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Abstract
We introduce two families of generators (functions) G that consist of entire and mero-
morphic functions enjoying a certain periodicity property and contain the classical
Gaussian and hyperbolic secant generators. Sharp results are proved on the density
of separated sets that provide non-uniform sampling for the shift-invariant and quasi
shift-invariant spaces generated by elements of these families. As an application, new
sharp results are obtained on the density of semi-regular lattices for the Gabor frames
generated by elements from these families.
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1 Introduction andmain results

A countable set � ⊂ R is called separated if

inf
γ,γ ′∈�,γ �=γ ′ |γ − γ ′| > 0.
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A. Ulanovskii, I. Zlotnikov

Given a generator (function) G with a "reasonably fast" decay at ±∞ and a number
p, 1 ≤ p ≤ ∞, the shift-invariant space V p

Z
(G) consists of all functions f of the form

f (x) =
∑

n∈Z
cnG(x − n), {cn} ∈ l p(Z).

More generally, given a separated set � ⊂ R, the quasi shift-invariant space V p
� (G)

consists of all functions of the form

f (x) =
∑

γ∈�

cγG(x − γ ), {cγ } ∈ l p(�).

An important class of generators is the Wiener amalgam space W0, which consists
of measurable functions G : R → C, satisfying

‖G‖W :=
∑

k∈Z
‖G‖L∞(k,k+1) < ∞. (1.1)

Shift-invariant and quasi shift-invariant spaces have important applications inmath-
ematics and engineering, in particular since they are often used as models for spaces
of signals and images. It is also well known that there is a close connection between
the Gabor frames and sampling sets for the shift-invariant spaces.

A classical example is the Paley–Wiener space PW 2
π which is exactly the shift-

invariant space V 2
Z
(G) generated by the sinc function G(x) = sin(πx)/(πx). The

remarkable result in digital signal processing is the Shannon–Whittaker–Kotelnikov
sampling theorem that states that every f ∈ PW 2

π can be reconstructed from its values
at the integers:

f (x) =
∑

n∈Z
f (n) sinc(x − n).

This implies that the set of integers Z is a stable sampling set for PW 2
π .

The theory of shift-invariant spaces is by now well developed and a number of
sampling theorems are proved for various generators. Due to the mentioned relation
between Gabor frames and sampling in shift-invariant spaces, certain sampling theo-
rems are available for

• B-splines, see [1, 12],
• Hermite functions, see [6, 7, 23],
• Truncated and symmetric exponential functions, see [15, 16],
• Gaussian kernel (see [22, 24–28]), hyperbolic secant (see [17] and a very recent
paper [2]), and, more generally, totally positive functions, see [9, 11],

• Rational functions, see [3, 4].

The sampling problem for quasi shift-invariant spaces is significantly more com-
plicated and results are scarcer. For the totally positive generators G of finite type, a
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Sampling in quasi shift-invariant spaces...

sufficient condition for stable sampling in terms of covering (or maximum gap1) for a
quasi shift-invariant space was obtained in [11, Theorems 2 and 16]. The approach in
this paper was based on an application of Schoenberg and Whitney’s characterization
of the invertibility of a pre-Gramian matrix generated by a totally positive function of
finite type.

In this paper, we introduce two families of generators. Using complex-analytic
methods, we prove sharp results on the density of sampling sets for the corresponding
shift-invariant and quasi shift-invariant spaces. As an application, we obtain new sharp
results on the density of semi-regular lattices for the Gabor frames with generators
from these families.

1.1 Sampling sets and Beurling densities

A separated set � ⊂ R is called a (stable) sampling set for V p
� (G) if the following

sampling inequalities

A‖ f ‖p
p ≤

∑

λ∈�

| f (λ)|p ≤ B‖ f ‖p
p, 1 ≤ p < ∞,

‖ f ‖∞ ≤ K sup
λ∈�

| f (λ)|, p = ∞,

hold true with some positive constants A, B, K and for every f ∈ V p
� (G).

The lower and upper uniform densities of a separated set � (sometimes called the
Beurling densities) are defined by

D−(�) := lim
R→∞ inf

x∈R
#(� ∩ [x − R, x + R])

2R
, (1.2)

D+(�) := lim
R→∞ sup

x∈R
#(� ∩ [x − R, x + R])

2R
. (1.3)

These densities play a key role in the study of sampling and interpolation sets.
Throughout the paper, � denotes a separated set of translates. To avoid trivial

remarks, in what follows we always assume that� is relatively dense, i.e. D−(�) > 0.
We will now introduce two classes of generators.

1.2 ClassK(˛)

Given a number α > 0 and a rational functionR = P/Q, we consider 2π i/α-periodic
generator

G(z) = R(eαz) = P(eαz)

Q(eαz)
. (1.4)

1 See also a more general condition (Cr (ε)) in Theorem 16 in [11].
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Definition 1.1 We denote byK(α) the class of all generators G defined in (1.4) where
P and Q are non-trivial complex polynomials without common zeros and satisfying
the following three conditions:

(A) 1 ≤ deg P < deg Q;
(B) P(0) = 0;
(C) Q(x) �= 0, x ≥ 0.

One may check that conditions (A) − (C) above are necessary and sufficient for
the generator G defined in (1.4) to be integrable onR, and that these conditions imply

|G(x)| ≤ C exp{−α|x |}, x ∈ R, (1.5)

where C = C(R) is a constant. Hence every G ∈ K has exponential decay at ±∞.

Note that the classical hyperbolic secant generator belongs to K(1), since it is of
the form (1.4), where α = 1 and R(z) = z/(1 + z2).

Observe that for every rational function R one may find the largest integer k such
that

R(e2π i/k z) = cR(z), z ∈ C,

where c is a constant. For example,

• ifR(z) = z/(1 + z2), then k = 2 and c = −1;
• ifR(z) = z/(1 + z4), then k = 4 and c = i ;
• ifR(z) = z/(1 + z)2, then k = 1 and c = 1.

Then, clearly, the generatorG defined in (1.4) satisfiesG(z+2π i/kα) = c G(z), z ∈
C.

Definition 1.2 Assume G is defined in (1.4).
(i) We denote by k(G) is the greatest integer k such that the equality

G(z + 2π i/kα) = cG(z), z ∈ C, (1.6)

holds with some constant c ∈ C.
(i i) We set q(G) =deg Q, where Q is the denominator in (1.4).

1.3 Class C(˛)

Definition 1.3 We denote by C(α) the class of all generators G defined by

G(z) = e−αz2/2R(eαz) = e−αz2/2 P(eαz)

Q(eαz)
, (1.7)

where α > 0, P, Q are non-trivial complex polynomials without common zeros and
Q(x) �= 0, x ≥ 0. Again, we set q(G) =deg Q, where Q is the denominator in (1.7).
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Clearly, the assumption Q(x) �= 0, x ≥ 0, is necessary and sufficient for a generator
G defined in (1.7) to be bounded on R. Moreover, every such G has "Gaussian decay"
at ±∞.

The case P = Q ≡ 1 corresponds to the classical case of Gaussian generator
and has been studied previously in [24] and [28]. The results below hold true for this
particular case.

Note that all generators from K(α) and C(α) defined in (1.4) and (1.7) belong to
the Wiener amalgam space W0 defined in (1.1).

Remark 1.4 One may extend the definition of classes K(α) and C(α) by considering
complex parameter α satisfying Re α > 0 and prove similar results.

1.4 Stability of 0-shifts

Given a generator G, a basic property of quasi shift-invariant space V p
� (G) is that the

�-shifts of G are l p-stable, i.e. there exist positive constants C1 and C2 such that

C1‖c‖p ≤
∥∥∥∥∥∥

∑

γ∈�

cγG( · − γ )

∥∥∥∥∥∥
p

≤ C2‖c‖p, for every c = {cγ } ∈ l p(�). (1.8)

This property implies that V p
� (G) is a closed subspace of L p(R) and that the system

{G( · − γ )}γ∈� forms an unconditional basis in this space.
The stability property of Z-shifts is well-studied. The following is an immediate

corollary of Theorem 3.5 in [18]:

Lemma 1.5 AssumeG ∈ W0 and p ∈ [1,∞]. Then the integer-shifts ofG are l p-stable
if and only if the Fourier transform Ĝ of G satisfies

Ĝ does not vanish on any set Z + b, 0 ≤ b < 1. (1.9)

Throughout the paper, we consider the standard form of Fourier transform,

Ĝ(t) :=
∫

R

e−2π i xtG(x) dx .

We also mention paper [13], which proves the l2-stability of �-shifts for certain
generators G under the condition that � is a complete interpolating sequence for the
Paley–Wiener space PW 2

π .
We would like to get conditions on � and G that imply property (1.8) for every

value of p ∈ [1,∞]. In fact, the right hand-side inequality in (1.8) is true for every
separated set �, every generator G ∈ W0 and every p ∈ [1,∞], see Lemma 8.1 below.
On the other hand, under a mild additional condition on the generator, it suffices to
check that the left hand-side inequality is true for p = ∞:

Theorem 1.6 Let � be a separated set and G ∈ W0 ∩ C(R). If the left hand-side
inequality in (1.8) is true for p = ∞, then it is true for every p ∈ [1,∞].
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In what follows, we will say that �-shifts of G are stable, if they are l p-stable, for
every p ∈ [1,∞].

Let us now recall Beurling’s notion of the weak limit of a sequence of sets. A
sequence {�(n) : n ∈ N} of separated subsets of R is said to converge weakly to a
separated set � ⊂ R, if for every R > 0 and ε > 0, there exists nε,R ∈ N such that
for all n ≥ nε,R we have

�(n) ∩ (−R, R) ⊂ � + (−ε, ε) and � ∩ (−R, R) ⊂ �(n) + (−ε, ε).

Given a separated and relatively dense set � ⊂ R, it is easy to check that every real
sequence {s j } contains a subsequence {s jn } such that the translates � + s jn converge
weakly to some separated relatively dense set �′ as n → ∞. Let W (�) denote the
collection of all such weak limits. It is well-known (and easy to check) that

D−(�′) ≥ D−(�) and D+(�′) ≤ D+(�), for every �′ ∈ W (�). (1.10)

As a simple example, we observe that

The set W (Z) consists of all sets Z + a, a ∈ [0, 1). (1.11)

We will now formulate some sufficient conditions for the stability of �-shifts for
the generators from the familiesK(α) and C(α) defined above. These will be given in
terms of the set � and the poles w j of the rational function R in (1.4) and (1.7).

Denote by d(w j ) the order of the pole w j and set d := max
j

d(b j ). Let pold(R)

denote the set of poles of R of order d.

We will consider the following assumptions:

(
′) The set pold(R) consists precisely of one element;
(
′′) For every �′ ∈ W (�) there exists w ∈ pold(R) and γ ′ ∈ �′ such that

log(w) − log(w′) /∈ α(�′ − γ ′) for any w′ ∈ pold(R), w �= w′. (1.12)

When � = Z, it follows easily from (1.11) that (1.12) is equivalent to the simpler
condition

(
′′′) log(w) − log(w′) /∈ αZ, for every w′ ∈ pold(R), w �= w′.

Proposition 1.7 (i) If G ∈ C(α) satisfies either (
′) or (
′′′), then Z-shifts of G are
stable.

(ii) If G ∈ K(α) satisfies either (
′) or (
′′), then �-shifts of G are stable.

1.5 Sampling for generators fromK(˛) and C(˛)

Our first sampling theorem concerns the class of generators K(α).
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Theorem 1.8 Given a generator G ∈ K(α), α > 0, and two separated sets �,� ⊂ R.
Assume that �-shifts of G are stable and that

D−(�) >
q(G)

k(G)
D+(�). (1.13)

Then � is a sampling set for V p
� (G), for every p ∈ [1,∞].

Recall that the numbers q(G) and k(G) are defined in Definition 1.2.

Remark 1.9 Note that condition (1.13) is independent of parameter α. However, above
we assume the stability of �-shifts. This property can be violated for certain values of
α.

Let

H(x) := ex

e2x + 1
∈ K(1) (1.14)

denote the hyperbolic secant generator. Consider the family of all finite linear combi-
nations

G(x) =
N∑

j=1

a jH(x − b j ) =
N∑

j=1

a j e
b j

ex

e2x + e2b j
∈ K(1), a j ∈ C, e2b j /∈ (−∞, 0).

(1.15)

Clearly, everyG in (1.15) satisfies k(G) = 2 and q(G) = 2N .Assuming the stability of
Z-shifts of G, Theorem 1.8 implies that every separated set � satisfying D−(�) > N
is a sampling set for V p

Z
(G), 1 ≤ p ≤ ∞. This result is sharp:

Theorem 1.10 For every N ≥ 2 there exist a j ∈ R, b j > 0, j = 1, . . . , N , and
a separated set �, D−(�) = N , such that the generator G(z) in (1.15) has stable
Z-shifts and � is not a uniqueness set for V∞

Z
(G).

Recall that a set� is not a uniqueness set for V∞
Z

(G) if there is a non-trivial function
f ∈ V∞

Z
(G) which vanishes on �. Then, clearly, � is not a sampling set for V∞

Z
(G).

For the generators G from the class C(α) we consider the integer shifts only. Our
main sampling theorem for the shift-invariant space V 2

Z
(G) is as follows.

Theorem 1.11 (i) Assume a generator G ∈ C(α) has stable Z-shifts. If a separated
set � ⊂ R satisfies

D−(�) > q(G) + 1, (1.16)

then � is a sampling set for V p
Z

(G).
(ii) For every N ∈ N there exist a generator G ∈ C(α) with stable Z-shifts and

q(G) = N , and a separated set � satisfying D−(�) = q(G) + 1, such that � is
not a uniqueness set for V∞

Z
(G).
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1.6 Interpolating sets for quasi shift-invariant spaces

If for every c = {cγ } ∈ l p(�) there is a function f ∈ V p
� (G) such that f (λ) = cλ, λ ∈

�, then � is called a set of interpolation for V p
� (G).

The duality between interpolation and sampling is well-known, see e.g. the discus-
sion in [9]. The following corollary follows from Theorem 1.8:

Corollary 1.12 Assume that �,� and G satisfy assumptions of Theorem 1.8. Then �

is an interpolation set for V p
�(G), for every 1 ≤ p ≤ ∞.

See the proof in Sect. 6.

1.7 Gabor frames

Our results for the Gabor frames follow from the sampling theorems formulated
above. We use the connection between Gabor frames and sampling theorems for
shift-invariant spaces that previously turned out to be very fruitful, see e.g. [9, 11],
and [26] for a multi-dimensional setting.

Fix the standard notation for the operators of translation and modulation:

Mξ f = e2π iξ · f and Tλ f = f ( · − λ), where f ∈ L2(R), (λ, ξ) ∈ R
2.

Let �,� be separated real sets. For a generator G the Gabor system G(G,�×�)

is the collection of all time-frequency shifts

G(G,� × �) := {MξTλG, (λ, ξ) ∈ � × �}. (1.17)

The system G(G,� × �) forms a frame in L2(R) if there exist finite positive
constants A, B such that

A‖ f ‖22 ≤
∑

(λ,ξ)∈�×�

|〈 f , MξTλG〉|2 ≤ B‖ f ‖22,

for every f ∈ L2(R).

For the Gabor systems with generators from the families K(α) and C(α), we study
the case of semi-regular lattices, i.e. � = Z. Our main result is as follows

Theorem 1.13 (i) Assume the Fourier transform Ĝ of a generator G ∈ K(α), α > 0,
satisfies (1.9). If a separated set � ⊂ R satisfies D−(�) > q(G)/k(G), then the
system G(G,� × Z) is a frame in L2(R).

(ii) There exist a generator G ∈ K(α), α > 0, satisfying (1.9) and a separated set
� with the critical density D−(�) = q(G)/k(G) such that G(G,� × Z) is not a
frame in L2(R).

(iii) Assume a generator G ∈ C(α), α > 0, satisfies (1.9). If a separated set � satisfies
D−(�) > q(G) + 1, then the system G(G,� × Z) is a frame in L2(R).

(iv) There exist a generator G ∈ C(α), α > 0, satisfying (1.9) and a separated set �

with the critical density D−(�) = q(G)+ 1 such that G(G,�×Z) is not a frame
in L2(R).
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1.8 Structure of the paper

The paper is organized as follows. In Sect. 2 we fix notations and formulate several
known results. In Sect. 3 we study stability of �-shifts and Z-shifts for the generators
from K(α) and C(α). The uniqueness sets for the corresponding shift-invariant and
quasi shift-invariant spaces are studied in Sect. 4. In Sect. 5 we present examples of
functions that vanish on certain sets of critical density. Combining results of Sect. 4 and
Sect. 5 and using the classical technique due to Beurling, we prove the sampling and
interpolation theorems (Theorems 1.8, 1.10, 1.11, and Corollary 1.12) in Sect. 6. The
results for Gabor frames are proved in Sect. 7. Finally, in Sect. 8we prove Theorem 1.6.

2 Preliminaries

Throughout the paper, by C we always denote positive constants. The notation 1S
stands for the indicator function of the set S.

Given a meromorphic function f (z), z ∈ C, denote by

Zer( f ) = {z ∈ C : f (z) = 0}

and Pol ( f ) the multisets of zeros and poles of f , i.e. each element is counted with its
multiplicity. The notations zer( f ) and pol( f ) will stand for the set of zeros and poles
of f , i.e. the elements of these sets are pairwise distinct.

The next lemma is a simplified version of PropositionA.1 in [8], see also Lemma7.5
in [9].

Lemma 2.1 Let � and � be separated sets inR. Let A ∈ C
�×� be a matrix such that

|Aλ,γ | ≤ θ(λ − γ ) λ ∈ �, γ ∈ � for some θ ∈ W0.

Assume that there exist a p0 ∈ [1,∞] and C0 > 0, such that

‖Ac‖p0 ≥ C0‖c‖p0 for all c ∈ l p0(�).

Then there exists a constant C > 0 independent of q such that, for all q ∈ [1,∞]

‖Ac‖q ≥ C‖c‖q , for all c ∈ lq(�).

Remark 2.2 [See Remark 8.2 in [8]] The constant C in Lemma 2.1 depends only on
the decay properties of the envelope θ , the lower bound for the given value of p0, and
on upper bounds for the relative separation of the index sets.

To connect sampling in shift-invariant spaces withGabor frames, we use the follow-
ing lemma which is a particular case of a well-known result, see e.g. [9, Theorem 2.3].

Lemma 2.3 Let � ⊂ R be a separated set, and G ∈ C(α) ∪ K(α). The following are
equivalent:
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(i) The family G(G,−� × Z) is a frame for L2(R).
(ii) For every x ∈ [0, 1) the set � + x is a sampling set for V 2

Z
(G).

3 Stability of 0-shifts

In this section, we prove Proposition 1.7 and present examples of generators G from
K(α) and C(α) that do not have stable shifts.

Below we will need

Lemma 3.1 Given a generator G ∈ W0 and a separate set �. If the left hand-side
inequality in (1.8) is not true, then there is a set�′ ∈ W (�) and non-trivial coefficients
c = {cγ ′ } ∈ l∞(�′) such that

∑

�′
cγ ′G(x − γ ′) ≡ 0.

Remark 3.2 Observe without proof that the converse statement is also true: If the last
equality holds for some �′ ∈ W (�) and non-trivial {cγ ′ }, then the left hand-side
inequality in (1.8) is not true.

Observe that somewhat similar results are known, see e.g. Theorem 2.1 (c) in [9].

Proof The proof below uses the (by now) standard Beurling’s technique based on
passing to a weak limit of translates of the set �.

Write � = {... < γ j < γ j+1 < ... : j ∈ Z}. Since �-shifts of G are not l∞-stable,
for every N ∈ N there is a bounded sequence c(N ) = {c j (N ) : j ∈ Z} such that
‖c(N )‖∞ = 1, and

∥∥∥∥∥∥

∑

j∈Z
c j (N )G(x − γ j )

∥∥∥∥∥∥∞
< 1/N .

Choose any k = k(N ) ∈ Z such that |ck(N )| > 1/2, and set �(N ) := � − γN ,

d j (N ) := ck+ j (N ). Then 0 ∈ �(N ) and |d0(N )| > 1/2. Clearly, ‖{d j (N ) : j ∈
Z}‖∞ = 1 and

∥∥∥∥∥∥

∑

j∈Z
d j (N )G(x − γk+ j )

∥∥∥∥∥∥∞
< 1/N .

Now, passing to a subsequence, we may assume that �(N ) converges weakly to
some separated set �′ := {γ ′

j : j ∈ Z} ∈ W (�) which contains the origin, and the
sequence {d j (N ) : j ∈ Z} converges for every j to a bounded non-trivial sequence
c = {c j : j ∈ Z} as N → ∞. One can easily check that we have

∑

j∈Z
c jG(x − γ ′

j ) ≡ 0,

which proves the lemma. ��
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3.1 Stability ofZ-shifts for generators in C(˛)

Proof of Proposition 1.7, (i) The proof is by contradiction. We assume that one of the
assumptions (
′) or (
′′′) is satisfied, but the Z-shifts of G ∈ C(α) are not l∞-stable.
Then, by Lemma 3.1 and (1.11), we find a sequence c = {cn} ∈ l∞(Z) such that

f (x) :=
∑

n∈Z
cnG(x − n) = e−αx2/2

∑

n∈Z
cne

−αn2/2eαxnR(eα(x−n)) ≡ 0. (3.1)

Set w = eαx . Then

h(w) :=
∑

n∈Z
cne

−αn2/2wnR(we−αn) ≡ 0. (3.2)

Let w1, ..., wm be the poles of R, d(w j ) the order of w j and let pold(R) denote
the set of poles of R of maximal order. Clearly, R(we−αn) has poles at w j eαn, j =
1, ...,m. We may assume that d(w1) = d. There are two possibilities:

First, assume that (
′) is true, i.e. d(w j ) < d, j = 2, ...,m. Then clearly, the
function h has pole of order d at each point w1eαn, n ∈ Z, which contradicts (3.2).

Second, assume that (
′′′) is satisfied: there are k poles whose order is equal to
d, say d(w j ) = d, j = 1, ..., k. If log(w1/w j ) /∈ αZ, for all 2 ≤ j ≤ k, then
w1 �= w j eαn, n ∈ Z, and so the function h has a pole of order d at w1 (and also at
every point w1eαn, n ∈ Z), which again contradicts (3.2). This finishes the proof.

We now present an example of generator from C(1) whose Z-shifts are not stable.

Example 3.3 Set

H(z) := U (z)e−z2/2 :=
(
A + e−1/2

ez−i − 1
− ei

ez−1−i − 1

)
e−z2/2, (3.3)

where A is a constant chosen such that

∞∫

−∞
H(x) dx = 0. (3.4)

Clearly, H(z) ∈ C(1) (see definition (1.7)) and both assumption (
′) and (
′′′) do
not hold.

Let us show that the function f ∈ V∞
Z

(H) defined by

f (x) :=
∑

n∈Z
H(x − n)

vanishes identically. Since f is 1-periodic, it suffices to prove that its Fourier coeffi-
cients vanish:
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Lemma 3.4 We have

Ĥ(n) = 0, n ∈ Z. (3.5)

Proof Our goal is to show that

0 = Ĥ(n) =
∞∫

−∞
U (x)e−x2/2e−2π inx dx = 0, n ∈ Z.

Clearly,

Ĥ(n) = e−2π2n2 In, In :=
∫ ∞

−∞
e−(x+2π in)2/2U (x) dx .

Therefore, it suffices to prove that In = 0, n ∈ Z.

The proof is by induction. By (3.4), we have I0 = 0. Assume that In = 0 for
|n| ≤ k, k ≥ 0. We will show that Ik+1 = 0 (the proof of I−k−1 = 0 is similar).

Let us integrate e−(z+2π ik)2/2U (z) over the boundary of rectangle {z = x + iy :
|x | ≤ R, 0 ≤ y ≤ 2π} (integration is in positive direction with respect to the rectan-
gle), and then let R → ∞. It is clear that the integrals over the sides parallel to the
imaginary axis tend to 0 as R → ∞. The integral over the bottom side of the rectangle
tends to 0, since Ik = 0. Since the function U (z) is 2π i-periodic, the integral over
the upper side tends to −Ik+1 as R → ∞. Applying Cauchy’s residue theorem, we
obtain

−Ik+1 = 2π i

(
Res
z=i

e−(z+2π ik)2/2U (z) + Res
z=1+i

e−(z+2π ik)2/2U (z)

)
.

Finally, from

Resz=i e
−(z+2π ik)2/2U (z) = e−(i+2π ik)2/2−1/2 = e2πk+2π2k2 ,

Resz=1+i e
−(z+2π ik)2/2U (z) = −e−(1+i+2π ik)2/2+i = −e2πk+2π2k2 ,

we conclude that Ik+1 = 0, which finishes the proof. ��
Observe that by Lemma 1.5, Z-shifts of the generator H defined in (3.3) are not

l p-stable for every p ∈ [1,∞].

3.2 Stability in Vp0(g)

Let us now finish the proof of Proposition 1.7.

Proof of Proposition 1.7, (i i) The proof is by contradiction and it is similar to the one
above, and we will use the same notations.
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Assuming that �-shifts are not l∞-stable, by Lemma 3.1 we get a set �′ ∈ W (�)

and coefficients c ∈ l∞(�′) such that

h(w) :=
∑

γ ′∈�′
cγ ′R(we−αγ ′

) ≡ 0. (3.6)

Let w1 be the pole of R of the maximal order d.
If condition (
′) is satisfied then h has a pole at each point w1e−αγ ′

, γ ′ ∈ �′,
which contradicts (3.6).

Assume that (
′′) is true: for any w′ ∈ pold(R)\{w1} and γ ′ ∈ �′ we have
w1eαγ ′

0 �= w′eαγ ′
. Therefore, the function h has a pole of order d at w1eαγ0 which

contradicts to (3.6). ��
For the class K(α) we also provide an example of generator H ∈ K(1) that does

not satisfy assumptions (
′) and (
′′), and whose Z-shifts are not stable.

Example 3.5 Set

H(x) = ex

e2x + 1
− ex+1

e2x + e2
∈ K(1).

Since H(x) = H(x) − H(x − 1) ∈ K(1), where H(x) is defined in (1.14), one
may easily check that the function

∑
n∈Z H(x − n) belongs to V∞

Z
(H) and vanishes

identically on R. Moreover, since Ĥ(t) = (1 − e2π i t )Ĥ(t) = 0, t ∈ Z, Lemma 1.5
proves that Z-shifts of H are not l p-stable for every p ∈ [1,∞].

We now formulate without proof the following

Example 3.6 Choose any sequence δn → 0, n → ±∞, satisfying0 < |δn| < 1/4, n ∈
Z. Set � := {n + δn : n ∈ Z}. Then �-shifts of the generator H in Example 3.5 are
not l∞-stable.

One may prove the statement above using e.g. Remark 3.2.

4 Uniqueness sets

Following Beurling’s approach (see [5]), to prove sampling theorems we first investi-
gate the uniqueness sets for the spaces V∞

� (G).

Proposition 4.1 Given two separated sets �,� ⊂ R.

(I) If � satisfies condition (1.13), then it is a uniqueness set for V∞
� (G).

(II) If � satisfies condition (1.16), then it is a uniqueness set for V∞
Z

(G).

Remark 4.2 The proof of Proposition 4.1 is based on the classical Jensen formula. To
apply it, we use the periodicity in the imaginary direction of the zeros of functions
from the spaces V∞

� (G) for G ∈ K(α) and V∞
Z

(G) for G ∈ C(α). This trick originates
from the paper [10].
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4.1 Proof of Proposition 4.1, Part (I)

The proof below does not depend on the shape parameter α. So, for simplicity through-
out the proof we assume that α = 1.

We must show that there is no non-trivial function

f (z) =
∑

γ∈�

cγR(ez−γ ) ∈ V∞
� (G), {cγ } ∈ l∞(�), (4.1)

that vanishes on a set � ⊂ R satisfying (1.13).
The proof is by contradiction. Let us assume that such a function exists. Clearly,

f admits extension to the complex plane C as a meromorphic function satisfying
f (0) �= ∞. We may assume that f (0) �= 0 (otherwise we consider g(z) = f (z − a)

and �′ = � + a for a suitable a ∈ R.)
Recall that Pol( f ) and Zer( f ) denote the multisets of poles and zeros of f , respec-

tively.Recall also thatwedenote byC different positive constants, and that the numbers
k(G) and q(G) are defined in Definition 1.2.

Set

W := log (PolR) ∩ {z = x + iy ∈ C : 0 < y < 2π}. (4.2)

This means that R(z) = ∞ if and only if z = eu+iv, u + iv ∈ W , and the number
of occurrences of z in eW is equal to the multiplicity of the pole ofR at z. Since f is
2π i-periodic, we have

Pol( f ) ⊆ {z ∈ C : ez−γ ∈ eW , γ ∈ �} = � + W + 2π iZ.

Recall that f vanishes on �. It follows from (1.6) that f also vanishes on the
set � + {2π i j/k(G) : j = 0, ..., k(G) − 1} = � + (2π i)/k(G) · Z , where Z :=
{0, ..., k(G) − 1}. Therefore,

Zer( f ) ⊇ � + 2π i

k(G)
Z + 2π iZ.

The proof below is based on the following two lemmas:

Lemma 4.3 We have

n0(t) ≥ n∞(t) + Ct2,

for some C > 0 and for every sufficiently large t.

Above n0(t) and n∞(t) denote the number of zeros and poles (counting multiplicities)
of f in the circle Bt := {z ∈ C : |z| ≤ t}, respectively.
Lemma 4.4 There is a sequence R j → ∞ such that

| f (z)| ≤ ‖c‖∞
∑

γ∈�

∣∣R(ez−γ )
∣∣ ≤ CRq(G)+1

j , |z| = R j , j ∈ N.
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Let us now check that the lemmas above contradict to the classical Jensen formula
for meromorphic functions (see e.g. [21], Ch. 2.4)

∫ R

0

n0(t) − n∞(t)

t
dt = 1

2π

∫ 2π

0
log | f (Reiθ )|dθ − log | f (0)|, (4.3)

where we assume that f (z) �= 0,∞ on the circle |z| = R.
Indeed, by Lemma 4.3, the left hand-side of the formula is larger than CR2 as

R → ∞, while by Lemma 4.4, the right-hand size has a logarithmic growth on a
sequence R = R j → ∞. Therefore, to finish the proof of proposition it remains to
prove these lemmas.

Proof of Lemma 4.3 We start with three claims:
Let us denote by ReW the multiset ReW := {Re z : z ∈ W }. Observe that

#ReW = #W = q(G). (4.4)

Denote by �̃ the multiset of points belonging to �, where each point of �̃ has
multiplicity k(G). We use the definition (1.2) to define the lower density D−(�̃).

Claim 4.5 We have

D+(� + ReW ) = q(G)D+(�), D−(�̃) = k(G)D−(�).

Claim 4.6 Let numbers R > 0 and a, b ∈ C satisfy

|Re a| ≤ |Re b| < R.

Then

# ((a + 2π iZ) ∩ BR) ≥ # ((b + 2π iZ) ∩ BR) − 1.

Claim 4.7 There is a positive number ρ such that for all open intervals I , J ⊂ R of
length |I | = |J | = ρ we have

#
(
�̃ ∩ I

)
= k(G)# (� ∩ I ) ≥ # ((� + ReW ) ∩ J ) + k(G).

We omit the simple proofs of Claims 4.5 and 4.6. The last claim is a simple conse-
quence of Claim 4.5, (4.4) and (1.13).

Now, choose a number r > 0 such that |γ + Re ew| ≥ ρ, for every γ ∈ �, |γ | ≥ r
and every w ∈ W , where ρ is the number in Claim 4.7. Set �′ := � \ (−r , r). By
Claim 4.7 we can find a subset �′ ⊂ � such that there is a bijection

T : �′ + 2π i

k(G)
Z → �′ + W
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satisfying |Re T (u)| ≥ |Re u| and such that

#
(
(� \ �′) ∩ ( jρ, ( j + 1)ρ)

) ≥ 1, j ∈ Z. (4.5)

Since the set � \ �′ is finite, it follows that

#
(
((� \ �′) + W + 2π iZ) ∩ BR

) ≤ CR.

Hence, by Claim 4.6 we get the estimate

#

(
(�′ + 2π i

k(G)
Z + 2π iZ) ∩ BR

)
≥ # ((� + W + 2π iZ) ∩ BR) − CR.

On the other hand, by (4.5) for all large enough R one gets the estimate

#

(
(� + 2π i

k(G)
Z + 2π iZ) ∩ BR

)
≥ #

(
(�′ + 2π i

k(G)
Z + 2π iZ) ∩ BR

)
+ CR2,

where the constant C depends on ρ. This finishes the proof of Lemma 4.3. ��
Proof of Lemma 4.4 Recall that R = P/Q satisfies conditions (A) - (C) in Defini-
tion 1.1. It follows that there exist constants C, L > 0 such that

|R(z)| ≤ C |z|, |z| ≤ e−L and |R(z)| ≤ C

|z| , |z| ≥ eL . (4.6)

One can also easily check that

|R(z)| ≤ C

(dist(z, eW ))q(G)
, e−L < |z| < eL . (4.7)

where eW defined in (4.2).
Let f be defined in (4.1). It is easy to see that there is a constant C such that

# (Pol( f ) ∩ BR) ≤ CR2, R ≥ 1.

Therefore, there is a sequence R = R j → ∞ such that

dist(Pol( f ), ∂BR) ≥ C

R
, ∂BR := {z ∈ C : |z| = R}. (4.8)

We now fix such a number R and split � into two sets:

�1 := {γ ∈ � : |γ | ≥ R + L}, �2 := � ∩ (−R − L, R + L).

By (4.6),

|R(ez−γ )| ≤ Ce−|x−γ |, γ ∈ �1, z = x + iy, |z| = R.
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Since � is a separated set, this gives

sup
|z|=R

∑

γ∈�1

∣∣cγR(ez−γ )
∣∣ ≤ C‖c‖∞ sup

x∈R

∑

γ∈�1

e−|x−γ | ≤ C,

where the last constant does not depend on R.
Further, by (4.6) and (4.7), for every z, |z| = R and γ ∈ �2,

|R(ez−γ )| ≤ sup
|z|=R,w∈W

C

|ez−γ − ew|q(G)
+ C ≤ sup

|z|=R,w∈W
C

|ez−w−γ − 1|q(G)
.

We now use a simple inequality

|eζ − 1| ≥ Cδ, dist(ζ, 2π iZ) ≥ δ.

It is clear that #�2 ≤ CR. Hence, the last inequality and (4.8) imply

∑

γ∈�2

∣∣cγR(ez−γ )
∣∣ ≤ C‖c‖∞#�2R

q(G) = CRq(G)+1. (4.9)

This finishes the proof of Lemma 4.4. ��

4.2 Proof of Proposition 4.1, Part (II)

The proof is similar to the proof of Part (I). However, recall that in this case, we do
not exclude the option deg P ≥ deg Q.

For simplicity, we assume that the shape parameter α = 1. The proof in the general
case is similar.

We argue by contradiction and assume that there is a non-trivial function

f (z) =
∑

n∈Z
cnG(z − n) =

∑

n∈Z
cne

−(z−n)2/2R(ez−n) ∈ V∞
Z

(G), c = {cn} ∈ l∞(Z),

which vanishes on �. We have to show that this implies a contradiction.
As in Lemma 4.4 above, let n0(t) and n∞(t) denote the number of zeros and poles

of f in {z ∈ C : |z| = t}, respectively.
Lemma 4.8 We have

(i) n0(t) ≥ n∞(t) + (1 + C)t2/2, for some C > 0 and all large enough t .
(ii) There is sequence R = R j → ∞ such that

log | f (z)| ≤ y2/2 + C log R, z = x + iy, |z| = R.

Proof Instead of conditions (4.6) and (4.7), we now have the conditions

|R(z)| ≤ C(1 + |z|k), |z| < e−L , |z| > eL
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and

|R(z)| ≤ C

(dist(z, eW ))q(G)
, e−L < |z| < eL ,

for some k ∈ N and C, L > 0.
Let R j → ∞ be a sequence satisfying condition (4.8). Fix an element R = R j and

set Z1 := {n ∈ Z : |n| ≥ R + L} and Z2 := Z ∩ (−R − L, R + L). Using the first
inequality above, we get

∑

n∈Z1

∣∣∣cne−(z−n)2/2R(ez−n)

∣∣∣ ≤ Cey
2/2

∑

n∈Z1

e−(x−n)2/2
(
1 + ek(x−n)

)

≤ Ce(y2+k2)/2 = Cey
2/2.

Next, by the second inequality above, similarly to (4.9), we get

∑

n∈Z2

∣∣∣cne−(z−n)2/2R(ez−n)

∣∣∣ ≤ C‖c‖∞ey
2/2Rq(G)

∑

n∈Z2

e−(x−n)2/2 ≤ CRq(G)+1ey
2/2.

We conclude that for every f ∈ V∞
Z

(G) we have

| f (x + iy)| ≤ CRq(G)+1ey
2/2, |z| = R j , (4.10)

where C depends only on f . This proves part (ii) of Lemma 4.8.
Given G ∈ C(1) and f ∈ V∞

Z
(G), observe that

f (z + 2π i) =
∑

n∈Z
cne

−(z+2π i−n)2/2R(ez+2π i−n) = e−2π i z+2π2
f (z).

Hence, since f (λ) = 0, λ ∈ �, then f vanishes on the set � + 2π iZ. Therefore,
similarly to Sect. 4.1, we have

Pol( f ) ⊆ Z + W + 2π iZ, Zer( f ) ⊇ � + 2π iZ.

Byestimate (1.16),wemay split� into two sets,� = �1∪�2 satisfyingD−(�1) >

q(G) and D−(�2) > 1. Then

n0(t) ≥ n1(t) + n2(t) := #(�1 + 2π iZ) ∩ Bt + #(�2 + 2π iZ) ∩ Bt .

As in the proof of Lemma 4.3, we have

n1(t) ≥ n∞(t) + Ct2, for some C > 0.

To prove part (i) of Lemma 4.8, it suffices to prove the following ��
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Claim 4.9 We have

n2(t) ≥ t2/2, for all large enough t .

Given a convex set I ⊂ C, 0 ∈ I , and a discrete set of points � ⊂ C, consider the
density of � defined as

d(I ,�) := lim inf
r→∞

#� ∩ (r I )

r2|I | ,

where |I | denotes the 2D-measure (area) of I . If d(I ,�) > 0, then for every ε > 0
we have

#� ∩ r I ≥ (1 − ε)r2|I |d(I ,�), (4.11)

for all sufficiently large r .
Assume that I is the square

I = {z = x + iy ∈ C : max{|x |, |y| ≤ 1}}.

It is easy to check that

d(I ,�2 + 2π iZ) ≥ D−(�2)/2π.

However, it is well-knwon that the density d(I ,�) does not depend on the choice of
I , see e.g. [20, Lemma 4]. Since D−(�2) > 1, Claim 4.9 follows from (4.11). ��

Again, to arrive at contradiction, we use Jensen’s formula (4.3) for meromorphic
functions. FromLemma4.8, part (ii), we see that the right hand-side of (4.3) is bounded
above by

1

2π

∫ 2π

0
log | f (Reiθ )|dθ ≤ R2

4π

∫ 2π

0
sin2(θ)dθ + C log R

= R2

4
+ C log R, R = R j → ∞.

On the other hand, part (i) of Lemma 4.8 shows that the left hand-side of (4.3) is larger
than (1 + C)R2/4,C > 0, for all large enough R, which is a contradiction. This
finishes the proof of Proposition 4.1.

5 Non-uniqueness sets

In this section, we study zero sets of functions from shift-invariant spaces V∞
Z

(G)

generated by G ∈ C(α) or G ∈ K(α). More precisely, we build functions from these
shift-invariant spaces that vanish on sets of critical density.

Let us start with
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Proof of Theorem 1.10 Given N ∈ N, α > 0, and 0 < b1 < · · · < bN such that

b j − bk /∈ Z, for every j �= k. (5.1)

It suffices to find a separated set � satisfying D−(�) = N , coefficients {a j }Nj=1 ⊂ R,
and a non-trivial function f from V∞

Z
(G) such that f vanishes on �, where

G(x) =
N∑

j=1

a j eα(x+b j )

e2αx + e2αb j
.

We will distinguish the cases where N is an even or an odd positive integer.
Case 1. Assume that N ∈ 2N. Consider the functions

ϕ j (x) =
∑

n∈Z

eα(x+b j−n)

e2α(x−n) + e2αb j
, j = 1, ..., N .

Clearly, these functions are 1-periodic. Observe that they are also linearly independent,
since it follows from (5.1) that they have different poles. Therefore, we can find N
points 0 < x1 < ... < xN < 1 such that the system of N equations

N∑

j=1

a jϕ j (xl) = (−1)l , l = 1, ..., N , (5.2)

has a real solution a1, ..., aN . This means that the function

f (x) :=
N∑

j=1

a jϕ j (x) ∈ V∞
Z

(G) (5.3)

has at least N − 1 sign changes on the interval (0, 1). However, since f is also 1-
periodic, it either vanishes at 0 or has an even number of sign changes on (0, 1), and
so f has at least N distinct zeros on [0, 1). We see that Zer ( f ) contains a 1-periodic
set of density N . This finishes the proof for the case N ∈ 2N.
Case 2. Assume that N ∈ 2N + 1. Consider the functions

ϕ j (x) =
∑

n∈Z
(−1)n

eα(x+b j−n)

e2α(x−n) + e2b j
, j = 1, ..., N .

Note that {ϕ j }Nj=1 are linearly independent, 2-periodic, and ϕ j (x + 1) = −ϕ j (x).
Similarly to Case 1, we define f by

f (x) :=
N∑

j=1

a jϕ j (x) (5.4)
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Fig. 1 Case 2 for N = 5

and find N points 0 < x1 < ... < xN < 1 such that (5.2) has a real solution a1, ..., aN .

Clearly, f ∈ V∞
Z

(G).

Set xN+ j := 1+ x j , j = 1, ..., N . Since N ∈ 2N+1 and f (xN+ j ) = f (1+ x j ) =
− f (x j ), we see that f must have at least one sign change (and therefore a zero) on
each interval (x j , x j+1), j = 1, ..., 2N − 1, see Fig. 1. This means that f has at least
2N − 1 sign changes on (x1, x2N ). However, since f is 2-periodic, it either vanishes
at 0 or has an even number of sign changes on [0, 2). Therefore, it has at least 2N
different zeros on [0, 2). Since f is 2-periodic, we see that Zer ( f ) contains a set of
density N . This finishes the proof of Theorem 1.10.

Next, we prove a similar statement for the generators of the form

G(x) = e−αx2/2

⎛

⎝a0 +
N∑

j=1

a j

eαx + eαb j

⎞

⎠ , a0, a1, ..., aN ∈ R. (5.5)

Clearly, G ∈ C(α).

Proposition 5.1 Given N ∈ N, α > 0, and 0 < b1 < · · · < bN , such that

b j − bk /∈ Z for every j, k = 1, . . . , N , j �= k. (5.6)
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There exist a separated set �, D−(�) = N + 1, coefficients a0, ..., aN ∈ R, and a
non-trivial function f ∈ V∞

Z
(G), where G is defined in (5.5), such that f vanishes on

�.

Proof The argument follows the proof of Theorem 1.10. Again, we consider the cases
N is even and odd integer separately.

Let us assume that N ∈ 2N and sketch the proof leaving the details to the reader.
The proof of the second case is also left to the reader. Set

ψ0(x) =
∑

n∈Z
(−1)ne−α(x−n)2/2, ψ j (x) :=

∑

n∈Z
(−1)n

e−α(x−n)2/2

eα(x−n) + eαb j
, j = 1, . . . , N .

Note that for every j the function ψ j is 2-periodic and ψ j (x + 1) = −ψ j (x). Using
the linear independence of the system {ψi }N0 that follows from (5.6), we can find N+1
points 0 < x0 < · · · < xN < 1, such that the system of N + 1 equations

N∑

j=0

a jψ j (xl) = (−1)l , l = 0, . . . , N .

has a real solution a0, . . . , aN . Therefore, the function

f (x) =
N∑

j=0

a jψ j (x), f ∈ V∞
Z

(G),

has the same alternating properties as the function f defined in (5.4). The rest of the
proof is similar to the proof of Case 2 above. ��

6 Proofs of sampling and interpolation theorems

6.1 Proof of Theorem 1.8

We split the proof into two steps.
The proof does not depend on α, so we set α = 1.

Step 1. We start with proving that � is a sampling set for V∞
� (G). The proof is by

contradiction.
Let us assume that condition (1.13) is satisfied and that � is not a sampling set for

V∞
� (G). Hence, for every integer n there exist functions such that

fn(x) =
∑

γ∈�

c(n)
γ G(x − γ ), fn ∈ V∞

� (G), ‖c(n)‖∞ = 1,
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and γn ∈ � such that |c(n)
γn | > 1/2 and

‖ f
∣∣
�
‖∞ = sup

λ∈�

∣∣∣∣∣∣

∑

γ∈�

c(n)
γ G(λ − γ )

∣∣∣∣∣∣
<

1

n
.

Using Beurling’s technique, similarly to the proof of Lemma 3.1, one can find non-
empty sets �′ ∈ W (�), �′ ∈ W (�) and non-trivial coefficients d = {dγ ′ } ∈ l∞(�′)
such that the function

h(x) :=
∑

γ ′∈�′
dγ ′G(x − γ ′)

vanishes on the set �′. Using (1.10) and Proposition 4.1, we arrive at a contradiction.
Therefore � is a sampling set for V∞

� (G).

Step 2. We show that if � is a sampling set for V∞
� (G) then � is a sampling set

for V p
� (G) for any 1 ≤ p < ∞. To this end, we use the approach developed in [8].

Consider an operator A : l p(�) → l p(�) given by

Ac :=
⎧
⎨

⎩
∑

γ∈�

cγG(λ − γ ) : λ ∈ �

⎫
⎬

⎭ , c = {cγ }. (6.1)

This operator is given by the matrix A = {G(λ − γ )} ∈ C
�×�.

Since � is a sampling set for V∞
� (G), the operator A is bounded from below for

p = ∞:

sup
λ∈�

∣∣∣∣∣∣

∑

γ∈�

cγG(λ − γ )

∣∣∣∣∣∣
≥ C‖c‖∞.

By Lemma 2.1, we deduce that A is bounded from below in l p for any 1 ≤ p < ∞.

Therefore, for every function

f (x) =
∑

γ∈�

cγG(x − γ ) ∈ V p
� (G)

we get

∑

λ∈�

| f (λ)|p = ‖Ac‖p
p ≥ C‖c‖p

p ≥ C‖ f ‖p
p,

where the last inequality follows from Lemma 8.1. This completes the proof.
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6.2 Proof of Theorem 1.11

The proof of part (i) is similar to the proof of Theorem 1.8 above.
Part (ii) follows from Proposition 5.1.

6.3 Proof of Corollary 1.12

We will use the following result from Banach theory: Let X and Y be Banach spaces.
Let U : X → Y be a bounded operator.

(i) U is onto if and only if the dual operator U∗ : Y ∗ → X∗ is bounded from below.
(i i) U is bounded from below if and only if U∗ is onto.

For the statement (i) we refer the reader to [14, Theorem E9]. The statement (ii) is
also well-known, see [19, Section 10.2.4, Exercise 3].

Let A : l p(�) → l p(�) be the operator defined in (6.1) The dual operator A∗ :
l p

′
(�) → l p

′
(�), 1/p + 1/p′ = 1, is given by

A∗d :=
{

∑

λ∈�

dλG(λ − γ ) : γ ∈ �

}
, d = {dλ}.

Since � is a sampling set for every space V p
� (G), 1 ≤ p ≤ ∞, it is bounded from

below. Using the above theorem, one may conclude that A∗ is onto for every 1 ≤ p′ ≤
∞. This means that � is an interpolation set for V p′

� (G).

7 On Gabor frames

Proof of Theorem 1.13 The proof is a simple consequence of Lemma 2.3 and our sam-
pling Theorems 1.8 and 1.11.

(i) Let G ∈ K(α) satisfy the assumptions of Corollary 1.13 (i). Then, by Lemma
1.5, Z-shifts of G are stable. Also, since D−(−� + x) = D−(�), it follows from the
assumptions, Theorem 1.8 (with � = Z) and Lemma 2.3 that G(G,� ×Z) is a frame
in L2(R).

The proof of part (iii) is similar to the proof of part (i).
Parts (ii) and (iv) follow from Lemma 1.5 and Theorems 1.10, 1.11.

8 Stability of 0-shifts

8.1 Estimate from above

Lemma 8.1 Let 1 ≤ p ≤ ∞, � be a separated set and G ∈ W0. Then

∥∥∥∥∥∥

∑

γ∈�

cγG(· − γ )

∥∥∥∥∥∥
p

≤ N 1/q(�)‖G‖W0‖c‖p, for every c ∈ l p(�), (8.1)
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where q = p/(p − 1) and N (�) is the covering constant

N (�) := sup
x∈R

∑

�

1[0,1](x + γ ).

See Theorem 2.1 in [18] for a slightly more general result for the multi-dimensional
integer-shifts.

Proof Since the set � is separated, we have N (�) < ∞.

The proof is obvious when p = ∞. Therefore, we assume that 1 ≤ p < ∞.
Clearly, for every h ∈ Lq(R) and k ∈ Z, we have

∑

γ∈�

∫ k+1+γ

k+γ

|h(x)|q dx ≤ N (�)‖h‖qq .

We will use this inequality at the end of the following calculations:

∫

R

∣∣∣∣∣
∑

�

cγG(x − γ )h(x)

∣∣∣∣∣ dx ≤
∑

k∈Z

∑

�

|cγ |
∫ k+1

k
|G(x)h(x + γ )| dx ≤

∑

k∈Z

∑

�

‖G‖L∞(k,k+1)|cγ |
∫ k+1+γ

k+γ

|h(x)|dx ≤

∑

k∈Z
‖G‖L∞(k,k+1)

∑

�

|cγ |
(∫ k+1+γ

k+γ

|h(x)|qdx
)1/q

≤ N (�)1/q‖G‖W0‖c‖l p‖h‖q .

Finally,

∥∥∥∥∥
∑

�

cγG(x − γ )

∥∥∥∥∥
p

= sup
0<‖h‖q<∞

1

‖h‖q
∫

R

∣∣∣∣∣
∑

�

cγG(x − γ )h(x)

∣∣∣∣∣ dx

≤ N (�)1/q‖G‖W0‖c‖l p .

��

8.2 Estimate from below

Here we prove Theorem 1.6.
We assume that �-shifts of G are l∞-stable, and prove that they are l p-stable, for

every p ∈ [1,∞]. This latter means that ‖ f ‖p ≥ Kp‖c‖p, for every function f of
the form

f (x) =
∑

γ

cγG(x − γ ), c ∈ l p(�).
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Choose any positive number δ and denote by Sδ the family of all sequences

� = {λk}k∈Z = {... < λk < λk+1 < ... : λk ∈ [(k + 1/4)δ, (k + 3/4)δ], k ∈ Z}.

For every � ∈ Sδ we denote by A� the discretization operator defined by

{A�c} := { f (λ) : λ ∈ �} =
⎧
⎨

⎩
∑

γ∈�

cγG(λ − γ ) : λ ∈ �

⎫
⎬

⎭ , c = {cγ }. (8.2)

Claim 8.2 There exists δ0 > 0 such that ‖A�c‖∞ > K‖c‖∞, for some K > 0 and
every c ∈ l∞(�), � ∈ Sδ and δ ≤ δ0.

Proof of Claim 8.2 Since �-shifts of G are l∞-stable, we have ‖ f ‖∞ ≥ K∞‖c‖∞, for
all c ∈ l∞(�) and some K∞ > 0. Then for every f ∈ V∞

� (G) we may find a point
x0 = x0( f ) such that | f (x0)| ≥ (K∞/2)‖c‖∞.

Let � ∈ Sδ . Clearly, there exists λ0 ∈ � such that |λ0 − x0| < 2δ. This gives

| f (λ0) − f (x0)| ≤ ‖c‖∞
∑

γ

|G(λ0 − γ ) − G(x0 − γ )| =
∑

γ :|γ−x0|≤R

+
∑

γ :|γ−x0|>R

,

where by (1.1) one may choose R so large that

∑

γ :|γ−x0|>R

|G(λ0 − γ )| + |G(x0 − γ )| < K∞/4.

On the other hand, since G ∈ C(R), it is uniformly continuous on [−R, R]. There-
fore,

∑

γ :|γ−x0|≤R

|G(λ0 − γ ) − G(x0 − γ )| < K∞/4,

provided δ is sufficiently small, which proves the claim.

In what follows we assume that δ ≤ δ0. Hence, by the definition of the family Sδ ,
Lemma 2.1 and Remark 2.2, we see that there is a constant C such that

‖A�c‖p > C‖c‖p, for every c ∈ l p(�) and every � ∈ Sδ. (8.3)

Choose any p, 1 ≤ p < ∞. Given any f ∈ V p
� (G), choose points λk ∈ [(k +

1/4)δ, (k + 3/4)δ] so that | f (x)| ≥ | f (λk)|, x ∈ [(k + 1/4)δ, (k + 3/4)δ]. Then

� := {λk : k ∈ Z} ∈ Sδ.

Using (8.3), we get

‖ f ‖p
p ≥ (δ/2)

∑

k∈Z
| f (λk)|p = (δ/2)‖A�c‖p

p ≥ (δ/2)C p‖c‖p
p,
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which proves Theorem 1.6.
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