Int. J. Contemp. Math. Sciences, Vol. 3, 2008, no. 11, 519 - 526

Generalized Hankel Operators with Conjugate Holomorphic Symbols on the Fock Space

Georg Schneider
Universität Paderborn
Warburgerstr. 100, 33098 Paderborn, Germany
georg.schneider@notes.uni-paderborn.de

Kristan Schneider

Universität Wien, Institut für Mathematik
Nordbergstr. 15 UZA 4, A-1090 Wien, Austria
kristan.schneider@univie.ac.at

Abstract

In this paper, we consider generalized Hankel operators $\tilde{\mathrm{H}}_{\bar{f}}:=$ $\left(\mathrm{Id}-\mathrm{P}_{1}\right) \mathrm{M}_{\bar{f}}: A^{2} \rightarrow L^{2}$, where P_{1} denotes the orthogonal projection onto $A^{2,1}$ and $\mathrm{M}_{\bar{f}}$ denotes the multiplication with \bar{f}. The paper extends the results from [2], where the special case of the Hankel operators $\tilde{\mathrm{H}}_{\bar{z}^{k}}$ has been considered. Especially, we show that the Hankel operator $\tilde{\mathrm{H}}_{\bar{f}}$ is bounded if and only if \bar{f} is a polynomial in \bar{z} of degree less or equal than two.

1. Introduction

Remember that the Fock space A^{2} is defined by

$$
A^{2}:=\left\{g: \mathbb{C} \rightarrow \mathbb{C} \mid g \text { is entire and }\|g\|^{2}<\infty\right\}
$$

where

$$
\|g\|^{2}:=\int_{\mathbb{C}}|g(z)|^{2} e^{-|z|^{2}} d \lambda(z)
$$

and λ denotes the Lebesgue measure on \mathbb{C}. It is well known that A^{2} is a closed subspace of the corresponding L^{2}-space given by

$$
L^{2}=\left\{g: \mathbb{C} \rightarrow \mathbb{C} \mid g \text { is measurable and }\|g\|^{2}<\infty\right\}
$$

Therefore, A^{2} is a Hilbert space equipped with the inner product defined by

$$
\langle f \mid g\rangle:=\int_{\mathbb{C}} f(z) \bar{g}(z) e^{-|z|^{2}} d \lambda(z)
$$

Hence, an orthogonal projection, the Bergman projection, $\mathrm{P}: L^{2} \rightarrow A^{2}$ exists. In the following we abbreviate

$$
c_{n}^{2}=\left\langle z^{n} \mid z^{n}\right\rangle=\int_{\mathbb{C}}\left|z^{n}\right|^{2} e^{-|z|^{2}} d \lambda(z)=\pi n!
$$

for $n \in \mathbb{N}$ for further convenience.
Remember that the Hankel operator, $\mathrm{H}_{\bar{f}}: A^{2} \rightarrow A^{2 \perp}\left(A^{2 \perp}\right.$ denotes the orthogonal space of the Fock space), with symbol $\bar{f}=\sum_{k=0}^{\infty} b_{k} \bar{z}^{k} \in L^{2}\left(b_{k} \in \mathbb{C}\right)$ is defined by

$$
\mathrm{H}_{\bar{f}}:=(\mathrm{Id}-\mathrm{P}) \mathrm{M}_{\bar{f}},
$$

where Id and $\mathrm{M}_{\bar{f}}$ denote the identity map and the multiplication operator with \bar{f}, respectively. Hence,

$$
h \mapsto \mathrm{H}_{\bar{f}}(h)=(\mathrm{Id}-\mathrm{P})(\bar{f} h) .
$$

Operators of this form have been extensively studied, for instance in [4], [1], [5] and [6]. In this article, we want to consider slightly different Hankel operators. Let P_{1} be the projection from L^{2} to $A^{2,1}$, where

$$
A^{2,1}:=\operatorname{cl}\left(\operatorname{span}\left\{\bar{z}^{j} z^{n} \mid n \in \mathbb{N} \text { and } j \in\{0,1\}\right\}\right)
$$

i.e., the closure of the linear span of the set of monomials of the form $\bar{z}^{j} z^{n}$, where $n \in \mathbb{N}$ and $j \in\{0,1\}$. Then the generalized Hankel operator, $\tilde{\mathrm{H}}_{\bar{f}}: A^{2} \rightarrow$ $A^{2,1 \perp}$, where $A^{2,1 \perp}$ denotes the orthogonal space of the generalized Fock space, is defined by

$$
\tilde{\mathrm{H}}_{\bar{f}}:=\left(\mathrm{Id}-\mathrm{P}_{1}\right) \mathrm{M}_{\bar{f}} .
$$

A detailed motivation to study such operators can be found in [2]. We just mention here that $\mathrm{H}_{\bar{z}^{k}}$ is a solution operator to the differential operator $\frac{\partial^{k}}{\partial \bar{z}^{k}}$. However, it is not the canonical solution operator. Obviously, $\left\{\bar{z}^{j} z^{n} \mid n \in\right.$ \mathbb{N} and $j \in\{0,1\}\}$ is in the kernel of $\frac{\partial^{k}}{\partial \bar{z}^{k}}$ for $k \geq 2$. For more details, we refer the reader to [2].

In connection with the investigation of operators of the form $\tilde{\mathrm{H}}_{\bar{f}}$, the following problem arises: if $h \in A^{2}$, then it is not clear that $\bar{f} h \in L^{2}$. Even the multiplication with \bar{z}^{n} is only densely defined as an operator from A^{2} to $L^{2}, \forall n \geq 1$. This can be easily illustrated with the following example (cf. [1]). Let $h=\sum_{j=1}^{\infty} a_{j} \bar{z}^{j}$ with $\left|a_{j}\right|^{2}=\frac{1}{j^{2} j!}$. Straightforward calculation gives

$$
\|h\|^{2}=\pi \sum_{j=1}^{\infty} \frac{1}{j^{2}}<+\infty
$$

but

$$
\left\|\bar{z}^{n} h\right\|^{2}=\pi \sum_{j=1}^{\infty} \frac{(n+j) \cdots(j+1)}{j^{2}} \geq \pi \sum_{j=1}^{\infty} \frac{1}{j}=+\infty
$$

Hence, $h \in L^{2}$, but $\bar{z}^{n} h \notin L^{2} \forall n \geq 1$. To ensure that $\tilde{\mathrm{H}}_{\bar{f}}$ is at least a densely defined operator we assume (as in [1]) that

$$
\begin{equation*}
\bar{f} z^{n} / c_{n} \in L^{2} \quad \forall n \in \mathbb{N} \tag{1}
\end{equation*}
$$

Clearly, if the above condition is satisfied, we have

$$
\tilde{\mathrm{H}}_{\bar{f}}\left(z^{n} / c_{n}\right)=\bar{f} z^{n} / c_{n}-\mathrm{P}_{1}\left(\bar{f} z^{n} / c_{n}\right) \in L^{2} .
$$

In [2] the special generalized Hankel operators $\tilde{\mathrm{H}}_{\bar{z}^{k}}$ have been investigated. There the following result can be found.

Theorem 1. On the generalized Fock space A^{2} the generalized Hankel operator

$$
\tilde{\mathrm{H}}_{\bar{z}^{k}}: A^{2} \rightarrow L^{2}
$$

is compact for $k<2$ and bounded for $k \leq 2$. For $k>2$ it is unbounded.
Finally, it should be mentioned that quite similar results exist in the context of generalized Fock spaces. Remember that, for $m>0$, the generalized Fock space A_{m}^{2} is defined by

$$
A_{m}^{2}:=\left\{g: \mathbb{C} \rightarrow \mathbb{C} \mid g \text { is entire and }\|g\|_{m}^{2}<\infty\right\}
$$

where

$$
\|g\|_{m}^{2}:=\int_{\mathbb{C}}|g(z)|^{2} e^{-|z|^{m}} d \lambda(z)
$$

Note that in the special case $m=2$ the generalized Fock space coincides with the classic Fock space A^{2}. The corresponding L^{2}-space is denoted by L_{m}^{2}. The following two results can be found in [3].

Theorem 2. On generalized Fock spaces A_{m}^{2} the generalized Hankel operator

$$
\tilde{\mathrm{H}}_{\bar{z}^{k}}: A_{m}^{2} \rightarrow L_{m}^{2}
$$

is compact for $k<m$ and bounded for $k \leq m$.
The case $k \geq m$ is considered in the following theorem (cf. [3]).
Theorem 3. The following results hold:
(i) The case $k=m$: There exists at most a finite number of integers k such that the generalized Hankel operator $\tilde{\mathrm{H}}_{\bar{z}^{k}}: A_{k}^{2} \rightarrow L_{k}^{2}$ is compact.
(ii) The case $k>m$: For $k>m$ we have almost everywhere unboundedness, i.e., for every m there exist at most finitely many integers k such that $\tilde{\mathrm{H}}_{\bar{z}^{k}}$: $A_{m}^{2} \rightarrow L_{m}^{2}$ is bounded.

2. The main result

Here, we proof the main result of this article, i.e., that the Hankel operator $\tilde{\mathrm{H}}_{\bar{f}}$, with weight $\bar{f}=\sum_{k=1}^{\infty} b_{k} \bar{z}^{k}$, where $b_{k} \in \mathbb{C}$, is bounded if and only if $b_{k}=0$ for $k>2$. The idea of the proof of this result is to derive a connection between boundedness of the operators $\tilde{\mathrm{H}}_{\bar{f}}$ and $\tilde{\mathrm{H}}_{\bar{z}^{k}}$. The following proposition is necessary and derives a more pleasant form of $\mathrm{H}_{\bar{f}}\left(z^{n} / c_{n}\right)$. The following arguments combine ideas from [1] and [2].

Proposition 1. Let $\bar{f}:=\sum_{k=0}^{\infty} b_{k} \bar{z}^{k} \in L^{2} \quad\left(b_{k} \in \mathbb{C}\right)$. The generalized Hankel operator with symbol $\bar{f}, \tilde{\mathrm{H}}_{\bar{f}}: A^{2,1} \rightarrow A^{2,1 \perp}$, evaluated at z^{n} / c_{n} is calculated to be

$$
\begin{aligned}
& \tilde{\mathrm{H}}_{\bar{f}}\left(z^{n} / c_{n}\right) \\
& =\frac{1}{c_{n}} \sum_{k \leq n} b_{k}\left(\bar{z}^{k} z^{n}-a_{n-k, 0}^{k} z^{n-k}-a_{n-k, 1}^{k} \bar{z} z^{n-k+1}\right)+\frac{1}{c_{n}} \sum_{k>n} b_{k} \bar{z}^{k} z^{n},
\end{aligned}
$$

where

$$
a_{n, 0}^{k}=\frac{c_{n+2}^{2} c_{n+k}^{2}-c_{n+1}^{2} c_{n+k+1}^{2}}{c_{n}^{2} c_{n+2}^{2}-c_{n+1}^{4}}
$$

and

$$
a_{n, 1}^{k}=\frac{c_{n}^{2} c_{n+k+1}^{2}-c_{n+1}^{2} c_{n+k}^{2}}{c_{n}^{2} c_{n+2}^{2}-c_{n+1}^{4}}
$$

Proof. We remember (cf. [2]) that for each $n \in \mathbb{N}$

$$
\begin{equation*}
\mathrm{P}_{1}\left(\bar{z}^{k} z^{n+k}\right)=a_{n, 0}^{k} z^{n}+a_{n, 1}^{k} \bar{z} z^{n+1} \tag{2}
\end{equation*}
$$

is valid, where

$$
a_{n, 0}^{k}=\frac{c_{n+2}^{2} c_{n+k}^{2}-c_{n+1}^{2} c_{n+k+1}^{2}}{c_{n}^{2} c_{n+2}^{2}-c_{n+1}^{4}}
$$

and

$$
a_{n, 1}^{k}=\frac{c_{n}^{2} c_{n+k+1}^{2}-c_{n+1}^{2} c_{n+k}^{2}}{c_{n}^{2} c_{n+2}^{2}-c_{n+1}^{4}}
$$

Furthermore, using the same reasoning one can see that

$$
\begin{equation*}
\mathrm{P}_{1}\left(\bar{z}^{k} z^{n}\right)=0 \tag{3}
\end{equation*}
$$

for $n<k$. The above conditions can be rewritten as

$$
\begin{aligned}
\mathrm{P}_{1}\left(\bar{z}^{k} z^{n}\right)= & a_{n-k, 0}^{k} z^{n-k}+a_{n-k, 1}^{k} \bar{z} z^{n-k+1} \\
= & \left(\frac{c_{n-k+2}^{2} c_{n}^{2}-c_{n-k+1}^{2} c_{n+1}^{2}}{c_{n-k}^{2} c_{n-k+2}^{2}-c_{n-k+1}^{4}}\right) z^{n-k} \\
& +\left(\frac{c_{n-k}^{2} c_{n+1}^{2}-c_{n-k+1}^{2} c_{n}^{2}}{c_{n-k}^{2} c_{n-k+2}^{2}-c_{n-k+1}^{4}}\right) \bar{z} z^{n-k+1}
\end{aligned}
$$

for $n \geq k$, i.e., equation (2), and $\mathrm{P}_{1}\left(\bar{z}^{k} z^{n}\right)=0$ otherwise. Therefore,

$$
\mathrm{P}_{1}\left(\bar{f} z^{n} / c_{n}\right)(z)=\frac{1}{c_{n}} \sum_{k \leq n} b_{k}\left(a_{n-k, 0}^{k} z^{n-k}+a_{n-k, 1}^{k} \bar{z} z^{n-k+1}\right)
$$

and consequently

$$
\begin{aligned}
\tilde{\mathrm{H}}_{\bar{f}}\left(z^{n} / c_{n}\right)= & \bar{f} \frac{z^{n}}{c_{n}}-\mathrm{P}_{1}\left(\bar{f} z^{n}\right) \\
= & \bar{f} \frac{z^{n}}{c_{n}}-\frac{1}{c_{n}} \sum_{k \leq n} b_{k}\left(a_{n-k, 0}^{k} z^{n-k}+a_{n-k, 1}^{k} \bar{z} z^{n-k+1}\right) \\
= & \frac{1}{c_{n}} \sum_{k \leq n} b_{k}\left(\bar{z}^{k} z^{n}-a_{n-k, 0}^{k} z^{n-k}+a_{n-k, 1}^{k} \bar{z} z^{n-k+1}\right) \\
& \quad+\frac{1}{c_{n}} \sum_{k>n} b_{k} \bar{z}^{k} z^{n} .
\end{aligned}
$$

This finishes the proof.

Now we come to our main result.
Theorem 4. Regard the Hankel operator $\tilde{\mathrm{H}}_{\bar{f}}: A^{2,1} \rightarrow A^{2,1^{\perp}}$, where $\bar{f}=$ $\sum_{i=0}^{\infty} b_{k} \bar{z}^{k} \quad\left(b_{k} \in \mathbb{C}\right)$ satisfies the regularity condition (1), mentioned in the introduction. Then $\tilde{\mathrm{H}}_{\bar{f}}$ is bounded if and only if \bar{f} is a polynomial in \bar{z} of degree less or equal than two, i.e., if and only if $b_{k}=0$ for $k>2$.

Proof. A straightforward calculation shows that

$$
\begin{aligned}
& \left(\bar{z}^{k} z^{n}-a_{n-k, 0}^{k} z^{n-k}-a_{n-k, 1}^{k} \bar{z} z^{n-k+1}\right) \\
& \quad \perp\left(\bar{z}^{l} z^{n}-a_{n-l, 0}^{k} z^{n-l}-a_{n-l, 1}^{k} \bar{z} z^{n-l+1}\right)
\end{aligned}
$$

for $k \neq l$. Hence,

$$
\begin{align*}
\left\|\tilde{\mathrm{H}}_{\bar{f}}\left(\frac{z^{n}}{c_{n}}\right)\right\|^{2}= & \left\langle\left.\tilde{\mathrm{H}}_{\bar{f}}\left(\frac{z^{n}}{c_{n}}\right) \right\rvert\, \tilde{\mathrm{H}}_{\bar{f}}\left(\frac{z^{n}}{c_{n}}\right)\right\rangle \tag{4}\\
= & \sum_{k \leq n}\left|b_{k}\right|^{2}\left\|\frac{1}{c_{n}}\left(\bar{z}^{k} z^{n}-a_{n-k, 0}^{k} z^{n-k}-a_{n-k, 1}^{k} \bar{z} z^{n-k+1}\right)\right\|^{2} \\
& +\sum_{k>n}\left|b_{k}\right|^{2} \frac{c_{n+k}^{2}}{c_{n}^{2}} .
\end{align*}
$$

Using Proposition 1 for $\bar{f}=z^{k}$ we obtain

$$
\begin{aligned}
\left\|\tilde{\mathrm{H}}_{\bar{z}^{k}}\left(\frac{z^{n}}{c_{n}}\right)\right\|^{2} & =\left\|\frac{1}{c_{n}}\left(\bar{z}^{k} z^{n}-a_{n-k, 0} z^{n-k}-a_{n-k, 1} \bar{z} z^{n-k+1}\right)\right\|^{2} \\
& =\left\|\frac{1}{c_{n}} \bar{z}^{k} z^{n}\right\|^{2}-\left\|\frac{1}{c_{n}}\left(a_{n-k, 0} z^{n-k}+a_{n-k, 1} \bar{z} z^{n-k+1}\right)\right\|^{2},
\end{aligned}
$$

where we used the fact that P_{1} is a projection, and hence $\left\|\left(\operatorname{Id}-\mathrm{P}_{1}\right)(g)\right\|^{2}=$ $\|g\|^{2}-\left\|\mathrm{P}_{1}(g)\right\|^{2}$. Moreover, straightforward calculation yields

$$
\begin{align*}
\left\|\tilde{\mathrm{H}}_{\bar{z}^{k}}\left(\frac{z^{n}}{c_{n}}\right)\right\|^{2}= & \frac{2 c_{n-k+1}^{2} c_{n}^{2} c_{n+1}^{2}+c_{n-k}^{2} c_{n-k+2}^{2} c_{n+k}^{2}}{c_{n}^{2}\left(c_{n-k}^{2} c_{n-k+2}^{2}-c_{n-k+1}^{4}\right)} \tag{5}\\
& -\frac{c_{n-k+1}^{4} c_{n+2}^{2}+c_{n-k+2}^{2} c_{n}^{4}+c_{n-k}^{2} c_{n+1}^{4}}{c_{n}^{2}\left(c_{n-k}^{2} c_{n-k+2}^{2}-c_{n-k+1}^{4}\right)} .
\end{align*}
$$

Therefore, equation (4) can be rewritten as

$$
\left\|\tilde{\mathrm{H}}_{\bar{f}}\left(\frac{z^{n}}{c_{n}}\right)\right\|^{2}=\sum_{k \leq n}\left|b_{k}\right|^{2}\left\|\tilde{\mathrm{H}}_{\bar{z}^{k}}\left(\frac{z^{n}}{c_{n}}\right)\right\|^{2}+\sum_{k>n}\left|b_{k}\right|^{2} \frac{c_{n+k}^{2}}{c_{n}^{2}} .
$$

If the Hankel operator $\tilde{\mathrm{H}}_{\bar{f}}$ is bounded, we necessarily need

$$
\left\|\tilde{\mathrm{H}}_{\bar{f}}\left(\frac{z^{n}}{c_{n}}\right)\right\|^{2} \leq K
$$

for some $K<\infty$ and all n and therefore

$$
\left\|\tilde{\mathrm{H}}_{\bar{z}^{k}}\left(\frac{z^{n}}{c_{n}}\right)\right\|^{2}<\frac{K}{\left|b_{k}\right|^{2}}
$$

for each k with $b_{k} \neq 0$ and all n. Since the operators $\tilde{H}_{\bar{z}^{k}}$ are diagonal operators (this can be seen via direct calculation or via reference to [2]) the above implies that the operators $\tilde{\mathrm{H}}_{\bar{z}^{k}}$ must be bounded. It is known from [2] that $\tilde{\mathrm{H}}_{\bar{z}^{k}}$ is bounded only for $k \leq 2$, which can alternatively be shown using equation (5). Hence, we have $b_{k}=0$ for $k>2$.

If $\bar{f}=b_{1} \bar{z}+b_{2} \bar{z}^{2}$ it follows immediately from the above that $\tilde{\mathrm{H}}_{\bar{f}}$ is bounded. This finishes the proof.

Remark: It would be interesting to generalize the results of [2] and the work here to Hankel operators of the form

$$
\tilde{\mathrm{H}}_{\bar{f}}^{l}:=\left(\mathrm{Id}-\mathrm{P}_{l}\right) \mathrm{M}_{\bar{f}},
$$

where P_{l} is the projection onto $A^{2, l}$ with

$$
A^{2, l}:=\operatorname{cl}\left(\operatorname{span}\left\{\bar{z}^{j} z^{n} \mid j, n \in \mathbb{N} \text { and } 0 \leq j \leq l\right\}\right)
$$

that is the closure of the linear span of the set of all monomials $\bar{z}^{j} z^{n}$, where $j, n \in \mathbb{N}$ and $0 \leq j \leq l$. However, such a generalization seems much more complicated than the present result.

Remark: A similar result than the one in Theorem 4 is also possible for the case of generalized Fock spaces A_{m}^{2}. The proof of the main result of this paper can be easily adopted for this generalized setting.

References

[1] W. Knirsch and G. Schneider, Continuity and Schatten-von Neumann p-class membership of Hankel operators with anti-holomorphic symbols on (generalized) Fock spaces, J. Math. Anal. Appl. 320 (2006) 403-414.
[2] W. Knirsch and G. Schneider, Hankel operators and the generalized solution operator to $\bar{\partial}$ on the Fock space and on the Bergman space of the unit disc, Math. Nachr. 279 (2006) 1684-1694.
[3] W. Knirsch and G. Schneider, Compactness of generalized Hankel operators with unbounded and anti-holomorphic symbols on generalized Fock spaces, Rev. Roum. 52 (2007) 213-229.
[4] G. Schneider, Hankel-operators with anti-holomorphic symbols on the Fock-space, Proc. Amer. Math. Soc. 132 (2004) 2399-2409.
[5] J. Xia, On the Schatten class membership of Hankel operators on the unit ball, Illinois J. Math., 46, (2002), no. 3, 913-928.
[6] K. Zhu, Hilbert-Schmidt Hankel-operators on the Bergman space. Proc. Amer. Math. Soc. 109 (1990), 721-730.

Received: Ooctober 12, 2007

