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Abstract

Ziel dieser Masterarbeit ist es, eine Machbarkeits- und Rentabilitätsprüfung für
das Angebot von Zeitfenstern für die Zustellung am nächsten Tag im Hauszustel-
lungssystem vorzustellen. Ähnlich wie die meiste akademische Literatur zum
Thema Zeitfenstermanagement betrachten wir auch in diesem Beitrag ein deter-
ministisches VRPTW mit einem Depot als Routing-Kontext. Wir konzentrieren
uns auf den Einsatz von Methoden des maschinellen Lernens (ML), d.h. überwachte
Ansätze, um festzustellen, ob eine machbare und profitable Lösung existiert, wenn
die Nachfrage eines Kunden in einen aktuellen Routingplan aufgenommen wird.
Dabei werden Informationen über die Kosten der bestellten Artikel, Lieferkosten,
Fahrerkosten und den Nettogewinn des Artikels berücksichtigt. Verschiedene Net-
zwerkarchitekturen, z. B. mehrschichtige Perzeptronen [1] und rekurrente neu-
ronale Netze [2], oder klassische Klassifizierungsmethoden, z. B. Entscheidungs-
baum Klassifizierer [3], Random-Forest-Klassifizierer [4], usw., können verwen-
det werden, um die Leistung des vorgeschlagenen ML-basierten Ansatzes anhand
von Simulationen und realen Daten zu analysieren. Andere Methoden aus der Lit-
eratur können ebenfalls in Betracht gezogen werden. Klassische Methoden wie
Einfügungsheuristiken, kontinuierliche Approximation und Ordnungsschwellen-
wertverfahren können für die Durchführung des Benchmarking-Ergebnisses unter
Verwendung der vorgeschlagenen Methoden in Betracht gezogen werden.
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1 Introduction

The focus of the thesis is introduced and motivated in this chapter. Subsequently,
a literature review is given to clarify the research gap and to introduce the research
direction.

1.1 Motivation

E-commerce has shown tremendous growth in recent decades [5, 6]. During the
COVID-19 pandemic, this growth has been accelerated more than our expectation [7,8].

E-commerce often involves a process that lets customers choose a delivery time slot to
receive their goods. This process is called Attended Home Deliveries with Time Slot-
ting (AHD w. TS). Note that AHD is often required due to security reasons, such as
high-value goods, perishable goods, and physically large goods, e.g., household appli-
ances. This implementation provides a high level of customer service and avoids costly
delivery failures [9]. If the delivery fails due to either the customers (not available to
receive the orders) or the logistic department (not offering the right time slots), goods
must be offered for delivery at another time, incurring additional storage, transporta-
tion, and scheduling costs. Additionally, for perishable goods, the cost of a delivery
failure is even higher, as the goods may be damaged before the next delivery opportu-
nity. Early studies have shown that the cost of AHD is often double the cost of unat-
tended delivery [10]. However, to attract more customers and provide better services,
AHD with time slot service has become popular among e-commercial companies, e.g.,
Amazon [11], PostNord [12].

Figure 1: Customer’s perspective of the ordering process [13].

The ordering process, from a customer viewpoint, is illustrated in Fig.1, consisting
of five stages. In the first stage, a customer fills a basket with desired items. Then this
customer’s location is received via the sign-in process in the second stage. After signing,
the computing engine of the website has to offer feasible time slots to the customer in the
third stage. To this end, the time between the second stage and the third stage is called
the offering time ∆O. Note that a time slot for a new customer is feasible if there is a
feasible route to serve that customer given the orders already accepted and the available
fleet capacity. Generally, this requires solving a vehicle routing problem with time
windows (VRPTW) known as NP-hard problem [14], i.e., the optimal solution to this
problem cannot be computed in polynomial time. Thus, several heuristic approaches
can speed up the computation process to find sub-optimal solutions. Additionally, since

4



each 100ms delay in the load time of websites can decrease sales conversion by 7%
[15], the offering time ∆O, spent checking feasibility, is an important factor.

Note that solving optimally VRPTW with a medium size of customers (over 100
customers) is still a challenge for modern computers. However, the feasibility check,
e.g., [16], [17], for several pre-defined time slots, which does not require solving explic-
itly VRPTW, can be an alternative solution to find a feasible set of time slots within a
short offering time. The state-of-the-art will be discussed in the next section, including
the research gaps and the importance of investigating the research questions.

1.2 Literature review

Combinatorial optimization problems (COPs) have immense practical applications,
e.g., industrial manufacturing [18–20], planning in logistics [21–23] and power grid
[24], and systems biology [25]. One of the most famous COPs, the Travelling Salesman
Problem (TSP) contains the following question: “Given a list of cities and the distances
between each pair of cities, which is the shortest possible route that visits each city
and returns to the origin city?". In real-world and practical scenarios, the original TSP
can involve challenging constraints such as time windows constraints, i.e., the vehicle
routing problem with time windows (VRPTW) [26, 27].

Attended Home Delivery (AHD) [9] is also a variant of the TSP. The AHD, also
named last-mile operations supporting, is currently the leading business model in the
e-commercial sector. In AHD, the delivery service is typically characterized by time
windows and at the selected location of the customer. Additionally, the presence of
customers is required during this delivery time. Determining the set of feasible time
slots that can be offered to the customer in real time is one of the main challenges of
the AHD. Given the accepted orders with corresponding customers and the available
fleet capacity, a time slot is determined when there is an available route that can be in-
tegrated into the current delivery plan. This process involves solving multiple VRPTW
problems. Since a VRPTW problem is NP-Hard which cannot be solved optimally at a
large scale, a feasibility check is a core element of providing a feasible set of time slots
in AHD, see [28]. Other methods, which steer the demand of customers by applying
dynamic prices taking into account incentivizing certainly feasible slots, are proposed
in [29], [30], and [31]. Cleophas et al. [32] proposed a method to decide which time
slots to offer based on the expected delivery, revenue, and opportunity cost.

Since obtaining the exact optimal solution for the VRPTW is impossible for medium
size of customers, insertion heuristics is an alternative method to quickly compute fea-
sible solutions, see, e.g., [17], [9]. This method evaluates whether it is possible to insert
a new customer’s demand for a given time slot in an already computed route that serves
the existing customers. However, in a large-scale AHD system, the computation time
becomes a problem when trying to insert a customer in several plans for multiple po-
tential time slots. For example, fast insertion heuristics [33] do not perform well for a
medium-size AHD system since it relies on a single route plan without taking into ac-
count intermediate re-optimization. Furthermore, there are several heuristic constraints
such as travel times, work time rules [34], geo-coding the new customer location, and
updating the distance matrix [35], which increases the complexity of the feasibility
check.
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Since the hard nature of optimally solving COPs and state-of-the-art algorithms mainly
rely on handcrafted heuristics, machine learning naturally becomes the best candidate in
a more principled and optimized way [36]. Recently, Van der Hagen et al. [16] propose
machine learning-based feasibility checks for dynamic time slot management. This
method employs a neural network to predict feasibility based on patterns in the instance
data, e.g., orders and fleet information. In their work, the feasibility check is modeled
as a binary classification by employing some existing supervised learning methods,
Random Forest (RF), Neural Network (NN), and gradient-boosted trees (GB). The pro-
posed method in [16] shows higher accuracy than several state-of-the-art methods, e.g.,
insertion heuristics [37], Order thresholds [38], and Continuous approximation [17].
Recently, Larsen et al. [39] employs machine learning to assess the value of accepting
a booking demand for a shipment of inter-modal containers by rail if the associated
expected profit is positive. The performances of the classification and the regression
approach utilized in [39] are faster compared to the state-of-the-art integer linear pro-
gramming (LIP) solver and quite accurate compared to the ground-truth values.

In this thesis work, we will focus on the potential of using a machine learning-based
approach to support decision-making for combinatorial optimization problems for time
slot management in an AHD system. However, there are noticeable research gaps in the
current state of the art. For instance, the proposed machine learning-based feasibility
checks in [16] do not consider different time window lengths. This leads to the lack of
the generality of the solution since the time window constraints are the important inputs
for the model utilized in [16]. Additionally, since the corresponding delivery cost of
an offer can outweigh the receiving profit of the overall delivery plan, it is important to
consider whether or not to offer this time slot to a customer. Note that this problem is
well-considered in the literature. For example, Cleophas and Ehmke [32] considered a
given transport capacity and the expected value of the orders to suggest a way of making
an AHD system in metropolitan areas more profitable. An important keynote in [32]
is to maximize the overall value of orders rather than the number of orders in order to
be profitable in the e-commercial sector. More recently, Koehler et al. [40] proposed
a customer acceptance mechanism that is based on delivery cost approximation. The
proposed method in [40] is designed to help a retailer to accept as many customers
as possible to stay profitable. However, since the approach [40] does not utilize time
window constraints in the cost approximation function, the method becomes inferior
when the demand for time windows is imbalanced. In this thesis work, a machine
learning-based approach can be used to investigate both the feasibility and profitability
of AHD with time windows.

1.3 Research questions

Through the literature review, the following research questions are taken into account
in this thesis work

• “How can the proposed machine learning (ML)-based feasibility tests for AHD
be adapted to different time window lengths?” This leads to the following sub-
questions:

– (1) “How the proposed ML-based approach behaves in different time win-
dow lengths?”
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– (2) “Is there a way to adapt the proposed approach when considering differ-
ent time window lengths in a certain scenario, so it will work more effec-
tively and sufficiently?”

• “Can the proposed ML-based approach predict the profitability of a given time
slot?”. In other words, if the profit of the current plan can be estimated contin-
uously or discretely using the proposed ML-based approach. One possible ap-
proach is to utilize binary classifications to predict discrete variables (yes or no)
or discrete ranges of the profit value. Another approach is considered to predict
profitability on a continuous scale by using regression models. Classical methods,
e.g., Logistic Regression, K-Nearest Neighbours, Support Vector Machines, Sup-
port Vector Regression, and Random Forest Regression, are taken into account
for the classification and regression approach.

1.4 Objective and Methodology

The goal of this work is to present a feasibility and profitability check for offering
time slots for the next-day delivery in the attended home delivery system. Similar to
most academic literature on time slot management, in this work we also consider a
deterministic VRPTW with a depot as the routing context.

Different characteristics of the time window length, e.g., wider and tighter time win-
dows, will be considered for the data input to verify the effectiveness of the proposed
algorithm. Different scenarios will be taken into account such as different distributions
of the customers’ locations with different time window lengths.

We focus on the use of machine learning (ML)-based methods, i.e., supervised ap-
proaches [41], to determine whether a feasible and profitable solution exists when a
customer’s demand is included in a current routing plan. Information about the cost of
the items ordered, the delivery cost, the driver cost, and the net profit of the item are
considered. Different network architectures, e.g., multi-layer perceptrons [1] and recur-
rent neural networks [2], or using classical classification methods, e.g., Decision Tree
Classifier [3], Random forest classifier [4], etc, can be employed to analyze the per-
formance of the proposed ML-based approach using simulations and real data. Other
methods in literature can also be considered. Classical methods such as insertion heuris-
tics, continuous approximation, and order thresholds, can be considered to perform the
benchmarking result with the proposed methods.
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2 Problem definition

Recall Figure 1, in the first stage, the customer selects items to add to their basket.
Then, in the second stage, the customer signs in, allowing the system to record their
location. After sign-in, as shown in Figure 2, the system proceeds to the third stage,
where it presents the customer with feasible time slots for delivery or pickup. This
selection process relies on a fast computation that factors in the current route plan,
optimizing for multiple customers and considering constraints like vehicle capacity and
time windows (VRP-TW).

At this point, the Vehicle Routing Problem with Time Windows (VRP-TW) becomes
critical. To maintain a positive user experience, it’s essential that the VRP-TW so-
lution provides an optimal delivery plan within a very short time frame (e.g., within
three seconds), thereby satisfying the customer’s preferences and enabling trust in the
system. In the subsequent subsections, a detailed formulation of the VRP-TW opti-
mization problem is provided, including constraints and parameters tailored to address
the maximum number of capacitated vehicles and the constrained time windows, and
several customers.

Figure 2: Multiple VRP-TW problems have to be solved within the small time window
to give the customer feasible time slots.

It is obvious that solving multiple VRP-TW problems cannot guarantee a solution
within a linear time as the number of customers increases. Therefore, the main focus
of this thesis is to employ a machine learning-based method to predict whether, given a
selected time slot and the current route plan, a feasible delivery plan can be made and
whether following that plan will still provide a benefit. To achieve this, after presenting
the mathematical formulation of the VRP-TW in Subsection 2.1, we will introduce the
data generation pipeline in Subsection 2.2 used to collect the necessary data for the
machine learning approach.

2.1 Mathematical formulation of the VRP-TW problem

We consider a VRPTW over a graph G = {V ,A}, where:
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• V is the set of nodes, including customer nodes {v1, v2, . . . , vnc} and a depot node
vd.

• K = {k1, k2, . . . , knk
} is the set of available vehicles.

• Each customer i ∈ V has a demand di and a time window [ti, ti].

• Each vehicle has a capacity c and starts and ends its route at the depot vd.

The binary variable xijk denotes whether vehicle k travels from node i to node j, and
ai is the arrival time at node i.

The VRPTW is formulated as follows:

min
x,a

∑
k∈K

∑
i∈V

∑
j∈V

xijkcijk, (1.1)∑
k∈K

∑
j∈V

xijk = 1, ∀i ∈ V , (1.2)∑
j∈V

x(vd)jk = 1, ∀k ∈ K, (1.3)∑
i∈V

xi(vd)k = 1, ∀k ∈ K, (1.4)∑
j∈V

xijk −
∑
j∈V

xjik = 0, ∀i ∈ V , ∀k ∈ K, (1.5)

ti ≤ ai ≤ ti, ∀i ∈ V , (1.6)
aj ≥ ai + si + tij −M(1− xijk), ∀i, j ∈ V ,∀k ∈ K, (1.7)∑
i∈V

dixijk ≤ c, ∀k ∈ K, (1.8)

ui − uj + nc · xijk ≤ nc − 1, ∀i, j ∈ V ,∀k ∈ K, (1.9)
xijk ∈ {0, 1}, ∀i, j ∈ V , ∀k ∈ K. (1.10)

Sub equations in (1) are explained in the following

• The objective function (1.1) minimizes the total transportation cost, consisting of
the travel cost between nodes and a fixed cost for each vehicle’s usage. cijk is the
cost of using the vehicle k for transporting from customer i to the customer j

• Constraint (1.2) ensures that each customer is visited exactly once by any vehicle.

• Constraints (1.3) and (1.4) specify that each vehicle starts and ends its route at
the depot.

• Constraint (1.5) enforces flow conservation, ensuring that if a vehicle arrives at a
customer node, it must also leave that node.

• Constraint (1.6) enforces each customer’s specified time window.
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• Constraint (1.7) establishes the arrival time at each node, considering travel and
service times. Here, M is a large constant that deactivates this constraint if the
vehicle does not travel from i to j.

• Constraint (1.8) limits the total demand served by each vehicle to its capacity c.

• Constraint (1.9), the Miller-Tucker-Zemlin (MTZ) subtour elimination constraint
[42], prevents subtours within each vehicle’s route by using a ranking variable ui.

• Constraint (1.10) specifies that xijk is a binary decision variable, indicating whether
vehicle k travels from node i to j.

2.2 Data generation

To train a machine learning (ML) model for checking delivery time slot feasibility,
instances’ labels are generated as either feasible or infeasible using a VRP-TW solver,
i.e., CPLEX. This approach is designed to automate the time-consuming task of de-
termining whether a new customer’s request can be accommodated within existing de-
livery constraints. The training process involves creating a dataset of feasibility check
instances and labeling each instance according to whether it is feasible or infeasible
given current routing and time window constraints. However, simply generating in-
stances through random sampling of customer–time slot combinations often produces
cases that are either unrealistic or extremely infeasible. These unrealistic scenarios may
include instances where feasibility cannot be achieved without removing a large number
of customers, which would rarely occur in real-world operations.

To address this, in this thesis, a simulation that emulates the actual customer time slot
booking process is implemented. This simulation generates realistic feasibility check
instances that closely mimic practical scenarios encountered in real-world delivery op-
erations. By replicating the sequential nature of customer bookings, our simulation
ensures that the generated instances are not only varied but also realistic, avoiding the
generation of extreme or impractical cases. The steps of this simulation process are
illustrated in Figure 3, which provides a framework for constructing a feasibility check
of the generated dataset.

Figure 3: Overview of the data generation process.
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The simulation process for generating feasibility check instances involves several key
steps, each of which reproduces real-world conditions in delivery scheduling. The pro-
cess begins with generating a new customer request and then proceeds through a series
of steps to determine the feasibility of this request given the current delivery plan. The
overall process is iterative, meaning that it repeats for each new customer request, with
each iteration involving the creation of multiple instances (one per time slot) that are
then solved to determine feasibility. The detailed steps of the simulation process are in
the following.

First, the simulation starts by generating a new customer requesting a delivery. After
generating a new customer, the simulation offers a set of potential delivery time slots
for this customer. For instance, if the delivery period spans 8:00 to 20:00 with four
evenly distributed time slots, i.e., nt = 4, the available options for this customer would
be 8 : 00 − 11 : 00, 11 : 00 − 14 : 00, 14 : 00 − 17 : 00, and 17 : 00 − 20 : 00. This
set of possible time slots is then evaluated to determine which slots can feasibly accom-
modate the new customer request. Third, for each available time slot, a new instance of
the Capacitated Vehicle Routing Problem with Time Windows (CVRP-TW) is created.
Each instance reflects the current set of accepted orders, combined with the potential
new customer–time slot combination. This step ensures that each possible combination
of the new customer and a time slot is evaluated independently for feasibility. Finally,
once each instance has been solved, the simulation assigns a feasibility label to it, in-
dicating whether the specific customer–time slot combination is feasible or infeasible.
These labeled instances serve as the training data.

2.2.1 Data structure of the feasibility check

The data structure constructed from the data generation process is as follows. Each
feasibility check instance is defined as an array of input feature vectors Xi and an output
decision Yi. Each Xi vector represents the state of the system for a customer’s delivery
request and is used to determine whether a particular customer–time slot combination
is feasible. Note that the Solomon dataset [43] is used to model customer locations and
demands, as it is widely used benchmark data for vehicle routing problems.

Each input feature vector Xi contains relevant information about the delivery problem
instance, represented as follows:

Xi =
[
vh ch xd yd c1 c2 . . . ck . . . ci

]T ∈ R4+5×i , (2)

where i ≤ 100, as the maximum number of 100 customers is considered in this the-
sis. Each element in Xi is normalized. vh represents the maximum number of vehicles
available for delivery. Additionally, ch indicates the maximum load capacity that each
vehicle can carry. This parameter ensures that any generated route respects the vehicle’s
capacity limits. xd and yd are the depot’s location coordinates, providing a reference
point for the routing model relative to customer locations. Each customer k is repre-
sented by a 5-dimensional vector ck ∈ R5, which contains essential details about the
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customer’s delivery requirements

ck =


xc,k

yc,k
dk
tc,k
tc,k

 , (3)

where xc,k and yc,k are the location coordinates of customer k, provided by the Solomon
dataset. dk is the demand or order size of customer k, representing the load required for
delivery. tc,k and tc,k are the latest and earliest acceptable for delivery, respectively. For
each input vector Xi, the output decision Yi is a binary variable indicating the feasibility
of the customer–time slot combination,

Yi ∈ {0, 1} , (4)

where Yi = 1 indicates that the customer–time slot combination is feasible under the
current routing constraints. This binary output is derived from the feasibility label ob-
tained through the VRPTW solver (e.g., CPLEX), and it is used as the target variable in
training the ML model.

2.2.2 Profitability Calculation

To evaluate the profitability of adding a new customer’s delivery request to the current
route plan, the feasibility analysis is extended by introducing an additional decision
component based on cost and revenue. Each decision instance, therefore, now considers
the potential profit associated with the delivery. Similar to the feasibility check, the
profitability check involves a feature vector Xi and an output decision Yi, where Yi

represents whether adding the customer is profitable. This section outlines steps for
calculating profitability.

When a customer arrives and requests a delivery, the system assigns a random product
value, representing the revenue potential, normalized within the range [0, 10]. This
product value, denoted cp, provides the basis for revenue in the profitability calculation:

cp ∈ [0, 10]. (5)

In addition, a time slot is selected for the customer, consistent with the feasibility frame-
work. After the time slot is determined, the route is recalculated to accommodate this
customer’s delivery within the chosen time slot. The new route, which includes the
proposed delivery, is optimized using a VRP-TW solver, ensuring that the addition re-
spects existing route constraints. Based on this updated route, the system computes the
distance cost, which is scaled to a range of [0, 1] and represented as Cd:

cd ∈ [0, 1]. (6)

The profitability calculation is then conducted by comparing the product value against
the cost impact of this route. Specifically, the current profit from adding this delivery is
given by:

pc = 10%vp − cd. (7)
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This calculation adjusts the potential revenue (10%Vp) by subtracting the scaled distance
cost of the new route, thereby reflecting the immediate profit or loss associated with
adding this customer.

To evaluate the overall profitability, the system considers the cumulative profit prior
to adding this customer. Let p̃ represent the cumulative profit from previous deliveries.
The estimated profit after including the current customer is given by:

p̃ =
nc∑
i=1

pc,i, (8)

where nc ≤ 100 is the latest customer in the route plan and pc,i is the profit obtained
from the i − th customer. The output decision Yi is then defined based on this prof-
itability measure:

Yi =

{
1 if p̃ > 0,

0 otherwise.
(9)

If p̃ > 0, then adding the customer’s delivery is considered profitable, resulting in a
positive decision (Yi = 1). Otherwise, the decision outcome is negative (Yi = 0),
indicating non-profitability.

2.2.3 Summary

To this point, the decision-making process is considered a classification problem,
where the observation for each instance is represented by the feature vector Xi in (2),
and the output decision Yi in (4) and (9) indicates whether a customer’s delivery request
is feasible or profitable.

The feature vector XI contains relevant information about the system’s state, includ-
ing fleet size, vehicle capacities, customer details (such as location and demand), and
time slot information. This vector serves as the input to a classifier, and the decision Yi

is the corresponding output.

The classifier uses these labeled instances of (Xi, Yi) pairs to learn the decision, where
Yi can be either 0 or 1, denoting feasibility or profitability, respectively. The machine
learning task is to predict the feasibility or profitability of new customer requests based
on the observed features in Xi. The source code for generating data is provided in the
Appendix.

In the next section, methods for this classification problem are explained in detail.
Classification methods, e.g., Naive Bayes, K-Nearest Neighbors (KNN), Binary Deci-
sion Trees, and Ensemble methods (such as Random Forest), and ML-based methods,
e.g., a fully connected neural network and a long short-term memory network (LSTM),
are taken into account.
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3 Methods

In this section, methodologies used to determine the decision Yi based on the input
features Xi for each delivery request are described. The decision Yi is a binary classi-
fication variable, indicating the feasibility check of a customer’s delivery request. The
goal of this classification task is to train a model that can accurately predict Yi based on
the observed features in Xi, allowing the system to make informed decisions for new
customer requests.

3.1 Classification Methods

We employ several classical classification methods to evaluate the decision variable Yi,
including Naive Bayes, K-Nearest Neighbors (KNN), Binary Decision Trees, and Ran-
dom Forests. Each method offers different ways to analyze the input feature vector XI

and determine the most probable class (feasible/profitable or infeasible/non-profitable)
for the decision Yi.

3.1.1 Naive Bayes

Naive Bayes is a probabilistic classifier that applies Bayes’ theorem with the as-
sumption of independence between the features in Xi. Given an observation Xi =
(x1, x2, . . . , xn), the probability of Yi being in class c (where c ∈ {0, 1}) is calculated
as:

P (Yi = c|Xi) =
P (Yi = c)

∏n
j=1 P (xj|Yi = c)

P (Xi)
, (10)

where P (Yi = c) is the prior probability of class c, P (xj|Yi = c) is the conditional prob-
ability of each feature given the class, and P (Xi) is the probability of the observation.
The classification decision for Yi is determined by choosing the class c that maximizes
P (Yi = c|Xi):

Yi = arg max
c∈{0,1}

P (Yi = c|Xi). (11)

3.1.2 K-Nearest Neighbors (KNN)

The K-Nearest Neighbors (KNN) method is a non-parametric classifier that deter-
mines the class of Yi based on the classes of the k closest points in the feature space.
For an observation Xi, the Euclidean distance between Xi and each training sample Xj

is computed as:

d(Xi,Xj) =

√√√√ n∑
m=1

(xi,m − xj,m)2. (12)

The k nearest neighbors to Xi are identified based on this distance metric, and Yi is
assigned to the class most frequently occurring among the k neighbors:

Yi = arg max
c∈{0,1}

∑
j∈Nk

I(Yj = c), (13)
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where Nk is the set of the k nearest neighbors, and I(·) is the indicator function that
returns 1 if Yj = c and 0 otherwise.

3.1.3 Binary Decision Trees

A Binary Decision Tree is a recursive partitioning method that splits the feature space
into regions based on the values of the features in Xi. At each node in the tree, a
feature xm is selected, and a threshold t is set to create a binary split. The objective
is to minimize the impurity at each node, which is measured by metrics such as Gini
impurity or entropy.

For a Gini impurity G, the impurity at a node s for class c is calculated as:

G(s) = 1−
1∑

c=0

p2c , (14)

where pc is the probability of class c at node s. The splitting process continues until a
stopping criterion is met (e.g., maximum depth or minimum samples per leaf), resulting
in a final prediction Yi based on the majority class in the terminal node.

3.1.4 Random Forest

Random Forest is an ensemble method that combines multiple decision trees to im-
prove classification accuracy and reduce overfitting. Each tree in the forest is trained on
a random subset of the training data and a random subset of features. Given an obser-
vation Xi, each decision tree Tj in the forest outputs a prediction Y

(j)
i . The final output

Yi is determined by aggregating the predictions from all trees, typically using majority
voting:

Yi = arg max
c∈{0,1}

M∑
j=1

I(Y (j)
i = c), (15)

where M is the number of trees in the forest, and I(·) is the indicator function. By aggre-
gating predictions across multiple trees, Random Forest reduces variance and improves
the generalization ability of the model.

3.2 ML-based Classification Method

In addition to classical classification methods, we utilize machine learning (ML)-
based architectures for predicting the output decision Yi, specifically a Fully Connected
Neural Network (FCNN) and a Long Short-Term Memory (LSTM) network. These
architectures are designed to capture complex patterns and dependencies within the
feature vector Xi that may be missed by classical models, enabling higher predictive
accuracy in determining feasibility or profitability.
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3.2.1 Fully Connected Neural Network (FCNN)

The Fully Connected Neural Network (FCNN) is a type of feed-forward neural net-
work where each neuron in a layer is connected to every neuron in the subsequent layer.
Given an input feature vector Xi ∈ Rn, the FCNN learns a non-linear transformation
to predict Yi. The network consists of multiple layers, each defined by a set of weights
and biases. For each layer l, the output a(l) is computed as:

a(l) = f
(
W(l)a(l−1) + b(l)

)
, (16)

where:

• a(0) = Xi is the input feature vector in (2),

• W(l) and b(l) are the weight matrix and bias vector for layer l,

• f(·) is a non-linear activation function, typically ReLU (Rectified Linear Unit) or
sigmoid, applied element-wise.

The final layer of the FCNN outputs a probability score for each class, with the pre-
dicted class Yi determined as:

Yi = arg max
c∈{0,1}

p̂c, (17)

where p̂c represents the predicted probability of class c after applying a softmax function
to the output of the final layer:

p̂c =
exp(zc)∑1
j=0 exp(zj)

. (18)

The network is trained by minimizing a binary cross-entropy loss between the predicted
probabilities and the true labels.

Figure 4: FCNN architecture for feasibility check, consisting of five fully connected
layers with ReLU activations, dropout, and softmax classification output.
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For the feasibility check, the architecture, as shown in Figure 4, consisting of five
fully connected layers, each with 128 neurons, is utilized. The network leverages ReLU
activation functions to introduce non-linearity, enabling the model to capture complex
patterns in the data. The network includes five fully connected (dense) layers, each with
128 neurons. Mathematically, for each layer l, the output a(l) is computed as:

a(l) = ReLU(W(l)a(l−1) + b(l)), (19)

where W(l) and b(l) are the weight matrix and bias vector of layer l, respectively. The
ReLU activation function, defined as ReLU(x) = max(0, x), is applied element-wise
to introduce non-linearity. Note that a dropout layer with a rate of 10% is used after
the second fully connected layer to reduce overfitting by randomly setting 10% of the
neurons to zero during each training iteration.

3.2.2 Long Short-Term Memory (LSTM) Network for Feasibility Check

The feasibility check can also be performed using a sequence-based neural network
architecture, specifically a Long Short-Term Memory (LSTM) network. The LSTM is
a type of recurrent neural network (RNN) that is particularly well-suited for handling
sequential data, thanks to its ability to maintain long-term dependencies through a set
of gating mechanisms. To fit the observation Xi in (2) to a LSTM architecture network,
each input sequence Xi for the LSTM model is modified as:

Xi = [c0, c1, c2, . . . , ck, . . . , ci] ∈ R4×(i+1), (20)

where i ≤ 100, given that a maximum of 100 customers is considered in this study.
Each vector ck represents the features for customer k, defined as:

ck =
[
xc,k, yc,k, dk, tc,k, tc,k

]⊤
. (21)

The initial vector c0 contains information about the delivery depot:

c0 = [vh, ch, xd, yd]
⊤ . (22)

The LSTM network processes each feature sequentially while maintaining a hidden
state ht and a cell state ct. At each time step t, the LSTM updates its states as follows:

ft = σ(Wf · [ht−1, ct] + bf ), (23)
it = σ(Wi · [ht−1, ct] + bi), (24)
c̃t = tanh(Wc · [ht−1, ct] + bc), (25)
xt = ft ⊙ xt−1 + it ⊙ x̃t, (26)
ot = σ(Wo · [ht−1, ct] + bo), (27)
ht = ot ⊙ tanh(xt), (28)

where:

• ft, it, and ot are the forget, input, and output gates, respectively,

• σ(·) denotes the sigmoid function, and tanh(·) denotes the hyperbolic tangent
function,
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• Wf , Wi, Wc, and Wo are the weight matrices, and bf , bi, bc, bo are the biases
for each gate.

After processing the entire sequence, the final hidden state hn is passed through a
dense layer with a softmax activation to produce the probability of each class:

p̂c =
exp(zc)∑1
j=0 exp(zj)

. (29)

The predicted class Yi is then given by:

Yi = arg max
c∈{0,1}

p̂c. (30)

The LSTM network architecture utilized for the feasibility check is illustrated in Fig-
ure 5. Note that this architecture can be used as an alternative solution to the FCNN
architecture. This LSTM-based architecture was reported to be more effective (more
accuracy and faster inference time) compared to the FCNN in the next section, the prof-
itability check will be built upon the LSTM network architecture. Details are in the
following.

In Figure 5, a sequence input layer accepts input data in (21) as sequence format. This
layer is responsible for passing the input sequences to the subsequent layers in the net-
work. The LSTM layer contains 128 hidden units, which define the dimensionality of
the output space. Note that the state activation function for the LSTM cells is the hyper-
bolic tangent (tanh) function. This function maps the cell state values between -1 and 1,
helping to prevent gradients from vanishing or exploding. The gate activation functions
(input, forget, and output gates) use the sigmoid function, which maps values between

Figure 5: LSTM-based architecture for feasibility check. Compared to the FCNN ar-
chitecture, we achieve a higher accuracy which will be reported in the next section.
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0 and 1. This allows each gate to control the flow of information effectively, deciding
which information to keep, update, or discard. Additionally, the fully connected layer
consisting of 128 neurons is utilized. This layer helps to combine the features from the
LSTM layer and prepares them for the classification stage. This architecture combines
the sequential processing capabilities of the LSTM layer with the classification strength
of the fully connected and softmax layers, enabling it to effectively learn and classify
temporal patterns in the input data.

3.2.3 Long Short-Term Memory (LSTM) Network for Profitability Check

Based on the LSTM network proposed in the previous subsection, the profitability
check leverages a multi-branch LSTM-based architecture to effectively determine the
profitable utilization of the generated dataset. As shown in Figure ??, the network
is composed of two primary branches: a fixed-weight network and a trainable LSTM
branch.

The right-side top corner of Figure 6 illustrates the fixed-weight network, which reuses
the learned weights from the feasibility network (Figure 5). This fixed-weight subnet-
work serves as a pre-trained feature extractor that provides reliable feasibility assess-
ments based on previously learned constraints and conditions. By freezing the weights
in this branch, the feasibility information is preserved and remains stable throughout the
profitability check, ensuring consistency in evaluating the feasibility of input sequences.

The left-side LSTM branch, in contrast, contains trainable weights and acts as a com-
plementary feature extractor. This branch is designed to capture additional, contextu-
ally rich feature information from the input data. The flexibility of this trainable LSTM
branch allows it to adapt to new patterns and nuances in the input, enabling it to learn
representations specifically tailored to profitability analysis, beyond what was learned
in the feasibility network.

The outputs of both branches are then concatenated and combined via an addition
layer, creating an integrated feature set that includes both feasibility and profitabil-
ity information. This combined representation enables the model to make informed
decisions, leveraging both the stability of feasibility features and the adaptability of
profitability-specific features.

The resulting architecture, with both fixed and trainable branches, provides a robust
framework for profitability checks. It effectively balances the reuse of reliable, pre-
learned features (for feasibility) with the flexibility needed to capture profit-specific
insights, enhancing the model’s ability to make accurate predictions on the profitability
of the dataset.

3.2.4 Training and Optimization

Both the FCNN and LSTM architectures are trained using the binary cross-entropy
loss, defined as:

L = − 1

N

N∑
i=1

[Yi log(p̂Yi
) + (1− Yi) log(1− p̂Yi

)] , (31)
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Figure 6: LSTM-based architecture for profitability check. The fixed-weight network
of the feasibility check (on the right side of the figure) is concatenated with another
LSTM branch to extract rich feature information from the observation input

where N is the total number of training samples, Yi is the true class label, and p̂Yi
is the

predicted probability of the true class.

For training this network, the Adam optimizer [44] is used to minimize the binary
cross-entropy loss. Additionally, a batch size of 103 is used to stabilize the training
process and reduce variance in gradient updates. A small L2 regularization term (10−6)
is applied to penalize large weights, which further helps in controlling overfitting. The
learning rate is set to 0.01.

3.3 Summary

In this section, we first discussed classical classification methods, including Naive
Bayes, K-Nearest Neighbors (KNN), Binary Decision Trees, and Random Forests.
We then introduced the proposed fully connected neural network architecture and an
LSTM-based architecture for feasibility checks. Furthermore, we extended the LSTM-
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based architecture by integrating it with a profitability check, utilizing a combination
of fixed-weight and trainable branches to assess both feasibility and profitability within
the dataset. In the next section, results from the generated data are presented in detail,
providing an in-depth analysis of the performance and effectiveness of the proposed
architectures.
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4 Results

In this section, the results of the proposed algorithms, i.e., the fully connected neural
network architecture and the LSTM-mix fully connected (LSTM-FC) NN architecture,
are presented with different numbers of time slots and the maximum number of vehicles.
For the generated dataset, the C101 dataset from Solomon [43] is utilized and modified.

The data is generated for 3 different numbers of vehicles, i.e., nk ∈ {4, 8, 12}. The
maximum time slots are chosen to be in the set {3, 4, 5, ..., 10, 12, 14}, and the day shift
is from 8 : 00−18 : 00. CPLEX solver is chosen for solving the VRP-TW problem due
to its performance. All the simulation, the training process, and the inference process
are processed in an Intel core i7-13700K with 32 GB of RAM. For an individual VRP-
TW instance with 50 customers, while CPLEX returns a feasible solution within 1 s, it
takes approximately 25 s with the Google OR-tool.

4.1 Quantitative Results on Feasibility Check

For the comparative evaluation of various classification methods on the vehicle routing
problem with time windows (VRP-TW), we configured the experimental setup with
a maximum of 4 time slots, resulting in a total of 3 × 4 × 100 = 1200 trials. To
create a balanced dataset, we conducted feasibility checks on these trials, identifying
643 feasible instances and 557 infeasible instances. This balanced dataset allows for a
robust assessment of model performance across feasible and infeasible cases.

As shown in Table 1, we evaluated several classification models, including classical
machine learning methods such as Naïve Bayes, k-nearest neighbors (k-NN), binary
decision trees, and ensemble methods like random forests, alongside neural network-
based approaches: a fully connected neural network and an LSTM-based neural net-
work. The training and testing accuracy of each method are presented to illustrate the
relative effectiveness of each model.

The classical methods, including Naïve Bayes, k-NN, binary decision trees, and ran-
dom forests, achieved moderate accuracy levels. Among these, the random forest per-
formed the best, with a testing accuracy of 60.92%. However, even the ensemble-based
random forest model struggled to exceed this threshold. These classical approaches
generally suffer from the limited capability to capture the complex, sequential patterns
inherent in VRP-TW data, particularly given the temporal and sequential dependencies
involved in optimizing vehicle routes and scheduling within time windows. Classical
methods typically rely on static feature representations and lack mechanisms for cap-
turing temporal relationships, which are crucial in accurately predicting feasibility in
time-dependent tasks like VRP-TW.

In contrast, the neural network models, particularly the LSTM-FC neural network,
demonstrated a better performance. While the fully connected neural network (NN)
managed to surpass classical methods, reaching a testing accuracy of 63%, it still fell
short of achieving high accuracy due to its limited ability to handle temporal dependen-
cies. The fully connected NN lacks recurrent connections that can process sequence
data effectively, resulting in suboptimal performance on tasks requiring an understand-
ing of time-based patterns.
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The LSTM-based neural network achieves a testing accuracy of 94.57%. This high
accuracy demonstrates the advantage of LSTM networks in capturing the temporal de-
pendencies within the VRP-TW problem. The LSTM’s recurrent architecture allows it
to retain information across time steps, making it particularly well-suited for modeling
the sequence of time slots and vehicle scheduling decisions. As a result, the LSTM
network was able to learn a more nuanced representation of the data, enabling it to
distinguish between feasible and infeasible scenarios with a high degree of accuracy.

While these classical methods might be suitable for simpler, static classification tasks,
their performance is limited on tasks like VRP-TW, where temporal dependencies are
critical. On the other hand, the LSTM network’s ability to model these dependencies
allows it to make more accurate predictions, resulting in a significant performance ad-
vantage over both classical methods and the fully connected NN.

Classification method Training accuracy Testing Accuracy

Naïve Bayes 56.8% 57.34%

k-nearest neighbor 62.1% 61.5%

Binary decision trees 52.2% 54.5%

Ensembles Random Forest 63.2% 60.92%

Fully connected NN (Ours) 70% 63%

LSTM-FC NN (ours) 95.8% 94.57%

Table 1: Classification methods and their training and testing accuracy

Overall, these results highlight the strengths and limitations of each classification ap-
proach in the context of VRP-TW. The fully connected NN provided a modest im-
provement over classical methods, indicating that even basic neural networks can offer
an edge due to their ability to learn from data without manual feature engineering.
However, the LSTM-based network’s substantial accuracy gain emphasizes the impor-
tance of using models capable of handling sequential data in time-sensitive applications.
For VRP-TW and similar optimization problems, where the order and timing of events
matter, LSTM networks are a betterchoice due to their ability to effectively learn and
leverage temporal patterns.

4.2 Analysis of Training and Validation Results for Fully Connected
Network

Figure 7 illustrates the training and validation accuracy and loss curves over the train-
ing iterations for the fully connected neural network. The figure includes both smoothed
and raw accuracy curves for training, as well as validation points recorded at regular in-
tervals. In this test, we use 4 time slots linearly scaled from 8:00 to 18:00, resulting in
3 × 4 × 100 = 1200 instances. The instances are generated by varying the number of
vehicles (with three different values) and distributing the feasibility checks across these
time slots. This setup provides a balanced dataset to evaluate the network’s performance
in feasible and infeasible scenarios.
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Figure 7: Training and validation accuracy and loss curves for the fully connected neural
network with the 4-time slots linearly scaled from 8:00-18:00.

In the upper plot, we observe the progression of accuracy. The training accuracy
rapidly improves in the initial training iterations, reaching approximately 60% within
the first few hundred iterations. However, as the training continues, the accuracy gain
diminishes, stabilizing around the 70% mark. The validation accuracy shows a similar
trend, leveling off around 63%, slightly lower than the training accuracy, indicating
some degree of overfitting. The limitation in performance, with the validation accuracy
plateauing below 70%, suggests that the fully connected network struggles to capture
complex patterns in the VRP-TW data that are necessary for achieving higher accuracy.

In the lower plot, the loss curves for both training and validation exhibit a gradual
decrease over the training iterations. The training loss decreases relatively smoothly,
while the validation loss stabilizes at a higher value than the training loss. This discrep-
ancy between training and validation loss further indicates that the model is learning
patterns specific to the training data but has limited generalization ability.

The limitation of the fully connected network to exceed 70% accuracy highlights the
limitations of this model architecture in handling sequential and time-dependent pat-
terns. Fully connected neural networks lack mechanisms for modeling temporal depen-
dencies, which are crucial for accurately predicting feasibility within a time-windowed
routing context. This limitation underscores the need for more advanced architectures,
such as recurrent neural networks, that are designed to capture such dependencies.
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Figure 8: Training and validation accuracy and loss curves for the LSTM-based network
with 4 time slots.

4.3 Analysis of Training and Validation Results for LSTM-Based
Network Across Multiple Time Slots

This subsection presents the performance of the LSTM-based network trained with
various time slot configurations—4, 5, 6, and 8 slots—to predict the feasibility of the
VRP-TW problem. For each configuration, the network demonstrates high validation
accuracy, significantly exceeding the baseline feasibility rates, thereby illustrating its
effectiveness in capturing complex temporal dependencies.

For the configuration with 4 time slots, scaled linearly from 8:00 to 18:00, the dataset
consisted of 1200 instances, of which 643 trials were feasible. The LSTM model
achieved a validation accuracy of 94.57% after 3000 training iterations (Figure 8). This
high accuracy indicates that the LSTM effectively captures the sequential patterns re-
quired for accurate feasibility prediction.

With 6 time slots, the dataset consisted of 1800 instances, of which 921 were feasi-
ble, corresponding to a baseline feasibility rate of approximately 48.54%. The LSTM
model achieved a validation accuracy of around 96.1% after 3000 iterations (Figure 9).
Although this accuracy is slightly lower than that of the 4 and 5-slot configurations, it
remains significantly higher than the baseline feasibility rate, indicating that the LSTM
model continues to generalize well with additional time slots.

For the configuration with 8-time slots, the dataset consisted of 2400 instances, with
1320 feasible trials, giving a baseline feasibility rate of approximately 55%. The LSTM
network reached a validation accuracy of approximately 95.72% after 9000 training
iterations (Figure 10). The increase in accuracy and the required number of iterations
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reflect the model’s capability to learn and adapt to the increased complexity in temporal
resolution.

The LSTM-based network demonstrates robust performance across all tested time slot
configurations, with validation accuracy consistently surpassing the baseline feasibility
rates. These results confirm the model’s suitability for time-dependent feasibility pre-
diction in VRP-TW scenarios, especially in cases with varying temporal complexities.

Figure 9: Training and validation accuracy and loss curves for the LSTM-based network
with 6 time slots.

4.4 Performance of LSTM Model Across Different Time Windows

In this experiment, we evaluated the performance of our LSTM model for feasibility
prediction across a range of delivery time window configurations. Each configuration
represented a different number of discrete time slots, defining the potential delivery
periods. The goal was to assess the model’s adaptability and robustness by analyzing
its accuracy across varying levels of temporal granularity. For each configuration, we
recorded the baseline accuracy, which represents a preliminary heuristic model’s perfor-
mance, along with the LSTM model’s validation accuracy after training. The baseline
serves as a benchmark, highlighting the potential improvements offered by the LSTM’s
sequence-based learning architecture.

The results in Table 2 show that the LSTM model achieves consistently high validation
accuracy across all time slot configurations, with values ranging from 92.1% to 96.1%.
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Figure 10: Training and validation accuracy and loss curves for the LSTM-based net-
work with 8 time slots.

No. Time Slots Baseline (%) Validation Accuracy (%)

3 53.58 93.00

4 57.85 95.79

5 60.00 94.67

6 48.54 96.10

7 56.24 94.32

8 55.00 95.72

10 49.21 93.75

12 52.17 92.10

14 46.75 95.26

Table 2: Performance Comparison for Different Time Windows

This stability in accuracy across configurations suggests that the model is highly robust
and capable of handling the feasibility prediction task regardless of the granularity of the
time slots. The LSTM’s strong performance across these configurations demonstrates
its effectiveness in leveraging sequential information for predictions, as it maintains
accuracy even as the time slot configuration changes.

27



The highest validation accuracy, 96.1%, was observed when using 6 time slots. This
peak in performance suggests that an intermediate number of time slots might provide
an optimal balance between temporal detail and model complexity. With fewer time
slots, the model might lose finer temporal information, while too many time slots could
add unnecessary complexity, potentially impacting generalization. Thus, 6 time slots
may represent a favorable trade-off, where the model captures relevant patterns without
excessive detail that could hinder its predictive power.

The baseline model, by contrast, showed significant variability across the configura-
tions, with accuracy ranging from 46.75% to 60%. This performance was consistently
lower than that of the LSTM model, emphasizing the advantage of sequence-based
learning for this task. Unlike the LSTM, which is designed to capture dependencies
across time steps, the baseline approach likely struggles to capture temporal dynamics
effectively, resulting in lower accuracy. The LSTM’s structure, which explicitly models
sequence information, allows it to achieve a substantial improvement over the baseline,
providing strong predictive accuracy in each configuration.

Additionally, while the LSTM model’s accuracy remains consistently high across dif-
ferent time slot numbers, there are slight variations that reflect the trade-offs in temporal
granularity. As the number of time slots increases, the input sequence length grows, in-
troducing additional temporal dependencies for the model to manage. Despite these
fluctuations, the LSTM model demonstrates its adaptability, as it handles these depen-
dencies with only minor changes in accuracy.

Overall, these results underscore the LSTM model’s suitability for the feasibility pre-
diction task, as it consistently outperforms the baseline across various time window
configurations. The highest accuracy at 6-time slots highlights a potential optimal con-
figuration, while the consistently strong results across other configurations confirm the
LSTM’s robustness. These findings emphasize the LSTM’s ability to generalize ef-
fectively across different input structures, underscoring the value of sequence-based
architectures for tasks involving temporal dependencies, such as delivery scheduling
with flexible time windows.

4.5 Analysis of Training and Validation Results for LSTM-Based
Network Across Multiple Time Slots for Profitability Check

The architecture for this profitability network, illustrated in Figure 6, leverages a
curriculum-based training approach. In this approach, we reused a pre-trained network
from the feasibility check as the initial layer, effectively transferring foundational learn-
ing from feasibility assessment to profitability assessment. This base network was then
extended by concatenating it with an additional, untrained branch tailored specifically
for the profitability classification task. The intent behind this architecture was to cap-
italize on the LSTM’s strengths in sequence learning, allowing it to capture temporal
dependencies in the data while benefiting from previously learned features related to
feasibility. Here, the model can develop a deeper and more refined understanding of
profitability-related patterns across sequential data points.

The architecture of the profitability network largely mirrors the sequence-based de-
sign used in the feasibility check. Specifically, it begins with an LSTM layer containing
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128 hidden units, optimized for capturing the sequential nature of the input data. The
state activation function in the LSTM layer is a Tanh function, which maintains stability
in the range of activations, while the gate activation employs a Sigmoid function to reg-
ulate information flow. This is followed by a fully connected layer with 128 neurons,
which refines the learned features from the LSTM output. ReLU activation functions
are applied in this fully connected layer, enabling the model to capture complex, non-
linear relationships within the data. The addition of an untrained branch allows the
network to introduce profitability-specific learning while maintaining the generalizable
patterns learned from feasibility, providing a dual focus on both feasibility and prof-
itability assessment within a single architecture.

In terms of training and validation performance, the model achieved a validation ac-
curacy of approximately 86.1% after 11,200 training iterations. This is a substantial
improvement over the baseline accuracy of 48%, which was calculated by assuming all
instances across different time slots as feasible for profitability. The baseline provides a
reference level, reflecting the model’s initial accuracy without any profitability-specific
learning. In comparison, the validation accuracy of 86.1% highlights the model’s ability
to distinguish between profitable and non-profitable instances across various time slots
effectively. The use of the pre-trained feasibility network as the starting layer played
a crucial role in this improvement, as it allowed the model to build on pre-existing
knowledge and focus its learning on profitability-related aspects more efficiently.

The progression of training and validation loss, as well as accuracy over the course
of the training iterations, is depicted in Figure 11. The plot shows a steady increase
in training accuracy, with validation accuracy following a similar upward trend, both
of which indicate successful model learning and generalization. As the number of it-
erations increased, the accuracy curves converged toward the final performance level,
illustrating the stability of the model and its capacity to handle diverse profitability sce-
narios across different time slots. Meanwhile, the loss plots reflect a consistent decrease
in both training and validation loss, suggesting that the network is learning effectively
without signs of overfitting. The smoothed accuracy lines also reinforce this interpreta-
tion, as they indicate that the model’s performance remained stable even in the face of
minor fluctuations.

Overall, the results demonstrate that the curriculum-based training approach, which
combines feasibility-pretrained layers with profitability-specific learning, yields signif-
icant gains in validation accuracy over the baseline. The model’s capacity to utilize
pre-learned feasibility patterns and adapt them to profitability assessment has proven
to be both efficient and effective, providing robust accuracy in profitability classifica-
tion. This architecture demonstrates potential applicability in practical decision-making
contexts, where both feasibility and profitability assessments are essential for informed
operational choices across varied customer requirements and time slot configurations.
Through this approach, the model is well-suited to evaluate profitability reliably.
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Figure 11: Training and validation accuracy and loss curves for the LSTM-based net-
work for the profitability check with all aggregated data of different time slots

5 Conclusion

In this thesis, machine learning-based methodologies are developed and analyzed to
solve the feasibility and profitability checks in delivery scheduling systems. The study
focused on vehicle routing problems with time windows (VRPTW), a challenging op-
erational framework where delivery feasibility and profitability must be assessed within
strict temporal constraints. By leveraging supervised learning methods, particularly
sequence-based models, we aimed to approximate complex constraints and provide
real-time decision support for e-commerce and logistics applications.

This research introduced and evaluated a variety of classification methods for pre-
dicting the feasibility and profitability of customer delivery requests across multiple
time slots. Comparative evaluations between classical classification methods—such as
Naïve Bayes, K-Nearest Neighbors (KNN), Binary Decision Trees, and Ensemble Ran-
dom Forests—and machine learning-based architectures, specifically Fully Connected
Neural Networks (FCNN) and Long Short-Term Memory (LSTM) networks, demon-
strated the effectiveness of LSTM models in capturing temporal dependencies in the
VRPTW context.

The results showed that the LSTM-based network consistently outperformed classical
methods and even surpassed the fully connected network, achieving substantial gains
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in both feasibility and profitability prediction accuracy. For feasibility checking, the
LSTM model achieved a validation accuracy significantly higher than baseline classical
methods. The LSTM’s recurrent architecture allowed it to effectively learn sequential
patterns in delivery constraints, which are essential in VRPTW scenarios where the or-
der and timing of deliveries are critical. In contrast, classical methods and the FCNN,
which lack the ability to capture temporal dependencies, were less effective, with accu-
racy levels remaining considerably below those of the LSTM model.

In the profitability check, the LSTM model was further enhanced through a curriculum-
based training approach. This method leveraged the knowledge from a pre-trained fea-
sibility model and combined it with an additional branch specifically designed to assess
profitability. By reusing features learned from the feasibility network, the curriculum-
based LSTM model provided a strong initial foundation and achieved a validation accu-
racy of 86.1% after 11,200 training iterations, a significant improvement over the base-
line profitability accuracy of 48%. This high accuracy highlights the model’s capacity
to accurately distinguish profitable delivery configurations across different time slots,
effectively utilizing temporal data and learned feasibility patterns to inform profitability
decisions.

The comparison with classical methods also highlights the strength of the LSTM
model in this domain. Classical classifiers, despite their simplicity and speed, were lim-
ited by their inability to capture temporal relationships within the data. For example,
K-Nearest Neighbors and Naïve Bayes classifiers achieved moderate performance but
did not match the LSTM’s accuracy due to their lack of sequence-based learning capa-
bilities. Ensemble methods, such as Random Forests, performed slightly better among
the classical approaches but still fell short in handling the complexity of time-dependent
delivery constraints. The fully connected neural network (FCNN) also provided some
improvements over classical methods, yet without recurrent connections, it was unable
to effectively model the temporal dependencies that are essential for this application.

In summary, the LSTM model’s sequence-based learning approach was uniquely well-
suited for feasibility and profitability predictions within a time-dependent VRPTW
framework. The model’s superior performance across these metrics indicates that LSTM
architectures can deliver substantial improvements in decision-making for dynamic,
time-sensitive scheduling environments.

While the results indicate strong model performance, certain limitations remain. The
computational requirements of training and inferring LSTM models may pose chal-
lenges, especially for large-scale or real-time applications where efficiency is critical.
Additionally, this research assumes deterministic demand and delivery times, which
may not fully capture the variability present in real-world operations. Future work could
explore hybrid models that combine classical optimization techniques with LSTM ar-
chitectures to address exact constraint satisfaction needs while maintaining fast com-
putation times. Furthermore, integrating real-time traffic data, dynamic customer de-
mand models, or stochastic elements could enhance the robustness of both feasibility
and profitability predictions. Testing these methods across various datasets and deliv-
ery environments would also provide greater generalizability, making the models more
applicable to diverse logistical scenarios.
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Code and Data Availability

For reproducibility and further research, relevant code for model training and evalua-
tion is provided in the following placeholders. These snippets illustrate the core imple-
mentations for feasibility and profitability checks:

Listing 1: SIMULATION FOR DATA GENERATION
1 import docplex.mp
2 import matplotlib.pyplot as plt
3 import seaborn as sns
4 import math
5 import numpy as np
6 import random
7 import time
8 import csv
9

10 random.seed(1010) # -> reproducible
11 # pre-define the simulation params
12 cust_size = 43
13 veh_max = 4
14

15 data_list_single = np.array([veh_max,df_orig[’CAPACITY’][0],df_orig[’
XCOORD’][0],df_orig[’YCOORD’][0],90])

16 # the data_list_single is redundant now!!
17 sel_col = [’XCOORD’,’YCOORD’,’DEMAND’,’READYTIME’,’DUETIME’]
18 num_feasibility_check = 10
19

20 start_clock = time.time()
21 data_Y_store = []
22 data_X_store = []
23 for jj in range(num_feasibility_check):
24 # RESET flag
25 feasibility_flag = 0
26 print(jj+1)
27 #
28 list_data = random.sample(range(1, len(df_orig)-1), cust_size)
29 list_data.insert(0,0)
30 ########
31 df = df_orig.iloc[list_data]
32 #
33 df = df.reset_index(drop=True)
34 ### save input data
35 #sel_col = [’XCOORD’,’YCOORD’,’DEMAND’,’READYTIME’,’DUETIME’]
36 df_part = df[sel_col]
37 flatten_df = df_part[1:].stack().values
38 temp_col = np.concatenate((data_list_single,flatten_df))
39 #if (jj == 0):
40 # data_X_all = temp_col[:,None]
41 #else:
42 # data_X_all = np.concatenate((data_X_all,temp_col[:,None]),

axis=1)
43 data_X_store.append(flatten_df)
44 ### --> define the VRP-TW problem
45 n = cust_size
46 Q = df[’CAPACITY’][0]
47

48 C = [i for i in range(1, n + 1)]
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49 Cc = [0] + C + [n + 1]
50 V = [i for i in range(1, veh_max+1)]
51 df2 = df.iloc[:, 1:3]
52 df2.loc[n + 1, :] = df2.loc[0, :]
53 dist_matrix = pd.DataFrame(distance_matrix(df2.values, df2.values

), index=df2.index, columns=df2.index)
54 #
55 e = [df[’READYTIME’][i] for i in range(n + 1)]
56 e.append(df[’READYTIME’][0])
57 #
58 l = [df[’DUETIME’][i] for i in range(n + 1)]
59 l.append(df[’DUETIME’][0])
60 #
61 ser = [df[’SERVICETIME’][i] for i in range(n + 1)]
62 ser.append(df[’SERVICETIME’][0])
63 #
64 r = [df[’DEMAND’][i] for i in range(n + 1)]
65 r.append(0)
66 # Variable set
67 #X = [(i, j, k) for i in Cc for j in Cc for k in V if (i != j and

j!=0 and i!=n+1)]
68 X = [(i, j, k) for i in Cc for j in Cc for k in V if (i != j)]
69 S = [(i, k) for i in Cc for k in V]
70 # Calculate distance and time
71 c = {(i, j): dist_matrix[i][j] for i in Cc for j in Cc}
72 t = {(i, j): dist_matrix[i][j] for i in Cc for j in Cc}
73 ## convert to a pure integer problem?
74 cost_int = c
75 ##
76 en_int = 0
77 if en_int ==1:
78 for k, v in cost_int.items():
79 cost_int[k] = int(v)
80 ## convert to a pure integer problem?
81 t_int = t
82 for k, v in t_int.items():
83 t_int[k] = int(v)
84 ##
85 #time_start = time.time()
86 mdl = Model(’VRPTW’)
87 # Variables
88 x = mdl.binary_var_dict(X, name=’x’)
89 s = mdl.integer_var_dict(S,0,l[0], name=’s’)
90

91 K = 10000 # is a big number
92 # Cc = [0,1,...,n+1], V = [1,2,...,25]
93

94 # (3.2) each customer is visited at least one time/
95 mdl.add_constraints(mdl.sum(x[i, j, k] for j in Cc for k in V if

j != i) == 1 for i in C)
96 # (3.3) maximum cap
97 mdl.add_constraints(mdl.sum(r[i] * (x[i, j, k]) for i in C for j

in Cc if i != j) <= Q for k in V)
98 # (3.4) (3.5) (3.6) each vehicle departs from depot 0, leave to

another node after ariving the current node and end at n+1
99 # minimize k

100 mdl.add_constraints(mdl.sum(x[0, j, k] for j in Cc if j != 0) <=
1 for k in V)
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101 #
102 mdl.add_constraints((mdl.sum(x[i, p, k] for i in Cc if i != p) -

mdl.sum(x[p, j, k] for j in Cc if p != j)) == 0 for p in C for k
in V)

103 mdl.add_constraints(mdl.sum(x[i, n + 1, k] for i in Cc if i != n
+ 1) <= 1 for k in V)

104

105 # arriving time
106 mdl.add_constraints(s[i, k] + ser[i] + t[i, j] - K * (1 - x[i, j,

k]) - s[j, k] <= 0 for i, j, k in X if i != j)
107 #
108 mdl.add_constraints(s[0, k] == 0 for k in V)
109

110 mdl.add_constraints(s[i, k] >= e[i] for i, k in S if i != 0)
111

112 mdl.add_constraints(s[i, k] <= l[i] for i, k in S if i != 0)
113 # veh cost of rental = 20
114 veh_cost = 20
115 en_only_find_feasible_solution = 1
116 if (en_only_find_feasible_solution == 1):
117 obj_function = 0
118 else:
119 obj_function = mdl.sum((cost_int[i, j]+veh_cost) * x[i, j, k]

for i, j, k in X)
120 mdl.parameters.timelimit.set(50)
121 # Solve
122 mdl.minimize(obj_function)
123 #
124 solution = mdl.solve(log_output = False)
125 solve_status = mdl.get_solve_status()
126 print(solve_status.name)
127 if (solution!=None):
128 feasibility_flag = 1
129 print(’feasibility_flag = ’,feasibility_flag)
130 data_Y_store.append([feasibility_flag])
131 #time_end = time.time()
132 # print(solution)
133

134 #running_time = round(time_end - time_solve, 2)
135 #elapsed_time = round(time_end - time_start, 2)
136 ##
137 elapsed_time = time.time() - start_clock
138 print(’Execution time:’, elapsed_time, ’seconds’)
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