 (a𝐿ot) = Tr
[
𝐾𝑑0 |0⟩⟨0| (𝐾

†
0 )
𝑑𝐸1

]
= Tr

[
|0⟩⟨0| (𝐾†0 )

𝑑𝐸1𝐾
𝑑
0

]
= (1 − 𝑞) Tr

[
|0⟩⟨0| (𝐾†0 )

𝑑 |𝑑 − 1⟩⟨𝑑 − 1|𝐾𝑑0
]

= (1 − 𝑞)
���⟨𝑑 − 1|𝐾𝑑0 |0⟩���2 , (2.42)

where we used the cyclic property of the trace, and the definition of 𝐸1 as 1 − 𝐸0 = (1 −𝑞) |𝑑 − 1⟩⟨𝑑 − 1|.
Using the optimal 𝐸0 and 𝐸1, corresponding to 𝑞 = 1 − 𝑑/𝐿 = 1 − 𝑑/(𝑑 + 1), we are left with only one
parameter 𝜃0 to optimize. For large 𝑑 , the optimal probability is highly sensitive on the value of 𝜃0 (see
Fig. 2.14). A good performance, however, is given by the angle 𝜃0 = (2𝜋/𝑑)(1− 1/𝑑), suggesting that it is
asymptotically optimal, even if for small 𝑑 some deviation from the true optimum can be found. To guess
this particular value, we analyzed the action of the unitary𝑈0. We recall that applying 𝑑 times the unitary
𝑈0 gives

𝑈 𝑑0 = e−i𝜃0𝑑𝐻 = e−i𝜃0𝑑𝐹 (
∑𝑑−1

𝑘=0 𝑘 |𝑘 ⟩⟨𝑘 |)𝐹 † = 𝐹
(
𝑑−1∑
𝑘=0

e−i𝜃0𝑑𝑘 |𝑘⟩⟨𝑘 |
)
𝐹 † . (2.43)

This gives a transition probability between the last and the first state���⟨𝑑 − 1|𝑈 𝑑0 |0⟩���2 =

�����𝑑−1∑
𝑘=0

[𝐹 ]𝑑−1,𝑘 e−i𝑘𝑑𝜃0 [𝐹 †]𝑘,0

�����2
=

1

𝑑2

�����𝑑−1∑
𝑘=0

exp
[
2𝜋 i
𝑑 (𝑑 − 1)𝑘 − i𝑘𝑑𝜃0

] �����2 .
(2.44)

The maximum occurs when all the amplitudes are in phase, which implies the slowest rotating amplitude
(𝑘 = 1) has to reach zero phase, i.e., when 2𝜋

𝑑 (𝑑−1)−𝑑𝜃0 = 0. This gives 𝜃0 = (2𝜋/𝑑)(1−1/𝑑), as desired16.
The matrix 𝐸0 has been ignored here, which is at the origin of the deviation for small 𝑑 . However, from
the result of numerical calculation, see Fig. 2.13, it seems that our approximation is good enough.

The results of this numerical optimization, shown in Fig. 2.13, suggest that in the quantum case proba-
bility 1 can be asymptotically reached. Of course, this fact cannot be proven rigorously by these numerical
optimization methods, as any concrete computation, in a given dimension, results in a probability strictly
smaller than 1. To approach such questions a more sophisticated construction of quantum models is
warranted.

For a fixed 𝑑 , the probability as a function of 𝜃0 is characterized by a series of 𝑑 equally-spaced peaks,
which become sharper with increasing 𝑑 (Fig. 2.14), indicating that the optimal value requires fine-tuning.

16In the general (𝐿,𝑑 ) case, we obtain instead 𝜃0 = 2𝜋
𝑑 (1 −

𝐿−𝑑
𝐿−1 ) .
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This simplification made the problem tractable, namely, we were able to compute the probability for
high dimension, without the need of an optimization over the parameters 𝜃0 and 𝑞. This result, however,
slightly deviates from the true optimal 𝜃0 for small 𝑑 . For large 𝑑 , it is asymptotically close to the true op-
timal. The optimal probability tends towards 1 as the dimension (and the length of the sequence) increases
(Fig. 2.13), suggesting that there is no nontrivial upper bound, strictly smaller than 1, in the quantum case.

The above ansatz provides an interesting comparison and intuition between the classical and quantum
behaviors in these one-way models. In the classical case, each transition produces a statistical mixture
of states, in such a way that the average behavior is the model transitioning forward 𝑑 states after 𝑑 + 1
transitions, introducing a delay of one state at the end of the sequence. These transitions always result
in a spreading of the probability over many states. In the quantum case, the dynamics is governed by
the unitary, which produces a coherent superposition of states. The model is still transitioning forward 𝑑
states after 𝑑 +1 transitions, but the coherence allows the probability to concentrate at the final state after
an initial spread. The two behaviors are shown in Fig. 2.15, where the “concentration” of probability can
be observed in the quantum case.

2.8.4 Number of Kraus operators
Note: This section contains additional results not originally included in Ref. [198].

Surprisingly, the numerical results also seem to show that there is no benefit in using more than one
Kraus operator per effect I𝑎 . In all scenarios investigated up to 𝐿 = 5 and𝑛 = 3, the optimization algorithm
eventually converges with all 𝑛 Kraus operators of each effect being scalar multiples of one another, which
means they can be combined into a single operator. Therefore, the same probabilities were obtained in all
such cases, up to numerical accuracy of 10−6.

Naturally, classical models can be simulated by quantum ones (see Sec. 2.4.2), but classical probabilistic
models transform pure states into mixed states, a transformation which requires the use of multiple Kraus
operators to be written in a quantum model. The fact quantum models can achieve the same probability,
and beyond, with only coherent transformations on a pure state, highlights the power and versatility of
quantum memory effects.

A possible explanation of this result is the observation that any quantum advantage would arise from
the use of coherences between orthogonal memory states, and that such coherence effects will be reduced
if the state becomes mixed. Therefore, additional Kraus operators could only lower the performance of
the model, by bringing their behavior closer towards the classical probabilistic behavior.

2.8.5 Nontrivial scenarios with no quantum advantage
Note: This section contains additional material not originally included in Ref. [198].

As can be seen in Fig. 2.11, our results seem to indicate the existence of nontrivial scenarios in which
quantum memories offer no advantage over classical ones. Naturally, no quantum advantage is possible
for the scenarios with 𝑑 = 1, but several nontrivial scenarios with 2 ≤ 𝑑 ≤ 5 have been found. Table 2.2
includes all such scenarios up to length 7, with many more scenarios found for 𝐿 > 7 and up to 𝑑 = 5.

All scenarios with no quantum advantage required 𝑑 < DC(a) −1, which could indicate the existence
of a memory threshold for nonclassicality to emerge, i.e., a dimension 𝑑𝑄 (a) such that:

𝑑 < 𝑑𝑄 (a) =⇒ Ω𝑄 (a, 𝑑) = Ω𝐶 (a, 𝑑). (2.45)

We leave the investigation of this possibility to future research.
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2.9 Conclusions and outlook

In this chapter we explored the optimal deterministic and probabilistic realizations of symbolic sequences,
as rooted on fundamental physical principles. In particular, we consider each symbol as being generated,
one at a time, by sequential operations performed on a physical system of finite dimension, acting as
the sole memory resource for the task of generating the sequence. The finite-state machine framework
we have employed to describe this physical setup places classical and quantum theory on equal terms,
enabling a very precise comparison between optimal behaviors allowed within each theory.

We introduced the notion of deterministic complexity (Sec. 2.5.1) for quantifying the minimal di-
mension required for deterministic realizations of a sequence, where differences between classical and
quantum behaviors become irrelevant, and provided an algorithm to efficiently compute it. In the sub-
deterministic scenarios, i.e., 𝑑 < DC(a), we surveyed optimal (classical and quantum) realizations of
sequences up to length 𝐿 = 10 via gradient descent techniques, namely, the Adam algorithm [100]. This
survey has led to several novel insights on the structure of temporal correlations under finite-memory
constraints. An indication of the good performance of the gradient descent method is that it was able to
consistently find very sparse optimal solutions.

Of note, the detailed survey led to an improvement upon a previously known model for the one-tick
sequence [33], with the discovery of the enhanced multicyclic models, or EMCMs (Sec. 2.7.2). Moreover,
our results suggest that, for any given sequence a and any dimension 𝑑 < DC(a), the optimal EMCM for
the sequence aDC(a)

ot provides an upper bound for 𝑝 (a|𝑇,𝑑) over all its classical realizations. In particular,
the investigation of optimal probabilities of EMCMs suggests the existence of a universal upper bound of
1/e for all classical sub-deterministic realizations of any sequence, i.e., 𝑑 < DC(a). That being said, this
result remains a conjecture.

In the quantum case, we have shown how even simple models, with a small amount of memory as
resource, are already able to violate this conjectured universal classical bound, and consequently, to out-
perform any classical scenario in which the realization of a sequence must necessarily be probabilistic.
Moreover, an analysis of the performance of such quantum models for the one-tick sequences in high
dimension, i.e., up to 𝑑 = 500, suggests that quantum mechanics features no nontrivial universal upper
bound.

Notwithstanding two fundamental limitations of our approach, namely, the analysis of only a finite set
of sequences and the use of gradient descent methods, which guarantee only a local maximum in our case
(and thus lower bounds), we believe our findings provide a strong support for our conjectures. In fact, the
total number of scenarios analyzed, counting also their realizations in different dimensions and multiple
optimization trials, was on the order of tens of thousands, with consistent results obtained for the optimal
solutions. Furthermore, the more accurate optimizations performed for this thesis have corroborated all
previous results reported in the original work (Ref. [198]). It seems unlikely that any additional properties
of sequences and models would emerge, which could invalidate these bounds. For the quantum bound,
similarly to the classical case, it would be very surprising if the limit of the one-tick sequence for 𝑑 = 𝐿−1
and 𝐿 →∞ would converge to some value strictly smaller than one.

Our results stimulate future research in several directions. First, it would be interesting to understand
whether the general upper bound based on the EMCM fails for longer sequences or if it is valid in general.
This will also have consequences to the universal upper bound. Without proof of its optimality, it may
be possible that for certain longer sequences a nontrivial model may outperform its respective EMCM.
The optimality of EMCMs themselves, for one-tick sequences, is also only conjectured at this time, but
search for more general models have shown no evidence that EMCMs can be outperformed by uneven
cycle lengths or independent probabilities, as described in Sec. 2.10. Furthermore, we believe the results
in Sec. 2.7.2 provide a strong argument that EMCMs are indeed optimal, as they seem to map directly
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either to the scenario with 𝑑 = 1, where the exact maximum can be found analytically (see Sec. 2.6.3), or
to the scenario with 𝑑 = 𝐿−1, where one-way models seem to provide the exact maximum in all scenarios
that have been verified with outer approximations [207, 200]. Understanding the origin of the empirical
results in Eqs. (2.36) and (2.37) might provide insights into these questions.

Moving away from the one-tick sequences, the optimal models for general sequences have proven to
be exceptionally complex, showing a rich nontrivial behavior (e.g. Fig. 2.4 and Table 2.1). Despite this,
nearly all optimal models found by our numerical search seem to fall into a small number of equivalence
classes with same probability, typically given by rational numbers. These same optimal probabilities seem
to occur despite the dissimilarity between the scenarios (sequence length and structure, DC, number of
states, Hamming weight, tail and cycle lengths, etc.), as shown in Fig. 2.8 and Table 2.1. The origin of
these shared structures is as of yet unknown, but their existence suggests that tighter upper bounds may
be established by exploiting additional structures of the sequences, beyond their deterministic complexity.

Our results for the quantum case also indicate that, at least when optimizing for a single sequence,
we may restrict our attention to instruments with effects defined by single Kraus operators (Sec. 2.8.4),
i.e., having 𝑛𝑎 = 1 for all 𝑎 ∈ A. This significantly reduces the search space in the optimization. The
optimality of 𝑛𝑎 = 1 is also conjectured, but has been observed in all scenarios we have tried, up to
numerical accuracy. It would be interesting to know whether there are sequential tasks where more
than one Kraus operator per effect can be a valuable resource, and under which circumstances it can be
exploited as such.

A question also remains of whether there are sequences and nontrivial dimensions for which classical
and quantum models provide the same maximum probability. These could lead to Leggett-Garg-type tem-
poral inequalities which are not violated by quantum systems, in analogy to the Guess-Your-Neighbor’s-
Input non-local game [8]. Our results seem to suggest such scenarios are possible (Sec. 2.8.5), but this
requires further investigation.

The results and techniques utilized here can be generalized to arbitrary output alphabets, as well as
the inclusion of inputs, which may reveal new information processing applications for finite-state ma-
chine methods. Chapter 6 provides an initial foray in this direction, discussing the generalization of the
deterministic complexity to the case of inputs and output functions, which establishes some connections
between questions in physics foundations and computer science. This will be the subject of future re-
search.

Finally, it is important to remark that the investigation of temporal correlations within the formalism
of finite-state machines is a relatively new area of research, with only a few techniques having been tried
or developed to address this problem. Despite the theoretical limitations of the gradient descent surveys
we have performed, the structure of temporal correlations under finite-memory constraints appears to be
sufficiently rich as to offer new insights, even in the simplest scenario we have focused on in this chapter.

2.10 Appendix: Generalized multicyclic models

The multicyclic model introduced in Ref. [33] assumes 𝑑 = 𝑛𝑘 and an initial state shift 𝑧, such that the
𝑛 identical cycles of length 𝑘 must perfectly partition the 𝑑 states. A natural question arises of whether
there could be an advantage if the cycles were not forced to be identical. In the following, we discuss
the systematic investigation of this question, and how it eventually led to the structure of the enhanced
multicyclic models (EMCMs).

In order to fully generalize the multicyclic model, we should allow any possible decomposition of the 𝑑
states into distinct cycles, each with its own independent cycle probability. We refer to this as a generalized
multicyclic model (GMCM), where the𝑇0 transition matrix consists of 𝑛 cycles with internal deterministic
transitions, and a probabilistic transition to the initial state of the cycle, with probability 𝑞𝑖 , or to the first
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state in the next cycle, with probability 1 − 𝑞𝑖 , for the 𝑖-th cycle. Once the last state is reached, we have a
nonzero probability, i.e., 1 − 𝑞𝑛 , for the output 1.

An explicit example of 𝑇0 for a 𝑑 = 9 model is Eq. (2.46), and a general GMCM structure in shown in
Fig. 2.16. The 𝑇1 matrix is 𝑇1 = diag(0, . . . , 0, 1 − 𝑞𝑛). Note that, since the last transition is irrelevant, in
𝑇1 we can choose any position in the last row for the non-zero entry 1 − 𝑞𝑛 .

𝑇0 =



0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

𝑞1 0 0 0 1 − 𝑞1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 𝑞2 0 0 1 − 𝑞2 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 𝑞3 0



(2.46)

Such a GMCM is defined by several parameters: a signature k = (𝑘1, . . . , 𝑘𝑛) denoting the size of each
of the 𝑛 cycles, with 𝑘𝑖 ∈ N+ and

∑
𝑖 𝑘𝑖 = 𝑑 , and q = (𝑞1, . . . , 𝑞𝑛) denoting the probability of each cycling

transition to occur, with 0 ≤ 𝑞𝑖 < 1 (the strict inequality is important as having one of the 𝑞𝑖 = 1 would
give probability zero for the one-tick sequence). Note that there are in total 2𝑑−1 potential signatures
for a given 𝑑 , corresponding to the number of integer compositions17 of the number 𝑑 . A priori, none
of these could have been ruled out, so an exhaustive numerical survey of these models was performed
for 𝐿 = 3, . . . , 10 and 𝑑 = 1, . . . , 𝐿 − 1. The optimal models found are shown in Table 2.3, where a few
structures become apparent: due to optimal models having the same probabilities for the same block sizes,
signatures largely obey permutation symmetry, but favoring bigger blocks at the beginning.

Despite the fact that many signatures of the optimal models found specify non-uniform cycle lengths
(e.g. (1, 2, 2)), in all such cases the smallest cycles found had 𝑞𝑖 = 0, that is, they do not behave like cycles
at all, but instead acting as a series of deterministic transitions. This renders the models given by (1, 1, 4)
and (2, 4) for 𝐿 = 10 identical, for instance. Furthermore, only the largest cycles required 𝑞𝑖 > 0, and
in all cases the optimal models display 𝑞𝑖 = 𝑞 𝑗 if 𝑘𝑖 = 𝑘 𝑗 . Finally, in all cases where a signature did not
satisfy permutation symmetry, the optimal model contained the deterministic transitions at the end. This
suggests that we can always permute the model so that all deterministic transitions occur at the end, as a
single deterministic block, while all identical probabilistic cycles occur at the beginning, thus unifying all
such optimal models within the same structure.

This inspires us to the following simplified model: we only need to consider models of the form k =

(𝑘, . . . , 𝑘, 𝑡), where 𝑑 = 𝑛𝑘 + 𝑡 , with a number 𝑛 of 𝑘-sized blocks, i.e., the vast majority of signatures
can be dismissed. In such models, we always have 𝑛 = ⌊𝑑/𝑘⌋, and 𝑡 = 𝑑 − 𝑛𝑘 , and an initial state
𝑧 = 0, . . . , 𝑘 − 1. These are the enhanced multicyclic models (EMCMs). They can be fully specified by the
5-tuple of parameters (𝐿, 𝑛, 𝑘, 𝑡, 𝑧). Table 2.4 details the parameters describing various optimal EMCMs.

In addition to the comprehensive low-dimension survey of GMCMs, which led us to the EMCMs, we
have also investigated some higher-dimensional cases up to 𝑑 = 20, and 20 < 𝐿 ≤ 50 using both GMCMs
and unrestricted models obtained by gradient descent. In all cases, the best model found was always in
the form of an EMCM, which further supports our claim that EMCMs are optimal.

17Also known as ordered partitions. For example, 𝑑 = 4 has 8 compositions: (1, 1, 1, 1) , (1, 1, 2) , (1, 2, 1) , (2, 1, 1) , (2, 2) , (1, 3) ,
(3, 1) , and (4) . These compositions can be easily enumerated.
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Table 2.1: Optimal models found for 𝐿 = 3, . . . , 6 sequences, grouped by decreasing DC and sorted by
decreasing probability. Only 𝑑 = DC(a) − 1 cases are shown. The pictorial representation of the model
matrices (𝑇0,𝑇1) has 0 entries as white and 1 as black, with intermediate values in gray. Notice that many
optimal probabilities coincide, despite the varied structure of the respective sequences and models. On the
bottom right, the distinct probabilities observed are shown along with their closed form representation,
valid up to the numerical accuracy.
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Figure 2.10: Comparison between the optimal probabilities found for classical and quantummodels, for all
𝐿 = 5, 6 and 7 and 𝑑 = DC(a) − 1 ≥ 2 scenarios. Sequences are sorted by quantum probability, with each
sequence’s DC noted inside parentheses. Quantum models can easily violate the conjectured universal
classical bound or 1/e. Despite the discrete nature of the data shown, points were joined by lines in order
to help with the comparison.
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Figure 2.11: If the amount of memory is reduced further, i.e., 𝑑 < DC(a) − 1, both classical and quantum
models perform worse. Quantum models still outperform classical ones in nearly all scenarios, with our
results hinting at the existence of scenarios where the quantum advantage disappears, shown here as
overlaps between the two lines; see Sec. 2.8.5. As before, only 𝑑 ≥ 2 scenarios are shown.
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Figure 2.12: Optimal probabilities for all sub-deterministic scenarios in the quantum survey (black dots).
The red line is the upper bound provided by the optimal quantummodels found for the one-tick sequences
aDC(a)
ot with the same 𝑑 . For clarity, the scenarios were sorted first by increasing conjectured bound, then

by increasing probability.
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Figure 2.13: Results of the numerical optimization for the probability of the a𝐿ot sequence for the case
𝐿 = 𝑑 + 1 or 𝑑 = DC(a𝐿ot) − 1, for 𝑑 = 2, . . . , 500. The probability seems to converge to the trivial upper
bound of 1. These models also easily outperform the 1/e bound of the classical scenario.
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Figure 2.14: The probability 𝑝 (𝜃0 |𝑑) of the quantum one-way model for increasing 𝑑 . The various peaks
become increasingly sharp for higher dimensions. The value 𝜃0 = (2𝜋/𝑑)(1 − 1/𝑑) is shown, which
appears to be asymptotically optimal.
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Figure 2.15: The overall behavior of classical and quantum one-way models, showing the evolution of the
probability distributions over the 𝑑 states. In this diagram, each column represents the states at a given
time step in the sequence, starting from the left with 𝑎1 = 0 and ending at the right with 𝑎𝐿 = 1. The first
state is at the top. In the quantum case, the distribution corresponds to the diagonal entries in the density
matrix. White corresponds to zero probability, black to 1.

DC Sequence d Probability

4 01011 2 1/4

4 000101 2 4/27

4 010001 2 4/27

5 011100 2 27/256

4 0001010 2 4/27

4 0100010 2 4/27

5 0010110 3 1/4

5 0100110 3 1/4

5 0100111 2 256/3125

5 0100111 3 1/4

DC Sequence d Probability

4 0110011 2 256/3125

5 0101000 2 4/27

5 0101110 2 27/256

5 0110010 3 1/4

5 0111001 2 256/3125

5 0111010 2 27/256

6 0101011 2 4/27

6 0101100 3 4/27

6 0110100 3 1/4

6 0111100 2 256/3125

Table 2.2: Scenarios with 𝐿 ≤ 7 and 𝑑 ≥ 2 where no quantum model was found to perform better than
the corresponding classical model. The fractions approximate the probabilities up to numerical accuracy.
It is unclear whether Ω𝐶 = Ω𝑄 for these cases, as suggested by the results of the survey, or whether this
is an artifact of the local optima found by the gradient descent approach.

Figure 2.16: The structure of generalized multicyclic models, which consist of splitting the 𝑑 states into 𝑛
blocks of various sizes 𝑘𝑖 , each block corresponding to an internally-deterministic cycle with independent
probability 𝑞𝑖 of cycling, and 1 − 𝑞𝑖 of moving to the next cycle. Only the last state of the last block has
a probability 1 − 𝑞𝑛 of outputting 1. All optimal models for the one-tick sequence investigated are of this
form.
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𝐿 = 3

𝑑 𝑝 (a𝐿
ot |𝐺,𝑑 ) k

1 0.148148 (1)0

2 0.296296 (1, 1)0

𝐿 = 4

𝑑 𝑝 (a𝐿
ot |𝐺,𝑑 ) k

1 0.105469 (1)0

2 0.250000 (2)0

3 0.316406 (1, 1, 1)0

𝐿 = 5

𝑑 𝑝 (a𝐿
ot |𝐺,𝑑 ) k

1 0.081920 (1)0

2 0.148148 (2)1

3 0.250000 (1, 2)∗0, (3)1

4 0.327680 (1, 1, 1, 1)0

𝐿 = 6

𝑑 𝑝 (a𝐿
ot |𝐺,𝑑 ) k

1 0.066980 (1)0

2 0.148148 (2)0

3 0.250000 (3)0

4 0.296296 (2, 2)0

5 0.334898 (1, 1, 1, 1, 1)0

L=7

𝑑 𝑝 (a𝐿
ot |𝐺,𝑑 ) k

1 0.056653 (1)0

2 0.105469 (2)1

3 0.148148 (1, 2)∗0, (3)2

4 0.250000 (1, 3)∗0, (4)1

5 0.296296 (1, 2, 2)∗0
6 0.339917 (1, 1, 1, 1, 1, 1)0

L=8

𝑑 𝑝 (a𝐿
ot |𝐺,𝑑 ) k

1 0.049087 (1)0

2 0.105469 (2)0

3 0.148148 (3)1

4 0.250000 (4)0

5 0.250000 (1, 1, 3)∗0, (2, 3)∗0, (4, 1)1, (5)2

6 0.316406 (2, 2, 2)0

7 0.343609 (1, 1, 1, 1, 1, 1, 1)0

L=9

𝑑 𝑝 (a𝐿
ot |𝐺,𝑑 ) k

1 0.043305 (1)0

2 0.081920 (2)1

3 0.148148 (3)0

4 0.148148 (3, 1)1, (4)3

5 0.250000 (1, 4)∗0, (5)1

6 0.296296 (3, 3)0

7 0.316406 (1, 2, 2, 2)∗0
8 0.346439 (1, 1, 1, 1, 1, 1, 1, 1)0

L=10

𝑑 𝑝 (a𝐿
ot |𝐺,𝑑 ) k

1 0.038742 (1)0

2 0.081920 (2)0

3 0.105469 (3)2

4 0.148148 (4)2, (1, 3)∗0
5 0.250000 (5)0

6 0.250000 (1, 1, 4)∗0, (2, 4)∗0, (5, 1)1, (6)2

7 0.296296 (1, 3, 3)∗0
8 0.327680 (2, 2, 2, 2)0

9 0.348678 (1, 1, 1, 1, 1, 1, 1, 1, 1)0

Table 2.3: All optimal generalized multicyclic models (𝐺) for 3 ≤ 𝐿 ≤ 10, with their probabilities and
signatures k. Subscripts on signatures indicate the optimal initial state 𝑧 (starting from 0), and an asterisk
indicates that all permutations of the signature were found to be equivalent. Several optimal models
appear with non-uniform signatures, improving upon results in Ref. [33].
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L

d
1 2 3 4 5 6 7 8 9

2 (1, 1, 0, 0)

3 (1, 1, 0, 0) (2, 1, 0, 0)

4 (1, 1, 0, 0) (1, 2, 0, 0) (3, 1, 0, 0)

5 (1, 1, 0, 0) (1, 2, 0, 1) (1, 3, 0, 1) (4, 1, 0, 0)

6 (1, 1, 0, 0) (1, 2, 0, 0) (1, 3, 0, 0) (2, 2, 0, 0) (5, 1, 0, 0)

7 (1, 1, 0, 0) (1, 2, 0, 1) (1, 3, 0, 2) (1, 4, 0, 1) (2, 2, 1, 0) (6, 1, 0, 0)

8 (1, 1, 0, 0) (1, 2, 0, 0) (1, 3, 0, 1) (1, 4, 0, 0) (1, 5, 0, 2) (3, 2, 0, 0) (7, 1, 0, 0)

9 (1, 1, 0, 0) (1, 2, 0, 1) (1, 3, 0, 0) (1, 4, 0, 3) (1, 5, 0, 1) (2, 3, 0, 0) (3, 2, 1, 0) (8, 1, 0, 0)

10 (1, 1, 0, 0) (1, 2, 0, 0) (1, 3, 0, 2) (1, 4, 0, 2) (1, 5, 0, 0) (1, 6, 0, 2) (2, 3, 1, 0) (4, 2, 0, 0) (9, 1, 0, 0)

Table 2.4: Optimal (𝑛, 𝑘, 𝑡, 𝑧) parameters for EMCMs for various 𝐿 and 𝑑 . In the case multiple sets of pa-
rameters resulted in the same probability, the set with the smallest 𝑡 was chosen to highlight the cases in
which the EMCM structure is strictly required. Including 𝐿, the five parameters fully specify the proba-
bility for a given (𝐿,𝑑).
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Chapter 3

Witnessing environment dimensions
through temporal correlations

The main results in this chapter were published in Ref. [201]:
Witnessing environment dimension through temporal correlations
Lucas B. Vieira, Simon Milz, Giuseppe Vitagliano, and Costantino Budroni
Quantum 8, p. 1224 (2024) — Accepted 2023-12-04

Author contribution: In this work, the doctoral candidate significantly contributed to the conception of the
research topic, the formulation of the SDP relaxation, and to several of its proofs. The candidate is fully
responsible for writing of all the SDP optimization code, the analysis of the results, the generalization of
symmetric space representations and operations in Sec. 3.7.4 and, especially, to the creation of the sparsity
heuristic (adapted into Ref. [199] and Ch. 5). The candidate also contributed with the writing of nearly all
the manuscript, and was solely responsible for the production of all its graphical assets.

The contents of this chapterwere adapted from the original text. Some of its results have been relocated
to Ch. 2 (Sec. 2.6.3) and Ch. 5 (Sec. 3.7.3) in order to avoid redundancy in this thesis.

3.1 Introduction

Physical systems are never truly isolated, and inevitably interact with their surrounding environment [24,
162]. As a consequence, information within the system leaks away into its surroundings, leading to en-
tanglement between the system and the environment. In many instances, this leaked information may
be partially recovered at a later time, leading to non-Markovian dynamics, i.e., non-negligible memory
effects and complex correlations in time [163, 25, 132].

Like their spatial counterpart, temporal correlations in quantum mechanics fundamentally differ from
those that can be observed in the classical case. Such differences between classical and quantum temporal
correlations have been noted since the works of Leggett and Garg [116, 115, 64, 203]. In the presence
of memory, a clear distinction between an underlying process – carrying temporal correlations – and the
measurement process – probing said correlations – can be obtained by employing correlation kernels [118,
3] or higher order quantum maps [155] for their description.

Broadly speaking, the dimension of a physical system, i.e., the number of perfectly distinguishable
states, imposes fundamental constraints over the temporal correlations it is able to produce [32]. In this
sense, the physical dimension acts as a memory resource, restricting the amount of information stored
about the past that is capable of affecting the future. This memory constraint leads to different behaviors
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(i.e., different achievable temporal correlations) in classical, quantum, or more general physical theo-
ries [67, 88, 32, 182, 198, 124]. In particular quantum memories are known to allow for a larger set of
correlations than classical ones of the same size [32, 33, 198]. However, this advantage only holds for
restricted memory size, i.e., if the memory size is unrestricted, all correlations compatible with a time-
ordered causal structure may be achieved with either classical or quantum memories [67, 88]. Therefore,
understanding the nature of dimensional constraints on observable correlations sheds light on fundamen-
tal differences between our descriptions of physical systems, as well as their connection with causality.

These limitations imposed by the dimensionality of physical systems have been exploited for the con-
struction of “dimension witnesses”, inequalities which, when violated, certify the minimum dimension of
the system compatible with observations [69, 28, 81, 31, 170, 182, 179]. In a similar spirit, the approach
described in this chapter allows for the computation of upper bounds on the temporal correlations achiev-
able in an open system dynamics with an environment of bounded dimension, so that any violations of
these bounds certify the minimum dimension of the effective environment. Employing techniques from
entanglement detection [59, 140], these bounds are obtained by exploiting the inherent symmetries of the
problem. In particular, we relax the a priori non-linear problem of computing maximum joint probabilities
in sequential measurements to a numerically tractable hierarchy of semidefinite programs (SDPs) [22].
Both the computational accessibility of the final formulation of the problem, as well as the non-triviality
of the resulting bounds, are then demonstrated for paradigmatic examples, showing that, indeed, joint
probability distributions obtained from probing an open system alone provide viable means to deduce
dimensional properties of the a priori experimentally inaccessible environment it is coupled to.

This chapter is organized as follows. Section 3.2 provides an outline of the main results presented in
this chapter, and the original work it was adapted from (Ref. [201]). In Sec. 3.3, we introduce the sequential
measurement protocol in the case of open quantum systems, the notion of temporal correlations, and
their mathematical description. Section 3.4 discusses the application of temporal correlations to the task
of characterizing open systems and their environment. Section 3.5 describes the semidefinite program we
constructed to bound temporal correlations, with Sec. 3.6 presenting the numerical results we obtained in
their optimization. In Sec. 3.7 we comment on the various challenges involved in realizing these numerical
optimizations, and how we have overcome them. In Sec. 3.8 we comment on several additional technical
details involving our work, with Sec. 3.9 covering our conclusions and future outlook.

3.2 Summary of main results

In this work, we investigate applications of bounds on temporal correlations to the problem of witnessing
the dimension of an environment interactingwith an open quantum system. Since the environment acts as
the memory resource in the study of non-Markovian dynamics, the results in Ref. [198] (Ch. 2) suggested
that upper bounds on temporal correlations could offer new insights into the study of open quantum
systems. In contrast with this previous work, which resorted to computing lower bounds on classical and
quantum temporal correlations, here we focus on the problem of obtaining upper bounds for the open
quantum system case, which is much more general.

To obtain these upper bounds, we formulate the problem of sequential measurements and repeated
system-environment unitary interactions in the formalism of quantum supermaps [41, 156, 155], using the
Choi-Jamiołkowski isomorphism [46, 94]. In this way, the repeated system-environment unitary interac-
tions are mapped to symmetric and separable pure states in a larger Hilbert space, where techniques from
entanglement detection [58, 59, 140], bilinear optimization [16], and rank-constrained optimization [216]
can be applied.

The inherent symmetry of the problem allows for an efficient representation directly in the symmet-
ric subspace [85], which required a generalization of earlier results known for qubits [184] to systems
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of arbitrary dimension (Sec. 3.7.4). Furthermore, this symmetry enables a direct application of the quan-
tum de Finetti theorem [39, 47] for establishing a hierarchy of SDP relaxations which converge exactly to
the original problem [59]. Nevertheless, this is a very computationally demanding technique, which ren-
ders the problem numerically intractable even in the simplest nontrivial scenarios, despite being already
represented directly in the symmetric subspace.

To overcome this challenge, for this work we have developed a novel heuristic algorithm for obtaining
sparse representations of large-scale SDPs, by exploiting their inherent effective sparsity, which emerges
naturally from its objective function and constraints. This heuristic was particularly well suited for our
problem, allowing for a reduction to less than 1% of the original number of variables and constraints in
its symmetric representation (Sec. 3.7.3). This sparsity heuristic is very general, and was adapted into its
own paper in Ref. [199], which we discuss in detail in Ch. 5.

Thanks to this novel sparsity heuristic, an exact sparse representation of the SDP relaxations could be
obtained allowing us to compute upper bounds on themaximumprobability of a few sequences for the case
of a qubit environment. The methods we have developed can be used to obtain similar upper bounds in a
variety of other open quantum system scenarios, each acting as a witness for the environment dimension.

3.3 The sequential measurement protocol

Figure 3.1: Diagram of the sequential measurement protocol, involving a partially characterized probe
system and a non-characterized environment, here separated by the dashed line. The sequence of mea-
surement outcomes a = 𝑎1 . . . 𝑎𝐿 is obtained by repeated preparations of a probe state 𝜌0S, fixed and the
same at every time step, which is left to interact with the environment, then followed by measurements
(semicircles). The environment acts as a memory resource, capable of establishing long-term correlations
between measurements.

We assume that an experimenter is able to prepare a “probe” system in a known state and perform
measurements in a certain basis. Its dynamics, on the other hand, are not under experimental control, and
are governed by its inevitable interaction with the environment. Typically, this environment is a much
larger system, generally inaccessible, and featuring complex dynamics. Together, system and environment
undergo closed, i.e., unitary evolution. Their interaction leads to an imprinting of information on the probe
system, which can be used to learn something about the environment by means of the probe alone. In fact,
this is a common way of making indirect measurement on (typically large many-body) systems that are
not fully controlled [23, 37]. For example, a small probe can be used for estimating an unknown parameter
of a larger (many-body) environment [56], in particular temperature [6, 168, 54, 128].

We now introduce the details of our scenario and the notation used. By HS and HE we denote the
finite-dimensional Hilbert spaces of system and environment, with 𝑑S = dimHS and 𝑑E = dimHE,
and their joint space as HES = HE ⊗ HS, with 𝑑ES = 𝑑E𝑑S. The experiment involves 𝐿 identical mea-
surements on the probe system, at discrete time steps, each outcome 𝑎ℓ ∈ A collected into a sequence
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a = 𝑎1 . . . 𝑎𝐿 . For simplicity, we consider A = {0, 1} in the following; the generalization to arbitrary
outcomes is straightforward. Measurements on the system are described by a Positive Operator-Valued
Measure (POVM) {𝐸𝑎𝑆 }𝑎 , i.e., 𝐸𝑎𝑆 ≥ 0 and

∑
𝑎∈A 𝐸

𝑎
𝑆 = 1𝑆 .

The system is initially prepared in the state 𝜌0S, left to interact with the environment via the global
unitary U (·) = 𝑈 · 𝑈 †, then measured and reprepared in the state 𝜌0S. This procedure is repeated a total
of 𝐿 times; see Fig. 3.1. The unitary operation is assumed to be the same at each iteration (corresponding
to, for example the situation of a time-independent system-environment Hamiltonian and temporally
equidistant measurements); see Sec. 3.8.1 for more details.

In the following, we consider a measure-and-prepare operation of the form

M𝑎 (𝜌𝐸𝑆 ) = Tr𝑆
[
𝜌𝐸𝑆 · (1𝐸 ⊗ 𝐸𝑎𝑆 )

]
⊗ 𝜌0S, (3.1)

with the generalization to arbitrary operations being straightforward. The probability of a sequence of
outcomes can then be written as

𝑝 (a|𝑑E) = 𝑝 (𝑎1, . . . , 𝑎𝐿 |𝑑E)
= Tr

[
M𝑎𝐿◦ U ◦ · · · ◦M𝑎1◦ U (𝜌0E⊗𝜌0S)

]
,

(3.2)

where 𝑝 (a|𝑑E) denotes that it is obtained with an environment of dimension 𝑑E. Our task is to estab-
lish upper bounds on such probabilities given a finite amount of “memory”, i.e., the dimension 𝑑E. The
assumption of identical measurements is essential for capturing this notion of memory, as arbitrary time-
dependent operations would impose no nontrivial restriction on the probabilities.

For simplicity, we consider the maximization of the probability of a given sequence a, namely, to find1

Ω(a, 𝑑E) := sup 𝑝 (a|𝑑E) (3.3)

such that 𝑝 (a|𝑑E) ≤ Ω(a, 𝑑E), for all possible correlations generated by an environment of dimension 𝑑E.
The generalization to arbitrary linear functions of the distributions (𝑝 (a|𝑑E))a is straightforward. Since
obtaining the exact maximum Ω(a, 𝑑E) is very difficult, in the following we resort to obtaining upper
bounds Ω(a, 𝑑E) ≤ 𝜔 (a, 𝑑E) via a relaxation of the problem.

Figure 3.2: The protocol with each time step having its own set of input and output Hilbert spaces, denoted
by the vertical dotted lines. Note that the input and output spaces of the U and M𝑎 are interleaved: U
has inputs Iℓ and outputs Oℓ , but for M𝑎ℓ , inputs are Oℓ and outputs Iℓ+1.

We formulate the problem via the Choi-Jamiołkowski (CJ) isomorphism [94, 46], which involves taking
multiple copies of the original Hilbert space HES to describe its time evolution; see Fig. 3.2. The ℓ-th
unitary acts as U : Iℓ → Oℓ , while the ℓ-th measurement, placed between unitaries, acts instead as
M𝑎 : Oℓ → Iℓ+1. All spaces are isomorphic, i.e., O � I � HES. For convenience, the ℓ-th unitary’s input
and output spaces are jointly referred to as Aℓ = Iℓ ⊗Oℓ . It is important to emphasize that the local input

1The notation for these bounds is the same as used in Ch. 2, but since in this chapter we only consider the quantum case we omit
the Q subscript.
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and output spaces of the U and M𝑎 are interleaved, in the sense that the outputs of one are the inputs of
the other (Fig. 3.2). For clarity, we shall use the cursive I and O to generically refer to each map’s local
input and output spaces: for unitaries, I = Iℓ and O = Oℓ , and for measurements, I = Oℓ and O = Iℓ+1.

Given a linear map Λ : I → O between input and output Hilbert spaces I and O, with 𝑑I = dim I
and 𝑑O = dimO, its Choi-Jamiołkowski representation [94, 46] is given by the matrix

CJ[Λ] :=
𝑑I∑
𝑖, 𝑗=1

|𝑖⟩⟨ 𝑗 | ⊗ Λ( |𝑖⟩⟨ 𝑗 |) = idI ⊗ Λ(|Ψ⟩⟨Ψ|), (3.4)

where |Ψ⟩ = ∑𝑑I−1
𝑖=0 |𝑖𝑖⟩ is a non-normalized maximally entangled state. The matrix CJ[Λ] is typically

referred to as a Choi matrix for the map Λ and, if normalized, also as its Choi state. Note that CJ[Λ]
is of size 𝑑I𝑑O × 𝑑I𝑑O , and since in our case input and output spaces are isomorphic we have 𝑑I =

𝑑O = 𝑑ES. We note that the decomposition of sequential maps in Eq. (3.2) is equivalent to the standard
formulation of temporal scenarios in the quantum comb [43], process matrix [147, 45], and process tensor
[155] formalism.

3.4 Witnesses for open system dynamics

Given a probe system 𝑆 , the first question we may ask is whether or not it is open, i.e., if it is interacting
with an environment at all, or equivalently, whether 𝑑E > 1. To address this question, we can compute
Ω(a, 1) and consider the inequality

𝑝 (a|𝑑E = 1) ≤ Ω(a, 1). (3.5)

As an example, the maximum for the sequence a = 00101 is Ω(a, 1) = (3/5)3 (2/5)2 = 0.03456, which
we explain how to obtain shortly. If we perform an experiment and observe 𝑝 (a = 00101) = 0.5, then
we must conclude the system is open. In other words, the inequality Eq. (3.5) acts as a witness for open
systems. However, if no violation is observed, the experiment is inconclusive.

To compute this maximum, we first note that, for our choice ofM𝑎 , since both 𝜌0S and 𝐸𝑎𝑆 are the same
at each measurement, all outcomes are independent and identically distributed. Writing 𝑞𝑎 = Tr

[
𝜌0S𝐸

𝑎
𝑆

]
as the probability of outcome 𝑎, with

∑
𝑎 𝑞𝑎 = 1, and using 𝑛𝑎 as the number of occurrences of a symbol 𝑎

in a, we have

𝑝 (a|𝑑E = 1) =
𝐿∏
ℓ=1

𝑞𝑎ℓ =
∏
𝑎∈A

𝑞𝑛𝑎𝑎 ,
∑
𝑎∈A

𝑛𝑎 = 𝐿. (3.6)

The global maximum Ω(a, 1) can be found analytically as was done in Sec. 2.6.3, and is given by:

𝑝 (a|𝑑E = 1) ≤ Ω(a, 1) =
∏
𝑎∈A

(𝑛𝑎
𝐿

)𝑛𝑎
, (3.7)

with the convention 𝑞𝑛𝑎𝑎 = 1 for 𝑞𝑎 = 𝑛𝑎 = 0. The maximum is independent of 𝑑S and is obtained with
𝐸𝑎𝑆 = 𝑛𝑎

𝐿 1𝑆 and any 𝜌0S. Note that this direct calculation of Ω(a, 1) crucially depends on the specific form
of the instrument we employ. If the respective outcomes do not correspond to a M𝑎 of measure-and-
prepare form, the joint probabilities 𝑝 (a|𝑑E) do not factorize as in Eq. (3.6), and an alternative approach
must be used.

A similar principle to Eq. (3.5) applies when developing witnesses for the case of 𝑑E > 1, although
the calculation of the maximum becomes nontrivial, as the probability no longer factorizes as in Eq. (3.6).
Concretely, we want to obtain the tightest bounds of the form

𝑝 (a|𝑑E) ≤ Ω(a, 𝑑E), (3.8)
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which hold for all possible realizations of the sequence a in an experiment. If a violation of Eq. (3.8) is
observed, we can certify that the dimension is greater than 𝑑E.

In the simple case of 𝑑E = 1, we were able to optimize over 𝜌0S and {𝐸𝑎𝑆 }𝑎 . In the general case, however,
optimizing over all possible protocols (i.e., all possible 𝜌0S, {𝐸𝑎𝑆 }𝑎 and U ) is difficult. Nevertheless, some
general considerations can be made about how the bounds depend on these parameters; see Sec. 3.8.3. We
shall assume fixed and well characterized preparations and measurements, in agreement with our initial
assumptions on the probe system. We then wish to obtain the maximum

Ω(a, 𝑑E) := sup
U
𝑝 (a|𝑑E), (3.9)

where assumptions about the initial state of the environment can be removed by convexity and symmetry
arguments; see Sec. 3.8.2. In the following section, we explain how to compute upper bounds 𝜔 (a, 𝑑E) on
these nontrivial maxima, i.e., Ω(a, 𝑑E) ≤ 𝜔 (a, 𝑑E), via convex optimization methods.

3.5 Ahierarchy of semidefinite programs bounding temporal cor-
relations

Themaxima in Eq. (3.9) require that the probe state 𝜌0S andmeasurements {𝐸𝑎𝑆 }𝑎 are characterized and fixed
throughout the experiment, as discussed in the previous section. To obtain the upper bounds 𝜔 (a, 𝑑E),
we formulate the problem as a hierarchy of semidefinite programs (SDPs) [22]. This class of optimization
problems are ubiquitous in quantum information theory, offering strict convergence of solutions for many
classes of problems, as well as having efficient algorithms widely available for solving them [22, 211]; see
Sec. 1.4.2 for a brief introduction. For a recent compendium on SDPs in quantum information science, see
[177, 192]. In the following, we explain the general steps taken in formulating our problem as an SDP,
which can be solved numerically and, importantly, efficiently. A more detailed step-by-step formulation
is included in Sec. 3.5.1.

Under the CJ representation, the repeated applications of the unitary and measurements can each be
written as single operators existing in a larger space, encompassing multiple time steps, with their input
and output spaces interleaved. This is illustrated in Fig. 3.2. Via Eq. (3.4), we define

𝐶𝑈 := 1
𝑑𝐸𝑆

CJ[U ],

𝑀𝑎 := CJ[M𝑎], and 𝑀𝑎 := TrO[𝑀𝑎] .
(3.10)

With this, we can write the 𝐿 repeated applications of U as𝐶⊗𝐿𝑈 , and the measure-and-prepare operations
as a single operator defining our objective function,

𝐹 := 𝑑𝐿ES (𝜌0E ⊗ 𝜌0S) ⊗ 𝑀𝑎1 ⊗ 𝑀𝑎2 ⊗ · · · ⊗ 𝑀𝑎𝐿 , (3.11)

where𝑀𝑎 is simply the final measurement without a re-preparation, obtained by partially tracing𝑀𝑎 over
its output space. As the goal is to obtain a maximum, the initial environment state 𝜌0E can be chosen to
be pure by convexity arguments, fixed to be |0⟩⟨0|𝐸 by unitary invariance, and considered as part of the
experimental setup in 𝐹 without loss of generality; see Sec. 3.8.2. We can then express the probability of
a as

𝑝 (a|𝑑E) = Tr
[
𝐹T𝐶⊗𝐿𝑈

]
. (3.12)

Note that by Eq. (3.4) and Eq. (3.10) 𝐶𝑈 is positive, rank-1, and normalized, which makes 𝐶⊗𝐿𝑈 a pure
symmetric separable quantum state. In addition, each𝐶𝑈 satisfies TrO[𝐶𝑈 ] = 1I/𝑑ES, which arises from
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the trace-preserving property of each individual unitary. With all of these observations, we reformulate
Eq. (3.9) as the equivalent optimization problem:

Given: 𝑑E, 𝑑S, 𝜌
0
E, 𝜌

0
S, {𝑀𝑎}𝑎, a,

with 𝐹 := 𝑑𝐿ES (𝜌0E ⊗ 𝜌0S) ⊗ 𝑀𝑎1 ⊗ · · · ⊗ 𝑀𝑎𝐿−1 ⊗ 𝑀𝑎𝐿 ,

Find: Ω(a, 𝑑E) := max
𝐶𝑈

Tr
[
𝐹T𝐶⊗𝐿𝑈

]
Subject to: 𝐶𝑈 ≥ 0, rank𝐶𝑈 = 1,

TrO[𝐶𝑈 ] = 1I/𝑑ES .

(3.13)

As 𝐶𝑈 enters in the objective function as a tensor power, and we further require it to be rank-1, the
problem is both non-linear and non-convex with respect to 𝐶𝑈 , and thus the above problem cannot be
directly solved as an SDP. To reach an SDP relaxation of Eq. (3.13), we first transform it into a chain of
equivalent problems.

The problem can be made convex by replacing 𝐶⊗𝐿𝑈 with a separable state on the symmetric subspace

𝑋A𝐿
1
:=

∑
𝑖

𝑝𝑖 |𝜑𝑖⟩⟨𝜑𝑖 |⊗𝐿 , (3.14)

with 𝑝𝑖 ≥ 0,
∑
𝑖 𝑝𝑖 = 1. By convexity, the maximum will be achieved for a rank-1 𝑋A𝐿

1
, therefore this

relaxation leaves the optimal value unchanged. Thus, we replace 𝐶⊗𝐿𝑈 in Eq. (3.13) with 𝑋A𝐿
1
satisfying

𝑋A𝐿
1
∈ SEP𝐿, P+𝐿𝑋A𝐿

1
= 𝑋A𝐿

1
, (3.15)

and the partial trace constraint of Eq. (3.13), where SEP𝐿 is the set of fully separable 𝐿-partite states, and
P+𝐿 is the projector onto the symmetric subspace of 𝐿 systems (see the definition in Eq. (3.28) in Sec. 3.7.4).
In fact, the constraints in Eq. (3.15) are exact, as it can be shown that all separable states in the symmetric
subspace are of the form in Eq. (3.14); see Sec. 3.5.1 for a proof.

So far, we transformed the original problem into an equivalent one, but due to the condition 𝑋A𝐿
1
∈

SEP𝐿 it is not yet an SDP.This constraint can be addressed by relaxing the original problem via the quantum
de Finetti theorem [39] (see also [47]), which tells us that 𝑋A𝐿

1
can be approximated as the reduced state

of a larger symmetric (and potentially entangled) state 𝑋A𝑁
1
, such that 𝑋A𝐿

1
≈ TrA𝑁

𝐿+1
[𝑋A𝑁

1
], where TrA𝑁

𝐿+1
is the trace over systems 𝐿 + 1, . . . , 𝑁 .

While this relaxation a priori only provides an upper bound for the original problem, it establishes
a hierarchy of approximate solutions, which are known to converge exactly to the separable set as 𝑁
increases [59]. The de Finetti theorem, and analogous results for permutationally invariant (or exchange-
able), rather than symmetric, operators have found broad applications in quantum information theory,
from entanglement detection [58, 59, 140] to more general optimization problems, such as evaluating con-
vex roofs of entanglement measures [195], constrained bilinear optimization [16], dimension-bounded
quantum games [95], as well as rank-constrained optimization [216]. All the above mentioned results
exploit the basic idea of using either the symmetric subspace or permutation invariance to relax nonlin-
ear constraints. In particular, Ref. [16] analyzed the optimization over pairs of quantum channels, basing
their construction on permutation invariant operators, and showing the partial trace constraint necessary
to translate the usual procedure (e.g., in the entanglement detection approach) from states to channels.
Moreover, [216] introduced the idea of a rank-constrained optimization based on the symmetric subspace,
which is central to impose the rank constraint in Eq. (3.13). Our construction is inspired by these works
and could be derived starting from some of these results. However, it is more straightforward to provide
a direct construction in terms of the de Finetti theorem; see Sec. 3.5.1.
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Ultimately, we arrive at an SDP relaxation of the original problem:

Given: 𝑑E, 𝑑S, 𝜌
0
E, 𝜌

0
S, {𝑀𝑎}𝑎, a, 𝑁 ,

with 𝐹 := 𝑑𝐿ES (𝜌0E ⊗ 𝜌0S) ⊗ 𝑀𝑎1 ⊗ · · · ⊗ 𝑀𝑎𝐿−1 ⊗ 𝑀𝑎𝐿 ,

and 𝑀𝑎𝐿 := TrO
[
𝑀𝑎𝐿

]
Find: 𝜔𝑁 (a, 𝑑E) := max

𝑋
A𝑁
1

Tr
[
(𝐹T ⊗ 1A𝑁

𝐿+1
)𝑋A𝑁

1

]
Subject to: 𝑋A𝑁

1
≥ 0,

P+𝑁𝑋A𝑁
1
= 𝑋A𝑁

1
, Tr

[
𝑋A𝑁

1

]
= 1,

TrO1

[
𝑋A𝑁

1

]
=
1I1

𝑑ES
⊗ TrA1

[
𝑋A𝑁

1

]
.

(3.16)

We now include the superscript 𝑁 in 𝜔𝑁 (a, 𝑑E) as to emphasize it is part of a hierarchy of upper bounds.
Here, 𝑁 ≥ 𝐿 is the size of the symmetric state 𝑋A𝑁

1
used in the approximation of the separable 𝐿-partite

state 𝑋A𝐿
1
. The last constraint in Eq. (3.16) is required to ensure that 𝑋A𝑁

1
represents a sequence of trace-

preserving maps, and it can be enforced on a single step due to the symmetry constraint on 𝑋A𝑁
1
; see

Sec. 3.5.1. Optionally, one can also add further linear constraints to the SDP to improve its approxima-
tion to the separable set, e.g., entanglement witnesses [193, 79] or the positive partial transpose (PPT)
criterion [153] 𝑋T𝛼

A𝑁
1

≥ 0,∀𝛼 , where 𝑋T𝛼

A𝑁
1

is the partial transpose with respect to a bipartition 𝛼 . These
conditions are not necessary for convergence, but they may provide better results [140] at an extra com-
putational cost.

Once approximate solutions 𝜔𝑁 (a, 𝑑E) are obtained from Eq. (3.16), they can be used to establish a
convergent hierarchy of upper bounds on the temporal correlations for each sequence, i.e.,

Ω(a, 𝑑E) ≤ · · · ≤ 𝜔𝑁+1 (a, 𝑑E) ≤ 𝜔𝑁 (a, 𝑑E) ≤ · · · ≤ 𝜔𝐿 (a, 𝑑E),

with lim
𝑁→∞

𝜔𝑁 (a, 𝑑E) = Ω(a, 𝑑E).
(3.17)

Consequently, the above formulates a sequence of SDPs capable of approximating the maxima Ω(a, 𝑑E)
to arbitrary precision. Numerical results obtained from any of these SDPs (i.e., for any 𝑁 ≥ 𝐿) can be used
to construct dimensional witnesses, which, when violated, certify the minimum dimension of the effective
environment interacting with the system. A software implementation of the SDP in Eq. (3.16), however,
is not straightforward even for small values of {𝑑S, 𝑑E, 𝐿, 𝑁 }, as the memory requirements quickly render
the problem computationally intractable. Therefore, obtaining the numerical results presented in the next
section, required a significant amount of optimization; see Sec. 3.7 for details. A schematic outline of all
steps undertaken to formulate the SDP and obtain the numerical results is presented in Fig. 3.3.

The asymptotic convergence of the hierarchy of bounds in Eq. (3.17) for the SDP in Eq. (3.16), without
PPT constraints, is given by [42]

|Ω(a, 𝑑E) − 𝜔𝑁 (a, 𝑑E) | ≤
𝐿(𝐿 + 𝑑2ES − 1)

𝑁 + 𝑑2ES

. (3.18)

If PPT constraints are included, we only have partial analytical results for the asymptotic error. Numerical
evidence and previous results involving PPT constraints [140] lead us to conjecture an asymptotic scaling
of the form

|Ω(a, 𝑑E) − 𝜔𝑁 (a, 𝑑E) | ≤ 𝑓 (𝐿,𝑑ES)𝑂
(
1

𝑁 2

)
, (3.19)

where 𝑓 (𝐿,𝑑ES) is a function of 𝐿 and 𝑑E. We leave the analysis of these asymptotic error bounds to a
future investigation.

68



Figure 3.3: Schematic of all steps undertaken for computing an upper bound for 𝜔 (a, 𝑑E) by formu-
lating and solving the SDP. Detailed descriptions of each step are covered in Secs. 3.5.1 and 3.7.4. The
tractable/intractable labels, on the right, refer to the case 𝑑E = 2.

3.5.1 Constructing the SDP relaxation

This section explains in detail the various steps to analytically formulate themaximization problemΩ(a, 𝑑E) :=
sup 𝑝 (a|𝑑E) as a semidefinite program, with Sec. 3.7.4 focusing on its software implementation. Figure 3.3
provides a schematic outline of our approach.

Let ℓ = 1, . . . , 𝐿 enumerate the time steps, and let Iℓ and Oℓ be the input and output spaces of the ℓ-th
unitary evolution U , respectively. For convenience, we write 𝐴ℓ := Iℓ ⊗ Oℓ for the joint space at step ℓ ,
and A𝑏𝑎 := 𝐴𝑎 ⊗ 𝐴𝑎+1 ⊗ · · · ⊗ 𝐴𝑏−1 ⊗ 𝐴𝑏 for the sequential spaces from 𝑎 to 𝑏. We assume that all spaces
are isomorphic, i.e., Iℓ � Oℓ � HES for all ℓ , but we preserve labels for clarity. We can thus write the
respective maps in the Choi-Jamiołkowski representation (see Eq. (3.4)) as:

𝐶𝑈 := 1
𝑑𝐸𝑆

CJ[U ], 𝑀𝑎 := CJ[M𝑎], 𝑀𝑎 := TrO[𝑀𝑎] , (3.20)

whereCJ[Λ] is the Choi matrix of the map Λ and𝐶𝑈 is normalized such that it corresponds to a quantum
state, which is useful during implementation of the symmetric representation of the problem (Sec. 3.7.4).
As before, we highlight that the local input (I) and output (O) spaces of these maps are interleaved: For
the ℓ-th U , I = Iℓ and O = Oℓ , but for M𝑎ℓ we have I = Oℓ and O = Iℓ+1. Since the final output state
is discarded (i.e., we are only concerned with the probability of outcome sequences), the final O is traced
out, yielding𝑀𝑎 in the equation above. This structure of the spaces is illustrated in Fig. 3.4.

We may now specify the probability of the sequence a as

𝑝 (a|𝑑E) = Tr

[
𝐹T

(
𝐿⊗
ℓ=1

𝐶IℓOℓ

𝑈

)]
= Tr

[
𝐹T (𝐶𝑈 )⊗𝐿

]
(3.21)

𝐹 := 𝑑𝐿ES · (𝜌0E ⊗ 𝜌0S)𝐼1 ⊗ 𝑀𝑂1𝐼2
𝑎1 ⊗ · · · ⊗ 𝑀𝑂𝐿−1𝐼𝐿

𝑎𝐿−1 ⊗ 𝑀𝑂𝐿
𝑎𝐿 . (3.22)

Where the correcting normalization factor 𝑑𝐿ES was incorporated into 𝐹 (to make up for the normalization
of 𝐶𝑈 ), and 𝐹T denotes the transpose with respect to the basis chosen for the isomorphism. In order to
obtain an upper-bound for 𝑝 (a|𝑑E), our goal is to optimize Eq. (3.21) over all possible unitaries, in terms
of 𝐶𝑈 . As per the above definitions, it follows that 𝐶𝑈 must satisfy the constraints:

• 𝐶𝑈 ≥ 0 and rank𝐶𝑈 = 1, as it represents a unitary channel,

• TrO[𝐶𝑈 ] = 1I/𝑑ES, as it is a trace preserving map

69



Figure 3.4: Diagram of the specific protocol discussed in this work, with each time step written in terms
of distinct input and output Hilbert spaces, denoted by the dotted lines. Note that the input and output
spaces of the U and M𝑎 are interleaved: U has inputs Iℓ and outputs Iℓ , but for M𝑎ℓ , inputs are Oℓ and
outputs Iℓ+1.

We may thus define our optimization problem as

Optimization Problem 1. The initial formulation of the problem.

Given: 𝜌0E, 𝜌
0
S, {𝑀𝑎}𝑎, a

Find: Ω(a, 𝑑E) = max
𝐶𝑈

Tr
[
𝐹T (𝐶𝑈 )⊗𝐿

]
Subject to: 𝐶𝑈 ≥ 0, rank𝐶𝑈 = 1, TrO[𝐶𝑈 ] = 1I/𝑑ES .

(3.23)

This may be immediately relaxed to a convex form, without affecting the maximum of the objective
function, as

Optimization Problem 2. The convex relaxation of the original problem.

Given: 𝜌0E, 𝜌
0
S, {𝑀𝑎}𝑎, a

Find: Ω(a, 𝑑E) = max
{ |𝜑𝑖 ⟩}𝑖

Tr
[
𝐹T𝑋A𝐿

1

]
,

with 𝑋A𝐿
1
=

∑
𝑖

𝑝𝑖 |𝜑𝑖⟩⟨𝜑𝑖 |⊗𝐿 , 𝑝𝑖 ≥ 0,
∑
𝑖

𝑝𝑖 = 1

Subject to: TrO[|𝜑𝑖⟩⟨𝜑𝑖 |] = 1I/𝑑ES, |𝜑𝑖⟩ ∈ HES ⊗HES .

(3.24)

However, this optimization problem is non-linear, not only due to the tensor product in |𝜑𝑖⟩⟨𝜑𝑖 |⊗𝐿 , but
also on the rank-1 nature of |𝜑𝑖⟩⟨𝜑𝑖 |. Let us now define our target set T as

𝑋A𝐿
1
∈ T :=

{ ∑
𝑖

𝑝𝑖 |𝜑𝑖 ⟩⟨𝜑𝑖 |⊗𝐿
����� |𝜑𝑖 ⟩ ∈ HES ⊗HES, 𝑝𝑖 ≥ 0,

∑
𝑖

𝑝𝑖 = 1, TrO[|𝜑𝑖 ⟩⟨𝜑𝑖 |] = 1I/𝑑ES

}
. (3.25)

Elements of this set will not generally be rank-1, but the optimal solutions of Probs. 1 and 2 belong to this
set. Our goal now is to approach T by means of further relaxations, which is achieved by exploiting the
symmetry of 𝑋A𝐿

1
.

The unitary channel constraints

The symmetric structure of 𝑋A𝐿
1
requires all subspaces to be in the same local state. We can relax this by

considering instead the separable set on 𝐿 parties,

𝑋A𝐿
1
∈ SEP𝐿 := conv

{
𝐿⊗
ℓ=1

𝑄ℓ

����� 𝑄ℓ ∈ B(HES ⊗HES), 𝑄ℓ ≥ 0, Tr [𝑄ℓ ] = 1

}
, (3.26)
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such that all local spaces become independent. Here, conv denotes the convex hull of the set, and B the set
of bounded operators. We must now find ways to restore rank-1 and permutation invariance constraints
for the optima over this set. For now, we highlight that T ⊂ SEP𝐿 , but simply switching from 𝑋A𝐿

1
∈ T

to 𝑋A𝐿
1
∈ SEP𝐿 does change our problem, so that we must impose further constraints to the set SEP𝐿 to

restore the original problem in T . The first step is restoring symmetry and optimality of rank-1 to 𝑋A𝐿
1
.

After this, we may restore the partial trace constraint.
Let 𝜎 ∈ 𝔖𝑛 be a permutation from the set of all permutations on 𝑛 symbols𝔖𝑛 . We define

𝑉𝜎 :=
𝑑∑

𝑖1,· · · ,𝑖𝑛=1
|𝑖𝜎−1 (1) , · · · , 𝑖𝜎−1 (𝑛)⟩⟨𝑖1, · · · , 𝑖𝑛 |, (3.27)

𝑃+𝑛 :=
1

𝑛!

∑
𝜎∈𝔖𝑛

𝑉𝜎 (3.28)

as, respectively, the permutation operator and projector onto the symmetric subspace. The symmetric
subspace on 𝑛 copies of H is defined as

Sym𝑛 (H) :=
{
|𝜓 ⟩ ∈ H⊗𝑛

�� 𝑃+𝑛 |𝜓 ⟩ = |𝜓 ⟩ } , (3.29)

and the space of symmetric operators is given by the set [85]:

Sym𝑛 (B(H)) := {𝐴 ∈ B(H⊗𝑛) | 𝑃+𝑛𝐴 = 𝐴}. (3.30)

For a Hermitian operator 𝜌 , the symmetry condition can be equivalently written either as 𝑃+𝑛𝜌 = 𝜌 or
𝑃+𝑛𝜌𝑃

+
𝑛 = 𝜌 . In fact, if 𝑃+𝑛𝜌 = 𝜌 , then 𝜌† = (𝑃+𝑛𝜌)† = 𝜌†𝑃+ = 𝜌𝑃+ = 𝜌 ⇒ 𝑃+𝑛𝜌𝑃

+
𝑛 = 𝜌 . Conversely,

𝜌 = 𝑃+𝑛𝜌𝑃
+
𝑛 = (𝑃+𝑛 )2𝜌𝑃+𝑛 = 𝑃+𝑛𝜌 . More details about the symmetric subspace can be found in Sec. 3.7.4.

Ensuring symmetry and rank-1 at the optimum

By utilizing 𝑋A𝐿
1
as our variable as in Eq. (3.26), we have lost both symmetry and rank-1 guarantees

at the optimum. However, both can be restored by ensuring 𝑋A𝐿
1
is in the symmetric subset of SEP𝐿 ; see,

e.g., [105]. For completeness, we provide in the following an elementary proof that

Sym𝑛 (B(H)) ∩ SEP𝑛 =

{ ∑
𝑖

𝑝𝑖 |𝜑𝑖 ⟩⟨𝜑𝑖 |⊗𝑛
����� |𝜑𝑖 ⟩ ∈ HES ⊗HES, ⟨𝜑𝑖 |𝜑𝑖 ⟩ = 1, 𝑝𝑖 ≥ 0,

∑
𝑖

𝑝𝑖 = 1

}
, (3.31)

which implies T ⊂ Sym𝐿 (B(H)) ∩ SEP𝐿 . In fact, consider 𝜌 ∈ Sym𝑛 (B(H)) ∩ SEP𝑛 . Since it is separable,
we can write it as a convex mixture of pure product states, i.e.,

𝜌 =
∑
𝑖

𝑝𝑖 |Φ𝑖⟩⟨Φ𝑖 | , (3.32)

with |Φ𝑖⟩ a 𝑛-party pure product state, i.e., |Φ𝑖⟩ =
⊗𝑛

𝑗=1

��𝜑𝑖, 𝑗 〉, with the {
��𝜑𝑖, 𝑗 〉} 𝑗 not necessarily equal for

a given 𝑖 . However, 𝜌 ∈ Sym𝑛 (B(H)) implies ran(𝜌) ⊆ Sym𝑛 (H), and if we prove that ran( |Φ𝑖⟩⟨Φ𝑖 |) ⊆
Sym𝑛 (H) for all 𝑖 , then we find that {

��𝜑𝑖, 𝑗 〉} 𝑗 must be identical for each 𝑖 , otherwise |Φ𝑖⟩ fails to be
symmetric, namely, |Φ𝑖⟩⟨Φ𝑖 | = |𝜑𝑖⟩⟨𝜑𝑖 |⊗𝑛 and, thus, 𝜌 =

∑
𝑖 𝑝𝑖 |𝜑𝑖⟩⟨𝜑𝑖 |⊗𝑛 .

It remains to prove that ran( |Φ𝑖⟩⟨Φ𝑖 |) ⊆ Sym𝑛 (H). To show this, we note that by Eq. (3.32) and
positivity of 𝜌 and |Φ𝑖⟩⟨Φ𝑖 |, we have Ker(𝜌) = ∩𝑖 Ker(|Φ𝑖⟩⟨Φ𝑖 |). By Hermiticity, it follows that ran(𝜌) =
(Ker(𝜌))⊥ = span(∪𝑖 ran( |Φ𝑖⟩⟨Φ𝑖 |)), which concludes the proof.

Importantly, Eq. (3.31), restores the symmetry and rank-1 properties for optimum solutions of Prob. 2
when 𝑋A𝐿

1
is restricted to Sym𝑛 (B(H)) ∩ SEP𝑛 . In light of this, in the following we use SymSEP𝑛 :=

Sym𝑛 (B(H)) ∩ SEP𝑛 .
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The trace-preserving constraint

We now restore the trace-preserving constraint TrO[|𝜑𝑖⟩⟨𝜑𝑖 |] = 1I/𝑑ES for states expressed as in
Eq. (3.31). This is established by proving that it is sufficient to satisfy this condition for a single party in
the convex mixture.

Proposition 1. For any 𝑋A𝐿
1
∈ SymSEP𝐿 :

TrO1

[
𝑋A𝐿

1

]
=
1I1

𝑑ES
⊗ TrA1

[
𝑋A𝐿

1

]
⇐⇒ TrOℓ

[
|𝜑𝑖 ⟩⟨𝜑𝑖 |Aℓ

]
=
1Iℓ

𝑑ES
⊗ |𝜑𝑖 ⟩⟨𝜑𝑖 |⊗𝐿−1 ∀ℓ . (3.33)

Proof. We provide a generalization of the arguments in [216, App. A]. From Eq. (3.31), if P+𝐿𝑋A𝐿
1
= 𝑋A𝐿

1
,

we know it admits a decomposition of the form

𝑋A𝐿
1
=

∑
𝑖

𝑝𝑖 |𝜑𝑖⟩⟨𝜑𝑖 |⊗𝐿 , 𝑝𝑖 ≥ 0,
∑
𝑖

𝑝𝑖 = 1. (3.34)

We introduce the one-party auxiliary map E (·) = TrO[·] − Tr [·] 1I/𝑑ES implementing our partial trace
constraint in T , such that (EA1

⊗ idA2
⊗ idA𝐿

3
)(𝑋A𝐿

1
) = 0 for any 𝑋A𝐿

1
∈ SymSEP𝐿 ∩ T , and, due to

symmetry, the same is true if the map had been applied to the second party instead. Defining Ẽ (·) =
[E (·)]†, we may then write (EA1

⊗ ẼA2
⊗ idA𝐿

3
) (𝑋A𝐿

1
) = 0. As E acts on Hermitian operators and is

Hermiticity-preserving, we have E = Ẽ and the explicit distinction is only made for added clarity in the
following proof. Applying the map to the convex mixture in Eq. (3.34), we obtain∑

𝑖

𝑝𝑖EA1
(|𝜑𝑖⟩⟨𝜑𝑖 |A1

) ⊗ ẼA1
(|𝜑𝑖⟩⟨𝜑𝑖 |A2

) ⊗ |𝜑𝑖⟩⟨𝜑𝑖 |⊗𝐿−2

=
∑
𝑖

𝑝𝑖𝐸𝑖 ⊗ 𝐸†𝑖 ⊗ |𝜑𝑖⟩⟨𝜑𝑖 |
⊗𝐿−2 = 0,

(3.35)

where 𝐸𝑖 = E ( |𝜑𝑖⟩⟨𝜑𝑖 |). We need this to be true for all 𝐸𝑖 if we want to ensure 𝑋A𝐿
1
obeys our partial trace

constraint globally in the convex mixture. To prove this is the case, let 𝐺 ∈ C𝑑2
ES×𝑑2

ES , so that

Tr

[
(𝐺 ⊗ 𝐺† ⊗ 1A𝐿

3
)
(∑
𝑖

𝑝𝑖𝐸𝑖 ⊗ 𝐸†𝑖 ⊗ |𝜑𝑖⟩⟨𝜑𝑖 |
⊗𝐿−2

)]
=
∑
𝑖

𝑝𝑖 |Tr [𝐺𝐸𝑖 ] |2 Tr
[
|𝜑𝑖⟩⟨𝜑𝑖 |⊗𝐿−2

]
= 0,

(3.36)

which must hold for any 𝐺 . Since 𝑝𝑖 ≥ 0, |Tr [𝐺𝐸𝑖 ] | ≥ 0, and Tr
[
|𝜑𝑖⟩⟨𝜑𝑖 |⊗𝐿−2

]
= 1, this can only be

true for all𝐺 if all 𝐸𝑖 = 0. Furthermore, by the symmetry of each term in the mixture, it is then sufficient
to ensure the constraint is satisfied in a single party. From Eq. (3.31), the converse statement follows
trivially. □

Thus, any state 𝑋A𝐿
1
∈ SymSEP𝐿 satisfying TrO1

[
𝑋A𝐿

1

]
= (1I1/𝑑ES) ⊗TrA1

[
𝑋A𝐿

1

]
is part of the target

set T and vice versa.

The final rank-constrained problem over SEP

Given all of the previous results, we have now established a relation between the sets T and SEP𝐿 ,

T =
{
𝑋A𝐿

1
∈ SEP𝐿

��� P+𝐿𝑋A𝐿
1
= 𝑋A𝐿

1
, TrO1

[
𝑋A𝐿

1

]
= (1I1/𝑑ES) ⊗ TrA1

[
𝑋A𝐿

1

] }
, (3.37)

which allows us to remove the non-linear dependence on the tensor product (𝐶𝑈 )⊗𝐿 , by replacing the
search space with SymSEP𝐿 , while obeying the linear constraints on the partial trace of one party. We
thus obtain:
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Optimization Problem 3. Rank-1 and symmetric optimum (exact)

Given: 𝜌0E, 𝜌
0
S, {𝑀𝑎}𝑎, a

Find: Ω(a, 𝑑E) = max
𝑋

A𝐿
1
∈ SEP𝐿

Tr
[
𝐹T𝑋A𝐿

1

]
Subject to: 𝑋A𝐿

1
≥ 0, Tr

[
𝑋A𝐿

1

]
= 1, P+𝐿𝑋A𝐿

1
= 𝑋A𝐿

1
,

TrO1

[
𝑋A𝐿

1

]
=
1I1

𝑑ES
⊗ TrA1

[
𝑋A𝐿

1

]
(3.38)

However, 𝑋A𝐿
1
∈ SEP𝐿 is still not a linear constraint and highly nontrivial to be enforced, as a full

characterization of the separable set is NP-Hard [82]. Therefore, while a priori appearing more manage-
able, the above problem is still not in a form that can be tackled numerically. Fortunately, the symmetric
constraint arising from our problem can also be exploited to obtain approximations of the symmetric
separable states.

The SEP constraint

Approximation of SEP via the quantum de Finetti theorem

Ensuring𝑋A𝐿
1
∈ SEP𝐿 cannot be done exactly, so as it stands the problem is still numerically intractable.

However, it is possible to define arbitrarily precise outer approximations of the separable set through
symmetric extensions and the quantum de Finetti theorem [39, 47]. Concretely, we can approximate,
in principle to any desirable precision, a 𝑋A𝐿

1
∈ SEP𝐿 by a marginal over a larger symmetric (and not

necessarily separable) state 𝑋A𝑁
1
, provided 𝑁 is sufficiently large. For any finite 𝑁 , this leads to an outer

approximation of T , which establishes a convergent hierarchy of outer approximations, such that for any
𝑁 ≥ 𝐿, we have

Ω(a, 𝑑E) ≤ · · · ≤ 𝜔𝑁+1 (a, 𝑑E) ≤ 𝜔𝑁 (a, 𝑑E) ≤ · · · ≤ 𝜔𝐿 (a, 𝑑E),

with lim
𝑁→∞

𝜔𝑁 (a, 𝑑E) = Ω(a, 𝑑E).
(3.39)

More precisely, using the quantum de Finetti theorem we can establish asymptotic error bounds on this
approximation [42, Cor.1]. In terms of the trace norm, this asymptotic error bound is given by𝑋A𝐿

1
− TrA𝑁

𝐿+1

[
𝑋A𝑁

1

]
1
≤

2𝐿(𝐿 + 𝑑2ES − 1)
𝑁 + 𝑑2ES

. (3.40)

As the symmetry requirement applies to both𝑋A𝐿
1
and𝑋A𝑁

1
, this application of the quantum de Finetti

theorem for approximating 𝑋A𝐿
1
∈ SEP𝐿 is straightforward in the SDP in Eq. (3.16), only requiring the

use of a larger state 𝑋A𝑁
1

as the optimization variable, and a suitable adjustment of the objective function
using (𝐹T ⊗ 1A𝑁

𝐿+1
).

Additional separability constraints

To improve the approximation, at an extra computational cost, we may also include additional sepa-
rability constraints. In our case, we consider the constraints of positive partial transpose (PPT) on 𝑋A𝑁

1
:

𝑋T𝛼

A𝑁
1

≥ 0, ∀ non-equivalent bipartitions 𝛼. (3.41)

Here, “non-equivalent bipartitions” refers to the fact that it is unnecessary to include all bipartitions, as
the state 𝑋A𝑁

1
is symmetric, and thus permutation invariant. Therefore, the bipartitions needed are 𝛼𝑘 ,
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where, e.g., we transpose only the first 𝑘 subspaces, for 1 ≤ 𝑘 ≤ ⌊𝑁 /2⌋, with symmetry taking care of the
remaining constraints.

The existence of entangled states which have positive partial transpose [92] means these constraints
reduce the feasible convex set to that of PPT states, not the separable states. While entangled PPT states
are not suitable solutions to the original problem, they are still adequate approximations and provide
upper bounds for the actual optimal values. Inclusion of PPT constraints will perform at least as well
as optimizing without them (i.e., the solution can only be improved), but convergence is significantly
improved in certain cases [140] to 𝑂 (1/𝑁 2) as opposed to 𝑂 (1/𝑁 ) in the absence of these constraints.
As shown in Table 3.1, for the 𝑑E = 1 case PPT constraints were sufficient to provide the exact analytical
bounds.

SDP for SEP relaxation

By all of the above results, we arrive at the following SDP relaxation of the original problem:

Optimization Problem 4. Final outer approximation (SDP).

Given: 𝑑E, 𝑑S, 𝜌
0
E, 𝜌

0
S, {𝑀𝑎}𝑎, a

Find: 𝜔𝑁 (a, 𝑑E) := max
𝑋

A𝑁
1

Tr
[
(𝐹T ⊗ 1A𝑁

𝐿+1
)𝑋A𝑁

1

]
Subject to: 𝑋A𝑁

1
≥ 0, Tr

[
𝑋A𝑁

1

]
= 1, P+𝑁𝑋A𝑁

1
= 𝑋A𝑁

1
,

TrO1

[
𝑋A𝑁

1

]
=
1I1

𝑑ES
⊗ TrA1

[
𝑋A𝑁

1

]
𝑋T𝛼

A𝑁
1

≥ 0,∀𝛼 ∈ 𝔄,

(3.42)

with 𝔄 denoting the set of non-equivalent bipartitions (Sec. 3.5.1). The solutions of this SDP provide
upper-bounds for the maxima Ω(a, 𝑑E).

3.6 Numerical results

In this section, we discuss the numerical results we obtained for 𝜔𝑁 (a, 𝑑E). The SDPs were run with
CVXPY [57, 4] using the solver SCS [144, 145], on a compute server with an Intel Xeon Gold 5218 24-core
processor at 2.294 GHz, and with 128 GB of RAM. For 𝑑E = 1, optimization time was in the order of
seconds, whereas 𝑑E = 2 scenarios required from 4 up to 14 hours to complete.

For the explicit computation, we chose the following measurement protocol: A = {0, 1}, 𝜌0E = |0⟩⟨0|𝐸 ,
𝑑S = 2, 𝜌0S = |0⟩⟨0|𝑆 and 𝐸𝑎𝑆 = |𝑎⟩⟨𝑎 |𝑆 , so that

M𝑎 (𝜌ES) = Tr [𝜌ES · 1𝐸 ⊗ |𝑎⟩⟨𝑎 |𝑆 ] ⊗ |0⟩⟨0|𝑆 . (3.43)

For this particular choice, the bounds 𝜔 (a, 𝑑E) are the same as for the isolated system case studied in
[198], where explicit time evolutions were found through gradient descent techniques. This allows us to
use these known values as benchmarks and investigate the convergence properties of our SDP.

The analytical maxima for 𝑑E = 1 described in Sec. 3.4 also serve as a useful test for the soundness of
our approach. We ran the SDP for all binary sequences (up to 0↔ 1 relabeling symmetry), for 𝐿 ∈ {2, 3, 4},
and 𝑁 ∈ {𝐿, 𝐿+1}. Every case was tested with and without the additional PPT constraints for comparison.
Results for 𝐿 = 2, 3 are shown in Table 3.1, in which it can be observed that, for 𝑑E = 1, either the PPT
constraints or a symmetric extension of a single extra system appear to be sufficient for achieving the
exact analytical maximum.
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𝐿 𝑁 a Without PPT With PPT Ω (a, 1)

2 2 00 0.999996 0.999999 1

2 3 00 1.000000 1.000000 1

2 2 01 0.500000 0.250002 1/4

2 3 01 0.250007 0.250001 1/4

3 3 000 1.000010 1.000000 1

3 4 000 1.000000 0.999991 1

3 3 001 0.250005 0.148149 4/27

3 4 001 0.148148 0.148148 4/27

3 3 010 0.250005 0.148149 4/27

3 4 010 0.148148 0.148148 4/27

3 3 011 0.250005 0.148149 4/27

3 4 011 0.148148 0.148148 4/27

Table 3.1: Results of the SDP for 𝑑E = 1, compared with the analytical maxima Ω(a, 1). Note that 4/27 =

0.148. It can be seen that either PPT constraints or an extension of one extra system (i.e., 𝑁 = 𝐿 + 1) was
sufficient to achieve the analytical maximum in this case. Similar results were obtained for 𝐿 = 4, omitted
here for conciseness.

We have also solved the SDP for the case𝑑S = 𝑑E = 2, for various sequences without a trivial maximum
probability (i.e., Ω(a, 𝑑E) < 1), but onlywithout the additional PPT constraint, as the requirements needed
for its addition would have exceeded the available memory. Additionally, since the involved SDPs are only
numerically tractable for 𝑁 ≈ 𝐿, and no convergence between lower and upper bounds was observed for
the values we managed to compute, we can only claim to have obtained upper bounds for the maximum
Ω(a, 𝑑E), as in Eq. (3.17).

As we show in Sec. 3.8.3, our choice of probe state and measurements (Eq. (3.43)) for 𝑑S = 2 reproduces
the quantum scenarios previously investigated in [198] (see Sec. 2.8), where lower bounds were obtained
through explicit time evolutions found via gradient descent techniques. Therefore, we can compare the
upper bounds obtained through our SDP against these previous lower bounds, allowing us to estimate the
range of values containing the maxima Ω(a, 𝑑E = 2). These comparisons are shown in Table 3.2, where,
for instance, we see 0.437341 ≤ Ω(001, 2) ≤ 0.521219.

As a concrete example of a violation of this bound, for 𝑑S = 2 and 𝑑E = 3, we may construct a unitary
in HES as follows:

𝑈 = |1⟩⟨0|𝐸⊗ |0⟩⟨0|𝑆 + |2⟩⟨1|𝐸⊗ |0⟩⟨0|𝑆 + |2⟩⟨0|𝐸⊗ |1⟩⟨1|𝑆
+ |1⟩⟨1|𝐸⊗ |1⟩⟨1|𝑆 + |0⟩⟨2|𝐸⊗ |0⟩⟨1|𝑆 + |0⟩⟨2|𝐸⊗ |1⟩⟨0|𝑆 .

(3.44)

For the 𝜌0E, 𝜌
0
S and 𝐸𝑎𝑆 we have chosen, the above unitary gives 𝑝 (001|𝑑E = 3) = 1 > Ω(001, 2), implying

that the bound found for𝑑E = 2 is not only nontrivial, but actually witnesses environment dimension since
it can indeed be violated by means of a larger environment (𝑑E = 3 in this case). In fact, this example
certifies that Ω(001, 3) = 1; see also Sec. 3.8.3.

75



𝐿 𝑁 a Lower bound (GD) Upper bound (SDP)

3 3 001 0.437341 0.683477

3 4 001 0.437341 0.521219

4 4 0010 0.437142 0.512220

4 4 0011 0.362047 0.487058

4 4 0100 0.333147 0.494499

4 4 0110 0.361968 0.488837

4 4 0001 0.300545 0.492088

Table 3.2: Comparison between SDP upper bounds and lower bounds previously known for the maximum
Ω(a, 𝑑E), for 𝑑E = 2. Lower bounds were obtained through gradient descent (GD) in Ref. [198], but are
not suitable as witnesses. All results are in agreement, and for a = 001, we observe convergence of the
bounds as 𝑁 increases.

3.7 Implementation

This section outlines the concrete steps we have taken to relax the original problem to a hierarchy of
SDPs, and to make these SDPs numerically tractable; see Sec. 3.7.4 for more technical details. As noted
previously, a straightforward implementation is not computationally tractable, even for short sequences,
due to the large number of variables and constraints involved.

We have addressed these additional numerical challenges by exploiting several properties of the prob-
lem. Firstly, the symmetric constraint imposed on 𝑋A𝑁

1
can be satisfied automatically by expressing 𝑋A𝑁

1

in terms of a basis for the symmetric subspace in the numerical implementation of the SDP. While this
provides a significant reduction in the total number of involved variables and constraints, it is by itself
insufficient to make the problem tractable.

However, thanks to our specific choice of initial states and measurements, we were able to exploit
the sparsity of the objective function (as defined by 𝐹 ) to significantly reduce the number of variables
and constraints, by eliminating all of those that do not affect the objective, either directly or indirectly.
This sparse representation was obtained through a novel heuristic algorithm, developed for this problem,
which we have since expanded upon in Ref. [199]. This heuristic is the subject of Ch. 5.

Note that, while generally such relaxations would result in an outer approximation of the original
problem, here an exact sparse representation can be obtained using our heuristic. See Sec. 5.4.1 for the
details.

3.7.1 Choice of parameters

Before a concrete implementation, one must first choose the initial environment state 𝜌0E, as well as fixing
the probe state and measurements. As the objective function is convex on 𝜌0E, and the optimization is
over all unitaries, we may – without loss of generality – fix a pure initial state 𝜌0E = |0⟩⟨0|𝐸 and eliminate
any assumptions on the environment state; see Sec. 3.8.2. On the other hand, as assumptions on 𝑑S, 𝜌0S
and {𝐸𝑎𝑆 }𝑎 are experiment-dependent, one must search for “proper” probe states and measurements on a
case-by-case basis, but optimal choices, leading to a larger bound, can also be addressed in general terms;
see Sec. 3.8.3.

For the choice of sequence, in particular, if it is too simple relative to 𝑑E, the maximum attainable
probability may be trivial (i.e., equal to one), such that no optimization is required, and no witness can
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be constructed. Therefore, it is important to choose sequences which have a nontrivial maximum for a
given 𝑑E. For the case of repeated measurements on isolated systems, this problem has been solved via the
notion of “deterministic complexity” introduced in Ref. [198], and discussed in Sec. 2.5.1, which defines
the minimum requirements for a sequence to be able to occur deterministically. In the open system case,
the conditions for determinism involve not only the available memory (i.e., the environment), but also the
dimension of the probe system. We elaborate on these conditions in Sec. 3.8.3.

3.7.2 Symmetric representation

Effectively solving any of the SDPs in the hierarchy requires a significant amount of optimization, as a
naive implementation quickly becomes computationally intractable. As a rough example, without any
simplifications, 𝑋A𝑁

1
is a square matrix of size (𝑑2ES)𝑁 , which in the simplest non-trivial scenario, 𝑑E =

𝑑S = 2 and 𝑁 = 𝐿 = 3, already results in a 4096 × 4096 matrix, with over 16 million complex scalar vari-
ables. The partial trace constraint alone involves over 1 million linear equations between these variables,
making the SDP numerically intractable in this naïve formulation.

In practice, several simplifications can bemade; see Sec. 3.7.4 for full details. 𝑋A𝑁
1
and 𝐹 ⊗1A𝑁

𝐿+1
may be

written directly in terms of an operator basis for the symmetric subspace, thus automatically satisfying the
symmetry constraint and significantly reducing the number of variables. Defining an isometry between
the symmetric subspace of A𝑁

1 , denoted by S𝑁 , and a canonical basis for S𝑁 ,

𝑉𝑁 =
∑
t

|t⟩S𝑁
⟨sym(t) |A𝑁

1
, (3.45)

we may exploit the fact the problem lies entirely within the symmetric subspace and cast all matrices as
dimS𝑁 × dimS𝑁 matrices:

𝑋A𝑁
1
=

∑
t,t′

𝑥t,t′ |sym(t)⟩⟨sym(t′) |A𝑁
1
,

𝑥 = 𝑉𝑁𝑋A𝑁
1
𝑉 †𝑁 , and 𝑓 = 𝑉𝑁 (𝐹T ⊗ 1A𝑁

𝐿+1
)𝑉 †𝑁 ,

(3.46)

where t denotes a “type” for the canonical representation of symmetric states |sym(t)⟩A𝑁
1
; see Sec. 3.7.4.

Under this representation, the objective function becomes

Tr
[
(𝐹T ⊗ 1A𝑁

𝐿+1
)𝑋A𝑁

1

]
= Tr

[
(𝐹T ⊗ 1A𝑁

𝐿+1
)𝑉𝑁 †𝑥𝑉𝑁

]
= Tr

[
𝑉𝑁 (𝐹T ⊗ 1A𝑁

𝐿+1
)𝑉𝑁 †𝑥

]
= Tr [𝑓 𝑥] ,

(3.47)

and the constraints may be formulated in terms of 𝑥t,t′ directly, without resorting to the full space A𝑁
1 .

Note that 𝑉𝑉 † = 1S𝑁 , but 𝑉 †𝑉 ≠ 1A𝑁
1
, i.e., 𝑉 †𝑉 is the projector onto the symmetric subspace of A𝑁

1 . As
the dimension of S𝑁 is [85]

dimS𝑁 =

(
𝑁 + 𝑑2ES − 1

𝑁

)
, (3.48)

for 𝑑ES = 4 and 𝑁 = 3 the matrix 𝑥 is of size 816 × 816, with around 600 thousand variables: a reduction
to 4% of the original 16 million. With further work, the partial trace constraints can also be efficiently
written directly in this representation, leading to (𝑑ES ·

( (𝑁−1)+𝑑2
ES−1

𝑁−1
)
)2 equality constraints, resulting

in approximately 300 thousand constraints in the 𝑑ES = 4 and 𝑁 = 3 scenario: a reduction to 28% of the
original. This symmetric representation is explained in more detail in Sec. 3.7.4.

3.7.3 Sparse implementation
Note: This section addresses the sparsity heuristic originally developed for and presented in Ref. [201]. This heuristic has since been

expanded into its own manuscript, which is the subject of Ch. 5.
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While these are significant improvements, they still proved to be insufficient, as the dense representa-
tion of the symmetric problem involves too many variables and constraints to be solvable. As a concrete
example, for the simplest case of a = 001, 𝑑E = 2 and 𝐿 = 𝑁 = 3, the SDP solver SCS attempts to allocate
a dense array of over 3 TB in size.

To address this, we have developed an heuristic algorithm which exploits any sparsity of the objective
function (now defined by 𝑓 ), and—whenever possible—constructs a sparse relaxation of the original prob-
lem. This is achieved by iteratively selecting which variables of 𝑥 and which of its constraints are strictly
necessary to solve the problem, due to their direct or indirect influence in the objective function.

For the state and measurements considered, our technique was capable of reducing the number of
variables and constraints immensely, to less than 1% of the symmetric case (see Table 3.3). This allowed
us to successfully compute upper bounds for various sequences up to 𝑁 = 4 and 𝑑E = 2 (Table 3.2). While
further optimizations are still possible, we have not pursued them in this work.

𝑁 Symmetric Sparse Reduction to

3
Variables 665 856 3 566 0.54%

Constraints 295 937 2 809 0.95%

4
Variables 15 023 376 35 688 0.24%

Constraints 10 653 697 40 441 0.38%

Table 3.3: Comparison between the number of variables and linear constraints in the symmetric prob-
lem vs. its sparse implementation, for the sequence a = 001. Our heuristic algorithm achieves a vast
reduction in the number of variables and constraints, while still allowing exact solutions for our problem.
Note that these numbers precede any further optimization, which could remove any remaining redundant
constraints or variables.

As can be observed in Table 3.3, the sparse problems can clearly be simplified further, by eliminating
redundant variables and constraints. We opted for leaving such task to the numerical pre-solver, as this
only took a few minutes of computing time. Solving the SDP for 𝑁 = 3 was possible within minutes, but
for 𝑁 = 4, from 4 up to 14 hours were needed, depending on the sequence.

3.7.4 Technical details
Note: This section discusses the more technical details required for the implementation of the SDP, without which it would not have

been numerically tractable. Its contents were originally included as an appendix in Ref. [201]. The details on the sparse heuristic

are discussed in Ch. 5 instead.

While in principle numerically accessible, the SDP in Prob. 4 still contains too many variables to allow
for the computation of upper bounds, even for low-dimensional cases. This problem can be tackled by
exploiting the fact that all appearing objects can be expressed within the symmetric subspace, as well as
the (potential) sparsity of the problem.

In our case, a further simplification is possible by first noticing that both 𝐹 and P+𝑁 are real-valued. If
we additionally consider a real-valued basis for the partial trace, we conclude that, for any feasible 𝑋A𝑁

1
,

its entry-wise complex conjugate 𝑋 ∗
A𝑁

1

is also feasible, while providing the same value for the objective
function. Therefore, we may perform the optimization using a real-valued 𝑋A𝑁

1
. Next, we explain how to

exploit the symmetry property.
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Symmetric representation

The symmetry constraint can be satisfied automatically by expressing 𝑋A𝑁
1
directly in terms of a basis for

the symmetric subspace. This allows for a great reduction in the number of variables and linear constraints
in the SDP, which is required for its efficient numerical optimization. In the following, we describe how
to construct this basis for the symmetric subspace, largely based on [85], and how to adapt the remaining
constraints to act directly in this symmetric representation, based on a generalization of results provided
in [184] for the qubit case.

We construct an explicit basis for the relevant subspace of the problem, such that the symmetry con-
straints are satisfied automatically. We begin by defining a canonical basis for the symmetric subspace.
With the conventionN = {1, 2, 3, . . .} andN0 := N ∪ {0}, for 𝑑, 𝑛 ∈ N, let

𝔗𝑛𝑑 :=

{
(𝑡1, 𝑡2, . . . , 𝑡𝑑 )

����� 𝑡𝑖 ∈ N0,
𝑑∑
𝑖=1

𝑡𝑖 = 𝑛

}
(3.49)

be the set of weak integer compositions for 𝑛 into exactly 𝑑 parts, possibly of zero size, which we refer
to as types. These types form a canonical labeling for the basis of the symmetric subspace. Now, defining
[𝑑] := {1, 2, . . . , 𝑑}, let u ∈ [𝑑]𝑛 , i.e., u = (𝑢1, . . . , 𝑢𝑛) with 𝑢ℓ ∈ [𝑑], and𝑇 (u) = t be the type of the vector
u, where 𝑡𝑖 counts the number of instances where 𝑢ℓ = 𝑖 holds. As a concrete example, if 𝑑 = 6 and 𝑛 = 8,
we might have:

u = (1, 4, 1, 2, 3, 2, 2, 6) −→ 𝑇 (u) = (2, 3, 1, 1, 0, 1). (3.50)

In words, types count how many times a number 1, . . . , 𝑑 occurs in u, and therefore are invariant under
permutations, i.e.,𝑇 (u) = 𝑇 (𝑃𝜎u) for any permutation operator 𝑃𝜎 acting on entries of u. Given a Hilbert
space H with 𝑑 = dimH, we may now define a basis for Sym𝑛 (H) in terms of the types t ∈ 𝔗𝑛

𝑑
by con-

structing the non-normalized and normalized orthogonal basis vectors for the symmetric subspace [85],
respectively, as

|Sym(t)⟩ :=
∑

u;𝑇 (u)=t
|𝑢1, 𝑢2, · · · , 𝑢𝑛⟩ , |sym(t)⟩ := (t)−1/2

!
|Sym(t)⟩ , (3.51)

where (t)! = (∑𝑖 𝑡𝑖 )!
𝑡1!·𝑡2!· · ·𝑡𝑑 ! denotes the multinomial coefficient for the normalization, and, for convenience in

notation, we adopt the canonical basis {|𝑢⟩}𝑑𝑢=1 for each individual 𝑢𝑖 . Equation (3.51) clearly defines a
symmetric state, and thus, for any permutation operator𝑉𝜎 , we have𝑉𝜎 |sym(t)⟩ = |sym(t)⟩, and similarly
for the non-normalized |Sym(t)⟩.

From Eq. (3.31), any symmetric separable state can be written as
∑
𝑖 𝑝𝑖 |𝜑𝑖⟩⟨𝜑𝑖 |⊗𝑛 . Therefore, by ex-

pressing |𝜑𝑖⟩⊗𝑛 in terms of the symmetric basis in Eq. (3.51), we may write any symmetric operator by
indexing the degrees of freedom of 𝑋A𝑁

1
by the types t, t′. In our current problem, with a local dimension

𝑑 = (𝑑E𝑑S)2 = 𝑑2ES, the symmetric space has total dimension [85]

𝐷S = dimSym𝑁 (H) =
((
𝑑2
ES

𝑁

))
=

(
𝑁 + 𝑑2ES − 1

𝑁

)
, (3.52)

with
((
𝑑
𝑛

))
the multiset notation, i.e., the number of ways of picking 𝑛 elements out of 𝑑 , with repetitions

allowed, which corresponds to the cardinality of 𝔗𝑛
𝑑
. This is a significant reduction from the original

dimA𝑁
1 = (𝑑ES)2𝑁 .

For simplicity in notation, we consider the dependence of 𝐷S on 𝑑ES and 𝑁 implicit in the following.
To concretely exploit this reduction of the number of variables, i.e., in order to write 𝑋A𝑁

1
in terms of a

smaller matrix, we re-express the problem as follows. Let S𝑁 := C𝐷S⊗𝐷S , and 𝑥 ∈ S𝑁 , where the mapping
𝑋A𝑁

1
↦→ 𝑥 is given by Eqs. (3.46) and (3.47).

We then specify the elements 𝑥t,t′ , with t, t′ ∈ 𝔗𝑁
𝑑2
ES

, by a canonical orthonormal basis {|t⟩S𝑁
}t over

the symmetric types. Positivity of 𝑋A𝑁
1
can be guaranteed by requiring 𝑥 ≥ 0 directly, as 𝑥 and 𝑋A𝑁

1
have
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the same non-zero eigenvalues. With the chosen normalization of 𝐶𝑈 , we may also write Tr [𝑥] = 1. In
practice, it may be sufficient to numerically compute 𝑓 directly by means of Eq. (3.46), as computing the
projection of 𝐹T ⊗ 1A𝑁

𝐿+1
onto the symmetric subspace analytically can be cumbersome for more general

𝐹 , and this computation only needs to be performed once before any numerical optimization.

To rewrite the partial trace constraints of the SDP directly in this symmetric basis, we must find a way
to express partial traces in terms of the symmetric representation. In the following, we generalize some
results known for qubits [184] to arbitrary local dimension. But first, recall that the constraint we wish
to rewrite is given by

TrO1

[
𝑋A𝑁

1

]
=
1I1

𝑑ES
⊗ TrA1

[
𝑋A𝑁

1

]
. (3.53)

Treating types as ordinary vectors, we may define addition between types with the same 𝑑 , such that
if r ∈ 𝔗𝑛

𝑑
and s ∈ 𝔗𝑚

𝑑
, then r + s = t ∈ 𝔗𝑛+𝑚

𝑑
. This corresponds to the fact that S𝑛+𝑚 ⊂ S𝑛 ⊗ S𝑚 [184].

Generalizing upon this idea, we may split an 𝑛-partite symmetric state into 𝑚 parts of sizes 𝑘𝑖 , with∑𝑚
𝑖=1 𝑘𝑖 = 𝑛, through the decomposition

|Sym(t)⟩A𝑁
1
=

∑
r1+···+r𝑚=t

|Sym(r1)⟩B1
· · · |Sym(r𝑚)⟩B𝑚 , (3.54)

where the sum is over all tuples (r1, . . . , r𝑚) ∈ (𝔗𝑘1𝑑 × · · · × 𝔗𝑘𝑚
𝑑
) satisfying r1 + · · · + r𝑚 = t. Here,

Bℓ := A𝑏ℓ+𝑘ℓ
𝑏ℓ+1 , with 𝑏ℓ =

∑ℓ−1
𝑖=1 𝑘𝑖 , corresponding to the subspace of the ℓ-th part of the decomposition. Im-

portantly, this decomposition is performed in the full space with non-normalized vectors. For completion,
the normalized version of the decomposition in Eq. (3.54) is given by

|sym(t)⟩A𝑁
1
=

∑
r1+···+r𝑚=t

(
(t)!

(r1)! · · · (r𝑚)!

)−1/2
|sym(r1)⟩B1

· · · |sym(r𝑚)⟩B𝑚 . (3.55)

However, working under such normalization is cumbersome and inefficient due to the several coefficients
involved. Instead, we have chosen to normalize directly in terms of the original types t, t′, which makes
normalization straightforward. To adapt the partial trace constraint, we first write the state 𝑋A𝑁

1
as in

Eq. (3.46), and using Eq. (3.54) split the basis into two parts of sizes (1, 𝑁 − 1), obtaining

𝑋A𝑁
1
=

∑
t,t′

∑
r+s=t

∑
r′+s′=t′

𝑥t,t′ |Sym(r)⟩⟨Sym(r′) |A1
⊗ |Sym(s)⟩⟨Sym(s′) |A𝑁

2
, (3.56)

where the proper normalization is now taken care of by defining 𝑥t,t′ := ((t)! (t′)!)−1/2 𝑥t,t′ . Since r and
r′ are types for a single party, we have that |Sym(r)⟩A1

are simply vectors in the canonical basis {|𝑢⟩}𝑑𝑢=1.
Thus, we will adopt the notation |𝑢 (r)⟩A1

= |Sym(r)⟩A1
in what follows. The tensor product form allows

for the simplified application of the partial traces in Eq. (3.53). By linearity of the partial trace, we can treat
each term of Eq. (3.56) separately, so that the terms on the left (𝑌𝐿) and right (𝑌𝑅) hand sides of Eq. (3.53)
can be written as

𝑌𝐿 :=TrO1

[
|𝑢 (r)⟩⟨𝑢 (r′) |A1

⊗ |Sym(s)⟩⟨Sym(s′) |A𝑁
2

]
=TrO1

[
|𝑢 (r)⟩⟨𝑢 (r′) |A1

]
⊗ |Sym(s)⟩⟨Sym(s′) |A𝑁

2

(3.57)

𝑌𝑅 :=
1I1

𝑑ES
⊗ TrA1

[
|𝑢 (r)⟩⟨𝑢 (r′) |A1

⊗ |Sym(s)⟩⟨Sym(s′) |A𝑁
2

]
=Tr

[
|𝑢 (r)⟩⟨𝑢 (r′) |A1

]
· 1I1
𝑑ES
⊗ |Sym(s)⟩⟨Sym(s′) |A𝑁

2
.

(3.58)

A few simplifications are now evident. First, we observe that Tr
[
|𝑢 (r)⟩⟨𝑢 (r′) |A1

]
= 𝛿r,r′ , where 𝛿r,r′ is

the Kronecker delta. Secondly, we may split the states |𝑢 (r)⟩A1
into the local input and output spaces

|𝑢 (r)⟩A1
= |𝑖 (r)⟩I1 |𝑜 (r)⟩O1

, (3.59)
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so that we obtain

TrO1

[
|𝑢 (r)⟩⟨𝑢 (r′) |A1

]
= TrO1

[
|𝑖 (r)⟩⟨𝑖 (r′) |I1 ⊗ |𝑜 (r)⟩⟨𝑜 (r

′) |O1

]
= |𝑖 (r)⟩⟨𝑖 (r′) |I1 · Tr

[
|𝑜 (r)⟩⟨𝑜 (r′) |O1

]
= |𝑖 (r)⟩⟨𝑖 (r′) |I1 · 𝛿𝑜 (r),𝑜 (r′ ) .

(3.60)

Using the above results, and correcting for the missing normalizations, we can apply the isometry
1I1 ⊗ 𝑉𝑁−1, so that Eqs. (3.57) and (3.58) are written in terms of:

𝑌𝐿 → ((s)! (s′)!)1/2 · 𝛿𝑜 (r),𝑜 (r′ ) · |𝑖 (r)⟩⟨𝑖 (r′) |I1 ⊗ |s⟩⟨s
′ |S𝑁 −1

𝑌𝑅 → ((s)! (s′)!)1/2 ·
𝛿r,r′

𝑑ES
·
𝑑ES∑
𝑖=1

|𝑖⟩⟨𝑖 |I1 ⊗ |s⟩⟨s
′ |S𝑁 −1 .

(3.61)

Here, we have written 1I1 =
∑𝑑ES

𝑖=1 |𝑖⟩⟨𝑖 |I1 as to make the I1 ⊗S𝑁−1 decomposition explicit in both expres-
sions. By inserting Eq. (3.61) back into the sum of Eq. (3.56), we can appreciate the fact that Eq. (3.61)
neatly separates each term of the sum as square matrices of size 𝑑ES ×

((
𝑑2
ES

𝑁−1

))
, written in terms of

|𝑖⟩⟨𝑖′ |I1 ⊗ |s⟩⟨s′ |S𝑁 −1 . The constraint of Eq. (3.53) then tells us we must sum over all t, t′ on both sides,
where we can then apply the equality constraint element-wise by simply matching the resulting (𝑖, s, 𝑖′, s′)
entries. As the extra normalization ((s)! (s′)!)1/2 of Eq. (3.61) is always equal between these elements, it
cancels out in their element-wise equality constraint. Thus, it is sufficient to use the normalization of 𝑥t,t′ .

During implementation in software, the summations in Eq. (3.56) can be efficiently performed by tak-
ing into account the fact that valid decompositions of the form t = r + s are very restricted in number,
and can be efficiently enumerated, grouped, filtered and counted. By assigning a tuple (𝑖, 𝑜, s) to each t,
the tracing over inputs and output spaces, and applications of the Kronecker deltas, can thus be efficiently
computed. Therefore, the linear constraints between variables 𝑥t,t′ can be constructed by grouping terms
𝑥t,t′ by matching |𝑖⟩⟨𝑖′ |I1 ⊗ |s⟩⟨s′ |S𝑁 −1 , and normalization is simplified by performing it with respect to
𝑥t,t′ at the very end, i.e., using 𝑥t,t′ .

A similar strategy as above may be employed to define partial transpositions through the symmetric
representation, as was done in [184] for the qubit case, in order to implement the PPT condition. However,
for 𝑑E = 2 in our case, this approach would render the matrices and the number of constraints too large
for a viable computation, once again, and therefore we did not pursue a generalization of this idea. The
optimizations we have performed for 𝑑E = 1 involving PPT constraints, as shown in Table 3.1, used 𝑋A𝑁

1

directly following Eq. (3.46), which was still tractable in this case.
While the above steps lead to a significantly smaller representation of the problem, it is not gen-

erally a sufficient reduction in variables and constraints for the SDP to be numerically tractable. For
concreteness, in the smallest nontrivial case of 𝑑E = 𝑑S = 2, this gives for 𝑁 = 2, . . . , 5 a symmet-
ric space of size 𝐷S = 136, 816, 3 876, 15 504, . . . , such that the SDP would be written in terms of
(𝐷S )2 = 18 496, 665 856, 15 023 376, 240 374 016, . . . variables. These examples illustrate how quickly
our problem can become numerically intractable, even with symmetry taken into account.

3.8 Discussion

3.8.1 Repeated unitaries

In the following, we discuss in which cases the condition of repeated unitaries is physically justified. To
see this, imagine that the evolution of the system is governed by a time-independent Hamiltonian 𝐻SE.
The corresponding unitaries will be of the form 𝑈 (𝑡) = e−i𝐻𝑡 . This assumption of time-independence is
always possible, as the environment may include any source of time dependence. Ideally, then, we would
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have the same unitary if we perform the measure-and-prepare operations equally spaced in time, say,
by an interval Δ𝑡 . One should take into account, however, some uncertainty in the time measurement.
Let us then assume that our choice of time for performing a measurement is distributed according to a
distribution 𝑞(𝑡), centered around Δ𝑡 . This means that instead of transforming our system according to
the unitary 𝑈 (Δ𝑡), we transform it, on average, according to the mapping Λ :=

∫
U (𝑡)𝑞(𝑡)𝑑𝑡 , seemingly

breaking our assumption of repeated unitaries. Since Λ is a valid completely positive trace preserving
(CPTP) map, it can be dilated by means of a larger environment into a unitary U ′, namely Λ(𝜌SE) =
TrE1

[
U ′ (𝜌SE ⊗ |0⟩⟨0|E1

)
]
. To complete the argument that this situation can still be described by repeated

unitaries, it is enough to show that the same can be done for multiple copies of it, namely, that the repeated
operation Λ𝐿 can be dilated to some unitary Ũ𝐿 . To do so, it is enough to provide at each time-step 𝑖 a
new environment E𝑖 prepared in the correct initial state |0⟩⟨0|E𝑖

. Let us compute explicitly the case for
two time steps, the general case is straightforward. We define𝑊E1E2

the swap operator between systems
E1 and E2, and we set Ũ :=𝑊E1E2

◦ U ′SEE1
. Let us calculate, for simplicity

TrE1E2

[
U ′SEE1

◦𝑊E1E2
◦ U ′SEE1

(𝜌SE⊗ |0⟩⟨0|E1
⊗ |0⟩⟨0|E2

)
]

= TrE1E2

[
U ′SEE1

◦𝑊E1E2
(𝜎

SEE1
⊗ |0⟩⟨0|E2

)
]

= TrE1

[
U ′SEE1

(TrE2

[
𝜎

SEE2

]
⊗ |0⟩⟨0|E1

)
]

= TrE1

[
U ′SEE1

(Λ(𝜌SE) ⊗ |0⟩⟨0|E1
)
]
= Λ2 (𝜌SE),

(3.62)

where 𝜎SEE1
:= U ′SEE1

(𝜌SE ⊗ |0⟩⟨0|E1
). The effect of the final𝑊E1E2

operation is to swap the space E1

and E2 that are irrelevant after the operations on SE have been performed. Evidently, this argument can
straightforwardly be extended to more time steps. In summary, this means that the condition of “the same
unitary” is satisfied as long as the time choice is always drawn from the same distribution. In other words,
it is sufficient to always “probabilistically repeat” the same operation.

Finally, we remark that even if this proceduremay use a very large environment, we are only interested
in showing that we can always assume there is a unitary dynamics, with the notion of an effective environ-
ment, then, taking care of estimating the environment consistent with the observed statistics. Moreover,
we also remark that time-independent operations are necessary, as unrestricted time-dependent opera-
tions can achieve arbitrarily long temporal correlations even with bounded memory size [124].

3.8.2 Effective environment and initial state

The environment of a quantum system, intended as all the physical systems surrounding and possibly
interacting with it, is typically a very high-dimensional system, if not directly assumed to be infinite-
dimensional. From this perspective, we want to make sense of the notion of effective environment. Con-
sider a global transformation of the system and environment. As a first approximation, we can say that
the global unitary is of the form 𝑈SE ⊗ 𝑈E′ , where 𝑈SE is an entangling unitary between the system and
the effective environment and 𝑈E′ is acting on the rest of the environment.

At the same time, an evolution of the form 𝑈SE ⊗ 𝑈E′ is just an approximation of the full evolution
of the environment, as we expect its state to thermalize after some time interval. Nevertheless, from a
physical perspective this approximation is still valid if the time required for a single run of the experiment,
i.e., the measurement of the temporal sequence, is much shorter than the time needed for the effective
environment to thermalize. This is to be expected, as the environment is composed of many particles that
may interact with each other with different strengths. Underlying this expectation is the assumption —
known as Markovian embedding [30, 213, 214] and frequently employed in the description and model-
ing of open quantum system dynamics [187, 120, 121, 122] — that the environment can always be split
into two parts: a far environment, leading to irretrievable, memoryless information loss, and an effective
environment, that can transport memory. Due to the irretrievable information loss, the dynamics of the
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system and the effective environment is then described by a general (non-unitary) CPTP map, a situation
which, as discussed in the previous section, can again be dilated to repeated unitaries.

Reversing this perspective, namely, looking at the problem of characterizing the effective environment
from temporal correlation experiments, we may say that this characterization is inherently dependent
on the typical time-scales of a single experimental run. This difference in time scales and the eventual
thermalization of the environment, however, are essential for repeating the experiment for collecting
statistics, as it is required that the initial state of the environment is always (probabilistically) described
by the same state 𝜌0E in each experimental run. As previously mentioned, this is typically a thermal state,
but it does not need to be characterized in our approach. In fact, since the SDP maximizes the temporal
correlations, which are linear in the initial state of the environment, we know that the maximum is always
achieved with a pure state. Up to local unitaries, we can thus always assume it to be 𝜌0E = |0⟩⟨0|𝐸 . The
bound calculated for this state is, then, valid for any possible initial state of the environment.

Finally, somewhat independent of the explicit experimental situation, we may see our setup as a ques-
tion of simulation resources: What is the smallest dimension an environment coupling to a known sys-
tem must have in order to reproduce observed statistics in a unitary way? Seen in this way, the results
we present attribute a “simulation hardness” (in the sense of required environment dimension) to each
sequence, that is agnostic with respect to concrete time scales or experimental limitations, but rather
inherent to the respective sequence.

3.8.3 Conditions for deterministic realizations

The maximum probability for a given sequence increases as more memory is available, i.e.,

0 ≤ Ω(a, 1) ≤ Ω(a, 2) ≤ · · · ≤ Ω(a, 𝑑E) ≤ 1, (3.63)

as larger environments can always simulate the dynamics of smaller ones. Therefore, if the sequence a is
sufficiently simple, its maximum may be trivial for a given 𝑑E, i.e., Ω(a, 𝑑E) = 1.

The maxima Ω(a, 𝑑E) depend on the sequence, as not all sequences are equally “difficult” to produce
with a given amount of memory 𝑑E. For example, it is easy to see that the sequence 000 can always be
produced with unit probability, while the sequence 001 cannot be produced with unit probability if the
environment is not of sufficient size [198]. This observation suggests a relevant notion of “complexity” of
sequences, which offers a more fundamental relationship between a and 𝑑E. Since our goal is to establish
nontrivial maxima on the probabilities of sequences, the natural question to ask is how large should 𝑑E
be such that a can occur deterministically?

Understanding the conditions where this occurs allows us to pick only scenarios featuring non-trivial
maxima. In Ref. [198], the notion of deterministic complexity (DC) of a sequencewas introduced to address
this question, and was discussed in detail in Sec. 2.5.1. Previously, the DC was applied to the scenario
involving repeated measurements on a single isolated system, which is a deviation from the scenario we
are currently considering. Nevertheless, sinceDC(a) is a property of the sequences a, and is independent
of the model (quantum or classical), this notion is also relevant here, albeit with some modifications due
to the multipartite nature of the current problem.

First, we establish a correspondence between the single system and open system scenarios. Let 𝑑S =

|A|, so that we may choose 𝐸𝑎𝑆 = |𝑎⟩⟨𝑎 |𝑆 and 𝜌0S = |0⟩⟨0|𝑆 . Then, the changes in the environment state
due to the unitary and measurements can be written succinctly in terms of the completely positive trace
non-increasing maps

I𝑎 (𝜌E) = Tr𝑆
[
𝑈 (𝜌E⊗ |0⟩⟨0|𝑆 )𝑈 † ·1𝐸 ⊗ |𝑎⟩⟨𝑎 |𝑆

]
. (3.64)

Therefore, under the action of (I𝑎)𝑎∈A, we may interpret the environment as a single isolated “memory”
system in which the maps I𝑎 act sequentially, as in Ref. [198] and Ch. 2. The converse mapping, from the
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Figure 3.5: The open system and environment scenario can be equivalently interpreted as the dilation of
the scenario involving sequential measurements I𝑎 on an isolated environment system.

sequential measurements on an isolated memory system to the open system scenario, is the dilation map
with the probe system acting as the ancilla and the environment as the memory. This construction is well
known, but it is worth expanding it in detail in order to understand what are the conditions on the ancilla
(i.e., the probe system) needed to implement it.

Let 𝑛(a) denote the number of unique symbols appearing in a, with 𝑛(a) ≤ |A|, and let us assume
𝑑S ≥ 𝑛(a). Now, consider an instrument given by the maps Ĩ𝑎 of the form Ĩ𝑎 (𝜌E) = 𝐾𝑎𝜌E𝐾†𝑎 , for (𝐾𝑎)𝑎∈A
Kraus operators, i.e.,

∑
𝑎∈A 𝐾

†
𝑎𝐾𝑎 = 1𝐸 . The corresponding unitary arises from the 𝑑E𝑑S × 𝑑E isometry

matrix
𝑄 =

∑
𝑎∈A

𝐾𝑎 ⊗ |𝑎⟩𝑆 , (3.65)

which can always be completed into a unitary matrix𝑈 . Thus Ĩ𝑎 can be written in the form of Eq. (3.64).
As we have chosen 𝑑S = |A|, 𝜌0S = |0⟩⟨0|𝑆 and 𝐸𝑎𝑆 = |𝑎⟩⟨𝑎 |𝑆 in our implementation of the SDP (Sec. 3.7),
there is a direct correspondence between the two scenarios; see Fig. 3.5. Therefore, the upper bounds
obtained by the SDP in Eq. (3.16) can be compared with the known achievable values from [198] (Sec. 2.8),
as shown in Table 3.2 and discussed in Sec. 3.6.

This construction applies to deterministicmodels as they have deterministic transitions between states,
i.e., each is described by a single Kraus operator per outcome. We thus have

Proposition 2. If both 𝑑E ≥ DC(a) and 𝑑S ≥ 𝑛(a), then there is a choice of probe state and measure-
ments such that Ω(a, 𝑑E) = 1.

Note that the condition 𝑑S ≥ 𝑛(a) is strictly required for deterministic production of a. In fact, if
𝑝 (a|𝑑E) = 1, every symbol must occur deterministically. Then, at each step the system must be in a state
𝜌𝑎S such that Tr

[
𝜌𝑎S𝐸

𝑎
𝑆

]
= 1. Thus, the measurements 𝐸𝑎𝑆 must be able to perfectly discriminate between

the states {𝜌𝑎S}𝑎 , which is possible only if 𝑑S ≥ 𝑛(a). We have established:

Proposition 3. If 𝑑S < 𝑛(a), then Ω(a, 𝑑E) < 1 for any choice of probe state or measurements, and any
environment dimension 𝑑E.

In conclusion, these results, together with those presented in Ref. [198] and Ch. 2, tell us that nontrivial
bounds appear for 𝑑E < DC(a), that we can compare these bound with the single-system scenario for
𝑑S ≥ 𝑛(a), and that |A| = 2 and 𝐿 = 3 is the smallest scenario displaying nontrivial memory effects.

3.8.4 Choice of sequence

As briefly noted in Section 3.8.3, in order to construct a witness for𝑑E > 𝑑 , it is vital to choose a sequencea
with sufficient deterministic complexity. If the sequence chosen is too short or too simple (i.e., ifDC(a) ≤
𝑑), then the bound 𝜔 (a, 𝑑) is trivial and the dimension 𝑑E cannot be tested with such sequence.
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However, due to the difficulty in computing these bounds, and the fact longer sequences generally
become less probable—and therefore less likely to violate the witness inequality—generally one should
choose sequences to be as short as possible while having deterministic complexity of the same size as the
minimum environment dimension one wishes to witness.

As a concrete example, if wewish to witness𝑑E > 3, we should choose a sequenceawith deterministic
complexity DC(a) = 4, e.g., a = 0001, which is the shortest sequence satisfying this requirement. Then,
a violation of the bound 𝜔 (0001, 3) informs us that, in fact, 𝑑E ≥ 4.

3.9 Conclusions and outlook

We presented amethod to lower bound the dimension of the environment interacting with a probe system,
based only on the statistics of measurements performed on the (partially characterized) system, and with-
out any assumption on the environment or the dynamics. This is achieved via a hierarchy of semidefinite
programs that upper bound temporal correlations achievable in various experimental scenarios, under the
assumption of finite memory. Such bounds can be applied to the detection of the effective environment
size in the dynamics of open systems, as well as a certification of the minimum size of an environment’s
dimension compatible with observations.

To keep the discussion simpler, we applied the optimization for a single sequence. It is straightforward
to adapt the objective function to arbitrary linear functions of the full probability distribution (𝑝 (a|𝑑E))a,
as those appearing in the temporal inequalities derived in, e.g., [88, 32, 182, 124]. This may, in principle,
lead to better witnesses. We leave the numerical explorations of this problem to a future investigation.

We assumed a joint unitary evolution between system and environment, which leads to a CJ repre-
sentation of these maps given in terms of symmetric states. As explained in Sec. 3.8.1, this assumption
can usually be justified on physical grounds. Nevertheless, a natural question to ask is how do our results
change if we consider arbitrary CPTP maps? In that case, the SDP should be modified by replacing the
symmetry constraint with permutation invariance, i.e., 𝑉𝜎𝑋A𝑁

1
𝑉 †𝜎 = 𝑋A𝑁

1
for all permutations 𝜎 ∈ 𝔖𝑁 ;

see Eq. (3.27). We expect that bounds for CPTP maps may be larger than those for unitary channels of the
same dimension, especially for objective functions involving more than a single sequence, but numerical
optimization is significantly more costly in this case, as the permutation invariant operator basis is of
size [206, Ch. 7]

( 𝑁+𝑑4
ES−1
𝑁

)
, in contrast to

( 𝑁+𝑑2
ES−1
𝑁

)2 in the symmetric case. While it is also possible to
write such CPTP maps in terms a dilation of the environment, this approach would likely result in more
extraneous variables in the SDP, i.e., the terms in the subspace orthogonal to the dilation ancilla’s initial
state, possibly rendering the optimization intractable.

Additionally, the SDP in Eq. (3.16) and its related implementation techniques are, in fact, quite general,
and can be applied to a wide range of scenarios beyond what we have considered here. As the operator
𝐹 from Eq. (3.11) is fixed, any choice of intermediate operations between each unitary could be chosen.
E.g., the initial system and environment states could be correlated, and the intermediate maps M𝑎 could
each be replaced by arbitrary joint operations, even time-dependent ones. Such approaches could then,
for example, be used to bound observables for specific types of processes, e.g., processes with only clas-
sical memory [72], by assuming a completely dephasing channel on the environment; see also Ch. 4.
Therefore, provided the problem is numerically tractable, our techniques are independent of what explicit
measurements are chosen.

While the high dimensionality of the current formulation of the SDP quickly renders general numerical
implementations intractable, our approach still offers new avenues for the subject of bounding temporal
correlations, and their relationship to open-system dynamics. Ultimately, the techniques developed herein
should be taken as a proof-of-concept for future developments and improvements. It remains to be seen
whether more efficient numerical techniques, or even alternative outer approximations, are better suited
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for addressing such problems. Further investigation of these avenues is subject to future work.
Nevertheless, the success of our approach highlights the wealth of information contained in temporal

correlations and the potential of new techniques for characterizing large complex systems by means of a
small probe alone, by exploiting nontrivial properties of the temporal correlations achieved by systems of
bounded size.
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Chapter 4

Entanglement-breaking channels are
a quantum memory resource

The main results in this chapter were included in the manuscript Ref. [200], awaiting peer review:
Entanglement-breaking channels are a quantum memory resource
Lucas B. Vieira, Huan-Yu Ku, Costantino Budroni
arXiv — Submitted 2024-02-06

Author contribution: In this work, the doctoral candidate significantly contributed to the conception of
the research topic. The candidate was solely responsible for writing all the gradient descent optimization
code, the equiangular tight frame construction, and the production of all graphical assets. The author
contributed significantly to the analysis and interpretation of the results, and was responsible for writing
the majority of the manuscript.

The contents of this chapter were adapted from the original text. Additional previously unpublished
results have also been included, and will be noted when they appear.

4.1 Introduction

Any information processing task consists of manipulating information stored in a memory over time.
This is achieved by sequential operations performed on the memory, with classical and quantum systems
offering vastly different capabilities on what memory states and their transformation are possible. Since a
finite amount of memory imposes fundamental limitations on which tasks can be achieved, investigating
these limits not only provides insights into foundational questions in physics, but also establishes physical
constraints to what can be achieved with a certain amount (and type) of memory resource.

In this context, the notion of classical memory, in the sense of storage of information, is familiar to us
from our everyday life. When we talk about the number of bits a device has, we refer to the logarithm of
the number of distinguishable internal states, where information can be stored and retrieved. This quantity
represents the number of logical memory units available to our control, each realized through a concrete
physical implementation, providing a direct connection between the abstract information resources and
the underlying physical ones.

In contrast, our understanding of quantum memories is still incomplete. With the advent of quantum
information and quantum computation, distinguishing between classical and quantum memory effects is
of utmost importance for identifying scenarios where quantum systems offer an advantage over classi-
cal ones [165, 72]. An approach towards this goal is by establishing bounds on information processing
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tasks achievable with classical memory alone. A violation of such bounds then provides a certificate of
non-classicality, often also providing a quantifiable metric for the quantumness of the underlying memory
resource [67, 32, 134, 33, 217, 106, 2, 40]. In recent years, the formalism of quantum supermaps [41, 156,
155], also known as process tensors or quantum combs, has enabled a thorough investigation of tempo-
ral quantum protocols, as it is naturally well-suited for the study of multi-time statistics [134, 14, 190].
Within this framework, many quantum-inspired notions have been employed as conflicting definitions of
“classical memory” [165, 14, 190, 72]; see Ref. [190] for a detailed characterization.

A typical approach involves entanglement-breaking (EB) channels, which are known to be exactly
equivalent to measure-and-prepare (M&P) operations [91]. As the input quantum state is destroyed by the
measurement operation and replaced by a classical label (albeit encoded in the prepared output quantum
state), onemay be inclined to claim that such channels are essentially equivalent to classical channels [165,
217, 106, 2, 14], i.e., that they can only establish classical correlations between their inputs and outputs.
EB channels have been used in this manner, e.g., to develop resource theories of quantummemories [165],
the benchmarking and application of quantum devices [217], characterizing non-classical memory effects
in quantum processes [72, 135, 14], bosonic Gaussian channels [93, 2], and in establishing a hierarchy be-
tween competing notions of classical memory [190]. Figure 4.1 depicts such an application of EB channels
in the context of quantum supermaps, as seen, e.g., in Refs. [135, 72, 14, 190].

Figure 4.1: A typical application of entanglement-breaking channels in the context of quantum supermaps.
The channel E is of measure-and-prepare form, thus breaking the entanglement between system (𝑆) and
environment (𝐸). Since information is entirely relayed through the intermediate classical space (double
lines) of E , it is often assumed that the temporal correlations obtained from the resulting supermap can
be considered classical. In this chapter, we show that this interpretation can be misleading.

A potential issue with such entanglement-inspired definitions is that they still operate within the
quantum formalism, and therefore, may not truly characterize the limitations inherent to classical systems.
Clearly, a precise distinction between classical and quantum memory effects must emerge from explicit
constructions within each theory.

In this chapter, we show that the previous interpretation and applications of EB channels can be mis-
leading in the case of temporal scenarios involving sequential measurements. We address the following
question: is the memory of a “𝑑-it”1 (a classical system with 𝑑 states) equivalent to that of a qudit (𝑑-level
quantum system) passing through an EB channel? We answer it in the negative by presenting explicit
examples where a qudit passing through an EB channel outperforms a 𝑑-it of classical memory in the task
of generating correlations in time. We conclude that EB channels cannot be used to define or characterize
classical memories in the most general settings.

The chapter is organized as follows. Section 4.3 covers preliminary notions required to understand
the results of the chapter. Section 4.4 introduces the sequential measurement protocol covered in this
chapter, similar to that of Ch. 2, which enables the comparison between classical and quantum memory
effects in the presence of EB channels. Section 4.5 discusses an explicit construction showing a quantum
advantage even in the presence of EB channels, with Sec. 4.5.2 discussing further improvements on this
advantage. In light of these results, in Sec. 4.6 we discuss some conditions where quantum advantages

1We use “𝑑-it”, analogous to “qudit”, as the term dit is already standard for “decimal digit”, i.e., 𝑑 = 10.
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actually disappear, while Sec. 4.5.3 explores how some degree of classicality is still apparent despite these
advantages. Finally, Sec. 4.7 provides a discussion of the results and future outlook.

4.2 Summary of main results

We investigate a common claim that EB channels act as classical memory resources, by choosing an in-
formation processing task where classical and quantum memories can be compared on equal terms: the
generation of temporal correlations through sequential measurements.

As has been done throughout this thesis, we achieved this through the framework of finite-state ma-
chines. Building upon earlier results from Refs. [33, 198], and exact maxima Ω𝐶 obtained with techniques
developed in Ref. [207], we are able to perfectly distinguish between classical and nonclassical temporal
correlations involving certain one-tick sequences.

Since EB channels are equivalent to M&P channels, described in terms of 𝑚 intermediate classical
labels, a generic 𝑑-dimension EB channel may involve 𝑚 > 𝑑 intermediate classical labels. We show
that if𝑚 > 𝑑 and 𝑑 > 2, then it is possible to construct an EB channel and a quantum instrument such
that nonclassical correlations remain even in the presence of EB channels. This is shown by an explicit
quantum model, based on a construction using harmonic equiangular tight frames, as well as explicit
models obtained numerically via gradient descent.

Our results show that a very common application of EB channels to the definition of classical memories
within quantum supermaps is flawed, and is based on an improper analogy between temporal and spatial
correlations. Furthermore, these results highlight the potential of the FSM framework in uncovering novel
(and subtle) distinctions between classical and nonclassical temporal correlations.

4.3 Preliminary notions

A channel E𝐴 is said to be entanglement breaking if (E𝐴 ⊗ id𝐵)(𝜌𝐴𝐵) is separable for any bipartite state
𝜌𝐴𝐵 . A well-known result establishes that any EB channel E can be written as a measure-and-prepare
(M&P) channel in the Holevo form [89, 91]

E (𝜌) =
𝑚∑
𝑖=0

Tr [𝜌𝐸𝑖 ] 𝜎𝑖 , (4.1)

for {𝐸𝑖 }𝑚𝑖=1 a Positive Operator-Valued Measure (POVM), i.e., 𝐸𝑖 ≥ 0 and
∑𝑚
𝑖=1 𝐸𝑖 = 1, and 𝜎𝑖 quantum

states. Here, 𝑚 can be interpreted as the number of labels—in principle, arbitrarily large—required in
the channel’s intermediate classical memory in order to describe its operation [91, 165]. EB channels
can be fully characterized [91] by the fact their Choi matrix [94, 46], 𝐶E := (E ⊗ id)( |Φ⟩⟨Φ|) with |Φ⟩ a
maximally entangled state, is separable and with rank 𝑟 ≥ 𝑑 , which also implies any such channel can
be rewritten with at most 𝑚 = 𝑑2 operators 𝐸𝑖 and 𝜎𝑖 . These channels can be understood in terms of a
quantum-classical-quantum operation:

1. The input quantum state 𝜌 is first measured, producing a classical outcome label 𝑖 , out of a total𝑚,
with probability Tr [𝜌𝐸𝑖 ],

2. Conditioned on 𝑖 , the corresponding quantum state 𝜎𝑖 is passed forward as output; see Fig. 4.3b.

While these channels are still quantum operations, the input-output transmission of the classical label can
be understood as an intermediate classical channel, suggesting that EB (M&P) channels should behave in
a classical manner.

To properly distinguish between classical and quantum memories, we investigate their capabilities
when generating temporal correlations in the simplest scenario, i.e., that of a single, finite-dimensional
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system subject to the same dichotomous measurement at multiple times, as shown in Fig. 4.2. This is
similar to how we have done in Ch. 2, where we employ the formalism of finite-state machines [32, 198]
to describe the scenario.

Figure 4.2: Temporal correlations can be investigated by a classical or quantum system with 𝑑 internal
states, in the initial state 𝑠0, which is repeatedly measured by the same instrument at multiple times. The
measurement of state 𝑠𝑡 produces the outcome 𝑎𝑡+1 and changes the state to 𝑠𝑡+1.

In the classical case, the most general description of its behavior is by an initial stochastic vector 𝜋
over its 𝑑 distinct states (i.e., a 𝑑-it of memory), and a pair of (row) sub-stochastic transition matrices
𝑇 = (𝑇0,𝑇1) describing its dynamics upon each outcome 𝑎 ∈ {0, 1}, with 𝑇0 + 𝑇1 row stochastic. The
probability of a length-𝐿 sequence of outcomes a = 𝑎1𝑎2 · · ·𝑎𝐿 is then given by

𝑝 (a|𝑇,𝑑) = 𝜋𝑇𝑎1 · · ·𝑇𝑎𝐿𝜂, (4.2)

with 𝜂 = (1, . . . , 1)T. The quantum case is defined analogously, with a single 𝑑-dimensional quantum
system (a qudit), initially at state 𝜌0, being repeatedly measured by a quantum instrument I = (I0, I1),
with effects I𝑎 being completely positive (CP) trace non-increasing maps such that I0 + I1 is completely
positive trace-preserving (CPTP). The probability of a sequence a is given by

𝑝 (a|I, 𝑑) = Tr
[
I𝑎𝐿 ◦ · · · ◦ I𝑎1 (𝜌0)

]
. (4.3)

In both cases, the system’s state is the sole resource available to generate the probability distributions,
and any dynamics is entirely governed by the effects associated with an outcome 𝑎𝑖 . In this way, classical
and quantum memories are placed on equal footing as a memory resource. Crucially, memory is the
central resource for this task, as any arbitrary temporal correlation can be generated by a classical system
with enough memory, i.e., enough internal states [67, 52, 182]. Consequently, the system’s dimension
establishes fundamental limitations on the set of achievable temporal correlations [88, 32, 182, 33, 198],
providing a clear notion for distinguishing betweenmanifestly classical and quantummemories. Note that
we do not allow for external storage of information (e.g., by conditioning on past outcomes, or invoking
an external reference clock), so that the total amount of memory can be quantified by the number of states
𝑑 of the system.

One possible approach to distinguish between classical and quantum memory effects is by establish-
ing upper bounds on the maximum probability for individual sequences to be produced within classical
and quantum mechanics [32, 33, 198]. The notion of deterministic complexity of a sequence a, denoted by
DC(a), was introduced in Ref. [198] (see Sec. 2.5.1) as the minimum dimension 𝑑 for a system (classical
or quantum) to be capable of generating a with probability one. Thus, if 𝑑 < DC(a), then no classical or
quantum system can produce the sequence a deterministically, implying both classical and quantum the-
orymust obey nontrivial upper bounds for this maximumprobability. Since𝑑 = 2 is the smallest nontrivial
amount of memory, these observations also highlight the importance of studying temporal correlations
over three or more time steps, as every sequence of length two can be produced deterministically with
either a bit or qubit.
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As the underlying memory resource can be explicitly confined within each theory, such non-trivial
upper bounds provide a sharp demarcation between classical and quantum memories and their capabil-
ities, but they are generally difficult to obtain precisely [198, 207, 201]. In Ref. [198], a universal upper
bound of 1/e was conjectured for all sub-deterministic classical memory scenarios (Sec. 2.7.3), whereas
no nontrivial universal quantum bound seems to exist (Sec. 2.8.3). As it turns out, the universal classical
bound still seems to play a role even in the quantum case involving EB channels, as will be discussed in
Sec. 4.5.3.

4.4 The sequential measurement protocol

We investigate the non-classicality of entanglement-breaking channels by inserting an EB channel E , as
in Eq. (4.1), before each quantum measurement in Eq. (4.3) (depicted in Fig. 4.3a), obtaining

𝑝 (a|I, E, 𝑑) = Tr
[
I𝑎𝐿 ◦ E ◦ · · · ◦ I𝑎2 ◦ E ◦ I𝑎1 ◦ E (𝜌0)

]
=

𝑚∑
𝑖1 ...𝑖𝐿=1

Tr
[
𝜌0𝐸𝑖1

]
Tr

[
I𝑎1 (𝜎𝑖1 )𝐸𝑖2

]
· · ·Tr

[
I𝑎𝐿 (𝜎𝑖𝐿 )1

]
=

𝑚∑
𝑖1 ...𝑖𝐿+1=1

𝜋𝑖1 [𝑇𝑎1 ]𝑖1𝑖2 · · · [𝑇𝑎𝐿 ]𝑖𝐿𝑖𝐿+1𝜂𝑖𝐿+1 ,

(4.4)

where we use [𝑇𝑎]𝑖 𝑗 := Tr
[
I𝑎 (𝜎𝑖 )𝐸 𝑗

]
, 𝜋𝑖 := Tr [𝜌0𝐸𝑖 ], and 𝜂 = (1, . . . , 1)T as in Eq. (4.2). Note that,

since the 𝐸𝑖 are POVM elements, each trace term denoted a probability. We have thus collected all such
probabilities in the matrices 𝑇𝑎 such that∑

𝑎,𝑗

[𝑇𝑎]𝑖 𝑗 = Tr
[∑

𝑎I𝑎 (𝜎𝑖 ) ·
∑
𝑗𝐸 𝑗

]
= Tr [𝜎𝑖1] = 1, (4.5)

wherewe use the fact 𝐸𝑖 form a POVMand
∑
𝑎 I𝑎 is CPTP, thus𝜎𝑖 =

∑
𝑎 I𝑎 (𝜎𝑖 ) has unit trace. Furthermore,

we can define an initial probability vector 𝜋 arising from the first application of the channel, with
∑
𝑖 𝜋𝑖 = 1.

The above results imply we can model the protocol classically, by recognizing 𝑇𝑎 as𝑚 ×𝑚 sub-stochastic
transition matrices and 𝜋 as an initial stochastic vector (Fig. 4.3c). Equation (4.4) can thus be equivalently
written as in Eq. (4.2), with𝑚 instead of 𝑑 states.

Figure 4.3: (a) The sequential measurement protocol considered in this work. An isolated quantum sys-
tem in an initial state 𝜌0 is repeatedly passed through an entanglement-breaking channel E before be-
ing measured by a quantum instrument I , obtaining a sequence of outcomes a = 𝑎1𝑎2 . . . 𝑎𝐿 . (b) The
entanglement-breaking channel E understood as a measure-and-prepare operation on a 𝑑-dimensional
quantum system, with a𝑚-dimensional intermediate classical space. (c) The𝑚 ×𝑚 transition matrix of
the effective classical model.

We are led to conclude that the repeated inclusion of an arbitrary entanglement-breaking channel be-
fore the quantum instrument allows the resulting temporal correlations to be, indeed, described classically.
This observation seems to justify the association of EB channels with classical memories. Nevertheless, as
we already discussed, any temporal correlation can be obtained via a classical system if enough memory
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is available, such that a meaningful comparison must be made between systems of bounded memory, i.e.,
bounded dimension.

Here, a central observation is that the effective classical model thus obtained is over𝑚 “virtual” clas-
sical states (i.e., the number of outcomes in the measure-and-prepare description of the channel), not 𝑑
as in the dimension of the underlying Hilbert space. This suggests that a qudit passing through an EB
channel may be able to generate stronger correlations, i.e., carry more information, than a classical 𝑑-it.
Clearly, the exception is the case𝑚 ≤ 𝑑 , where any quantum model can be converted into a classical one
of the same dimension (and vice versa) by choosing 𝐸𝑖 , 𝜎𝑖 and I𝑎 acting diagonally on the same basis; see
Sec. 4.6.1 for the explicit construction.

4.5 Quantum advantages with EB channels

Here, we show that EB channels with𝑚 > 𝑑 are able to generate non-classical memory effects. This can
be investigated by choosing a sequence a with 𝑑 < DC(a), then computing the maximum probability
achievable over all classical models with 𝑑 states:

Ω𝐶 (a, 𝑑) = max
𝑇

𝑝 (a|𝑇,𝑑). (4.6)

Analogously, using a 𝑑-dimensional quantum system, we look for instruments I and EB channels E with
𝑚 > 𝑑 such that

𝑝 (a|E, I, 𝑑) > Ω𝐶 (a, 𝑑). (4.7)

Crucially, the maxima Ω𝐶 (a, 𝑑) must be found explicitly within classical theory, either by exact compu-
tation or by obtaining an upper bound, whereas for the quantum value of 𝑝 (a|I, E, 𝑑) an explicit model
(I, E) must be found, obtaining a lower bound for the quantum maximum ΩE

𝑄 (a, 𝑑). If the classical mem-
ory bound has been violated even in the presence of an EB channel E , as in Eq. (4.7), then the system still
acts as a quantum memory resource for the task of generating temporal correlations.

To achieve this goal, we consider the one-tick sequences [33, 198] of length 𝐿, defined as a𝐿ot := 0𝐿−11

and having DC(a𝐿ot) = 𝐿, under the scenario 𝑑 = 𝐿 − 1. As the case of 𝐿 = 2 is trivial, we consider the
smallest nontrivial cases 𝐿 ≥ 3. For the classical model, analytical upper bounds can be computed via
semidefinite programming (SDP) [207]. The case 𝐿 = 3 and 4 were already solved in [207], and here we
computed explicitly the case 𝐿 = 5 with the same method. In all these cases, the upper bounds computed
via SDP coincide, up to the numerical precision, with the values obtained via the one-way model [33],
which is conjectured to be optimal for all 𝑑 = 𝐿 − 1 scenarios [33, 198]. We are therefore sure to have
obtained the exact bounds for the cases 𝐿 = 3, 4, and 5.

4.5.1 A quantum model violating classical bounds

An explicit quantum model violating these classical bounds can be obtained with the following construc-
tion. Consider the deterministic classical model on 𝑚 states given by [𝑇0]𝑖,𝑖+1 = 1 for 𝑖 = 1, . . . ,𝑚 − 1,
[𝑇1]𝑚,1 = 1, zeros for all other entries, and an initial state 𝜋 = (1, 0, . . . , 0). The idea is to approximate this
model by emulating𝑚 = 𝑑 + 1 nearly-orthogonal virtual states with the available 𝑑-dimensional quantum
system; see Fig. 4.5.

With 𝜁 = e2𝜋 i/(𝑚−1) , we define E using

|𝜓𝑛⟩ =
1

√
𝑑 − 1

𝑑−1∑
𝑘=1

𝜁𝑛𝑘 |𝑘⟩ , 𝑛 = 1, . . . ,𝑚 − 1, (4.8)
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Figure 4.4: Probabilities of one-tick sequences a𝐿ot for classical one-way models, the quantum construction
using ETFs, and the models obtained numerically with gradient descent (GD), all using 𝑑 = 𝐿 − 1 and
𝑚 = 𝑑 + 1. One-way models are conjectured to be optimal for all 𝐿 = 𝑑 − 1, and are known to achieve
the exact upper bounds Ω𝐶 (a𝐿ot, 𝑑) for 𝐿 = 3, 4, and 5. The exact bounds for 𝐿 = 4 and 5 are violated
by the explicit quantum construction using ETFs, conclusively showing non-classical memory effects of
EB channels. Note that both classical and quantum ETF models seem to converge to the 1/e universal
classical bound (conjectured in Sec. 2.7.3), except the quantum model converges faster. Quantum models
obtained via GD outperform the ETF construction, and even violate the 1/e bound by a small margin for
𝐿 = 5 and 6.

then let 𝜎𝑛 = |𝜓𝑛⟩⟨𝜓𝑛 | and 𝐸𝑛+1 = 𝑑−1
𝑑 𝜎𝑛 for𝑛 = 1, . . . ,𝑚−1, and finally setting 𝜌0 = 𝜎𝑚 = 𝐸1 = |0⟩⟨0|. The

effects of the instrument are defined as I𝑎 (𝜌) = 𝐾𝑎𝜌𝐾†𝑎 , with 𝐾0 = diag(1, . . . , 1, 0) and 𝐾1 = 1−𝐾0. This
quantum model corresponds to isolating the (𝑑 − 1)-dimensional subspace orthogonal to |0⟩, assembling
a harmonic complex equiangular tight frame (ETF) [196] of size𝑚 − 1 within this subspace, then using it
for the virtual states in the transitions of𝑇0. ETFs are useful for this task as they provide a generalization
of orthonormal bases, saturating the Welch bounds for minimum overlaps [208].

As seen in Fig. 4.4, this quantum ETF construction clearly violates the exact classical bounds for 𝐿 = 4

and 5, conclusively showing that general EB channels cannot be applied to characterize classical memory
effects.

4.5.2 Numerical optimization

The quantum model based on ETFs provides an explicit violation of the classical bounds, but this is not
necessarily the maximum one can achieve in the quantum case. A natural question to ask is just how
much quantum advantage is possible in this scenario, i.e., we wish to obtain the quantum maximum:

ΩE
𝑄 := sup

E,I
𝑝 (a|E, I, 𝑑). (4.9)

While the techniques we presented in Chs. 3 and 5 can address this question, in principle, in practice the
problem will not be numerically tractable beyond the 𝑑 = 2 and 𝐿 = 3 case. Therefore, to investigate
the quantum maximum with EB channels, we have also performed numerical optimization via gradient
descent methods, obtaining lower bounds for ΩE

𝑄 . Results are summarized in Table 4.1. The quantum
models found numerically (also with𝑚 = 𝑑 + 1) slightly outperform the previous ETF construction. See
Sec. 4.5.2 for the explicit models found.

Fora𝐿ot = 0𝐿−11 and𝑑 = 𝐿−1, the best classical bounds known are achieved by the one-waymodels [32,
198], as discussed in Sec. 2.7.2, given explicitly by the matrices

[𝑇0]𝑖,𝑖 = 1/𝐿, [𝑇0]𝑖,𝑖+1 = [𝑇1]𝑑,1 = 1 − 1/𝐿, (4.10)

with zeroes everywhere else, giving 𝑝 (a𝐿ot |𝑇,𝑑) = (1 − 1/𝐿)𝐿 . These models are conjectured to give the
optimal probability for a given 𝑑 = 𝐿 − 1 in any sub-deterministic classical scenario (i.e., 𝑑 < DC(a)). For
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L d Classical (Ω𝐶 ) Quantum (ΩE
𝑄 ) ΩE

𝑄/Ω𝐶 ΩE
𝑄/(1/e)

3 2 (2/3)3 = 0.296
?
= 0.296296...

?
= 1

?
= 0.8054168 . . .

4 3 (3/4)4 = 0.31640625 ≥ 0.359523 ≥ 1.136270 ≥ 0.9772848

5 4 (4/5)5 = 0.32768 ≥ 0.368445 ≥ 1.124405 ≥ 1.0015381

6 5 (5/6)6 ?
= 0.33489798... ≥ 0.368483 ≥ 1.100285 ≥ 1.0016421

Table 4.1: Results from numerical optimization for various one-tick sequences of length 𝐿, and Hilbert
space dimension 𝑑 = 𝐿 − 1. The quantum models found numerically for 𝐿 = 4 and 5 outperform the
previous ETF construction, and are included in Sec. 4.5.2. No violations were found for 𝑑 = 2, and the
𝑑 = 4 and 5 cases violate even the conjectured universal classical upper bound of 1/e, albeit only by a
very small amount; see Sec. 4.5.3.

𝑑 = 2, 3, and 4, these upper bounds are known to be exact [207], with the 𝑑 = 4 case obtained with the
same techniques for Ref. [200].

In the quantum case, numerical optimization was performed via gradient descent techniques using the
Adam algorithm [100], as done in Ch. 2. In this scenario, however, we required far more precision to obtain
reliable results. This was achieved with an additional exponentially decreasing learning rate starting after
10 000 iterations, from 0.07 to 10−12 over the subsequent 40 000 iterations, and many trials with random
initial values. We have found sufficient to optimize for rank-1 𝐸𝑖 and 𝜎𝑖 , as all optimal models converged
to this form. No further assumptions were made about the quantum model.

Each effect I𝑎 was defined with a single Kraus operator, as no advantage was observed in using more.
As the probability in Eq. (4.4) is convex for 𝜌0, and we maximize for a single sequence, this initial state
can be assumed pure, and w.l.o.g., set to 𝜌0 = |0⟩⟨0|. We have the following constrained optimization
problem:

Find: max
E,I

𝑝 (a|E, I, 𝑑)

Such that: 𝐸𝑖 , 𝜎𝑖 ≥ 0 ∀𝑖,∑
𝑖

𝐸𝑖 = 1, Tr [𝜎𝑖 ] = 1, ∀𝑖,∑
𝑎

𝐾†𝑎𝐾𝑎 = 1,

(4.11)

with E (𝜌) = ∑𝑚
𝑖=1 Tr [𝜌𝐸𝑖 ] 𝜎𝑖 and I𝑎 (𝜌) = 𝐾𝑎𝜌𝐾†𝑎 .

This can be relaxed into an unconstrained optimization by using arbitrary 𝑑 × 𝑑 complex matrices
𝐴𝑖 , 𝐵𝑖 ,𝐶𝑎 , then defining 𝜎𝑖 := 𝐴†𝑖𝐴𝑖/tr[𝐴

†
𝑖𝐴𝑖 ] for the states. For the POVM, we first define 𝐵𝑖 := 𝐵†𝑖 𝐵𝑖 and

compute 𝜆𝐸max := max eigs(∑𝑖 𝐵𝑖 ), such that letting 𝐸𝑖 := 𝐵𝑖/𝜆𝐸max gives
∑
𝑖 𝐸𝑖 ≤ 1. For the instrument we

compute 𝜆Imax = max eigs(∑𝑎𝐶
†
𝑎𝐶𝑎) and define 𝐾𝑎 := 𝐶𝑎/

√
𝜆Imax, giving

∑
𝑎 𝐾
†
𝑎𝐾𝑎 ≤ 1. In this way, the

gradient of the objective function will naturally favor solutions satisfying
∑
𝑖 𝐸𝑖 = 1 and

∑
𝑎 𝐾
†
𝑎𝐾𝑎 = 1.

The above construction is general, but can be easily adapted for rank-1 𝜎𝑖 and 𝐸𝑖 . The best quantummodels
found for 𝐿 = 4 and 5 are provided in Sec. 4.5.2.

Note: The remaining of this subsection was not originally included in Ref. [200].

Using [𝑇𝑎]𝑖 𝑗 := Tr
[
I𝑎 (𝜎𝑖 )𝐸 𝑗

]
, we can compare the deterministic classical model with the effective

classical model obtained from the ETF construction and the model obtained via GD. A visual comparison
is shown in 4.5. Optimal quantummodels can be understood as noisy approximations of the deterministic
one, with the ETF construction spreading the error uniformly over the 𝜎𝑖 and 𝐸𝑖 , whereas the optimal
model obtained with GD concentrates the overlaps further via a sophisticated interplay of coherences.
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Deterministic model ETF model GD model

Figure 4.5: Visualization of 𝑇0 and 𝑇1 matrices of the classical deterministic model, and the effective clas-
sical models obtained with the ETF construction and gradient descent (GD), for the 𝑑 = 5 and 𝐿 = 𝑚 = 6

case. Matrix entries (i.e., transition probabilities) are shown with 0 as white, 1 as black, and intermediate
values in shades of gray.

Examples violating the classical bound

The following are the best quantum models found for 𝐿 = 4 and 5 using gradient descent techniques. The
optimal models for a given dimension and sequence length required high accuracy numerical optimiza-
tion to be found, and rely on several significant figures in order to adequately satisfy the constraints in
Eq. (4.11). Despite considerable efforts, no closed form description of these models has been found.

Since all optimal 𝐸𝑖 and 𝜎𝑖 found were rank-1, we include the vectors such that 𝐸𝑖 = |𝑒𝑖⟩⟨𝑒𝑖 | and 𝜎𝑖 =
|𝜑𝑖⟩⟨𝜑𝑖 |. We provide only 5 significant digits of precision, for simplicity, but convergence was obtained
up to 10 significant digits. Both cases assume 𝜌0 = |0⟩⟨0| and I𝑎 (𝜌) = 𝐾𝑎𝜌𝐾†𝑎 .

Model for 𝐿 = 4:

|𝑒1 ⟩ =

1

0

0

 , |𝜑1 ⟩ =


0

−0.08293 − 0.35949𝑖

0.92946

 ,
|𝑒2 ⟩ =


0

−0.09692 − 0.41924𝑖

0.74404

 , |𝜑2 ⟩ =


0

0.09971 + 0.4288𝑖
0.89788

 ,
|𝑒3 ⟩ =


0

0.07184 + 0.30898𝑖
0.65475

 , |𝜑3 ⟩ =


0

0.96462

0.05913 − 0.25695𝑖

 ,
|𝑒4 ⟩ =


0

−0.18847 − 0.82383𝑖

−0.13307

 , |𝜑4 ⟩ =

1

0

0

 ,
𝐾0 = diag(0, 1, 1), 𝐾1 = diag(1, 0, 0) .
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Model for 𝐿 = 5:

|𝑒1 ⟩ =


1

0

0

0


, |𝜑1 ⟩ =


0

−0.25627 − 0.10917𝑖

−0.29951 − 0.06935𝑖

0.90988


,

|𝑒2 ⟩ =


0

−0.18168 − 0.03287𝑖

−0.33582 − 0.01918𝑖

0.83859


, |𝜑2 ⟩ =


0

0.78968

0.17386 + 0.37575𝑖
−0.02481 + 0.45209𝑖


,

|𝑒3 ⟩ =


0

0.06342 + 0.62645𝑖
−0.36075 + 0.0699𝑖

−0.32475


, |𝜑3 ⟩ =


0

0.73235

0.46844 − 0.13164𝑖

0.35015 − 0.32293𝑖


,

|𝑒4 ⟩ =


0

−0.40607 − 0.42989𝑖

−0.28345 − 0.24945𝑖

−0.4251


, |𝜑4 ⟩ =


0

−0.34778 + 0.40375𝑖
0.82555

0.14552 + 0.11544𝑖


,

|𝑒5 ⟩ =


0

−0.3906 + 0.2592𝑖
0.78055

0.05633 + 0.08616𝑖


, |𝜑5 ⟩ =


1

0

0

0


,

𝐾0 = diag(0, 1, 1, 1), 𝐾1 = diag(1, 0, 0, 0) .

For 𝐿 = 3 and 𝑑 = 2, we were unable to find any violation of the classical bound, strongly suggesting
EB-based temporal non-classicality only emerges beyond two-level systems. Furthermore, sinceDC(a) ≤
𝐿 for any sequence of length 𝐿, either a qubit or a bit are sufficient to produce any correlations on two
time steps. It is therefore essential to also look beyond two-time steps in order to reveal fundamental
differences between classical and quantum systems in this sequential measurement scenario.

We have also performed optimizations for the case𝑚 = 𝑑 + 2 = 𝐿 + 1, but no additional advantage was
observed up to the available numerical accuracy.

4.5.3 Relation with the conjectured universal classical bound
Note: This section contains additional material not originally included in Ref. [200].

From Fig. 4.4, it is interesting to note that despite quantum memories offering an advantage they
still seem to be intimately related to the 1/e universal classical bound, conjectured in Ref. [198] (see
Sec. 2.7.3), with the quantum models merely converging faster. The probability resulting from the ETF
quantum models is difficult to obtain in closed form, but numerical evaluation suggests the ETF model
also converges uniformly to the 1/e bound as 𝐿 goes to infinity (with 𝑑 = 𝐿 − 1 and𝑚 = 𝑑 + 1).

An even more surprising result occurs for the optimal models found with gradient descent, as seen
in Table 4.1. In particular, the optimal probabilities for 𝐿 = 5 and 6 violate the universal classical bound,
but only by a little over 0.15%. This tiny violation is extremely sensitive to the parameters in the model,
requiring many trials and high precision in order to be found. We have refined these optimal models
further using arbitrary precision arithmetic [138], certifying this violation up to several significant figures
in each case. Our numerical results suggest that

ΩE
𝑄 (a5

ot, 4) ≥ 1.001538121192536 · 1
e
. (4.12)

A similar violation was also observed for 𝐿 = 6, with

ΩE
𝑄 (a6

ot, 5) ≥ 1.001642112752928 · 1
e
, (4.13)
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but the model is too cumbersome to include explicitly here, requiring many digits of precision to be spec-
ified accurately. Despite our efforts we were unable to find a closed form for these models or the resulting
probabilities, but the structure shown in Fig. 4.5 may offer insights into how this could be achieved. We
leave the investigation of the quantum upper bounds for future research.

Notwithstanding the fact the 1/e bound is still conjectured, these results point towards a deeper con-
nection between quantummemory effects under the action of EB (M&P) channels and the limits of classical
memories, which could provide a bridge between our understanding of classical and quantum memory
effects and their role as resources in information processing tasks.

4.6 Conditions for classicality

Since generic EB channels can violate bounds for classical memories, it is desirable to know the conditions
under which non-classical memory effects are actually erased by their application, as often assumed, i.e.,
such that no choice of quantum instrument I can lead to non-classical temporal correlations.

A full investigation of these conditions is beyond the scope of this work. Nevertheless, understanding
some sufficient conditions offers insights on the strength of the implicit assumptions being made when
applying EB channels as means of characterizing classical memory effects. In this section we provide
some initial results relating to these questions.

4.6.1 Correspondence between classical and quantum models for𝑚 ≤ 𝑑
Using A for the set of outcomes, let 𝑇 = (𝑇𝑎)𝑎∈A and {|𝑖⟩}𝑑𝑖=1 denote an arbitrary classical model and
orthonormal basis, respectively. We consider a generic quantum instrument with effects written in their
Kraus decomposition

I𝑎 (𝜌) =
𝑛𝑎∑
𝑘=1

𝐾𝑎𝑘𝜌𝐾
†
𝑎𝑘
, with

∑
𝑎∈A

𝑛𝑎∑
𝑘=1

𝐾†
𝑎𝑘
𝐾𝑎𝑘 = 1, (4.14)

such that
∑
𝑎 I𝑎 is trace preserving. We can define a Kraus operator for each non-zero [𝑇𝑎]𝑖 𝑗 , via the action

𝐾𝑎𝑖 𝑗 |𝑖⟩ =
√
[𝑇𝑎]𝑖 𝑗 | 𝑗⟩, such that I acts diagonally in this basis. Now, by choosing 𝐸𝑖 = 𝜎𝑖 = |𝑖⟩⟨𝑖 |, we have

a completely dephasing channel ECD in the same basis, ECD (𝜌) :=
∑𝑚
𝑖=1 ⟨𝑖 | 𝜌 |𝑖⟩ |𝑖⟩⟨𝑖 |. Finally, by using the

initial state 𝜌0 =
∑
𝑖 𝜋𝑖 |𝑖⟩⟨𝑖 |, we conclude

Tr
[
I𝑎𝐿 ◦ E ◦ · · · ◦ I𝑎1 ◦ E (𝜌0)

]
= 𝜋𝑇𝑎1 · · ·𝑇𝑎𝐿𝜂. (4.15)

Together with the results from Eqs. (4.4) and (4.5), this establishes the correspondence between classical
and quantum scenarios for𝑚 ≤ 𝑑 , and motivates the investigation of the𝑚 > 𝑑 case, as we have done.

4.6.2 Sufficient conditions for𝑚 > 𝑑

For the case𝑚 > 𝑑 , we present two independent sufficient conditions: either the states {𝜎𝑖 }𝑚𝑖=1 commute,
and/or the POVM elements {𝐸𝑖 }𝑚𝑖=1 commute.

If [𝜎𝑖 , 𝜎 𝑗 ] = 0, ∀𝑖, 𝑗 , then a common eigenbasis exists in which all operators can be written as 𝜎𝑖 =
diag(𝑠0𝑖 , . . . , 𝑠𝑑−1𝑖 ). Without loss of generality, we can express the channel in this basis as

E (𝜌) =
𝑚∑
𝑖=1

Tr [𝐸𝑖𝜌] 𝜎𝑖 =
𝑚∑
𝑖=1

𝑑−1∑
ℓ=0

Tr [𝐸𝑖𝜌] 𝑠ℓ𝑖 |ℓ⟩⟨ℓ |

=
𝑑−1∑
ℓ=0

Tr

[(
𝑚∑
𝑖=1

𝑠ℓ𝑖 𝐸𝑖

)
𝜌

]
|ℓ⟩⟨ℓ | =

𝑑−1∑
ℓ=0

Tr [𝐹ℓ𝜌] |ℓ⟩⟨ℓ | ,
(4.16)

where 𝐹ℓ :=
∑
𝑖 𝑠
ℓ
𝑖 𝐸𝑖 and {𝐹ℓ }𝑑ℓ=1 is a valid POVM. In fact, 𝑠ℓ𝑖 ≥ 0 since 𝜎𝑖 ≥ 0 and

∑
ℓ 𝑠
ℓ
𝑖 = 1 since

Tr [𝜎𝑖 ] = 1, which implies 𝐹ℓ ≥ 0 and
∑
ℓ 𝐹ℓ =

∑
𝑖,ℓ 𝑠

ℓ
𝑖 𝐸𝑖 =

∑
𝑖 𝐸𝑖 = 1. We thus have a new definition
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of the channel E which uses only 𝑑 outcomes and states. But from Sec. 4.6.1, this implies there exists an
equivalent classical model with 𝑑 states. The case for [𝐸𝑖 , 𝐸 𝑗 ] = 0 is analogous.

4.7 Conclusions and outlook

Entanglement breaking channels are universally recognized as classical memories [165, 217, 14, 72, 190],
and, indeed they are classical under many points of view. Quite surprisingly, however, we found that
there exist scenarios where they still act as genuine quantum memories. More precisely, we answer in the
negative the following question: is a qudit passing through an entanglement-breaking channel equivalent
to a classical 𝑑-it?

To address this question, we have investigated a task where memory is the central resource, namely,
the generation of correlations in time. Indeed, it has been shown that any temporal correlation can be
reproduced by a classical system if enoughmemory is available [67, 52, 182], such that differences between
classical and quantum temporal correlations only emerge if memory is bounded [32, 32, 198]. As classical
memory is understood in terms of the number of internal states𝑑 of the system, a fair comparison between
classical and quantum theory must involve systems of the same size. Differences between quantum and
classical memories can be found by investigating the most general set of memory operations allowed in
each theory, then establishing bounds on their capabilities.

The violations of classical bounds we have found showcase the importance of investigating classi-
cal memory effects in terms of manifestly classical descriptions, instead of relying on quantum-inspired
analogies, as otherwise unexpected quantum effects may persist. As we have shown, the common pre-
sumption that EB or M&P channels act as classical resource carries additional assumptions, which could
be rather strong; see discussion in Sec. 4.6. Furthermore, our results emphasize that, in the context of tem-
poral correlations, it is essential to look beyond qubits and two-time scenarios, as otherwise important
distinctions between classical and quantum systems are not apparent, as also recognized in Ref. [190]; see
also Sec. 4.5.2.

Our findings inspire several future research directions. Understanding the minimal requirements for
an EB channel to truly act as a classical memory could offer insights into the origins of the quantum
advantage in the context of temporal correlations, allowing a more definitive understanding of classical
and quantum memory effects in non-Markovian processes. Furthermore, since the quantum advantage
seen in this work stems from the non-orthogonality of the states 𝜎𝑖 , an investigation of the quantum
upper bounds in the presence of EB channels could lead to new insights into the optimal encoding of
classical information within quantum systems for various sequential tasks, with potential applications
to, e.g., quantum random-access codes [209, 9, 191, 131] or quantum compression of classical predictive
models for stochastic processes [17, 63, 212]. These possibilities are particularly promising, considering
the close relationship found between the universal classical bound of 1/e and the EB channel upper bound,
as discussed in Sec. 4.5.3.

Naturally, there are many distinct features one could wish from a “quantum memory”, e.g., preserving
coherence or entanglement [217, 106, 40], or enabling nonclassical multi-time statistics [134, 190]. If
the quantum memory is required to preserve entanglement, then EB channels are obviously useless as a
quantum resource. However, quantum effects are not restricted to spatial correlations, and in considering
the temporal character inherent to any information processing task we are required to also consider the
fundamental differences between classical and quantum temporal correlations.

Our results indicate a more careful and detailed investigation of quantum memory resources is war-
ranted, such that their precise origin and advantage over classical memories can be properly understood,
quantified, and successfully applied in emergent quantum technologies.
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Chapter 5

Inducing sparsity in semidefinite
programs with sparse objectives

The sparsity heuristic discussed in this chapter was first introduced and applied in Ref. [201] (subject of
Ch. 3). These results have since been generalized further, and a more detailed analysis of the problem is
present in a separate manuscript, currently in preparation:

Inducing sparsity in semidefinite programs with sparse objectives (working title)

Lucas B. Vieira and Costantino Budroni
In preparation

These expanded results, some not originally present in Ref. [201], are included in this chapter.

Author contribution: The doctoral candidate was fully responsible for the creation of the sparsity heuristic,
the writing of all optimization codes, the analysis of the results, and the writing of the majority of the
manuscript. The candidate is fully responsible for the production of all its graphical assets. The candidate
contributed significantly to the proofs present in this work.

5.1 Introduction

Large-scale problems in semidefinite programming (SDP) are ubiquitous in science, often arising as relax-
ations of a harder underlying problem, e.g., global polynomial optimization [148, 97, 112, 113], entangle-
ment detection [59, 192], rank-constrained optimization [216], integer programming [159], solving partial
differential equations [129], sensor network localization [18, 98], control systems [21, 148], algebraic ge-
ometry [75], and combinatorial optimization [21, 111], to name a few.

Solving these problems can be quite challenging due to their scale, usually requiring efficient sparse
representations before they become numerically tractable. The usual approach for developing a sparse
representation leverages the “aggregate sparsity” of the problem [68, 112, 204, 99, 218], obtained directly
from its objective function together with all of its linear constraints. Additionally, despite the variety
of constraints appearing in such problems their objective function is often very sparse, enabling further
optimizations [97, 112, 139]. In this context, it is worth noting that since these relaxations may fail to
provide a feasible solution for the original problem, one typically prioritizes obtaining an optimal value
for the objective over its corresponding solution in the relaxation.

Inspired by these observations, in this chapter we present a heuristic method for obtaining sparse
representations applicable to arbitrary semidefinite programs. Our method works by iteratively assem-
bling a self-sufficient subset of variables and constraints which, directly or indirectly, affect the objective
function. In contrast to the usual approach using aggregate sparsity, which includes all constraints of
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the problem, our method discards irrelevant variables and constraints by finding the “effective sparsity”
implicit in a problem, not directly apparent from its full definition, but which emerges naturally from the
structure of its objective and constraints.

We provide two different methods based on this heuristic. The first is capable of providing an ex-
act sparse representation, while the second can be used to obtain a hierarchy of sparse relaxations. Of
particular note, our heuristic method is problem-agnostic and can be used in conjunction with existing
techniques, possibly as a general pre-optimization step.

The chapter is organized as follows. Section 5.2 provides a summary of the results, and Sec. 5.3 intro-
duces the basic notions of graph theory and semidefinite matrix completion required. Section 5.4 outlines
the ideas underlying our heuristic method, including Sec. 5.4.1 describing the heuristic method to obtain
an exact effective sparsity of a problem, and Sec. 5.4.2 an alternative method for obtaining sparse relax-
ations. In Sec. 5.5, we discuss how our heuristic compares with existing methods. Section 5.6 showcases
the efficacy of our heuristic in its original application, with Sec. 5.7 discussing some potential refinements.
Finally, Sec. 5.8 provides an overview of the results and final remarks.

5.2 Summary of main results

For Ref. [201] (subject of Ch. 3), we have developed a convergent hierarchy of semidefinite programs
providing upper bounds on correlations arising from sequential operations on open quantum systems. We
applied this to the problem of witnessing the dimension of an environment interactingwith a probe system
being sequentially measured. The goal was to use the resulting temporal correlations on the sequence of
outcomes, 𝑝 (a) for a ∈ A𝐿 , in order to obtain information about the inaccessible environment.

However, the simplest nontrivial scenario—a qubit system and qubit environment with three sequen-
tial measurements—was already numerically intractable. Even after all of the problem’s symmetries had
been accounted for, it would still require 3 TB of RAM to be solved with standard algorithms. We over-
came this by developing a heuristic technique which automatically obtains an exact sparse representation
of the SDP through an iterative approach, resulting in the elimination of variables and constraints. The
technique exploits the sparsity of the objective function and constraints separately, iteratively assembling
a self-sufficient set of variables and constraints where the original problem can be solved exactly. For this
particular problem our novel heuristic was extremely successful, reducing the number of variables and
constraints to less then 1% of their original number.

It was also realized that this heuristic was not only quite general, being applicable to several other
problems in quantum information theory and beyond, but also very flexible, allowing hierarchies of re-
laxations to be obtained automatically for arbitrary semidefinite problems, in a problem-agnostic way.
We have also found that our heuristic differs significantly from many existing methods that attempt to
obtain sparse representations of large-scale SDPs.

Our successful results with this heuristic are currently under preparation as a separate manuscript, in
order to showcase its strengths and flexibility to a wider community, and on a variety of problems. This
chapter is partially adapted from this manuscript, in preparation, and contains some material originally
included in Ref. [201], where our technique was first introduced.

5.3 Preliminary notions

5.3.1 Graph theory

A graph 𝐺 is defined by a pair (𝑉 , 𝐸), where 𝑉 = {1, . . . , 𝑛} is a set, the vertices, and 𝐸 ⊆ 𝑉 × 𝑉 a set
of pairs (𝑖, 𝑗), the edges, for some 𝑖, 𝑗 ∈ 𝑉 . If (𝑖, 𝑗) ∈ 𝐸, the two vertices 𝑖, 𝑗 ∈ 𝑉 are said to be adjacent,
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with the edge (𝑖, 𝑗) being incident to them. The degree of a vertex is the number of edges incident to it.
We consider only undirected graphs, meaning that the pairs in 𝐸 are not ordered, i.e., (𝑖, 𝑗) = ( 𝑗, 𝑖). We
admit the possibility of edges connecting vertices with themselves, i.e., (𝑖, 𝑖) ∈ 𝐸 and we call such edges
self-edges or loops (not to be confused with cycles, see below). If all vertices of a graph are adjacent, the
graph is said to be complete.

Given a subset of vertices 𝑉 ′ ⊆ 𝑉 , the graph 𝐺 ′ = (𝑉 ′, 𝐸′), with edges 𝐸′ = 𝐸 ∩ (𝑉 ′ ×𝑉 ′), is referred
to as an induced subgraph of 𝐺 . A path is a sequence of vertices 𝑣0, 𝑣1, . . . , 𝑣𝑛 connected by edges, i.e.,
(𝑣𝑖 , 𝑣𝑖 + 1) ∈ 𝐸 for 𝑖 = 0, . . . , 𝑛 − 1. If 𝑣0 = 𝑣𝑛 , and all vertices are otherwise distinct, we say that the path
is a cycle of length 𝑛 (not to be confused with a loop, see above). A graph is said to be connected if there
is a path (i.e., a sequence of edges) joining any two of its vertices. The connected components of 𝐺 are the
disjoint connected subgraphs {𝐺ℓ }ℓ such that 𝐺 =

⋃
ℓ 𝐺ℓ , and no two 𝐺ℓ share a vertex.

If an induced subgraph 𝐺 ′ is a complete graph, it is referred to a clique of 𝐺 . A maximal clique is a
clique which is not a subgraph of a larger clique. A graph is said to be chordal if for every cycle of length
𝑛 ≥ 4 there is a chord, i.e., an edge between two non-adjacent vertices in the cycle. Given any graph𝐺 , we
can add extra edges such that the obtained graph 𝐺 ′ is chordal. We refer to 𝐺 ′ as the chordal completion
of𝐺 . Moreover, the set of cliques of a chordal graph satisfy the running intersection property [68], namely,
there is an ordering of them {𝑉1, . . . ,𝑉𝑚} such that

𝑉𝑖 ∩ (𝑉1 ∪ . . . ∪𝑉𝑖−1) ⊂ 𝑉𝑗 for 𝑗 < 𝑖 . (5.1)

One can verify that a graph is chordal via the Lex-BFS algorithm [164, 53]. Finally, a graph𝐺 = (𝑉 , 𝐸) can
be represented by an adjacency matrix, e.g., a 𝑛 × 𝑛 matrix 𝐴, for 𝑛 = |𝑉 |, where 𝐴𝑖 𝑗 = 1 if (𝑖, 𝑗) ∈ 𝐸 and
0 otherwise. Since we consider only undirected graphs, adjacency matrices will be symmetric. Figure 5.1
provides a concrete example of these concepts.

Figure 5.1: (a) A non-chordal graph on 12 vertices with three connected components — {3,5,6,9,10,11,12},
{1,2,4,8}, and {7}. Non-chordality is due to the chord-less length-4 cycles (3,5,11,10) and (1,2,8,4). The
graph has 12 cliques of size 1 (vertices), 15 of size 2 (edges), 5 of size 3, and 1 of size 4. Three cliques
are maximal: {3,9,10,12}, {3,5,6}, and {7}. (b) A visual depiction of the graph’s adjacency matrix. Non-zero
entries are depicted with the colors (and markers) of the components they belong to. Self-edges or loops,
corresponding to diagonal entries, are omitted in the graph. (c) A chordal completion of the graph, now
with 7 maximal cliques, obtained by adding edges (3,11) and (2,4).

5.3.2 Partial matrices and completions

Let M𝑛 denote the set of 𝑛 × 𝑛 Hermitian matrices and M+
𝑛 its space of positive semidefinite (PSD)

matrices. Given a graph 𝐺 = (𝑉 , 𝐸) for 𝑉 = {1, . . . , 𝑛}, we define the 𝐺-partial Hermitian matrix (PHM)
𝑋 [𝐺] as a matrix 𝑋 such that only the entries 𝑋𝑖 𝑗 corresponding to the edges (𝑖, 𝑗) of𝐺 are specified, and
𝑋𝑖 𝑗 = 𝑋 ∗𝑗𝑖 . An Hermitian completion of 𝑋 [𝐺] is a matrix𝑀 ∈M𝑛 such that𝑀𝑖 𝑗 = 𝑋𝑖 𝑗 whenever (𝑖, 𝑗) ∈ 𝐸.

101



Moreover, given a subgraph 𝐺 ′ of 𝐺 , we define 𝑋 [𝐺 ′] as the PHM obtained from 𝑋 by discarding (i.e.,
leaving unspecified) all entries corresponding to vertices and edges of 𝐺 that do not appear in 𝐺 ′.

Similarly, we say that the partial Hermitian matrix 𝐴[𝐺] is a 𝐺-partial positive semidefinite matrix
(PPSDM) if 𝐴[𝐺] is a PHM, and for all cliques 𝑉𝑖 of 𝐺 the (full) matrix 𝐴[𝑉𝑖 ] is positive semidefinite.
Given a PPSDM𝐴[𝐺],𝑀 ∈M+

𝑛 is a positive semidefinite completion of𝐴[𝐺] whenever𝑀 is an Hermitian
completion of 𝐴 that is positive semidefinite1.

Theorem 2. (Grone et al. [76, Theorem 7]) The PPSDM 𝐴[𝐺] for 𝐺 = (𝑉 , 𝐸) has a positive semidefinite
completion 𝑋 if the graph 𝐺 is chordal.

Theorem 2 is obtained by Grone et al. by a direct construction of the extension and convexity argu-
ments. This key result is the basis for many approaches to obtain sparse representations of semidefinite
problems [68, 97, 204, 112, 113, 99, 218].

Given a matrix 𝐴 ∈M𝑛 , we define its sparsity pattern as

S (𝐴) :=
{
(𝑖, 𝑗) ∈ 𝑉 ×𝑉

�� 𝐴𝑖 𝑗 ≠ 0
}
, (5.2)

where 𝑉 := {1, . . . , 𝑛} is the set of row/column indices. Since 𝐴 is Hermitian, we can interpret the pair
(𝑉 , 𝐸 = S (𝐴)) as an undirected graph. Given (𝑉 , 𝐸), we define the vertex support of 𝐸, denoted by V (𝐸),
as the subset of vertices from 𝑉 with non-zero degree, i.e.,

V (𝐸) := { 𝑖 ∈ 𝑉 | deg𝐸 (𝑖) > 0 } , (5.3)

where deg𝐸 (𝑖) denotes the degree of the vertex 𝑖 ∈ 𝑉 given 𝐸. Therefore, V (S (𝐴)) is the set of indices
(row or column) in the non-zero entries of 𝐴.

5.4 Main results

We consider optimization problems in the form of semidefinite programs (SDPs), written as

Given: 𝐹, {𝐶𝑘 }𝑚𝑘=1, {𝑐𝑘 }
𝑚
𝑘=1

Find: 𝑓 := max
𝑋
⟨𝐹, 𝑋 ⟩

Subject to: ⟨𝐶𝑘 , 𝑋 ⟩ = 𝑐𝑘 , 𝑘 = 1, . . . ,𝑚

𝑋 ≥ 0

(P1)

with 𝐹, 𝑋,𝐶𝑘 ∈M𝑛 and 𝑐𝑘 ∈ C, and where we denote by ⟨𝐴, 𝐵⟩ = tr[𝐴†𝐵] the Frobenius inner product.
Our goal is to obtain a sparse representation of this problem, exactly or as a relaxation.

These sparse representations are defined by a sparsity pattern 𝐸∗, allowing the structure of the problem
to be mapped onto a graph𝐺 = (𝑉 , 𝐸∗) where each edge (𝑖, 𝑗) ∈ 𝐸∗ is associated with a scalar optimization
variable 𝑋𝑖 𝑗 . For this reason, and with a slight abuse of notation, we may refer to 𝑋𝑖 𝑗 ∈ 𝐸 to indicate
(𝑖, 𝑗) ∈ 𝐸. There are several approaches that exploit the aggregate sparsity of the problem [68, 112, 204, 99,
218], which takes into account, at the same time, the sparsity of the objective function 𝐹 and the linear
constraints 𝐶𝑘 . Here, we show that the sparsity of the problem can be, in principle, further increased by
exploiting the individual sparsity structures of the objective function and the constraints. A comparison
with the usual methods in the literature is provided in Sec. 5.5.

1All results mentioned hold both in the positive definite and positive semidefinite cases. To keep the notation lighter, we simply
discuss the positive semidefinite case.
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5.4.1 Exact effective sparsity

Our first method transforms the original problem into an equivalent one with more sparsity, i.e., with the
same optimum and a feasible solution, but involving less variables and constraints. First, we separate the
homogeneous and non-homogeneous constraints. Letting 𝐾 = {1, 2, . . . ,𝑚} denote the indices of the𝑚
constraints, we define the sets

𝐾nh := { 𝑘 ∈ 𝐾 | 𝑐𝑘 ≠ 0 } , 𝐾h := { 𝑘 ∈ 𝐾 | 𝑐𝑘 = 0 } . (5.5)

We begin by defining the initial base sparsity 𝐸0base of the problem via

𝐸0 := S (𝐹 ) ∪
⋃
𝑘∈𝐾nh

S (𝐶𝑘 ), 𝐸0base := 𝐸
0 ∪

{
(𝑖, 𝑖)

�� 𝑖 ∈ V (𝐸0) } , (5.6)

In other words, we include all the variables 𝑋𝑖 𝑗 appearing in 𝐹 and in non-homogeneous constraints 𝐶𝑘 ,
as well as the corresponding diagonal variables 𝑋𝑖𝑖 and 𝑋 𝑗 𝑗 .

Since the variables 𝑋𝑖 𝑗 ∉ 𝐸0base do not appear in the objective function, they do not contribute di-
rectly to its value. Nevertheless, some of them may still contribute indirectly through the other linear
constraints or the positivity constraint. The central idea of our method is to identify which such variables
and constraints are relevant for the optimization.

Let 𝜅 ⊆ 𝐾 denote the subset of constraints we will keep, which we initialize with 𝜅 ← 𝐾nh for this
method. Using Proc. 1 with 𝐸0base and this initial 𝜅, we obtain the corresponding extended sparsity 𝐸0ext
and updated 𝜅.

Procedure 1. Obtaining an extended sparsity from a base sparsity.
Input: Base sparsity 𝐸base, current set of constraints 𝜅.
Output: Extended sparsity 𝐸ext, updated set of constraints 𝜅.

1. Initialize 𝜀 ← 𝐸base as the current candidate for 𝐸ext.

2. Set 𝐾 ′ = { 𝑘 ∈ 𝐾h | S (𝐶𝑘 ) ∩ 𝜀 ≠ ∅ }, and update 𝜅 ← 𝜅 ∪ 𝐾 ′.

3. Set 𝜀′ = 𝜀 ∪⋃
𝑘∈𝐾 ′ S (𝐶𝑘 ).

4. If 𝜀′ = 𝜀, then return 𝐸ext = 𝜀 and 𝜅.

5. Else, set 𝜀 ← 𝜀′, then repeat from step (2).

The resulting extended sparsity 𝐸0ext is an initial guess for the minimum subset of variables 𝑋𝑖 𝑗 ∈ 𝐸0ext
which should be considered in the problem, and 𝜅 the relevant subset of constraints. Let 𝐺0 := (𝑉 , 𝐸0ext)
be a graph with connected components𝐺ℓ = (𝑉ℓ , 𝐸ℓ ). Positivity of 𝑋 [𝐺0] can be ensured by treating it as
a (possibly permuted) block matrix, with each positive semidefinite block corresponding to a component
𝐺ℓ made into a complete graph:

𝐸0comp :=
⋃
ℓ

𝑉ℓ ×𝑉ℓ . (5.7)

The completed sparsity 𝐸0comp will contain all variables required to exactly solve a relaxation of Prob. 1
involving only the constraints in 𝜅. If the completion procedure in Eq. (5.7) led to the inclusion of new
variables, however, then these variables might involve additional constraints beyond 𝜅, which now must
also be taken into account.

Therefore, we define a new base sparsity 𝐸1base = 𝐸0comp, and repeat all of the previous steps. If after
𝑠 iterations we find that 𝐸𝑠

base
= 𝐸𝑠comp, then we have found a self-sufficient subset of variables and

constraints completely independent from the rest. We refer to these as the effective sparsity 𝐸∗ and the
effective constraints 𝜅∗ of the problem, as they emerged naturally from its structure. The overall procedure
is outlined in Proc. 2.
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Procedure 2. Obtaining an exact effective sparsity for an SDP.
Input: Objective matrix 𝐹 , constraint matrices {𝐶𝑘 }𝑘 .
Output: Exact effective sparsity 𝐸∗ and subset of constraints 𝜅∗.

1. Initialize iteration 𝑠 ← 0, base sparsity 𝐸0base as in Eq. (5.6), and constraints 𝜅 ← 𝐾nh.

2. Obtain the extended sparsity 𝐸𝑠ext and updated 𝜅 using Proc. 1.

3. Find the connected components {𝐺ℓ }ℓ of 𝐺 = (𝑉 , 𝐸𝑠ext), with 𝐺ℓ = (𝑉ℓ , 𝐸ℓ ).

4. Set 𝐸𝑠comp =
⋃𝐿
ℓ=1𝑉ℓ ×𝑉ℓ as the completed sparsity.

5. If 𝐸𝑠
base

= 𝐸𝑠comp, then return 𝐸∗ = 𝐸𝑠
base

and 𝜅∗ = 𝜅.

6. Else, set 𝐸𝑠+1
base
← 𝐸𝑠comp, increment 𝑠 , then repeat from step (2).

The resulting sparse SDP is then:

Given: 𝐹, {𝐶𝑘 }𝑘∈𝜅∗ , {𝑐𝑘 }𝑘∈𝜅∗

Find: 𝑓 := max
{𝑋ℓ }ℓ

∑
ℓ

⟨𝐹ℓ , 𝑋ℓ⟩

Subject to:
∑
ℓ

⟨𝐶ℓ𝑘 , 𝑋ℓ⟩ = 𝑐𝑘 , ∀𝑘 ∈ 𝜅
∗

𝑋ℓ ≥ 0, ∀ ℓ .

(P2)

Here, we used that {𝐹ℓ }ℓ are the blocks of the matrix 𝐹 ′ = 𝑃𝐹𝑃T =
⊕

ℓ 𝐹ℓ and {𝐶ℓ𝑘 }ℓ the blocks of the
matrix 𝐶′

𝑘
= 𝑃𝐶𝑘𝑃T =

⊕
ℓ 𝐶

ℓ
𝑘
. Note that such a decomposition exists since the sparse variable 𝑋 admits

the decomposition 𝑃𝑋𝑃T =
⊕

ℓ 𝑋ℓ .
We can now prove the first result.

Theorem 3. The optimization problems in Prob. 1 and Prob. 2 are equivalent, namely, from every feasible
solution of one a feasible solution of the other can be constructed with the same value for the objective
function.

Proof. Thefirst observation is that the original variable𝑋 in Prob. 1 can be split into two terms𝑋 = 𝑋 ∗+𝑋⊥,
where 𝑋 ∗ contains the variables 𝑋𝑖 𝑗 appearing in 𝐸∗, and zero everywhere else, corresponding up to a
permutation to

⊕
ℓ 𝑋ℓ , whereas 𝑋⊥ contains the variables 𝑋𝑖 𝑗 not appearing in 𝐸∗, and zero everywhere

else. Now, for the objective function, we have that

⟨𝐹, 𝑋 ⟩ = ⟨𝐹, 𝑋 ∗⟩ + ⟨𝐹, 𝑋⊥⟩ = ⟨𝐹, 𝑋 ∗⟩ + 0 = ⟨𝐹, 𝑋 ∗⟩ , (5.9)

i.e., the variables in 𝑋⊥ do not contribute to the objective function. Thus, substituting 𝑋 with 𝑋 ∗ does not
change the objective function. Moreover, 𝑋 ∗ = 𝑃T (

⊕
ℓ 𝑋ℓ )𝑃 constructed from {𝑋ℓ }ℓ , a feasible solution

of Prob. 2, satisfies only a subset of the constraints. As a consequence, Prob. 2 provides a relaxation of the
original problem. A more careful analysis, however, shows that 𝑋 ∗ actually provides feasible solution of
the original problem. This is simply done by defining 𝑋 = 𝑋 ∗ + 𝑋⊥ with 𝑋⊥ = 0. The positivity 𝑋 ≥ 0

is guaranteed by the block structure of 𝑋 ∗, and the missing constraints, i.e., {⟨𝐶𝑘 , 𝑋 ⟩ = 0}𝑘∈𝐾h\𝜅∗ are all
satisfied. In fact, they involve only variables in 𝑋⊥, i.e., ⟨𝐶𝑘 , 𝑋 ⟩ = ⟨𝐶𝑘 , 𝑋⊥⟩ for all 𝑘 ∈ 𝐾h \ 𝜅∗, which are
all homogeneous linear constraints. □

In summary, any sparse solution 𝑋 ∗ ∈ 𝐸∗ is also a valid solution to the dense problem, with the same
optimal value 𝑓 for the objective: the sparse representation is exact. In the following, we show how we
can further increase the sparsity of the problem at the price of defining a relaxation of it.
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5.4.2 Approximate effective sparsity

Our second method combines the results of Thm. 2 on the positive extensions of G-PPSDM, as exploited
also by [68], with the iterative elements of the exact effective sparsity approach described in Sec. 5.4.1.
We begin by defining the initial base sparsity as,

𝐸0base := S (𝐹 ) ∪ { (𝑖, 𝑖) | 𝑖 ∈ V (S (𝐹 )) } , (5.10)

and 𝜅 as initially empty. The procedure for obtaining the extended sparsity 𝐸0ext and updated 𝜅 is the same
as before (Proc. 1). However, to obtain the completed sparsity, we now perform a chordal completion of
each component 𝐺ℓ to obtain the chordal graph 𝐺ch

ℓ = (𝑉ℓ , 𝐸chℓ ). This provides the (chordal) completed
sparsity

𝐸0comp :=
𝐿⋃
ℓ=1

𝐸chℓ , (5.11)

which we then use as 𝐸1base in order to iteratively collect further homogeneous and non-homogeneous
constraints, repeating until the effective sparsity 𝐸∗ and constraints 𝜅∗ are obtained. Dropping the ch

superscripts, let 𝐺 = (𝑉 , 𝐸∗) be the final graph of the effective sparsity, with each connected component
𝐺ℓ = (𝑉ℓ , 𝐸ℓ ) being a chordal graph. Just as in Sec. 5.4.1, each component can be written as a partial matrix
𝑋ℓ [𝐺ℓ ], with the constraints that each block corresponding to a clique in 𝐸ℓ is positive semidefinite. By
Thm. 2, this guarantees that 𝑋ℓ [𝐺ℓ ] has a positive semidefinite completion 𝑋ℓ ≥ 0.

Let us fix a connected component ℓ and define {𝑉 ℓ1 , . . . ,𝑉 ℓ𝑚} as the maximal cliques in𝐺ℓ . We define a
dense matrix 𝑌 ℓ𝑟 for each clique𝑉 ℓ𝑟 and denote by𝑊 ℓ

𝑟𝑟 ′ := 𝑉
ℓ
𝑟 ∩𝑉 ℓ𝑟 ′ the vertices shared by two cliques 𝑟 and

𝑟 ′. The overlap between cliques implies that the matrices {𝑌 ℓ𝑟 }𝑟 do not represent independent variables,
but are related by the equality constraints [𝑌 ℓ𝑟 ]𝑖 𝑗 := [𝑌 ℓ𝑟 ′ ]𝑖 𝑗 for all 𝑖, 𝑗 ∈ 𝑊 ℓ

𝑟𝑟 ′ , and for all cliques 𝑟, 𝑟 ′ of
every connected component ℓ . By Thm. 2, it is sufficient to impose positivity to each 𝑌 ℓ𝑟 to guarantee the
existence of a completion 𝑋ℓ ≥ 0. Note, however, that the necessity of these equality constraints creates
a trade-off between the number of cliques and the size of the cliques; see Ref. [68] for a discussion.

The overall procedure is outlined in Proc. 3.

Procedure 3. Obtaining an approximate effective sparsity for an SDP.
Input: Objective matrix 𝐹 , constraint matrices {𝐶𝑘 }𝑘 .
Output: Approximate effective sparsity 𝐸∗ and subset of constraints 𝜅∗.

1. Initialize iteration 𝑠 ← 0, base sparsity 𝐸0base as in Eq. (5.6), and constraints 𝜅 as empty.

2. Obtain the extended sparsity 𝐸𝑠ext and updated 𝜅 using Proc. 1.

3. Find the connected components {𝐺ℓ }𝐿ℓ=1 of 𝐺 := (𝑉 , 𝐸𝑠ext), with 𝐺ℓ = (𝑉ℓ , 𝐸ℓ ).

4. Find a chordal completion 𝐺ch
ℓ = (𝑉ℓ , 𝐸chℓ ) of each 𝐺ℓ .

5. Set 𝐸𝑠comp =
⋃𝐿
ℓ=1 𝐸

ch
ℓ as the (chordal) completed sparsity.

6. If 𝐸𝑠
base

= 𝐸𝑠comp, then return 𝐸∗ = 𝐸𝑠
base

and 𝜅∗ = 𝜅.

7. Else, set 𝐸𝑠+1
base
← 𝐸𝑠comp, increment 𝑠 , then repeat from step (2).
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We thus obtain the sparse SDP:

Given: 𝐹, {𝐶𝑘 }𝑘∈𝜅∗ , {𝑐𝑘 }𝑘∈𝜅∗

Find: 𝑓 := max
{𝑌 ℓ

𝑟 }ℓ,𝑟

∑
𝑟,ℓ

⟨𝐹 (𝑟,ℓ ) , 𝑌 ℓ𝑟 ⟩

Subject to:
∑
𝑟,ℓ

⟨𝐶 (𝑟,ℓ )
𝑘

, 𝑌 ℓ𝑟 ⟩ = 𝑐𝑘 , ∀𝑘 ∈ 𝜅∗

𝑌 ℓ𝑟 ≥ 0, ∀ ℓ, 𝑟
[𝑌 ℓ𝑟 ]𝑖 𝑗 = [𝑌 ℓ𝑟 ′ ]𝑖 𝑗 , ∀ 𝑖, 𝑗 ∈𝑊 ℓ

𝑟𝑟 ′ and ∀ ℓ, 𝑟, 𝑟 ′ .

(P3)

Here, the matrix 𝐹 (𝑟,ℓ ) is obtained first by splitting it into connected components 𝐹ℓ , as in Prob. 2, then
constructing a smaller matrix 𝐹 (𝑟,ℓ ) for each clique 𝑉 ℓ𝑟 , corresponding to the matrices 𝑌 ℓ𝑟 . Such a splitting
is not enough, however, since one has to take into account also the overlap between cliques. A possible
solution is that in case of overlap, i.e., 𝑖, 𝑗 ∈ 𝑊 ℓ

𝑟𝑟 ′ , one put to zero [𝐹 (𝑟,ℓ ) ]𝑖 𝑗 for all matrices but one. The
same construction is applied to generate the matrices 𝐶 (𝑟,𝑙 )

𝑘
.

We can then state our second result:

Theorem 4. The optimization in Prob. 3 provides a relaxation of Prob. 1.

Proof. To prove this, it is sufficient to show that from every feasible solution of Prob. 1 one can construct a
feasible solution of Prob. 3. To see how, given a matrix𝑋 as a feasible solution of Prob. 1, we can construct
the submatrices {𝑌 ℓ𝑟 }ℓ,𝑟 . By construction, such matrices are positive semidefinite, and provide the same
value for the objective function, i.e., ⟨𝐹, 𝑋 ⟩ = ∑

𝑟,ℓ ⟨𝐹 (𝑟,ℓ ) , 𝑌 ℓ𝑟 ⟩, while satisfying all linear constraints, i.e.,
⟨𝐶𝑘 , 𝑋 ⟩ =

∑
𝑟,ℓ ⟨𝐶 (𝑟,ℓ )𝑘

, 𝑌 ℓ𝑟 ⟩ = 𝑐𝑘 for all 𝑘 ∈ 𝜅∗. □

Note that, since multiple chordal completions may be available for a given graph, the solutions ob-
tained by this method will not generally be unique. Furthermore, since the effective sparsity is built itera-
tively based on such completions, the size of the final effective sparsity may be sensitive to the particular
choice of completions performed at every iteration. We will return to this point in the next sections.

5.5 Comparison with methods using aggregate sparsity

The typical approach to obtain a sparse representation of an SDP exploits the aggregate sparsity of the
problem [68, 112, 204, 99, 218], defined as:

𝐸agg := S (𝐹 ) ∪
𝑚⋃
𝑘=1

S (𝐶𝑘 ) ∪ { (𝑖, 𝑖) | 𝑖 ∈ 𝑉 } . (5.13)

In words, the aggregate sparsity assumes every single constraint and every diagonal term must be in-
cluded in the sparsity pattern by default. This sparsity gives the graph𝐺 = (𝑉 , 𝐸agg), for which a chordal
completion𝐺 ′ = (𝑉 , 𝐸∗agg) is obtained directly. Positivity of𝑋 can then be imposed by requiring positivity
on the smaller matrices {𝑋𝑟 }𝑟 , each corresponding to one of the cliques in the completed chordal graph.
The resulting SDP is then given by

Given: 𝐹, {𝐶𝑘 }𝑘∈𝐾 , {𝑐𝑘 }𝑘∈𝐾
Find: 𝑓 := max

{𝑋𝑟 }𝑟

∑
𝑟

⟨𝐹𝑟 , 𝑋𝑟 ⟩

Subject to:
∑
𝑟

⟨𝐶𝑟𝑘 , 𝑋𝑟 ⟩ = 𝑐𝑘 , ∀𝑘 ∈ 𝐾

𝑋𝑟 ≥ 0, ∀𝑟
[𝑋𝑟 ]𝑖 𝑗 = [𝑋𝑟 ′ ]𝑖 𝑗 , ∀ 𝑖, 𝑗 ∈𝑊𝑟𝑟 ′ , and ∀𝑟, 𝑟 ′,

(P4)
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where the matrices𝐶𝑟
𝑘
and 𝐹𝑟 are obtained for each clique𝑉𝑟 , corresponding to the matrices 𝑋𝑟 . Just as in

Prob. 3, one has to account for the overlaps between cliques𝑊𝑟𝑟 ′ := 𝑉𝑟 ∩𝑉𝑟 ′ , fixing [𝑋𝑟 ]𝑖 𝑗 = [𝑋𝑟 ′ ]𝑖 𝑗 for all
𝑖, 𝑗 ∈𝑊𝑟𝑟 ′ and ensuring only one [𝐹 𝑟 ]𝑖 𝑗 is non-zero in the overlapping cliques.

Despite the success of this approach, for certain problems the constraint matrices 𝐶𝑘 may involve
too many non-zero entries when considered together, such that we obtain 𝐸agg ≈ 𝑉 ×𝑉 and this sparse
representation is not tractable. Therefore, a problem-specific transformation [68, 97, 99, 218] or some
regularization method [142] is typically used instead.

The aggregate sparsity method would have been entirely useless in our original problem in Ref. [201]
(Chapter 3), for which we first developed our heuristic. In this problem the aggregate sparsity offers
practically no advantage, whereas our heuristic provides an immense degree of optimization while still
offering an exact solution; see Sec. 5.6.

Note that, as ourmethod is heuristic in nature, a sparse representation is not guaranteed to be obtained,
in which case an alternative approach must be pursued anyway. As of yet, it is unclear which properties
of a problem make our heuristic work well. This will be subject of future research. However, since our
method is problem-agnostic and simply returns the original problem in its worst case scenario, it can
be useful if adopted as a general pre-processing step, possibly preceding subsequent optimizations. We
elaborate on these ideas in Sec. 5.7.

Finally, we note that it is always possible to transform an SDP into an equivalent one with no con-
straints by means of an appropriate problem-specific affine transform. In this form, our exact heuristic
ceases to apply, and the approximate heuristic falls back to the usual aggregate sparsity strategy. How-
ever, for moderate scale SDPs this transformation might be costly to obtain, and will likely obfuscate the
original structure of the problem. This could possibly hinder a clear interpretation of its results.

5.6 Examples

Our heuristic method was first applied in Ref. [201] (Chapter 3), where a hierarchy of SDPs was developed
to upper bound the maximum probability of obtaining specific sequences of measurement outcomes. The
sequences arise from repeated preparations and then measurements on an open quantum system interact-
ing with a quantum environment of finite dimension. The SDP was constructed by describing the physical
scenario in the formalism of quantum supermaps [41], where the repeated unitary interactions between
a qubit system and a 𝑑-dimensional environment are represented by a tensor product of 𝑁 ≥ 3 copies of
a (2𝑑)2 × (2𝑑)2 matrix (Eq. (3.13)).

Even exploiting the highly symmetric structure of the problem (Sec. 3.7.4), the smallest non-trivial
scenarios with 𝑑 = 2 already involve far too many variables and constraints to be numerically tractable.
Furthermore, despite the sparse objective, the problem’s aggregate sparsity is nearly fully dense (Table 5.1)
due to a partial trace constraint required by the supermap representation of quantum channels (Eq. (3.16)).
These features demanded a novel approach. Using our exact heuristic for effective sparsity, as described
in Sec. 5.4.1, the problem could be vastly simplified into a sparse representation that was numerically
tractable. Table 5.1 compares the scale of the problem before and after applying our method, providing a
compelling case for the power and efficacy of our iterative heuristic.

5.7 Refinements

While we have presented our sparsity heuristic in a problem-agnostic way, many refinements are possible
by exploiting additional structures of a problem, or when considering limited computational resources. In
this section we discuss a few ways in which our method can be adapted to specific scenarios.
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𝑁
Dense problem
(intractable)

Aggregate sparsity
(intractable)

Effective sparsity
(exact & tractable)

3
Variables 665 856 574 016 ( 86%) 3 566 (0.54%)

Constraints 295 937 295 937 (100%) 2 809 (0.95%)

4
Variables 15 023 376 14 250 276 ( 95%) 35 688 (0.24%)

Constraints 10 653 697 10 653 697 (100%) 40 441 (0.38%)

Table 5.1: Comparison between the number of variables and constraints in the symmetric version of the
problem, comparing its dense form against its sparse representations. The aggregate sparsity method can
only eliminate a few variables while keeping all constraints, whereas our method achieves a vast reduction
in the number of both variables and constraints, while still providing exact solutions.

5.7.1 Metaheuristics

First, we note that the iterative completion procedure can be stopped at any moment before a stable
sparsity 𝐸∗ and set of constraints 𝜅∗ are found, thereby obtaining an automatic “hierarchy of relaxations”
of a problem based on its inherent structure. This strategy can be used, e.g., when computational resources
are limited and a maximum problem size is set beforehand, thus allowing the available resources to tackle
a given problem to whatever level of complexity is tractable.

Several strategies can be built upon this idea. In many optimization problems, it is natural to consider
some constraints as more important than others, such that it could be useful to include them directly in
the base sparsity. In the same spirit, if a priority can be assigned to the constraints, then a metaheuristic
approach becomes available wherein the completed sparsity procedure (Proc. 1) only includes the highest
priority constraints at each step for 𝐸𝑠comp, until some stopping condition is reached. This could ensure
that the automatic hierarchy of relaxations is capturing the essential features of the problem first.

The choice between full completion (Sec. 5.4.1) vs. chordal completion (Sec. 5.4.2) of each connected
component can also be made on a case-by-case basis, perhaps based on a similar notion of priorities, or
based on a threshold on the size of the component to be completed. Since chordal completions 𝐺ch

ℓ for a
given𝐺ℓ are not unique, and finding a completion with the minimum number of edges is a NP-Complete
problem [215], various algorithms exist for obtaining or enumerating reasonably small completions in
practical scenarios [86, 27]. However, in our heuristic approach the inclusion of new constraints or vari-
ables (i.e., edges in 𝐸𝑠comp) is performed iteratively, such that the subsequent chain of variables and con-
straints to be included can be unpredictable. Thus, there might not be, a priori, a notion of “optimal”
chordal completion at each step. In this case, it might be helpful to use an enumerative approach in-
stead (see Ref. [27]), obtaining multiple candidate sequences of completions, then choosing the sequence
resulting in the smallest number of edges.

5.7.2 Optimizing the procedure for extended sparsity

While we have presented Proc. 1 constructing 𝐸𝑠ext iteratively, this can also be achieved in single step
with some pre-processing. First, construct a graph relating the overlaps between constraints, i.e., we
let 𝐺𝐾 := (𝐾, 𝐸𝐾 ), where 𝐸𝐾 := { (𝑘, 𝑘 ′) ∈ 𝐾 × 𝐾 | S (𝐶𝑘 ) ∩ S (𝐶𝑘 ′ ) ≠ ∅ }. Then, the connected com-
ponents of 𝐺𝐾 each correspond to a set of constraints (and corresponding variables) which would be
iteratively added to 𝐸𝑠

base
to obtain 𝐸𝑠ext. The procedure then reduces to checking whether 𝐸𝑠

base
overlaps

with any constraint 𝐶𝑘 , finding which component of 𝐺𝐾 contains 𝑘 , and adding all of its constraints to
𝜅 and variables to 𝐸𝑠ext. However, this non-iterative procedure might involve a considerable amount of
pre-computation for defining 𝐺𝐾 , which might never be used in full, and could also be in conflict with
some of the metaheuristics previously discussed.
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5.7.3 Effective sparsity as a pre-optimization

Finally, since our heuristic is problem-agnostic and entirely structural—i.e., it only eliminates variables
and constraints, with no further transformations of the input problem—it can be considered as a general
pre-optimization step, thus providing a reduced version of a problem which is more amenable to other
simplifications.

As an example, the sparse problem could allow for Gaussian elimination (or some other transforma-
tion) to be performed, automatically reducing the number of variables and constraints further (possibly
at the cost of sparsity). Nevertheless, we leave such investigations for future work.

5.8 Conclusions and outlook

We have developed a heuristic method that is capable of significantly reducing the size of large-scale
semidefinite programs. Unlike the traditional approach based on a problem’s aggregate sparsity, our
method eliminates both variables and constraints by identifying the effective sparsity structure that inher-
ently satisfies constraints, and naturally emerges from the problem itself. This method is automatic and
problem-agnostic, making it suitable for a variety of applications.

While our heuristic has been very successful in producing sparse versions of certain problem, there is
no general guarantee that the final problem will be sparse. It may be the case that our method eventually
includes all variables and constraints. When this happens, alternative strategies must be employed, such
as stopping before achieving a stable sparsity pattern (typically resulting in an outer approximation) or
leveraging additional structures of the original problem.

The specific features of a problem that lead to an effective sparsity are still unclear. Given that our
method is relatively new, further research is needed to evaluate its performance across different scenarios.
These topics will be the focus of future research.
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Chapter 6

Deterministic Complexity

This chapter includes unpublished material expanding upon the notion of deterministic complexity (DC),
as introduced in Ref. [198] and discussed in Sec. 2.5.1. Whereas the DC was first defined for sequences of
outputs, here we generalize it to the case of sequences of inputs and outputs from alphabets of arbitrary
size.

In contrast with the previous chapters here we veer towards a computational perspective, which offers
new insights into how the physics of temporal correlations relates to fundamental limitations in resource-
bounded computational and information processing tasks. These topics will be explored in future research.

The chapter is organized as follows. Sec. 6.1 offers a summary of the results, while Secs. 6.2 and 6.3
provide a review of finite-state machines, and the Arrow-of-Time constraints together with its polytope,
introduced earlier in the thesis. In Sec. 6.4 we define “Arrow-of-Time functions” in order to reformulate
the problem of generating deterministic temporal correlations as computational tasks. In Sec. 6.5 we
introduce the generalization of the deterministic complexity to the case of input-outputs, and in Sec. 6.6
we investigate upper bounds on its value. Section 6.7 introduces the partial deterministic complexity
(PDC) and the conditional deterministic complexity (CDC), further generalizations of DC based on graph-
theoretical principles. Finally, Sec. 6.8 presents an overall discussion of these results and their connections
with topics in computer science.

Author contribution: In this work, the doctoral candidate significantly contributed to the conception of
the DC, and the development of the proofs in Obs. 7 and 8. The candidate is responsible for writing the
majority of the proofs, and is fully responsible for the maximum DC upper bound, the results based on
graph theory, the development of the partial and conditional DCs, the writing of all the text within this
chapter, and the production of all its graphical assets.

6.1 Summary of results

The general principles underlying the deterministic complexity were introduced by Spee et al. [182] in
the context of simulating extremal points of the Arrow-of-Time (AoT) polytope, which correspond to the
deterministic conditional distributions 𝑝 (a|x); see Secs. 1.2.6 and 1.2.7. Several properties of the polytope
were also investigated in this work (e.g. its symmetries under relabeling, asymptotic behaviors), but a
detailed and concrete characterization of arbitrary extremal points was missing.

In Ref. [198], which is the subject of in Ch. 2, these principles were formalized in the context of output
sequences a ∈ A𝐿 (i.e., without inputs, or with 𝑋 = 1), as a computational complexity measure over the
physical realization of a symbolic sequence, one symbol at a time, by means of a deterministic automaton.
While this previous work was restricted to studying sequences of outputs, the computational perspective
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provided by the deterministic complexity can be immediately generalized to the case of inputs and outputs,
with alphabets of arbitrary size.

As we will show, this generalization can be understood as a measure of computational complexity
rooted on fundamental physical principles, namely: causality, finite time, finite memory resources, and
the physical encoding of information in physical systems.

This chapter formalizes this generalization, and briefly remarks on some of its mathematical, physical,
and computational aspects. We first build upon Refs. [182, 198] and generalize Alg. 1 for the input-output
case with Alg. 2, allowing an efficient and direct computation of the minimum dimension required for the
realization of any extremal point of the AoT polytope.

This is achieved by mapping deterministic distributions obeying the AoT constraints into what we call
“Arrow-of-Time Functions” (AoTFs), a subset of functions 𝐹 : X 𝐿 → A𝐿 which satisfy the AoT constraints
in their specific way. AoTFs can be related to tree graphs representing a computation tree, providing a
neat conceptual description of the problem. While similar notions were already used in Ref. [182], here
we shift the focus towards the computational aspects of this problem, and formulate our results in terms
of computational and graph-theoretical principles.

We then establish a direct connection between the DC and the problem of finding the maximum in-
dependent vertex set in graph theory. This graph-theoretical approach is further employed in generalizing
the deterministic complexity to partial AoTFs, where certain input-output pairs can be left unspecified,
leading to the definition of the partial deterministic complexity (PDC). The PDC is then applied to de-
fine the conditional deterministic complexity (CDC), which establishes the memory cost of deterministic
generation of an output sequence when an input sequence is given as an additional information resource.

We conclude the chapter with a brief discussion on how the deterministic complexity relates to similar
complexity measures in computer science.

6.2 Input-output temporal correlations

We follow the notation introduced in Sec. 1.2.5. Throughout this chapter, let X and A be fixed arbitrary
input and output alphabets, respectively, with sizes 𝑋 = |X | and 𝐴 = |A|. While in principle it is possible
to have a separate output alphabet A𝑥 associated to each input 𝑥 ∈ X , for simplicity we will assume that
all inputs share the same output alphabets.

The physical scenario we consider can be conceptualized as a device with a finite-dimensional physical
system acting as its internal memory. The device features a “reset” button, which prepares the memory in
a fixed initial state (here assumed pure), a display screen, and input buttons labeled 𝑥 ∈ X . Upon pressing
an input button, a “measurement” is performed on the internal memory and its outcome is displayed on
the screen as the output 𝑎 ∈ A.

We assume the device is always reset before each sequence of inputs. Thus, the device generates a
conditional input-output distribution 𝑝 (a|x) (see Sec. 1.2.6), and its internal dynamics can be modeled as
a finite-state transducer, as introduced in Sec. 1.3.

Figure 6.1: A device with a “reset” button, 𝑋 = 2 different inputs, and 𝐴 = 2 possible outputs. In this
example, the input sequence x = 011010 results in the output sequence a = 001011.
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Importantly, as discussed in Sec. 1.2.8, we assume the device is isolated, having no access to an external
reference clock or to information about past inputs/outputs stored in some external memory resource.
The measurements are thus time-independent, with the 𝑑-dimensional memory being the sole resource
available for generating 𝑝 (a|x).

6.3 Arrow-of-Time constraints and polytope

As discussed in Sec. 1.3, temporal correlations 𝑝 (a|x) can be written in terms of an appropriate FSM
model, i.e.,

𝑝 (a|x) := 𝜋0𝑇𝑎1 |𝑥1𝑇𝑎2 |𝑥2 · · ·𝑇𝑎𝐿 |𝑥𝐿𝜂 = 𝜋0𝑇a |x𝜂, (6.1)

for a classical model 𝑇 , and

𝑝 (a|x) := Tr
[
I𝑎𝐿 |𝑥𝐿 ◦ · · · ◦ I𝑎2 |𝑥2 ◦ I𝑎1 |𝑥1 (𝜌0)

]
= Tr

[
Ia |x (𝜌0)

]
, (6.2)

for a quantummodel I . The probability distributions arising from Eqs. (6.1) and (6.2) automatically satisfy
the Arrow-of-Time (AoT) constraints (see Sec. 1.2.6), with the 𝑑-dimensional system corresponding to the
finite memory resource enabling a limited amount of information to be relayed (or signaled) from the past
to the future.

The set of temporal correlations allowing only past-to-future signaling forms the Arrow-of-Time poly-
tope (see Sec. 1.2.7), denoted by P𝐿

𝑋,𝐴 for length-𝐿 sequences, which is convex and bounded, and therefore
can be defined as the convex hull of its extreme points [78]. In particular, the extreme points correspond
to deterministic distributions 𝑓𝜆 (a|x) [1, 88], so that any distribution 𝑝 (a|x) obeying the AoT constraints
can be written as a convex mixture:

𝑝 (a|x) =
∑
𝜆

𝑞(𝜆) 𝑓𝜆 (a|x), with 𝑞(𝜆) ≥ 0 and
∑
𝜆

𝑞(𝜆) = 1. (6.3)

Here, the probability distribution 𝑞(𝜆) can be interpreted as initial randomness, i.e., upon being reset, the
device randomly picks a deterministic behavior 𝜆 with probability 𝑞(𝜆).

A crucial observation is that realizing the deterministic distributions 𝑓𝜆 is not a trivial task, both physi-
cally and computationally, and requires aminimum amount ofmemory (i.e., dimension) to be achieved [88,
182]; see also Sec. 1.2.8. Furthermore, as shown in Ref. [182] and Obs. 2, this amount is the same for ei-
ther classical and quantum systems, as the deterministic quantum behavior requires no coherence effects.
Thus, one can think of Eq. (6.3) as a classical simulation of the set of temporal correlations through the
deterministic realization of its extreme points, with initial randomness acting as an extra resource.

In this context, Ref. [182] established a general criterion for the minimum dimension for generating
the extreme points 𝑓𝜆 . Further properties of the polytope were also studied, such as its symmetries over
classical relabeling of input/outputs, and bounds on the dimension needed for realizing any extreme point,
which we also investigate in Sec. 6.6.

Whether or not initial randomness is available as a resource, an exact characterization of the minimum
memory resources needed for generating an arbitrary correlation 𝑝 (a|x) poses significant challenges due
to the complexity of probabilistic classical or quantum behaviors, especially in the presence of noise [124].
For these reasons, in this chapter we focus on a deeper andmore concrete characterization of the determin-
istic distributions, while revealing some computational implications of the existence of the AoT polytope.

6.4 Arrow-of-Time Functions

Since we will focus exclusively on deterministic distributions, it is helpful to think beyond probabilities
and focus on the computational task at hand, namely, that of sequentially mapping inputs x ∈ X 𝐿 into
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outputs a ∈ A𝐿 , one symbol at a time. This is known as transduction.
In particular, we are interested in the subset {𝐹𝜆}𝜆 of functions 𝐹 : X 𝐿 → A𝐿 such that

𝑓𝜆 (a|x) = 𝛿 [𝐹𝜆 (x) = a], (6.4)

where we use the notation 𝛿 [·] = 1 if the statement within brackets is true, and 𝛿 [·] = 0 if false. As
we require 𝑓𝜆 to obey the AoT constraints, these constraints must also be satisfied by each 𝐹𝜆 . Thus, we
introduce the following notion:

Definition 5. (Arrow-of-Time functions, AoTF). An Arrow-of-Time Function (AoTF) 𝐹 of depth 𝐿 is a
function 𝐹 : X 𝐿 → A𝐿 which satisfies the Arrow-of-Time constraints, given by:

[𝐹 (x)]1:ℓ = [𝐹 (x′)]1:ℓ ∀x,x′ ∈ X 𝐿 with x1:ℓ = x′1:ℓ , and ∀ ℓ = 1, . . . , 𝐿. (6.5)

In words, each prefix of inputs x1:ℓ must produce the same prefix of outputs a1:ℓ , for all inputs x ∈ X 𝐿

and prefix lengths ℓ = 1, . . . , 𝐿. Due to this structure, any AoTF can be fully specified by a set of tuples
(x, 𝑎x) relating a single output 𝑎x ∈ A to every prefix x ∈ X 1:𝐿 (see Table 6.1). This naturally motivates
investigating AoTFs in terms of a tree structure, as will be discussed next, which is why we will refer to
the “depth” of 𝐹 when referring to the length of its input-output sequences.

x 𝐹 (x)

0 0 0 𝑎0 𝑎00 𝑎000

0 0 1 𝑎0 𝑎00 𝑎001

0 1 0 𝑎0 𝑎01 𝑎010

0 1 1 𝑎0 𝑎01 𝑎011

1 0 0 𝑎1 𝑎10 𝑎100

1 0 1 𝑎1 𝑎10 𝑎101

1 1 0 𝑎1 𝑎11 𝑎110

1 1 1 𝑎1 𝑎11 𝑎111

Table 6.1: An Arrow-of-Time function with depth 3 andX = {0, 1}, written as a table. TheAoT constraints
imply every prefix of inputs produces the same prefix of outputs, such that 𝐹 can be fully specified by
choosing an output 𝑎x ∈ A for every x ∈ X 1:𝐿 .

For a fixed X , A, and 𝐿, Eq. (6.4) establishes that AoTFs are in one-to-one correspondence to the
deterministic distributions 𝑓𝜆 . Therefore, we may refer to F𝐿

X ,A as the set of AoT functions, each defining
an extreme point in the corresponding AoT polytope. Nevertheless, the computational perspective of
AoTFs will be useful in the following sections.

As a side note, although ideas related to AoTFs exist within automata theory (e.g. rational functions
and sequential transductions [15]), they are typically explored in broader contexts far removed from the
physical interpretations we require. Therefore, we introduce this term in order to emphasize both the
physical (AoT) and computational (F) aspects of our particular problem.

6.5 Deterministic complexity with inputs and outputs

An AoTF can be directly interpreted as the computation performed by a deterministic finite-state trans-
ducer (DFT, see Sec. 1.3) up to the first 𝐿 steps. This motivates the following definition.

Definition 6. (Deterministic Complexity of an AoTF). Let X and A be, respectively, input and output
alphabets of arbitrary size, and let 𝐹 ∈ F𝐿

X ,A be an Arrow-of-Time function of depth 𝐿. The deterministic

114



complexity of 𝐹 , denoted byDC(𝐹 ), is the minimum number of states such that there exists a deterministic
transducer computing 𝐹 .

This generalizes the previous output-only definition of deterministic complexity (Def. 3) to the case of
inputs and outputs, while also framing it in terms of a computational task. In what follows, we will denote
the previous output-only deterministic complexity by DCO, and the general input-output case simply by
DC. Just as the DCO was a property of symbolic sequences, DC is a property of symbolic “sequential
functions”. Thus, while both are motivated by a concrete physical scenario they ultimately pertain to
abstract sequential computational tasks.

6.5.1 Computation trees

To obtain the DC of an AoTF, we consider a hypothetical transducer computing 𝐹 and unravel all its
possible behaviors as a computation tree, i.e., the tree which computes 𝐹 . As we do not know the min-
imal transducer in advance, each vertex of the tree represents an unknown state of the transducer at a
given moment, while edges represent transitions between these unknown states. Importantly, because
we require Mealy-type FSMs (see Sec. 1.3.3) outputs are assigned to the edges (transitions), not vertices
(states).

Due to the AoT constraints and deterministic transitions, these can be represented as complete 𝑋 -
ary tree graphs, i.e., at every step we have 𝑋 possible branches, one for each input, each resulting in
an independent state transition and corresponding output. We use the formalism of graph theory (see
Sec. 5.3.1 for an introduction to the relevant notions), adopting the following definition.

Definition 7. (Computation tree). A depth-𝐿 computation tree is a directed graph 𝐺 = (𝑉 , 𝐸, 𝛼), where
𝑉 = X 0:𝐿 is a set of vertices (the “nodes”), and 𝐸 = {(x0: |x |−1,x)}x is a set of edges (the “branches”),
indexed by an input prefix x ∈ X 1:𝐿 , with corresponding edge labels 𝛼 = {𝑎x}x with 𝑎x ∈ A.

We will refer to these simply as “trees”, denoting them by 𝜏 . A tree computing 𝐹 can be constructed by
choosing the outputs 𝑎x1:ℓ = [𝐹 (x)]ℓ , for every inputx ∈ X 𝐿 truncated to every prefix length ℓ = 1, . . . , 𝐿.
Therefore, in the following we assume 𝜏 and 𝐹 have the same depth.

Given a tree 𝜏 , we will denote its depth by |𝜏 |, and refer to zero-depth trees as empty. We will use
𝜏 (x) ∈ A to denote the output associated with an input prefix x ∈ X 1: |𝜏 | . Since every input prefix
x ∈ X 0:𝐿 (i.e., including the empty prefix x = 𝜀) uniquely determines a vertex, we define the subtree of
𝜏 starting at the vertex x by 𝜏 [x], with 𝜏 [𝜀] = 𝜏 . We denote by 𝜏ℓ the truncation of the tree 𝜏 to depth
ℓ ≤ |𝜏 |, i.e., the tree where every vertex and edge with input prefix longer than ℓ is discarded, thus |𝜏ℓ | = ℓ .
Naturally, truncating to the tree’s own depth has no effect, i.e., 𝜏 |𝜏 | = 𝜏 . The trees 𝜏 and 𝜏 ′ are equal
if: (i) they share input and output alphabets (ii) they have the same depth, and (iii) 𝜏 (x) = 𝜏 ′ (x) for all
x ∈ X 1: |𝜏 | . Throughout this chapter we will always assume trees share alphabets. We will also require
the following notion.

Definition 8. (Consistent trees). Let 𝜏, 𝜏 ′ be two trees, and let ℓ = min(|𝜏 |, |𝜏 ′ |). The two trees are said
to be consistent, denoted by 𝜏 ∼ 𝜏 ′, if 𝜏 (x) = 𝜏 ′ (x) for all x ∈ X 1:ℓ or, equivalently, if the two trees are
equal up to truncation, i.e., 𝜏ℓ = 𝜏 ′ℓ .

Observation 5. Consistency relations between trees are reflexive (𝜏 ∼ 𝜏) and symmetric (𝜏 ∼ 𝜏 ′ =⇒
𝜏 ′ ∼ 𝜏), but they are not transitive: 𝜏 ∼ 𝜏 ′ and 𝜏 ′ ∼ 𝜏 ′′ do not imply 𝜏 ∼ 𝜏 ′′. Therefore ∼ is not an
equivalence relation.

Proof. This is due to truncation. Suppose |𝜏 | = |𝜏 ′′ | = 2, |𝜏 ′ | = 1, 𝜏 ≠ 𝜏 ′′, and 𝜏1 = 𝜏 ′1 = 𝜏 ′′1 . Then 𝜏 ∼ 𝜏 ′

and 𝜏 ′ ∼ 𝜏 ′′ due truncation to length 1, but 𝜏 ≁ 𝜏 ′′. □
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Observation 6. Given two trees 𝜏 and 𝜏 ′, if 𝜏ℓ ≁ 𝜏 ′ℓ for some ℓ ≤ min( |𝜏 |, |𝜏 ′ |), then 𝜏 ≁ 𝜏 ′.

Since branching is defined by the inputs, and an output must be associated to each transition, we may
use the spatial disposition of the vertices in a diagram to represent inputs, and use edge labels to specify
outputs. An example of such diagram is shown in Fig. 6.2, where we take the transducer as starting at the
root, at the top, with sequences of inputs/outputs (and therefore time) read downwards. For this reason,
the direction of edges is left implicit.

Figure 6.2: Computation tree for X = {0, 1} showing all possible behaviors of a transducer after 𝐿 = 3

steps. Vertices (disks) correspond to the unknown states at each step, each associated to a unique input
prefix x ∈ X 0:𝐿 determining the “path” towards it. Each edge and its corresponding label (i.e., outputs
𝑎x ∈ A) can be associated with an input prefix x ∈ X 1:𝐿 . Outputs for a given input sequence x ∈ X 𝐿 are
read one by one, starting at the root (on top) and collecting outputs downwards, moving left for 𝑥 = 0 and
right for 𝑥 = 1, as depicted. In this example, the input sequence x = 010 results in the output sequence
a = 𝑎0 𝑎01 𝑎010. Edge colors follow the button colors in Fig. 6.1.

Note that the same notion of a tree was also utilized in Ref. [182], although from a physical perspective.
Here, we make the distinction between the function 𝐹 (the computation being performed) and a tree
representing the behavior of a FSM computing 𝐹 . We briefly elaborate on this distinction in the following
section.

6.5.2 Computing the deterministic complexity

A tree 𝜏 represents what is required for any transducer to compute a given 𝐹 , but it does not tell us
how the computation is performed. Since the tree vertices correspond to unknown transducer states, a
concrete description of a transducer’s behavior can be obtained by assigning definite states 𝑠𝑖 ∈ S to each
vertex 𝑖 ∈ 𝑉 (and its corresponding subtree 𝜏 [𝑖]), where 𝑉 := X 0:𝐿 . We will denote such assignments by
𝜎 = (𝑠𝑖 )𝑖∈𝑉 .

Importantly, this assignment must be consistent. If two vertices 𝑖, 𝑗 ∈ 𝑉 are to represent the same state
𝑠𝑖 = 𝑠 𝑗 , then a necessary condition is that 𝜏 [𝑖] ∼ 𝜏 [ 𝑗]. The converse does not hold, however: 𝜏 [𝑖] ∼ 𝜏 [ 𝑗]
might be true due to truncation, even though 𝑠𝑖 ≠ 𝑠 𝑗 . In such cases, the states 𝑠𝑖 and 𝑠 𝑗 may also appear
elsewhere in 𝜏 , assigned to larger subtrees. The example in Obs. 5 illustrates such a scenario. In our
notation, this can be formalized as follows.

Definition 9. (Consistent assignment). Let 𝜎 = (𝑠𝑖 )𝑖∈𝑉 be an assignment of states 𝑠𝑖 ∈ S for the vertices
of 𝜏 , and let 𝑣 (𝑠) := { 𝑖 ∈ 𝑉 | 𝑠𝑖 = 𝑠 } denote the set of vertices assigned to a state 𝑠 ∈ S . The assignment
𝜎 is consistent if 𝜏 [𝑖] ∼ 𝜏 [ 𝑗] for all 𝑖, 𝑗 ∈ 𝑣 (𝑠) and all 𝑠 ∈ S .

Definition 10. (Optimal assignment). A consistent assignment is optimal if it uses the minimum number
of states.

Proposition 4. DC(𝐹 ) corresponds to the number of states in an optimal assignment for 𝜏 .
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Proposition 5. Let 𝜎 = (𝑠𝑖 )𝑖∈𝑉 be an optimal assignment and 𝑣 (𝑠) the set of vertices assigned to 𝑠 ∈ S .
Then for each state 𝑠 we can pick a vertex 𝑖 ∈ 𝑣 (𝑠) constructing a set 𝑆 ⊆ 𝑉 , with |𝑆 | = |S |, such that for
every distinct 𝑖, 𝑗 ∈ 𝑆 we have 𝑠𝑖 ≠ 𝑠 𝑗 ⇐⇒ 𝜏 [𝑖] ≁ 𝜏 [ 𝑗].

Proof. If the assignment is consistent, then for any two vertices 𝑖, 𝑗 ∈ 𝑉 with 𝜏 [𝑖] ≁ 𝜏 [ 𝑗] we have 𝑠𝑖 ≠ 𝑠 𝑗 .
If the assignment is also optimal, then for every 𝑠, 𝑠′ ∈ S with 𝑠 ≠ 𝑠′ there must exist vertices 𝑖, 𝑗 ∈ 𝑉 with
𝑠𝑖 = 𝑠 and 𝑠 𝑗 = 𝑠′ such that 𝜏 [𝑖] ≁ 𝜏 [ 𝑗], otherwise the states are indistinguishable and could be merged
into a single state, contradicting the assumption of optimality. Furthermore, by Obs. 6, for every 𝑖, 𝑗 ∈ 𝑉
with 𝜏 [𝑖] ≁ 𝜏 [ 𝑗] and 𝑠𝑖 = 𝑠 , there will exist a vertex 𝑖′ ∈ 𝑣 (𝑠) such that |𝜏 [𝑖] | ≤ |𝜏 [𝑖′] | and 𝜏 [𝑖′] ≁ 𝜏 [ 𝑗].
Thus, we may pick 𝜏 [𝑖′] as a “representative tree” for the state 𝑠 , and collect all vertices of representative
trees into a set 𝑆 .

□

Intuitively, an assignment is optimal if every state 𝑠 ∈ S is assigned to a least one subtree (i.e., no state
is unused) and every pair of distinct states can be distinguished using their corresponding subtrees. If this
was not the case, the unused state could have been removed, or the two indistinguishable states could be
merged into a single one, in either case reducing the total number of states. We conclude that an optimal
assignment not only uses the least number of states (no state can be removed), but also has the maximum
possible number of nonequivalent states (any extra state is redundant).

These criteria are essentially the same as the ones introduced by Spee et al. [182], as the number of
“nonequivalent futures” determining theminimum dimension required to simulate an extreme point of the
AoT polytope. Interestingly, despite the finite-length deterministic scenario never being considered, the
same principles are also used when obtaining causal states of 𝜀-machines (and 𝜀-transducers) for modeling
stochastic processes [55, 119]. In this chapter, we adopt the computational perspective on these ideas in
order to generalize them further.

An algorithm for computing DC(𝐹 ) is given in Alg. 2. Following Prop. 5, the algorithm corresponds
to a breadth-first search of the tree 𝜏 , where each subtree is matched against a list of previous subtrees
corresponding to nonequivalent states. If a match is found, the matched state is assigned to the current
vertex, whereas if no matches are found the subtree at the current vertex is added to the list of known
states.

Figure 6.3 illustrates the result of applying Alg. 2. Note that multiple assignments are possible (e.g.,
the vertex x = 010 could have also been assigned states 2, 3, 4, or 5), but the algorithm returns only one.
The algorithm can easily be adapted to enumerate all possible assignments—and, therefore, all minimal
transducers—by finding all matching states instead of stopping at the first match (line 18).

0 0

0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

1

2 3

1 4 5 1

1 6 7 7

1 8 9 1

Figure 6.3: Example of a tree for an AoTF 𝐹 , with 𝑋 = 𝐴 = 2 and 𝐿 = 5, showcasing DC(𝐹 ) = 8 through
an optimal assignment. The state assignments are shown in yellow and are labeled sequentially, in the
order found by Alg. 2. Note that we omit redundant assignments, as once a subtree can be assigned to a
previous state its subtrees are completely determined.

117



Algorithm 2 Deterministic complexity algorithm for an Arrow-of-Time function 𝐹 .
Input: A tree 𝜏 computing 𝐹 .
Outputs: The DC(𝐹 ), a transducer model 𝑇 , state assignments, and corresponding trees.
1: procedure FindDC(𝜏 )
2: 𝑠𝑡𝑎𝑡𝑒𝑠 ← { (1, 𝜏 ) } ⊲ Label and subtree of states found so far. 𝜏 itself is always the first state.
3: 𝑑𝑐 ← 1 ⊲ Current number of states known.
4: 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠 ← { (𝜀, 1) } ⊲ Initialize list of (x, 𝑠 ) tuples, the state assignments at each prefix x.
5: 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 ← {} ⊲ List of state transitions found, initially empty.
6: 𝑞𝑢𝑒𝑢𝑒 ← {} ⊲ Initialize a queue of candidate states.
7: for 𝑥 in X do ⊲ We add the first subtrees to the queue.
8: 𝑞𝑢𝑒𝑢𝑒.𝑒𝑛𝑞𝑢𝑒𝑢𝑒 ( (𝜀, 𝑥, 𝜏 (𝑥 ), 1, 𝜏 [𝑥 ] ) ) ⊲ Prefix, input, output, and state leading to the subtree 𝜏 [𝑥 ].
9: end for

10: while 𝑞𝑢𝑒𝑢𝑒 not empty do ⊲ Continue for as long as we have trees to check.
11: (y, 𝑥, 𝑎, 𝑠, 𝜏 ) ← 𝑞𝑢𝑒𝑢𝑒.𝑑𝑒𝑞𝑢𝑒𝑢𝑒 () ⊲ Get next element from queue as candidate tree, replacing 𝜏 .
12: 𝑚𝑎𝑡𝑐ℎ ← False
13: for (𝑠′, 𝜏 ′ ) in 𝑠𝑡𝑎𝑡𝑒𝑠 do ⊲ Scanning over the list of known states…
14: if 𝜏 ∼ 𝜏 ′ then ⊲ … we check if the current tree is consistent with a known state.
15: 𝑚𝑎𝑡𝑐ℎ ← True ⊲ A known state has been found.
16: 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 ( (𝑥, 𝑎, 𝑠, 𝑠′ ) ) ⊲ Save the transition 𝑠 → 𝑠′ with input 𝑥 and output 𝑎.
17: 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 ( (y𝑥, 𝑠′ ) ) ⊲ Assign the state 𝑠′ for the vertex at prefix x = y𝑥 .
18: break ⊲ We can stop looking for matches.
19: end if
20: end for
21: if not𝑚𝑎𝑡𝑐ℎ then ⊲ If 𝜏 did not match any known state, it is a new state.
22: 𝑑𝑐 = 𝑑𝑐 + 1 ⊲ Update total number of states. The new state will be labeled by 𝑑𝑐 .
23: 𝑠𝑡𝑎𝑡𝑒𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 ( (𝑑𝑐, 𝜏 ) ) ⊲ Add current subtree 𝜏 and its label to our list of known states.
24: 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 ( (𝑥, 𝑎, 𝑠, 𝑑𝑐 ) ) ⊲ Save the transition 𝑠 → 𝑑𝑐 with input 𝑥 and output 𝑎.
25: 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 ( (y𝑥,𝑑𝑐 ) ) ⊲ Assign the state 𝑑𝑐 for the vertex at prefix x = y𝑥 .
26: for 𝑥 in X do ⊲ Add all subtrees of 𝜏 to our queue, searching the next depth.
27: 𝑞𝑢𝑒𝑢𝑒.𝑒𝑛𝑞𝑢𝑒𝑢𝑒 ( (𝑥, 𝜏 (𝑥 ), 𝑑𝑐, 𝜏 [𝑥 ] ) )
28: end for
29: end if
30: end while
31: ⊲ With queue empty, we are done. Assemble the final model𝑇 .
32: 𝑇 ← 0𝑋×𝐴×𝑑𝑐×𝑑𝑐 ⊲ Initialize a 𝑋 × 𝐴 × 𝑑𝑐 × 𝑑𝑐 transition model with zeros.
33: for (𝑥, 𝑎, 𝑖, 𝑗 ) in 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 do ⊲ Construct the model following the transition structure found earlier.
34: [𝑇𝑎 |𝑥 ]𝑖 𝑗 ← 1

35: end for
36: return 𝑑𝑐 ,𝑇, 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠, 𝑠𝑡𝑎𝑡𝑒𝑠
37: end procedure

Similar to the results in Sec. 2.5.2, minimal transducers will not generally be unique, but all will have
the same number of states. Furthermore, each minimal transducer computing a given 𝐹 will also define
an infinite family of AoTFs, obtained by extending the sequences beyond the original depth 𝐿. This is
analogous to the result on patterns discussed in Sec. 2.5.2, where we can interpret trees, together with state
assignments, as the generalization of patterns to the input-output case. For these reasons, we distinguish
between AoTFs and their corresponding computation trees, as they represent distinct objects, e.g., a tree
of depth 𝐿 also computes functions of depths ℓ < 𝐿.

To finish this section, we show that Alg. 2 results in the minimal number of states.

Observation 7. (No undercounting). Algorithm 2 outputs a valid model for its input tree.

Proof. After each new state is found, its direct descendants, corresponding to subtrees, are added to the
queue (lines 21-28), which is recursively parsed until the entire tree is exhausted. Whether these de-
scendants refer to a new state or previous states, in both cases the existing transition in the input tree is
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accounted for in the final model (lines 16 and 24). Thus, the model𝑇 returned by the algorithm shares the
same input-output structure as the entire tree. □

Observation 8. (No overcounting). Algorithm 2 outputs a model with the smallest number of states.

Proof. The proof is by contradiction. Let 𝜏 be the input tree, and 𝑀 = (𝑑,𝑇 ,K,S) be the output of Alg. 2,
with 𝑑 = |S |. Now, suppose there exists a tuple 𝑀 ′ = (𝑑 ′,𝑇 ′,K′,S ′), with 𝑑 ′ = |S ′ |, corresponding to
the same tree, but for which 𝑑 ′ < 𝑑 , i.e.,𝑀 ′ describes the same tree, albeit with a simpler model with less
states.

Let 𝑠𝑖 ∈ S and 𝑠′𝑖 ∈ S′ refer to the 𝑖-th unique states in 𝑀 and 𝑀 ′, respectively, and 𝜎𝑖 and 𝜎 ′𝑖 their
corresponding subtrees, obtained by traversing the tree according to the appropriate paths as described
by the assignments K and K′. Without loss of generality, we may refer to 𝑠1 = 𝑠′1 as the initial states
in S and S ′ respectively, such that 𝜎1 = 𝜎 ′1 = 𝜏 , since the initial states must correspond to the entire
tree. Additionally, since the transition structure is entirely encoded in the models 𝑇 and 𝑇 ′, which are
deterministic, we have that state labels are arbitrary, and we may also order 𝑠𝑖 and 𝑠′𝑖 in shortlex order1

based on the shortest prefixes in K and K′ assigned to 𝑠𝑖 and 𝑠′𝑖 . (Note: The parsing order of Alg. 2
automatically follows this ordering.)

If that is the case, then there is an input prefix x ∈ X 0:𝐿 such that the subtree 𝜏 [x] corresponds to a
new state 𝑠𝑘 ∈ S in 𝑀 (as described by the model 𝑇 ), but to a previous state 𝑠′ℓ ∈ S ′ in 𝑀 ′ (according to
the model 𝑇 ′), with ℓ < 𝑘 . However, since Alg. 2 parses the tree breadth-first and lexicographically, this
earlier state must have also been previously found in 𝑀 as well, which contradicts the assumption that
𝜏 [x] corresponds to a new state 𝑠𝑘 . □

6.6 Maximum deterministic complexity

At this point, a most natural question to ask is: What is the maximum DC over all AoTFs for a given 𝑋 ,
𝐴, and 𝐿? We will refer to this quantity by 𝑀 (𝑋,𝐴, 𝐿), or simply 𝑀 , and use𝑚 and𝑚 for its lower and
upper bounds, respectively.

Knowledge of𝑀 has interesting implications. Computationally, it establishes one notion of maximum
complexity for finite computational tasks. Physically, it quantifies the minimum dimension required to
realize any extreme point in the corresponding AoT polytope P𝐿

𝐴,𝑋 , under either classical or quantum
theory, so that a device with a classical 𝑑-it of memory and some initial randomness can generate any
temporal correlation 𝑝 (a|x) provided 𝑑 ≥ 𝑀 .

A discussion on 𝑀 can also be found in Spee et al. [182], where two methods were provided for ob-
taining lower bounds, as well as results estimating its asymptotic behavior. There, it was found that 𝑀
scales at least exponentially in 𝐿. This section offers the complementary discussion. We provide a method
that attempts to compute 𝑀 directly, but ultimately provides an upper bound𝑚. The idea follows from a
non-constructive combinatorial counting argument involving the total number of possible trees of a given
size. Consider an arbitrary tree for a choice of parameters (𝑋,𝐴, 𝐿). As each layer ℓ of the tree contains
𝑋 ℓ vertices, the total number of vertices 𝑛𝑉 and edges 𝑛𝐸 are

𝑛𝑉 (𝐿) =
𝐿∑
ℓ=0

𝑋 ℓ =
𝑋𝐿+1 − 1
𝑋 − 1 , (6.6)

𝑛𝐸 (𝐿) = 𝑛𝑉 (𝐿) − 1 =
𝑋 (𝑋𝐿 − 1)
𝑋 − 1 . (6.7)

Since to each edge we may freely assign an output 𝑎 ∈ A, there are a total of

𝑁𝐿 = 𝐴𝑛𝐸 (𝐿) = 𝐴
𝑋 (𝑋𝐿−1)

𝑋−1 (6.8)
1Sorting by length, then lexicographically, e.g.: 0, 1, 00, 01, 10, 11, 000, 001, …
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distinct trees, a number that grows doubly-exponentially in 𝐿. This is precisely the number of extreme
points in the AoT polytope [88, 182]. Note that many of the trees will be isomorphic under relabeling of
inputs and outputs, what can be understood as a form of classical post-processing. A detailed analysis of
these symmetries is available in Ref. [182]. That being said, for our purposes these symmetries will not be
relevant.

As we have seen, computing DC(𝐹 ) reduces to finding an optimal assignment of states to each vertex
(and its subtree) in the corresponding tree for 𝐹 , such that every distinct pair of states can be distinguished
through an inconsistency between their associated subtrees. Furthermore, since the last vertices in a tree
(its “leaf” vertices) correspond to empty subtrees their state assignments are arbitrary, reflecting the fact
that the final transducer states are irrelevant when computing 𝐹 . We can then state our first result.

Proposition 6. 𝑀 (𝑋,𝐴, 𝐿) is strictly upper bounded by the number of non-leaf vertices in the corre-
sponding trees for 𝐹 ∈ F𝐿

X ,A, i.e.:

𝑀 (𝐴,𝑋, 𝐿) := max
𝐹

{
DC(𝐹 )

�� 𝐹 ∈ F𝐿
X ,A

}
≤ 𝑛𝑉 (𝐿 − 1) =

𝑋𝐿 − 1
𝑋 − 1 . (6.9)

This trivial bound can be saturated if a unique depth-1 subtree is assigned to each of the 𝑋𝐿−1 second-
to-last vertices. Since there are 𝐴𝑋 depth-1 trees, the bound can be reached whenever 𝐴𝑋 ≥ 𝑋𝐿−1. How-
ever, since this bound grows exponentially with depth it is quickly rendered useless, motivating the search
for tighter upper bounds.

For the remaining of this section, let 𝜏 be the depth-𝐿 tree for an AoTF 𝐹 ∈ F𝐿
X ,A such thatDC(𝐹 ) = 𝑀 .

We will not attempt to construct 𝜏 directly. Instead, our goal will be to count the maximum number of
subtrees of 𝜏 that can be made mutually-inconsistent, which is equivalent to the DC(𝐹 ). We will require
the following notion.

Definition 11. (Tree intersection, intersection depth). Given two trees 𝜏 and 𝜏 ′, their intersection 𝜏 ∩ 𝜏 ′

is the largest tree they have in common through truncation. More precisely, we can write

|𝜏 ∩ 𝜏 ′ | := max
{
ℓ ∈ N≥0

�� 𝜏ℓ = 𝜏 ′ℓ }
, (6.10)

where |𝜏 ∩ 𝜏 ′ | is the intersection depth between the two trees.

With the notion of truncation and intersection, an inconsistency relation 𝜏 ≁ 𝜏 ′ between two trees
partitions their layers into three regions, as shown in Fig. 6.4. At the top we have |𝜏 ∩ 𝜏 ′ | ≥ 0 layers
corresponding to their intersection, followed by min( |𝜏 |, |𝜏 ′ |) − |𝜏 ∩ 𝜏 ′ | > 0 layers where the trees can
be found to be inconsistent. Lastly, we have the remaining layers of the larger tree, irrelevant due to
truncation (if any).

Figure 6.4: Diagrammatic representation of the inconsistency relation between two trees, here depicted
as layered triangles, where we identify three separate regions. These diagrams and ideas will be useful in
the following sections.
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6.6.1 Outline of the counting argument

The idea for computing𝑀 non-constructively is to consider the behavior of Alg. 2when computingDC(𝐹 ).
The algorithmwill parse the subtrees 𝜏 [𝑖] at each vertex 𝑖 ∈ 𝑉 of 𝜏 breadth-first, i.e., layer by layer, starting
at the root, while keeping track of all subtrees it has seen before. The current subtree 𝜏 [𝑖] is assigned a
new state if it is inconsistent with all of the previous subtrees, otherwise it is assigned the state associated
with a previous tree consistent with it. Therefore, in the case of 𝜏 , as many subtrees as possible must be
mutually-inconsistent throughout this breadth-first parsing order.

If we knew 𝜏 in advance, the parsing order of Alg. 2 provides a correct sequence of 𝑀 mutually-
inconsistent subtrees Δ∗ := (𝜏 [𝑖1], 𝜏 [𝑖2], . . . , 𝜏 [𝑖𝑀 ]) which all fit together within 𝜏 . Since we don’t know
𝜏 , we can instead imagine the finite sets of trees from which we could iteratively build the correct (but
unknown) sequence Δ∗. This motivates a counting argument: pretendwe are building Δ∗ sequentially as Δ,
and for each new state 𝑘 we calculate the remaining number of trees 𝑅 we can pick which are inconsistent
with all previous trees currently in Δ.

A reasonable strategy is to treat each layer of vertices ℓ ∈ {0, . . . , 𝐿 − 1} iteratively, starting at the
root at ℓ = 0, and assume a new state can be assigned to a vertex (and its subtree) as long as 𝑅 > 0. This
assumption is not entirely correct, as all subtrees must also be internally consistent within 𝜏 , but it will
generally provide a good upper bound. Thus, once we find that no trees are available for a step 𝑘 = 𝐾 + 1,
we will conclude DC(𝐹 ) = 𝑀 ≤ 𝐾 .

For layer ℓ = 0, we will have 𝑅 = 𝑁𝐿 possible choices of trees from which we pick one (i.e., 𝑋 0):
𝜏 [𝑖1] = 𝜏 . In the next layer ℓ = 1, we attempt to pick a total of 𝑋 1 trees, all mutually inconsistent. There
are a total of 𝑁𝐿−1 trees of depth 𝐿 − 1, but one will be excluded for being consistent with 𝜏 [𝑖1], namely,
𝜏 [𝑖1] truncated to depth 𝐿 − 1. Thus, there are 𝑅 = 𝑁𝐿−1 − 1 trees available for 𝜏 [𝑖2]. Picking one, we are
left with 𝑅 = 𝑁𝐿−1 − 2 trees for 𝜏 [𝑖3], and so on, repeating this process until all trees have been picked for
ℓ = 1 before moving on to the next layer.

Here, complications begin to arise. Starting from a total of 𝑁𝐿−2 possible subtrees at layer ℓ = 2, we
need to exclude all subtrees consistent with the |Δ| = 𝑋 0 + 𝑋 1 = 𝑋 + 1 previous subtrees in the sequence
Δ = (𝜏 [𝑖1], 𝜏 [𝑖2], . . . , 𝜏 [𝑖𝑋+1]). But using 𝑅 = 𝑁𝐿−2 − |Δ| underestimates the number of remaining trees,
as it assumes every tree 𝜏 ∈ Δ results in a distinct tree when truncated to depth 𝐿 − 2. It is perfectly
possible that all trees in Δ would count as a single tree if they all share a sufficiently large intersection
depth, leading to 𝑅 = 𝑁𝐿−2 − 1 instead.

Figure 6.5: Suppose 𝑋 = 2 and 𝐿 = 7. Starting at layer ℓ = 2, we would have already picked Δ =

(𝜏 [𝑖1], 𝜏 [𝑖2], 𝜏 [𝑖3]), which could mutually have an intersection depth of 5. Therefore, all of them could
count as a single tree to be excluded when picking 𝜏 [𝑖4]. It is then necessary to always maximize the
intersection depth between trees in Δ in order to minimize the number of excluded trees at every step.

Importantly, if we wish to obtain and upper bound for 𝑀 it is necessary to exclude the minimum
possible number of trees from the total 𝑁𝐿−ℓ , ensuring we always can pick a new tree if 𝑘 < 𝑀 . Therefore,
all trees in Δ must have the largest intersection depth as possible at each step. Figure 6.5 illustrates these
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ideas. For each vertex of layer ℓ , the exact number of trees we could pick from is then given by:

𝑅 = 𝑁𝐿−ℓ − |{𝜏𝐿−ℓ | 𝜏 ∈ Δ}|, (6.11)

where |{𝜏𝐿−ℓ | 𝜏 ∈ Δ}| corresponds to the minimum number of distinct trees obtained by truncating every
tree in Δ to the current depth 𝐿 − ℓ .

That being said, we do not know the correct Δ∗ and have no prior knowledge about the structure of
its subtrees 𝜏 [𝑖𝑘 ]. As mentioned earlier, this counting argument assumes a new tree (and therefore a new
state) will be picked at the current layer as long as 𝑅 > 0, but this will not always be the case in the
correct Δ∗. As all subtrees must be internally consistent, fitting within 𝜏 , picking a subtree one at a time
is not something that can be done independently from the overall structure of 𝜏 . This counting argument
ignores these additional constraints.

6.6.2 Upper bounds

We can circumvent the issues discussed in the previous section if we use an approach which is guaranteed
to overestimate the number of remaining trees. A trivial way to do this is to simply assume a maximal in-
tersection depth for all trees from the previous layers ℓ ′ < ℓ , as in Fig. 6.5, which corresponds to assuming
|{𝜏𝐿−ℓ | 𝜏 ∈ Δ}| = 1. This gives, at each step,

𝑅 = 𝑁𝐿−ℓ − 1 − 𝑛, (6.12)

where 𝑛 is the number of trees already picked at the current layer ℓ . This assumption is unrealistic, but it
will never undercount the remaining number of trees. We can establish the following result.

Proposition 7. An upper bound for𝑀 is given by:

𝑀 (𝑋,𝐴, 𝐿) ≤ 𝑚(𝑋,𝐴, 𝐿) =
𝐿−1∑
ℓ=0

min
(
𝑋 ℓ , 𝑁𝐿−ℓ − 1

)
(6.13)

Proof. Let 𝐿 be the depth of 𝜏 and consider we are picking a new tree at layer ℓ , with Δ<ℓ the sequence
of trees picked for the previous layers ℓ ′ < ℓ , i.e., Δ excluding the 𝑛 trees picked at the current layer.
Assuming a maximum intersection depth for all trees in Δ<ℓ , we have |𝜏 ∩ 𝜏 ′ | = 𝐿 − ℓ for all 𝜏, 𝜏 ′ ∈ Δ<ℓ ,
implying 𝜏𝐿−ℓ = 𝜏 for every 𝜏 ∈ Δ<ℓ , i.e., 𝜏 is their (assumed) common intersection (e.g., see Fig. 6.5).
Furthermore, since we require every new tree to be inconsistent with the previous ones, we require 𝜏 [𝑖𝑘 ] ≁
𝜏 for every 𝜏 ∈ Δ<ℓ , and that all 𝑛 trees picked for the current layer ℓ will be distinct. Since the exact
number of remaining trees at any step at a layer ℓ is given by Eq. (6.11), we find:

𝑅 = 𝑁𝐿−ℓ − |{𝜏𝐿−ℓ | 𝜏 ∈ Δ}|
= 𝑁𝐿−ℓ − |{𝜏𝐿−ℓ | 𝜏 ∈ Δ<ℓ }| − 𝑛
= 𝑁𝐿−ℓ − 1 − 𝑛.

(6.14)

We can pick a new tree 𝜏 [𝑖𝑘 ] (and therefore a new state) as long as 𝑅 > 0. Therefore, the number 𝑛 of trees
we can pick at layer ℓ will be bounded by 𝑛 < 𝑁𝐿−ℓ − 1. Finally, since we pick at most 𝑋 ℓ trees per layer,
we have min

(
𝑋 ℓ , 𝑁𝐿−ℓ − 1

)
trees picked per layer ℓ . Summing over all layers ℓ = 0, . . . , 𝐿 − 1 completes

the proof. □

Improved upper bounds are possible, but we leave this discussion for future research.

6.6.3 Maximal trees and comparison with lower bounds

Table 6.2 compares the lower bounds computed with the two approaches described in Spee et al. [182]
with our upper bounds computed with Eq. (6.13). Figure 6.6 displays several maximal trees for 𝐿 = 3 to 6.
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𝐿 𝑚1 (2, 2, 𝐿) 𝑚2 (2, 2, 𝐿) 𝑚 (2, 2, 𝐿)

1 1 1 1 (exact)

2 2 1 3 (exact)

3 4 3 6 (exact)

4 4 7 10 (exact)

5 8 15 18 (exact)

6 16 15 34

7 32 31 66

8 64 63 129

9 64 127 193

10 128 255 321

𝐿 𝑚1 (2, 2, 𝐿) 𝑚2 (2, 2, 𝐿) 𝑚 (2, 2, 𝐿)

11 256 511 577

12 512 1 023 1 089

13 1 024 2 047 2 113

14 2 048 4 095 4 161

15 4 096 4 095 8 257

16 8 192 8 191 16 449

17 16 384 16 383 32 832

18 16 384 32 767 49 216

19 32 768 65 535 81 984

20 65 536 131 071 147 520

Table 6.2: Comparison between𝑚(2, 2, 𝐿) obtained with Eq. (6.13) and the lower bounds𝑚1 (2, 2, 𝐿) and
𝑚2 (2, 2, 𝐿) following the arguments in Ref. [182]. For 𝐿 ≤ 5, we can verify𝑀 (2, 2, 𝐿) =𝑚(2, 2, 𝐿) is exact
by the trees given explicitly in Fig. 6.6.

6.7 Generalizations

The computational and graph-theoretical perspectives offered by the DCmotivate several generalizations,
which have connections to existing concepts in computer science. These connections will be discussed
later. For now, we briefly introduce the generalizations.

6.7.1 Consistency graphs and independence number

In the following, let 𝐺 = (𝑉 , 𝐸) be a graph defined over vertices 𝑉 and edges 𝐸. We assume undirected
graphs, such that (𝑖, 𝑗) ∈ 𝐸 implies ( 𝑗, 𝑖) ∈ 𝐸. We begin by introducing a few graph-theoretical concepts.

Definition 12. (Independent sets). An independent set of𝐺 is a subset of vertices 𝐼 ⊆ 𝑉 such that (𝑖, 𝑗) ∉ 𝐸
for all distinct 𝑖, 𝑗 ∈ 𝐼 . An independent set is maximal if it is not a proper subset of any other independent
set, and it is a maximum independent set if it contains the largest possible number of vertices.

Definition 13. (Independence number). Let 𝐼 ⊆ 𝑉 be a maximum independent set. The independence
number of 𝐺 is the cardinality of 𝐼 , and is denoted by 𝛼 (𝐺) := |𝐼 |.

Independent sets are complementary to graph cliques: an independent set in𝐺 is a clique in its graph
complement2 𝐺 . The problem of finding a maximum independent set is therefore equivalent to finding a
maximum clique. Both problems are NP-Hard for arbitrary graphs, but for restricted graphs one formu-
lation may offer an advantage over the other [77, 176].

The generalizations of DC will be based on the following graph structure.

Definition 14. (Consistency graph). Let 𝐹 be an AoTF and 𝜏 its corresponding tree. The consistency
graph of 𝐹 is the undirected graph 𝐺 = (𝑉 , 𝐸) with vertices 𝑉 = X 0:𝐿−1, each 𝑖 ∈ 𝑉 corresponding to a
non-empty subtree 𝜏 [𝑖], and edges 𝐸 = { (𝑖, 𝑗) ∈ 𝑉 ×𝑉 | 𝜏 [𝑖] ∼ 𝜏 [ 𝑗] }.

In words, the consistency graph represents all pairwise consistencies between non-empty subtrees of
𝜏 . We can now establish the following result.

2Given a graph𝐺 = (𝑉 , 𝐸 ) , its complement is the graph𝐺 = (𝑉 , 𝐸 ) with 𝐸 := (𝑉 × 𝑉 ) \ 𝐸.
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Figure 6.6: Examples of trees with maximum deterministic complexity, corresponding to (from top to
bottom): 𝑀 (2, 2, 3) = 6, 𝑀 (2, 2, 4) = 10, 𝑀 (2, 2, 5) = 18 and 𝑀 (2, 2, 6) ≥ 33. Yellow vertices with labels
correspond to the distinct state assignments found with Alg. 2.

Theorem 5. Let 𝐹 be an AoTF and 𝐺 its consistency graph. Then:

DC(𝐹 ) = 𝛼 (𝐺). (6.15)

Proof. Let 𝐼 ⊆ 𝑉 be a maximum independent set, with 𝛼 (𝐺) = |𝐼 |, and let S be the set of states in the
minimal transducer, with DC(𝐹 ) = |S |. By definition: 𝑖, 𝑗 ∈ 𝐼 =⇒ (𝑖, 𝑗) ∉ 𝐸 ⇐⇒ 𝜏 [𝑖] ≁ 𝜏 [ 𝑗]. Thus,
𝑠𝑖 ≠ 𝑠 𝑗 and 𝛼 (𝐺) ≤ DC(𝐹 ). To prove the equality, recall that by Props. 4 and 5 DC is obtained by finding
an optimal assignment. Therefore, there exists a subset of vertices 𝑆 ⊆ 𝑉 , with |𝑆 | = |S |, such that for
every distinct 𝑖, 𝑗 ∈ 𝑆 we have that 𝑠𝑖 ≠ 𝑠 𝑗 and 𝜏 [𝑖] ≁ 𝜏 [ 𝑗], so that (𝑖, 𝑗) ∉ 𝐸. In other words, 𝑆 is an
independent set. To show that is a maximum independent set, note that by definition |𝑆 | ≤ |𝐼 | as 𝐼 is a
maximum independent set. Since DC(𝐹 ) = |𝑆 | and 𝛼 (𝐺) = |𝐼 |, we have proven DC(𝐹 ) ≤ 𝛼 (𝐺). Together
with the previous result, we conclude DC(𝐹 ) = 𝛼 (𝐺). □

While this result is interesting, it is not directly useful, since the DC algorithm in Alg. 2 is far more
straightforward and efficient than attempting to first compute 𝐺 , then 𝛼 (𝐺). Nevertheless, the result
establishes a basis for the following generalizations.
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6.7.2 Partial deterministic complexity

Until now we only considered total AoTFs, where a definite output is assigned for every input. A natural
generalization is to consider partially-specified AoTFs, where the output for certain input prefixes is left
unspecified. There are multiple ways to address this. One possibility is to keep the assumption of an
output being generated deterministically at every step, but an unspecified output in 𝐹 simply means we
do not care about it. In this case, we can assign a wildcard output ∗ to any unspecified input prefix, acting
as a “don’t care” instruction.

Definition 15. (Partial Arrow-of-Time function). Let ∗ denote a special wildcard symbol, i.e., such that
∗ = 𝑎 evaluates to true for any 𝑎 ∈ A. A depth 𝐿 function 𝐹 : X 𝐿 → (A ∪ {∗})𝐿 obeying the AoT
constraints is said to be a partial Arrow-of-Time function if a wildcard output is assigned to at least one
prefix x ∈ X 1:𝐿 .

We will refer to the non-wildcard behavior of an AoTF as its definite portion. Note that we consider
∗ ∉ A as to preserve the notion of consistent trees. Instead, we introduce the following generalization.

Definition 16. (Partially consistent trees). Two trees 𝜏 and 𝜏 ′ are partially consistent, denoted by 𝜏 ∼∗ 𝜏 ′,
if they are consistent possibly due to wildcard comparisons.

Consistency graphs can be naturally generalized using ∼∗.

Definition 17. (Partial deterministic complexity, PDC) The partial deterministic complexity (PDC) of 𝐹 ,
denoted by PDC(𝐹 ), is the minimum number of states such that there exists a deterministic transducer
computing the definite portion of 𝐹 .

Computing the PDC is equivalent to solving the combinatorial optimization problem given by

PDC(𝐹 ) = min
{
DC(𝐹 ′)

�� 𝐹 ′ ∈ F𝐿
X ,A and 𝜏 ∼∗ 𝜏 ′

}
, (6.16)

where 𝜏 and 𝜏 ′ denote corresponding trees for 𝐹 and 𝐹 ′. In simpler terms, it is the minimum DC over all
total AoTFs 𝐹 ′ partially consistent with 𝐹 . An example of a tree corresponding to a partial AoTF is shown
in Fig. 6.7.
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1

1

0

1

1

*

* * * * *

Figure 6.7: Tree for a partial AoTF with X = A = {0, 1}, and with wildcards assigned to some of its
outputs. Its consistency graph is shown in Fig. 6.8.

Computing PDC is considerably more challenging than the regular DC. As can be seen from Eq. (6.16),
it boils down to finding a definite assignment of outputs for every wildcard in 𝐹 such that the final DC is
minimized. Nevertheless, the graph theoretical perspective provides a lower bound, as we show next.

Proposition 8. Let 𝐹 be a partial AoTF function and 𝐺 = (𝑉 , 𝐸) its consistency graph. Then:

𝛼 (𝐺) ≤ PDC(𝐹 ). (6.17)

Proof. As in Thm. 5, by definition: 𝑖, 𝑗 ∈ 𝐼 =⇒ (𝑖, 𝑗) ∉ 𝐸 ⇐⇒ 𝜏 [𝑖] ≁ 𝜏 [ 𝑗]. Thus, 𝑠𝑖 ≠ 𝑠 𝑗 and
𝛼 (𝐺) ≤ PDC(𝐹 ). To further show that equality does not necessarily hold, we provide an example of

125



ε

0

100

01

10

11

Figure 6.8: Consistency graph 𝐺 for the function depicted in Fig. 6.7, with vertices labeled by their input
prefix. The two highlighted vertices (𝜀 and 0) form the unique maximum independent set in this graph,
therefore the independence number is 𝛼 (𝐺) = 2.

𝛼 (𝐺) < PDC(𝐹 ). The partial AoTF in Fig. 6.7 has 𝛼 (𝐺) = 2, and its number of wildcard outputs is
sufficiently small that an exhaustive search can be performed verifying that PDC(𝐹 ) = 3. This can be
obtained with the tree shown in Fig. 6.9. □
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Figure 6.9: Tree for an AoTF 𝐹 ′ partially consistent with the tree for 𝐹 in Fig. 6.7, with a minimum
DC(𝐹 ′) = 3. A brute-force search reveals PDC(𝐹 ) = 3.

6.7.3 Conditional deterministic complexity

Using the PDC, we may also define the conditional deterministic complexity (CDC) as follows.

Definition 18. (Conditional Deterministic Complexity, CDC). Let x ∈ X 𝐿 and a ∈ A𝐿 be an input and
output sequence, respectively. The conditional deterministic complexity (CDC) of a given x, denoted by
CDC(a|x), is the minimum number of states in a transducer which outputs a given input x.

Some basic properties of CDC are:

• CDC(a|x = a) = 1 for any a ∈ A∗. The transducer simply outputs its input directly.

• CDC(a|x = 𝑥𝐿) = DCO (a) for any 𝑥 ∈ X , and a ∈ A𝐿 . If x only uses one symbol, then the
transducer reduces to an automaton and we restore the original definition of DCO.

• CDC(a|x) ≤ DCO (a). This follows from the fact x acts an extra resource, reducing the required
memory.

• CDC(a|x = (1, 2, . . . , 𝐿)) = 1, for X = {1, 2, . . . , 𝐿}. In other words, if the input acts as an external
reference clock, then all transitions can be time-dependent and no information ever needs to be
stored in memory.

Proposition 9. For x ∈ X 𝐿 and a ∈ A𝐿 , let 𝜏 be a depth-𝐿 tree such that 𝜏 (x1:ℓ ) = 𝑎ℓ for all ℓ = 1, . . . , 𝐿,
and wildcards elsewhere, as show in Fig. 6.10. Then 𝜏 defines a partial AoTF 𝐹x ↦→a such that:

CDC(a|x) = PDC(𝐹x ↦→a). (6.18)
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Figure 6.10: Tree for 𝐹x ↦→a with x = 011010 and a = 001011 (as in Fig. 6.1), which can be used for
computing CDC in terms of PDC. Edges with wildcard outputs are grayed out to avoid visual clutter.

Proposition 10. The CDC lower-bounds DC(𝐹 ) for any AoTF 𝐹 . Concretely:

DC(𝐹 ) ≥ max
x∈X𝐿

CDC(a = 𝐹 (x) |x). (6.19)

Proof. The result is intuitively obvious, as the minimal transducer must have enough states to compute
each input-output relation. Nevertheless, the result follows immediately from Eq. (6.16) and Prop. 9. One
simply has to consider that 𝐹 itself will be one the functions 𝐹 ′ appearing in Eq. (6.16). □

Despite the result in Prop. 8 which establishes that 𝛼 (𝐺) ≤ PDC(𝐹 ) and Prop. 9 connecting CDC with
PDC, numerical evidence suggests the following result.

Conjecture 2. For x ∈ X 𝐿 and a ∈ A𝐿 , let 𝐹x ↦→a be defined as in Prop. 9 with 𝐺 its consistency graph.
Then:

CDC(a|x) = PDC(𝐹x ↦→a) = 𝛼 (𝐺) (6.20)

We leave the proof for future research. For now, we discuss the numerical results.

To estimate the CDC, we used the gradient descent techniques from Sec. 2.7 to search for transducers of
increasing dimension 𝑑 until a deterministic behavior was found, thereby obtaining 𝛼 (𝐺) ≤ CDC(a|x) ≤
𝑑 . Since deterministic models are typically easy to find if memory is sufficiently large, this approach
seemed reasonable. Numerical results were compared with a direct computation of 𝛼 (𝐺), obtained using
Wolfram Mathematica. In almost every scenario 𝛼 (𝐺) was equal to 𝑑 , confirming 𝛼 (𝐺) = CDC(a|x).

Assuming the conjecture is true, a visualization ofCDC(a|x) is shown in Fig. 6.11 for various lengths.
The horizontal and vertical symmetries arise from the invariance under 0↔ 1 relabeling, in both inputs
and outputs, meaning only a quarter of cases needed to be checked. The dark diagonals correspond to
CDC(a|x = a) = 1. While much of the apparent “fractal” structure emerges from the lexicographic
ordering of sequences, several interesting structures appear which seem consistent as sequence lengths
increase.

6.7.4 Quantum PDC and quantum advantages

As we have seen, under the assumption of a total AoT function both classical and quantum theory will
require the same amount of memory (i.e., dimension) to realize it. Partial AoTFs can be interpreted as the
deterministic outputs of measurements simply being ignored, which is the scenario discussed in Sec. 6.7.2.
In this interpretation, classical and quantum PDC will also coincide, as we are simply introducing the
notion of a wildcard or “don’t care” instruction.

A different interpretation is to treat unspecified outputs as operations without outputs, i.e., channels.
From this perspective classical and quantum theory can differ drastically, as quantum coherence effects

127



Figure 6.11: Visualization of CDC(a|x) = 𝛼 (𝐺) for X = A = {0, 1} and lengths 𝐿 ∈ {4, 5, 6, 7} (left to
right). Rows correspond to inputs x ∈ X 𝐿 and columns to outputs a ∈ A𝐿 , in lexicographic ordering,
with larger CDC(a|x) mapped to brighter colors.

can lead to deterministic behaviors beyond what can be achieved by classical systems of the same dimen-
sion. Thus, the “quantum PDC” can be lower than the corresponding “classical PDC” for certain partial
AoT functions. Indeed, this discrepancy has recently been employed in protocols certifying quantum
computation [143].

6.8 Conclusions and outlook

In this chapter we generalized the notion of deterministic complexity first introduced in Ref. [198], for-
mulating it as a type of computational complexity measure. The deterministic complexity originates from
the physical scenario involving sequential measurements, leading us to adopt Mealy-type finite-state ma-
chines as the appropriate model of computation. In this case, the number of states acted as the natural
measure of complexity for an AoT function or, in the case of DCO, of a sequence of outputs.

In other contexts, different notions of complexity could be applied. Within computer science and algo-
rithmic information theory, the Kolmogorov complexity [117] is commonly used instead as the measure
of complexity, defined as the size of the shortest possible program for a deterministic universal Turing
machine that can generate a given object, such as a binary string. Essentially, it measures the minimum
description length of a certain piece of information, or the highest degree it can be algorithmically com-
pressed.

That being said, the Kolmogorov complexity is noncomputable, and therefore, its applications are
restricted to theoretical results. This limitation has led to alternative computable complexity measures to
be proposed using simpler computational models, including automata and transducers. Several parallels
can be made between these complexity measures and the DC.

In a similar way to DCO, a complexity measure based on the number of states is the automatic com-
plexity introduced by Shallit and Wang [174]. Given an input sequence x, its automatic complexity, or
AC(x), is defined as the minimum number of states in a deterministic automaton which uniquely accepts
x, i.e., it rejects every other sequence of the same length. Since this automaton can be understood as a
Moore-type FSM (i.e., we associate the outputs “accept” and “reject” to states, see Sec. 1.3.3), and since
Moore machines can be converted to Mealy machines with the same number of states, it seems plau-
sible that some formal connections will exist between the automatic complexity and the deterministic
complexity (in particular, the PDC).

In terms of transducers, a complexity measure was introduced by Calude et al. [38] in analogy to the
Kolmogorov complexity, although it differs significantly from the DC. Unlike universal Turing machines,
there are no universal transducers [38], so the analogous complexity measure requires the complete de-
scription of the transducer itself in some standard encoding. This perspective does not seem relevant to
our physically-motivated scenario. Nevertheless, the notion of conditional Kolmogorov complexity [117]
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also exists, with a similar notion also introduced in Ref. [38] using transducers. It would be interesting to
understand their relation to the conditional DC we have introduced in this chapter.

For now, we conclude this chapter by highlighting that the notion of deterministic complexity, and the
analysis of temporal correlations through finite-state machines, was entirely motivated by fundamental
physical principles: causality, and the fact finite-dimensional systems can only carry a finite amount of
information from the past to the future. In this way, the computational perspective on temporal corre-
lations may offer new insights into how these physical principles fundamentally constrain classical and
quantum information processing under limited resources. These topics will be subject of future research.
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Concluding discussion and outlook

In this thesis we investigated temporal correlations arising from sequences of measurements on finite-
dimensional systems. Both classical and quantum scenarios were investigated, treating measurements in
their most general form as described within each theory. In particular, we considered the possibility of
classical measurements also being invasive.

Through this approach, we have interpreted the realization of temporal correlations as an information
processing task, with the system being understood as a memory resource being used for achieving it.
As we have seen, the system’s dimension directly quantifies this resource. Furthermore, this amount
must be finite, otherwise either classical and quantum theory can realize any temporal correlation. These
observations motivated our investigation of temporal correlations through the framework of finite-state
machines (FSMs).

In Chapter 2, we investigated classical and quantum temporal correlations in the simplest scenario
possible, involving a fixed instrument with two possible outcomes: 0 or 1. We performed a numerical sur-
vey using gradient descent techniques in order to estimate the maximum probabilities of generating each
sequence, for all sequences up to length 10. The notion of deterministic complexity (DC) was introduced,
quantifying the memory threshold where both classical and quantum theory can generate a sequence de-
terministically. This allowed us to focus on the sub-deterministic scenarios, where each theory can only
generate a sequence with a nontrivial maximum probability. This direct investigation of temporal corre-
lations was lacking, especially in the classical case, but is essential for certifying genuine nonclassicality
of any temporal correlation. The survey revealed a rich structure for temporal correlations, even in this
simplest case. The results of the classical survey also led us to conjecture the existence of a universal upper
bound of 1/e for all sub-deterministic classical scenarios. Furthermore, no such universal upper bound
seems to exist in the quantum case.

In Chapter 3, we investigated an application of temporal correlations to the task of dimension witness-
ing. In particular, we develop a convergent hierarchy of SDP relaxations that can tightly upper-bound
temporal correlations in a scenario involving open quantum systems. Here, the environment acts as the
memory resource, and these bounds can be used as dimension witnesses for its dimension. However,
the resulting SDPs are very large and will generally be numerically intractable in their original form. To
overcome this, we have developed a heuristic method which is capable of transforming an SDP into an
equivalent sparse representation, with less than 1% of the original number of variables and constraints.
This effective sparsity is obtained by removing variables and constraints which are unnecessary to solve the
original problem. The heuristic method is quite general, and we have further developed it into a separate
manuscript (in preparation), which was discussed in Chapter 5.

In Chapter 4, we showcase how FSMs can provide an exact characterization of temporal correlations,
allowing an unambiguous distinction to be made between classical vs. genuinely nonclassical temporal
correlations. In the study of non-Markovianity through quantum supermaps, entanglement-breaking (EB)
channels are often used to define classical memories and classical temporal correlations. Here, we conclu-
sively show that this approach is flawed. Our precise characterization of classical memories using FSMs
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revealed nonclassicality of temporal correlations in quantum scenarios, even in the presence of EB chan-
nels. This is possible because FSMs can characterize classical correlations directly within classical theory,
instead of through quantum-inspired analogies, as is often done. These nonclassical temporal effects are
quite subtle, only occurring beyond 2-level quantum systems and at least four time steps—scenarios that
are rarely investigated. Our results reveal that classical and nonclassical temporal correlations are still
widely misunderstood, often due to improper and hasty analogies drawn from spatial correlations, and an
insufficient treatment of the relevant memory resources.

In Chapter 6, we expand the deterministic complexity to the case of deterministic sequences of mea-
surements involving inputs and outputs, thereby providing an exact characterization of an arbitrary ex-
treme point in the Arrow-of-Time polytope. We further establish connections between the DC and the
problem of maximum independent set in graph theory, enabling further generalizations. In particular, we
introduce the partial DC and the conditional DC, which have interesting parallels with existing complex-
ity measures in computer science. These results strengthen the bridge between foundational questions on
temporal correlations and fundamental notions of complexity in theoretical computer science.

This thesis makes significant contributions to our understanding of temporal phenomena, providing
one of the first systematic investigations into genuine nonclassicality of temporal correlations. In particu-
lar, our analysis of classical and quantum scenarios led to numerous novel insights on uniquely temporal
effects, showcasing how classical and quantum theory behave differently under the constraints of causal-
ity and finite memory. The framework of finite-state machines was essential for these results. Its unique
ability to sharply distinguish between classical and nonclassical temporal correlations highlights how little
we actually know about this subject.

We have shown that many existing notions of nonclassicality are based on arbitrary restrictions on
classical systems (Sec. 1.2), or improper analogies from spatial correlations applied to the temporal case
(Ch. 4), both of which cannot adequately distinguish between classical and nonclassical temporal correla-
tions. Furthermore, a significant portion of previous work on temporal correlations has relied on simple
prepare-and-measure scenarios or two-time correlations. However, the results in this thesis revealed that
several unique features of temporal correlations do not appear under these conditions, only emerging in
scenarios beyond two-dimensional systems and at least three separate measurements. Our results indicate
that a significant portion of genuinely temporal phenomena is currently being neglected. This important
point has also been noted by other authors [190].

As discussed in Sec. 1.2.7, any temporal correlation can be realized by a classical or quantum system
if enough memory is available. This is a widely acknowledged fact about temporal correlations, with
the assumption of a bounded memory (i.e., bounded dimension) being part of many sequential protocols.
That being said, there has not been a systematic analysis of the resources required for realizing arbitrary
temporal correlations. This is a challenging task, as the space of dimension-bounded temporal correlations
is very complex [182, 124]. Nevertheless, a characterization of the minimum resources needed to realize
temporal correlations would be incredibly valuable. It would lead to new ways of certifying quantum
information processing, and would most likely be based on a deeper understanding of how quantum
coherence effects can be sequentially engineered to achieve specific tasks.

We have made significant contributions towards this goal by introducing the notion of deterministic
complexity (DC), which characterizes theminimumdimension required for realizing deterministic correla-
tions. Together with initial randomness, the DC allows an initial characterization of the resources needed
to generate any correlation in the Arrow-of-Time polytope [32, 182, 124]. Furthermore, we formalized
its connections to concrete computational tasks, establishing a bridge between fundamental notions in
physics (causality and dimension) to those in theoretical computer science (time and memory).

The research in this thesis also inspires several future directions. As we have seen, both classical
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and quantum theory can generate all temporal correlations if enough memory resources are available.
Thus, a proper accounting of all resources is essential, otherwise no distinction can be made between
classical and nonclassical temporal correlations. However, there are many ways in which such resources
may be inadvertently included, e.g., time-dependent operations, initial randomness, a mixed initial state,
and conditioning on past measurements. All of these can lead to a significant reduction in the amount
of memory needed to realize arbitrary temporal correlations, and all have been independently treated
as a free resource in previous works, essentially becoming a form of “memory smuggling”. It would be
useful to precisely characterize these resources in terms of their memory advantage, thereby unifying all
resources available for temporal correlations within the same framework. We believe this is possible, and
it will be the subject of future research.

Based on Ch. 3, we have seen that it is possible to use temporal correlations to obtain information
about an inaccessible environment system through measurements on a smaller probe system. It would
be interesting to investigate whether different temporal protocols can be devised targeting specific prop-
erties about the environment, or the system-environment interaction. For example, can we estimate the
strength of the system-environment interaction using temporal correlations? This should be possible, as
this interaction is intimately related to the amount of information that can be exchanged between system
and environment.

There is considerable interest in understanding the origin of quantum advantages in quantum comput-
ing, and the FSM framework offers clear paradigmatic problems for investigating this question. Already
in the simplest case investigated in Ch. 2, where only output sequences were considered, we have found
several dimensionally-restricted scenarios where the quantum advantage seems to disappear, despite the
classical and quantum models operating in completely different ways (Sec. 2.8.5). This suggests the exis-
tence of a memory threshold for quantum advantages to exist in specific computational tasks. By inves-
tigating such small-scale scenarios, we may be able to uncover new insights on the necessary conditions
for quantum advantages to emerge in terms of information-theoretical principles.

Finally, we note that our investigations into temporal correlations have relied heavily on numerical
techniques. Bounding temporal correlations appears inherently challenging, significantly more so than
spatial correlations, with even the simplest scenarios leading to large-scale nonlinear optimization prob-
lems that are quickly rendered intractable (see Ch. 3). It is unclear whether alternative mathematical or
numerical techniques exist that are better suited for this task.

Despite these difficulties, we are optimistic that the framework of finite-state machines will eventually
lead to further developments and insights into temporal correlations. In particular, its unique capability
of accurately identifying genuinely nonclassical temporal correlations is essential when certifying the
existence of quantum advantages in information processing tasks.

As a final remark, we emphasize that temporal correlations are an underappreciated and underexplored
subject. While temporal phenomena arising from finite-memory effects are ubiquitous, being implicitly
used throughout all of quantum information science, there is a considerable lack of research directly and
systematically investigating temporal correlations. We hope that our contributions can help bring much
needed attention to this fascinating topic.
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