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Abstract

Exploring the classical to quantum transition at ever-increasing mass scales is the key goal in modern
physics. With precise control over the translational and rotational degrees of levitated nanoparticles in
ultra-high vacuum, these particles are promising candidates for probing quantum mechanical behavior.
We aim to operate interference experiments with masses around 107 amu, which would increase the
current mass limit by three orders of magnitude and the macroscopicity by more than five orders. In
current state-of-the-art experiments, the maximal achieved delocalization of the particles on the order
of 100 pm exceeding the zero-point motion. For coherence length over the particle extent, rotational
interference schemes like rotational revivals or tennis racket flips have been proposed. They require
both translational and rotational quantum control beyond the particle, ensuring a defined position and
orientation. This is achieved by cooling the motion in its quantum regime. While translational ground
state cooling has already been performed in one and two dimensions, the ground state in the system’s
librational modes remains outstanding. However, this is not crucial for performing rotational interference.

In our experiment, we explicitly investigate the rotational optomechanics in a high-finesse cavity
with coherent scattering cooling. Therefore, we launch non-spherical silica nanoparticles using laser-
induced acoustic desorption and trap them in an optical tweezer and along the standing wave of the
cavity.
We characterize the particle asymmetry by evaluating its translational damping and determine its shape.
Based on the analysis, we trap nano-dumbbells consisting of two anisotropic spheres stuck together.
Determined by the shape, the particle orients inside the elliptical polarized trap, leading to librational
motion. We detect two librational modes directly, and we can modulate their frequencies by the tweezer
ellipticity. At pressures below 1 mbar, the librational modes couple through the third diffusive rotation,
forming two hybrid modes. From the resulting frequency separation, we obtain the rotation frequency,
characterizing the undetected mode. We observe this free evolution destabilizing the 𝑥- and 𝑦-motion,
rendering the transfer to high-vacuum challenging. To address this, we optically drive rotation around
the tweezer axis to stabilize the particle’s orientation.
Scattered light from the particle populates the initially empty cavity. Depending on the degrees of
freedom, the particle motion couples to one of the two orthogonally polarized cavity modes. By
blue-detuning the cavity modes with respect to the optical tweezer, Anti-Stokes scattering is enhanced,
and carries away motional energy. We observe the coupling of five degrees of freedom to their respective
mode and demonstrate three-dimensional translational cooling. At a pressure of 10−4 mbar, we achieve
final temperatures of 36 mK, 129 mK and 105 mK for the 𝑧-, 𝑥-, 𝑦-motion respectively, corresponding to
an occupation number in each mode of ∼ 20×103. The final temperature is primarily limited due to laser
phase noise. We overcome this limit by phase noise reduction around the relevant particle frequencies
using an unbalanced Mach-Zehnder interferometer. According to our simulation, this will enable ground
state cooling along the two observed librational degrees of freedom, in the near future.
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Zusammenfassung

Einer der Hauptforschungsschwerpunkte in moderner Physik liegt darin, den Übergang zwischen
klassischer Physik und der Quantenmechanik zu beschreiben. Nanoteilchen, die mit hoher Präzision in
ihrer Translations- und Rotationsbewegung gesteuert werden können, haben sich als vielversprechend
erwiesen, quantenmechanischem Verhalten an schweren Objekten mit ungefähr 107 amu zu beobachten.
Interferenz-Experimente mit diesen Teilchen würden den aktuellen Massenrekord um drei und die
Makroskopizität um mehr als fünf Größenordnungen erhöhen. In aktuellen Experimenten mit moderns-
tem Stand der Technik hat man es geschafft, diese Teilchen über 100 pm zu delokalisieren, was ihre
Nullpunktsschwingung übertrifft. Um die Teilchen über ihre gesamte Ausdehnung zu delokalisieren
wurden Rotations-Interfenz-Experimente vorgeschlagen, die die Quantelung des Drehimpulses ausnut-
zen, und die daraus resultierende periodische Wiederholung der Orientierung. Die Realisierung der
Experimente erfordert die quantenmechanische Kontrolle über sowohl die Translationen als auch die
Rotationen des Teilchens, so dass Position und Orientierung definiert werden können. Bisher ist es
gelungen, die Translationen in einer und zwei Dimensionen in ihren jeweiligen Grundzustand zu kühlen.
Der Grundzustand in allen sechs Dimensionen konnte bisher noch nicht nachgewiesen werden, ist aber
auch für die Interferenz-Experimente nicht notwendig.
In unserem Experiment widmen wir uns der Rotationsmechanik im Feld der Optomechanik und ver-
wenden einen optischen Resonator für Kühlversuche mit kohärent gestreutem Licht. Dazu laden wir
Siliziumdioxid Teilchen in eine optische Pinzette, indem wir sie durch einen Laserpuls von einer Probe
lösen. Danach werden sie innerhalb der stehenden Welle des optischen Resonators positioniert.
Über die Dämpungsverhältnisse der Teilchenbewegung schließen wir auf dessen Asymmetrie. Unsere
Analyse hat ergeben, dass wir hantelförmige Teilchen, die aus zwei sphärischen anisotropen Teilchen
bestehen, fangen. Abhängig von ihrer Form orientieren sich die Teilchen innerhalb der elliptisch polari-
sierten Falle und beginnen um ihre Ausrichtung zu librieren. Wir beobachten zwei der drei Librationen
direkt und können ihre Frequenz über die Elliptizität modulieren. Bei Drücken unterhalb von 1 mbar
beobachten wir, dass die beiden Librationen über die dritte diffusive Rotation koppeln und daher hybride
Moden entstehen. Aus der resultierenden Frequenzaufspaltung bestimmen wir die Rotationsfrequenz der
nicht sichtbaren dritten Rotationsmode. Außerdem stellen wir fest, dass die freie Rotation die 𝑥- und
𝑦-Bewegung des Teilchens destabilisiert, sodass der Übergang in Hoch-Vakuum schwierig ist. Um dies
zu verhindern und die Teilchen Orientierung zu stabilisieren, lassen wir es zusätzlich um die 𝑧-Achse
rotieren.
Vom Teilchen gestreutes Licht besetzt den zunächst leeren Resonator. Abhängig vom Freiheitsgrad
koppelt die Teilchenbewegung an eine der zwei orthogonalen Polarisationsmoden des Resonators. Wird
dieser zusätzlich in Bezug zur optischen Falle blau-verstimmt, verstärkt er Anti-Stokes-Streuung. Dies
führt dazu, dass die Bewegungsenergie des Teilchens reduziert wird. Damit haben wir es geschafft,
alle drei Translationsfreiheitsgrade gleichzeitig zu kühlen. Bei einem Druck von 10−4 mbar haben wir
eine finale Temperatur der 𝑧-, 𝑥- und 𝑦-Bewegung von 36 mK, 129 mK und 105 mK erreicht, was einer
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Besetzungsszahl von ungefähr 20 · 103 entspricht. Diese ist hauptsächlich durch Phasenrauschen des
Lasers limitiert. Wir haben es geschafft, diesen mithilfe eines nicht ausgeglichenen Mach-Zehnder
Interferometer lokal um die Teilchen Frequenzen um 20 dB zu senken. In Simulationen haben wir
gezeigt, dass es dadurch schon bald möglich ist, die beiden beobachteten Librationen in ihren jeweiligen
Grundzustand zu kühlen.
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CHAPTER 1

Introduction

In modern physics, a primary research focus lies in exploring the transition from classical to quantum
mechanical behavior. Probing quantum mechanical dynamics at ever-increasing mass scales becomes
one of the key targets in current state-of-the-art experiments. Recently, nanoparticles have emerged as
promising candidates. These particles can be trapped in a tightly focused optical beam, known as an
optical tweezer, a technique pioneered by Arthur Ashkin in 1986 [1, 2]. Optical levitation revolutionized
the studies of light-matter interaction, allows the particle to levitate from its surrounding environment
without being clamped to a physical system. Thus, enhancing the isolation by operating in low pressure
regimes, it leads in combination with a high trapping frequency to high quality oscillators [3].

Optically trapped particles offer an ideal platform for investigating quantum mechanical behavior, and
hold promise for high sensitive measurements like acceleration sensing [4–6], or quantum gravitational
effects [7–9]. Their versatility in size and shape renders them especially suitable for rotational experiments.
Initial studies gain control over the rotational motion by manipulating the polarization and adjusting the
trapped rotor dimensions [10]. This sparks greater interests in rotating particles for applications such as
torque sensing [11–15] and micro-gyroscopes [16].
Experiments have demonstrated that nano-dumbbells and even single particles can rotate at GHz
frequencies in high vacuum [17,18]. Thus, their torque sensitivity is high enough to measure effects like
the Casimir torque near a birefringent crystal [19] and vacuum frictional torques [20]. However, these
experiments require a tight alignment of the particle orientation, and thus motional cooling is essential.
Non-spherical particles possess three translational, describing the center of mass (CoM) motion, and
three rotational degrees of freedom. Inside an optical tweezer, the rotational motions can be trapped,
leading to small oscillations around the equilibrium angles, which are called librations. In contrast to the
CoM motion, the librational motion couples to the tweezer polarization. Thus, allowing to manipulate
and even cool them independently [21]. While cooling, the motional temperature decreases and finally
converges to zero. When the motional occupation is below unity, the system mode is in its ground state.
Unlike atom cooling, where internal structures are accessible, nanoparticle cooling requires adapted
techniques. Cooling schemes are generally categorized as either active or passive. Active cooling includes
adapting the trapping potential according to the current particle position. For example, parametric
feedback cooling modifies the trapping power of the tweezer and has cooled the translational [22–24] as
well as the librational [25] motion to millikelvins. In the case, the trapped particles carry net charges,
electric feedback cooling can be applied [26–28]. In combination with a quantum limited measurement
and a real time state estimation, one dimensional ground state cooling has been realized [29–31]. Passive
cooling schemes like coherent scattering cooling have the ability to cool the motion even without
monitoring the particle position in real time [32]. Their key element is an optical cavity with a narrow
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Chapter 1 Introduction

linewidth. It is detuned that the cavity response function enhances Anti-Stokes scattering, and thereby
reduces the motional energy. Originally, coherent scattering was developed for atom cooling [33,34]
and then extended to levitated nanoparticles [35]. With this technique, ground state cooling in one [36]
and even two dimensions [37,38] has been achieved. Although the theoretical works have proven that
the coupling induced by the cavity is strong enough to simultaneously cool all degrees of freedom, the
six dimensional ground state is still outstanding [21, 39]. Currently, the translational motion is limited
to hundreds of microkelvins and the librational modes to tenth of millikelvins [40]. Ultimately, these
experiments pave the way towards complete quantum control over the trapped nanoparticle.
Explicitly revealing the quantum nature of these nanoparticles (107−1010amu) in interference experiments,
delocalizing it over the object extent, has not been realized. The heaviest observed objects in matter-wave
interference are molecules with masses beyond 25 kDa, consisting of up to 2 000 atoms [41]. The
state-of-the-art for nanoparticles is a coherence length on the order of 100 pm exceeding the zero-point
motion [42]. However, there are different proposals suggesting spatial interference experiments [43] and
rotational interference [44–46]. For rotational interference, schemes like rotational revivals [45] and
quantum tennis racket flips [46] could witness quantum mechanical behavior using a single nanoparticle,
rendering it especially suitable for levitated optomechanics. In order to conduct these experiments,
it is crucial to investigate their librational behavior and cool it into the quantum regime, while not
necessitating the quantum ground state.
The scope of this thesis is to present fundamental work investigating the librations and rotations of
trapped silica particles and implement coherent scattering cooling for translational and librational cooling.
In Chapter 2 we review the mathematical framework of the interaction between the optical tweezer and
the trapped nanoparticle. Thereby, we focus on non-spherical shaped particles and their ability to librate
within the tweezer potential. As the motion is highly dependent on the particle shape, we reconstruct it
based on the measured data (see Chapter 3). Further, we investigate the motion with different detection
techniques. In the second part of this thesis in Chapter 4, we provide a detailed description of coherent
scattering cooling and experimentally demonstrate the CoM cooling. We studied the coupling between
particle and cavity and particularly focus on the cooling limits. Further, we present a way to reduce phase
noise heating locally and based on this simulate the cooling with experimentally feasible parameters.
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CHAPTER 2

Theory of rotational optomechanics

The expression ’optomechanics’ denotes the interconnection between the classical optical field and the
mechanical motion. We study the field by investigating the light coupling to a nanoscale object. In
particular, we focus on rational motion, which is inherent with the particle shape. The scope of this
chapter is to present an overview of the fundamental concepts that underpin light-mater interactions
at the nanoscale. A key element is a tightly focused light beam, known as an optical tweezer, which
is capable to trap nanoparticles. We provide a general description of the motion for a trapped particle
concerning all six degrees of freedom that a rigid body can have.

2.1 Optical tweezer

A nanoscale object, which consists of many atoms or molecules, can be treated macroscopically. Thus,
the object is assigned with a charge density 𝜌 and a current density j, which in turn provide a polarizability
and a magnetization. Given that the particle size is small compared to the wavelength of an external
optical field, the dipolar approximation is applicable [47]. Over the extent of the particle, the optical
field is assumed to be homogenous. In its presence, the electric and magnetic fields induce a dipole
moment p through the polarizability 𝛼, which gives rise to the Lorentz force [48]

F = (p∇)E + p × (∇ × E) + d
d𝑡
(p × B) (2.1)

=
∑︁
𝑞

𝑝𝑞∇𝐸𝑞 + d
d𝑡
(p × B). (2.2)

For the sake of simplicity, we switch to the index notation where 𝑞 ∈ {𝑥, 𝑦, 𝑧} holds. Based on this
fundamental relation between nanoscale matter and an external light field, we derive a time averaged
force such that the last term drops. The cyclic average ensures the force

⟨F⟩ =
∑︁
𝑞

⟨𝑝∗𝑞∇𝐸𝑖⟩ =
1
2

∑︁
𝑞

ℜ{𝑝∗𝑞∇𝐸𝑞} (2.3)

to be real. For the dipole moment p we insert the relation

p = 𝜀0𝑉𝜒E = 𝛼E (2.4)
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Chapter 2 Theory of rotational optomechanics

where 𝜒 represents the electrical susceptibility and 𝑉 describes the particle volume, multiplied with
the vacuum permittivity 𝜀0 this ultimately results in the polarizability 𝛼. It should be noted that the
susceptibility is in general a tensor of rank two, describing the particle response to the external electric
field depend on the particle axis. For isotropic particles like spherical ones without impurities, the
susceptibility is in all spatial directions identical, thereby becoming a scalar. In general, the polarizability
can be expressed as a sum of two terms [49]

𝛼 = 𝛼
′ + i𝛼′′, (2.5)

where the real part describes the dispersive contribution and the imaginary part accounts for the dissipative
component. In this context, the polarizability is consistent with the Clausius-Mossotti relation for a
particle in vacuum

𝛼
′
= 3𝜀0𝑉

𝑛
2 − 1
𝑛

2 + 2
, (2.6)

where 𝑛 is the refractive index of the particle. We insert the polarizability relation back in Equation 2.3
and separate the Force accordingly

⟨Fgrad⟩ =
1
2

∑︁
𝑞

ℜ{𝐸∗
𝑞𝛼

′∇𝐸𝑞} =
1
4
∇(E∗

𝛼
′E) (2.7)

⟨Fscat⟩ =
1
2

∑︁
𝑞

ℑ{𝐸∗
𝑞𝛼

′′∇𝐸𝑞}, (2.8)

where we introduce the gradient force as the real and the scattering force as the imaginary part. The
imaginary part of 𝛼 is not consequently zero if the particle is lossless.

In an optical field, the gradient force points toward the region of maximal intensity. This allows for
the utilization of a highly focused laser beam as an optical trap, called an optical tweezer [1]. While the
radiation pressure pushes the particle along the k-vector, the trapping position is displaced from the
intensity maximum. In order to achieve stable trapping, it is necessary to compensate for the scattering
force. This can be achieved either by the gradient force itself or by setting up a double-sided tweezer,
whereby the focused light is back-reflected, leading to a standing wave. As an alternative approach, the
scattering force can be reduced in an upside down system, where the gravity counteracts the scattering
force [18].
Since the gradient force is conservative, we can define a potential

𝑈 (r) = −1
4

E∗
𝑡 (r)𝛼

′E𝑡 (r), (2.9)

at the position r. To determine the potential shape at the particle location, we suppose the optical field
propagating along the 𝑧-direction with a transversal Gaussian profile

E𝑡 (r) = 𝐸0 𝑓𝑡 (r)e
i𝜔𝑡e𝑡 , (2.10)

wherein the spatial dependency is stored in the mode function 𝑓𝑡 (r) and the prefactors summarized in 𝐸0.
The electric field oscillates with frequency 𝜔 and is polarized along e𝑡 . The mode function encompasses
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2.1 Optical tweezer

the Gaussian shape

𝑓𝑐 (r) =
1

1 + 𝑧2/𝑧2
𝑅

exp

{
−𝑥2

𝑤𝑥 (𝑧)
2 + −𝑦2

𝑤𝑦 (𝑧)

}
exp {i (𝑘𝑧 − 𝜙(r))} (2.11)

with 𝜙(r) being the Gouy phase describing the phase shift at the particle position. The waists of the
Gaussian beam scale depend on the position along the propagation direction

𝑤𝑥,𝑦 (𝑧) = 𝑤𝑥,𝑦

√︄
1 + 𝑧

2

𝑧
2
𝑅

(2.12)

with their minimal waists at 𝑧 = 0. As we distinguish between the waists corresponding to the 𝑥- and
𝑦-direction and allow them to differ we approximate the Rayleigh length as 𝑧𝑅 ≈ 𝑤𝑥𝑤𝑦𝜋/𝜆 [21]. The
remaining prefactor 𝐸0 sums up all constant terms

𝐸0 =

√︄
4𝑃

𝑐𝜀0𝜋𝑤𝑥𝑤𝑦

(2.13)

and is related to the optical power 𝑃.
We insert the expression for the electric field in Equation 2.9. As long as we consider a scalar polarizability,
we do not need to specify the tweezer polarization further. Hence, we end up with the expression for the
potential as

𝑈 (r) = −𝛼
′

4
𝐸

2
0 exp

{
−2𝑥2

𝑤𝑥 (𝑧)
2 + −2𝑦2

𝑤𝑦 (𝑧)
2

}
. (2.14)

Given our interest in how the potential affects the particle motion, we expand the potential around its
initial position. Since the particle is trapped in the focus, its location is r = (0, 0, 0) when the scattering
force contribution is ignored. For small displacements of the particle along the spatial directions, we
expand the potential in a Taylor series

𝑈 (r) = −1
2
× 2𝛼′𝑃
𝑐𝜀0𝜋𝑤𝑥𝑤𝑦

(
1 − 2𝑥2

𝑤
2
𝑥

− 2𝑦2

𝑤
2
𝑦

− 𝑧
2

𝑧
2
𝑅

+ O(r4)
)
. (2.15)

In first approximation, the tweezer potential is of the form𝑈 (r) = 𝑘r2/2. Hence, we can treat the particle
motion inside the trap as a harmonic oscillator with the frequencies Ω𝑧,𝑥,𝑦 =

√︃
𝑘𝑧,𝑥,𝑦/𝑚, where 𝑚 is the

nanoparticle mass. Consequently, the particle translational frequencies

Ω𝑧 =
𝜆

𝜋(𝑤𝑥𝑤𝑦)

√︄
2𝛼′𝑃

𝑚𝑐𝜀0𝜋𝑤𝑥𝑤𝑦

, (2.16)

Ω𝑥 =
1
𝑤𝑥

√︄
4𝛼′𝑃

𝑚𝑐𝜀0𝜋𝑤𝑥𝑤𝑦

, (2.17)

Ω𝑦 =
1
𝑤𝑦

√︄
4𝛼′𝑃

𝑚𝑐𝜀0𝜋𝑤𝑥𝑤𝑦

(2.18)

5



Chapter 2 Theory of rotational optomechanics

are dependent upon the potential stiffness, which can be manipulated by the optical parameters, including
the waists, wavelength, and optical power. We conclude the particle motion along the translational
directions to be three independent harmonic oscillations around the equilibrium position r = (0, 0, 0).

2.1.1 Equations of motion

We proceed to examine the dynamics of the CoM motion. It is therefore necessary to consider the
particle in the context of its surrounding environment. In the addition to the coupling to the optical
potential, the particle also interacts with the surrounding gas, thereby perturbing the oscillation. We
state the tweezer and particle to be in vacuum around intermediate pressure (millibar), where the optical
forces dominate the Stoke drag forces [50]. The environment treated as a thermal gas thermalizes the
particle motion at the bath temperature 𝑇 = 300 K. The interaction results from collisions between the
particle and the gas molecules, exerting a friction 𝛾 and a thermal force 𝐹th. Hence, the differential
equation of motion for the direction of motion 𝑞 ∈ {𝑥, 𝑦, 𝑧} is

¥𝑞(𝑡) + Γ𝑚 ¤𝑞(𝑡) +Ω
2
𝑞𝑞(𝑡) =

𝐹th(𝑡)
𝑚𝑞

, (2.19)

where we use the abbreviation Γ𝑚 = Γ/𝑚. In the event that the interaction with the thermal bath is
assumed to be Gaussian and Markovian limited, meaning that it introduces a white noise the thermal
force arises from the fluctuation-dissipation theorem [51,52]

𝐹th =
√︁

2𝑚𝑘𝐵𝑇Γ𝑚𝜉 (𝑡) (2.20)

with 𝜉 (𝑡) fulfilling the relation

⟨𝜉 (𝑡1)𝜉 (𝑡2)⟩ = 𝛿(𝑡1 − 𝑡2). (2.21)

In order to solve the equation of motion 2.19, it is necessary to Fourier transform the problem
F [𝑞(𝑡)] = 𝑞(𝜔)

𝑞(𝜔) = 1
Ω

2
𝑞 − 𝜔2 − iΓ𝑚𝜔

×
�̃�th
𝑚𝑞

= 𝜒𝑚(𝜔)
𝐹th
𝑚𝑞

, (2.22)

where 𝜒𝑚 denotes the mechanical susceptibility. We calculate the power spectral density (PSD) of the
position coordinate 𝑞

𝑆𝑞𝑞 (𝜔) =
∫

⟨𝑞(𝜔)𝑞(𝜔′)⟩d𝜔. (2.23)

Accordingly, the PSD of Equation 2.22

𝑆𝑞𝑞 (𝜔) =
2𝑘𝐵𝑇Γ𝑚/𝑚(

Ω
2
𝑞 − 𝜔2

)2
+ Γ

2
𝜔

2
=
𝑘𝐵𝑇

𝑚Ω
2
𝑞

× 2|𝜒𝑚 |
2
Γ𝑚Ω

2
𝑞 (2.24)

describes a Lorentzian shaped function, which is peaked at Ω𝑞 for satisfying Ω𝑞 ≫ Γ𝑚. Furthermore, the
PSD is proportional to the temperature and thus the ratio of thermal and mechanical energy 𝑘𝐵𝑇/ℏΩ

2
𝑞.
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2.2 Rotations and librations

2.2 Rotations and librations

We extend the discussion about the motion of a nanoparticle in the optical potential to anisotropic
particles, meaning their susceptibility is spatial dependent. The anisotropy is not caused by impurities
inside the particle but by a non-spherical shape. Thus, the susceptibility becomes a tensor of rank two,
and in the particle frame it is diagonal

𝜒particle =
©«
𝜒𝑎 0 0
0 𝜒𝑏 0
0 0 𝜒𝑐

ª®¬ , (2.25)

where without loss of generality 𝜒𝑎 < 𝜒𝑏 < 𝜒𝑐 holds. While the tweezer and the optical potential
is given in the laboratory frame, we transform the susceptibility by using an Euler transformation in
the 𝑧-𝑦′-𝑧′′ convention. The transformation is shown in Figure 2.1, where the laboratory frame (red)
converts to the particle frame (black). First, it is rotated around the 𝑧-axis by the angle 𝛼. This changes
the orientation of the 𝑥 and 𝑦 coordinates but leaves 𝑧 unaffected. The second rotation, rotates the
frame around the new 𝑦

′ axis, followed by a final rotation around the new 𝑧
′′ axis. Mathematically, the

Figure 2.1: Transformation of the tweezer frame (red) to the particle fixed frame (black). The rotations are
described by the Euler angles 𝛼, 𝛽, 𝛾 in the 𝑧-𝑦′-𝑧′′ convention.

transformation is expressed multiplying the three rotation matrices which results in

𝑅𝑧𝑦
′
𝑧
′′ =

©«
cos(𝛼) cos(𝛽) − sin(𝛼) sin(𝛾) − cos(𝛼) cos(𝛽) sin(𝛾) − sin(𝛼) cos(𝛾) cos(𝛼) sin(𝛽)

sin(𝛼) cos(𝛽) cos(𝛾) + cos(𝛼) sin(𝛾) − sin(𝛼) cos(𝛽) sin(𝛾) + cos(𝛼) cos(𝛾) sin(𝛼) sin(𝛽)
− cos(𝛾) sin(𝛽) sin(𝛾) sin(𝛽) cos(𝛽)

ª®¬ (2.26)

with the angles 𝛼, 𝛽 and 𝛾, also known as the Euler angles. With this transformation we convert the
susceptibility tensor from the particle in the laboratory frame

𝜒 = 𝑅𝑧𝑦
′
𝑧
′′ 𝜒particle𝑅

⊤
𝑧𝑦

′
𝑧
′′ , (2.27)

in fact it is more convenient to describe the orientation of the particle inside the trap and not vice versa.
The resulting components depending on the Euler angles Ω = (𝛼, 𝛽, 𝛾) are calculated in the Appendix A.
Beside the different susceptibilities, the particle features also three distinct moments of inertia 𝐼particle =

diag(𝐼𝑎, 𝐼𝑏, 𝐼𝑐). Its tensor is transformed accordingly.
As the particle is asymmetric, its rotations become relevant. Therefore, we find a Lagrangian

representing the free rotation and subsequently derive the Hamiltonian of the system. In absence of a

7



Chapter 2 Theory of rotational optomechanics

potential the Lagrangian of motion is given by the rotational energy

Lrot =
1
2
(𝜔⊤

𝐼𝜔), (2.28)

where the frequency 𝜔 depends on the Euler angles following this relation:

©«
𝜔𝑎

𝜔𝑏

𝜔𝑐

ª®¬ =
©«
0 − sin(𝛼) cos(𝛼) sin(𝛽)
0 cos(𝛼) sin(𝛼) sin(𝛽)
1 0 cos(𝛽)

ª®¬ =
©«
¤𝛼
¤𝛽
¤𝛾

ª®¬ . (2.29)

In order to derive the Hamiltonian we determine the canonical momenta using the relation

𝑝𝑞 =
𝜕L
𝜕 ¤𝑞 , (2.30)

which then yields

𝑝𝛼 = ¤𝛼 sin(𝛽)2
(
𝐼𝑎 cos(𝛾)2 + 𝐼𝑏 sin(𝛾)2 + 𝐼𝑐 cot(𝛽)2

)
+ ¤𝛽(𝐼𝑏 − 𝐼𝑎) sin(𝛽) sin(𝛾) cos(𝛾)

+ ¤𝛾𝐼𝑐 cos(𝛽), (2.31)

𝑝𝛽 = ¤𝛼(𝐼𝑏 − 𝐼𝑎) sin(𝛽) sin(𝛾) cos(𝛾) + ¤𝛽
(
𝐼𝑎 sin(𝛾)2 + 𝐼𝑏 cos(𝛾)2

)
, (2.32)

𝑝𝛾 = 𝐼𝑐 ( ¤𝛼 cos(𝛽) + ¤𝛾) (2.33)

a set of coupled differential equations. Although the rotational modes in the laboratory frame are highly
coupled at the angle Ω = (0, 𝜋/2, 0) the angular momenta decouple, which results in

𝑝𝛼 = ¤𝛼𝐼𝑎, 𝑝𝛽 = ¤𝛽𝐼𝑏, 𝑝𝛾 = ¤𝛾𝐼𝑐 . (2.34)

For the following discussion the orientation Ω = (0, 𝜋/2, 0) and the position r = (0, 0, 0) are referred to
be the steady-state solution. When inserting the orientation in Figure 2.1, the particle 𝑧-axis overlaps
with the tweezer 𝑥-axis.
The Hamiltonian of the free evolution conducting the translational motion and the rotational reduces to

𝐻𝑁 =
∑︁
𝑞

𝑝
2
𝑞

2𝑚𝑞

(2.35)

with 𝑞 ∈ {𝑥, 𝑦, 𝑧, 𝛼, 𝛽, 𝛾}. For clarity, the correspondences 𝑚𝑥,𝑦,𝑧 = 𝑚 and 𝑚𝛼,𝛽,𝛾 = 𝐼𝑎,𝑏,𝑐 hold.

2.2.1 Optical torques

Inside the optical tweezer, the free rotation is perturbed by interaction with the optical potential, creating
an optical torque. This torque tends to align the dipole in the electric field. The mathematical expression
is derived similarly to Equation 2.1. By integrating Maxwell’s stress tensor over the surface of the sphere
and time averaging the solution, the angular momentum of the field is removed [21, 48]. The calculated

8



2.2 Rotations and librations

optical torque results in [53],

𝜏opt =
1
2
ℜ{p × E∗

tot}, (2.36)

whereby the total electric field describes both the incoming tweezer field and subsequently the scattered
field of the particle. Thus, we decompose the torque in two parts

𝜏opt = 𝜏𝑑 + 𝜏self, (2.37)

with 𝜏𝑑 stemming from the tweezer field. This torque overcomes the self-induced torque, that arises
from the back-action of the scatter field. It can be seen that 𝜏self will become relevant if 𝜏𝑑 vanishes,
which is the case when the dipole axis aligns with the tweezer polarization (p ∥ E𝑡 ). Consequently, we
define the tweezer polarization as

e𝑡 =
©«

cos(𝜓)
i sin(𝜓)

0

ª®¬ (2.38)

where the angle 𝜓 describes the tweezer ellipticity in the range 𝜓 ∈ [0, 𝜋/4]. For 𝜓 = 0 the tweezer
is linearly, and for 𝜓 = 𝜋/4 circularly polarized. Taking the electric field of the tweezer as defined in
Equation 2.10 into account, we calculate the resulting torque

𝜏𝑑 =
1
2

��𝐸0 𝑓𝑡 (r)
��2 ℜ {

𝜀0𝑉𝜒E𝑡 × E∗
𝑡

}
. (2.39)

After transforming in the laboratory frame the torque is given by

𝜏𝑑 =
1
2
𝜀0𝑉 |𝐸0 |

2ℜ


©«

−i𝜒31 sin(𝜓) cos(𝜓) − 𝜒32 sin(𝜓)2

𝜒31 cos(𝜓)2 − i𝜒32 sin(𝜓) cos(𝜓)
i(𝜒11 − 𝜒22) cos(𝜓) sin(𝜓) − 𝜒12 cos(2𝜓)

ª®®¬
 , (2.40)

where the susceptibility tensor is assumed to be symmetric 𝜒 = 𝜒
⊤. Since the entries of the susceptibility

tensor are dependent on the Euler angles, the torque is related to the particle orientation. We evaluate
the torque in linear order around the steady-state orientation by Taylor expanding the susceptibility
components (cf. Appendix A), e.g.

𝜒12 ≈ 𝜒𝑎 (𝛼(−𝛽) + 𝛾) (−𝛽 − 𝛼𝛾) + 𝜒𝑏 (−𝛼 + 1) (𝛽𝛾 − 𝛼) + 𝜒𝑐𝛼 (2.41)
= (𝜒𝑐 − 𝜒𝑏)𝛼 + O(𝑞𝑞′). (2.42)

Thus, we come up with a linearized optical torque

𝜏𝑑 = −1
2
𝜀0𝑉 |𝐸0 |

2 ©«
sin(𝜓)2 (

𝜒𝑏 − 𝜒𝑎
)
𝛾

cos(𝜓)2 (
𝜒𝑐 − 𝜒𝑎

)
𝛽

cos(2𝜓)
(
𝜒𝑐 − 𝜒𝑏

)
𝛼

ª®®¬ (2.43)

describing a restoring torque along all spatial directions. In analogy to the translational, the restoring
torque results in a harmonic motion around the equilibrium orientation Ω.
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Chapter 2 Theory of rotational optomechanics

2.2.2 Libration

The harmonic oscillation around a steady-state angle is called a libration, and can be treated in a manner
analogous to the translational description. According to Hook’s law, the torque 𝜏𝑑 is determined by the
stiffness 𝑘𝑞 for each degree of freedom

𝜏d = − ©«
𝑘𝛾𝛾

𝑘𝛽𝛽

𝑘𝛼𝛼

ª®¬ , (2.44)

which consequently leads to the frequenciesΩ𝑞 =
√︃
𝑘𝑞/𝑚𝑞 with 𝑞 ∈ {𝛼, 𝛽, 𝛾}. The calculated librational

frequencies are

Ω𝛼 =

√︄
2𝑃

𝑐𝜀0𝜋𝑤𝑥𝑤𝑦

𝜀0𝑉
(𝜒𝑐 − 𝜒𝑏)

𝐼𝑎
cos(2𝜓) (2.45)

Ω𝛽 =

√︄
2𝑃

𝑐𝜀0𝜋𝑤𝑥𝑤𝑦

𝜀0𝑉
(𝜒𝑐 − 𝜒𝑎)

𝐼𝑏
cos(𝜓)2 (2.46)

Ω𝛾 =

√︄
2𝑃

𝑐𝜀0𝜋𝑤𝑥𝑤𝑦

𝜀0𝑉
(𝜒𝑏 − 𝜒𝑎)

𝐼𝑐
sin(𝜓)2

. (2.47)

In perspective of the laboratory frame, the torque along the 𝑧-axis enables the particle to oscillate in the
𝑥-𝑦 plane. This corresponds to a libration around the steady-state orientation of the Euler angle 𝛼. For
simplicity this motion is called 𝛼-libration with its corresponding frequency Ω𝛼. Accordingly, we define
the remaining two oscillations as 𝛽- and 𝛾-libration.
Further, we can predict the particle aligning inside the tweezer. Therefore, we suppose a linear polarized
(𝜓 = 0) beam, the torque along the polarization direction (𝑥-axis) disappears, which causes an undefined
orientation in the orthogonal 𝑧-𝑦 plane. As a result, the 𝛾-oscillation evolves freely thus, the particle axis
with the smallest susceptibility 𝜒𝑐 is not confined with the optical trap. Instead, the particle 𝑧-axis with
the strongest susceptibility aligns with the tweezer polarization axis that we conclude the particle axis
with the highest polarizability aligns with the strongest polarization axis.
As previously discussed in the context of the translations, the particles do not couple solely to the
light field. They also interact with their environment by collisions, which give rise to a stochastic
thermal-torque 𝜏th. The white noise torque is Gaussian distributed in magnitude and in middle zero that
the relation [11, 12, 18]

⟨𝜏th(𝑡1)𝜏th(𝑡2)⟩ = 2𝑚𝑞Γ𝑞𝑘B𝑇𝛿(𝑡1 − 𝑡2) (2.48)

holds. The equation of librational motion yields

¥𝑞 + Γ𝑞 ¤𝑞 +Ω
2
𝑞𝑞 =

𝜏th
𝑚𝑞

. (2.49)

Now, we need to treat the damping carefully, and generalize Γ𝑞 = Γ/𝑚𝑞 as the moment of inertia differ
for each degree of freedom. Since the description is similar to the translational Equation 2.19, we

10



2.2 Rotations and librations

determine the PSD for the librational motion

𝑆𝑞𝑞 (𝜔) =
2𝑘𝐵𝑇Γ𝑞/𝑚𝑞(

Ω
2
𝑞 − 𝜔2

)2
+ Γ

2
𝑞𝜔

2
(2.50)

to be a Lorentzian function as well.
Additionally, as we determined the translational frequencies in Equation 2.16 we supposed a spherical
shape, we can now generalize them by replacing the polarizability with

𝛼
′
= 𝜀0𝑉 (𝜒𝑐 cos(𝜓)2 + 𝜒𝑏 sin(𝜓)2). (2.51)

Overall, the CoM motion as well as the librations for an aspherical particle are described by six
independent harmonic oscillators in an elliptical tweezer potential. As a remark, we consider only
lossless particles exhibiting an anisotropy regarding the polarization to experience an optical torque.
Particles that feature impurities or are capable to absorb a photon, undergo torques as well. When every
motion is confined as a harmonic oscillation we call the particle deeply trapped with the steady-state
position r = (0, 0, 0) and orientation Ω = (0, 𝜋/2, 0).

2.2.3 Rotation

In the case, where the tweezer is circularly polarized (𝜓 = 𝜋/4) the restoring torque along the 𝑧-axis
drops (Equation 2.43). Therefore, the 𝛼-libration is not defined, which allows for a free evolving rotation.
Despite the tweezer induced torque cancels, the self-induced torque does not necessarily disappear,
too. In this case, we need to consider the back-action of the scattered light and therefore calculate the
scattered field, which we express in terms of the dyadic Green’s function [54]

Escat =
𝜔

2

𝜀0𝑐
2 Gp. (2.52)

In the near field approximation the dyadic Green’s function is [48]

G = −exp {i𝑘𝑅}
4𝜋𝑅

1
𝑘

2
𝑅

2

(
I + 3RR

𝑅
2

)
≈ i𝑘

6𝜋
I, (2.53)

where R stands for the position we want to evaluate the field. As we approximate it around, the
steady-state position R is expanded around r = (0, 0, 0) that the scattered field close to the particle
location becomes

Escat =
𝑘

2

𝜀0
Gp ≈ i𝑘3

𝑉

6𝜋
𝜒E𝑡 . (2.54)

Inserting the scattered field in Equation 2.37 we obtain the self-induced torque. In the case of interest
where the tweezer is circularly polarized, the particle experiences

𝜏
𝑧
self ≈

1
4
|𝐸0 |

2 𝜀0𝑉
2
𝑘

3

6𝜋
𝜒𝑏𝜒𝑐 (2.55)
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Chapter 2 Theory of rotational optomechanics

a constant torque. This results in a driven rotation around the tweezer axis. Combining the optical
torques along the 𝑥- and 𝑦-direction the total optical torque for circularly polarized light reads

𝜏opt = 𝜏d + 𝜏self = −1
4
𝜀0𝑉 |𝐸0 |

2 ©«
𝛾 cos(𝛼)

(
𝜒𝑏 − 𝜒𝑎

)
− 𝛽 sin(𝛼)

(
𝜒𝑐 − 𝜒𝑎

)
𝛽 cos(𝛼)

(
𝜒𝑐 − 𝜒𝑎

)
+ 𝛾 sin(𝛼)

(
𝜒𝑏 − 𝜒𝑎

)
−𝑉𝑘

3

6𝜋 𝜒𝑏𝜒𝑐

ª®®¬ . (2.56)

Due to the absence of a restoring force, the particle begins to rotate, accompanying the 𝛽- and 𝛾-libration
couple together. A similar effect is observed in the case of linear polarized light, where the 𝛾-libration
tends to zero. However, its rotation is not driven by the optical field

𝜏opt = −1
4
𝜀0𝑉 |𝐸0 |

2
©«

0
𝛽

(
𝜒𝑐 − 𝜒𝑎 cos(𝛾)2 − 𝜒𝑏 sin(𝛾)2

)
+ 𝛼

(
𝜒𝑏 − 𝜒𝑎

)
sin(2𝛾)/2

𝛼

(
𝜒𝑐 − 𝜒𝑎 sin(𝛾)2 − 𝜒𝑏 cos(𝛾)2

)
+ 𝛽

(
𝜒𝑏 − 𝜒𝑎

)
sin(2𝛾)/2

ª®®®¬ , (2.57)

instead it evolves in a Brownian motion due to the thermal torque (cf. Equation 2.48) [55].
Sticking to the driven rotation, we finally derive the equation of motion

¥𝑞 + Γ𝑞 ¤𝑞 =
𝜏opt + 𝜏th
𝑚𝑞

, (2.58)

which has no steady-state orientation. In thermal equilibrium, however, it has a mean rotation frequency

⟨𝜔𝑞⟩ =
𝜏opt + 𝜏th
Γ𝑞𝑚𝑞

(2.59)

that is inversely proportional to the damping Γ𝑞. It can thus be concluded that the trapping light is
capable of transferring angular momentum to the nanoparticle, which lead to optical torques. With an
elliptically polarized tweezer the particle librates around its equilibrium position Ω = (0, 𝜋/2, 0) and as
soon as the polarization changes to circularly or linearly polarized light, two librations couple, while
the other starts rotating. In the event of circularly polarized light, an optical torque drives the motion
constantly.
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CHAPTER 3

Characterization of levitated non-spherical
nanoparticles

Since the field of levitated optomechanics has an intensified interest in investigating rotating particles,
the characterization of the particle shape becomes more important. While asymmetries barely influence
the translational motion, they significantly impact the librations. Consequently, in experiments aiming at
full rotational control, it is of critical importance to ascertain the type and shape of the trapped particles.

3.1 Experimental setup

The key component of our optical setup is a single sided-optical tweezer, which consists of a strongly
focused laser beam, as shown in Figure 3.1. We use an NKT E15 fiber seed laser (linewidth: < 0.1 kHz,

Figure 3.1: Schematic drawing of the employed optical setup feasible for launching silica nanoparticles directly
in itermediate vacuum. For trapping the particles, we use a 1 550 nm laser from NKT with a small linewidth.
As the mode profile after the amplifier is not Gaussian, the mode cleaning fiber (MCF) restores the profile. In
a vacuum chamber capable to reach a minimal pressure around 10−9 mbar nanoparticles are loaded in the trap.
A green 𝜆 = 532 nm laser is focused on the backside of a sample coated with nanoparticles. The laser waist is
approximately 200 µm. The trap is manipulated by regulating the power using the half-wave plate and polarizing
beam splitter (PBS), as well as adjusting the polarization with the combination of a half-wave and quarter-wave
plate positioned after the MCF. Light scattered from the particle is collected and collimated in forward direction.
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Chapter 3 Characterization of levitated non-spherical nanoparticles

𝑃out = 40 mW, maximal phase noise at 20 kHz: 0.3 µrad/
√

Hz/m) with a wavelength of 𝜆 = 1 550 nm
and its corresponding fiber amplifier, cranking the power to 9 W. After amplification, we send the
amplified beam through a mode cleaning fiber to ensure a Gaussian beam for trapping. Deviations
will cause unwanted potential deformations, resulting in a non-harmonic trap. The polarization of
the trap is controlled using a combination of a quarter and a half-wave plate. Before the vacuum
chamber, we expand the beam utilizing a telescope that the diffraction-limited aspherical tweezer lens
(NA = 0.81, 𝑑 = 2.54 cm) is fully illuminated.
We load the trap with silica (SiO2) nanoparticles using laser-induced acoustic desorption (LIAD).
This loading technique is compatible with vacuum, rendering it especially suitable for levitated
optomechanics [56]. First established for physical chemistry, the working principle can be extended to
nanoparticles and in combination with an optical tweezer successfully applied [57,58]. The particles
diluted in isopropanol are deposit on the front side of a thin plate, here we use a glass slide with a 40 nm
thick silicon coating on top. After the isopropanol evaporates, the particles stick to the plate. We place
the sample in the focus of a pulsed green laser beam (𝜆 = 532 nm, 𝜏 = 9 ns, 𝐸 = 3 mJ, 𝑤 𝑓 = 200 µm),
illuminating the backside. The light pulses induce an acoustic and thermal wave in the coating. The
particles are ablated from the front side, not directly interacting with the laser. As a remark, the ablation
process is not fully understood, as it needs to compensate the binding force with an acceleration on
the order of 1 × 106 m/s2. At pressures of approximately 𝑝 = 15 mbar and with a free-fall distance of
several millimeters, the particles are slowed to enable stable trapping. For operation, we align the green
laser with the tweezer focus, enhancing trapping probabilities, although we observe particles in a wide
opening angle [58]. This method represents a cleaner loading technique than nebulization, which is a
commonly utilized approach in the field of optomechanics.

3.2 Motional detection in forward scattering

Figure 3.2: Detection of the particle motion in forward scattered light. The detection scheme consists of two parts,
a rotational detection; particularly sensitive to the 𝛼-libration and rotation and secondly a split detection scheme;
sensitive to the translational motion. For the 𝑧-detection, we additionally focus the beam to match the active area.

Once a particle is trapped, we observe its motion by collecting forward scattered light, using a
collimation lens (NA = 0.18) (cf. Figure 3.1). We assume the particle trapped in the potential origin
(r = (0, 0, 0)) and stably orientated (Ω = (0, 𝜋/2, 0)). The induced dipole then radiates a field, which is
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3.2 Motional detection in forward scattering

modeled with the dyadic Green’s function, introduced earlier in section 2.2.1. Here, we now consider its
far-field solution, because the detector is approximately half a meter distance from the trapping area.
Thereby, the scattered electrical field is given by

Escat(R) = 𝑘3
𝑉

ei𝑘𝑅
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where R describes the difference between detector and current particle position. If we presume its
position close to the optical axis, we can apply the paraxial approach (𝑅𝑥𝑅𝑦 ≪ 𝑅𝑧) simplifying the
scattered field expression

Escat(R) = 𝑘3
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The radiated field, can always be decomposed as a series of spherical waves. The collection lens converts
them to plane waves, which maintain their amplitude [50].
Inserting the Gaussian envelope function around the particle position 4.44 and expanding the phase
factor exp{i𝑘𝑅} to the first order, we notice that the scattered light phase depends on the particle motion

𝜙scat = − 𝑘
𝑓

(
𝑥𝑥

′ + 𝑦𝑦′ + 𝑧𝑧′
)
+ 𝑧

(
𝑘 − 1

𝑧R

)
. (3.3)

The primed coordinates refer to the detector position and 𝑓 denotes the focal length of the collection lens.
Due to the small particle size, focused light not necessarily scatter with the particle, which subsequently
serve as a reference beam. Through the collection lens, the scattered light is combined with the reference
beam. Due to the Gouy-phase this reference beam acquires a phase shift of 𝜋/2 when being tightly
focused

𝐸ref = 𝐸𝑡 |𝜙=𝜋/2= 𝐸0 𝑓𝑡 (r)
©«

i cos(𝜓)
− sin(𝜓)

0

ª®¬ . (3.4)

To detect the translational motion, we need to measure the scattered field after overlapped with the
reference beam. We achieve this with a split detection scheme, as presented in Figure 3.2. The light
is divided in three parts for detecting each degree of freedom separately. The two beams utilized for
the detection of both the 𝑥- and 𝑦-motion are split in half employing D-shaped mirrors. The resulting
halves are then recorded at the monitor inputs of two balanced detectors. In the first approximation, the
Rf-output (difference signal of the two monitor inputs) is proportional to the motion orthogonal to the
mirror edge. Displacements along the mirror edge are not detected, since their fraction is the same in
both input ports [59]. For 𝑧-detection, we balance the scattered light field with light sampled directly
from the laser [60].

3.2.1 Rotational detection

In a next step, we derive the framework for rotational detection. Therefore, we drop the oscillating
term of the scattered field including the phase imprinted with the translational motion, as the rotational
motion predominantly influences the light polarization. Hence, also the forward scattered light also
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Chapter 3 Characterization of levitated non-spherical nanoparticles

encodes information regarding the orientation. As shown in Figure 3.2, we split the light using a
polarizing beam splitter (PBS) at the monitor inputs. Assuming linear polarized light along either along
its fast or slow axis, the input power would at the detector would be imbalanced. Thus, we place a
half-wave plate before the PBS at an angle Θ = 𝜋/8 with respect to the scattered light polarization. To
account for circularly polarized light we additionally need a quarter-wave plate as it is essential to turn
purely imaginary polarized light real [23]. Hence, the retarder angle needs to be adjusted based on the
incoming tweezer polarization. Thus, for detecting librations with elliptical polarization the fast axis of
the quarter-wave plate should align with the main scattered polarization axis. For circularly polarized
light, the quarter-wave plate needs to be rotated by 𝜋/4. We calculate the expected signal at each input
port of the balanced detector 𝑠 ∈ {𝑥, 𝑦} as follows

𝐼𝑠 =
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where 𝐽 represents the Jones matrices for both retarders. The initial step is to perform the calculation for
elliptical polarized light in a deeply trapped regime, excluding rotations. In this instance, we introduce
the Jones calculus, representing the light polarization with a Jones vector and optical elements with
Jones matrices. The change of the initial polarization through a set of optical elements is described as a
multiplication of these Jones matrices. For the quarter-wave plate with the fast axis along the 𝑥-axis, the
Jones matrix yields

𝐽
0
QWP =

(
1 0
0 i

)
. (3.6)

The observed signal is the difference between the output of each monitor port. Expanding the
susceptibilities, we determine that the detected signal is only linear dependent on 𝛼, while all other
librations contribute quadratically. This leads to the highest sensitivity for the 𝛼-libration around the
tweezer axis

Δ𝐼 = 𝐼𝑥 − 𝐼𝑦 = 𝑐𝜀0𝐸
2
0 𝑘

6
𝑉

2 (
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)
𝛼 cos(2𝜓) + O(Ω2). (3.7)

The detection sensitivity scales with the tweezer ellipticity. The maximal sensitivity is observed for linear
polarization, while it is absent for circular polarization. Indeed, the scaling is similar to as observed
for the frequency (cf. Equation 2.45), indicating that sensitivity and frequency are maximal for linear
polarization and vanish for circular polarization. Sticking to the latter case, we calculated a constant
driving torque along the tweezer axis (Equation 2.56) leading the particle to rotate. So we adjust the
quarter-wave plate by tilting it about 45◦
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. (3.8)

The resulting measured intensity difference yields
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3.3 Trapped nanoparticle

As expected, the detected signal oscillates with twice the rotation frequency due to the cyclic nature of
rotation. Further, the Rf output depends not on 𝛼 directly, but it changes cosinusoidal with the angle.

3.3 Trapped nanoparticle

We begin by preparing particle samples with spherical particles from microParticles GmbH that exhibit a
nominal diameter of Φ = (156±5) nm. At nanoparticle concentrations beyond 2 particles/µm2, particles
stick together, forming dumbbells and trimers, as shown in a scanning electron microscope (SEM) image
in Figure 3.3.

1 µm

Figure 3.3: Scanning electron microscope image of a used sample coated with spherical nanoparticles, each with a
nominal diameter of 156 nm. We observe beside single particles, dumbbells, triangle trimer and chain trimer. The
particles are randomly distributed

Once a particle is launched and trapped at 15 mbar, we obtain the motional spectrum with the discussed
detection scheme. A combined spectrum of motion is shown in Figure 3.4. The translational PSDs
are measured with the split detection scheme, while the 𝛼-libration is recorded with the rotational
detection setup. The 𝛽-libration is recorded from the high frequency part of the 𝑥-detection, as the angle
deflects the motion along the 𝑥-axis. Hence, the libration is partially stored in the phase of the scattered
field [23, 55]. The two librations are evidence that a trapped aspherical particle is present, featuring
at least two different susceptibilities in the particle frame (Equation 2.45). The oscillation peaks are
recorded at 10 mbar with an elliptically polarized tweezer, where every peak is fitted with a Lorentzian
shaped function 2.24, allowing the damping and frequency to be free parameters. All motional peaks are
well represented by Lorentzian functions, verifying the harmonic trap approximation.
Further, we characterize the trapping potential by calculating the trapping area. From the ratio of the
translational frequencies (Equation 2.16) we get the trapping waists with errors estimated small

𝑤𝑥 =
Ω𝑧

Ω𝑦

𝜆
√

2𝜋
= 1.04 µm, 𝑤𝑦 =

Ω𝑧

Ω𝑥

𝜆
√

2𝜋
= 1.1 µm (3.10)

for linear polarized light, the minimal and maximal waists we could achieve are 𝑤𝑥 = 0.98 µm and
𝑤𝑦 = 1.18 µm. By utilizing the calculated frequencies and the waist dimensions, we ascertain the power
within the trap, thereby completing the tweezer characteristics. The calculated trapping power

𝑃 =
Ω

2
𝑥𝑤

3
𝑥𝑤𝑦𝑚𝑐𝜀0𝜋

4𝛼′
≈ 475 mW (3.11)
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Chapter 3 Characterization of levitated non-spherical nanoparticles

is in good agreement with the measured power before the vacuum chamber of 500 mW. The main loss
results from over-illuminating the trapping lens. In order to evaluate the shape of the trapped particle, it
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Figure 3.4: Motional spectrum of a trapped nano-dumbbell at 𝑝 = 10 mbar. We observe the three translational
peaks in their respective detection, as well as the 𝛽-libration in the 𝑥-detection. The 𝛼-libration is visible in the
rotational detection. The trap polarization is elliptical hindering the particle to rotate. The peaks are fitted with a
Lorentzian, considering the individual detection noise floors, and leaving the motional damping and frequency as
a free parameter. The motional frequencies are 2𝜋 × {38, 113, 120, 315, 378}kHz for {𝑧, 𝑦, 𝑥, 𝛼, 𝛽} respectively.

is necessary to calculate the damping ratios, which can be extracted from collisional damping of the
nanoparticle by the surrounding gas molecules. These ratios are shape dependent. In the case of a
spherical particle, the damping rate in the free molecular regime is given by [61, 62]

Γ𝑚 =
64
3

𝑝

𝑚�̄�gas
𝑟

2
, (3.12)

where �̄�gas = 470 m/s is the thermal velocity of the nitrogen gas molecules in the chamber and 𝑟 is the
radius. The damping linearly dependence on the pressure 𝑝, that lower pressure reduces the damping.
However, for aspherical particles this equation must be modified, for example for elliptical shapes 𝑟
would represent the half of the middle axis of all degrees of freedom [21, 63]. For a proper shape
estimation, we need to simulate the gas particles colliding with the nanoparticle. With every collision,
the nanoparticle absorbs the total momentum of the impinging gas molecule and afterward the gas
molecule is released randomly. Thus, one can calculate the net momentum transfer by the gas molecules,
which arises a drag force. This in turn determines the damping of the particle motion. The particle shape
is stored in the transfer function describing the collisions between gas molecules and the particle itself.
The simulation is implemented as a direct Monte Carlo simulation in [15], where they determine the
damping rate ratios for a nano-dumbbell. Since we are only concerned with the damping rate ratios, this
method is independent of the pressure and the exact particle size.
From the fitted Lorentzian curves, we obtain the damping ratios for the translational motion Γ𝑥/Γ𝑦 =

1.283 ± 0.015, Γ𝑧/Γ𝑦 = 1.245 ± 0.023 and Γ𝑥/Γ𝑧 = 1.031 ± 0.019. These values are typically for
trapped nano-dumbbells. This finding in consistent with the observed particle distribution, which shows
a high frequency of dumbbells (Figure 3.3). Further, LIAD is a soft loading technique such that it is
likely that particles forming a nano-dumbbell on the sample (Figure 3.3), will remain bonded upon
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3.3 Trapped nanoparticle

ablation.
In this case, the trapped nano-dumbbell is not asymmetric in the 𝑥-𝑧 plane. It should be noted that the
damping rates measured are in the laboratory frame. This implies that the 𝑥-axis exhibits strongest
damping, which corresponds to the particle 𝑧-axis with the highest polarizability, as depicted in Figure
3.5a).

Figure 3.5: a) Sketch of a nano-dumbbell in the particle (black) and in the laboratory/tweezer frame (red), where
the tweezer propagates along the 𝑧-direction. Both frames are rotated by 90◦ when the particle is deeply trapped.
The Euler angles indicate the librations around their corresponding rotation axis. b) Model of an elliptical particle
with the semi-axis 𝑟𝑎, 𝑟𝑏, 𝑟𝑐. This shape serves as a ficitive particle for the trapped anisotropic nano-dumbbells,
exhibiting the same optical response.

Among several trapped particles, we have observed slight asymmetries in the plane as well. To precisely
measure the damping ratios, we took several time traces at pressures around 10 mbar, ensuring negligible
nonlinear effects. Thus, we fit a Lorentzian to each CoM motional peak. The obtained ratios for a particle
with three asymmetries is shown in Figure 3.6. For the trapped particle, we assume an overall elliptical
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Figure 3.6: Measured damping ratios of one particle at different times. The estimated damping errors are too small
to be visible. The shaded area represents the standard deviation to the mean fat lines.
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Chapter 3 Characterization of levitated non-spherical nanoparticles

shape. We calculate the median between the measured damping ratios Γ𝑥/Γ𝑦 = 1.361 ± 0.024 and
Γ𝑧/Γ𝑦 = 1.276± 0.025, which yields an aspect ratio 𝑎 ≈ 1.58 based on a simulation done in [40]. Using
the ratio between long and short axis, we optimize the remaining two radii by theoretically calculating
the observed translational frequencies. In accordance to Equation 2.51, the translational frequencies are
correlated to the electrical susceptibilities, which are defined by [21]

𝜒𝑞 =
𝑛

2 − 1
1 + (𝑛2 − 1)𝑁𝑞

. (3.13)

Here, we introduce the dimensionless depolarization factors 𝑁𝑞, where 𝑞 ∈ {𝑎, 𝑏, 𝑐} holds. They are
defined by
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depending on the particle semi-axis 𝑟𝑎, 𝑟𝑏, 𝑟𝑐 as shown in Figure 3.5b). Indeed, the sensitivity of
the depolarization factor with respect to the semi-axis is very small and does not affect the particles
frequencies to within nanometer precision. Otherwise, the frequencies scale with the particle density.
However, in the discussion, we neglect the radiation pressure, which displaces the particle from the
center of the trap. This displacement scales linearly with the particle volume

𝑧0 =
𝑉𝜔

4
𝑧

2
𝑅𝜒𝑐

6𝜋𝑐4 , (3.15)

thereby modifying the trapping frequency in accordance with the particle shape. This is exemplified by
the 𝑧-motion [40]
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We simulate the frequencies with the previously determined trapping power and waists for linear
polarized light 𝜓 = 0. The simulation involves an iterative process, wherein combinations of the two
radii are considered and the difference between the determined and measured frequencies is quadratically
minimized. The program starts with a range of 100 nm and a step size of 10 nm, then reduces the
searching region after each run until a final step size of 0.01 nm is reached. The resulting semi-axis are

𝑟𝑎 = (98.8 ± 0.5) nm, 𝑟𝑏 = (100.1 ± 0.5) nm, 𝑟𝑐 = (156 ± 2) nm (3.17)

with the errors arising from the uncertainty in the measured frequency and damping. As expected, the
particle exhibits a small asymmetry in the 𝑥-𝑧 plane, and the assumed elliptical shape matches the long
axis we would anticipate for a nano-dumbbell. We took a close up image of a nano-dumbbell in Figure
3.7 and determine its aspect ratio. The nano-dumbbell is fitted with an elliptical shape. The long axis
slightly overestimates the shape, while the short axis underestimates the exact shape. Nevertheless,
they are in good agreement with the hypothesis that two nominal spheres are sticking together, thereby
validating the reconstructed long axis.
The other two axes reconstructed from the damping ratios are too large for a single particle specified by
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3.4 Librations and driven rotations

the nanoparticle supplier, even considering the standard deviation of 5 nm. We ascribe the deviation to
the used elliptical model and the fact that we assume the particle anisotropy purely being shape induced.
When taking into account the recorded SEM pictures we exclude aspherical shaped particles but the
measured anisotropy can also arise from the internal structure. Thus, the particles might exhibit locally
regions with a different density, leading to non-isotropic particles. Thus, our determined shape represents
a ficitve particle featuring the same optical properties as the trapped one.

146 nm

321 nm

100 nm

Figure 3.7: Scanning electron microscope image of a nano-dumbbell. The shape is fitted with an elliptic contour
to estimate its long and short axis. Based on the fit, the nano-dumbbell is formed by two 156 nm spheres sticking
together. The stripes in the image are caused by a high scanning speed.

Another possible explanation is that during the ablation process, a tiny fragment of the silicon coating
sticks on top of the nano-dumbbell. Despite that, we would not assume impurities to a large extent or
from other materials, as they are likely to absorb the laser light, which in turn leads to an enhanced
radiation pressure and trapping as well as keeping the particles stable would be more difficult or even
impossible.

3.4 Librations and driven rotations

Although we already indicate in Figure 3.4 that the two observed librations correspond to oscillations
around the Euler angles 𝛼 and 𝛽, it is necessary to provide proof of this assertion. Therefore, we measure
the behavior of both librations using the aforementioned rotational detection scheme, with the tweezer
ellipticity varied in a pressure regime where nonlinearities of the trapping potential were not a concern.
We fit the theoretical ellipticity dependencies (Equation 2.45) for 𝛼- and 𝛽-librations to the data in Figure
3.8. The error estimation of the data results from rotating the tweezer ellipticity by 2𝜋, and thus obtain
the frequencies eight times. For circularly polarized light, the frequency fluctuates stronger. This is
caused by the

√︁
cos(2𝜓) dependency (cf. Equation 2.45) that small ellipticity drifts over time for 𝜓

close to 𝜋/4 cause large frequency shifts. The lack of data points for the 𝛽-motion for linearly polarized
light is due to the overlap with the 𝛼-motion. Minimizing the pressure did not help since nonlinearities
and mode splitting occur, changing the expected graph. For ellipticities close to circularly polarized
light, the detection sensitivity in the rotation detection scheme is too low. Even in the 𝑥- detection, the
frequency was not visible. For the rotational detection, a signal linear dependent on 𝛽 does not exist;
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Chapter 3 Characterization of levitated non-spherical nanoparticles

instead, we measure 𝛼2
𝛽. However, the data points are sufficient to prove their characteristic behavior

that the observed librations are indeed around 𝛼 and 𝛽. Thus far, our investigation has solely focused on
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Figure 3.8: Librational frequency of the 𝛼- and 𝛽-libration in dependence of the tweezer ellipticity. The half- and
quarter-waveplate are set such that the 𝑥- and 𝑦-peak overlap, achieving circular polarization. Then the half-wave
plate is rotated in 1◦ steps for 22.5◦, which rotates the ellipticity by twice the angle. The solid lines represent the
fits of the theoretical dependency Ω𝛼 ∝

√︁
cos(2𝜓) and Ω𝛽 ∝ cos(𝜓).

the ellipticity-frequency dependence, the absolute values of the frequencies have yet to be proven in
conjunction with the determined particle shape. As the theoretical frequencies in Equation 2.45 depend
additionally on the moment of inertia we define them for an elliptical shape as
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We calculate them using the particle geometry from Equation 3.17

𝐼𝑎 = (1.024 ± 0.014) × 10−31 kgm2
, 𝐼𝑏 = (1.016 ± 0.014) × 10−31 kgm2

,

𝐼𝑐 = (0.589 ± 0.004) × 10−31 kgm2
.

(3.19)

In Figure 3.9 we show the estimated graphs and their errors as the shaded area. The theoretical curves
describe the observed librations within their error estimation. Indeed, the 𝛼-libration fits the data exactly,
proving our shape calculation. In contrast, the 𝛽-libration overestimates the measurement. Theoretically,
we would not expect that the frequency of the 𝛽-libration becomes smaller than the 𝛼-frequency. Since,
𝜒𝑎 < 𝜒𝑏 < 𝜒𝑐 and 𝐼𝑏 < 𝐼𝑎 as well as in the defined interval cos(2𝜓) < cos(𝜓)2 holds, it follows that

Ω𝛽

Ω𝛼

=

√︄
𝐼𝑎 (𝜒𝑐 − 𝜒𝑎)
𝐼𝑏 (𝜒𝑐 − 𝜒𝑏)

cos(𝜓)2

cos(2𝜓) > 1, (3.20)

Ω𝛽 always exceeds Ω𝛼. We predict the deviation stemming from the peaks overlapping and thus a bad
resolution of the 𝛽-libration. Although we are not able to resolve the 𝛾-libration its theoretical graph is
shown as well, indicating that the expected frequencies are on the order of the translational ones. In
contrast, the 𝛽-libration is detectable in linear order when coupled, quadratic to 𝛼-, the 𝛾-libration is
only detectable quadraticly and does not show up in the translational detection.

22



3.4 Librations and driven rotations

0 16 8
3
16 4

ellipticity 

0

100

200

300

400

500

 
/2

 [k
H

z]
 

Figure 3.9: Theoretical frequency-ellipticity curve of the three librational frequencies calculated for the measured
particle shape 𝑟𝑎 = (98.8± 1.5) nm, 𝑟𝑏 = (100.1± 1.5) nm and 𝑟𝑐 = (156± 2) nm. The shaded area represents the
uncertainty with respect to the particle shape determination. The dotted line represents the theoretical prediction
for the 𝛾-libration.

3.4.1 Coupling between the librations

We predict that the 𝛾-libration becomes detectable at lower pressure. In the initial stages, the particle
undergoes a process of thermalization in velocity through collisions with the surrounding gas, which
reduces the motion to a harmonic oscillation. As the damping is reduced, the particle enters a nonlinear
trapping regime, leading to non-Lorentzian peaks over the measurement period. We observe this effect
for both the translational and rotational modes, with the rotations broadening at 𝑝 = 1 mbar. Finally, as
illustrated in Figure 3.10, the rotational peaks experience a splitting phenomenon when the pressure is
further reduced (𝑝 = 0.4 mbar). Each mode then consists of two hybrid modes 𝜔+ and 𝜔- appearing
as peaks in the spectrum. The splitting occurs from coupling between the 𝛼- and 𝛽-libration through
the remaining 𝛾-rotation, providing a compelling evidence for a diffusive rotating 𝛾-motion [40]. The
splitting into two normal modes would not appear if all degrees of freedom are deeply trapped. We
further calculate the correlation between the two hybrid modes to be 𝑟 = 0.02 ± 0.01 at 0.4 mbar, with a
consistent decrease starting at 𝑝 = 1 mbar, where we first observe the splitting. For a second particle we
determine the correlation at 𝑝 = 5 × 10−2 mbar to be 𝑟 = −0.32 ± 0.05. As it is contrary to the trapped
motional correlation, we confirm the splitting in two hybrid modes. Consequently, for the purpose of
calculation, we revert to the canonical momenta in Equation 2.31 and let 𝛾 evolve freely. The Hamilton
equations of motion in first order approximation are [40, 53]

¥𝛼 +Ω𝛼𝛼 + Γ𝛼𝛼 +Ω𝑐
¤𝛽 =

𝐹th
𝐼𝑎

(3.21)

¥𝛽 +Ω𝛽𝛽 + Γ𝛽𝛽 −Ω𝑐 ¤𝛼 =
𝐹th
𝐼𝑏

(3.22)

and exhibit the coupling. The coupling strength Ω𝑐 = 𝜔𝛾 𝐼𝑐/𝐼𝑎 depends on the moment of inertia ratio
and the Brownian rotation frequency 𝜔𝛾 [55]. The 𝛾-motion, even if the polarization is linear, will not
be driven optically (Equation 2.57).
We estimate the coupling from fitting the solution of the coupled differential equation of motion.
The fitting function does not include the nonlinear effects or second order coupling. However, the
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Chapter 3 Characterization of levitated non-spherical nanoparticles

fit is sufficient describing the hybrid modes and their frequency difference, which is proportional to
the coupling. As we would expect from both curves the same coupling, we average the couplings
Ω𝑐 = (27.15 ± 0.18) kHz and determine with the moment of inertia ratio an over 5 s averaged Brownian
frequency of 𝜔𝛾 = (15.61 ± 0.26) kHz. As a remark, the Brownian motion is pressure depend. In
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Figure 3.10: Formation of hybrid modes (𝜔+, 𝜔-) in the 𝛼- and 𝛽-libration at 𝑝 = 0.4 mbar indicating a coupling
between 𝛼 and 𝛽 through the free or diffusive mode 𝛾. The spectrum for 𝛼 is recorded in the rotational detection
scheme and for 𝛽 in the 𝑥-detection scheme.

analogy to Equation 2.59 the Brownian frequency

𝜔𝛾 =
𝜏th
Γ𝛾 𝐼𝑐

(3.23)

is inversely proportional to the damping, thus the splitting varies over time. Figure 3.11 illustrates
the splitting behavior of a second particle over the measurement period. Here, we observe a negative
correlation. As it is visible in the red box, both frequencies move in opposite directions.

3.4.2 Rotation around the tweezer axis

In the pressure regime where we observe the mode splitting 𝑝 ≈ 0.1 mbar, we also detect a rotation
around the tweezer axis when using circularly polarized light. As calculated in Equation 2.56, the
restoring torque that aligns the particle long axis with the tweezer polarization axis vanishes. Instead, a
constant torque arises from the back action of the scattered light. While the orientation has no steady
state solution, the rotation frequency settles. The mean rotational frequency is the ratio of the constant
optical torque and the motional damping as shown in Equation 2.59. As a consequence of the fact
that the damping is not constant over time due to stochastic gas collisions, the mean rotation frequency
fluctuates over time with a mean standard deviation

𝜎𝛼 =

√︄
𝑘B𝑇

𝐼𝛼
(3.24)

We drive the rotations around the tweezer axis and orientate the quarter and half-wave plate of our
detection accordingly. The rotational frequency is measured at twice it frequency, as it scales with
cos(2𝛼). Thus, the PSD does not follow a Lorentzian curve, instead it approaches a delta distribution
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3.4 Librations and driven rotations

Figure 3.11: Spectrogram of the rotational detection at 5 × 10−2 mbar revealing the behavior of the 𝛼 libration
splitting in 𝜔+ and 𝜔- over the time. As the Brownian frequency of the 𝛾 libration fluctuates, the mode splitting
does it accordingly. The frequencies 𝜔- and 𝜔+ are negative correlated, as visualized in the red box, the two modes
evolve in opposite directions.

peaked at the mean frequency. For measurement times longer than the damping time, the recorded signal
broadens and matches a Gaussian curve with standard deviation 𝜎𝛼. We measure the rotation around the
tweezer axis at 0.16 mbar in Figure 3.12 and fit a Gaussian function. The center frequency is equivalent
to twice the actual rotation frequency, which we determine to be 𝜔𝛼 = 2𝜋 × 1.9 MHz. From the peak
width, we compute 𝐼𝛼 under the assumption of no heating or cooling of the rotation, thereby verifying
the previously calculated moment of inertia (Equation 3.19). When slicing the time trace in smaller
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Figure 3.12: PSD of the rotation around the tweezer axis at 0.1 mbar. Since the detection is sensitive to cos(2𝛼),
the spectrum is fitted with a Gaussian function, where its width 𝜎𝛼 = 2𝜋(110.47 ± 0.02) kHz corresponds to
the moment of inertia 𝐼𝑎 = (1.134 ± 0.030) × 10−31 kgm2 and the central frequency to twice the actual rotation
frequency 𝜔𝛼 = 1.9 MHz.

segments of sufficient duration to resolve the rotation, we observe the graph in Figure 3.13 and the delta
peaked traces at four different time steps.
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Figure 3.13: PSD of time sliced data at four different times. Each peak approaches a delta peak shape. Their
central frequencies change with time, since it is dependent on the current damping.
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CHAPTER 4

Coherent scattering cooling

Up to now, we have investigated the rotational dynamics of a trapped asymmetric nanoparticle featuring
three distinct electrical susceptibilities. Transferring the particle motion in all six degrees of freedom
into the quantum regime, necessitates cooling, such that the mode temperature approaches the ground
state energy.
The trapped particle thermalizes with its surrounding environment, which is at room temperature
(𝑇 = 300𝐾). We describe its motion using phonons, and thus following the Bose-Einstein statistics. For
each degree of freedom, the mean phonon occupation number is given by

𝑛𝑞 =
𝑘𝐵𝑇

ℏΩ𝑞

, (4.1)

which inversely scales with the corresponding frequency Ω𝑞 . For the trapped nanoparticles, we anticipate
occupation numbers in the range of 𝑛𝑞 = 107 − 108. Consequently, the motion can be treated classically
and must be cooled in order to exhibit quantum mechanical behavior. We employ laser cooling techniques
to reduce the motional temperature.
A light beam in thermal equilibrium has a mean thermal photon occupation of 𝑛 = 3.2 × 10−10, which
is significantly below 𝑛 = 1. This indicates that the light field is effectively in its ground state at
room temperature and can therefore serve as a cold bath for the harmonic oscillator. By coupling the
nanoparticle motion to the light field, cooling can be achieved [52].

4.1 Cooling techniques

Generally, several techniques exist to cool the motion of a levitated nanosphere. One approach involves
adjusting the trapping potential based on the nanoparticle position. This method works analogous
to the manner by which a child acquires kinetic energy while on a swing. The trapping stiffness is
actively increased as the particle moves away from the trapping center and is subsequently decreased as
it falls back. When the trapping laser itself is modulated, this method is known as parametric feedback
cooling [23,59]. Since the laser power controls the trap stiffness (Equation 2.9), modulating it at twice
the frequency restricts the particle motion. Thus, it is essential to monitor its position continuously,
subsequently calculate a suitable feedback and apply it to the laser. However, the feedback signal
will inevitably be subject to detection and electronic noise, which will render ground state cooling a
challenging endeavor. Despite this, cooling of the three librational motion to below 16 mK has been
demonstrated using this technique [25].
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Chapter 4 Coherent scattering cooling

Similarly, an electric feedback applied via electrodes can counteract the particle motion, making this
technique suitable for charged nanoparticles exclusively [27]. In combination with a Kalman filtering state
estimation and a detection efficiency approaching the Heisenberg limit, one-dimensional translational
ground state cooling has been achieved [29].
When theoretically calculating the impact of feedback cooling, all techniques have in common the
induction of an additional friction force 𝐹fb

𝐹fb = −𝑚𝑞Γ𝑞𝑔 ¤𝑞, (4.2)

which depends on the dimensionless gain 𝑔 and the oscillator velocity. According to Equation 2.19 this
results in a modified equation of motion

¥𝑞 + Γ𝑞 ¤𝑞 +Ω
2
𝑞𝑞 =

𝐹th + 𝐹fb
𝑚𝑞

. (4.3)

The feedback force adds to the thermal damping, enhancing it by the gain factor. Consequently, the PSD,
as derived in Equation 2.24, is calculated with a total damping Γtot = Γ𝑞 (1+ 𝑔). Integrating the PSD over
the entire frequency range yields the motional variance, which is proportional to the mode temperature

⟨𝑞(𝜔)2⟩ = 1
2𝜋

∫ ∞

−∞
𝑆𝑞𝑞 (𝜔)d𝜔 =

𝑘𝐵𝑇

𝑚Ω
2
𝑞

Γ𝑞

Γtot
. (4.4)

Thus, the ratio of the variance of motion with and without applied feedback leads to an effective mode
temperature

𝑇eff =
𝑇

1 + 𝑔 , (4.5)

which decreases as the gain increases.
In practice, we record a time trace of a thermalized nanoparticle at approximately 10 mbar and state its
temperature as 𝑇 = 300 K. We extract the spectral density by integrating over the frequencies where the
motional peak rises is above the noise floor. The same analysis is then performed for a cooled particle,
allowing us to estimate the motional temperature by comparing the spectral areas.

4.2 Coherent scattering cooling

In contrast to active feedback control, coherent scattering cooling is a passive cooling method, which
eliminates the need for continuous particle position monitoring and relaxes the requirement for a quantum
limited detection. Originally developed for atomic cooling [33], this technique has been adapted for
nanoparticles. The oscillator is placed inside an empty optical cavity and scatters tweezer light, which
in turn drives the cavity. Instead of coupling the particle motion to the intensity of a light field, it is
coupled to the electrical field of the cavity.
The interaction between the incoming light field and the mechanical oscillator can be described by
quantizing the light field as well as the mechanical motion. Photons scatter both elastically and
inelastically with the phonons. The elastic scattering process, known as Rayleigh scattering, dominates
the interaction [32]. In the inelastic scattering process, known as Raman scattering, photons exchange
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4.3 Light-Particle interaction

energy with the phonons, leading to either an increase or decrease in the particle energy

ΔℏΩ = ℏ𝜔 − ℏ𝜔𝑠, (4.6)

where 𝜔𝑠 is the frequency of the scattered photons [64]. The energy difference ΔℏΩ between the
incoming and the scattered photon is absorbed by the phonon. In the event that the scattered photon
energy is less than before, the phonon absorbs a positive energy difference. This difference increases the
motional temperature, referred to as Stokes scattering.
Conversely, if the scattered photon has a higher energy than before, the phonon will be absorbed, called
Anti-Stokes scattering. Anti-Stokes scattered light is enhanced in the optical cavity by blue-detuning
its resonance with respect to the tweezer. This effect is similar to the Purcell enhancement [33, 65],
where the density of states inside the cavity is increased at the frequency of Anti-Stokes scattering. The
probability of populating the cavity with Anti-Stokes scattered light is, according to Fermi’s golden
rule, thus favorable than for Stokes scattered photons. This leads to a reduction of the motional energy.
This technique has successfully demonstrated translational ground state cooling in one [36] and two
dimensions [37, 38], and recently, also cooling of six degrees of freedom below 10 mK [40].

4.3 Light-Particle interaction

The framework of coherent scattering cooling relies on the coupling between the optical fields (both
tweezer and cavity fields) and the nanoparticle motion. Since the tweeer is tightly focused, we expect an
enhanced coupling effect [66].
We mathematically describe the motion in relation to the light fields using Hamiltonian mechanics. To
achieve this, we extend Equation 2.9 including the tweezer field E𝑡 with the cavity field E𝑐 and express
the interaction Hamiltonian in the form

𝐻int =
1
4
𝜀0𝑉

(
E𝑐 + E𝑡

)∗
𝜒

(
E𝑐 + E𝑡

)
. (4.7)

This Hamiltonian can be decomposed into three parts, consisting of the tweezer-tweezer interaction 𝐻𝑇𝑇 ,
which describes the trapping potential for the particle, the nanoparticle-cavity interaction described by
the cavity-cavity interaction 𝐻𝐶𝐶 and the tweezer-cavity coupling 𝐻𝑇𝐶 . In the interaction term, we omit
the free field contribution. The coupling between the free field and the cavity field provide an additional
decay channel for the intracavity field. Additionally, the free field-tweezer interaction lead to recoil
heating [67]. Thus, the total decomposed Hamiltonian is

𝐻 = 𝐻𝑁 + 𝐻𝐶 + 𝐻int = 𝐻𝑁 + 𝐻𝐶 + 𝐻𝑇𝑇 + 𝐻𝐶𝐶 + 𝐻𝑇𝐶 , (4.8)

where 𝐻𝑁 denotes the Hamiltonian for the free particle and 𝐻𝐶 represents the Hamiltonian of the cavity
field.

4.3.1 Particle Hamiltonian

In Chapter 2, we derived that the librational and translational motions are approximately harmonic
oscillations around the particle equilibrium position r = (0, 0, 0) and orientation Ω = (0, 𝜋/2, 0).
Consequently, the particle Hamiltonian including the free evolution, as presented in Equation 2.35, and
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Chapter 4 Coherent scattering cooling

the optical potential induced by the tweezer, takes the form

𝐻 = 𝐻𝑁 + 𝐻𝑇𝑇 =
𝑝

2
𝑞

2𝑚𝑞

+ 1
2
𝑚𝑞Ω

2
𝑞𝑞

2
, (4.9)

with the index 𝑞 ∈ {𝑥, 𝑦, 𝑧, 𝛼, 𝛽, 𝛾}. As discussed qualitatively in Section 4.2, the harmonic motion refers
to quantized phonons. We can therefore rewrite the Hamiltonian by introducing the ladder operators
�̂�𝑞 and �̂�†𝑞, which represent the annihilation and creation of a phonon in mode 𝑞 and are related to the
particle position and momentum by

𝑞 = 𝑞zpf

(
�̂�
†
𝑞 + �̂�𝑞

)
, 𝑝𝑞 = i𝑞zpf𝑚𝑞Ω𝑞

(
�̂�
†
𝑞 − �̂�𝑞

)
. (4.10)

Here, we introduce the zero-point fluctuation of motion, which is defined by

𝑞zpf =

√︄
ℏ

2𝑚𝑞Ω𝑞

, (4.11)

describing the minimal extent to which the particle is localized. In the ground state, the motional
variance is on the order of the zero-point fluctuation. When inserting the moments of inertia, we obtain
the zero-point fluctuation for the librational motion. For the particles we typically trap, the zero-point
fluctuations for the librational and translational modes are on the order of

𝑥zpf ≈ 2 pm, 𝛼zpf ≈ 14 µrad. (4.12)

The librational zero-point fluctuation describes the minimal angle to which we can determine the particle
orientation. We continue calculating the quantized particle Hamiltonian for the coherent scattering
cooling description as

𝐻 = ℏ
∑︁
𝑞

Ω𝑞 �̂�
†
𝑞 �̂�𝑞, (4.13)

where we omit the constant zero-point energy as we are only interested in the dynamics of the system.

4.3.2 Cavity field and nanoparticle coupling

The optical cavity is described as a Fabry-Perot interferometer, where a standing wave is formed between
two mirrors facing each other. The electric field inside the cavity can be quantized by a superposition of
two electric fields counter-propagating [68, 69]

E𝑐 = E+ + E− (4.14)

where, E+ and E− represent the left and right propagating electric fields, respectively

E+ =
∑︁
𝑠

√︄
ℏ𝜔𝑐

2𝜀0𝑉𝑐
𝑓
∗
𝑐 (r)e

∗
𝑠e

−i𝜔𝑐𝑡𝑐
†
𝑠, (4.15)

E− =
∑︁
𝑠

√︄
ℏ𝜔𝑐

2𝜀0𝑉𝑐
𝑓𝑐 (r)e𝑠e

i𝜔𝑐𝑡𝑐𝑠 . (4.16)
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Figure 4.1: Drawing of the orientational relation between the tweezer and the cavity. The solid black coordinate
system represents the reference frame in which the particle motion and the tweezer intensity axes are defined.
The cavity frame (dotted black) is rotated by an angle 𝜃 with respect to the reference frame. The tweezer
polarization axes (red), defining the particle orientation, are rotated by the angle 𝜁 with respect to the reference
frame. Consequently, the angle 𝜃 = 𝜃 − 𝜁 describes the polarization orientation between the tweezer and the cavity
frame.

Here, the ladder operators 𝑐𝑠 and 𝑐†𝑠 describe the photon annihilation and creation in polarization mode
𝑠. We concern two polarization modes, indexed with 𝑠 ∈ {1, 2}. Furthermore, we introduce 𝑓𝑐 (r) as the
mode function of the cavity and 𝑉𝑐 representing the cavity volume.
The Hamiltonian for the cavity field is determined by inserting the cavity field into the expression

𝐻𝐶 =
𝜀0
2

∫
d3r

(
E2
𝑐 + 𝑐

2B2
𝑐

)
. (4.17)

This results in the cavity field Hamiltonian describing a harmonic oscillator for each polarization mode

𝐻𝐶 = ℏ
∑︁
𝑠

𝜔𝑐𝑐
†
𝑠𝑐𝑠, (4.18)

where we again neglect the constant terms resulting from the vacuum fluctuations. The intracavity
electric field is characterized by the mode function, which describes a standing wave along the cavity
axis with a transversal Gaussian profile

𝑓𝑐 (r) =
𝑤𝑐

𝑤𝑐 (𝑥
′)

exp

(
−(𝑥′2 + 𝑧2)
𝑤(𝑥′)2

)
cos(𝑘𝑦′ − 𝜙), (4.19)

where 𝑤𝑐 is the cavity waist. As illustrated in Figure 4.1, the cavity is placed orthogonal to the tweezer.
We introduce the angle 𝜃, which represents the tilt between the radial cavity axis 𝑦′ and the 𝑦-axis of the
tweezer coordinate system. When assuming the overlap of the tweezer coordinate system (black) with
the tweezer polarization coordinate system (red), the angle 𝜃 determines the orientation of the tweezer
polarization with respect to the cavity axis. The cavity coordinates in terms of the reference coordinate
system are

𝑥
′
= cos(𝜃)𝑥 − sin(𝜃)𝑦 (4.20)

𝑦
′
= sin(𝜃)𝑥 + cos(𝜃)𝑦. (4.21)
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Since the cavity is not translationally displaced with respect to the tweezer, the particle trapping position
r = (0, 0, 0) remains the same in the cavity frame. Hence, the particle position depends on the phase 𝜙
of the standing wave. According to mode profile in Equation 4.19, if 𝜙 = 0 the particle is placed at the
anti-node; if 𝜙 = 𝜋/2 the particle is positioned at the node.
Subsequently, we continue calculating the cavity-cavity interaction term

𝐻𝐶𝐶 = −1
4
𝜀0𝑉E∗

𝑐𝜒E𝑐, (4.22)

which leads to the expression

𝐻𝐶𝐶 = −1
4
𝜀0𝑉

ℏ𝜔𝑐

2𝜀0𝑉𝑐
| 𝑓𝑐 (r) |

2
∑︁
𝑠,𝑠

′

(
(𝑐†

𝑠
′e−i𝜔𝑐𝑡e∗

𝑠
′ + 𝑐𝑠′e

i𝜔𝑐𝑡e𝑠′)𝜒(𝑐
†
𝑠e

−i𝜔𝑐𝑡e∗𝑠 + 𝑐𝑠e
i𝜔𝑐𝑡e𝑠)

)
, (4.23)

when inserting the electric field. We neglect the cavity birefringence, so both polarization modes
oscillate with the same frequency 𝜔𝑐. We apply the rotating wave approximation (RWA) and thereby
omit the terms rotating with twice the cavity frequency, because their oscillation is too fast for the system
dynamics. This results in a simplified expression for the cavity-cavity Hamiltonian

𝐻𝐶𝐶 = −ℏ𝜔𝑐

𝑉

8𝑉𝑐
| 𝑓𝑐 (r) |

2
∑︁
𝑠,𝑠

′

(
(e∗

𝑠
′ 𝜒e𝑠)𝑐

†
𝑠
′𝑐𝑠 + (e𝑠′ 𝜒e∗𝑠)𝑐𝑠′𝑐

†
𝑠

)
. (4.24)

Indeed, the motional dependence is stored in the mode function 4.19. By expanding it in a Taylor series
up to the linear order around the equilibrium position, the result

| 𝑓𝑐 (𝑥, 𝑦, 𝑧) |
2 ≈ cos(𝜙)2 + 𝑘𝑦′ sin(2𝜙) + O(𝑞2) (4.25)

is linearly dependent on the 𝑥- and 𝑦-position, but not on the 𝑧-position. Consequently, we anticipate that
the motion orthogonal to the tweezer propagation exhibits linear coupling, while the 𝑧-motion does not.
Next, we calculate the susceptibility with respect to the cavity polarization. Therefore, we extract the
orientation of the cavity polarization modes from the angle dependencies as depicted in Figure 4.1.
In this configuration, we introduce an angle 𝜁 between the tweezer polarization (red) and the tweezer
intensity axes (black). We describe in the reference 𝑥-𝑦-coordinate system the tweezer elliptical shape
incorporating its waists (𝑤𝑥 , 𝑤𝑦) and the motion along the respective axes. The cavity, however, operates
in its own 𝑥′-𝑦′-coordinate system (black dashed), which is rotated by the angle 𝜃 relative to the reference
frame. Thus, the angle between tweezer polarization and cavity axis is 𝜃 = 𝜃 − 𝜁 .
Instead of rewriting the tweezer polarization, we express the cavity polarization vectors in terms of the
tweezer polarization. In fact the cavity polarization modes are orthogonal to its axis 𝑦′, one mode is
polarized along the tweezer propagation axis

e1 = e𝑧 . (4.26)

The second mode polarized in the plane orthogonal to e1 is

e2 = cos(𝜃)e𝑡 𝑥 + sin(𝜃)e𝑡 𝑦 , (4.27)

where e𝑡 𝑥 and e𝑡 𝑦 represent the basis of the tweezer polarization frame. In the case, 𝜃 = 𝜁 the cavity
mode e2 is polarized along the tweezer 𝑥-polarization axis.
Since the cavity polarization modes are real, the susceptibility tensor is symmetric and 𝜒 ∈ R holds, the
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Hamiltonian can be written in the form

𝐻𝐶𝐶 = −ℏ𝜔𝑐

𝑉

4𝑉𝑐
| 𝑓𝑐 (r) |

2
∑︁
𝑠,𝑠

′
(e𝑠𝜒e𝑠′)

(
𝑐
†
𝑠𝑐𝑠′ +

1
2
𝛿𝑠𝑠′

)
, (4.28)

where the constant term results from the commutator relation [𝑐𝑠′ , 𝑐
†
𝑠] = 𝛿𝑠𝑠′ . We continue by inserting

the mode function approximation for small displacements along the 𝑥- and 𝑦-axis up to linear order.
Accordingly, we split the Hamiltonian in two parts containing a constant and a particle dependent term

𝐻
(1)
𝐶𝐶

= −ℏ𝜔𝑐

𝑉

4𝑉𝑐
cos(𝜙)2

∑︁
𝑠,𝑠

′
(e𝑠𝜒e𝑠′)

(
𝑐
†
𝑠𝑐𝑠′ +

1
2
𝛿𝑠𝑠′

)
, (4.29)

𝐻
(2)
𝐶𝐶

= −ℏ𝜔𝑐

𝑉

4𝑉𝑐
𝑘 sin(2𝜙) (𝑥 sin(𝜃) + 𝑦 cos(𝜃))

∑︁
𝑠,𝑠

′
(e𝑠𝜒e𝑠′)

(
𝑐
†
𝑠𝑐𝑠′ +

1
2
𝛿𝑠𝑠′

)
. (4.30)

Although the first term does not include a motional coupling, the presence of the particle at phase 𝜙 of
the standing wave shifts the cavity frequency. Indeed, the particle induces a change in the refractive index
locally, and thus alters the path length for the standing light wave. This results in a cavity frequency

𝜔𝑐𝑠 = 𝜔𝑐

(
1 − 𝑉

4𝑉𝑐
cos(𝜙)2(e𝑠𝜒e𝑠)

)
, (4.31)

which depends on the particle orientation with respect to the polarization mode. As a result, the assumed
degeneracy of the two cavity modes is lifted by the particle. We stress that just the presence of the
particle is responsible for this shift. Therefore, we obtain the particle susceptibility in terms of the cavity
polarization modes around the equilibrium orientation

e1𝜒e1(0, 𝜋/2, 0) = 𝜒𝑎, (4.32)

e2𝜒e2(0, 𝜋/2, 0) = cos(𝜃)2
𝜒𝑐 + sin(𝜃)2

𝜒𝑏, (4.33)
e1/2𝜒e2/1(0, 𝜋/2, 0) = 0, (4.34)

where we notice that the cross coupling between the two modes vanishes.
Consequently, the shifted cavity frequencies for the two modes

𝜔𝑐1 = 𝜔𝑐

(
1 − 𝑉

4𝑉𝑐
𝜒𝑎

)
(4.35)

𝜔𝑐2 = 𝜔𝑐

(
1 − 𝑉

4𝑉𝑐

(
cos(𝜃)2

𝜒𝑐 + sin(𝜃)2
𝜒𝑏

))
, (4.36)

reveal cavity birefringence based on the orientation dependent susceptibilities. The second Hamiltonian
captures the linear coupling between the particle motion and the cavity field. The particle position is
expressed using the ladder operators (cf. Equation 4.10), resulting in

𝐻
(2)
𝐶𝐶

= −ℏ(𝑔𝑠𝑥 (�̂�
†
𝑥 + �̂�𝑥) + 𝑔𝑠𝑦 (�̂�

†
𝑦 + �̂�𝑦))

(
𝑐
†
𝑠𝑐𝑠 +

1
2

)
, (4.37)
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where 𝑔𝑠𝑥 and 𝑔𝑠𝑦 represent the coupling constants for motion along 𝑥- and 𝑦-motion

𝑔𝑠𝑥 =
∑︁
𝑠

(e𝑠𝜒e𝑠)
𝜔𝑐𝑉

4𝑉𝑐
𝑘 sin(2𝜙) sin(𝜃)𝑥zpf, 𝑔𝑠𝑦 =

∑︁
𝑠

(e𝑠𝜒e𝑠)
𝜔𝑐𝑉

4𝑉𝑐
𝑘 sin(2𝜙) cos(𝜃)𝑦zpf. (4.38)

Here, we include the zero-point fluctuation to obtain a coupling constant frequency, which is better
comparable to the motional frequencies.
The coupling strength scales with the ratio between the particle size and the cavity mode volume,
such that the coupling is stronger for a bigger particle. Further, the coupling is maximized along the
standing wave at 𝜙 = 𝜋/4, while it is minimal at the node and anti-node. Moreover, we can not insert
the determined particle orientation in Equation 4.32, since the cavity mode(s) to which each motion
couple(s) is unknown. Consequently, an evaluation of the tweezer-cavity interaction is necessary.

4.3.3 Tweezer-cavity interaction

The tweezer-cavity coupling is responsible for coherent scattering cooling [35]. The corresponding
Hamiltonian, describes the interaction between the particle motion inside the tweezer and the cavity
electric field. We determine from Equation 4.7 the tweezer-cavity Hamiltonian

𝐻𝑇𝐶 = −1
4
𝜀0𝑉E∗

𝑡 𝜒E𝑐 + H.c. (4.39)

and insert the electric fields for both the tweezer and the cavity (Equation 4.14) considering the two
cavity modes. Thus, the inner product of the two fields with respect to the particle susceptibility yields

E∗
𝑡 𝜒E𝑐 ∝ (𝐸0e𝑖𝜔𝑡e𝑡 + 𝐸

∗
0e−i𝜔𝑡e∗𝑡 )𝜒(𝐸𝑐𝑐𝑠e

i𝜔𝑐𝑡e𝑠 + 𝐸
∗
𝑐𝑐

†
𝑠e

−i𝜔𝑐𝑡e∗𝑠), (4.40)

where we summarize the terms using the RWA

E∗
𝑡 𝜒E𝑐 ∝ 𝐸∗

0𝐸𝑐𝑐𝑠e
iΔ𝑡e∗𝑡 𝜒e𝑠 + 𝐸0𝐸

∗
𝑐𝑐

†
𝑠e

−iΔ𝑡e𝑡 𝜒e∗𝑠, (4.41)

where we keep only oscillating terms with Δ = 𝜔𝑐 −𝜔. The remaining terms describe the process, where
a cavity photon is created, while a tweezer photon is annihilated and the other way around. Thus, these
terms describe the energy transfer between the tweezer and the cavity via the particle. The frequency
difference between the cavity and the tweezer frequency Δ is known as the detuning. To simplify the
analysis, we substitute the oscillating terms in the cavity mode operators with the detuning, as follows

𝑐𝑠 exp(iΔ𝑡) → 𝑐𝑠 . (4.42)

Given that the mode functions for both the tweezer and the cavity are real ( 𝑓 ∗𝑡 ,𝑐 (r) = 𝑓𝑡 ,𝑐 (r)) and E𝑐

comprises solely Hermitian operators, the interaction Hamiltonian reduces to the form

𝐻𝑇𝐶 = −1
2
𝜀0𝑉

√︄
4𝑃

𝑐𝜀0𝜋𝑤𝑥𝑤𝑦

𝑓𝑡 (r)

√︄
ℏ𝜔𝑐

2𝜀0𝑉𝑐
𝑓𝑐 (r)

∑︁
𝑠

(
e∗𝑡 𝜒e𝑠𝑐𝑠 + H.c.

)
. (4.43)

The coupling to the translational modes is imprinted in the mode functions, while for the librations it is
included in the inner product of tweezer and cavity polarization. To derive the translational coupling we
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4.3 Light-Particle interaction

therefore expand both mode functions to their linear dependence in 𝑞 ∈ {𝑥, 𝑦, 𝑧}

𝑓𝑡 (r) ≈ 1 + i
(
𝑘 − 1

𝑧𝑟

)
𝑧 + O(𝑞2), (4.44)

𝑓𝑐 (r) ≈ cos(𝜙) + sin(𝜙)𝑘 (𝑥 sin(𝜃) + 𝑦 cos(𝜃)) + O(𝑞2). (4.45)

By inserting these approximations back into the Hamiltonian, we obtain

𝐻𝑇𝐶 ≈ −ℏ

√︄
𝑃𝑉

2
𝜔𝑐

2ℏ𝑐𝜋𝑤𝑥𝑤𝑦𝑉𝑐

(
cos(𝜙) + i cos(𝜙)

(
𝑘 − 1

𝑧𝑟

)
𝑧 + sin(𝜙)𝑘 (𝑥 sin(𝜃) + 𝑦 cos(𝜃))

)
×

(
e∗𝑡 𝜒e1𝑐1 + e∗𝑡 𝜒e2𝑐2 + H.c.

)
.

(4.46)

The inner product e∗𝑡 𝜒e𝑠 imprints the information how the tweezer couple to the cavity mode through the
particle. In the same manner we developed the cavity-cavity coupling constants, we evaluate the term for
both cavity modes

e∗𝑡 𝜒e1 = cos(𝜓)𝜒13 − i sin(𝜓)𝜒23 (4.47)
e∗𝑡 𝜒e2 = cos(𝜓) (𝜒11 cos(𝜃) + 𝜒12 sin(𝜃)) − i sin(𝜓) (𝜒21 cos(𝜃) + 𝜒22 sin(𝜃)). (4.48)

In order we are interested in the translational motion we insert the equilibrium orientation and determine

e∗𝑡 𝜒e1(0, 𝜋/2, 0) = 0, (4.49)
e∗𝑡 𝜒e2(0, 𝜋/2, 0) = cos(𝜃) cos(𝜓)𝜒𝑐 − i sin(𝜃) sin(𝜓)𝜒𝑏, (4.50)

which indicates that only 𝑐2 couples to the translational motion. In analogy, we summarize the terms in
coupling constants 𝐺𝑠𝑞 , where the translational ones read

𝐺2𝑥 =

√︄
𝑃𝑉

2
𝜔𝑐

2ℏ𝑐𝜋𝑤𝑥𝑤𝑦𝑉𝑐
sin(𝜙)𝑘 sin(𝜃)

(
cos(𝜃) cos(𝜓)𝜒𝑐 − i sin(𝜃) sin(𝜓)𝜒𝑏

)
𝑥zpf, (4.51)

𝐺2𝑦 =

√︄
𝑃𝑉

2
𝜔𝑐

2ℏ𝑐𝜋𝑤𝑥𝑤𝑦𝑉𝑐
sin(𝜙)𝑘 cos(𝜃)

(
cos(𝜃) cos(𝜓)𝜒𝑐 − i sin(𝜃) sin(𝜓)𝜒𝑏

)
𝑦zpf, (4.52)

𝐺2𝑧 =

√︄
𝑃𝑉

2
𝜔𝑐

2ℏ𝑐𝜋𝑤𝑥𝑤𝑦𝑉𝑐
i cos(𝜙)

(
𝑘 − 1

𝑧𝑟

) (
cos(𝜃) cos(𝜓)𝜒𝑐 − i sin(𝜃) sin(𝜓)𝜒𝑏

)
𝑧zpf. (4.53)

Since the translational motion couples to 𝑐2 solely the cavity-cavity coupling constants 4.30 are

𝑔2𝑥 =
𝜔𝑐𝑉

4𝑉𝑐
𝑘 sin(2𝜙) sin(𝜃)

(
cos(𝜃)2

𝜒𝑐 + sin(𝜃)2
𝜒𝑏

)
𝑥zpf, (4.54)

𝑔2𝑦 =
𝜔𝑐𝑉

4𝑉𝑐
𝑘 sin(2𝜙) cos(𝜃)

(
cos(𝜃)2

𝜒𝑐 + sin(𝜃)2
𝜒𝑏

)
𝑦zpf. (4.55)

Consequently, the coupling strengths 𝐺 and 𝑔 exhibit similar orientational dependence. As illustrated
in Figure 4.1, the strongest coupling occurs when the tweezer axis aligns with the cavity axis and the
polarization is orientated orthogonal to both. For the 𝑥-motion, this corresponds to 𝜃 = 𝜁 = 𝜋/2, while
for the 𝑦-motion, it corresponds to 𝜃 = 𝜁 = 0.
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Chapter 4 Coherent scattering cooling

In difference to the cavity-cavity coupling, the tweezer-cavity interaction maximizes for the 𝑥- and
𝑦-motion at the node, whereas the 𝑧-motion achieves its maximum coupling at the anti-node.
Beside the particle orientation, these couplings scale differently, while the cavity-cavity interaction is
determined only by the particle and cavity properties, the tweezer-cavity coupling can be controlled by
regulating the optical power.
Finally, we complete the interaction analysis by calculating the librational coupling constants. Therefore,
we evaluate the inner product to the linear order in each angle and determine that 𝛼 also couples
exclusively to 𝑠 = 2, whereas the 𝛽- and 𝛾-libration couple only to the 𝑠 = 1 cavity mode e.g.

e∗𝑡 𝜒e1(0, 𝛽; 𝜋/2, 0) ≈ cos(𝜓) (𝜒𝑐 − 𝜒𝑎)𝛽 (4.56)
e∗𝑡 𝜒e2(0, 𝛽; 𝜋/2, 0) = 0 (4.57)

Thus, the librational coupling constants are given by

𝐺2𝛼 =

√︄
𝑃𝑉

2
𝜔𝑐

2ℏ𝑐𝜋𝑤𝑥𝑤𝑦𝑉𝑐
cos(𝜙)

(
𝜒𝑐 − 𝜒𝑏

) (
cos(𝜓) sin(𝜃) − i sin(𝜓) cos(𝜃)

)
𝛼zpf, (4.58)

𝐺1𝛽 =

√︄
𝑃𝑉

2
𝜔𝑐

2ℏ𝑐𝜋𝑤𝑥𝑤𝑦𝑉𝑐
cos(𝜙)

(
𝜒𝑐 − 𝜒𝑎

)
cos(𝜓)𝛽zpf, (4.59)

𝐺1𝛾 =

√︄
𝑃𝑉

2
𝜔𝑐

2ℏ𝑐𝜋𝑤𝑥𝑤𝑦𝑉𝑐
cos(𝜙)i

(
𝜒𝑏 − 𝜒𝑎

)
sin(𝜓)𝛾zpf (4.60)

and are maximal at the anti-node. Further, their coupling scales similarly to their respective frequency
(cf. Equation 2.45). With linearly polarized light, the 𝛾-libration transitions into diffusive rotational
motion, to which the cavity can not interact, since the coupling is zero. Rotating the tweezer ellipticity to
circularly polarized light, the 𝛼-libration is forced to rotate, despite the cavity still couples to the motion.
However, we have shown that each librational particle mode couples to one cavity mode exclusively.
In the same manner, as we obtain the translational cavity-cavity coupling we evaluate the link to the
librational motion by expanding Equation 4.37, which resulting constants read

𝑔2𝛼 =
𝜔𝑐𝑉

4𝑉𝑐
cos(𝜙)2 sin(2𝜃)

(
𝜒𝑐 − 𝜒𝑏

)
𝛼zpf, (4.61)

𝑔1𝛽 =
𝜔𝑐𝑉

4𝑉𝑐
cos(𝜙)2

𝜋(𝜒𝑐 − 𝜒𝑎)𝛽zpf, (4.62)

𝑔1𝛾 =
𝜔𝑐𝑉

4𝑉𝑐
cos(𝜙)2(𝜒𝑎 − 𝜒𝑐)𝛾zpf. (4.63)

In addition to the coupling terms, we find a constant term in Equation 4.46, which is identified as
the cavity drive. In steady state, as we calculate for the translational motion, only the mode 𝑠 = 2 is
populated. The driving term yields

𝐸𝑑 =

√︄
𝑃𝑉

2
𝜔𝑐

2ℏ𝑐𝜋𝑤𝑥𝑤𝑦𝑉𝑐
cos(𝜙)

(
cos(𝜃) cos(𝜓)𝜒𝑐 − i sin(𝜃) sin(𝜓)𝜒𝑏

)
, (4.64)

and represents the anticipated cosinusoidal altering, such that at the cavity anti-node, the scattering in
the mode is maximized.
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4.3 Light-Particle interaction

So far, we analyzed the tweezer-cavity interaction, thereby determining the coupling of every degree
of freedom 𝑞 ∈ {𝑥, 𝑦, 𝑧, 𝛼, 𝛽, 𝛾} and extracting the cavity drive. Thus, we summarize the terms in the
interaction Hamiltonian, which then yields

𝐻𝑇𝐶 = −ℏ
∑︁
𝑞,𝑠

(
𝐺𝑞𝑠𝑐𝑠

(
�̂�
†
𝑞 + �̂�𝑞

)
+ 𝐸𝑑𝑐2 + H.c.

)
. (4.65)

In conclusion, we have derived all the components involved in the light-nanoparticle Hamiltonian,
which mathematically captures the interaction between light and the nanoparticle 4.8), such that the
Hamiltonian yields

𝐻

ℏ
=
∑︁
𝑞

Ω𝑞 �̂�
†
𝑞 �̂�𝑞 +

∑︁
𝑠

𝜔𝑐𝑠𝑐
†
𝑠𝑐𝑠 −

∑︁
𝑠,𝑞

(
𝐺𝑠𝑞𝑐𝑠

(
�̂�
†
𝑞 + �̂�𝑞

)
+ 𝐸𝑑𝑐2 + H.c.

)
−

∑︁
𝑠,𝑞

𝑔𝑠𝑞

(
�̂�
†
𝑞 + �̂�𝑞

)
𝑐
†
𝑠𝑐𝑠 .

(4.66)

Since we are particularly interested in the dynamics of the system –specifically, how the cavity manipulates
the particle motion– we focus on deriving the equations of motion. Before doing so, we transform the
Hamiltonian in a more convenient rotating frame by applying the unitary transformation

𝑈 (𝜔) = exp
(
−i𝜔𝑐𝑠

†
𝑐𝑠

)
, (4.67)

where 𝜔 is the frequency of the tweezer. This transformation shifts the cavity frequency 𝜔𝑐 by the
frequency 𝜔, resulting in a Hamiltonian depending on the aforementioned detuning Δ = 𝜔𝑐 − 𝜔. In
a second step, we displace the operators to focus on the displacements around the steady state. Since
we have already calculated that the cavity mode 𝑐2 is populated, while 𝑐1 remains empty, the cavity is
displaced by 𝛾2

𝑐𝑠 → 𝑐𝑠 + 𝛾2. (4.68)

After cancelling all constant terms, we arrive the following reduced expression

𝐻

ℏ
=

∑︁
𝑞

Ω𝑞 �̂�
†
𝑞 �̂�𝑞 +

∑︁
𝑠

(
Δ𝑠 −

∑︁
𝑞

𝑔𝑠𝑞

(
�̂�
†
𝑞 + �̂�𝑞

))
𝑐
†
𝑠𝑐𝑠

−
∑︁
𝑠,𝑞

((
𝐺𝑠𝑞 + 𝑔𝑠𝑞𝛾

∗
2

)
𝑐𝑠

(
�̂�
†
𝑞 + �̂�𝑞

)
+ 𝐸𝑑𝑐2 + H.c.

)
(4.69)

=
∑︁
𝑞

Ω𝑞 �̂�
†
𝑞 �̂�𝑞 +

∑︁
𝑠

Δeff𝑐
†
𝑠𝑐𝑠 −

∑︁
𝑠,𝑞

((
𝐺𝑠𝑞 + 𝑔𝑠𝑞𝛾

∗
2

)
𝑐𝑠

(
�̂�
†
𝑞 + �̂�𝑞

)
+ 𝐸𝑑𝑐2 + H.c.

)
, (4.70)

where Δeff incorporates the change of the cavity frequency caused by the presence of the particle and
thus the detuning.
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4.3.4 Effective mode temperature

Based on the derived Hamiltonian we descirbe the the time evolution of the cavity and particle operator
using the von Neumann equation

¤̂
𝑏 =

i
ℏ

[
𝐻, �̂�

]
− Γ�̂� + 𝐹, (4.71)

where we modify them by adding a damping term Γ and a thermal stochastic force 𝐹 describing the
interaction with the thermal bath. These terms are explicitly relevant for describing the particle dynamics,
hence they include the terms arising from the interaction between free-field and cavity or tweezer field,
which we did not calculate specifically. The latter will lead to a recoil limit, while the cavity-free-field
interaction will induce an additional decay channel for the cavity field [67]. For the dynamics of the
cavity mode operator 𝑐𝑠 the modified von Neumann equation is

¤̂𝑐𝑠 = −iΔeff𝑐𝑠 −
𝜅

2
𝑐𝑠 + i

(
𝐺𝑠𝑞 + 𝑔𝑠𝑞𝛾

∗
2

)∗
𝑞zpf

(
�̂�
†
𝑞 + �̂�𝑞

)
+ i𝐸∗

𝑑𝛿𝑠2, (4.72)

where 𝜅 is the full width at half maximum of the cavity response function and hence expresses the cavity
field decay. From the steady state, where we set ¤̂𝑐𝑠 = 0 and the particle motional dependency disappears,
we obtain the photon number inside the cavity. For the displacment parameter 𝛾2, we determine the
expression

𝛾2 =
i𝐸∗

𝑑

𝜅/2 + iΔeff
, (4.73)

which relates to the cavity drive. The final photon number inside the cavity from coherent scattered light
is

𝑛cav = |𝛾2 |
2
=

|𝐸𝑑 |
2

(𝜅/2)2 + Δ
2
eff

(4.74)

dependent on the cavity response function, incorporating the linewidth and detuning. A different
approach of calculating the photon number is derived in the Appendix B, where we investigate the
orientation between particle and cavity mode and discuss the mode overlap in detail.
Nevertheless, we are committed to identifying the Langevin equation that describes the dynamics of the
particle. Between the position and the momentum the relation ¤𝑞 = 𝑝𝑞/𝑚𝑞 holds such that the motional
dynamics are given by

¤𝑝𝑞 = −Ω2
𝑞𝑚𝑞𝑞 +

√︃
2ℏ𝑚𝑞Ω𝑄

((
𝐺𝑠𝑞 + 𝑔𝑠𝑞𝛾

∗
2

)
𝑐𝑠 + H.c.

)
− Γ𝑝𝑞 + 𝐹𝑡ℎ, (4.75)

¥𝑞 = −Ω2
𝑞𝑞 − Γ𝑞 ¤𝑞 +

√︄
2ℏΩ𝑞

𝑚𝑞

((
𝐺𝑠𝑞 + 𝑔𝑠𝑞𝛾

∗
2

)
𝑐𝑠 + H.c.

)
+
𝐹𝑡ℎ

𝑚𝑞

. (4.76)

We solve this set of equations by transforming to Fourier space (F [𝑞] = 𝑞(𝜔)), which reduces the
differential equations of second order in linear order frequency space

ˆ̃𝑐𝑠 =
i

i
(
𝜔 + Δeff

)
+ 𝜅/2

(
𝐺𝑠𝑞 + 𝑔𝑠𝑞𝛾

∗
2

)∗ 𝑞

𝑞zpf
, (4.77)
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ˆ̃𝑐†𝑠 =
−i

i
(
𝜔 − Δeff

)
+ 𝜅/2

(
𝐺𝑠𝑞 + 𝑔𝑠𝑞𝛾

∗
2

) 𝑞

𝑞zpf
, (4.78)

𝑞 = 𝜒𝑚(𝜔)
(√︄

2ℏΩ𝑞

𝑚𝑞

((
𝐺𝑠𝑞 + 𝑔𝑠𝑞𝛾

∗
2

)
ˆ̃𝑐𝑠 + H.c.

)
+
𝐹𝑡ℎ

𝑚𝑞

)
. (4.79)

We combine them and rewrite the solution in the form of Equation 2.22 as

𝑞 = �̃�𝑚(𝜔)
𝐹𝑡ℎ

𝑚𝑞

, (4.80)

with an adapted susceptibility that covers and additional damping to the motion arising from the developed
interaction terms

�̃�𝑚(𝜔)
−1

= Ω
2
𝑞 − 𝜔2 − iΓ𝑞𝜔 +

��𝐺𝑠𝑞 + 𝑔𝑠𝑞𝛾
∗
2
��2 4Ω𝑞Δeff(

i
(
𝜔 + Δeff

)
+ 𝜅/2

) (
i
(
𝜔 − Δeff

)
+ 𝜅/2

) (4.81)

≈ Ω
2
𝑞 − 𝜔2 − i𝜔Γtot(𝜔). (4.82)

The total damping therefore reads

Γtot(𝜔) = Γ𝑞 + ΓCS(𝜔) = Γ𝑞 +
4Ω𝑞Δeff𝜅

��𝐺𝑠𝑞 + 𝑔𝑠𝑞𝛾
∗
2
��2( (

𝜔 + Δeff
)2 + 𝜅2/4

) ( (
𝜔 − Δeff

)2 + 𝜅2/4
) . (4.83)

Additional to the thermal damping an additional damping arises from the couplings, which connects
to all degrees of freedom over their coupling rates. As shown in Equation 4.5 the mode temperature
decreases with the total damping. Thus, we derive an effective temperature

𝑇eff(𝜔) =
𝑚Ω

2
𝑞

𝑘𝐵
⟨𝑞2⟩ =

𝑚Ω
2
𝑞

𝑘𝐵

𝑘𝐵𝑇

𝑚Ω
2
𝑞

Γ𝑞

Γ𝑞 + ΓCS
. (4.84)

For each degree of freedom, we develop the maximal damping. Therefore, we minimize the denominator
of Equation 4.83 at the particle frequency. As we are working in a sideband resolved regime, indicating
that 𝜅 < Ω𝑞 , the detuning should either be +Ω𝑞 or −Ω𝑞 . In case where the cavity is red detuned (negative
detuning Δeff = −Ω𝑞) with respect to the tweezer, meaning the cavity frequency is smaller than the
tweezer, the particle motion is heated, since it enhances the Stokes scattered sideband. For the opposite
extrema, where the cavity is blue-detuned (positive detuning Δeff = Ω𝑞), the Anti-Stokes scattering
process is enhanced, such that the particle motion experience maximal cooling.
The effective mode temperature for assuming the cavity to be detuned for maximal cooling is

𝑇eff(Ω𝑞) = 𝑇
(
1 +

4
��𝐺𝑠𝑞 + 𝑔𝑠𝑞𝛾

∗
𝑠

��2
Γ𝑞𝜅

)−1

. (4.85)

Although we ignore the limits of cooling, we have shown that the cavity couples to all six degrees of
freedom. The cavity does not require to be driven externally, the particle itself populates the cavity in
mode 𝑠 = 2. Motional cooling works simultaneously in all six degrees of freedom by optimizing the
position along the cavity axis 𝜙 and setting an elliptical polarization 𝜓 and rotating the polarization plane
by, 𝜃, 𝜁 as well as choosing a detuning within the motional frequency range.
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Chapter 4 Coherent scattering cooling

4.4 Optical setup

We extend the optical setup, as used in Chapter 3, to enable coherent scattering cooling. Therefore,
we incorporate a high-finesse optical cavity in the vacuum chamber, as illustrated in Figure 4.2. Note
that this drawing is rotated by 90◦ compared to Figure 3.1. We orientate the cavity orthogonal to the
tweezer propagation direction and ensure the trapping center coincide with the cavity center. To correct
for displacements, we mount the tweezer lens on a three-dimensional translation stage from SmarAct,
allowing to place the particle within nanometer precision along the standing wave. The two spherical

Figure 4.2: The cavity is placed orthogonal to the tweezer propagation direction. The trapping center and cavity
center overlay. For positioning the particle along the standing wave, the tweezer lens is mounted to a motorized
translation stage from SmarAct, capable to operate at high-vacuum. The cavity is locked with ∼ 600 µW optical
power. To shift the frequency by a free spectral range, the acousto-optical modulator (AOM) and electro-optical
modulator (EOM) are incorporated. The EOM additionally imprints the PDH sidebands, to lock the cavity. The
back-reflex is extracted using a circulator and based on the generated error signal the laser is locked via a PID
regulator.

cavity mirrors are clamped to an Invar holder, which is depicted in Figure 4.3. Each mirror is hold
in place with a screw. The holder maintains a stable cavity length since the material experiences low
thermal expansion and the inclined design suppresses Fano resonances within the holder. Through the
top opening, we launch the nanoparticles utilizing LIAD. We realign the LIAD laser beam to intersect
with both tweezer focus and cavity center. During particle trapping, a bunch of particles is ablated from
the sample, so we protect the sensitive cavity mirrors with a moveable cover.

4.4.1 Cavity characteristics

The optical cavity is a Fabry-Pérot interferometer, consisting of spherical mirrors from FiveNine Optics.
They are specified with a reflectance 𝑅 ≥ 0.99999, a radius of curvature (RoC) of 2.5 cm and a diameter
of 𝑑 = 7.75 mm. We pre-align the cavity using a 1 330 nm diode. A sufficient large amount of light
enters the cavity to observe the beam on a detector card. The light reflects by three round trips, and by
adjusting the coupling mirrors we overlay the reflections and improve their profile to a circular shape in
order to achieve aligning in the TEM00 mode. After pre-alignment, we switch back to the 1 550 nm laser
modulating its frequency and improve the cavity transmission by observing the light leaking through the
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Figure 4.3: Model of the cavity holder made out of Invar. The mirrors are clamped in the holes at the side of the
holder, and fixed with a screw from the top. Thus, they have three supporting points, allowing a stable mount.
From the opening at the top the nanoparticles are launched while the sided cone-shaped opening allow to position
the tweezer. A moveable cover can protect the inside of the cavity mirrors when launching particles.

output mirror with an attached photodiode. In the spectrum, we observe the characteristic transmission
peaks as Airy peaks separated by the free spectral range. We improve for a clean mode-profile and
enhance the transmission.
Further, we determine the free spectral (FSR) range by imprinting sidebands to the laser frequency
employing an electro-optical modulator (EOM) (cf. Figure 4.2). We overlay the adjacent spectral
peaks with the sidebands and determine a free spectral range 𝜈FSR = (9.65190 ± 0.00001) GHz, which
uncertainty results from the resolution of the spectral peaks in detection. Using the free spectral range,
we back-calculate the cavity length with the relation

𝐿 =
𝑐

2𝜈FSR
. (4.86)

In our configuration, we determine a cavity length of (15.53023 ± 0.00015) mm, which is small relative
to the RoC, confirming working in a stable cavity regime as per the stability criteria

0 ≤ 𝑔1𝑔2 ≤ 1, (4.87)

where 𝑔1 = 𝑔2 = 1− 𝐿/𝑅. The values of 𝑔1 and 𝑔2 are close to zero, indicating that the cavity is operated
near a confocal configuration. Along with the high stability, the waist is

𝑤𝑐 =

√︂
𝜆

2𝜋
√︁
𝐿 (2 × RoC − 𝐿) ≈ 75.55 µm (4.88)

large compared to concentric configurations. As we align the Cavity in the TEM00 mode, its volume
depends quadratically on the waist

𝑉𝑐 =
𝜋

4
𝑤

2
𝑐𝐿 ≈ 0.07 mm3

. (4.89)

and thereby leads to a large mode volume. Consequently, the coupling will be reduced as the constants
scale inversely with the cavity volume (cf. Equation 4.51). In addition to the coupling, the cooling
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efficiency further depends on the cavity finesse and linewidth. The cavity finesse determines the light
enhancement and the cavity transmission function. Theoretical we predict a finesse of at least

F =
𝜋
√
𝑅

1 − 𝑅 ≈ 300 000, (4.90)

which we verify experimentally employing a frequency-swept measurement, particularly suitable for
high-finesse cavities. In analogy to the alignment procedure, we modulate the laser and observe the
cavity response in transmission. When the cavity mode is reached, light builds up in the cavity for
approximate one round trip. Due to the high reflectivity of the mirrors, the decay of the light field is
slow that the cavity linewidth 𝜅 is small compared to the modulation frequency 𝑓mod of our laser

𝜅/2𝜋 ≈ 32 kHz ≪ 4 GHz = 𝑓mod. (4.91)

Thus, the cavity remains populated even when light with a different frequency impinges, causing
interference of both the decaying field in the cavity and the incoming field. The resulting beating
is visible in the transmission signal as Fizeau fringes (ringing) [70, 71]. For a scanning frequency
approaching the free spectral range the ringing diminishes, the spectrum will look like recorded with
a slow modulation frequency [71]. In conclusion, the shape of appearing fringes is related to the free
spectral range and the ratio of modulation frequency to the linewidth. It is important to account for
discrepancies with respect to the Airy peaks, otherwise the determined peak width gets overestimated [72].
We observe the ringing effect with our cavity scanned by 4 GHz/s in Figure 4.4. We measure the
transmission with the photodiode, set to a 30 dB gain and a 260 kHz bandwidth. Using the relation for
the transmitted power [73]

𝑃trans(𝑡) ∝ e−𝜅𝑡
�����erfc

{
1
4
(1 + i) (𝜅 − 2i 𝑓mod𝑡)√︁

− 𝑓mod

}�����2 (4.92)

we fit the linewidth to 𝜅 = 2𝜋× (17.76±0.07) kHz. The modulation frequency 𝑓mod = (4.9±0.1) GHz/s
is also determined as a free parameter, matching with the anticipated outcome based on the laser settings.
Of particular significance is the finesse calculation,

F = 2𝜋
𝜈FSR
𝜅

= 543 559 ± 2 091, (4.93)

which corresponds to a reflectivity of 𝑅 = 0.9999942, exceeding the minimum value specified by the
supplier. However, it is probable that during the cavity alignment we encountered a region where the
coating and, consequently, the reflectivity were superior to what we expected. To demonstrate the
efficiency of our cover in safeguarding the cavity mirrors during trap loading, we conducted frequent
finesse measurements and observe no notable decline. Our data consistently indicate a finesse of
approximately, F = 500 000 with a decay rate 𝜅 = 2𝜋 × 20 kHz, which we will utilize as a reference
point throughout our subsequent discussions. The decay rate is small compared to the particle frequency
𝜅 ≪ Ω𝑞, confirming that we are operating in a sideband resolved regime and ensuring efficent cooling.

4.4.2 Cavity locking

Before running cooling experiments, we need to lock the cavity to the laser. Therefore, we employ the
Pound-Drever Hall (PDH) technique [74]. To prevent interference between the locking light and the
coherently scattered light from the trapped nanoparticle, we offset the lock by a free spectral range.
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Figure 4.4: The laser internal modulates its frequency over 8 GHz with a frequency of 0.5 Hz. The transmission
spectrum of the frequency swept is recorded with a photodiode set to a bandwidth of 260 kHz, which is large
enough to record the cavity ringing. From the fitted ringing we extract a finesse of F ≈ 500 000.

Nevertheless, the locking light exerts radiation pressure on the particle motion. Thus, we aim for minimal
power in the locking mode.
We extract 20 mW of vertically polarized light directly from the laser to perform PDH locking, as shown
in Figure 4.2. The locking technique requires a laser sideband separated in frequency from its carrier by
more than the cavity linewidth (𝜅 = 2𝜋 × 20 kHz). Therefore, we use the EOM generating sidebands at
10 MHz. When the carrier frequency becomes resonant with the cavity, it gets populated, forming a
standing wave. As the light leaves the cavity through the input mirror it is phase-shifted by 𝜋, in fact
each transmission through a mirror acquire a phase shift of 𝜋/2. In contrast, the sidebands, being far
away from the cavity resonance and hence not populating the cavity, are reflected without a phase shift at
the incoming mirror. Both the back-reflected sidebands and the phase shifted carrier signal interfere
and are detected on a photodiode. For extracting the back-reflex from the incoming light, we employ a
circulator. As the phase difference between the carrier and the unaltered sidebands reveal how far the
laser is tuned from resonance, we extract the phase difference by demodulating the signal. Based on this,
an error signal is generated, which we feed to a PID regulator locking the laser frequency.
In order to shift the lock a free spectral range away from the trapping frequency, we additionally
incorporate an acousto-optical modulator (AOM). The AOM shifts the light by 200 MHz before it passes
the EOM. The EOM then adds sidebands of the frequency 𝜈FSR − 200 MHz. This results in three
frequency components,

𝜈1 = 200 MHz, 𝜈2 = −𝜈FSR + 400 MHz, 𝜈3 = 𝜈FSR, (4.94)

where 𝜈3 has the desired frequency. Modulating the phase of the EOM with 10 MHz generates the
necessary PDH sidebands for 𝜈2 and 𝜈3. Thus, the combination of AOM and EOM allow locking the
laser a free spectral range away. The sidebands with improper frequency (𝜈1, 𝜈2) are rejected at the
cavity input mirror and contribute to the detection noise floor.
Of the initial 20 mW laser power, a small fraction of about 600 µW enters the cavity as a lock, since
most of the light is lost in the AOM, which we use to regulate the actual power. This ensures minimal
radiation pressure on the particle while maintaining effective cavity locking.
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4.4.3 Heterodyne detection

Once the cavity is locked a free spectral range away from the trap, the trapped particle positioned inside
the cavity populates the cavity with its scattered light. To investigate this, we implement a heterodyne
detection scheme by replacing the photodiode at the output mirror with the setup shown in Figure 4.5.
In this scheme, the transmitted light is combined with a strong local oscillator in order to amplify the
particle signal. The heterodyne detection technique thereby preserves the phase of the signal, making
it sensitive to phase changes induced by the particle motion. In addition to the measurement of the
phase quadratures, this detection technique is also suitable for detecting the amplitude quadratures of
the scattered light. In conclusion, we can monitor the motion of the particle similar to the forward
detection. In order to observe the Stokes and Anti-Stokes sidebands of the particle, the local oscillator is
frequency-shifted by Ω𝑞 ≪ 𝜔lo = 2𝜋 × 5 MHz.

Figure 4.5: Setup for the heterodyne detection of the light leaking out the cavity mirror. The local oscillator power
is extracted after the fiber amplifier. Its frequency is shifted with two AOM by 5 MHz. The signal from the cavity
is split at the PBS and combined with the local oscillator at 50/50 beamsplitter. The balanced photodetectors are
shot noise limited and operated close to the saturation of the Rf output.

As calculated in Section 4.3.3 the motional degrees of freedom couple to two different cavity modes
𝑠 = 1 and 𝑠 = 2. As the modes are orthogonal to each other, we split them utilizing a PBS. We ramp up
the local oscillator power to 𝑃 = 2 mW for each detector, maximizing its input power, but not saturating
the Rf detection output. The AC part of the amplified signal oscillates with the frequency difference
between the local oscillator and the cavity signal 𝜔sig, given by

Δlo = 𝜔lo − 𝜔sig. (4.95)

In the heterodyne spectrum the particle Stokes and Anti-Stokes scattered sidebands are visible as

44



4.4 Optical setup

Lorentzian shaped curves around the center frequency 𝜔lo [37, 52], that the PSD reads

𝑆het(𝜔) =
1
2
+ 𝜂𝜅

( ��𝐺𝑠𝑞 + 𝛾∗2𝑔𝑠𝑞
��2

𝜅
2/4 + (Δlo + 𝜔 − Δ)2 𝑆𝑞𝑞 (Δlo + 𝜔)

+
��𝐺𝑠𝑞 + 𝛾∗2𝑔𝑠𝑞

��2
𝜅

2/4 + (Δlo − 𝜔 − Δ)2 𝑆𝑞𝑞 (Δlo − 𝜔)
)
.

(4.96)

To account for losses in the detection channel and generally, not collected light transmitting through the
cavity mirror, we introduce the efficiency factor 𝜂. The peak heights in the heterodyne spectrum are
dependent on their coupling to the cavity mode that for example the motional 𝑧-peak is maximal visible
at the anti-node, while it is strongly suppressed in the node (cf. Equation 4.51).
In the event, the cavity is on resonant with the trapping laser Δ = 0 the motional peaks are symmetric
around the local oscillator frequency. When detuning the cavity, its response function enhances the
peaks in proximity to the detuning, while suppressing the other sidebands, as the scattering is amplified
if the process is on resonance with the cavity.
For both cavity modes, we record the heterodyne spectrum in Figure 4.6. The gray signal corresponds to
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Figure 4.6: Heterodyne spectra of the two cavity modes. While most of the light is scattered in the bright mode,
where the translational modes and the 𝛼-libration couple, the other mode remains dark. The light leaking in the
dark mode results from the tilt between the cavity and the tweezer 𝑧-axis.

the populated mode 𝑠 = 2, while the black curve refers to the dark mode 𝑠 = 1. The cavity detuning is
set to Δ = 2𝜋 × 800 kHz, that at a pressure of 𝑝 = 11 mbar, cooling effects are insignificant. We observe
the translational degrees of freedom as well as the 𝛼-libration most prominent in the bright mode, which
is in accordance with the theory. Further, the noise floor around zero detuning is enhanced in the bright
mode due to the Rayleigh scattering.
The 𝛽-libration is primarily visible in the dark mode. However, we also detect the translational motion
with ∼ 10 dB suppression in this mode. Theoretically, this mode does not couple to the CoM motion.
We attribute the observed deviation to a slight alignment tilt between the tweezer and the cavity. While
we stated in Section 4.3.3 the tweezer and cavity to be orthogonal to each other, a perfect orthogonal
alignment is experimentally challenging. Consequently, we introduce a small tilt 𝜗 between the tweezer
propagation axis 𝑧 and the cavity axis 𝑧′, as illustrated in Figure 4.7.
It allows for forward scattered light to partially drive the cavity mode with the fraction of sin(𝜗)2. We
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Figure 4.7: Drawing of the tweezer and cavity orientation from the top (rotated by 90◦ compared to Figure 4.1).
The tweezer is tilted by the angle 𝜗 due to the alignment of cavity and tweezer itself.

measure this angle by rotating the polarization from orthogonal to parallel with respect to the cavity axis.
For perfectly orthogonal alignment, we can rotate the polarization that it is parallel to the cavity axis and
the light is scattered out of the cavity. In the event, where we account the small angle 𝜗, the cavity is
still populated, with the amount of light depending on the tilt. For both polarization configurations, we
measure its corresponding heterodyne spectrum, as shown in Figure 4.8.

80 60 40 20 0 20 40 60 80
frequency ( lo)/2  [kHz]

10 8

10 7

10 6

PS
D

 [V
2 /H

z]

= 0
= /2

Figure 4.8: Measurement of the angle between tweezer propagation axis and cavity polarization axis e1. The
𝑧-peak in the orange spectrum is suppressed by 18 dB, which results from the angle tilt 𝜗. For 𝜗 = 0 the peak
would not appear in the orange spectrum.

We determine for both spectra the height of 𝑧-peak (ℎ𝑧𝜃 ) by fitting a Lorentzian, from which we
back-calculate the angle using the relation

𝜗 = arcsin ©«
√︄
ℎ
𝑧

𝜋/2

ℎ
𝑧
0

ª®¬ ≈ 7.2◦. (4.97)
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Thus, we need to modify the derived theoretical framework by correcting the polarization vectors of the
cavity. We find the new modes by rotating the two vectors e1 and e2 by 𝜗 around the 𝑥-axis using the
rotation matrix

𝑅𝑥 =
©«
1 0 0
0 cos(𝜗) − sin(𝜗)
0 sin(𝜗) cos(𝜗)

ª®¬ . (4.98)

Finally, the polarization vectors are given by

ẽ1 = 𝑅𝑥e1 =
©«

0
− sin(𝜗)
cos(𝜗)

ª®¬ , ẽ2 = 𝑅𝑥e2 =
©«

cos(Θ)
sin(Θ) cos(𝜗)
sin(Θ) sin(𝜗)

ª®¬ , (4.99)

and lead to a coupling of the cavity mode 𝑠 = 1 to the translational degrees of freedom as

e∗𝑡 𝜒ẽ1 = i sin(𝜓)𝜒𝑏 sin(𝜗) (4.100)

holds. The induced coupling is small as sin(𝜗) ≈ 0.12, such that the modification can safely be neglected
as long as the coupling to mode 𝑠 = 2 does not tend to zero.
However, the small angle is the reason that the dark mode involves the translational motion and that the
bright mode additionally couples to the 𝛽-libration.

4.5 Cavity population

In the heterodyne spectra, the peak on resonance corresponds to the Rayleigh scattered photons and
hence the amount of light populating the cavity. As we derived in Equation 4.74 the number of photons
depends on the position along the standing wave and the cavity detuning, which we keep at Δ = 0. Thus,
we can derive a conversion from the measured peak height to the actual photon number. Therefore, we
add both heterodyne detection channels in order to minimize polarization deviations and overcome the
angle deviation 𝜗. When the particle is moved along the cavity axis using the translation stage in steps of
20 nm, we observe a periodic change in the peak height, indicating that the number of photons scattered
alters periodically. We then extract the peak height of the PSD ℎRS and back-calculate the expected
photon number. Therefore, we assume a detection efficiency of 𝜂 = 0.83 of the balanced detectors and a
conversion gain of 𝐺 = 250 × 103 V/W. Thus, the expression for the power of the signal emerging from
the cavity 𝑃out reads

𝑃out =
ℎRS

𝜂𝐺
2

1
𝑃lo

, (4.101)

where 𝑃lo is 2 mW. From this result, we determine the intracavity power and covert it to the photon
number

𝑛cav =
F
𝜋

𝑃out
ℏ𝜔𝜈FSR

, (4.102)

where the output mirror transmission is given by 𝑇 = 𝜋/F . The resulting photon number is shown as the
blue data in Figure 4.9. We proceed to fit the expected cos(𝜙)2-dependence to the data. Based on the
curve, we calibrate the particle position to the position along the cavity, thereby referring the distance
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Figure 4.9: Photons populating the cavity from scattered light of the particle as a function of its position inside the
cavity. The photon number is back-calculated from the recorded heterodyne spectrum with a local oscillator power
𝑃 = 2 mW. While the photon number depends on the cavity detuning the blue dots refer to Δ = 0 kHz and the
orange ones to Δ = 2𝜋 × 600 kHz. The measured data is represented by a cos(𝜙)2 curve. The absolute photon
number is also in accordance with the theoretical prediction.

between the two minima to the phase difference of 𝜋. In fact the mode function scales with cos(𝑘𝑦′ − 𝜙)
(cf. Equation 4.19), we expect the anti-node at 𝜙 = 0 and the node at 𝜙 = 𝜋/2. Beside the cosinusoidal
dependency, we compare the absolute photon number with the theoretical prediction from Equation 4.74.
For the theoretical calculation, we need to consider the shape and orientation of the trapped scattering
particle. As this measurement was performed using a spherical particle (𝑟 = 78 nm), we can neglect the
orientational dependency in Equation 4.74. Additionally, we maximized the light scattered in the cavity,
adjusting the polarization angle. We calculate the photon number at the anti-node for Δ = 0 to be

𝑛cav(0) =
1

(𝜅/2)2
𝑃𝜔𝑐

2𝑐𝜋𝑤𝑥𝑤𝑦𝑉𝑐
𝑉

2
𝜒

2
𝑐 ≈ 3.6 × 1010

, (4.103)

and compare it with the maximum photon number we measure, which was 𝑛cav = 2 × 1010. Both values
are in the same order of magnitude and correspond to an intracavity power of 𝑃 > 25 W. Note that we
underestimate the measured photon number in the back-calculation. We presume only the detection
efficiency 𝜂 but did not consider the amount of light leaking out of the cavity but not being collected for
detection. Additionally, we neglected the light losses in the optical path to the detector. Thus, we can
confirm the measured photon number is in line with the prediction.
We record the measurement by finding the scattering minimum and move in 20 nm step size in each
direction, recording the spectra. We choose 20 nm steps even the motor would allow a minimal step
size of 1 nm in order to run the experiment faster, thereby minimizing slow drifts from affecting the
measurement. Beside positional drifts of the particle along the standing wave, we observe the tweezer
polarization drifting as well.
The minimal photon number we measure is 𝑛 = 4 × 107, which theoretically is supposed to be zero.
Taking into account the motor precision, specified by SmarAct Δ𝑦 = 1 nm. This corresponds to a
minimal photon number, which is technical feasible. We calculate it by evaluating cos(𝑘𝑥 − 𝑝ℎ𝑖)2 in a
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Taylor series around the node and determine

𝑛cav(𝜋/2) ≈ 𝑛cav(0)𝑘
2(Δ𝑦)2 ≈ 3 × 105

. (4.104)

As the measured value is higher, we obtain the experimental distance to the node, which is 11 nm. In
fact, this is significantly higher than we would expect, we investigate the position jittering over time.
Therefore, we observe the fluctuation of the photon number at the measured node over time and convert
it in a displacement. We observe in Figure 4.10 that the particle jitters around the measured minimal
position with a standard deviation of 6.5 nm. Hence, we would not expect to position the particle closer
to a specific position than ±6.5 nm. Further, The fluctuations are asymmetric around the measured node,
indicating that the particle tends to move further away from the node rather than towards the node. The
reason for that is the quadratic behavior of the photon number around the node. We conclude that in
addition to the imprecision of the translation stage, there are other noise sources disturbing the particle
position. From the PSD we obtain that sharp frequencies at 20 Hz, 130 Hz, and a broad peak between
50 Hz and 75 Hz dominate the positional jittering. The sharp frequency peak at 20 Hz arises from the
flowbox while the other noise peaks result from the bellow, which damps the high frequency rotation
(1 kHz) of the turbo pump. We record the displacement around the node with the flowbox switched off,
and a hand placed on the bellow damping its low frequencies in Figure C.3. As a result, the particle
jittering amplitude is smaller, with a standard deviation of 4 nm.
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Figure 4.10: The particle jitters around the measured node (0) with an asymmetric displacement on the timescale
of seconds. The red bars indicate the standard deviation, which means that the particle jitters within ±6.5 nm
around the position. The PSD of noise indicates the disturbing noise peaks at 20 Hz , 60 Hz and 130 Hz

In fact, the photon number depends on the detuning of the cavity, we run the same measurement
for a detuning of Δ = 2𝜋 × 600 kHz (Figure 4.9 orange data). As expected, the overall photon number
decreases, but we still observe the position dependency. The recorded data fit well with the theory of
maximal 1 × 107 photons compared to the measured 9 × 106 photons. In conclusion, we prove the
scattering behavior of a spherical particle in the cavity, calibrate the position of node and anti-node and
state to approach the node by a minimal distance of 11 nm.
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Chapter 4 Coherent scattering cooling

4.6 Coupling between the motion and cavity

We continue characterizing the trapped spherical particle and henceforth analyze its motional coupling to
the cavity modes. As we derived in Section 4.3, we consider the interaction between tweezer and cavity
mode, as well as the self interaction of the cavity mode. In fact the cavity-cavity interaction scales with
𝛾
∗
2, the coupling strength depends on the detuning. The cavity-cavity interaction becomes stronger when

more photons populate the cavity. For our purpose, we calculate the ratio of tweezer-cavity interaction to
the total coupling in dependence of the detuning and demonstrate its relation in Figure 4.11. To obtain
the curve, we assume the nanoparticle placed between node and anti-node maximizing the coupling 𝑔
from Equation 4.38.
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Figure 4.11: Coupling ratio of the tweezer cavity coupling and the total coupling as a function of the cavity
detuning. The contribution of the cavity-cavity interaction is significantly at small detuning, in fact it scales with
the photon number, which is indeed maximal for Δ = 0. At detunings the experiment is typically operated with
Δ ≥ 2𝜋 × 100 kHz, |𝛾∗2𝑔 |

2 is negligible, since the ratio yields 𝐺2/(𝐺 + 𝛾∗2𝑔)
2 ≥ 0.99. Note that 𝑔 is maximized by

choosing a position between node and anti-node.

As a remark the graph holds only for the 𝑥- and 𝑦-motion, in fact for the 𝑧-motion no linear cavity-cavity
coupling exists. We observe that the cavity-cavity contribution becomes less important with increasing
detuning. At detunings we typically work with Δ ≥ 2𝜋 × 100 kHz the contribution becomes negligible
as the ratio is ≥ 0.99.
In a first experiment, we keep the detuning at Δ = 2𝜋 × 600 kHz, so we would expect that the coupling is
solely described by 𝐺. We measure the coupling for the 𝑥- and 𝑧-mode as shown in Figure 4.12. The
data is obtained by extracting the peak height of the heterodyne detection sensitive to 𝑠 = 2. According
to Equation 4.96 the measured peak height corresponds to the respective coupling quadratically as long
as the cavity does not introduce an asymmetry (Δ ≫ Ω𝑞). We observe the phase shift between 𝐺2𝑧
and 𝐺2𝑥 as the expected dependencies are |𝐺2𝑥 |

2 ∝ sin(𝜙)2 and |𝐺2𝑧 |
2 ∝ cos(𝜙)2. We then use the

calibration derived from the measurement of the photon number to obtain the position along the cavity
standing wave.
From the coupling to the 𝑦-motion, which is significantly smaller, we determine the angle 𝜃. Therefore,
we use the ratio

|𝐺2𝑥 |
|𝐺2𝑦 |

= tan(𝜃) (4.105)
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Figure 4.12: Normalized linear coupling between the translational motions and the cavity polarization mode 𝑠 = 2.
The coupling strengths 𝐺2

2𝑧 and 𝐺2
2𝑥 are out of phase by 𝜋/2 meaning the coupling exhibit strongest at the node

for the 𝑥-motion while for the 𝑧-motion the coupling is maximal at the anti-node. The data is acquired at 10 mbar
with 600 kHz detuning, so no cooling effects the measurement. The cavity is scanned in 20 nm steps and the
heterodyne detection recorded.

and extract an angle of (𝜃 = 0.327 ± 0.008)𝜋, as shown in Figure 4.13. At the anti-node, we observe a
plateau instead of a curve following the sin(𝜙)2 dependency. The reason for this is the third harmonic of
the 𝑧-motion, which arises at the anti-node and disturbs the measurement. According to Equation 4.44
the third harmonic couples to cos(𝜙) as well and in terms of frequencies they coincide with each other
(Ω𝑧 = 36 kHz and Ω𝑦 = 105 kHz). Hence, for extracting the angle, we dismiss the data between the
black bars. Based on the determined angle, we calculate the expected coupling rates for the CoM motion.
As we work with a spherical particle, we do not need to consider its orientation inside the tweezer, that
the coupling rates

|𝐺2𝑥 | ≈ 109 kHz × sin(𝜙), |𝐺2𝑦 | ≈ 87 kHz × sin(𝜙), |𝐺2𝑧 | ≈ 223 kHz × cos(𝜙) (4.106)

solely depend on the position along the standing wave. We anticipate the coupling along the 𝑧-axis to
be the strongest, because it is independent of the polarization angle and feature the largest zero-point
fluctuation.

4.7 Demonstration of coherent scattering cooling

We perform coherent scattering cooling with different trapped particles following the same procedure.
We start with loading a particle using LIAD at moderate pressures 𝑝 = 15 mbar and adjusting the particle
position within the cavity. Prior to commencing the locking procedure, a series of time traces in forward
detection are recorded as a reference for an uncooled particle. From the recorded data sets, we determine
the particle geometry and compare predicted librations with the respective measurement. Then we start
locking the cavity. Despite the fact that the gas damping at this pressure exceeds any heating induced by
the cavity, we proceed to lock on the cooling side, doing so at a distance that is far away from resonance.
In events the trapped particle is librating, the ellipticity is rotated in proximity to circularly polarized light,
thereby narrowing the gap between the librational and translational frequencies. Typically, we set the
detuning between the translational and the librational modes before carefully reducing the pressure and
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Figure 4.13: Determination of the polarization angle 𝜃. From the ration of 𝐺2𝑥/𝐺2𝑦 the angle 𝜃 is obtained along
the cavity standing wave. Around the anti-node the 𝑦-coupling tends to zero, but simultaneously the third harmonic
of the 𝑧-motion arises leading to a disturbance around the anti-node. The effect is visible between the black bars
and hence for the determination of 𝜃 neglected. The polarization is determined to be (𝜃 = 0.327 ± 0.008)𝜋, with
the blue area indicating the error estimation.

observing the particle motion in all detection channels. The adiabatic change is slow enough to let the
particle thermalize with its environment. The heterodyne spectrum with a detuning of Δ = 2𝜋 × 180 kHz
at 𝑝 = 2 mbar is shown in Figure 4.14.
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Figure 4.14: Heterodyne spectrum at 𝑝 = 2.5 mbar of a librating particle. The polarization is close to circularly,
indicating that the 𝑥- and 𝑦-peaks are not separated. The cavity induces due to its response function characterized
by its finesse and linewidth, an asymmetry. The cavity is blue-detuned with Δ = 2𝜋 × 180 kHz, enhancing the
Anti-Stokes scattered peaks.

We observe the enhancement of the Anti-Stokes sidebands relative to the Stokes sidebands and
recalculate the cavity transmission function accordingly. The cavity has a filtering effect, which induces
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an asymmetry visible in the peak heights, expressed as

𝐴cav =
𝜅

2/4 + (Δ +Ω𝑞)
2

𝜅
2/4 + (Δ −Ω𝑞)

2 . (4.107)

In addition to the induced imbalance, there is an intrinsic asymmetry stemming from the scattering
process itself. The Anti-Stokes scattering rate scales with the phonon number in this mode (𝑛𝑞), while
the Stokes process scales with 𝑛𝑞 + 1 the asymmetry is quantified as

𝐴 =
𝑛𝑞

𝑛𝑞 + 1
. (4.108)

By carefully extracting the cavity asymmetry from the peaks and balancing the noise floor for the
Stokes and Anti-Stokes sidebands, the peak heights reveal an absolute temperature measurement of the
mechanical motion. As the occupation number at room temperature is on the order of 𝑛𝑞 = 107 − 108,
the method is only suitable for sufficiently cooled particles. Depending on the detection efficiency, we
would expect to perform sideband thermometry for occupation numbers below 𝑛𝑞 = 10.
As this requires high vacuum, we implement a combination of a scroll pump for pre-vacuum and a
turbopump to reach pressures down to 𝑝 = 1 × 10−9 mbar. While pumping, we implement a program
continuously adjusting the cavity lock, since the refractive index and hence the optical cavity length
decreases.

4.7.1 Translational cooling

With a trapped spherical particle, we lock the cavity with a detuning of Δ = 2𝜋 × 110 kHz and place the
particle where all translational modes are cooled. When adiabatic lowering the pressure, we record the
time traces of the split and heterodyne detection. With a reference trace at 𝑝 = 8 mbar we determine the
mode temperature from the spectral area ratio in forward detection as described in Section 4.1. While cool-
ing, we observe a decrease in the peak height, whereby the linewidth narrows due to the pressure reduction.

The reference PSD as well as a cooled spectrum at 𝑝 = 9 × 10−5 mbar is shown in Figure 4.15. The
colored area beneath the peaks is the spectral area where the signal is above the noise floor and therefore
considered for the temperature calculation. We proceed with recorded data at different pressures in
the same manner, which yields the temperature-pressure dependence in Figure 4.16. We divide the
curve along the pressure in three parts. In the pressure range between 0.1 mbar and 1 × 10−3 mbar
the temperature reduces linearly. Then the temperature flattens, reaching a plateau before the 𝑦- and
𝑧-motional temperature decreases further at 𝑝 = 4×10−5 mbar reaching the lowest measured temperatures
of below 10 mK. The linear reduction is as anticipated, combining the effective temperature calculation
from Equation 4.84 with the thermal damping in Equation 3.12, this results in

𝑇eff(Ω𝑞) ≈
𝑇

((
Ω𝑞 + Δ

)2
+ 𝜅2/4

) ((
Ω𝑞 − Δ

)2
+ 𝜅2/4

)
4Ω𝑞Δ𝜅 |𝐺𝑠𝑞 |

2 Γ𝑞 (4.109)

=

𝑇

((
Ω𝑞 + Δ

)2
+ 𝜅2/4

) ((
Ω𝑞 − Δ

)2
+ 𝜅2/4

)
4Ω𝑞Δ𝜅 |𝐺𝑠𝑞 |

2
64𝑟2

3�̄�gas
𝑝. (4.110)
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Figure 4.15: Coherent scattering cooling of the translational motion. The data in red refers to an uncooled
nanoparticle at 8 mbar, serving as a reference. The mode temperature at 9 × 10−5 mbar is the relation of the
two spectral areas (shaded areas). Weakest cooling is measured for the 𝑦-axis. This is caused by the tweezer
polarization, which is almost linear along the 𝑦-axis (𝜃 = 0.3𝜋), leading to less scattering of the motion in the
cavity. The 𝑧-motion exhibits strongest cooling, since the particle is placed close to the anti-node (0.098±0.009)𝜋.

Thus, we fit the data for each degree of freedom with a linear function. From this analysis, we extract
the coupling constants for each mode, as summarized in Table 4.1. We calculate the position 𝜙 along the
standing wave by determine the ratio of 𝐺2𝑥 and 𝐺2𝑦 (cf. Equation 4.51). For the polarization angle, we
insert the before obtained value 𝜃 = 0.3𝜋 and evaluate 𝜙 = (0.098 ± 0.009)𝜋 . The particle is positioned
near the anti-node, which maximizes the number of photons inside the cavity. According to Equation
4.74, we calculate a photon number of 𝑛cav = (1.7 ± 0.2) × 108.
At pressures below 𝑝 = 1 × 10−3 mbar, we observe the temperature curve flattens, which is caused by
phase noise heating. Phase noise arises from the used laser itself, which occurs due to different influences.
Most prominent is the spontaneous photon emission of the gain medium in the laser resonator [75–77].
The phase of the emitted photon is not in line with the circulating photons caused by stimulated emission
and thus adds a phase noise. In combination with cavity instabilities, the phase noise translates into
amplitude noise of the interactivity field. Since the coupling scales with the number of photons, it
fluctuates. As we have already observed, the impact of 𝛾∗2𝑔 for the total coupling is small, this contributes
less. More important is the stochastic force arising from the amplitude fluctuations. They drive the
mechanical oscillator, preventing further cooling [78]. As a result, the final temperature scales with the
intracavity photon number

𝑇𝑞 =
ℏΩ𝑞

𝑘𝐵

𝑆 ¤𝜙 ¤𝜙

𝜅
𝑛cav + 𝑇eff(Ω𝑞), (4.111)

where the first term includes the phase noise limited temperature with the frequency noise 𝑆 ¤𝜙 ¤𝜙. We fit
the function to the data in Figure 4.16 and extract from the free parameters the frequency noise,

𝑆 ¤𝜙 ¤𝜙 =
𝑘𝐵𝑇𝑞𝜅

ℏΩ𝑞𝑛cav
. (4.112)
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Figure 4.16: Fit of the measured temperature-pressure dependency. Ignoring any noise sources, the temperature
scales linear with the pressure (dashed line). The temperature follows the linear reduction until 1 × 10−3 mbar
(blue shaded area). At 100 mK cooling becomes inefficient, limiting the temperature for each degree of freedom
(gray shaded area). Thereby, the solid curves represent the fitted temperature dependency including the phase
noise contribution, resulting in a fitted frequency noise 𝑆 ¤𝜙 ¤𝜙 = 16 Hz2/Hz. For pressures below 4 × 10−5 mbar,
the particle is positioned closer to the node, reducing the phase noise and leading to further cooling until the peaks
disappear in the noise floor (orange shaded area).

The final mode temperatures for the CoM motion are

𝑇𝑥 = (129 ± 3) mK, 𝑇𝑦 = (105.4 ± 1.5) mK, 𝑇𝑧 = (36.2 ± 0.6) mK, (4.113)

which we calculate in the phonon number according to Equation 4.1

𝑛𝑥 = (21.5 ± 0.5) × 103
, 𝑛𝑦 = (21.3 ± 0.3) × 103

, 𝑛𝑧 = (19.8 ± 0.3) × 103
. (4.114)

For each mode we evaluate the respective frequency noise and average them, thus we obtain

𝑆 ¤𝜙 ¤𝜙 = (16 ± 2) Hz2/Hz. (4.115)

Although the phase noise reduces with frequency, we average over the calculated frequency noise values,
as the motional frequencies are in the same order of magnitude. The typical phase noise of the laser
is specified at 𝑓 = 10 kHz as, 𝑆𝜙𝜙 = −135 dB(rad/

√
Hz/m) which we calculate back in the frequency

noise. Since the phase noise measured arises from the effective optical path length inside the cavity, we
determine

𝐿opt =
F
𝜋

𝑐

2𝜈FSR
≈ 2.5 km, (4.116)

where F/𝜋 denotes the number of roundtrips inside the cavity. Thus, we expect a typical frequency
noise on the order of

𝑆 ¤𝜙 ¤𝜙 = 𝑆𝜙𝜙𝐿opt 𝑓
2 ≈ 20 Hz2/Hz (4.117)

at 𝑓 = 10 kHz, which is in good agreement to the frequency noise we extract from the fits. We summarize
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the determined cooling characteristics for each translational mode in Table 4.1.

Table 4.1: Determined parameters for cooling the translational motion simultaneously at a pressure of 𝑝 =

1 × 10−4 mbar and a position close to the anti-node 𝜙 = (0.098 ± 0.009)𝜋. The final temperature is limited due to
the phase noise arising inside the cavity.

mode coupling |𝐺2𝑞 | temperature occupation number cooperativity 𝐶𝑞

𝑥 (34 ± 4) kHz (129 ± 3) mK (21.5 ± 0.5) × 103 0.06
𝑦 (27 ± 3) kHz (105.4 ± 1.5) mK (21.3 ± 0.3) × 103 0.03
𝑧 (212 ± 3) kHz (36.2 ± 0.6) mK (19.8 ± 0.3) × 103 0.65

In the heterodyne spectrum as shown in Figure 4.17, we observe similarly to the forward detection
a continuous peak height decrease. We extract the cavity response function from the spectrum and
show the Stokes and Anti-Stokes sidebands for the 𝑥- and 𝑦-motion. For pressures below 1 × 10−3 mbar,
we observe the Anti-Stokes scattered 𝑥-peak to dip in the noise floor. This phenomenon is known as
noise squashing. Since we exhibit strong cooling due to a high-finesse cavity and subsequently a high
coupling, squashing occur for the blue-detuned peaks, while anti-squashing occurs for the red-detuned
sidebands [79]. The noise floor for Anti-Stokes scattered light cancels, and the noise floor around the
Stokes peaks gets amplified. Thus, the peak heights of Stokes and Anti-Stokes peaks differ despite
considering the cavity and internal asymmetry. This prevents extracting the correct spectral area from
the peaks, under- or overestimating the final temperature [80, 81].
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Figure 4.17: Heterodyne spectrum of the Stokes and Anti-Stokes sidebands for different pressures. At a detuning
of Δ = 2𝜋 × 110 kHz the peak height decreases and at 𝑝 = 1 × 10−3 mbar noise squashing at the 𝑥-peak appear,
indicating cooling stronger than the noise floor can resolve. At 𝑝 = 5 × 10−5 mbar the 𝑦-peak exhibit noise
squashing as well. The dip indicates the cooling locally cancels the phase noise, thus the spectral shape is changed,
underestimating the actual peak height. For the Stokes sidebands the phase noise is amplified (anti-squashing),
overestimating the actual peak height. The gray peaks indicate an amplitude noise peak from the laser.

At 𝑝 = 4 × 10−5 mbar, we adjust the position of the particle to move it closer to the node. This
reduces the number of photons scattered in the cavity and therefore minimizes the impact of phase noise
heating. As a result shown in Figure 4.16 the 𝑦- and 𝑧-motion are cooled further. For the 𝑥-motion, we
are not able to resolve a peak, because we approach the detection limit. We report the lowest measured
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temperature for the 𝑧- and 𝑦-motion to (4.5 ± 0.8) mK and (3 ± 3) mK respectively. Hence, the final
observed occupation number is 𝑛𝑧 = (2.6 ± 0.4) × 103 and 𝑛𝑦 = (0.6 ± 0.6) × 103. The uncertainty
of the 𝑦-motion rises from the detected peak. The peak is barely visible in the spectrum and would
require a better signal-to-noise ratio for a precise measurement. Therefore, we need longer measurement
times and a better detection efficiency. Thus, we average the spectrum over approximately one minute of
measurement time, but we are not able to resolve motional peaks at lower pressures. In the heterodyne
detection, sideband thermometry will offer an absolute temperature, if we account for the aforementioned
discrepancies in the shape and peak height. As we obtained the occupation number around 1 × 103, even
a careful analysis accounting to the squashing effects will not provide a temperature measurement, since
the discrepancy in the occupation is on the order of0.1 %. Although, the detection efficiency prevents
us detecting lower temperatures, the particle is still cooled, in fact coherent scattering does not require
the continuous motional read out. Thus, we simulate the final occupation number for the translational
motion and the particle placed at the node. Around the node, the coupling for the 𝑧-motion tends to zero
(cf. Equation 4.51). In the discussion, we omit the alignment tilt 𝜗 of the tweezer with respect to the
cavity. According to the modified polarization vectors in Equation 4.99 the coupling rate to polarization
mode 𝑠 = 2 is given by

𝐺
tot
2𝑧 =

√︄
𝑃𝑉

2
𝜔𝑐

2ℏ𝑐𝜋𝑤𝑥𝑤𝑦𝑉𝑐

(
i cos(𝜙)

(
𝑘 − 1

𝑧𝑅

)
− sin(𝜙)𝑘 sin(𝜗)

)
×

(
cos(𝜃) cos(𝜓)𝜒𝑐 − i sin(𝜃) sin(𝜓)𝜒𝑏

)
,

(4.118)

such that the coupling rate does not diminish. This ensures that the particle still experiences cooling
even when positioned near the node. As calculated in Section 4.5, we are able to find the node with
an uncertainty of 11 nm, leading to an intracavity photon number of 𝑛cav = 4 × 105. Based on this, we
simulate the final motional temperatures

𝑇𝑥 = 283 µK, 𝑇𝑦 = 231 µK, 𝑇𝑧 = 79 µK, (4.119)

which we theoretically reach at a pressure around 𝑝 = 1 × 10−9 mbar. The corresponding occupation
number (cf. Equation 4.1) are

𝑛𝑥 = 47, 𝑛𝑦 = 46, 𝑛𝑧 = 44, (4.120)

above the ground state. In conclusion, we need to discuss the heating effects hindering the particle from
ground state cooling.

4.7.2 Heating mechanism

The mechanical oscillator damping rate determines the reachable occupation (cf. Equation 4.84). The
system is influenced by residual gas collisions (Γth

𝑞 ), radiation pressure (Γrec
𝑞 ) and the coherent scattering

cooling (ΓCS
𝑞 ) [82]. While the latter one leads to cooling the other process heat the motion and the overall

damping from Equation 4.83 is extended to

Γtot = Γ
th
𝑞 + Γ

rec
𝑞 + Γ

CS
𝑞 . (4.121)

As derived in Equation 4.85 the lowest possible temperature is related to the coupling-damping ratio. For
less optical coupling, a lower pressure is required, to reach the same temperature. The final occupation
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number is limited by the pressure (cf. Equation 4.111), which we calculate at 𝑝 = 1 × 10−9 mbar to be

𝑛
th
𝑥 ≈ 0.006, 𝑛

th
𝑦 ≈ 0.005, 𝑛

th
𝑧 ≈ 5. (4.122)

We emphasize that for 𝑛th
𝑧 the main limitation stems from the far detuned cavity (36 kHz < 110 kHz).

For the 𝑥- and 𝑦-motion the pressure does not pose a significant limit on cooling.
Next, we investigate the radiation pressure, leading to recoil heating due to the scattering of the photons.
Each photon carries a momentum, and when scattered by the particle, the momentum difference is
transferred to the particle, which results over time in a scattering force. The backaction scales with the
optical power, when increasing it, the scattering force is increased, while on the other hand the position
uncertainty in detection decreases [83]. The recoil heating rates yield for the translational motion [21]

Γ
rec
𝑞 =

1
5

2𝑃𝑉2

𝜋ℏ𝑐𝑤𝑥𝑤𝑦

𝑘
3

6𝜋
𝑞zpf

(
(𝜒2

𝑐 cos(𝜓)2 + 𝜒2
𝑏 sin(𝜓)2)

(
2 + 5

(
𝑘 − 1

𝑧𝑅

)2
𝛿𝑞𝑧

)
−𝜒2

𝑐 cos(𝜓)2
𝛿𝑞𝑥 − 𝜒

2
𝑏 sin(𝜓)2

𝛿𝑞𝑦

)
,

(4.123)

where the prefactor arises from the scattered field from Equation 2.53. The contribution to the final
temperature results from the PSD as [62, 83]

𝑛
rec
𝑞 =

𝜅Γrec

4𝐺2
𝑠𝑞

(4.124)

Thus, we obtain the occupation number due to recoil heating with the coupling strength we assumed at
the node

𝑛
rec
𝑥 ≈ 0.012, 𝑛

rec
𝑦 ≈ 0.044, 𝑛

rec
𝑧 ≈ 30. (4.125)

While the recoil heating does also not affect the 𝑥- and 𝑦-motion occupation, it does for the 𝑧-motion.
The reason is the weak coupling of the 𝑧-motion to the cavity.

Comparing the damping factors limiting the cooling, the recoil heating dominates over the thermal
damping rate. We define the optomechanical cooperativity as

𝐶𝑞 =
4𝐺2

𝑠𝑞

Γ
rec
𝑞 + Γ

th
𝑞

≈ 1
𝑛

rec
𝑞

(4.126)

the ratio between optical coupling strength and the coupling to the effective optical noise and thermal
bath [79]. A large cooperativity is necessary to perform quantum experiments and transfer the particle to
its motional ground state. As we calculated for the phase noise limited cooling at 𝑝 = 1 × 10−4 mbar (cf.
Table 4.1) the cooperativities are below 𝐶𝑞 < 1. In a quantum experiment, that would mean that the
decoherence of the quantum state is faster than the optical state transfer [84]. Generally, the cooperativity
for each mode can be enhanced, in fact it is directly related to the Purcell factor. Thus, the cavity finesse
and the ratio of light scattered in the cavity mode determine the cooperativity for this mode [62]. As a
result, we aim for higher couplings by choosing a position closer to the node, reducing the recoil heating
and as it is still the main limiting factor reducing the phase noise. The position can be adjusted easily
with the translation stage up to the 11 nm. For reducing the optical noise, we can either reduce the laser
power or launch smaller particles. Leaves us with the remaining issue, reducing the phase noise.
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4.7 Demonstration of coherent scattering cooling

4.7.3 Phase noise reduction

Despite the NKT E15 laser offers the lowest achievable phase noise on the market for 𝜆 = 1 550 nm, we
need to reduce it further. Therefore, we implement the setup shown in Figure 4.18, which is typically
used measuring the linewidth of a laser. As the linewidth and the phase noise are correlated, the setup

Figure 4.18: Setup to reduce the phase noise. An EOM is incorporated directly after the laser to compensate the
phase noise. After the amplifier, the splits to interfere in an unbalanced Mach-Zehnder interferometer. One part of
the light is delayed by a 100 m fiber line. The phase difference measured in the balanced detector is dependent on
the phase noise. A PID regulates a fiber stretcher correcting slow thermal drifts, while an I/Q modulator controls
the EOM, reducing the phase noise at a desired frequency.

is suitable. It is based on an unbalanced Mach-Zehnder Interferometer, where we expand one arm
with a 100 m fiber delay line. Both parts are recombined at a 50/50 beamsplitter, where a balanced
photodetector measures both outputs. We ensure equal optical power in both arms. In the difference
signal of the detector, we measure the phase difference of the two arms, which is induced by the laser
phase noise. In detection, we also acquire shot noise and fiber noise. We reduce them by using high
optical power, close to detection saturation and choosing a long fiber delay line.
Based on the detected signal, we generate a feedback signal steering the EOM after the laser. Therefore,
we use the I/Q module in the RedPitaya FPGA architecture [77]. First, the signal is demodulated using
an electrical signal oscillating at the frequency we want to achieve phase noise reduction. Subsequently,
the demodulated signal is low-pass filtered and amplified by an adjustable gain. When again mixing the
signal with the electrical signal oscillating at the desired frequency, we add a phase to the signal. In
fact the phase difference drifts between the two interferometer arms, we simultaneously adjust the fiber
length using a fiber stretcher. This ensures a stable measurement sensitivity. We measure the signal
shown in Figure 4.19. With the applied feedback at 𝜔 = 2𝜋 × 50 kHz, we can reduce the phase noise by
20 dB. While the noise floor in proximity to the desired frequency is lowered, at frequencies further away
the phase noise is increased. This results from adding to the fiber noise with the active feedback signal
and from the phase setting. As the chosen phase is suitable for 𝜔, it is inappropriate for frequencies
further away. In combination with a high gain setting, this leads to a phase noise increase. By setting up
multiple I/Q modulators and summing up their feedback signal for different frequencies, we can reduce
the phase noise around different frequencies simultaneously. Thus, we can reduce the frequency noise
by a factor of 100, which theoretically results in the ground state cooling for the trapped particle from
previous discussion. For the translational at 1 × 10−9 mbar around the node, we would expect a final
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Figure 4.19: The measured laser phase noise (blue) fitted with the 1/ 𝑓 dependence. With phase modulating an
EOM, the phase noise is reduced locally at 50 kHz by 20 dB (orange). At 20 kHz the phase noise is enhanced, in
fact the feedback parameters are improper for this frequency.

occupation of

𝑛𝑥 ≈ 0.5, 𝑛𝑦 ≈ 0.5, 𝑛𝑧 ≈ 35. (4.127)

While the 𝑥- and 𝑦-mode are ground state cooled, the 𝑧-mode is limited due to the small cooperativity at
the node and thus can only be cooled further by reducing the recoil heating.

4.7.4 Librational cooling

As we aim for rotational cooling, we are rather interested in cooling non-spherical particles. We proceed
in the same manner as we do it for the spherical particles. Despite the same circumstances, we frequently
lose librating particles at pressures below 𝑝 = 0.1 mbar. In case we let the particle rotate around the
tweezer axis using circularly polarized light, we circumvent this issue. In Figure 4.20 we record the
stability of the translational frequencies for a trapped dumbbell. We observe at 50 ms an instability in the
𝑥- and 𝑦-motion which might arise from the diffusive 𝛾-motion. In figure 3.11 we observe the𝛼-libration
splitting. As both traces are recorded from the same measurement record, we can compare them. At
50 ms, we observe maximal splitting for the librational mode. Thus, the translational instability occurs
when mode splitting is maximal. In this event, the rotating frequency 𝜔𝛾 is maximal. If we reduce the
pressure further, 𝜔𝛾 increases and thereby destabilizing the particle motion until the particle falls out of
the trap. In comparison, the 𝑥- and 𝑦-motion for a rotating particle keep stable over the measurement
time, as presented in Figure 4.21. As the 𝛾-motion couple through the 𝛼- and 𝛽-libration, we need
to cool them further in this pressure range. So we should keep the tweezer at linear polarization that
both frequencies are close to each other, accompanying a maximal distance to the translational modes.
Further, we need to place the particle around the anti-node and setting the detuning on resonance with the
librational modes. With a rotating particle, we record the same continuous decrease of the CoM motional
temperature as for the spherical particles. Additionally, the temperature is also limited by the phase noise
and as the 𝛼-rotation constantly drives the particle, at some point the bound of the two particles break.
We lose the particles at 1 × 10−4 mbar, where similar studies observe rotation frequencies in the GHz
region [11,18]. Further, the study [15] uses similar sized dumbbell rotating at 1.2 GHz. According to
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4.7 Demonstration of coherent scattering cooling

Figure 4.20: Stability of the translational frequencies for a librating particle at 𝑝 = 5 × 10−2 mbar. Due to the
diffusive 𝛾-libration the 𝑥- and 𝑦-motion is perturbed at 50 ms destabilizing the trapped particle.

Figure 4.21: Stability of the translational frequencies for a rotating particle at 𝑝 = 5 × 10−2 mbar.

their findings, this exhibits a stress of 13 GPa on the dumbbell, which is close to the breaking point. So
we conclude, that we lose the particle, quite likely due to the fact they tear apart.

4.7.5 Simulation for librational cooling

Assuming the different approaches work out, and the particle is transferred to a state where all modes
are deeply trapped such that 𝛾 is no longer diffusive, we simulate the librational cooling. Therefore,
we consider a particle shaped as obtained in Equation 3.17. The simulation includes the discussed
damping rates: thermal damping, recoil heating and coherent scattering damping as well as the reduced
phase noise heating. To minimize the recoil heating contribution, the laser power is reduced to 100 mW.
When the particle motion is cooled at low pressure around 1 × 10−6 mbar, we could experimentally
lower the trapping power to 200 mW. A lower tweezer power reduces the trapping stiffness and therefore
requires a high damping, which prevents the particle to escape from the trap. Consequently, it reduces
the trapping frequency. However, reducing trapping power below 𝑃 = 100 mW is not feasible, as noise
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peaks appear below 2𝜋 × 10 kHz in the heterodyne spectrum, making it difficult to extract the particle
motion from the noise floor. For 100 mW the trapping frequencies are sufficiently high as listed in Table
4.2. An advantage of the reduced trapping power, is that the particle frequencies close up, which is
beneficial since we aim for cooling all modes simultaneously, due to the small linewidth of the cavity
transmission function (𝜅 = 2𝜋 × 20 kHz). We run our simulation at 𝑝 = 1 × 10−9 mbar, being currently
the lowest pressure, which is feasible in our setup. The program optimizes for the cavity detuning, tweezer
ellipticity and polarization orientation. In analogy to the method for determining the most probable
particle shape, we iterate through all possible configuration for 𝜓 ∈ [0, 𝜋/4], 𝜁 ∈ [0, 𝜋], 𝜃 ∈ [0, 𝜋] and
Δ/2𝜋 = (0−200)kHz optimizing the combined lowest occupation number (𝑛 =

∑
𝑞 𝑛𝑞). The dependence

of the occupation number on the particle position is shown in Figure 4.22. Since the phase noise still
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Figure 4.22: Final occupation number at a pressure 𝑝 = 1 × 10−9 mbar, a tweezer power of 𝑃 = 100 mW, and the
particle shape calculated in Equation 3.17. Assuming a phase noise reduction of 20 dB over the frequency range.
The orange marked area denotes the area where the occupation number is below 1. For cooling all degrees of
freedom simultenously, only the translational motion 𝑥-and 𝑦-approach their ground state.

dominates the noise contribution, we expect the lowest achievable occupation number around the node.
With the detuning of Δ = 2𝜋 × 70 kHz, we could achieve ground state cooling of the two translational
degrees of freedom 𝑥 and 𝑦. Therefore, the particle must be positioned within 12 nm around the node.
Given the experimental uncertainty of 11 nm, this is within reach. However, despite the non-vanishing
coupling around the node for the 𝑧-motion, it is not ground state cooled. The limitation arises on the one
hand from the distance to the cavity detuning and on the other from the resolved sideband assumption,
which is not fulfilled for the 𝑧-motion Ω𝑧 ≈ 𝜅.
For the libration we assume no significant coupling at the node. Nonetheless, the 𝛼-libration is cooled to
14 phonons at 10 nm away from the node. As expected the 𝛾 libration is barely cooled, due to the small
asymmetry the coupling is small. The parameters resulting from the simulation are summarized in Table
4.2.

In a second simulation, as shown in Figure 4.23, we optimize the parameters for best librational
cooling. Indeed, at the same pressure and in the region (40 − 100)nm away from the node, we calculate
ground state cooling for the 𝛽- and 𝛼-libration. The translational modes are not ground state cooled due
to the discrepancy between motional frequency and cavity detuning. The corresponding temperatures
and occupation numbers are presented in Table 4.3.

We conclude that our setup is capable of cooling the trapped nano-dumbbells to their librational
ground state. However, achieving the six-dimensional ground state remains unfeasible due to phase noise
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4.7 Demonstration of coherent scattering cooling

Table 4.2: Determined parameter for cooling all six degrees of freedom simultaneously at 𝑝 = 1 × 10−9 mbar
and with a detuning of Δ = 2𝜋 × 70 kHz. With the paramters (𝜓 = 0.22𝜋, 𝜃 = 0.77𝜋, 𝜁 = 0.22𝜋,±11 nm) the
combined occupation number of all degrees is minimal at 11 nm away from the node.

mode 𝑞 frequency Ω𝑞 coupling |𝐺𝑠𝑞 | occupation number 𝑛𝑞 cooperativity 𝐶𝑞

𝛼 2𝜋 × 73 kHz 1.8 kHz 14 0.08
𝛽 2𝜋 × 138 kHz 1.4 kHz 428 0.12
𝛾 2𝜋 × 26 kHz 0.11 kHz 72 × 103 3 × 10−4

𝑧 2𝜋 × 18 kHz 26 kHz 82 0.56
𝑥 2𝜋 × 60 kHz 71 kHz 0.07 40
𝑦 2𝜋 × 50 kHz 93 kHz 0.14 56

Table 4.3: Determined parameter for cooling, especially the libration at 𝑝 = 1 × 10−9 mbar with a detuning of
Δ = 2𝜋 × 183 kHz. The parameters (𝜓 = 0, 𝜃 = 0.66𝜋, 𝜁 = 0.11𝜋,±50 nm) allow reaching the ground state for the
𝛼- and 𝛽- libration 50 nm qaway from the node.

mode 𝑞 frequency Ω𝑞 coupling |𝐺𝑠𝑞 | occupation number 𝑛𝑞 cooperativity 𝐶𝑞

𝛼 2𝜋 × 177 kHz 8 kHz 0.4 3.5
𝛽 2𝜋 × 180 kHz 8 kHz 0.3 3.6
𝑧 2𝜋 × 18 kHz 13 kHz 6 × 103 0.1
𝑥 2𝜋 × 60 kHz 28 kHz 35 5.9
𝑦 2𝜋 × 50 kHz 18 kHz 136 1.9

heating. In future experiments, we aim to launch dumbbells consisting of smaller spheres. Although
they exhibit a smaller coupling, since it scales with

√
𝑉 , their recoil heating will decrease proportionally

to 𝑉2. Thus, the cooperativity will increase, rendering additionally ground state cooling for the 𝑧-motion
feasible, soon.

63



Chapter 4 Coherent scattering cooling

-80nm -40nm node +40nm +80nm
position

10 1

100

101

102

103

104

105

oc
cu

pa
tio

n 
nu

m
be

r

z
x
y
S = 0.2Hz2/Hz

Figure 4.23: Final occupation number at a pressure 𝑝 = 1 × 10−9 mbar, a tweezer power of 𝑃 = 100 mW, and
the particle shape calculated in Equation 3.17. Assuming a phase noise reduction of 20 dB over the frequency
range. The orange marked area denotes the area where the occupation number is below unity. Detuning and
angles are optimized for cooling the librations the strongest. Ground state cooling for the 𝛼- and 𝛽-libration is in
experimental reach between 40 nm and 100 nm awy from the node.

64



CHAPTER 5

Conclusion and Outlook

We successfully demonstrated the trapping of nano-dumbbells composed of two spherical silica
nanoparticles. The particle shape is acutely estimated, calculating the damping ratios of the CoM
motion. Although we predicted the presence of two asymmetries in a dumbbell-shape, some particles
exhibit three. Therefore, we reconstruct the particle shape as elliptical. Despite ruling out initially
launching aspherical shaped particles, we infer that the particles are anisotropic. The reconstructed
elliptical shape is thus a fictive particle shape featuring the same optical properties with the dimensions
𝑟𝑎 = (98.8 ± 0.5) nm, 𝑟𝑏 = (100.1 ± 0.5) nm and 𝑟𝑐 = (156 ± 2) nm.
By adjusting the ellipticity of the tweezer polarization, the librational frequencies are altered accordingly.
We attribute the measured frequencies to the 𝛼- and 𝛽-libration, and their behavior aligned well with
simulations based on the determined particle shape. Due to the symmetry of dumbbells along their long
axis, the 𝛾-libration can evolve freely. Additionally, the 𝛾-motion of the elliptical particle is not trapped
at pressures around 10−2 mbar, leading to Brownian rotation, which causes observed mode-splitting in
the librational frequencies. We characterize this free rotation by measuring the Brownian frequency
from the frequency splitting, which scales inversely with pressure. At a pressure of 0.4 mbar, we record
a frequency of 𝜔𝛾 = (15.61 ± 0.26) kHz. The free mode destabilize the 𝑥- and 𝑦-frequency, at pressures
below 1 × 10−2 mbar, it ultimately causes the particle falling out of the trap. Driving the 𝛼-libration
into rotation, the particle stability is maintained. This, in combination with coherent scattering cooling,
allows the particle to be transferred in high-vacuum. The final pressure is limited by the binding strength
of the two particles that form the dumbbell.

We employ a clean and soft loading technique that enables the incorporation of a high-finesse optical
cavity. To protect the cavity mirrors, we designed a cover and prove its effectiveness by frequently
measuring the finesse. All records consistently yield F = 500 000 and 𝜅 = 2𝜋 × 20 kHz. Utilizing the
cavity ability to enhance the scattered light from the nanoparticle, we successfully cool the CoM motion
of a trapped spherical particle. We demonstrate the theoretical coupling between the mechanical motion
and the cavity electrical field. To achieve simultaneous cooling of the 𝑧-, 𝑥- and 𝑦-motion, the particle is
placed close to the node of the standing wave 𝜙 ≈ 𝜋/10, which enhances the light scattered into the cavity.
We confirm the photon number populating the cavity as a function of the standing wave and its detuning.
When comparing the measured photon numbers to the theoretical predictions, the photon number during
cooling is found to be 𝑛cav = (1.7 ± 0.2) × 108. With the determined frequency noise of the laser
𝑆 ¤𝜙 ¤𝜙 = (16±2) Hz2/Hz around the CoM frequencies, this limits the cooling performance to temperatures
of 𝑇𝑥 = (129±3) mK, 𝑇𝑦 = (105.4±1.5) mK and 𝑇𝑧 = (36.2±0.6) mK. The corresponding occupation
numbers for each mode are around 20 × 103. In an effort to cool the motion further, the particle is
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placed closer to the node, which we can reach up to 11 nm. The absolute positioning is limited due to
low-frequency noise from the flowbox and the bellow. Although the motional temperature decreases
further, with our detection efficiency in both the forward and the heterodyne detection, we could not
resolve lower temperatures than 3 mK. However, we calculated that even the phase noise around the
node hinders us from ground state cooling. To address this, we utilized an unbalanced Mach-Zehnder
interferometer with a delay over 100 m in one arm, allowing us to directly measure the laser phase noise
and reduce it by 20 dB around desired frequencies. With this reduction, we simulate ground state cooling
of the translational 𝑥- and 𝑦-motion at pressures of 1 × 10−9 mbar within 12 nm around the node.
For the librational motion, we predict occupation numbers of 𝑛𝛼 = 14, 𝑛𝛽 = 428 and 𝑛𝛾 = 72 × 103.
Since their coupling to the cavity is minimal, with cooperativities less than unity, we do not expect these
modes to reach their ground state. We simulate that they are ground state cooled 40 nm away from the
node.
In conclusion, we performed fundamental measurements and characterizations of the trapped nano-
dumbbells. The experimental setup shows promise for simultaneously achieving six-dimensional cooling
into the quantum regime, along with recording the librational ground state in the near future.

5.1 Quantum interference

The quantum control over the nanoparticle motion opens the door to interference experiments that uncover
their quantum nature. In current state-of-the-art experiments, optically levitated silica nanoparticles with
diameters of 100 nm (108 amu) are delocalized along the 𝑧-axis with a coherence length of approximately
100 nm, exceeding the zero-point fluctuation [42]. This delocalization is achieved by adjusting the trap
potential within pulses synchronized with the particle frequency. By softening the trap, thereby lowering
the restoring force, over the time 𝑡 the delocalization increases. To counteract acquired momentum
gained from stray fields, the trap stiffness is restored for a quarter of the mechanical period, flipping
the orientation in phase space and the sign of the momentum. After a second delocalization period
with the duration 𝑡, the trap is restored again. This results in the state alternating periodically between
delocalization and localization along the 𝑧-axis.
For delocalization beyond the particle extent, rotational interference experiments are suggested.

5.1.1 Quantum state revivals

A proposed method for rotational interference experiments involves quantum state revivals, which are
particularly suitable for levitated aspherical nanoparticles [45]. To achieve this, the particle must be
tightly orientated within the trap. This initial step requires cooling the librational motion below one
Kelvin, but not to its librational ground state. While cooling the CoM motion is not essential, it would
enhance the stability [12] and minimize disturbance arising from the mode coupling. Based on our
simulations, the setup shows promise for realizing this state. If the particle orientation is sufficiently
confined, hundreds to thousands of angular momenta J are occupied in Fourier space. Releasing the
particle by switching off the tweezer laser leads to a free evolution of the orientational state. The time
evolution of the state in the angular momentum basis | 𝑗𝑚 𝑗⟩ is given by

|𝜓(𝑡)⟩ =
∑︁
𝑗 ,𝑚 𝑗

exp
(
−i

ℏ

2𝐼
𝑡 𝑗 ( 𝑗 + 1)

)
| 𝑗𝑚 𝑗⟩, (5.1)
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where 𝐼 denotes the moment of inertia around the rotation axis, which for a dumbbell corresponds to its
long axis. Since the angular quantum number 𝑗 takes only integer values, the state is restored after the
revival time

𝑡rev =
2𝜋𝐼
ℏ
. (5.2)

Hence, the particle returns to its initial orientation after multiples of the revival time. One can measure
this orientation using a probe beam, provided no decoherence effect destroys the delocalization. The
proposal assumes that a single collisional event localizes the particle. For reducing the collisions with
the residual gas, a pressure of 1 × 10−9 mbar is sufficient. Additionally, the particle emits black body
radiation depending on its internal temperature, which suggests the experiment should be conducted
within a cryostat.
For the trapped dumbbells in our experiment, we would expect a revival time of 𝑡rev ≈ 100 min. During
this period, the particle falls in the gravity field approximately 1×106 km. Thus, probing the orientational
revival is only feasible with smaller particles like dumbbells formed of particles with a diameter of
20 nm (1 × 107 amu). The revival time is significantly smaller that the particle falls a few millimeters.
After observing the quantum revival, the particle could be recaptured when switching the trap back on,
allowing the interference experiment to be repeated with the same particle.

5.1.2 Tennis racket flips

Another rotational interference experiment is based on the classical observed tennis racket flips [44, 46].
An elliptical particle feature three different moments of inertia around which the particle could rotate.
While the rotation around the largest and the smallest moment of inertia is stable, the rotation around the
mid-axis is unstable. After a full rotation around the mid-axis, the axis itself undergoes a rotation of
𝜋 [85]. For a classical rotor, aligned for mid-axis rotation the tennis racket flips decay quickly, in fact
their flipping periods for the occupied angular momenta state are widely spread. However, for a quantum
mechanical rotator, the tennis racket flips are preserved and last longer than classically expected. For a
quantum mechanical system, a probability for tunneling between states with opposite angular momentum
exists. With strong support in the region of tunneling, the quantum flips lasts longer than classical. The
tunneling probability can be enhanced by reducing the motional temperature [46]. Therefore, this scheme
also requires millikelvin cooled librational modes and a controlled drive for regulating the rotation
around the mid-axis. After the rotation evolve freely, when switching off the optical fields, one can
probe the mid-axis orientation. Compared to the quantum state revival scheme, this technique requires
free evolution times of a few microseconds and is thus suitable for the particle sizes we currently trap,
rendering the rotational interference experiment doable.
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APPENDIX A

Euler angles

The transformation of the susceptibility tensor from the particle to the laboratory frame is given by
Equation 2.27. For the sake of completeness and transparency of the calculations provided in the main
text, we derive the components of the transformed susceptibility tensor in terms of the Euler angles:

𝜒 =
©«
𝜒11 𝜒12 𝜒13
𝜒12 𝜒22 𝜒23
𝜒13 𝜒23 𝜒33

ª®¬ (A.1)

diagonal terms:

𝜒11 = 𝜒𝑎 (cos(𝛼) cos(𝛽) cos(𝛾) − sin(𝛼) sin(𝛾))2

+ 𝜒𝑏 (cos(𝛼) cos(𝛽) sin(𝛾) + sin(𝛼) cos(𝛾))2

+ 𝜒𝑐 cos(𝛼)2 sin(𝛽)2 (A.2)

𝜒22 = 𝜒𝑎 (sin(𝛼) cos(𝛽) cos(𝛾) + cos(𝛼) sin(𝛾))2

+ 𝜒𝑏 (cos(𝛼) cos(𝛾) − sin(𝛼) cos(𝛽) sin(𝛾))2

+ 𝜒𝑐 sin(𝛼)2 sin(𝛽)2 (A.3)

𝜒33 = 𝜒𝑎 cos(𝛼)2 sin(𝛽)2 + 𝜒𝑏 sin(𝛼)2 sin(𝛽)2 + 𝜒𝑐 cos(𝛽)2 (A.4)

off-diagonal terms:

𝜒12 = 𝜒𝑎 (sin(𝛼) cos(𝛽) cos(𝛾) + cos(𝛼) sin(𝛾))
× (cos(𝛼) cos(𝛽) cos(𝛾) − sin(𝛼) sin(𝛾))
+ 𝜒𝑏 (sin(𝛼) cos(𝛽) sin(𝛾) − cos(𝛼) cos(𝛾))
× (cos(𝛼) cos(𝛽) sin(𝛾) − sin(𝛼) cos(𝛾))
+ 𝜒𝑐 sin(𝛽)2 sin(2𝛼)/2 (A.5)
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𝜒13 = 𝜒𝑎 (sin(𝛼) sin(𝛾) − cos(𝛼) cos(𝛽) cos(𝛾)) cos(𝛾) sin(𝛽)
− 𝜒𝑏 (cos(𝛼) cos(𝛽) sin(𝛾) + sin(𝛼) cos(𝛾)) sin(𝛾) sin(𝛽)
+ 𝜒𝑐 cos(𝛼) sin(2𝛽)/2 (A.6)

𝜒23 = 𝜒𝑎 (sin(𝛼) cos(𝛽) cos(𝛾) + cos(𝛼) sin(𝛾)) (−1) cos(𝛾) sin(𝛽)
+ 𝜒𝑏 (cos(𝛼) cos(𝛾) − sin(𝛼) cos(𝛽) sin(𝛽)) sin(𝛾) sin(𝛽)
+ 𝜒𝑐 sin(𝛼) sin(2𝛽)/2 (A.7)
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APPENDIX B

Scattering properties of small particles

It is of vital importance to study the distinctive scattering behavior of the nanoparticles, as the scattered
light leads to cooling inside the optical cavity. The particle itself is small compared to the light 1 550 nm
wavelength. Therefore, we can simplify the interaction, by assuming that the particle placed within
a homogenous electric field E𝑇 and applying the dipole approximation [47]. For the induced dipole
moment, the relation

p = 𝛼E𝑇 (B.1)

holds, where the polarizability 𝛼 is expressed as 𝜀0𝑉𝜒 (Rayleigh-Gans approximation). The radiated
dipole field from the nanoparticle

Erad(𝜉, 𝑅) =
ei𝑘𝑅

𝑘
2 sin(𝜉)𝑉𝜒
4𝜋𝑅

E𝑇 (B.2)

consists of spherical waves and has an angular dependency 𝜉, with respect to the dipole axis. Thus, the
scattered filed is suppressed along the dipole axis and its maximum when orientated orthogonally to it.
If the incoming tweezer polarization coincide with the cavity axis, light is scattered out off the cavity.
The strongest overlay is achieved when polarizing the light orthogonal to the cavity axis. Furthermore,
the ratio of scattered light populating the cavity is depending on the mode overlap. We can not presume
the particle radiating solely in the TEM00 mode. So we calculate the overlap, where we suppose the
cavity axis along the 𝑥-axis and any radial displacement to be 𝜌. The mode matching 𝛽 value is the
surface integral over radiated and cavity field [62], where we only concern the cavity mode orthogonal to
the tweezer propagation (𝑠 = 2), as the other can not be populated

𝛽 =
2𝑉
𝑤

2
𝑐𝜋

e𝑇 𝜒e2
e𝑇e2

∫ 2𝜋

0
d𝜙

∫ ∞

0
d𝜌𝐸𝑐𝐸𝑇

𝑘
2 sin(𝜉)

4𝜋
ei𝑘

(
𝑥+𝜌2/2𝑥

)
𝑥

=
𝑘𝑉

𝑤
2
𝑐𝜋

e𝑇 𝜒e2
e𝑇e2

sin(𝜉) (B.3)

As described qualitatively, the mode matching is maximal for 𝜉 = 𝜋/2 and vanishes for 𝜉 = 0. Its
absolute value is mainly dependent on the ratio 𝑘𝑉/𝑤2

𝑐. Given that the particle is way smaller than the
wavelength and the cavity waist, the ratio is 1 × 10−6 leading to a mode matching is significantly smaller
than unity. Nevertheless, the particle drives the cavity mode, which electric field becomes

E = i𝛽E𝑇 . (B.4)
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Appendix B Scattering properties of small particles

As a remark we consider the particle sitting in the cavity, such that the electric field is scattered in both
directions in the cavity, consequently, we need to multiply the resulting power by a factor of 2

𝑃scat = 2|𝛽 |2
𝑤

2
𝑐

𝑤𝑥𝑤𝑦

𝑃. (B.5)

Additionally, the cavity enhances the scattered power by 2F/𝜋. Notably, the two mirrors exhibit a similar
high reflectivity, such that (1 − 𝑅)−1 ≈ F/𝜋 holds. The maximum intracavity power for 𝜉 = 𝜋/2 is

𝑃𝑐 =
𝜈FSR

(𝜅/2)2
𝑃𝜔𝑘

2𝜋𝑤𝑥𝑤𝑦𝑉𝑐
𝑉

2
(
(cos(𝜃) cos(𝜓)𝜒𝑐)

2 + (sin(𝜃) sin(𝜓)𝜒𝑏)
2
)

cos(𝜙)2 (B.6)

with the cavity mode dependent on 𝜃. In the calculation, the cavity volume 𝑉𝑐 = 𝜋𝐿𝑤
2
𝑐/4 is introduced.

Furthermore, the optical power is converted in the photon number

𝑛 =
𝑃

ℏ𝜔𝜈FSR
, (B.7)

which yields the same result as obtained in Equation 4.74 without considering the detuning.
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APPENDIX C

Additional cooling results

While cooling the nanoparticle motion using coherent scattering cooling, we observe characteristic
effects accompanying the cooling results from the main text in Section 4.7. Here, we investigate how
the tweezer polarization influences the translational cooling and analyze neglected quadratic effects
deforming the tweezer trapping potential

C.1 Polarization dependent cooling

We can adjust the cooling strength of the translational 𝑥- and 𝑦-mode by rotating the polarization. As the
coupling strength depends on the polarization orientation with respect to the cavity, we can calibrate
the used half and quarter waveplates. At 𝑝 = 1 × 10−3 mbar we rotate the polarization, maximizing
the cooling for the 𝑥-mode. As shown in the forward detection spectrum in Figure C.1 the 𝑥-peak at
Ω𝑥 = 2𝜋 × 123 kHz vanishes for 𝜃 = 𝜋/2, while the 𝑦-peak is less cooled at Ω𝑦 = 2𝜋 × 110 kHz. As the
curve shaped deviates from the Lorentzian shaped fit, we conclude that the amplitude of the oscillation is
still large enough to encounter non-linear trapping regions. When rotating the polarization by 𝜋/2 that
𝜃 = 0 we observe the 𝑦-mode being cooled while the 𝑥-motion is heated. The frequency change of the
mode is caused by the change in coupling. The effect is also visible for the 𝑧-motion. C.1
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Figure C.1: Recorded traces at 1 × 10−3 mbar with a tweezer polarization orthogonal to the cavity axis (𝜃 = 0) and
along the axis (𝜃 = 𝜋/2)
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Appendix C Additional cooling results

C.2 Effective motional frequency

In the theoretical analysis of coherent scattering cooling (cf. Section 4.3), we linearized the mode
functions of the cavity and the tweezer to calculate the motional couplings. Thus, we omit quadratic
terms arising from the cavity that influence the trapping potential. We derive these effects for the
translational motion by extending Equation 4.25 to the second order

𝑓𝑐 (r) ≈ cos(𝜙) + sin(𝜙)𝑘 (𝑥 sin(𝜃) + 𝑦 cos(𝜃)) − 1
2

cos(𝜙)𝑘2(𝑥 sin(𝜃) + 𝑦 cos(𝜃))2 + O(𝑞3). (C.1)

From inserting the second order terms in Equation 4.43 we derive the quadratic coupling terms

G𝑥 = −1
2
𝐺2𝑥𝑘 sin(𝜃) cos(𝜙)2

sin(𝜙) 𝑥zpf, (C.2)

G𝑦 = −1
2
𝐺2𝑦𝑘 cos(𝜃) cos(𝜙)2

sin(𝜙) 𝑦zpf, (C.3)

G𝑧 = −1
2
𝐺2𝑥

(
𝑘 − 1

𝑧𝑟

)
𝑧zpf. (C.4)

We continue by adding the coupling Hamiltonian

𝐻

ℏ
= −
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(C.5)

to the total interaction Hamiltonian in Equation 4.66. After displacing the cavity operators 4.68 we
combine the terms proportional to �̂�†𝑞 �̂�𝑞. Thus, the motional frequency is modified, which absolute
value we calculate by solving the equations of motion

Ω𝑞,eff(𝜔) =

√√√√√√
Ω

2
𝑞 −

4Ω𝑞Δeff𝜅 |𝐺𝑠𝑞 |
2
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Δ

2
eff − 𝜔2 + 𝜅2/4

)( (
𝜔 + Δeff

)2 + 𝜅2/4
) ( (

𝜔 − Δeff
)2 + 𝜅2/4

) . (C.6)

The motional frequency of a trapped particle is influenced by the cavity coupling, its transmission function
and its detuning. We observe during coherent scattering cooling the motional frequency in dependence
of the pressure as shown in Figure C.2. We attribute the linear increase with decreasing pressure to
the change in detuning. With decreasing pressure, the refractive index and thus the cavity resonance
changes. The effective detuning thus decreases as well and lead to a small frequency increase. In the
pressure range between 0.1 mbar and 1 × 10−4 mbar the frequencies change by 1.8 %. At 1 × 10−4 mbar
we change the position along the cavity axis towards the node, thereby, the coupling rates of the 𝑥- and
𝑦-mode increase. This results in a decrease of the frequency. The effect is similarly visible for the
𝑦-mode, also it is weaker due to the overall smaller coupling. For the 𝑧-motion, the coupling around the
node becomes weaker and therefore the motional frequency increases further.
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C.3 Particle jittering
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Figure C.2: The motional frequency depends on the cavity parameters. While cooling the motion and simultaneously
transferring the particle to high vacuum, the particle frequency increases. The frequency for each mode is normalized
to the measured frequency Ω0 in absence of the cavity. For pressures below 𝑝 = 1 × 10−4 mbar (marked in blue)
the particle is shifted towards the node, leading to a change in the coupling constants.

C.3 Particle jittering

Placing the particle at the node of the cavity standing wave is limited by external noise sources. Here, we
investigate their origin. As stated in the main, the particle fluctuates within 6.5 nm around the node (cf.
Figure 4.10). We find, that the noise sources are in a low frequency range. In our experimental setup,
we use a flowbox to protect the sensitive optics from dust and carry away the heat from the electrical
components and the laser. When switching it off, we observe the fluctuations decreasing. Furthermore,
the bellow damping the motion of our turbopump has a resonance frequency at lower frequencies. By
holding a hand on the bellow, thereby damping it, the displacement noise reduces further. We record
in Figure C.3 the improved positional displacement noise. The mean displacement is reduced to 4 nm.
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Figure C.3: Measurement of the particle jittering around the node, without disturbance from the flowbox and a
manually damping of the bellow. In the noise spectrum, the peaks at 20 Hz and 75 Hz are suppressed, thus that the
mean displacement reduces to ±4 nm
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Appendix C Additional cooling results

Although this is an improvement, it is above the minimal resolution of our translation stage (1 nm). This
might arise from its operation mode. In fact, the pressure decrease influence we need to adjust the
position during pumping. Therefore, we apply a voltage to the motor, moving the particle to the desired
position, the stage then automatically adjusts for drifts by varying the voltage around the set offset. This
correction is less precise when the voltage level is not set to zero. Thus, for minimizing the displacement
noise, we should place the particle and set the voltage back to zero, before performing measurements.
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2.1 Transformation of the tweezer frame (red) to the particle fixed frame (black). The
rotations are described by the Euler angles 𝛼, 𝛽, 𝛾 in the 𝑧-𝑦′-𝑧′′ convention. . . . . . . 7

3.1 Schematic drawing of the employed optical setup feasible for launching silica nano-
particles directly in itermediate vacuum. For trapping the particles, we use a 1 550 nm
laser from NKT with a small linewidth. As the mode profile after the amplifier is not
Gaussian, the mode cleaning fiber (MCF) restores the profile. In a vacuum chamber
capable to reach a minimal pressure around 10−9 mbar nanoparticles are loaded in the
trap. A green 𝜆 = 532 nm laser is focused on the backside of a sample coated with
nanoparticles. The laser waist is approximately 200 µm. The trap is manipulated by
regulating the power using the half-wave plate and polarizing beam splitter (PBS), as well
as adjusting the polarization with the combination of a half-wave and quarter-wave plate
positioned after the MCF. Light scattered from the particle is collected and collimated in
forward direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Detection of the particle motion in forward scattered light. The detection scheme consists
of two parts, a rotational detection; particularly sensitive to the 𝛼-libration and rotation
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𝑧-detection, we additionally focus the beam to match the active area. . . . . . . . . . . 14

3.3 Scanning electron microscope image of a used sample coated with spherical nanoparticles,
each with a nominal diameter of 156 nm. We observe beside single particles, dumbbells,
triangle trimer and chain trimer. The particles are randomly distributed . . . . . . . . . 17

3.4 Motional spectrum of a trapped nano-dumbbell at 𝑝 = 10 mbar. We observe the
three translational peaks in their respective detection, as well as the 𝛽-libration in
the 𝑥-detection. The 𝛼-libration is visible in the rotational detection. The trap
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{38, 113, 120, 315, 378}kHz for {𝑧, 𝑦, 𝑥, 𝛼, 𝛽} respectively. . . . . . . . . . . . . . . . 18

3.5 a) Sketch of a nano-dumbbell in the particle (black) and in the laboratory/tweezer frame
(red), where the tweezer propagates along the 𝑧-direction. Both frames are rotated
by 90◦ when the particle is deeply trapped. The Euler angles indicate the librations
around their corresponding rotation axis. b) Model of an elliptical particle with the
semi-axis 𝑟𝑎, 𝑟𝑏, 𝑟𝑐. This shape serves as a ficitive particle for the trapped anisotropic
nano-dumbbells, exhibiting the same optical response. . . . . . . . . . . . . . . . . . 19
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3.6 Measured damping ratios of one particle at different times. The estimated damping
errors are too small to be visible. The shaded area represents the standard deviation to
the mean fat lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.7 Scanning electron microscope image of a nano-dumbbell. The shape is fitted with an
elliptic contour to estimate its long and short axis. Based on the fit, the nano-dumbbell
is formed by two 156 nm spheres sticking together. The stripes in the image are caused
by a high scanning speed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.8 Librational frequency of the 𝛼- and 𝛽-libration in dependence of the tweezer ellipticity.
The half- and quarter-waveplate are set such that the 𝑥- and 𝑦-peak overlap, achieving
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dependency Ω𝛼 ∝
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cos(2𝜓) and Ω𝛽 ∝ cos(𝜓). . . . . . . . . . . . . . . . . . . . . . 22
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particle shape determination. The dotted line represents the theoretical prediction for
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3.10 Formation of hybrid modes (𝜔+, 𝜔-) in the 𝛼- and 𝛽-libration at 𝑝 = 0.4 mbar indicating
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recorded in the rotational detection scheme and for 𝛽 in the 𝑥-detection scheme. . . . . 24

3.11 Spectrogram of the rotational detection at 5 × 10−2 mbar revealing the behavior of the
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4.2 The cavity is placed orthogonal to the tweezer propagation direction. The trapping
center and cavity center overlay. For positioning the particle along the standing wave,
the tweezer lens is mounted to a motorized translation stage from SmarAct, capable
to operate at high-vacuum. The cavity is locked with ∼ 600 µW optical power. To
shift the frequency by a free spectral range, the acousto-optical modulator (AOM) and
electro-optical modulator (EOM) are incorporated. The EOM additionally imprints the
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4.11 Coupling ratio of the tweezer cavity coupling and the total coupling as a function of
the cavity detuning. The contribution of the cavity-cavity interaction is significantly at
small detuning, in fact it scales with the photon number, which is indeed maximal for
Δ = 0. At detunings the experiment is typically operated with Δ ≥ 2𝜋 × 100 kHz, |𝛾∗2𝑔 |

2

is negligible, since the ratio yields 𝐺2/(𝐺 + 𝛾∗2𝑔)
2 ≥ 0.99. Note that 𝑔 is maximized by

choosing a position between node and anti-node. . . . . . . . . . . . . . . . . . . . . 50
4.12 Normalized linear coupling between the translational motions and the cavity polarization

mode 𝑠 = 2. The coupling strengths 𝐺2
2𝑧 and 𝐺2

2𝑥 are out of phase by 𝜋/2 meaning
the coupling exhibit strongest at the node for the 𝑥-motion while for the 𝑧-motion the
coupling is maximal at the anti-node. The data is acquired at 10 mbar with 600 kHz
detuning, so no cooling effects the measurement. The cavity is scanned in 20 nm steps
and the heterodyne detection recorded. . . . . . . . . . . . . . . . . . . . . . . . . . . 51
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tends to zero, but simultaneously the third harmonic of the 𝑧-motion arises leading
to a disturbance around the anti-node. The effect is visible between the black bars
and hence for the determination of 𝜃 neglected. The polarization is determined to be
(𝜃 = 0.327 ± 0.008)𝜋, with the blue area indicating the error estimation. . . . . . . . 52
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4.18 Setup to reduce the phase noise. An EOM is incorporated directly after the laser to
compensate the phase noise. After the amplifier, the splits to interfere in an unbalanced
Mach-Zehnder interferometer. One part of the light is delayed by a 100 m fiber line. The
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