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Molecular hydrogen in the N-doped LuH3
system as a possible path to
superconductivity

Cesare Tresca 1 , Pietro Maria Forcella 2, Andrea Angeletti3,4,
Luigi Ranalli 3,4, Cesare Franchini 4,5, Michele Reticcioli 4 &
Gianni Profeta1,2

The discovery of ambient superconductivity would mark an epochal break-
through long-awaited for over a century, potentially ushering in unprece-
dented scientific and technological advancements. The recent findings on
high-temperature superconducting phases in various hydrides under high
pressure have ignited optimism, suggesting that the realization of near-
ambient superconductivitymight be on thehorizon. However, the preparation
of hydride samples tends to promote the emergence of various metastable
phases, marked by a low level of experimental reproducibility. Identifying
these phases through theoretical and computational methods entails for-
midable challenges, often resulting in controversial outcomes. In this paper,
we consider N-doped LuH3 as a prototypical complex hydride: By means of
machine-learning-accelerated force-field molecular dynamics, we have iden-
tified the formation ofH2molecules stabilized at ambient pressure by nitrogen
impurities. Importantly, we demonstrate that this molecular phase plays a
pivotal role in the emergence of a dynamically stable, low-temperature,
experimental-ambient-pressure superconductivity. The potential to stabilize
hydrogen in molecular form through chemical doping opens up a novel ave-
nue for investigating disordered phases in hydrides and their transport
properties under near-ambient conditions.

Hydrides exhibit high-temperature superconductivity under high-
pressure1–4, giving the perception that the ambient-condition super-
conductivity (i.e., high-temperature, low-pressure) could be soon
achieved. However, sample preparation leads to metastable structural
phases, which hinder experimental reproducibility and prove difficult
to characterize through theoretical and computational methods. Such
metastable phases have been proposed as key to explain peculiar
superconducting phases in phosphorus-hydrides5, and other different
compounds, such as phosphorus under pressure6, gallium7, and

barium8. In particular, hydrogen complexes, such as molecular
hydrogen, may form in hydrides under high pressure and/or in
hydrogen-rich samples. These complexes exhibit non-trivial effects on
the properties of the host materials, potentially either facilitating the
emergence of superconductivity or driving the system into an insu-
lating state9–18.

The intricate field of hydrides’ physics poses challenges and
uncertainties, with the added complication of retracted publications
that initially claimed near-room temperature superconductivity in
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sulfur hydride19, and near-ambient superconductivity in lutetium
hydride20,21. The recent, deceiving observation of near-ambient con-
ditions superconductivity in LuH3−δNε (reportedby theDias’ group)20,21

has been received by the scientific community with skepticism, but, at
the same time, with curiosity, as demonstrated by immediate experi-
mental attempts22–26 to replicate the synthesis and numerous compu-
tational works to rationalize the experimental results27–40. However, all
attempts to reproduce these results proved unsuccessful, with the
only exception of a study conducting resistivity measurements on
Dias’ samples: Nevertheless, the work has remained unpublished to
this day (available only as pre-print), raising doubts about the validity
of reported results41. Ultimately, the work claiming for ambient-
condition superconductivity was retracted upon request of most of
the authors, who raised concerns about the integrity of the published
data21.

Computer-aided simulations have proven invaluable in thisfield42,
pre-emptively predicting new high-pressure superconductors before
their experimental discovery. Notably, SH3

43 and LaH10
44 stand out as

exceptional examples. Given the absence of solid experimental evi-
dence for a near-ambient pressure superconducting phase in hydrides,
theory emerges as a viable tool to explore the low-pressure physics of
hydrides. However, it is essential to note that several theoretical pre-
dictions concerning binary and ternary hydrides45 have not found
experimental confirmation. This discrepancy may be attributed to
challenges in accurately accounting for real experimental conditions
during crystal growth. As an illustration, numerous studies focusing on
LuHN ternary hydride have recently proposed different (metastable or
dynamically unstable) structures showing sizable critical
temperatures27,30,31,33,34,36,37, yet these predictions have not been
experimentally confirmed to date.

In this work, we show that dynamical and disorder effects are
crucial to explore the low energy structures at ambient conditions in
hydrides. We propose newmetastable phases for N-doped Lu hydride,
containing hydrogen in molecular form, stabilized by nitrogen impu-
rities, which leads to the emergence of low-temperature, near ambient-
pressure superconductivity.

Ourmachine-learning-accelerated force-fieldmolecular dynamics
(MLFF-MD) is able to disclose the formation of H2molecules inside the
Lu matrix.

These molecular phases are found dynamically stable by Density
Functional Theory (DFT) calculations showing the emergence of a
finite critical temperature (TC≃ 10K), partly arising from H2 vibrations
as found in molecular metallic hydrogen46.

Our findings suggest a new route for the exploration of dis-
ordered phases in hydrides.

Results
Figure 1 collects the results as obtained from MLFF-MD simulations,
modeling LuH3 using a 4 × 4 × 4unit cell, with a substitutionalNdoping
on H sites of 12.5% in line with the content reported for the experi-
mental samples20,21,41 at ambient pressure (no external pressure applied
to the system).

We initially conducted a thermalization calculation, with a tem-
perature ramping from very low (<1 K) to high (up to 400 K) values,
starting with Lu atoms on fcc sites, Fm�3m space-group (hydrogen
atoms in tetrahedral andoctahedral sites of the fcc Lu lattice).Nitrogen
was substituted on tetrahedral sites, see also Supplementary Figs. 1, 2
in the Supplementary Information (SI) for the structuralmodel and the
complete set of MLFF-MD data. In our simulations, while Lu atoms
oscillate around the fcc sites as expected20–22,47–49, H atoms tend to form
molecules already at very low temperature: as shown in Fig. 1a, H2

molecules start to form spontaneously at approximately 15 K, till a
saturation value of one molecule per N atom is reached.

The system exhibits a high degree of disorder, as found in real
samples5,18,50–52, with the molecules randomly distributed (see the

structural models in Supplementary Fig. 2b, c, the pair correlation
function in Supplementary Fig. 3 and the time-evolution trajectories in
Supplementary Fig. 4). Although overall the total number of H2

molecules equals the number of nitrogen impurities, we observe a
local variation with zero, one or two H2 molecules surrounding each N
atom (at an average distance of ~2.5 Å). Interestingly, the average H2

bond length is found to be expanded with respect to the gas phase of
about 10% (see Supplementary Fig. 5a in the SI), as observed in the high
pressure metallic hydrogen phase53,54, suggesting a partial occupation
of anti-bonding orbitals (as confirmed by the Bader charge analysis in
Supplementary Table 1 in the SI), and, possibly, the activation of col-
lective interactions, as already reported in superconducting solid
hydrogen46 or superhydrides2–4,44,55.

The formation of the H2 molecules lowers the total energy of the
system (see Supplementary Fig. 1 in the SI): once formed, the H2

molecules appear extremely robust against dissociation and do not
show any tendency to the formation of clathrate-like structures.
Starting from the structures explored during the thermalization cal-
culations, we have conducted additional MLFF-MD simulations at a
temperature of 100 K, observing no dissociation for the whole MLFF-
MD duration of 0.3 ns (Fig. SF6), finding that the number of molecules
remains constant to one per N impurity. By fixing the temperature to
300 K (Fig. 1b), we observe that H2 molecules tend to dissociate
forming short H-N bonds (~1.0 Å, see the structural model in Fig. 1c),
without disappearing completely, even in the long time frames of our
molecular dynamics simulations. This happens also at 200 K (see
Supplementary Fig. 6).

Importantly, the system explores both the metallic and insulating
regimes, strongly depending on the structural phase: In case the sum
of H2molecules andH-N bonds at a given time step equals the number
of N atoms,weobserve an insulating character;metallic otherwise (see
the background color of Fig. 1b, and the corresponding density of
states in Supplementary Fig. 7). The Bader charge analysis in Supple-
mentary Table 1 explains this behavior. The Lu+3 atom shares 3 elec-
trons that are accommodated on the H−1 atoms. Substituting one H−1

with the N−3 dopant, frees two hydrogen atoms that can now bond
independently with each other, forming an H2 molecule (accom-
modating only a tiny amount of charge from the crystal, 0.2 e). Alter-
natively, one of the two hydrogen atoms can form an H-N bond,
entering a H+1 valence state, while the other atom retains its H−1 state,
keeping the system insulating. Conversely, in the metallic regime, the
number of H2 molecules and H-N bonds does not equal the number of
N impurities, leaving some electronic charge uncompensated: The
Bader charge analysis shows that the excess electrons are hosted on
the metallic Lu orbitals.

Wefind that the formation of theH2molecules is promoted by the
N-substitution.

As a further proof, we performed two additional sets of MLFF-MD
calculations for the pristine LuH3 system (0% content of N) in the
Fm�3m phase: noH2molecules have spontaneously formed, at variance
with the N-doped systems. Furthermore, starting the simulation with
artificially formed H2 molecules in the undoped LuH3 unit cell, the
MLFF-MD simulations reveals a clear tendency towards a complete
dissociation of all H2 molecules (see Supplementary Fig. 8 in the SI).

The formation of H2 molecules represents a new aspect in the
physics of superconducting hydrides, therefore, it is worth to analyze
their effects on the electronic and dynamical properties of the repre-
sentative LuH2.875N0.125 system. We have performed DFT simulations
modeling the system in a 2 × 2 × 2 unit cell (with one N atom/cell and
two H2molecules/cell, see SI Supplementary Note 5 and Fig. 2), which,
although does not account for structural disorder found in MLFF-MD
simulations, is still representative to study the effects induced by both
N and H2. We optimized a variety of metallic structures including two
H2 molecules per unit cell, inspired by the MLFF-MD results or by
randomly placing them in the unit cell (the analysis of the disordered
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structures can be found in the Supplementary Information, Supple-
mentary Note 5).

The electronic density of states, Fig. 2, shows two Lu-derived flat
bands and van Hove singularities close to the Fermi level (see also
Supplementary Figs. 7 and9),whichmaybe linked to the emergenceof
superconductivity. These features are driven by the formation of H2

molecules: In fact, they are not present in the molecule-free LuH-N
structures proposed and investigated in the recent literature20,22,23,28–31.

The dynamical properties of LuH2.875N0.125, Fig. 3, confirm the
stability of the molecular phase, even at the harmonic level and
experimental-ambient pressure (i.e., no imaginary frequencies, see
also Supplementary Fig. 14): This is a far from trivial result that
underpins the role of molecular hydrogen in the thermodynamical

stabilization of the system, since the molecular-free Fm�3m
phase20,22,47–49 is dynamically unstable31,38–40.

The phonon frequencies, Fig. 3 (see also Supplementary Fig. 14),
are characterized by Lu-derived modes up to ~250 cm−1 and an inter-
mediate frequency range (between 250 and 1500 cm−1) dominated by
translational and librational hydrogen modes, while nitrogen con-
tribution is limited to frequencies around 500 cm−1. The high fre-
quency part of the spectrum from ~ 2800–3000 cm−1 comprises the
Raman active vibrational modes of the H2 molecules, strongly renor-
malized with respect to that of the gas phase18,56,57. Interestingly,
measured Raman spectra presented in refs. 20,22,49,58,59 shows
broad peaks at ~300–800 cm−1 and 3000 cm−1, whose origin were not
explicitly addressed and which could be interpreted as translational-
like and vibrational-like modes, indicating the presence of H2 mole-
cules in the compounds (see SI formoredetails). The presenceof high-
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Fig. 1 | H2 molecules in the machine-learning-accelerated molecular dynamics
(MLFF-MD) simulations. a Formation of H2 molecules at low temperature; the
circles indicate the number of H-H pairs found at every time step below a threshold
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Fig. 2 | Electronic properties of the representative 2 × 2 × 2 system. Top: a per-
spective sketch of the crystal structure of the representative LuH2.875N0.125 system
in the presence of H2 molecules: charge density on the plane containing one
molecule is shown in gray scale (plane belonging to the (10�1) family). Bottom: the
relative electronic band structure and projected density of states.

Fig. 3 | Dynamical and superconducting properties of the representative 2 × 2 ×
2 system. Top: phonon spectrum density of states of LuH2.875N0.125 in the presence
of H2 molecules. The character of eigenvalues is highlighted (in red the total H
character, in green the molecular contribution, in cyan the nitrogen one, and in
yellow the total Lu character). Bottom: the evaluated Eliashberg function (α2F(ω))
and the electron phonon coupling constant (λ(ω) in orange).
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frequency Raman signals (ω ≳ 2000 cm−1) can therefore be used as a
test for the presence of molecular hydrogen in hydrides.

We can predict the superconducting properties of LuH2.875N0.125

phase evaluating the Eliashberg spectral function (α2F(ω), Fig. 3)
resulting in a total electron-phonon coupling λ = 0.66, mainly origi-
nating from the low-energy Lu-Hmodes, and from the H2 translational
modes (in interesting analogy with what is found inmetallic molecular
hydrogen36,46). The estimation of TCwith the SuperConductingDensity
Functional Theory60–62 (see SI for details) gives TC≃ 13 K, clearly too far
from room-temperature, but, being obtained for a LuH3-N phase at
experimental-ambient pressure, it represents a major result.

In summary, this work proposes a novel paradigm for exploring the
physical properties of hydrides at ambient pressure. We have disclosed
the role of nitrogen in promoting the formation of H2 units in LuH3.
These molecular phases are characterized by a strong disorder and the
appearance of different electronic properties strongly linked with the
formation of molecular hydrogen, which could determine anomalies in
the resistivity measurements: Insulating phases coexist with interesting
metallic ones characterized by strongly-coupled low-energy molecular
translational modes and low-energy flat electronic bands close to the
Fermi level. Finally, the presence of low-energy (degenerate) metastable
phases associated with translational and rotational disorder of H2

molecules could bring the system at the verge of structural phase
transitions possibly favouring superconducting phases.

We conclude calling for experimental verification of possible pre-
sence of hydrogen in molecular form, their dependence on tempera-
ture and pressure and their role in determining electrical resistivity. We
emphasize the importance of a fine control over the sample prepara-
tion, since our study highlights the crucial role played by disorder in
determining the electronic properties of hydrides. The possibility to
synthesize hydrides at ambient pressure can surely favor the applica-
tion of experimental techniques impractical at high-pressure super-
conducting hydrides like Nuclear Magnetic Resonance, muon, neutron
and photoemission spectroscopy. The emergence of a low-temperature
superconductivity driven by H2 molecules stabilized by N impurities
could also stimulate further theoretical studies inspecting the role of
pressure, local dis-homogeneity of H, and/or different amount/type of
doping with respect to the stability of the molecular phase, seeking for
an enhancement of the critical temperature: probably, in the future,
artificial intelligence will further aid computational investigations in
accounting for the role played by disordered phases42,63–70.

Methods
Machine-learning-accelerated molecular dynamics
The machine-learning-accelerated molecular dynamics (MLFF-MD)
simulations were performed by using the Force Field routines71,72 as
implemented in the Vienna Ab Initio Simulation Package VASP73–75. We
modeled LuH2.875N0.125 using a 4 × 4 × 4 supercell (with 64 Lu, 184 H, 8
N atoms). We employed the Langevin thermostat76,77 in the NpT
ensemble78,79, with time steps of 1 fs and zero external pressure.

We first performed thermalization calculations starting from the
highly symmetric structure of LuH2.875N0.125, ramping the temperature
from very low temperatures ( <1 K) up to 400 K (50 ⋅ 103 steps). Then,
we performed three additional simulations fixing the temperature at
100, 200 and 300 K, separately (300 ⋅ 103 steps per simulation). In all
our (ramping and fixed temperature) calculations, we use the on-the-
fly training mode as implemented in VASP: Force predictions from the
machine-learning force field are used to drive the molecular dynamics
simulation; however, if the error estimation at any time step is larger
than a threshold value, then a density functional theory (DFT) calcu-
lation is performed instead, and the results are used to improve the
machine learning force field71,72. The threshold to trigger the DFT cal-
culation in the MLFF-MD run is a variable value, automatically deter-
mined in VASP: Our convergence tests are discussed in SI (see
Supplementary Fig. 18). For the density functional theory component,

we adopted the generalized gradient approximation (GGA) within the
Perdew, Burke, and Ernzerhof (PBE) parametrization80 for the
exchange and correlation term, with the f orbitals of Lu atoms exclu-
ded from the valence states.We used an energy cutoff of 600 eV, and a
3 × 3 × 3 mesh to sample the Brillouin zone. This setup was employed
also in the calculations for the Bader charge (using a finer 6 × 6 × 6
reciprocal-space grid for the smaller 2 × 2 × 2 unit cells, tomaintain the
same density of sampling points).

We used VESTA81 for the graphical representation of atomic
structures.

Electronic and phononic properties
Electronic and superconducting calculations were performed using
the plane-wave pseudopotential DFT QUANTUM-ESPRESSO package82–84. We
used ultrasoft pseudopotential85 for Lu including 5s, 6s, 5p, 6p and 5d
states in valence, Optimized Norm-Conserving Vanderbilt
pseudopotential86–88 for hydrogen and nitrogen, and the GGA-PBE
approximation, with an energy cut-off of 90 Ry (1080 Ry for integra-
tion to the charge).

Integrations over the Brillouin Zone (BZ) of the LuH3 Fm�3m
structure were carried out using a uniform 12 × 12 × 12 grid, scaled
down for supercells thus ensuring the same sampling density for every
system, and a 0.01 Ry Gaussian smearing.

We relaxed Fm�3m LuH3 obtaining a lattice parameter of 5.011Å, in
agreement with experimental data20–22,47–49. The energy cut-off was
enhanced to 120 Ry to ensure the convergence on pressure and the
threshold on forces was reduced to 10−5 (a.u.). The results shown in the
main text have been obtained by adopting a 2 × 2 × 2 supercell using
the experimental lattice parameter. Similar results can also be
obtained for a fully relaxed supercell including H2 molecules (see
Supplementary Fig. 10).

All phonon frequencies and electron-phonon matrix elements
were calculated at the harmonic level on the 2 × 2 × 2 supercells, using
the linear response theory82–84, on a 2 × 2 × 2 grid to which correspond
8 q-points in the irreducible BZ and a 6 × 6 × 6 mesh for the electronic
wavevectors, enhanced to 14 × 14 × 14 mesh for the electron-phonon
calculations.

In all calculations (Quantum-Espresso and VASP) we adopted the
PBE functional with no additional correction to the electronic corre-
lation: The reliability of the results is discussed in Supplementary
Note 6 in the Supplementary Information.

Data availability
Data supporting the findings of this study are available on https://doi.
org/10.6084/m9.figshare.24960708 or from the corresponding
authors (C.T. and M.R.) upon request.
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