

Electronic Journal of Environmental, Agricultural and Food Chemistry

ISSN: 1579-4377

C₂H₂F₄-SCFE-OLEORESINS OF BLACK PEPPER (*PIPER NIGRUM L*.) AND GINGER (*ZINGIBER OFFICINALE (L.) ROSC.*) FROM VIETNAM: ANTIMICROBIAL TESTINGS, GAS CHROMATOGRAPHIC ANALYSIS AND OLFACTORIC EVALUATION

Albena Stoyanova¹, Zapriana Denkova², Neno Nenov³, Aleksander Slavchev², Leopold Jirovetz⁴, Gerhard Buchbauer⁴, Ho Nhu Lien⁵, Erich Schmidt⁶, Margit Geissler⁷

¹University of Food Technology, Department of Essential Oils, 26 Maritza Blvd, 4002 Plovdiv, Bulgaria
 ²University of Food Technology, Department of Microbiology, 26 Maritza Blvd, 4002 Plovdiv, Bulgaria
 ³University of Food Technology, Department of Heat Engineering, 26 Maritza Blvd, 4002 Plovdiv, Bulgaria
 ⁴Department of Clinical Pharmacy and Diagnostics, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
 ⁵Vimedimex II Company, 246 Cong Quynh Street, District 1, Ho Chi Minh City, Vietnam
 ⁶Kurt Kitzing GmbH, Hinterm Alten Schloss 21, D-86757 Wallerstein, Germany
 ⁷Shimadzu Germany, Department of GC and GC/MS, Albert-Hahn-Strasse 6-10, D-47269 Duisburg,Germany

KEYWORDS

C₂H₂F₄-SCFE-Oleoresins, pepper, ginger, antimicrobial testing, compositions, GC-FID, GC-MS, olfactoric evaluation.

ABSTRACT

 $C_2H_2F_4$ -SCFE-oleoresins of black pepper (dried fruits) and ginger (dried roots) from Vietnam were tested for their antimicrobial activities against some different strains of yeast, Gram-(+)- and Gram-(-)-bacteria by agar diffusion and agar dilution method, respectively. Both oleoresins showed a significant high antimicrobial activity against the Gram-(+)-bacteria *Staphylococcus aureus* and *Enterococcus faecalis*. In addition, strong effects of the *Zingiber officinale* oleoresin against the Gram-(-)-bacteria *Klebsiella pneumoniae* and the yeast *Candida albicans* were observed.

For qualitative and quantitative investigations of the compositions of the SCF-extracts, gas chromatographic methods (GC-FID and GC-MS with columns of different polarities) were used and the results correlated with that of the antimicrobial testings. As main compounds of the C₂H₂F₄-SCFE-oleoresins of pepper β -caryophyllene (56.8%), limonene (18.9%), terpinolene (3.9%) and *p*-cymene (3.1%) as well as of ginger α -zingiberene (42.1%), β -sesquiphellandrene (14.2%), β -bisabolene (11.3%), *cis*-menth-2-en-1-ol (9.8%), α -curcumene (8.5%) and (*E*,*E*)- α -farnesene (5.9%) were found.

INTRODUCTION

In continuation of our research work on the field of combined data interpretation of antimicrobial testings (agar diffusion and agar dilution methods) and gas chromatographic analysis (GC-FID and GC-MS, using fused silica columns of different polarity) of aroma samples [1-7], in a systematic investigation of aroma compounds and odorous samples (e.g. essential oils and extracts) of a running, international project, the supercritical fluide extraction-oleoresins ($C_2H_2F_4$ -SCFE-method [16,17,18]) of black pepper (*Piper nigrum* L., Piperaceae) and ginger (*Zingiber officinale* (L.) Rosc., Zingiberaceae) from Vietnam were investigated. The obtained antimicrobial and analytical data of these oleoresins were compared with that ones of CO₂-SCFE-oleoresins of the identical plant material [1] to get informations about influences

Electron. J. Environ. Agric. Food Chem. ISSN 1579-4377 on the use of different SCF-extraction methods. Although the medical, pharmaceutical, perfumistic, cosmetic and food flavouring properties as well as the compositions of different samples (essential oils, extracts, etc.) of pepper and ginger have already been discussed by many researchers [e.g. 8-15], no detailed informations about the composition, olfactorical properties and antimicrobial activities of CO₂-SCF-extracts (oleoresins) of *Piper nigrum* and *Zingiber officinalis* from Vietnam were published until now. In addition, data of the influence of single main compounds of the black pepper and ginger oleoresin on the antimicrobial effects were not available.

Therefore, the objectives of this research was to test these $C_2H_2F_4$ -SCFE-oleoresins of pepper and ginger by means of usual agar diffusion and agar dilution method against these properties of various strains of microorganisms [19-37], after improvement of some parameters [4-7]. Furthermore, gas chromatograpic (GC-FID and GC-MS) analyses and olfactoric evaluations were used to get informations about the composition of each sample. As result of the combined data interpretation the above mentioned influence of the main compounds on the antimicrobial effects of the pepper and ginger oleoresins should be ascertained and -as mentioned above- these data sets compared with that ones of CO_2 -SCFE-oleoresins of the identical plant material [1].

EXPERIMENTAL

Samples

The air-dried fruits of black pepper and roots of ginger from Vietnam (the crops were harvested in 2004) were ground separately in an attrition mill to a size of 0.15-0.25 mm and the oleoresins pepper A and ginger A obtained by a high-pressure-CO₂-extractor [16,] equipped with a 5 dm³ volume extractor-vessel as well as the oleorseins pepper B and ginger B by a $C_2H_2F_4$ -laboratory-extractor [17] under following conditions (continuos flow, draining every 60 min.):

Material	Temperature (•C)	Pressure (bar)	Time (min.)	Yield (%)/Colour
Pepper A	28-32	6.8-7.2	180	2.2/yellow
Pepper B	19-21	5.0	20	1.6/yellow
Ginger A	12-14	4.6-5.0	120	3.7/yellow
Ginger B	13-14	3.4	180	1.1/yellow

Using an azeotropic distillation of the raw materials (moisture) for quality control, yields of 6.8%/7.2% (pepper A/B) and 7.0%/6.5% (ginger A/B) of extracts were found.

Eugenol and tetracycline hydrochloride (= achromycine hydrochloride – 25g) are products from Sigma-Aldrich with numbers W24,670-0 and T3383-25G, Ciproxin^R 500mg-tablettes = 582mg ciproflaxoxacine hydrochloride/water) from Bayer Austria Co., Vienna and Lidaprim^R-infusion-bottle (250mg containing 0.8g sulfmetrol and 0.16g trimethoprim) from Nycomed Austria Co., Vienna.

Antimicrobial testings

As test microorganisms (colony-forming-units = cfu/cm^3), Gram-(+)-bacteria *Staphylococcus aureus* (ATCC 6538P, 1x10¹³) and *Enterococcus faecalis* (clinically isolated, 1x10¹³), Gram-(-)-bacteria *Escherichia coli* (ATCC 8739, 2x10¹²), *Proteus vulgaris* (clinically isolated, 3x10¹³), *Pseudomonas aeruginosa* (G 28, 1.2x10⁹), *Samonella sp.* (clinically isolated, 3x10¹²) and *Klebsiella pneumoniae* (clinically isolated, 1x10¹³) as well as the yeast *Candida albicans* (ATCC 10231, 3.6x10¹¹) – all products from the National Bank of Industrial Microorganisms and Cell Cultures, Sofia, Bulgaria – were used.

The antimicrobial activity was studied by two methods: Agar diffusion disc method using Whatman No. 1 filter paper discs (6mm) and quantities of 6µl of the sample, each. After cultivation of the bacteria and the yeast at 37° C for 24^{h} the diameter of the inhibition zone (IZ) was measured [4-7] as well as agar serial tube dilution method with results as minimum inhibitory concentration (MIC) in accordance to [4-6] as follows: The essential oils and reference compounds were added to brine, containing 1.0% (v/v) Tween 80 at the appropriate volumes to produce final concentrations of the samples in the range of 100-1000ppm; the Petri dishes were inoculated by pipetting 0.1cm³ of the desired culture and 6.0μ L of the samples as well as the reference compounds (the tablettes of Ciproxin^R were added as solution in saline at a quantity of 300µg) on paper discs (6mm) and then incubated at 37°C for 24h.

Olfactoric evaluations

All investigated samples were olfactorically evaluated by professional perfumers and/or olfactorically trained chemists and the aroma described as pleasant spicy-peppery with fresh top- and woody-herbal base-notes (black pepper) and as pleasant spicy, camphoraceous-minty top- and warm-ginger-like base-notes (ginger). In general, a high olfactoric quality for both samples were certificated.

GC/FID

A GC-14A with FID and integrator C-R6A-Chromatopac (Shimadzu Co.) resp. a GC-3700 with FID (Varian Co.) and integrator C-R1B-Chromatopac (Shimadzu Co.) were used; carrier gas: hydrogen; injector-temp.: 250° C; detector-temp.: 300° C; temp.-progr.: 40° C/5 min. to 280° C/5 min. with a heating-rate of 6° C/min.; columns: 30m x 0.32mm bonded FSOT-RSL-200 (OV-5-type) fused silica (film thickness: 0.25 micron; Biorad Co.) and 50m x 0.32mm bonded Stabilwax (film thickness: 0.50micron; Restek Co.); quantification by %-peak-area-calculation. Retention indices of the constituents were compared with published data [38-44] or own data.

GC/MS

A GC-17A with QP5000 (Shimadzu Co.) and data-system Compaq-ProLinea (Class5k-software, Shimadzu Co.), a GC-17A with QP5050 (Shimadzu Co.) with data-system PentiumII (Class5k-software, Shimadzu Co.), a GC-HP5890 with HP5970-MSD (Hewlett-Packard Co.) and Pentium-PC (Böhm Co., ChemStation-software) resp. a GCQ (Finnigan-Spectronex Co.) and Gateway-2000-PS75 (Siemens-Nixdorf Co.; GCQ-software) were used; carrier gas: helium; injector-temp.: 250°C; interface-heating: 300°C; ion-source-heating: 200°C; EI-mode, 70 eV; scan-range: 41-550 amu; other parameters see GC/FID-part. Mass spectra correlations with Wiley-, NBS-, NIST- and private library spectra on-line as well as published ones [38,41,43].

RESULTS AND DISCUSSION

Eugenol as a volatile phenolic compound with well-known antimicrobial activity against many strains of microorganisms was tested using it as a standard substance. This flavor component shows excellent effects against all strains using both methods, agar diffusion and agar dilution. Therefore, its antimicrobial data (IZ=inhibition zones and MIC=minimum inhibition concentrations) were taken as natural reference compound for further testings. Additionally, the antibiotics Ciproxin^R, Lidaprim^R and tetracycline hydrochloride wer used as synthetic references. Surprisingly, Lidaprim^R was not effective against the Gram-(-)-bacteria *Klebsiella pneumoniae* and *Pseudomonas aeruginosa* (see **Table 1**).

Both $C_2H_2F_4$ -SCFE-oleoresins (samples B) were found to show a high activity against the Gram-(+)-bacteria *Staphylococcus aureus* (pepper: IZ=20 and MIC=60; ginger: IZ=19 and MIC=60) and

Enterococcus faecalis (pepper: IZ=9 and MIC=600; ginger: IZ=7 and MIC=600). In addition, the *Z. officinalis* oleoresin is strongly effective against *Klebsiella pneumoniae* (IZ=8 and MIC=600) and against the yeast *Candida albicans* (IZ=8 and MIC=600); see **Table 1**).

Table 1. Antimicrobial activities of pepper and ginger oleoresins from Vietnam as well as of the reference compounds

-	phu u	accortant		meroorge	inisins a	nu memou				
	Staphy	vlococcus								
	aureus/		Escherichia		Pseudomonas					
Compounds	Enterococcus		coli/ Proteus		aeruginosa/		Klebsiella		Candida	
and Essential	faecalis		vulgaris		Salmonella sp.		pneumoniae		albicans	
Oils	IZ	MIC	IZ	MIC	IZ	MIC	IZ	MIC	IZ	MIC
Pepper	20/10	600/600	-/-	-/-	-/-	-/-	10	6	15	600
oleoresin A										
Pepper	20/9	60/600	-/-	-/-	-/-	-/-	-	-	-	-
oleoresin B										
Ginger	12/18	60/60	-/-	-/-	-/-	-/-	-	-	10	600
oleoresin A										
Ginger	19/7	60/600	-/-	-/-	-/-	-/-	8	600	8	600
oleoresin B										
Eugenol	30/30	600/600	28/30	600/600	25/28	600/600	28	600	32	600
Ciproxin ^R	35/33	600/600	22/25	600/600	32/10	600/600	25	600	-	-
Lidaprim ^R	27/27	600/600	11/23	60/600	-/8	-/60	-	-	-	-
Tetracycline	15/22	600/600	11/13	600/600	15/10	600/600	20	600	-	-
hydrochloride										
- no inhibition										
observed										

Inhibition Zones (IZ) in mm and Minimum Inhibition Concentrations (MIC) in
ppm in accordance to test-microorganisms and methods

The correlation with antimicrobial data of the previous investigated CO_2 -SCFE-oleoresins (samples A) of the identical pepper and ginger plant material showed differences in the activity of pepper oleoresin A, with effects against *Klebsiella pneumoniae and Candida albicans*, which were not found by use of pepper oleoresin B. In contrast to ginger oleoresin A (no effects), oleoresin B was found to be highly antimicrobial active against *Klebsiella pneumoniae* (see **Table 1**).

Using gas chromatography (GC-FID and GC-MS with 2 columns of different polarity) in combination with olfactoric evaluations, the purity and composition of the $C_2H_2F_4$ -SCF-extracts were investigated and following results found:

The black pepper sample B from Vietnam shows more than 3% (calculated as %-peak area of GC-FD analysis using an apolar column) of the sesquiterpene hydrocarbons β -caryophyllene (56.8%), limonene (18.9%), terpinolene (3.9%) and *p*-cymene (3.1%), while for oleoresin A the following published [1] main compounds were found: β -caryophyllene (43.9%) and *allo*-aromadendrene (4.4%) as well as of the monoterpene hydrocarbons limonene (17.1%), δ -3-carene (11.8), α -phellandrene (4.4%), sabinene (3.1%) and myrcene (3.1%; see **Table 2**).

The main compounds of the Vietnamese ginger oleoresin B are α -zingiberene (42.1%), β -sesquiphellandrene (14.1%), β -bisabolene (11.3%), *cis*-menth-2-en-1-ol (9.8%), α -curcumene (8.5%) and (*E*,*E*)- α -farnesene (5.9%), whereas for the CO₂-SCFE-oleoresin A of ginger α -zingiberene (36.9%), β -sesquiphellandrene (15.3%), β -bisabolene (8.8%), (*E*,*E*)- α -farnesene (7.0%) and α -curcumene (6.6%) as well as the monoterpene hydrocarbon camphene (3.2%; see **Table 2**) were found.

Compound	RI	PepperA/B	GingerA/B	Odor in accordance to [8, 10, 47 - 49]
cis-3-Hexenol	859	tr ¹ /tr	tr/tr	green, grassy, weak fatty
α -Thujene	930	0.1/0.4	0.7/tr	camphoraceous, herbal
α-Pinene	939	0.2/tr	0.3/0.1	pine-like, warm, weak herbal
Camphene	955	0.1/tr	3.2/0.6	camphoraceous, fresh, clean
Heptanol	966	tr/nd	1.7/tr	oily, weak herbal
Sabinene	975	3.1/1.2	tr/tr	warm, oily-peppery, woody, spicy, weak herbal
β-Pinene	979	2.2/tr	0.1/nd	resinous-piney, dry-woody
1-Octen-3-ol	981	nd²/tr	tr/nd	mushroom-like, moody, earthy
Myrcene	991	3.1/0.2	0.6/tr	weak citrus- and lime-like
2-Octanol	995	tr/nd	2.0/tr	fatty, oily, weak earthy
α -Phellandrene	1003	4.4/0.9	tr/nd	citrus-like, weak peppery
1,4-Cineole	1015	nd/0.2	tr/nd	fresh, eucalyptus-like, camphoraceous
α -Terpinene	1017	tr/0.5	nd/tr	weak lemon- and citrus-like
<i>p</i> -Cymene	1025	0.9/3.1	0.1/0.6	weak citrus-, lemon- and bergamot-like
Limonene	1029	17.1/18.9	1.2/0.9	lemon-like
β-Phellandrene	1031	tr/0.4	0.2/tr	peppery, minty, weak citrus-like
δ-3-Carene	1033	11.8/1.1	tr/tr	sweet, limonene-like
1,8-Cineole	1035	0.1/0.2	0.1/0.6	fresh, eucalyptus-like
γ-Terpinene	1060	tr/1.3	nd/tr	citrus-like, herbal
<i>cis</i> -Sabinene hydrate	1071	tr/0.2	nd/nd	warm, spicy, peppery, weak woody
Terpinolene	1089	0.2/3.9	0.2/nd	pleasant, sweet-piney
<i>trans</i> -Sabinene hydrate	1095	tr/0.1	nd/nd	warm, herbal, spicy, woody
Linalool	1097	0.8/1.6	0.3/0.5	fresh, floral
cis-Menth-2-en-1-ol	1122	nd/0.1	7.1/9.8	fresh, minty
trans-Menth-2-en-1-	1141	1/ 1	1.0/2.1	
ol	1141	nd/nd	1.8/2.1	fresh, minty
cis-β-Terpineol	1144	tr/tr	0.1/tr	woody-earthy
Camphor	1146	tr/nd	0.1/tr	fresh, camphoraceous
Isoborneol	1161	nd/nd	tr/tr	camphoraceous, weak piney
Borneol	1169	nd/tr	1.3/0.2	camphoraceous, peppery, earthy
Terpinen-4-ol	1177	tr/0.1	tr/0.2	warm, peppery, woody, weak liliac-like
α -Terpineol	1189	0.9/0.2	0.5/tr	sweet, floral, liliac-note
Safranal	1195	tr/nd	nd/nd	herbal, saffron-like
Neral	1236	nd/nd	0.3/nd	floral, fruity, sweet
Geranial	1265	nd/nd	0.7/tr	floral, sweet, weak fruity
Bornyl acetate	1289	nd/nd	tr/nd	piney, sweet-balsamic, herbal
Isobornyl acetate	1286	nd/nd	tr/nd	mild piney, oily-camphoraceous, balsamic
δ-Elemene	1335	0.9/tr	nd/nd	herbal, spicy
α-Cubebene	1349	1.5/1.8	nd/tr	woody, spicy
α-Copaene	1377	tr/1.3	tr/tr	weak woody, herbal
β-Elemene	1389	2.2/0.9	tr/nd	herbal, spicy, woody
β-Carvophvllene	1419	43.9/56.8	tr/0.8	spicy, woody, terpene-like
γ-Elemene	1432	0.2/0.7	nd/nd	herbal, spicy
Aromadendrene	1441	tr/tr	nd/tr	woody, spicy
(Z)-B-Farnesene	1444	tr/tr	nd/tr	herbal, spicy
α-Humulene	1455	2.3/1.2	tr/0.1	woody, spicy
allo-Aromadendrene	1460	3.3/0.8	nd/nd	spicy, herbal, woody
Germacrene B	1462	tr/tr	nd/nd	spicy, dry-woody

 Table 2. Compositions of pepper and ginger C2H2F4-SCFE-oleoresins B in correlation to previous published data of CO2-SCFE-oleoresins [1] A (%-peak area of GC using an apolar fused silica OV-5-type column)

Electron. J. Environ. Agric. Food Chem. ISSN 1579-4377

α-Curcumene	1481	nd/0.1	6.6/8.5	spicy, herbal
Germacrene D	1485	0.2/0.4	1.1/0.9	dry-spicy, weak woody
α-Zingiberene	1495	nd/nd	36.9/42.1	warm-spicy, weak woody
(E,E) - α -Farnesene	1504	tr/0.2	7.0/5.9	warm-floral, herbal
β-Bisabolene	1506	0.1/tr	8.8/11.3	warm, spicy, sweet-balsamic
Germacrene A	1508	tr/tr	nd/nd	dry-spicy, weak woody
γ-Cadinene	1514	tr/tr	1.3/tr	dry-woody, mild
β-Sesquiphellandrene	1522	nd/nd	15.3/14.2	spicy, mild
δ-Cadinene	1525	tr/0.3	nd/nd	warm-spicy, woody
Caryophyllene oxide	1583	0.1/1.1	tr/0.5	warm-spicy, woody

¹trace compound (less than 0.1%)

²not detected

In general, it can be seen that the $C_2H_2F_4$ -SCFE-oleoresins of pepper and ginger in comparison with the CO_2 -SCF-extracts have less compounds, however the main components in higher concentrations.

The composition of the black pepper and ginger extract volatiles are characteristic for samples of these species, presented in many papers (e.g. [11, 13-15, 39, 42]).

In addition, the gas chromatographic data of the $C_2H_2F_4$ -SCFE-oleoresins are in accordance to that one of olfactoric evaluations (using correlations with odor attributes published elsewhere [8,10,47-51]) and therefore, both results prove also the high quality of these samples.

Summarizing this combined and comparative investigation of antimicrobial activities and composition of *Piper nigrum* and *Zingiber officinale* C₂H₂F₄- and CO₂-SCF-extracts from Vietnam, we can state:

1.) Eugenol as natural reference substance was found to possess the highest antimicrobial potential of all samples tested. This result proves that both, agar diffusion and agar dilution methods furnish reproducible antimicrobial data in testing aroma samples, while surprisingly the synthetic antibioticum Lidaprim^R was not effective against the Gram-(-)-bacteria *Pseudomonas aeruginosa* and *Klebsiella pneumoniae* (contrary to the also used synthetic antibiotics Ciproxin^R and tetracycline hydrochloride).

2.) Significant antimicrobial effects of all four oleoresins were found only against the Gram-(+)-bacteria *Staphylococcus aureus* and *Enterococcus faecalis*. Against the yeast *Candida albicans* both ginger, but only the CO₂-SCFE-oleoresin of pepper were strongly effective. In addition, the pepper oleoresin A and the ginger oleoresin B show medium to high antimicrobial activity against the Gram-(-)-bacterium *Klebsiella pneumoniae*.

3.) By means of GC-FID and GC-MS analyses characteristic compositions of volatiles for such black pepper and ginger samples were found, with wellknown dominating mono- and sesquiterpene hydrocarbons in both cases. In general, for the $C_2H_2F_4$ -SCFE-oleoresins, in comparison with the CO₂-SCFE-oleoresins, less constituents were identified, but the main compounds in higher concentrations.

4.) Although some papers report that mono- and sesquiterpene hydrocarbons do not show any or only very weak antimicrobial effects against bacteria, fungi and yeasts (e.g. [25,36], we found a high activity of these group of compounds [4, 7].

Further investigations, in combination with antimicrobial testings and GC (and olfactometry), should be done to get more data for a satisfying answer of the question, how effective pure aroma chemicals in complex aroma samples (e.g. essential oils and extracts) really are.

ACKNOWLEDGEMENT

The authors are grateful to *Univ.-Prof.Dr. Heinz Schilcher*, professor emer. of "Freie Universität Berlin", for the valuable informations and discussions on the field of antimicrobial testing methods for natural products.

REFERENCES

- 1. Jirovetz, L., Buchbauer, G., Denkova, Z., Stoyanova, A., Murgov, I., Lien, H.N., Schmidt, E., Geissler, M., *EUROCOSMETICS* **13** (1/2), 22-27 (2005).
- Jirovetz, L., Buchbauer, G., Stoyanova, A., Denkova, Z., Murgov, I., *EURO COSMETICS* 12 (1), 30-33 (2004).
- Jirovetz, L., Buchbauer, G., Stoyanova, A., Denkova, Z., Murgov, I., *Ernährung/Nutrition* 28 (6), 257-260 (2004).
- 4. Jirovetz, L., Buchbauer, G., Stoyanova, A., Denkova, Z., Murgov, I., Schmidt, E., Geissler, M., *Processing, Analysis and Application of Essential Oils* (Jirovetz, L. and Buchbauer, G., eds.), 266-274, Har Krishan Bhalla & Sons, Dehradun, India (2005).
- Jirovetz, L., Buchbauer, G., Stoyanova, A., Denkova, Z., Murgov, I., Schmidt, E., Geissler, M., *Recent Progress in Medicinal Plants* (Govil, J.N., ed.), Vol. 13, Chapter 26, 461-484, Studiumpress, New Delhi, India (2006).
- 6. Jirovetz, L., Buchbauer, G., Stoyanova, A., Denkova, Z., Murgov, I., Schmidt, E., Geissler, M., *Sci. Pharm.* **73**, 27-39 (2005).
- Schmidt, E., Jirovetz, L., Buchbauer, G., Stoyanova, A., Denkova, Z., Murgov, I., Geissler, M., J. Essent. Oil-Bearing Plants 8, 99-106 (2005).
- 8. Bauer, K., Garbe, D., Surburg, H. *Common Fragrance and Flavor Materials*, 3rd Ed., VCH, Weinheim (1997).
- 9. Finnemore, H., The Essential Oils, Ernest Benn Ltd., London (1927).
- Furia, T.E., Bellanca, N. (Eds.), *Fenaroli's Handbook of Flavour Ingredients*, 2nd Edition, Vol. I & II, CRC Press, Cleveland (1975).
- 11. Gildemeister, E., Hoffmann, Fr., Die Ätherischen Öle, Vol. IV, Akademie-Verlag, Berlin (1956).
- 12. Europäisches Arzneibuch (Pharmacopoae Austriaca), Amtliche Österreichische Ausgabe, 4. Ausgabe, Grundwerk 2002, Band 2, Monographien A-Z, 285, Ingwerwurzelstock-*Zingiberis rhizoma*, Verlag Österreich, Wien (2002).
- 13. Amvam Zollo, P.H., Biyiti, L., Tchoumbougnang, F., Menut, C., Lamaty, G., Bouchet, Ph., *Flavour Fragr. J.* **13**, 107-114 (1998).
- 14. Martins, A.P., Salgueiro, L., Goncalves, M.J., Proenca da Cunha, A., Vila, R., Canigueral, S., Mazzoni, V., Tomi, F., Casanova, J., *Planta Med.* **67**, 580-584 (2001).
- 15. Tanaka, Y., Kikuzaki, H., Nakatani, N., *Nippon Shokuhin Kagaku Gakkaishi* 9 (2), 67-76 (2002); *Chem. Abstr.* 2004:272 653.
- 16. Jarvis, A.P., Morgan, E.D., Phytochem. Anal. 8, 217-222 (1997).

Electron. J. Environ. Agric. Food Chem. ISSN 1579-4377

- 17. Dunford, N.T., Nutritionally Enhanced Edible Oil and Oilseed Processing (Dunford, N.T. and Dunford B.H., eds.), 100-116, AOCS Press, Champaign, Illinois (2004).
- 18. Adam, K., Sivropoulou, A., Kokkini, S., Lanaras, T., Arsenakis, M., *J.Agric.Food Chem.***46**, 1739-1745 (1998).
- 19. Bär, B., Analytik und Mikrobiologie des ätherischen Öls verschiedener Kamillenarten, Thesis, Freie Universität Berlin (1995).
- Baratta, T., Dorman, S., Deans, S., Figueiredo, A., Barroso, J., Ruberto, G., *Flavour Fragr. J.* 13, 235-244 (1998).
- 21. Boesel, R., Pharmakologische, phytochemische und mikrobiologische Untersuchungen von Queckenwurzelstock Rhizoma Graminis (Erg.-B. 6) (Agropyron repens (L.) PALISOT DE BEAUVOIS, Poaceae), Thesis, Freie Universität Berlin (1991).
- 22. Bourrel, C., Vilarm, G., Michel, G., Gaset, A., Rivista Italiana 16/17, 1-15 (1995).
- 23. Davidson, P., Parish, M., Food Technol. 1989, 148-155.
- Gabrielli, G., Loggini, F., Cioni, P., Giannaccini, B., Mancuso, E., *Pharm. Res. Commun.* 20, 37-40 (1988).
- 25. Griffin, S., Grant, W., Markham, J., Leach, D., Flavour Fragr. J. 14, 323-332 (1999).
- 26. Hammer, K., Carson, C., Riley, T., J.Appl.Microbiol. 86, 985-990 (1996).
- 27. Hood, J.R., Wilkinson, J.M., Cavangh, M.A., J. Essent. Oil Res. 15, 428-433 (2003).
- 28. Illiev, S., Papanov, G., Malakov, P., Hristeva, P., Tomova, K., University of Plovdiv, *Scientific works* **21**, No. 3, 105-112 (1983).
- 29. Janssen, A.M., Scheffer, J.J.C., Baerheim Svendsen, A., Planta Med. 1987, 395-398.
- 30. Jirovetz, L., Buchbauer, G., Stoyanova, A.S., Georgiev, E.V., Damianova, St.T., J. Agric. Food Chem. 51, 3854-3857 (2003).
- Johnson, T.R., Case, Ch.L., Laboratory Experiments in Microbiology Brief Edition, 3rd Ed., 153-155, The Benjamin/Cummings Publishing Company, Inc., Redwood City (1992).
- 32. Lis-Balchin, M., Deans, A., Eaglesham, E., Flavour Fragr. J. 13, 98-104 (1998).
- 33. Neunaber, E., Phytochemische und mikrobiologische Untersuchungen von Propolis verschiedener Provenienz als Beitrag zur Kenntnis der Wirkprinzipien in Propolis, Thesis, Freie Universität Berlin (1995).
- 34. Paukova, T., Stoichev, I., Shabanova, R., Higher Institute of Flavor and Fragrance Industries, Plovdiv, *Scientific works* **20**, No. 3, 305-314 (1973).
- 35. Stendel, H., Seifen-Öle-Fette-Wachse 97, 736-738 (1971).
- Suppakul, P., Miltz, J., Sonneveld, K., Bigger, St.W., J. Agric. Food Chem. 51 (11), 3197-3207 (2003).
- 37. Zaika, L., J.Food Safety 9, 97-118 (1988).

- 38. Adams, R.P., *Identification of Essential Oil Components by Gas Chromatography / Quadrupole Mass Spectroscopy*, Allured Publishing Corp., Carol Stream (2001).
- 39. Chen. C.C., Kuo, M.C., Wu, C.M., Ho, C.T., J. Agric. Food Chem. 34, 477-480 (1986).
- 40. Davies, N.W., J. Chromatogr. 503, 1-24 (1991).
- 41. Jennings, W., Shibamoto, T., Qualitative Analysis of Flavor and Fragrance Volatiles by Glass Capillary Gas Chromatography, Academic Press, New York (1980).
- 42. Jirovetz, L., Buchbauer, G., Ngassoum, M.B., Geissler, M., J. Chromatogr. A 976, 265-275 (2002).
- 43. Joulain, D., König, W., *The Atlas of Spectral Data of Sesquiterpene Hydrocarbons*, E.B.-Verlag, Hamburg (1998).
- 44. Kondjoyan, N., Berdaque, J.-L., *Compilation of Relative Retention Indices for the Analysis of Aromatic Compounds*, Edition du Laboratoire Flaveur, Saint Genes Champanelle (1996).
- 45. Pino, J.A., Marbot, R., Rosado, A., Batista, A., J. Essent. Oil Res. 16 (3), 186-188 (2004).
- 46. Tudor, E., J. Chromatogr. A 779, 287-297 (1997).
- 47. Arctander, St., *Perfume and Flavor Chemicals*, Vol. I, II & III, Arctander Publication, Montclair (1969).
- 48. Fazzalari, F.A., *Compilation of Odor and Taste Threshold Values Data*, American Society for Testing and Materials, Philadelphia (1978).
- 49. Sigma-Aldrich, *Flavors & Fragrances, The Essence of Excellence*, Sigma-Aldrich Co., Milwaukee (2005).