© by Oldenbourg Wissenschaftsverlag, München

Crystal structure of η^2 -1-allyl-3-methylimidazolium trichloroplatinate(II), [C₇H₁₁N₂][PtCl₃]

Gino Bentivoglio^I, Klaus Wurst^{II}, Gerhard Laus^{*,II}, Gerhard Nauer^{III} and Herwig Schottenberger^{II}

¹ Competence Centre for Applied Electrochemistry, Viktor Kaplan-Str. 2, 2700 Wiener Neustadt, Austria

II University of Innsbruck, Faculty of Chemistry and Pharmacy, Innrain 52a, 6020 Innsbruck, Austria

^{III} University of Vienna, Institute of Physical Chemistry, Währingerstrasse 42, 1090 Vienna, Austria

Received May 30, 2008, accepted and available on-line September 18, 2008; CCDC no. 1267/2385

Abstract

C₇H₁₁Cl₃N₂Pt, orthorhombic, $P2_12_12_1$ (no. 19), a = 7.6873(2) Å, b = 11.9159(3) Å, c = 12.1398(3) Å, V = 1112.0 Å³, Z = 4, $R_{gt}(F) = 0.018$, $wR_{ref}(F^2) = 0.045$, T = 233 K.

Source of material

Potassium η^2 -ethylene trichloroplatinate(II) hydrate (Zeise's salt) [CARN: 123334-22-5] was stirred with an equimolar amount of 1-allyl-3-methylimidazolium BF₄ [CARN: 851606-63-8] [1] for three days at room temperature. The precipitate was collected by filtration, washed with water, and redissolved in DMF. Yellow crystals of the zwitterionic title compound, suitable for X-ray diffraction, were obtained from this solution by diffusion with diethyl ether at -20 °C.

Experimental details

Considering the slight distortion due to the metal coordination, hydrogen atoms at C6 and C7 were not added geometrically, but were found and refined with bond restraints (d = 0.93 Å).

Discussion

The platinum(II) atom is four-coordinated with a square-planar configuration, the center of the C=C bond being one of the vertices. The double bond slightly deviates (7°) from the direction perpendicular to the coordination plane. Bond lengths of the trichloroplatinate(II) moiety compare well with those in known Pt-alkene complexes [2-6]. Thus, a distance of 2.025 Å between the metal atom and the center of the C6—C7 bond is found. The C5—C6 bond is rotated out of the imidazolium ring plane by

* Correspondence author (e-mail: gerhard.laus@uibk.ac.at)

75.0°, and the N2–C5–C6–C7 torsion angle is –148.3°. Several weak C-H…Cl contacts are observed (H…acceptor distance, donor-acceptor distance, donor-H-acceptor angle): C1-H-Cl2i 2.81 Å, 3.620 Å, 146°; C4–H…Cl2ⁱ 2.78 Å, 3.697 Å, 158°; C2– H…Cl1ⁱⁱ 2.86 Å, 3.538 Å, 130°; C4–H…Cl2ⁱⁱ 2.80 Å, 3.571 Å, 137°; C3–H…Cl1ⁱⁱⁱ 2.71 Å, 3.577 Å, 155°; C5–H…Cl2^{iv} 2.90 Å, $3.600 \text{ Å}, 129^{\circ} \text{ (symmetry code (i): } 7/2-x, 1-y, 1/2+z; (ii): -1/2+x,$ 1/2-y, 2-z; (iii): 7/2-x, 1-y, -1/2+z; (iv): -1+x, y, z). Of course, the 1-allyl-3-methylimidazolium cation can be converted to a heterocyclic carbene. Thus, the respective silver(I) carbene complex [7] and an iridium(I) compound in which the metal is coordinated to both the carbene and the allyl group [8] have been described. Crystal structures of other 1-allyl-3-methylimidazolium salts such as the tetraphenylborate and dibromodichloropalladate(II) [1], the iodide [9], as well as the related 1-allyl-2,3dimethylimidazolium bromide [10] have been reported previously.

Table 1. Data collection and handling.

Crystal:	yellow plate, size $0.08 \times 0.2 \times 0.2$ mm
wavelength:	Mo K_{α} radiation (0./10/3 A) 132.95 cm ⁻¹
Diffractometer, scan mode:	Nonius KappaCCD, φ/ω
$2\theta_{\max}$:	51.96°
N(hkl) _{measured} , N(hkl) _{unique} :	7074, 2180
Criterion for <i>I</i> _{obs} , <i>N</i> (<i>hkl</i>) _{gt} :	$I_{\rm obs} > 2 \sigma(I_{\rm obs}), 2169$
N(param) _{refined} :	131
Programs:	SHELXS-97 [11], SHELXL-97 [12]

Table 2. Atomic coordinates and displacement parameters (in $Å^2$).

Atom	Site	x	У	z	$U_{\rm iso}$	
II(1)	4 ~	1 4965	0.4640	1 0005	0.027	
$\Pi(1)$	4 <i>a</i>	1.4003	0.4049	1.0903	0.037	
H(2)	4a	1.4025	0.2182	0.8//1	0.046	
H(3)	4a	1.4383	0.3927	0.7739	0.047	
H(4A)	4a	1.4170	0.2798	1.1785	0.070	
H(4B)	4a	1.5085	0.1836	1.1095	0.070	
H(4C)	4a	1.3045	0.2005	1.1017	0.070	
H(5A)	4a	1.4825	0.6329	0.9672	0.040	
H(5B)	4a	1.4128	0.6132	0.8459	0.040	
H(6)	4a	1.712(6)	0.576(4)	0.791(3)	0.03(1)	
H(7B)	4a	1.727(8)	0.774(4)	0.920(5)	0.06(2)	
H(7A)	4a	1.851(6)	0.722(6)	0.823(4)	0.06(2)	

Table 3. Atomic coordinates and displacement parameters (in $Å^2$).

Atom	Site	x	у	Ζ	U_{11}	U ₂₂	<i>U</i> ₃₃	U_{12}	<i>U</i> ₁₃	U ₂₃
Pt(1)	4 <i>a</i>	1.88810(2)	0.58707(1)	0.96917(1)	0.02131(9)	0.02055(9)	0.0262(1)	-0.00066(7)	-0.00125(7)	-0.00039(7)
Cl(1)	4a	2.0769(2)	0.4899(1)	1.0834(1)	0.0386(6)	0.0355(6)	0.0321(6)	0.0092(5)	-0.0086(5)	-0.0001(5)
Cl(2)	4a	2.0560(2)	0.5379(1)	0.8200(1)	0.0293(5)	0.0407(7)	0.0321(6)	0.0011(5)	0.0047(5)	0.0008(5)
Cl(3)	4a	1.7329(2)	0.6409(1)	1.1224(1)	0.0378(6)	0.0478(8)	0.0352(7)	0.0044(6)	0.0058(5)	-0.0107(6)
N(1)	4a	1.4398(5)	0.3171(3)	1.0172(3)	0.034(2)	0.024(2)	0.029(2)	0.000(2)	-0.003(2)	0.001(2)
N(2)	4a	1.4738(5)	0.4695(3)	0.9244(4)	0.023(2)	0.026(2)	0.037(2)	0.002(2)	-0.006(2)	-0.002(2)
C(1)	4a	1.4700(6)	0.4251(4)	1.0245(4)	0.030(2)	0.034(3)	0.029(3)	0.001(2)	-0.000(2)	-0.001(2)
C(2)	4a	1.4235(8)	0.2898(4)	0.9067(5)	0.052(3)	0.027(2)	0.036(3)	0.000(2)	-0.004(3)	-0.001(2)
C(3)	4a	1.4438(7)	0.3849(5)	0.8509(4)	0.047(3)	0.040(3)	0.030(3)	0.006(2)	-0.006(2)	-0.007(2)
C(4)	4a	1.4154(8)	0.2386(4)	1.1096(5)	0.069(4)	0.033(3)	0.038(3)	-0.004(3)	0.000(3)	0.006(3)
C(5)	4a	1.5000(6)	0.5891(4)	0.8998(5)	0.025(2)	0.026(2)	0.048(3)	0.005(2)	-0.007(2)	0.010(3)
C(6)	4a	1.6772(6)	0.6127(4)	0.8552(4)	0.031(2)	0.028(3)	0.031(3)	0.002(2)	-0.008(2)	0.007(2)
C(7)	4a	1.7627(7)	0.7152(4)	0.8753(5)	0.035(3)	0.027(3)	0.048(3)	0.004(2)	-0.007(2)	0.010(2)

References

- Zhao, D.; Fei, Z.; Geldbach, T. J.; Scopelliti, R.; Laurenczy, G.; Dyson, P. J.: Allyl-functionalised ionic liquids: synthesis, characterisation, and reactivity. Helv. Chim. Acta 88 (2005) 665-675.
- Love, R. A.; Koetzle, T. F.; Williams, G. J. B.; Andrews, L. C.; Bau, R.: Neutron diffraction study of the structure of Zeise's salt, KPtCl₃(C₂H₄) · H₂O. Inorg. Chem. 14 (1975) 2653-2657.
- Spagna, R.; Venanzi, L. M.; Zambonelli, L.: Platinum complexes with unsaturated amines. X. The crystal and molecular structure of trichloro-(*trans*-but-2-enylammonium)platinum(II). Inorg. Chim. Acta 4 (1970) 283-286.
- Spagna, R.; Venanzi, L. M.; Zambonelli, L.: Platinum complexes with unsaturated amines. X. The crystal and molecular structure of trichloro(*cis*but-2-enylammonium)platinum(II). Inorg. Chim. Acta 4 (1970) 475-478.
- Mura, P.; Spagna, R.; Zambonelli, L.: Crystal and molecular structures of the olefin complexes trichloro(π-allylammonium) platinum(II), trichloro-(π-but-3-enylammonium)platinum(II) and trichloro(π-hex-5-enylammonium)platinum(II). J. Organomet. Chem. **142** (1977) 403-411.
- Otto, Š.; Elding, L. I.: Low temperature kinetic study of very fast substitution reactions at platinum(II) *trans* to olefins. J. Chem. Soc., Dalton Trans. (2002) 2354-2360.

- Chen, W.; Liu, F.: Synthesis and characterization of oligomeric and polymeric silver-imidazol-2-ylidene iodide complexes. J. Organomet. Chem. 673 (2003) 5-12.
- Hahn, F. E.; Heidrich, B.; Pape, T.; Hepp, A.; Martin, M.; Sola, E.; Oro, L. A.: Mononuclear and dinuclear bromo bridged iridium(I) complexes with *N*-allyl substituted imidazolin-2-ylidene ligands. Inorg. Chim. Acta **359** (2006) 4840-4846.
- Fei, Z.; Kuang, D.; Zhao, D.; Klein, C.; Ang, W. H.; Zakeeruddin, S. M.; Gratzel, M.; Dyson, P. J.: A supercooled imidazolium iodide ionic liquid as a low-viscosity electrolyte for dye-sensitized solar cells. Inorg. Chem. 45 (2006) 10407-10409.
- Kölle, P.; Dronskowski, R.: Hydrogen bonding in the crystal structures of the ionic liquid compounds butyldimethylimidazolium hydrogen sulfate, chloride, and chloroferrate(II,III). Inorg. Chem. 43 (2004) 2803-2809.
- Sheldrick, G. M.: SHELXS-97. Program for the Solution of Crystal Structures. University of Göttingen, Germany 1997.
- 12. Sheldrick, G. M.: SHELXL-97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany 1997.