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SUMMARY

A new efficient nonparametric estimator for Toeplitz covariance matrices is proposed.
This estimator is based on a data transformation that translates the problem of Toeplitz
covariance matrix estimation to the problem of mean estimation in an approximate Gauss-
ian regression. The resulting Toeplitz covariance matrix estimator is positive definite by
construction, fully data driven and computationally very fast. Moreover, this estimator is
shown to be minimax optimal under the spectral norm for a large class of Toeplitz matrices.
These results are readily extended to estimation of inverses of Toeplitz covariance matrices.
Also, an alternative version of the Whittle likelihood for the spectral density based on the
discrete cosine transform is proposed.

Some key words: Discrete cosine transform; Periodogram; Spectral density; Variance-stabilizing transform;
Whittle likelihood.

1. Introduction

Estimation of covariance and precision matrices is a fundamental problem in statisti-
cal data analysis with countless applications in the natural and social sciences. A special
type of covariance matrix that has descending diagonal constants, known as a Toeplitz
matrix, arises in the study of stationary stochastic processes. Stationary stochastic pro-
cesses are an important modelling tool in many applications, such as radar target detection,
speech recognition, modelling internet economic activity, electrical brain activity or the
motion of crystal structures (Grenander & Szegö, 1958, p.232; Franaszczuk et al., 1985;
Quah, 2000; Roberts & Ephraim, 2000; Du et al., 2020).

The data for estimation are given as n independent and identically distributed realiza-
tions of a p-dimensional vector having a zero mean and a Toeplitz covariance matrix
� = (σ|i−j|)p

i,j=1. Thereby, p is assumed to grow while n may be equal to 1 or may tend
to infinity as well. For p → ∞ and p/n → c ∈ (0, ∞], the sample (auto)covariance
matrix is known to be an inconsistent estimator of � in the spectral norm; see, e.g., Wu &
Pourahmadi (2009, Ch. 2) and Pourahmadi (2013). Therefore, tapering, banding and thresh-
olding of the sample covariance matrix have been proposed to regularize this estimator; see
Wu & Xiao (2012) and Cai et al. (2013). The optimal rate of convergence for Toeplitz covari-
ance matrix estimators was established in Cai et al. (2013), who in particular showed that

©c 2024 Biometrika Trust
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/
licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is
properly cited.

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/article/111/3/843/7582326 by guest on 03 January 2025

https://orcid.org/0000-0002-6389-2312


844 K. Klockmann and T. Krivobokova

tapering and banding estimators attain the minimax optimal convergence rate over certain
spaces of Toeplitz covariance matrices. Optimality of the thresholded estimator was shown
only for the case n = 1; see Wu & Xiao (2012). However, all of these estimators have several
practical drawbacks that affect their performance in small samples. First, additional mani-
pulations with the estimators must be performed to enforce positive definiteness; see, e.g.,
§ 5 of Cai et al. (2013). Second, the data-driven choice of the tapering, banding or thresh-
olding parameter is not trivial in practice. For n > 1, Bickel & Levina (2008) proposed
a cross-validation criterion that approximates the risk of the estimator. Fang et al. (2016)
compared this method with a bootstrap-based approximation of the risk in an intensive
simulation study and recommended cross-validation over bootstrap. However, for small n,
a cross-validated tuning parameter turns out to be very variable, while, already for moder-
ate n, it becomes numerically very demanding. For n = 1, to the best of our knowledge,
there is no fully data-driven approach for selecting the banding, tapering or threshold-
ing parameter available. Wu & Pourahmadi (2009) suggested first splitting the time series
into non-overlapping subseries and then applying the cross-validation criterion of Bickel
& Levina (2008). However, the appropriate choice of the subseries length is crucial for this
approach, but this cannot be chosen in a data driven manner.

In this work, an alternative way to estimate a Toeplitz covariance matrix and its inverse is
proposed. Our approach exploits the one-to-one correspondence between Toeplitz covari-
ance matrices and their spectral densities. First, the given data are transformed into
approximate Gaussian random variables whose mean equals the logarithm of the spectral
density. Then, the log-spectral density is estimated by a periodic smoothing spline with a
data-driven smoothing parameter. Finally, the resulting spectral density estimator is trans-
formed into an estimator for � or its inverse. It is shown that this procedure leads to an
estimator that is fully data driven, automatically positive definite and achieves the minimax
optimal convergence rate under the spectral norm over a large class of Toeplitz covariance
matrices. In particular, this class includes Toeplitz covariance matrices that correspond to
long-memory processes with bounded spectral densities. Moreover, the computation is very
efficient, does not require iterative or resampling schemes and allows application of any
inference and adaptive estimation procedures developed in the context of nonparametric
Gaussian regression.

Estimation of the spectral density from a single stationary time series is a research
topic with a long history. Earlier nonparametric methods are based on smoothing the
(log-)periodogram, which itself is not a consistent estimator (Bartlett, 1950; Welch, 1967;
Wahba, 1980; Thomson, 1982). Another line of nonparametric methods for estimating
the spectral density is based on the Whittle likelihood, which is an approximation to
the exact likelihood of the time series in the frequency domain. For example, Pawitan &
O’Sullivan (1994) estimated the spectral density from a penalized Whittle likelihood, while
Kooperberg et al. (1995) used polynomial splines to estimate the log-spectral density func-
tion maximizing the Whittle likelihood. Recently, Bayesian methods for spectral density
estimation have been proposed (see Choudhuri et al., 2004; Edwards et al., 2019; Maturana-
Russel & Meyer, 2021), but these may become very computationally intensive in large
samples due to posterior sampling.

The minimax optimal convergence rate for nonparametric estimators of a Hölder contin-
uous spectral density from a single Gaussian stationary time series was obtained by Bentkus
(1985) under the Lp norm, 1 � p � ∞. Only a few works on spectral density estimation
show the optimality of the corresponding estimators. In particular, Pawitan & O’Sullivan
(1994) and Kooperberg et al. (1995) derived convergence rates of their estimators for the
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log-spectral density under the L2 norm, while neglecting the Whittle likelihood approxima-
tion error.

In general, most works on spectral density estimation do not exploit further the close con-
nection to the corresponding Toeplitz covariance matrix estimation. In particular, an upper
bound for the L∞ risk of a spectral density estimator automatically provides an upper bound
for the risk of the corresponding Toeplitz covariance matrix estimator under the spectral
norm. This fact is used to establish the minimax optimality of our nonparametric estimator
for Toeplitz covariance matrices. The main contribution of this work is to show that our
proposed spectral density estimator is not only numerically very efficient, performing excel-
lently in small samples, but also achieves the minimax optimal rate in the L∞ norm, which
in turn ensures the minimax optimality of the corresponding Toeplitz covariance matrix
estimator.

2. Set-up and diagonalization of Toeplitz matrices

Let Y1, …, Yn
i.i.d.∼ Np(0p, �), where � is a p × p positive semidefinite covariance matrix

with a Toeplitz structure, that is, � = (σ|i−j|)p
i,j=1 � 0. The sample size n may tend to infinity

or be a constant. The case n = 1 corresponds to a single observation of a stationary time
series and in this case the data are simply denoted by Y ∼ Np(0p, �). The dimension p is
assumed to grow. The spectral density function f , corresponding to a Toeplitz covariance
matrix � with absolute summable sequence of covariances (σk)k∈Z, is given by

f (x) = σ0 + 2
∞∑

k=1

σk cos(kx), x ∈ [−π , π ].

The inverse Fourier transform implies that

σk = 1
2π

∫ π

−π

f (x) cos(kx) dx =
∫ 1

0
f (πx) cos(kπx) dx. (1)

If
∑∞

h=−∞ |σh| = ∞, i.e., the corresponding stochastic process is a long-memory pro-
cess, the spectral density function is directly defined as a 2π -periodic, nonnegative function
f : [−π , π ] → R�0 that satisfies condition (1). Hence, in the case that f exists, � is com-
pletely characterized by f . Furthermore, the nonnegativity of the spectral density function
implies the positive semidefiniteness of the covariance matrix. Moreover, the decay of the
covariances σk is directly connected to the smoothness of f . Finally, the convergence rate of
a Toeplitz covariance estimator and that of the corresponding spectral density estimator are
directly related via ‖�‖ � ‖f ‖∞ = supx∈[−π ,π ] |f (x)|, where ‖ · ‖ denotes the spectral norm;
see Grenander & Szegö (1958, Ch. 5.2).

As in Cai et al. (2013), we consider the class of positive semidefinite Toeplitz covariance
matrices with Hölder continuous spectral densities. For β = γ + α > 0, where γ ∈ N ∪ {0},
0 < α � 1 and 0 < M0, M1 < ∞, let

Pβ(M0, M1) = {f | f : [−π , π ] → R�0, ‖f ‖∞ � M0, ‖f (γ )(· + h) − f (γ )(·)‖∞ � M1|h|α}.
Furthermore, for f ∈ Pβ(M0, M1), we denote by �(f ) ∈ R

p×p the corresponding p × p
Toeplitz covariance matrix obtained with the inverse Fourier transform (1) and by �−1(f )
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the precision matrix. The optimal convergence rate for estimating Toeplitz covariance
matrices �(f ), where f ∈ Pβ(M0, M1), depends crucially on β. It is well known that the
kth Fourier coefficient of a function whose γ th derivative is Hölder continuous with expo-
nent α ∈ (0, 1] decays at least with O(k−β); see Zygmund (2002). Hence, β determines the
decay rate of the covariances σk, which are the Fourier coefficients of the spectral density
f , as k → ∞. For β ∈ (0, 1/2], the class Pβ(M0, M1) includes bounded spectral densities of
certain long-memory processes.

A connection between Toeplitz covariance matrices and their spectral densities is further
exploited in the following lemma.

LEMMA 1. Let � = �(f ) with f ∈ Pβ(M0, M1) and xj = (j − 1)/(p − 1) for j = 1, . . . , p.
Then

(DT�D)i,j = f (πxj)δi,j + 1 + (−1)|i−j|

2
O(p−1 + p−β log p),

where δi,j is the Kroneker delta, O(·) terms are uniform over i, j = 1, . . . , p and

D =
(

2
p − 1

)1/2[
cos

{
π(i − 1)

j − 1
p − 1

}]p

i,j=1
,

divided by 21/2 when i or j is 1 or p, is the discrete cosine transform I matrix.

The proof can be found in the Supplementary Material. This result shows that the discrete
cosine transform I matrix approximately diagonalizes Toeplitz covariance matrices and that
the diagonalization error depends to some extent on the smoothness of the corresponding
spectral density.

In time series analysis the discrete Fourier transform matrix F = p−1/2{exp(2π iij/p)}p
i,j=1,

where i is the imaginary unit, is typically employed to approximately diagonalize Toeplitz
covariance matrices. Using the fact that (FT�F)i,i = f (2π i/p) + o(1), Whittle (1957) intro-
duced an approximation for the likelihood of a single Gaussian stationary time series (n = 1
case), the so-called Whittle likelihood:

L(Y | f ) ∝ exp
{

−

p/2�∑
j=1

log f
(

2π j
p

)
+ Ij

f (2π j/p)

}
. (2)

The quantity Ij = |FT
j Y |2, where Fj denotes the jth column of F , is known as the

periodogram at the jth Fourier frequency. Because of periodogram symmetry, only 
p/2�
data points I1, . . . , I
p/2� are available for estimating the mean f (2π j/p), j = 1, …, 
p/2�,
where 
x� denotes the largest integer strictly smaller than x. The Whittle likelihood has
become a popular tool for parameter estimation of stationary time series, e.g., for nonpara-
metric and parametric spectral density estimation or for estimation of the Hurst exponent;
see, e.g., Walker (1964) and Taqqu & Teverovsky (1997).

Lemma 1 yields the following alternative version of the Whittle likelihood:

L(Y | f ) ∝ exp
{

−
p∑

j=1

log f (πxj) + Wj

f (πxj)

}
. (3)
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Here Wj = (DT
j Y)2 with Dj denoting the jth column of D. This likelihood approximation is

based on twice as many data points Wj as the standard Whittle likelihood. Thus, it allows for
a more efficient use of the data Y to estimate the parameter of interest, such as the spectral
density or the Hurst parameter. This is particularly advantageous in small samples.

Equations (2) and (3) invite the estimation of f by maximizing the (penalized) likelihood
over certain linear spaces, e.g., spline spaces, as suggested by Pawitan & O’Sullivan (1994)
and Kooperberg et al. (1995). However, such an approach requires well-designed numerical
methods to solve the corresponding optimization problem, since the spectral density in the
second term of (2) and (3) is in the denominator, which hinders derivation of a closed-form
expression for the estimator and often leads to numerical instabilities. Also, the choice of
smoothing parameter becomes challenging.

Therefore, we suggest an alternative approach that allows the spectral density to be esti-
mated as a mean in an approximate Gaussian regression. Such estimators have a closed-form
expression, do not require an iterative optimization algorithm and a smoothing parame-
ter can be easily obtained with any conventional criterion. First if Y ∼ Np(0p, �), with
� = �(f ) and f ∈ Pβ(M0, M1), then DTY ∼ Np(0p, DT�D). Hence, for Wj = (DT

j Y)2, j =
1, …, p, it follows with Lemma 1 that

Wj ∼ 	{1/2, 2f (πxj) + O(p−1 + p−β log p)}, (4)

where 	(a, b) denotes the gamma distribution with shape parameter a and scale para-
meter b. The random variables W1, …, Wp are only asymptotically independent. Obviously,
E(Wj) = f (πxj) + o(1) for j = 1, …, p. To estimate f from W1, …, Wp, one could use a
generalized nonparametric regression framework with a gamma-distributed response; see,
e.g., the classical monograph by Hastie & Tibshirani (1990). However, this approach requires
an iterative procedure for estimation, e.g., a Newton–Raphson algorithm, with a suitable
choice for the smoothing parameter at each iteration step. Deriving the L∞ rate for the
resulting estimator is also not a trivial task. Instead, we suggest employing a variance-
stabilizing transform of Cai & Zhou (2010) that converts a gamma regression into an
approximate Gaussian regression. In the next section we present the methodology in more
detail for a general setting with n � 1.

3. Methodology

Let Lδ = {f : infx f (x) � δ} for some δ > 0 and set Fβ = Pβ(M0, M1) ∩ Lδ. We consider
estimation of � and 
 = �−1 from a sample Y1, . . . , Yn

i.i.d.∼ Np(0p, �), where � = �(f )

with f ∈ Fβ . For Yi ∼ Np(0p, �), i = 1, …, n, it was shown in the previous section that, with
Lemma 1, the data can be transformed into gamma-distributed random variables Wi,j =
(DT

j Yi)
2, i = 1, …, n; j = 1, …, p, where, for each fixed i, the random variable Wi,j has the

same distribution as Wj given in (4). Now the approach of Cai & Zhou (2010) is adapted to
the setting n � 1.

First, the transformed data points Wi,j are binned, that is, fewer new variables Qk, k =
1, …, T , with T < p, are built via Qk = ∑kp/T

j=(k−1)p/T+1

∑n
i=1 Wi,j for k = 1, …, T . The

number of observations in a bin is m = np/T . In Theorem 1 in § 4, we show that setting
T = 
pυ� for any υ ∈ (1 − min{1, β}/3, 1) leads to the minimax optimal rate for the spec-
tral density estimator. To simplify the notation, m is handled as an integer; otherwise, one
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can discard several observations in the last bin. Next, applying the variance-stabilizing trans-
form G(x) = 2−1/2 log(x/m) to each Qk yields new random variables Y∗

k = 2−1/2 log(Qk/m)

that are approximately Gaussian, as shown by Cai & Zhou (2010). Since the spectral den-
sity is a function that is symmetric around zero and periodic on [−π , π ], one can mirror
the resulting observations to use Y∗

T , …, Y∗
2 , Y∗

1 , …, Y∗
T−1 for estimation. Renumerating the

observations Y∗
k and scaling the design points into the interval [0, 1) for convenience leads

to the approximate Gaussian regression problem

Y∗
k

approx.∼ N [H{f (xk)}, m−1], xk = k − 1
2T − 2

; k = 1, …, 2T − 2,

where H(y) = 2−1/2{φ(m/2) + log(2y/m)} and φ is the digamma function (Cai & Zhou,
2010). Now, the scaled and shifted log-spectral density H(f ) can be estimated with a periodic
smoothing spline

ˆH(f )(x) = arg min
s∈Sper(2q−1)

[
1

2T − 2

2T−2∑
k=1

{Y∗
k − s(xk)}2 + h2q

∫ 1

0
{s(q)(x)}2 dx

]
, (5)

where h > 0 denotes a smoothing parameter, q ∈ N is the penalty order and Sper(2q − 1)

is a space of periodic splines of degree 2q − 1. More details on periodic smoothing splines
can be found in the Supplementary Material.

Once an estimator ˆH(f ) is obtained, application of the inverse transform function
H−1(y) = m exp{21/2y − φ(m/2)}/2 yields the spectral density estimator f̂ = H−1{ ˆH(f )}.
Finally, the inverse Fourier transform leads to the covariance matrix estimator

�̂ = (σ̂|i−j|)p
i,j=1 with σ̂k =

∫ 1

0
f̂ (x) cos(kπx) dx for k = 0, …, p − 1. (6)

The precision matrix 
 is estimated by the inverse Fourier transform of the reciprocal of
the spectral density estimator, i.e.,


̂ = (ω̂|i−j|)p
i,j=1 with ω̂k =

∫ 1

0
f̂ (x)−1 cos(kπx) dx for k = 0, …, p − 1. (7)

The estimation procedure for �̂ and 
̂ can be summarized as follows.

Step 1 (Data transformation). Define Wi,j = (DT
j Yi)

2, i = 1, . . . , n; j = 1, …, p, where D
is the p × p discrete cosine transform I matrix as given in Lemma 1 and Dj is its jth column.

Step 2 (Binning). Set T = 
pυ� for any υ ∈ (1 − min{1, β}/3, 1) and calculate

Qk =
kp/T∑

j=(k−1)p/T+1

n∑
i=1

Wi,j, k = 1, …, T .

Step 3 (Variance-stabilizing transform). Set Y∗
k = 2−1/2 log(Qk/m) for k = 1, …, T

and m = np/T . Mirror the data to get approximately 2T − 2 Gaussian random variables
Y∗

T , …, Y∗
2 , Y∗

1 , …, Y∗
T−1.
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Step 4 (Gaussian regression). Renumerate observations Y∗
k , scale the design points to [0, 1)

and estimate H(f ) with a periodic smoothing spline of degree 2q − 1 in an approximate
Gaussian regression model

Y∗
k = H{f (xk)} + εk, xk = k − 1

2T − 2
; k = 1, …, 2T − 2,

where the εk are asymptotically independent and identically distributed Gaussian variables.

Step 5 (Inverse transform). Estimate the spectral density f with f̂ = H−1{ ˆH(f )}, where

H−1(y) = m exp{21/2y − φ(m/2)}/2

for a digamma function φ.

Step 6 (Estimators). Set �̂ = (σ̂|i−j|)p
i,j=1 with σ̂k = ∫ 1

0 f̂ (x) cos(kπx) dx and 
̂ = (ω̂|i−j|)p
i,j=1

with ω̂k = ∫ 1
0 f̂ (x)−1 cos(kπx) dx (k = 0, …, p − 1).

The estimators �̂ and 
̂ are positive definite matrices by construction, since the spectral
density estimator f̂ is nonnegative by definition. For a detailed discussion on the choice of
all parameters needed to obtain our estimators, see § 5.

4. Theoretical properties

In this section, we study the asymptotic properties of the estimators f̂ , �̂ and 
̂. Let f̂ =
m exp{21/2 ˆH(f ) − φ(m/2)}/2 be the spectral density estimator defined in § 3, where ˆH(f ) is
given in (5), m = np/T and φ is the digamma function. Furthermore, let �̂ be the Toeplitz
covariance matrix estimator and 
̂ the corresponding precision matrix defined in (6) and (7),
respectively. The following theorem shows that both �̂ and 
̂ attain the minimax optimal
rate of convergence over the class of Toeplitz matrices �(f ) such that f ∈ Fβ , β > 0.

THEOREM 1. Let Y1, . . . , Yn
i.i.d.∼ Np(0p, �), n � 1, with � = �(f ) such that f ∈ Fβ

and β = γ + α > 0. If h > 0 such that h → 0 and hT → ∞, then, with T = 
pυ� for any
υ ∈ (1−min{1, β}/3, 1) and q = max{1, γ }, the spectral density estimator f̂ , the corresponding
covariance matrix estimator �̂ and the precision matrix estimator 
̂ satisfy, for p → ∞ and
n such that pmin{1,β}/n → c ∈ (0, ∞],

sup
f ∈Fβ

Ef ‖�̂ − �(f )‖2 � sup
f ∈Fβ

Ef ‖f̂ − f ‖2∞ = O
{

log(np)

nph

}
+ O(h2β),

sup
f ∈Fβ

Ef ‖
̂ − �−1(f )‖2 = O
{

log(np)

nph

}
+ O(h2β).

For h � {log(np)/(np)}1/(2β+1), it follows that

sup
f ∈Fβ

Ef ‖�̂ − �(f )‖2 � sup
f ∈Fβ

Ef ‖f̂ − f ‖2∞ = O
[{

log(np)

np

}2β/(2β+1)]
,

sup
f ∈Fβ

Ef ‖
̂ − �−1(f )‖2 = O
[{

log(np)

np

}2β/(2β+1)]
.
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Theorem 1 is established under the asymptotic scenario with p → ∞ and n such that
pmin{1,β}/n → c ∈ (0, ∞], i.e., the dimension p grows, while the sample size n either remains
fixed or also grows, but not faster than pmin{1,β}. This asymptotic scenario covers the setting
when the sample covariance matrix is inconsistent. In particular, for β � 1, the sample size
n does not grow faster than p and adding more samples improves the convergence rate. If
β ∈ (0, 1) then increasing n with the rate faster than pβ will not lead to a faster convergence
rate, due to the diagonalization error from Lemma 1, which can be improved only by making
additional assumptions on the spectral density.

The minimax optimal convergence rates for estimating � and �−1 from n indepen-
dent and identically distributed Gaussian vectors Y1, …, Yn with zero mean and a Toeplitz
covariance matrix �(f ) with f ∈ Fβ have been established by Cai et al. (2013). Since the
lower bound rates given in Theorems 5 and 7 of Cai et al. (2013) match the upper bound
rates obtained in Theorem 1, we conclude that our estimator is minimax optimal. For non-
Gaussian data, the minimax optimal convergence rates for � and �−1 are not known. Note
that Fβ with β > 0 includes bounded spectral densities of long-memory processes.

The proof of Theorem 1 can be found in the Appendix and is the main result of our work.
The most important part of this proof is the derivation of the convergence rate for the spec-
tral density estimator f̂ under the L∞ norm. Cai & Zhou (2010) established an L2 rate for a
wavelet nonparametric mean estimator in a gamma regression where the data are assumed
to be independent. In our work, the spectral density estimator f̂ is based on the gamma-
distributed data Wi,1, …, Wi,p, which are only asymptotically independent. Moreover, the
mean of these data is not exactly f (πx1), …, f (πxp), but is corrupted by the diagonalization
error given in Lemma 1. This error adds to the error that arises via binning and variance
stabilizing transformation and that describes the deviation from a Gaussian distribution,
as derived by Cai & Zhou (2010). Finally, we need to obtain an L∞ rather than an L2 rate
for our spectral density estimator. Overall, the proof requires different and partly novel
tools than those used by Cai & Zhou (2010). A particular challenge is the treatment of the
dependence of Wi,1, …, Wi,p.

To get the L∞ rate for f̂ , we first derive that for the periodic smoothing spline esti-
mator ˆH(f ) of the log-spectral density. To do so, we use a closed-form expression of its
effective kernel obtained by Schwarz & Krivobokova (2016), thereby carefully treating
various (dependent) errors that describe deviations from a Gaussian nonparametric regres-
sion with independent errors and mean f (πxi). Although the periodic smoothing spline
estimator is obtained on T binned points, the rate is given in terms of the vector dimen-
sion p and the sample size n. Next, using the Cauchy–Schwarz inequality and a mean
value argument, this rate is translated into the L∞ rate for the spectral density estimator
f̂ . To obtain the rate for the Toeplitz covariance matrix estimator, it is enough to note that
E‖�̂ − �‖2 � E‖f̂ − f ‖2∞.

5. Practical issues

Several choices must be made in practice to obtain our estimator. First, the data Yi, i =
1, …, n, are transformed into Wi,j = (DT

j Yi)
2, j = 1, …, p, and are subsequently binned.

According to Theorem 1, the number of bins T = 
pυ� with any υ ∈ (1 − min{β, 1}/3, 1)

leads to a minimax optimal estimator. That is, for β � 1, one can take any υ ∈ (2/3, 1), while
for β < 1, the interval depends on β; for example, for β = 1/2, the interval is υ ∈ (5/6, 1). In
our simulation studies we observed that the results are quite robust for various values of υ.
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If no knowledge about β is available, one can proceed as follows. Any standard test for long-
range dependence can be performed and if the null hypothesis of long-range dependence is
rejected, i.e., β > 1/2, then any υ ∈ (5/6, 1) can be taken. Otherwise, a smaller interval for υ

should be considered. Additionally, one can always verify whether the chosen value of T is
appropriate by generating quantile–quantile (Q-Q) plots of Y∗

k , which should ideally show
little departure from the normality. In Fig. 1 in the Supplementary Material we show how
the Q-Q plots change for Gaussian data depending on T .

Once the data are transformed, the mean of Y∗
k , k = 1, …, T , i.e., the log-spectral density,

is estimated with a periodic smoothing spline. For this, one needs to choose basis functions
of the periodic spline space, the penalty order q ∈ N and the smoothing parameter h > 0.

The basis of a periodic spline space with knots put at the observations is a Fourier basis
{21/2 cos(2πx), 21/2 sin(2πx)}, evaluated at xk = (k − 1)/(2T − 2) for k = 1, …, 2T − 2.

The smoothing parameter h can be chosen using any data-driven approach, such as
(generalized) cross-validation or an empirical Bayes approach; see Wahba (1985).

According to Theorem 1, the choice of q should be related to the true smoothness β of the
spectral density in order to obtain the minimax optimal estimator. Assume that q taken for
estimation is larger than the true smoothness β. Then, the rate of convergence is determined
by the true β and is minimax, independent of how large q is. In particular, if γ = 0 then
β = α ∈ (0, 1) and taking q = max{1, γ } = 1 would lead to a minimax optimal estimator.
If q taken for the estimation is less than β then the rate will depend on q and on the choice
of the smoothing parameter h. Assume that β > q and that the smoothing parameter h is
estimated with generalized cross-validation. Then, it has been shown by Wahba (1985) that
a periodic spline estimator adapts to the unknown smoothness up to 2q. That is, if β < 2q
then the rate will be minimax optimal, while for β � 2q, the rate will be determined by q. If
β > q and the smoothing parameter h is estimated by the empirical Bayesian approach, then
Wahba (1985) has shown that the resulting estimator does not adapt to the extra smoothness.
However, in small samples the empirical Bayes smoothing spline can perform similarly or
even better than the cross-validated smoothing spline due to smaller constants in the risk;
see Krivobokova (2013).

Since, in practice, β is not known exactly, it is also not known which rate the estimator will
have with a chosen q. However, looking at the decay of the sample covariance functions one
can get an idea of whether β is rather small, in the case of a very slow decay, or rather large,
in the case of a very fast decay, and decide on the choice of q. A more attractive approach
is to resort to adaptive estimation methods that lead to the best possible estimators without
prior knowledge on β. For example, the empirical Bayesian framework allows estimation
of the unknown γ under certain assumptions on the function space (Serra & Krivobokova,
2017). Other approaches for adaptive nonparametric estimation are aggregation and Lep-
ski’s method; see, e.g., Chagny (2016) for an overview and references. A detailed study of
adaptive spectral density estimators is outside the scope of our work.

In our simulation study and the real data example, presented in the next two sections, we
discuss the parameter choices explicitly.

6. Simulation study

In this section, we compare the performance of our proposed Toeplitz covariance estima-
tor with the tapering estimator of Cai et al. (2013) and with the sample covariance matrix.
A Monte Carlo simulation with 100 samples is performed using R (version 4.1.2, seed 42;
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Fig. 1. Spectral density functions (first row) and covariance functions (second row) for processes (i)–(iii).

R Development Core Team, 2024). We consider Gaussian vectors Y1, …, Yn
i.i.d.∼ Np(0p, �)

with (A) p = 5000, n = 1, (B) p = 1000, n = 50 and (C) p = 5000, n = 10, and with the
covariance functions σ : Z → R, k �→ σk

(i) of a polynomial decay, i.e., σk = 1.44(1 + |k|)−5.1,
(ii) of an autoregressive process yt = εt + 0.1yt−1 − 0.1yt−2, where εt is independent and

identically distributed Gaussian noise and var(εt) = 1.44,
(iii) such that the corresponding spectral density is Lipschitz continuous, but not differen-

tiable: f (x) = 1.44{| sin(x + 0.5π)|1.7 + 0.45}.
In particular, σ0 = 1.44 for all three processes. Figure 1 shows the spectral densities and
the corresponding covariance functions for the three processes. To set the parameters, note
that the spectral density of process (i) belongs to F4, the spectral density of process (ii) is
an analytic function and the spectral density of process (iii) is from F1.

Since, for all three processes, β � 1, according to Theorem 1, any value of υ ∈ (2/3, 1)

should lead to optimal estimation. We set the number of bins to T = 500 in all scenarios,
which corresponds to υ ≈ 0.73 for scenarios (A) and (C) and υ ≈ 0.90 for scenario (B).

Setting q = 2 would lead to the minimax optimal rates for processes (1) and (3), if the
smoothing parameter is chosen by generalized cross-validation; see the discussion in § 5.
According to arguments from the previous section, the convergence rate for process (2) is
the same as that for process (i), while process (iii) has a slower convergence rate. Hence, for a
given scenario, we should observe similar magnitudes of the average norms for processes (i)
and (ii), while somewhat larger values for process (iii). Across scenarios, we expect scenario
(A) to have larger average norm values, as only p = 5000 observations are used, compared
to np = 50 000 data points in scenarios (B) and (C).

To select the regularization parameter for our estimator, we implemented the restricted
maximum likelihood method, generalized cross-validation and the corresponding oracle
versions, i.e., as if � were known.
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The sample covariance matrix �̃ = (σ̃|i−j|)p
i,j=1 is defined as n−1 ∑n

i=1 YiY T
i with averaged

diagonals to obtain the Toeplitz structure. The tapering estimator with tapering parameter
k � p/2 is defined as Tapk(�̃) = (σ̃|i−j|w|i−j|)p

i,j=1, where wm = 1 when m = 0, …, k/2,
wm = 2 − 2m/k when k/2 < m � k and wm = 0 otherwise; see Cai et al. (2013). Parameter
k can be selected using cross-validation, see Bickel & Levina (2008) only if n > 1, that is,
under scenarios (B) and (C). For this, the n observations are divided by 30 random splits
into a training set of size n1 = 2n/3 and a test set of size n2 = n/3. Let �ν

1 and �ν
2 be the

sample covariance matrices from the νth split. The tapering parameter k is then estimated as

k̂cv = arg min
k=2,3,...,p/2

1
30

30∑
ν=1

‖Tapk(�
ν
1 ) − �ν

2‖,

where Tapk(�
ν
2 ) is the tapering estimator with parameter k. If n = 1, that is, under scenario

(A), Wu & Pourahmadi (2009) suggested splitting the time series Y into l non-overlapping
subseries of length p/l and then proceeding as before to select the tuning parameter k. To the
best of our knowledge, there is no data-driven method for the selection of l. Using the true
covariance matrix �, we preselected oracle value l = 30 subseries for process (i) and l = 15
subseries for processes (ii) and (iii). Parameter k can then be chosen with cross-validation
as above. We employ this approach under scenario (A) instead of an unavailable fully data-
driven criterion and name it semi-oracle. Finally, for all three scenarios (A), (B) and (C),
the oracle tapering parameter is computed using grid search for each Monte Carlo sample
as k̂or = arg mink=2,3,...,p/2 ‖Tapk(�̃) − �‖, where �̃ is the sample covariance matrix. To
speed up the computation, one can replace the spectral norm by the �1 norm, as suggested
by Bickel & Levina (2008).

In Table 1, the errors of the Toeplitz covariance estimators with respect to the spectral
norm and the average computation time for one Monte Carlo sample for all three processes
are reported for scenarios (A), (B) and (C), respectively. To illustrate the goodness of fit of
the spectral density, the L2 norm ‖f̂ − f ‖2 is also computed.

The overall behaviour of our estimator is exactly as expected. Moreover, the tapering and
our estimator perform similarly in terms of the spectral norm risk. This is not surprising as
both estimators are proved to be rate optimal. The oracle estimators show similar behaviour,
but are slightly less variable compared to the data-driven estimators. Clearly, both the taper-
ing and our estimators are superior to the inconsistent sample covariance matrix. In terms of
computational time, both methods are similarly fast for scenarios (A) and (B). For scenario
(C), the tapering method is much slower due to the multiple high-dimensional matrix mul-
tiplications in the cross-validation method. It is anticipated that, for larger p, the tapering
estimator will be much more computationally intensive compared to our method.

7. Application to non-Gaussian data

While we consider the rigorous theoretical study of our estimator for non-Gaussian data
to be out of scope of this work, in this section we would like to discuss the application of
our method to non-Gaussian data in practice.

To apply our method, one needs to ensure that the transformed data Y∗
k are approximately

Gaussian with mean H{f (xk)}. Our estimator will be minimax optimal if the deviation from
Gaussianity of Y∗

k is sufficiently small. In general, one needs to ensure that
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Table 1. Errors of the Toeplitz covariance matrix and the spectral density estimators with
respect to the spectral and L2 norms. The average computation time of the covariance esti-
mators given in seconds for one Monte Carlo sample is reported in the last column; all numbers

are multiplied by 100 except for the last column

Scenario (A): p = 5000, n = 1
Process (i) Process (ii) Process (iii) Time

‖�̂ − �‖2 ‖f̂ − f ‖2
2 ‖�̂ − �‖2 ‖f̂ − f ‖2

2 ‖�̂ − �‖2 ‖f̂ − f ‖2
2 (s)

Our method (GCV) 0.688 0.255 1.591 0.439 3.401 0.606 4.235
Our method (ML) 0.591 0.224 1.559 0.417 3.747 0.628 4.224
Tapering (semi-oracle) 0.558 0.216 2.325 0.674 3.551 0.979 4.617
Sample covariance 16 240.895 3810.680 20 291.809 3694.392 24 438.036 3809.486 0.342
Our method (GCV oracle) 0.421 0.175 1.373 0.378 3.321 0.575
Our method (ML oracle) 0.464 0.186 1.487 0.391 3.781 0.624
Tapering (oracle) 0.418 0.171 1.045 0.288 1.547 0.371

Scenario (B): p = 1000, n = 50

Process (i) Process (i) Process (iii) Time
‖�̂ − �‖2 ‖f̂ − f ‖2

2 ‖�̂ − �‖2 ‖f̂ − f ‖2
2 ‖�̂ − �‖2 ‖f̂ − f ‖2

2 (s)

Our method (GCV) 0.100 0.028 0.205 0.050 0.531 0.082 27.194
Our method (ML) 0.076 0.024 0.230 0.051 0.611 0.089 27.098
Tapering (CV) 0.110 0.031 0.218 0.055 0.348 0.073 23.908
Sample covariance 79.603 56.262 95.090 61.000 127.528 61.001 0.141
Our method (GCV oracle) 0.062 0.020 0.163 0.043 0.462 0.074
Our method (ML oracle) 0.067 0.021 0.221 0.050 0.603 0.088
Tapering (oracle) 0.057 0.020 0.133 0.037 0.265 0.055

Scenario (C): p = 5000, n = 10
Process (i) Process (ii) Process (iii) Time

‖�̂ − �‖2 ‖f̂ − f ‖2
2 ‖�̂ − �‖2 ‖f̂ − f ‖2

2 ‖�̂ − �‖2 ‖f̂ − f ‖2
2 (s)

Our method (GCV) 0.088 0.026 0.217 0.050 0.593 0.079 4.260
Our method (ML) 0.078 0.023 0.231 0.050 0.677 0.086 4.251
Tapering (CV) 0.143 0.034 0.217 0.051 0.422 0.070 635.345
Sample covariance 673.122 370.946 792.714 360.687 1 014 071.587 375.728 1.189
Our method (GCV oracle) 0.062 0.020 0.172 0.043 0.500 0.071
Our method (ML oracle) 0.069 0.021 0.224 0.048 0.663 0.085
Tapering (oracle) 0.055 0.018 0.147 0.039 0.257 0.051

GCV, generalized cross-validation; ML, restricted maximum likelihood method.

(i) the mean of (DT
j Yi)

2 is the spectral density up to a negligible error f (πxj){1 + o(1)},
(ii) the central limit theorem is applicable to Qk after appropriate centring and scaling,

(iii) the log-transform is variance stabilizing for (DT
j Yi)

2.

The first point is always satisfied, as long as both moments of DT
j Yi exist. Indeed, suppose

that Yi has a Toeplitz covariance matrix � and that the marginal distribution is non-
Gaussian with mean zero. Then, E{(DT

j Yi)
2} = (DT�D)jj = f (πxj){1 + o(1)}. The last

two points can be checked explicitly, if the distribution of Yi is known. For example, for
gamma-distributed data, the second point is clearly satisfied and the third point is proved
in the Supplementary Material.

Of course, in practice, the distribution of Yi is rarely known. Since our method relies on
the asymptotic normality of Y∗

k , one can simply check whether the data deviate from nor-
mality strongly. Application of normality tests for Y∗

k might be misleading in small samples,
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since the Y∗
k are only asymptotically Gaussian, even when the Yi are Gaussian. Therefore,

we suggest generating a Q-Q plot of Y∗
k . If this Q-Q plot shows little deviations from Gaus-

sianity then our method can be safely applied in practice. If deviations from normality are
substantial, this might indicate that the log-transform of the data is not suitable. To find an
appropriate variance-stabilizing transformation, one can employ a Box–Cox transform. To
estimate the Box–Cox transformation parameter, one must take into account correlation of
the binned data, e.g., by using the method of Guerrero (1993) developed for time series.

In the Supplementary Material we provide a small simulation study, as well as several
Q-Q plots of Y∗

k , where the distribution of �−1/2Yi was taken to be gamma and uni-
form. It can be observed that in all examples the Q-Q plots show little departure from
the Gaussian distribution and all simulation results look very similar, independent of the
distribution of Yi.

8. Application to protein dynamics

We revisit the data analysis of protein dynamics performed by Krivobokova et al. (2012)
and Singer et al. (2016). We consider data generated by the molecular dynamics simula-
tions for the yeast aquaporin, the gated water channel of the yeast Pichi pastoris. Molecular
dynamics simulations are an established tool for studying biological systems at the atomic
level on timescales of nano- to microseconds. The data are given as Euclidean coordinates of
all 783 atoms of the aquaporin observed in a 100-ns time frame, split into 20 000 equidistant
observations. Additionally, the diameter of the channel yt at time t is given, measured by
the distance between two centres of mass of certain residues of the protein. The aim of the
analysis is to identify the collective motions of the atoms responsible for the channel open-
ing. In order to model the response variable yt, which is a distance, based on the motions of
the protein atoms, we chose to represent the protein structure by distances between atoms
and certain fixed base points instead of Euclidean coordinates. That is, we calculated

Xt = {d(At,1, B1), …, d(At,783, B1), d(At,1, B2), …, d(At,783, By)} ∈ R
4·783,

where At,i ∈ R
3, i = 1, …, 783, denotes the ith atom of the protein at time t, Bj ∈ R

3, j =
1, …, 4, is the jth base point and d(·, ·) is the Euclidean distance. Figure 2 shows the diameter
yt and the distance between the first atom and the first centre of mass.

It can be concluded that a linear model Y = Xb + ε holds, where Y = (y1, …, y20 000)
T,

X = (X T
1 , …, X T

20 000)
T, b ∈ R

4·783, ε ∈ R
20 000. This linear model has two specific fea-

tures that are intrinsic to the problem: first, the observations are not independent over
time and, second, Xt is high dimensional at each t and only few columns of X are rel-
evant for Y . Krivobokova et al. (2012) have shown that the partial least-squares, PLS,
algorithm performs exceptionally well on this type of data, leading to a small dimensional
and robust representation of proteins, which is able to identify the atomic dynamics rel-
evant for Y . Singer et al. (2016) studied the convergence rates of the PLS algorithm for
dependent observations and showed that decorrelating the data before running the PLS
algorithm improves its performance. Since Y is a linear combination of columns of X , it
can be assumed that Y and all columns of X have the same correlation structure. Hence,
it is sufficient to estimate � = cov(Y) to decorrelate the data for the PLS algorithm, i.e.,
�−1/2Y = �−1/2Xb+�−1/2ε results in a standard linear regression with independent errors.

Our goal now is to estimate � and compare the performance of the PLS algorithm on
original and decorrelated data. For this purpose, we divided the dataset into a training and
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Fig. 2. Distance between (a) the first atom and the first centre of mass of aquaporin and (b) the opening
diameter yt over time t.

a test set, each with p = 10 000 observations. First, we tested whether the data are station-
ary. The augmented Dickey–Fuller test confirmed stationarity for Y with a p-value < 0.01.
The Hurst exponent of Y is 0.85, indicating moderate long-range dependence supported
by a rather slow decay of the sample covariances; see the grey line in Fig. 3(a). Therefore,
we set q = 1 for our estimator to match the low smoothness of the corresponding spec-
tral density. Application of the R package forecast, which implements the approach of
Guerrero (1993) to estimate the Box–Cox transform parameter, confirms that the log-
transform is appropriate for these data. The bin number is set to T = 2500, i.e., υ ≈
0.85. The smoothing parameter of the log-spectral density is selected with generalized
cross-validation. The black line in Fig. 3(a) confirms that the covariance matrix estimated
with our method almost completely decorrelates the channel diameter Y on the training
dataset. Next, we estimated the regression coefficients b with the usual partial least-squares
algorithm, ignoring the dependence in the data. Finally, we estimated b with the partial
least-squares algorithm that takes into account dependence using our covariance estimator
�̂. Based on these regression coefficient estimators, the prediction on the test set was cal-
culated. Figure 2(b) shows the Pearson correlation between the true channel diameter on
the test set and the prediction on the same test set based on raw (in grey) and decorrelated
data (in black). Obviously, the performance of the partial least-squares algorithm on the
decorrelated data is significantly better for smaller numbers of components. In particular,
with just one component, the correlation between the true opening diameter on the test set
and its prediction that takes into account the dependence in the data is already 0.45, while
it is close to zero for the partial least-squares method that ignores the dependence in the
data. Krivobokova et al. (2012) showed that the estimator of b based on one PLS compo-
nent is exactly the ensemble-weighted maximally correlated mode, which is defined as the
collective mode of atoms that has the highest probability to achieve a specific alteration
of response Y . Therefore, an accurate estimator of this quantity is crucial for the interpre-
tation of the results and can only be achieved if the dependence in the data is taken into
account.

Estimating � with a tapered covariance estimator has two practical problems. First,
since we only have a single realization of a time series Y , i.e., n = 1, there is no
data-driven method for selecting the tapering parameter. Second, the tapering estimator
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Fig. 3. (a) The correlation function of Y (grey) and of �̂−1/2Y (black), where �̂ is estimated with our method.
(b) Correlation between the true values on the test dataset and the prediction based on partial least squares

(grey) and corrected partial least squares (black).

turned out to be not positive definite for the data at hand. To solve the second prob-
lem, we truncated the corresponding spectral density estimator f̂tap to a small positive
value, i.e., f̂ +

tap = max{f̂tap, 1/ log p} (McMurry & Politis, 2010; Cai et al., 2013). To
select the tapering parameter with cross-validation, we experimented with different sub-
series lengths and found that the tapering estimator is very sensitive to this choice. For
example, estimating the tapered covariance matrix based on subseries of length 8/15/30
yields a correlation of 0.42/0.53/0.34 between the true diameter and the first component,
respectively.

In summary, our proposed estimator is fully data driven, fast even for large sample
sizes, automatically positive definite and can handle certain long-memory processes. The
protein data example and further simulations in the Supplementary Material suggest that
our approach yields robust estimators even when data are not normally distributed. In
contrast, the tapering estimator is not data driven in all data scenarios and must be manip-
ulated to become positive definite. To the best of our knowledge, the tapering estimator
has not been studied for non-Gaussian data. Our method is implemented in the R package
vstdct.
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The Supplementary Material includes a summary of periodic smoothing splines, proofs
of Lemma 1 and Theorem 1, proofs of the auxiliary results used in the proof of Theorem 1,
simulation results for non-Gaussian data, and Q-Q plots of the binned and transformed
data Y∗

k .
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Appendix

A.1. Proof of Theorem 1

Throughout the Appendix, we denote by c, c1, C, C1, . . . etc. generic constants that are indepen-
dent of n and p. To simplify the notation, the constants are sometimes skipped and we write � for
less than or equal to up to constants.

The structure of the proof is as follows. First, we derive the L∞ rate of the periodic smooth-
ing spline estimator ˆH(f ). Then, using the Cauchy–Schwarz inequality and a mean value argu-
ment, the convergence rate of the spectral density estimator f̂ is established. With the relationship
E‖�̂ − �‖ � E‖f̂ − f ‖2

∞, the first claim of the theorem follows. Finally, we prove the second state-
ment on the precision matrices. For the sake of clarity, the proofs of the auxiliary Lemmas 2, 3 and
4, and the proof of the convergence rate of f̂ and of the precision matrices are listed separately in the
Supplementary Material.

First we derive an upper bound on E‖ ˆH(f ) − H(f )‖2
∞.

PROPOSITION 1. Let � = �(f ) with f ∈ Fβ such that β > 0. If h > 0 such that h → 0 and
hT → ∞, then, with T = 
pυ� for any υ ∈ (1 − min{1, β}/3, 1), estimator ˆH(f ) described in § 3 with
q = max{1, γ } satisfies, for p → ∞ and n such that pmin{1,β}/n → c ∈ (0, ∞],

E‖ ˆH(f ) − H(f )‖2
∞ = O{log(np)/(nph)} + O(h2β).

Proof. Application of the triangle inequality yields a bias-variance decomposition

E‖ ˆH(f ) − H(f )‖2
∞ � 2E‖ ˆH(f ) − E{ ˆH(f )}‖2

∞ + 2‖E{ ˆH(f )} − H(f )‖2
∞.

Set T̃ = 2T − 2 and xk = (k − 1)/T̃ for k = 1, …, T̃ . The periodic smoothing spline estima-
tor ˆH(f ) can be represented as a kernel estimator with respect to a kernel function W(x, y) or the
scaled version Kh(x, t) = hW(x, t). An explicit representation of the kernel is derived by Schwarz &
Krivobokova (2016). A summary of their results is given in the Supplementary Material. Lemma 4
listed in the Supplementary Material gives the following decomposition of ˆH(f )(x) for x ∈ [0, 1] into
a deterministic, a Gaussian and a non-Gaussian part:

ˆH(f )(x) = 1

T̃

T̃∑
k=1

W(x, xk)Y ∗
k = 1

T̃h

T̃∑
k=1

Kh(x, xk)[H{f (xk)} + εk + ζk + ξk].

Here |εk| � (np)−1 + (np)−β log p, ζk ∼ N (0, m−1) with cov(ζk, ζl) = O{p−2 + p−2β(log p)2} for k |= l.
The random variable ξk satisfies E|ξk|� � (log m)2�{m−� + (T−1 + T−1p1−β log p)�} for each integer
� > 1 and has mean zero. Mirroring and renumerating ζk, ηk, εk is similar to that for Y ∗

k , k = 1, …, T̃ .
Now we derive an upper bound on the variance. Using the above representation, one can write

E‖ ˆH(f ) − E{ ˆH(f )}‖2
∞ = E

∥∥∥∥ 1

T̃

T̃∑
k=1

W(x, xk)(ζk + ξk)

∥∥∥∥2

∞
. (A1)

First, we bound the supremum by a maximum over a finite number of points. If q > 1 then W(·, xk)

is Lipschitz continuous with constant L > 0. In this case, it holds almost surely that

sup
x∈[0,1]

∣∣∣∣ 1

T̃

T̃∑
k=1

W(x, xk)(ζk + ξk)

∣∣∣∣2

�
[

max
1�j�T̃

∣∣∣∣ 1

T̃

T̃∑
k=1

W(xj, xk)(ζk + ξk)

∣∣∣∣
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+ sup
x,x′∈[0,1], |x−x′|<1/T̃

∣∣∣∣ 1

T̃

T̃∑
k=1

{W(x, xk) − W(x′, xk)}(ζk + ξk)

∣∣∣∣
]2

� 2 max
1�j�T̃

∣∣∣∣ 1

T̃

T̃∑
k=1

W(xj, xk)(ζk + ξk)

∣∣∣∣2

+ 2L2

T̃4

( T̃∑
k=1

|ζk + ξk|
)2

.

Using E{(∑T̃
k=1 |ζk + ξk|)2} � E{(∑T̃

k=1 |ζk|)2} + E{(∑T̃
k=1 |ξk|)2} � T̃2m−1, one gets

(A1) � E
{

max
1�j�T̃

∣∣∣∣ 1

T̃

T̃∑
k=1

W(xj, xk)(ζk + ξk)

∣∣∣∣2}
+ o{(np)−1}. (A2)

If q = 1 then
∑T̃

k=1 W(·, xk) is a piecewise linear function with knots at xj = j/T̃ . The factor (ζk + ξk)

can be considered as stochastic weights that do not affect the piecewise linear property. Thus, the
supremum is attained at one of the knots xj = j/T̃ for j = 1, …, T̃ , and (A2) is also valid for q = 1.
Again with (a + b)2 � 2a2 + 2b2, we obtain

(A1) � E
{

max
1�j�T̃

∣∣∣∣ 1

T̃

T̃∑
k=1

W(xj, xk)ζk

∣∣∣∣2}
+E

{
max

1�j�T̃

∣∣∣∣ 1

T̃

T̃∑
k=1

W(xj, xk)ξk

∣∣∣∣2}
+o{(np)−1}.

We start with bounding T1 = E{max1�j�T̃ |(T̃h)−1
∑T̃

k=1 Kh(xj, xk)ζk|2} with Lemma 1.6 of Tsybakov
(2009). This requires a bound on ‖(T̃h)−1

∑T̃
k=1 Kh(xj, xk)ζk‖2

ψ2
, where ‖·‖ψ2 denotes the sub-Gaussian

norm. In the case of a Gaussian random variable the norm equals the variance. See Vershynin (2018)
for further details on the sub-Gaussian distribution.

Using the properties of the kernel function Kh stated in Lemma 2 of the Supplementary Material,
we obtain

∥∥∥∥ 1

T̃h

T̃∑
k=1

Kh(xj, xk)ζk

∥∥∥∥2

ψ2

= var
{

1

T̃h

T̃∑
k=1

Kh(xj, xk)ζk

}

= 1

T̃2h2

T̃∑
k=1

Kh(xj, xk)
2var(ζk)

+ 1

T̃2h2

T̃∑
k=1

Kh(xj, xk)

T̃∑
l=1

Kh(xj, xl)cov(ζk, ζl)

� C(Thm)−1 + C′{p−2 + p−2β(log p)2}.

Lemma 1.6 of Tsybakov (2009) then yields

T1 � log(2T̃)[C(Thm)−1 + C′{p−2 + (log p)2p−2β}] = O{(Thm)−1 log(2T̃) + h2β}.

To see this, note that pmin{1,β}/n → c ∈ (0, ∞] implies that p−1 = O(n−1). Thus, if β > 1 then

log(2T̃){p−2 + p−2β(log p)2} � log(2T̃)p−2 � log(2T̃)(Tm)−1.

Now consider 0 < β � 1. Recall that T = 
pυ� for some fixed υ ∈ (1 − min{1, β}/3, 1). One can find
a constant a = Cυ depending on υ, but not on n, p such that the inequality log(x) � xa/a implies that
log(2T̃) log(p)2p−2βT2β = O(1). Thus, log(2T̃) log(p)2p−2β = O(h2β) since hT → ∞ by assumption.
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Next, we derive a bound for the second term T2 = E{max1�j�T̃ |(T̃h)−1
∑T̃

k=1 Kh(xj, xk)ξk|2}. The
exponential decay property of the kernel Kh, see Lemma 2 in the Supplementary Material, yields

T2 � E
{

max
1�j�T̃

∣∣∣∣ 1

T̃h

T̃∑
k=1

γh(xj, xk)|ξk|
∣∣∣∣2}

,

where γh(x, t) = γ |x−t|/h + γ 1/h{γ (x−t)/h + γ (t−x)/h}(1 − γ 1/h)−1 and γ ∈ (0, 1) is a constant. For some
threshold R > 0 specified later, define ξ−

k = |ξk|1{|ξk| � R} and ξ+
k = |ξk|1{|ξk| > R}. Then,

T2 � E
{

max
1�j�T̃

∣∣∣∣ 1

T̃h

T̃∑
k=1

γh(xj, xk)ξ
−
k

∣∣∣∣2}
+ E

{
max

1�j�T̃

∣∣∣∣ 1

T̃h

T̃∑
k=1

γh(xj, xk)ξ
+
k

∣∣∣∣2}
. (A3)

The first term in (A3) can be bounded, again with Lemma 1.6 of Tsybakov (2009). We use the
fact that, for not necessarily independent random variables X1, …, XN with |Xi| < R, i = 1, …, N,
it holds that ‖∑N

i=1 aiXi‖2
ψ2

� 4R2
∑N

i=1 a2
i , where a1, …, aN ∈ R and R > 0 are constants. This is a

consequence of Lemma 1 of Azuma (1967), which yields E{exp(λ
∑N

i=1 aiXi)} � exp(λ2R2
∑N

i=1 a2
i )

for all λ ∈ R. Thus, for all t > 0, pr(|∑N
i=1 aiXi| > t) � 2 exp(−λt + λ2R2

∑N
i=1 a2

i ) holds.
Setting λ = (t/2)(R2

∑N
i=1 a2

i )
−1, it follows that

∑N
i=1 aiXi has a sub-Gaussian distribution and the

sub-Gaussian norm is bounded by 2R(
∑N

i=1 a2
i )

1/2. Together, we get
∥∥(T̃h)−1

∑T̃
k=1 γh(xj, xk)ξ

−
k

∥∥2

ψ2
�

4R2(T̃h)−2
∑T̃

k=1 γh(xj, xk)
2 � R2(T̃h)−1, where we have used the bound on γh from Lemma 2.

Applying Lemma 1.6 of Tsybakov (2009) then yields

E
{

max
1�j�T̃

∣∣∣∣ 1

T̃h

T̃∑
k=1

γh(xj, xk)ξ
−
k

∣∣∣∣2}
� R2

T̃h
log(2T̃). (A4)

To bound the second term in (A3), we use the moment bounds for ξk derived in Lemma 4. Then,
for all integers � > 1,

E
{

max
1�j�T̃

∣∣∣∣ 1

T̃h

T̃∑
k=1

γh(xj, xk)ξ
+
k

∣∣∣∣2}

= E
{

max
1�j�T̃

∣∣∣∣ 1

T̃h

T̃∑
k=1

γh(xj, xk)(ξ
+
k )�(ξ+

k )1−�

∣∣∣∣2}

� R2−2�E
{

max
1�j�T̃

1

T̃2h2

T̃∑
k=1

γh(xj, xk)
2

T̃∑
k=1

(ξ+
k )2�

}

� R2−2�E
(

C1

T̃h

T̃∑
k=1

ξ 2�
k

)

� h−1R2−2�(log m)4�{m−2� + (T−1 + T−1p1−β log p)2�}. (A5)

Combining the error bounds (A4) and (A5) and choosing R = m−1/2 gives

T2 � log T
mTh

+ (log m)4�

hm1−�
×

⎧⎨
⎩

(log p)2�p2�(1−β)

T2�
+ m−2�, 0 < β � 1,

T−2� + m−2�, 1 < β.

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/article/111/3/843/7582326 by guest on 03 January 2025

https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asae002#supplementary-data
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asae002#supplementary-data
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asae002#supplementary-data


Nonparametric estimation of Toeplitz covariance matrices 861

By assumption, T = 
pυ� and m = 
np(1−υ)� for some fixed υ ∈ (1 − min{1, β}/3, 1). If � is an
integer such that � � 1/(1 − υ) then

m�−1(log m)4�m−2� � m−l � n−�p−(1−υ)� = O{(np)−1},
where we have used log x � xa/a with a = 1/(4�). Now, consider 0 < β � 1. Then, n � cpβ

by assumption. Let 0 < χ < 1 be a small constant. Using the inequality log x � xa/a twice with
a = χ/(2�) gives

m�−1(log m)4�(log p)2�p2�(1−β)T−2� � n�−1+χp(1−υ)(�−1+χ)−2�υ+2�(1−β)+χ

� p�(3−3υ−β)+(β+χ+1)(1−v)+χ . (A6)

For υ ∈ (1 − β/3, 1), the condition �(3 − 3υ − β) + (β + χ + 1)(1 − v) + χ < −2 is equivalent to
� > {−2 − (β + χ + 1)(1 − v) − χ}/(3 − 3υ − β). Thus, for any fixed υ, one can find an integer � that
is independent of n, p such that the right-hand side of (A6) is of O(p−2). For the same choice of �, it
holds that m�−1(log m)4�T−2� = O(p−2).

In total, choosing an integer � � max[1/(1−υ), {−2− (β +χ +1)(1− v)−χ}/(3−3υ −β)] gives

E‖ ˆH(f ) − E{ ˆH(f )}‖2
∞ = O

{
log(np)

nph
+ h2β

}
. (A7)

Next we derive an upper bound on the bias. Using the representation in Lemma 4 once more gives,
for each x ∈ [0, 1],

E{ ˆH(f )(x)} − H{f (x)} = 1

T̃h

T̃∑
k=1

Kh(x, xk)[H{f (xk)} + εk] − H{f (x)}.

The bounds on εk imply that

∣∣∣∣ 1

T̃h

T̃∑
k=1

Kh(x, xk)εk

∣∣∣∣ � 1

T̃h

T̃∑
k=1

γh(xj, xk)|εk| � (np)−1 + (np)−β log p.

Consider the case in which β � 1. In particular, q = γ and f (q) is α-Hölder continuous. Since f is a
periodic function with f (x) ∈ [δ, M0] and H(y) ∝ φ(m/2) + log(2y/m), it follows that {H(f )}(q) is
also α-Hölder continuous. Extending g = H(f ) to the entire real line, we get

1

T̃h

T̃∑
k=1

Kh(x, xk)g(xk) =
∫ ∞

−∞
h−1Kh(x, t)g(t) dt + O(T̃−β),

where Kh is the extension of Kh to the entire real line (Schwarz & Krivobokova, 2016). Expanding g(t)
in a Taylor series around x and using the fact that h−1Kh is a kernel of order 2q (see Lemma 2(iii)), it
follows that, for any x ∈ [0, 1],

1

T̃h

T̃∑
k=1

Kh(x, xk)g(xk) = g(x) +
∫ ∞

−∞
h−1Kh(x, t)(x − t)q g(q)(ξx,t)

q! dt + O(T̃−β)

= g(x) +
∫ ∞

−∞
h−1Kh(x, t)(x − t)q g(q)(ξx,t) − g(q)(x)

q! dt + O(T̃−β)

= g(x) +
∞∑

l=−∞

∫ x+lh

x+(l−1)h
Kh(x, t)(x − t)q g(q)(ξx,t) − g(q)(x)

hq! dt + O(T̃−β),
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where ξx,t is a point between x and t. Using the facts that kernel Kh decays exponentially and that g(q)

is α-Hölder continuous on [δ, M0] with some constant L, one obtains

∣∣∣∣ 1

T̃h

T̃∑
k=1

Kh(x, xk)g(xk) − g(x)

∣∣∣∣ � CL
q!

∞∑
l=−∞

∫ x+lh

x+(l−1)h
γ |x−t|/h|x − t|q |ξx,t − x|α

hq! dt + O(T̃−β)

� CL
q!

∞∑
l=−∞

∫ x+lh

x+(l−1)h
γ |x−t|/h |x − t|β

h
dt + O(T̃−β)

� hβ CL
q!

∞∑
l=−∞

γ |l−1||l|β + O(T̃−β)

= O(hβ) + O(T̃−β).

If 0 < β � 1 then q = 1 and g is β-Hölder continuous. Since f (x) ∈ [δ, M0] and the logarithm
is Lipschitz continuous on a compact interval, it follows that g = H(f ) is β-Hölder continuous.
Expanding g to the entire line and using Lemma 2(iii) with m = 0 gives

1

T̃h

T̃∑
k=1

Kh(x, xk)g(xk) − g(x) =
∫ ∞

−∞
Kh(x, t)

g(t) − g(x)

h
dt + O(T̃−β).

In a similar way as before, one obtains

∣∣∣∣ 1

T̃h

T̃∑
k=1

Kh(x, xk)g(xk) − g(x)

∣∣∣∣ = O(hβ) + O(T̃−β).

Note that T̃−β = o(hβ) as hT → ∞ and h → 0 by assumption. Since the derived bounds are uniform
for x ∈ [0, 1], it holds that

‖E{ ˆH(f )(x)} − H{f (x)}‖∞ = O(hβ) + O{(np)−1 + (np)−β log p}. (A8)

Putting bounds (A7) and (A8) together gives

E[‖ ˆH(f ) − H(f )‖2
∞] = O{log(np)/(nph)} + O(h2β).

This completes the proof of Proposition 1. �

Now we consider an upper bound on E‖f̂ − f ‖2
∞.

PROPOSITION 2. Let � = �(f ) with f ∈ Fβ such that β > 0. If h > 0 such that h → 0 and hT → ∞,
then, with T = 
pυ� for any υ ∈ (1 − min{1, β}/3, 1), estimator f̂ described in § 3 with q = max{1, γ }
satisfies, for p → ∞ and n such that pmin{1,β}/n → c ∈ (0, ∞] ,

E‖f̂ − f ‖2
∞ = O{log(np)/(nph)} + O(h2β).

The proof of Proposition 2 is given in the Supplementary Material.
For an upper bound on E‖�̂ − �‖2, using the facts that the spectral norm of a Toeplitz matrix is

upper bounded by the supremum norm of its spectral density, and that Proposition 2 holds for every
f ∈ Fβ , we get

sup
f ∈Fβ

Ef ‖�̂ − �(f )‖2 � sup
f ∈Fβ

Ef ‖f̂ − f ‖2
∞ = O{log(np)/(nph)} + O(h2β). (A9)
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Minimizing the right-hand side of (A9) for the bandwidth parameter h yields h � {log(np)/

(np)}1/(2β+1). In particular, h → 0. Furthermore, hT � cp1−min{β,1}/3−(1+min{1,β})/(2β+1){log(np)}1/(2β+1) →
∞ since, by assumption, n � pmin{1,β} and T = 
pυ� with υ ∈ (1 − min{1, β}/3, 1). Thus, substituting
h � {log(np)/(np)}1/(2β+1) into (A9) gives the second result.
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